1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Object/IRSymtab.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/DenseMap.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ObjectUtils.h" 19 #include "llvm/IR/Comdat.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/GlobalAlias.h" 22 #include "llvm/IR/GlobalObject.h" 23 #include "llvm/IR/Mangler.h" 24 #include "llvm/IR/Metadata.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Bitcode/BitcodeReader.h" 27 #include "llvm/MC/StringTableBuilder.h" 28 #include "llvm/Object/IRObjectFile.h" 29 #include "llvm/Object/ModuleSymbolTable.h" 30 #include "llvm/Object/SymbolicFile.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/Error.h" 34 #include "llvm/Support/StringSaver.h" 35 #include "llvm/Support/VCSRevision.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cassert> 38 #include <string> 39 #include <utility> 40 #include <vector> 41 42 using namespace llvm; 43 using namespace irsymtab; 44 45 namespace { 46 47 const char *getExpectedProducerName() { 48 static char DefaultName[] = LLVM_VERSION_STRING 49 #ifdef LLVM_REVISION 50 " " LLVM_REVISION 51 #endif 52 ; 53 // Allows for testing of the irsymtab writer and upgrade mechanism. This 54 // environment variable should not be set by users. 55 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER")) 56 return OverrideName; 57 return DefaultName; 58 } 59 60 const char *kExpectedProducerName = getExpectedProducerName(); 61 62 /// Stores the temporary state that is required to build an IR symbol table. 63 struct Builder { 64 SmallVector<char, 0> &Symtab; 65 StringTableBuilder &StrtabBuilder; 66 StringSaver Saver; 67 68 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator. 69 // The StringTableBuilder does not create a copy of any strings added to it, 70 // so this provides somewhere to store any strings that we create. 71 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder, 72 BumpPtrAllocator &Alloc) 73 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {} 74 75 DenseMap<const Comdat *, unsigned> ComdatMap; 76 Mangler Mang; 77 Triple TT; 78 79 std::vector<storage::Comdat> Comdats; 80 std::vector<storage::Module> Mods; 81 std::vector<storage::Symbol> Syms; 82 std::vector<storage::Uncommon> Uncommons; 83 84 std::string COFFLinkerOpts; 85 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; 86 87 void setStr(storage::Str &S, StringRef Value) { 88 S.Offset = StrtabBuilder.add(Value); 89 S.Size = Value.size(); 90 } 91 92 template <typename T> 93 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) { 94 R.Offset = Symtab.size(); 95 R.Size = Objs.size(); 96 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()), 97 reinterpret_cast<const char *>(Objs.data() + Objs.size())); 98 } 99 100 Error addModule(Module *M); 101 Error addSymbol(const ModuleSymbolTable &Msymtab, 102 const SmallPtrSet<GlobalValue *, 8> &Used, 103 ModuleSymbolTable::Symbol Sym); 104 105 Error build(ArrayRef<Module *> Mods); 106 }; 107 108 Error Builder::addModule(Module *M) { 109 if (M->getDataLayoutStr().empty()) 110 return make_error<StringError>("input module has no datalayout", 111 inconvertibleErrorCode()); 112 113 SmallPtrSet<GlobalValue *, 8> Used; 114 collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false); 115 116 ModuleSymbolTable Msymtab; 117 Msymtab.addModule(M); 118 119 storage::Module Mod; 120 Mod.Begin = Syms.size(); 121 Mod.End = Syms.size() + Msymtab.symbols().size(); 122 Mod.UncBegin = Uncommons.size(); 123 Mods.push_back(Mod); 124 125 if (TT.isOSBinFormatCOFF()) { 126 if (auto E = M->materializeMetadata()) 127 return E; 128 if (NamedMDNode *LinkerOptions = 129 M->getNamedMetadata("llvm.linker.options")) { 130 for (MDNode *MDOptions : LinkerOptions->operands()) 131 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands()) 132 