1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Object/IRSymtab.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/SmallPtrSet.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Config/llvm-config.h" 18 #include "llvm/IR/Comdat.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalObject.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/MC/StringTableBuilder.h" 27 #include "llvm/Object/IRObjectFile.h" 28 #include "llvm/Object/ModuleSymbolTable.h" 29 #include "llvm/Object/SymbolicFile.h" 30 #include "llvm/Support/Allocator.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/StringSaver.h" 34 #include "llvm/Support/VCSRevision.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <string> 38 #include <utility> 39 #include <vector> 40 41 using namespace llvm; 42 using namespace irsymtab; 43 44 static const char *LibcallRoutineNames[] = { 45 #define HANDLE_LIBCALL(code, name) name, 46 #include "llvm/IR/RuntimeLibcalls.def" 47 #undef HANDLE_LIBCALL 48 }; 49 50 namespace { 51 52 const char *getExpectedProducerName() { 53 static char DefaultName[] = LLVM_VERSION_STRING 54 #ifdef LLVM_REVISION 55 " " LLVM_REVISION 56 #endif 57 ; 58 // Allows for testing of the irsymtab writer and upgrade mechanism. This 59 // environment variable should not be set by users. 60 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER")) 61 return OverrideName; 62 return DefaultName; 63 } 64 65 const char *kExpectedProducerName = getExpectedProducerName(); 66 67 /// Stores the temporary state that is required to build an IR symbol table. 68 struct Builder { 69 SmallVector<char, 0> &Symtab; 70 StringTableBuilder &StrtabBuilder; 71 StringSaver Saver; 72 73 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator. 74 // The StringTableBuilder does not create a copy of any strings added to it, 75 // so this provides somewhere to store any strings that we create. 76 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder, 77 BumpPtrAllocator &Alloc) 78 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {} 79 80 DenseMap<const Comdat *, int> ComdatMap; 81 Mangler Mang; 82 Triple TT; 83 84 std::vector<storage::Comdat> Comdats; 85 std::vector<storage::Module> Mods; 86 std::vector<storage::Symbol> Syms; 87 std::vector<storage::Uncommon> Uncommons; 88 89 std::string COFFLinkerOpts; 90 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; 91 92 void setStr(storage::Str &S, StringRef Value) { 93 S.Offset = StrtabBuilder.add(Value); 94 S.Size = Value.size(); 95 } 96 97 template <typename T> 98 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) { 99 R.Offset = Symtab.size(); 100 R.Size = Objs.size(); 101 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()), 102 reinterpret_cast<const char *>(Objs.data() + Objs.size())); 103 } 104 105 Expected<int> getComdatIndex(const Comdat *C, const Module *M); 106 107 Error addModule(Module *M); 108 Error addSymbol(const ModuleSymbolTable &Msymtab, 109 const SmallPtrSet<GlobalValue *, 8> &Used, 110 ModuleSymbolTable::Symbol Sym); 111 112 Error build(ArrayRef<Module *> Mods); 113 }; 114 115 Error Builder::addModule(Module *M) { 116 if (M->getDataLayoutStr().empty()) 117 return make_error<StringError>("input module has no datalayout", 118 inconvertibleErrorCode()); 119 120 SmallPtrSet<GlobalValue *, 8> Used; 121 collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false); 122 123 ModuleSymbolTable Msymtab; 124 Msymtab.addModule(M); 125 126 storage::Module Mod; 127 Mod.Begin = Syms.size(); 128 Mod.End = Syms.size() + Msymtab.symbols().size(); 129 Mod.UncBegin = Uncommons.size(); 130 Mods.push_back(Mod); 131 132 if (TT.isOSBinFormatCOFF()) { 133 if (auto E = M->materializeMetadata()) 134 return E; 135 if (NamedMDNode *LinkerOptions = 136 M->getNamedMetadata("llvm.linker.options")) { 137 for (MDNode *MDOptions : LinkerOptions->operands()) 138 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands()) 139 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString(); 140 } 141 } 142 143 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) 144 if (Error Err = addSymbol(Msymtab, Used, Msym)) 145 return Err; 146 147 return Error::success(); 148 } 149 150 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) { 151 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); 152 if (P.second) { 153 std::string Name; 154 if (TT.isOSBinFormatCOFF()) { 155 const GlobalValue *GV = M->getNamedValue(C->getName()); 156 if (!GV) 157 return make_error<StringError>("Could not find leader", 158 inconvertibleErrorCode()); 159 // Internal leaders do not affect symbol resolution, therefore they do not 160 // appear in the symbol table. 