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString(); 133 } 134 } 135 136 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) 137 if (Error Err = addSymbol(Msymtab, Used, Msym)) 138 return Err; 139 140 return Error::success(); 141 } 142 143 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, 144 const SmallPtrSet<GlobalValue *, 8> &Used, 145 ModuleSymbolTable::Symbol Msym) { 146 Syms.emplace_back(); 147 storage::Symbol &Sym = Syms.back(); 148 Sym = {}; 149 150 storage::Uncommon *Unc = nullptr; 151 auto Uncommon = [&]() -> storage::Uncommon & { 152 if (Unc) 153 return *Unc; 154 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; 155 Uncommons.emplace_back(); 156 Unc = &Uncommons.back(); 157 *Unc = {}; 158 setStr(Unc->COFFWeakExternFallbackName, ""); 159 setStr(Unc->SectionName, ""); 160 return *Unc; 161 }; 162 163 SmallString<64> Name; 164 { 165 raw_svector_ostream OS(Name); 166 Msymtab.printSymbolName(OS, Msym); 167 } 168 setStr(Sym.Name, Saver.save(StringRef(Name))); 169 170 auto Flags = Msymtab.getSymbolFlags(Msym); 171 if (Flags & object::BasicSymbolRef::SF_Undefined) 172 Sym.Flags |= 1 << storage::Symbol::FB_undefined; 173 if (Flags & object::BasicSymbolRef::SF_Weak) 174 Sym.Flags |= 1 << storage::Symbol::FB_weak; 175 if (Flags & object::BasicSymbolRef::SF_Common) 176 Sym.Flags |= 1 << storage::Symbol::FB_common; 177 if (Flags & object::BasicSymbolRef::SF_Indirect) 178 Sym.Flags |= 1 << storage::Symbol::FB_indirect; 179 if (Flags & object::BasicSymbolRef::SF_Global) 180 Sym.Flags |= 1 << storage::Symbol::FB_global; 181 if (Flags & object::BasicSymbolRef::SF_FormatSpecific) 182 Sym.Flags |= 1 << storage::Symbol::FB_format_specific; 183 if (Flags & object::BasicSymbolRef::SF_Executable) 184 Sym.Flags |= 1 << storage::Symbol::FB_executable; 185 186 Sym.ComdatIndex = -1; 187 auto *GV = Msym.dyn_cast<GlobalValue *>(); 188 if (!GV) { 189 // Undefined module asm symbols act as GC roots and are implicitly used. 190 if (Flags & object::BasicSymbolRef::SF_Undefined) 191 Sym.Flags |= 1 << storage::Symbol::FB_used; 192 setStr(Sym.IRName, ""); 193 return Error::success(); 194 } 195 196 setStr(Sym.IRName, GV->getName()); 197 198 if (Used.count(GV)) 199 Sym.Flags |= 1 << storage::Symbol::FB_used; 200 if (GV->isThreadLocal()) 201 Sym.Flags |= 1 << storage::Symbol::FB_tls; 202 if (GV->hasGlobalUnnamedAddr()) 203 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; 204 if (canBeOmittedFromSymbolTable(GV)) 205 Sym.Flags |= 1 << storage::Symbol::FB_may_omit; 206 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; 207 208 if (Flags & object::BasicSymbolRef::SF_Common) { 209 Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize( 210 GV->getType()->getElementType()); 211 Uncommon().CommonAlign = GV->getAlignment(); 212 } 213 214 const GlobalObject *Base = GV->getBaseObject(); 215 if (!Base) 216 return make_error<StringError>("Unable to determine comdat of alias!", 217 inconvertibleErrorCode()); 218 if (const Comdat *C = Base->getComdat()) { 219 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); 220 Sym.ComdatIndex = P.first->second; 221 222 if (P.second) { 223 storage::Comdat Comdat; 224 setStr(Comdat.Name, C->getName()); 225 Comdats.push_back(Comdat); 226 } 227 } 228 229 if (TT.isOSBinFormatCOFF()) { 230 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); 231 232 if ((Flags & object::BasicSymbolRef::SF_Weak) && 233 (Flags & object::BasicSymbolRef::SF_Indirect)) { 234 std::string FallbackName; 235 raw_string_ostream OS(FallbackName); 236 Msymtab.printSymbolName( 237 OS, cast<GlobalValue>( 238 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts())); 239 OS.flush(); 240 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); 241 } 242 } 243 244 if (!Base->getSection().empty()) 245 setStr(Uncommon().SectionName, Saver.save(Base->getSection())); 246 247 return Error::success(); 248 } 249 250 Error Builder::build(ArrayRef<Module *> IRMods) { 251 storage::Header Hdr; 252 253 assert(!IRMods.empty()); 254 Hdr.Version = storage::Header::kCurrentVersion; 255 setStr(Hdr.Producer, kExpectedProducerName); 256 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); 257 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); 258 TT = Triple(IRMods[0]->getTargetTriple()); 259 260 for (auto *M : IRMods) 261 if (Error Err = addModule(M)) 262 return Err; 263 264 COFFLinkerOptsOS.flush(); 265 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts)); 266 267 // We are about to fill in the header's range fields, so reserve space for it 268 // and copy it in afterwards. 269 Symtab.resize(sizeof(storage::Header)); 270 writeRange(Hdr.Modules, Mods); 271 writeRange(Hdr.Comdats, Comdats); 272 writeRange(Hdr.Symbols, Syms); 273 writeRange(Hdr.Uncommons, Uncommons); 274 275 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr; 276 return Error::success(); 277 } 278 279 } // end anonymous namespace 280 281 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab, 282 StringTableBuilder &StrtabBuilder, 283 BumpPtrAllocator &Alloc) { 284 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods); 285 } 286 287 // Upgrade a vector of bitcode modules created by an old version of LLVM by 288 // creating an irsymtab for them in the current format. 289 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) { 290 FileContents FC; 291 292 LLVMContext Ctx; 293 std::vector<Module *> Mods; 294 std::vector<std::unique_ptr<Module>> OwnedMods; 295 for (auto BM : BMs) { 296 Expected<std::unique_ptr<Module>> MOrErr = 297 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, 298 /*IsImporting*/ false); 299 if (!MOrErr) 300 return MOrErr.takeError(); 301 302 Mods.push_back(MOrErr->get()); 303 OwnedMods.push_back(std::move(*MOrErr)); 304 } 305 306 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW); 307 BumpPtrAllocator Alloc; 308 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc)) 309 return std::move(E); 310 311 StrtabBuilder.finalizeInOrder(); 312 FC.Strtab.resize(StrtabBuilder.getSize()); 313 StrtabBuilder.write((uint8_t *)FC.Strtab.data()); 314 315 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, 316 {FC.Strtab.data(), FC.Strtab.size()}}; 317 return std::move(FC); 318 } 319 320 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) { 321 if (BFC.Mods.empty()) 322 return make_error<StringError>("Bitcode file does not contain any modules", 323 inconvertibleErrorCode()); 324 325 if (BFC.StrtabForSymtab.empty() || 326 BFC.Symtab.size() < sizeof(storage::Header)) 327 return upgrade(BFC.Mods); 328 329 // We cannot use the regular reader to read the version and producer, because 330 // it will expect the header to be in the current format. The only thing we 331 // can rely on is that the version and producer will be present as the first 332 // struct elements. 333 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data()); 334 unsigned Version = Hdr->Version; 335 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab); 336 if (Version != storage::Header::kCurrentVersion || 337 Producer != kExpectedProducerName) 338 return upgrade(BFC.Mods); 339 340 FileContents FC; 341 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()}, 342 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}}; 343 344 // Finally, make sure that the number of modules in the symbol table matches 345 // the number of modules in the bitcode file. If they differ, it may mean that 346 // the bitcode file was created by binary concatenation, so we need to create 347 // a new symbol table from scratch. 348 if (FC.TheReader.getNumModules() != BFC.Mods.size()) 349 return upgrade(std::move(BFC.Mods)); 350 351 return std::move(FC); 352 } 353