161 if (GV->hasLocalLinkage()) { 162 P.first->second = -1; 163 return -1; 164 } 165 llvm::raw_string_ostream OS(Name); 166 Mang.getNameWithPrefix(OS, GV, false); 167 } else { 168 Name = C->getName(); 169 } 170 171 storage::Comdat Comdat; 172 setStr(Comdat.Name, Saver.save(Name)); 173 Comdats.push_back(Comdat); 174 } 175 176 return P.first->second; 177 } 178 179 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, 180 const SmallPtrSet<GlobalValue *, 8> &Used, 181 ModuleSymbolTable::Symbol Msym) { 182 Syms.emplace_back(); 183 storage::Symbol &Sym = Syms.back(); 184 Sym = {}; 185 186 storage::Uncommon *Unc = nullptr; 187 auto Uncommon = [&]() -> storage::Uncommon & { 188 if (Unc) 189 return *Unc; 190 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; 191 Uncommons.emplace_back(); 192 Unc = &Uncommons.back(); 193 *Unc = {}; 194 setStr(Unc->COFFWeakExternFallbackName, ""); 195 setStr(Unc->SectionName, ""); 196 return *Unc; 197 }; 198 199 SmallString<64> Name; 200 { 201 raw_svector_ostream OS(Name); 202 Msymtab.printSymbolName(OS, Msym); 203 } 204 setStr(Sym.Name, Saver.save(StringRef(Name))); 205 206 auto Flags = Msymtab.getSymbolFlags(Msym); 207 if (Flags & object::BasicSymbolRef::SF_Undefined) 208 Sym.Flags |= 1 << storage::Symbol::FB_undefined; 209 if (Flags & object::BasicSymbolRef::SF_Weak) 210 Sym.Flags |= 1 << storage::Symbol::FB_weak; 211 if (Flags & object::BasicSymbolRef::SF_Common) 212 Sym.Flags |= 1 << storage::Symbol::FB_common; 213 if (Flags & object::BasicSymbolRef::SF_Indirect) 214 Sym.Flags |= 1 << storage::Symbol::FB_indirect; 215 if (Flags & object::BasicSymbolRef::SF_Global) 216 Sym.Flags |= 1 << storage::Symbol::FB_global; 217 if (Flags & object::BasicSymbolRef::SF_FormatSpecific) 218 Sym.Flags |= 1 << storage::Symbol::FB_format_specific; 219 if (Flags & object::BasicSymbolRef::SF_Executable) 220 Sym.Flags |= 1 << storage::Symbol::FB_executable; 221 222 Sym.ComdatIndex = -1; 223 auto *GV = Msym.dyn_cast<GlobalValue *>(); 224 if (!GV) { 225 // Undefined module asm symbols act as GC roots and are implicitly used. 226 if (Flags & object::BasicSymbolRef::SF_Undefined) 227 Sym.Flags |= 1 << storage::Symbol::FB_used; 228 setStr(Sym.IRName, ""); 229 return Error::success(); 230 } 231 232 setStr(Sym.IRName, GV->getName()); 233 234 bool IsBuiltinFunc = false; 235 236 for (const char *LibcallName : LibcallRoutineNames) 237 if (GV->getName() == LibcallName) 238 IsBuiltinFunc = true; 239 240 if (Used.count(GV) || IsBuiltinFunc) 241 Sym.Flags |= 1 << storage::Symbol::FB_used; 242 if (GV->isThreadLocal()) 243 Sym.Flags |= 1 << storage::Symbol::FB_tls; 244 if (GV->hasGlobalUnnamedAddr()) 245 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; 246 if (GV->canBeOmittedFromSymbolTable()) 247 Sym.Flags |= 1 << storage::Symbol::FB_may_omit; 248 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; 249 250 if (Flags & object::BasicSymbolRef::SF_Common) { 251 Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize( 252 GV->getType()->getElementType()); 253 Uncommon().CommonAlign = GV->getAlignment(); 254 } 255 256 const GlobalObject *Base = GV->getBaseObject(); 257 if (!Base) 258 return make_error<StringError>("Unable to determine comdat of alias!", 259 inconvertibleErrorCode()); 260 if (const Comdat *C = Base->getComdat()) { 261 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent()); 262 if (!ComdatIndexOrErr) 263 return ComdatIndexOrErr.takeError(); 264 Sym.ComdatIndex = *ComdatIndexOrErr; 265 } 266 267 if (TT.isOSBinFormatCOFF()) { 268 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); 269 270 if ((Flags & object::BasicSymbolRef::SF_Weak) && 271 (Flags & object::BasicSymbolRef::SF_Indirect)) { 272 auto *Fallback = dyn_cast<GlobalValue>( 273 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts()); 274 if (!Fallback) 275 return make_error<StringError>("Invalid weak external", 276 inconvertibleErrorCode()); 277 std::string FallbackName; 278 raw_string_ostream OS(FallbackName); 279 Msymtab.printSymbolName(OS, Fallback); 280 OS.flush(); 281 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); 282 } 283 } 284 285 if (!Base->getSection().empty()) 286 setStr(Uncommon().SectionName, Saver.save(Base->getSection())); 287 288 return Error::success(); 289 } 290 291 Error Builder::build(ArrayRef<Module *> IRMods) { 292 storage::Header Hdr; 293 294 assert(!IRMods.empty()); 295 Hdr.Version = storage::Header::kCurrentVersion; 296 setStr(Hdr.Producer, kExpectedProducerName); 297 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); 298 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); 299 TT = Triple(IRMods[0]->getTargetTriple()); 300 301 for (auto *M : IRMods) 302 if (Error Err = addModule(M)) 303 return Err; 304 305 COFFLinkerOptsOS.flush(); 306 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts)); 307 308 // We are about to fill in the header's range fields, so reserve space for it 309 // and copy it in afterwards. 310 Symtab.resize(sizeof(storage::Header)); 311 writeRange(Hdr.Modules, Mods); 312 writeRange(Hdr.Comdats, Comdats); 313 writeRange(Hdr.Symbols, Syms); 314 writeRange(Hdr.Uncommons, Uncommons); 315 316 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr; 317 return Error::success(); 318 } 319 320 } // end anonymous namespace 321 322 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab, 323 StringTableBuilder &StrtabBuilder, 324 BumpPtrAllocator &Alloc) { 325 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods); 326 } 327 328 // Upgrade a vector of bitcode modules created by an old version of LLVM by 329 // creating an irsymtab for them in the current format. 330 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) { 331 FileContents FC; 332 333 LLVMContext Ctx; 334 std::vector<Module *> Mods; 335 std::vector<std::unique_ptr<Module>> OwnedMods; 336 for (auto BM : BMs) { 337 Expected<std::unique_ptr<Module>> MOrErr = 338 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, 339 /*IsImporting*/ false); 340 if (!MOrErr) 341 return MOrErr.takeError(); 342 343 Mods.push_back(MOrErr->get()); 344 OwnedMods.push_back(std::move(*MOrErr)); 345 } 346 347 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW); 348 BumpPtrAllocator Alloc; 349 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc)) 350 return std::move(E); 351 352 StrtabBuilder.finalizeInOrder(); 353 FC.Strtab.resize(StrtabBuilder.getSize()); 354 StrtabBuilder.write((uint8_t *)FC.Strtab.data()); 355 356 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, 357 {FC.Strtab.data(), FC.Strtab.size()}}; 358 return std::move(FC); 359 } 360 361 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) { 362 if (BFC.Mods.empty()) 363 return make_error<StringError>("Bitcode file does not contain any modules", 364 inconvertibleErrorCode()); 365 366 if (BFC.StrtabForSymtab.empty() || 367 BFC.Symtab.size() < sizeof(storage::Header)) 368 return upgrade(BFC.Mods); 369 370 // We cannot use the regular reader to read the version and producer, because 371 // it will expect the header to be in the current format. The only thing we 372 // can rely on is that the version and producer will be present as the first 373 // struct elements. 374 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data()); 375 unsigned Version = Hdr->Version; 376 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab); 377 if (Version != storage::Header::kCurrentVersion || 378 Producer != kExpectedProducerName) 379 return upgrade(BFC.Mods); 380 381 FileContents FC; 382 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()}, 383 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}}; 384 385 // Finally, make sure that the number of modules in the symbol table matches 386 // the number of modules in the bitcode file. If they differ, it may mean that 387 // the bitcode file was created by binary concatenation, so we need to create 388 // a new symbol table from scratch. 389 if (FC.TheReader.getNumModules() != BFC.Mods.size()) 390 return upgrade(std::move(BFC.Mods)); 391 392 return std::move(FC); 393 } 394