1 //===- ELF.cpp - ELF object file implementation ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Object/ELF.h" 10 #include "llvm/BinaryFormat/ELF.h" 11 #include "llvm/Support/DataExtractor.h" 12 13 using namespace llvm; 14 using namespace object; 15 16 #define STRINGIFY_ENUM_CASE(ns, name) \ 17 case ns::name: \ 18 return #name; 19 20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name) 21 22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine, 23 uint32_t Type) { 24 switch (Machine) { 25 case ELF::EM_X86_64: 26 switch (Type) { 27 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" 28 default: 29 break; 30 } 31 break; 32 case ELF::EM_386: 33 case ELF::EM_IAMCU: 34 switch (Type) { 35 #include "llvm/BinaryFormat/ELFRelocs/i386.def" 36 default: 37 break; 38 } 39 break; 40 case ELF::EM_MIPS: 41 switch (Type) { 42 #include "llvm/BinaryFormat/ELFRelocs/Mips.def" 43 default: 44 break; 45 } 46 break; 47 case ELF::EM_AARCH64: 48 switch (Type) { 49 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" 50 default: 51 break; 52 } 53 break; 54 case ELF::EM_ARM: 55 switch (Type) { 56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def" 57 default: 58 break; 59 } 60 break; 61 case ELF::EM_ARC_COMPACT: 62 case ELF::EM_ARC_COMPACT2: 63 switch (Type) { 64 #include "llvm/BinaryFormat/ELFRelocs/ARC.def" 65 default: 66 break; 67 } 68 break; 69 case ELF::EM_AVR: 70 switch (Type) { 71 #include "llvm/BinaryFormat/ELFRelocs/AVR.def" 72 default: 73 break; 74 } 75 break; 76 case ELF::EM_HEXAGON: 77 switch (Type) { 78 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def" 79 default: 80 break; 81 } 82 break; 83 case ELF::EM_LANAI: 84 switch (Type) { 85 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def" 86 default: 87 break; 88 } 89 break; 90 case ELF::EM_PPC: 91 switch (Type) { 92 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def" 93 default: 94 break; 95 } 96 break; 97 case ELF::EM_PPC64: 98 switch (Type) { 99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def" 100 default: 101 break; 102 } 103 break; 104 case ELF::EM_RISCV: 105 switch (Type) { 106 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" 107 default: 108 break; 109 } 110 break; 111 case ELF::EM_S390: 112 switch (Type) { 113 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def" 114 default: 115 break; 116 } 117 break; 118 case ELF::EM_SPARC: 119 case ELF::EM_SPARC32PLUS: 120 case ELF::EM_SPARCV9: 121 switch (Type) { 122 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def" 123 default: 124 break; 125 } 126 break; 127 case ELF::EM_AMDGPU: 128 switch (Type) { 129 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def" 130 default: 131 break; 132 } 133 break; 134 case ELF::EM_BPF: 135 switch (Type) { 136 #include "llvm/BinaryFormat/ELFRelocs/BPF.def" 137 default: 138 break; 139 } 140 break; 141 case ELF::EM_MSP430: 142 switch (Type) { 143 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def" 144 default: 145 break; 146 } 147 break; 148 case ELF::EM_VE: 149 switch (Type) { 150 #include "llvm/BinaryFormat/ELFRelocs/VE.def" 151 default: 152 break; 153 } 154 break; 155 case ELF::EM_CSKY: 156 switch (Type) { 157 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def" 158 default: 159 break; 160 } 161 break; 162 default: 163 break; 164 } 165 return "Unknown"; 166 } 167 168 #undef ELF_RELOC 169 170 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) { 171 switch (Machine) { 172 case ELF::EM_X86_64: 173 return ELF::R_X86_64_RELATIVE; 174 case ELF::EM_386: 175 case ELF::EM_IAMCU: 176 return ELF::R_386_RELATIVE; 177 case ELF::EM_MIPS: 178 break; 179 case ELF::EM_AARCH64: 180 return ELF::R_AARCH64_RELATIVE; 181 case ELF::EM_ARM: 182 return ELF::R_ARM_RELATIVE; 183 case ELF::EM_ARC_COMPACT: 184 case ELF::EM_ARC_COMPACT2: 185 return ELF::R_ARC_RELATIVE; 186 case ELF::EM_AVR: 187 break; 188 case ELF::EM_HEXAGON: 189 return ELF::R_HEX_RELATIVE; 190 case ELF::EM_LANAI: 191 break; 192 case ELF::EM_PPC: 193 break; 194 case ELF::EM_PPC64: 195 return ELF::R_PPC64_RELATIVE; 196 case ELF::EM_RISCV: 197 return ELF::R_RISCV_RELATIVE; 198 case ELF::EM_S390: 199 return ELF::R_390_RELATIVE; 200 case ELF::EM_SPARC: 201 case ELF::EM_SPARC32PLUS: 202 case ELF::EM_SPARCV9: 203 return ELF::R_SPARC_RELATIVE; 204 case ELF::EM_CSKY: 205 return ELF::R_CKCORE_RELATIVE; 206 case ELF::EM_AMDGPU: 207 break; 208 case ELF::EM_BPF: 209 break; 210 default: 211 break; 212 } 213 return 0; 214 } 215 216 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) { 217 switch (Machine) { 218 case ELF::EM_ARM: 219 switch (Type) { 220 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX); 221 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP); 222 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES); 223 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY); 224 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION); 225 } 226 break; 227 case ELF::EM_HEXAGON: 228 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); } 229 break; 230 case ELF::EM_X86_64: 231 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); } 232 break; 233 case ELF::EM_MIPS: 234 case ELF::EM_MIPS_RS3_LE: 235 switch (Type) { 236 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO); 237 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS); 238 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF); 239 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS); 240 } 241 break; 242 case ELF::EM_RISCV: 243 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); } 244 break; 245 default: 246 break; 247 } 248 249 switch (Type) { 250 STRINGIFY_ENUM_CASE(ELF, SHT_NULL); 251 STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS); 252 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB); 253 STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB); 254 STRINGIFY_ENUM_CASE(ELF, SHT_RELA); 255 STRINGIFY_ENUM_CASE(ELF, SHT_HASH); 256 STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC); 257 STRINGIFY_ENUM_CASE(ELF, SHT_NOTE); 258 STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS); 259 STRINGIFY_ENUM_CASE(ELF, SHT_REL); 260 STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB); 261 STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM); 262 STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY); 263 STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY); 264 STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY); 265 STRINGIFY_ENUM_CASE(ELF, SHT_GROUP); 266 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX); 267 STRINGIFY_ENUM_CASE(ELF, SHT_RELR); 268 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL); 269 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA); 270 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR); 271 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB); 272 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS); 273 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE); 274 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG); 275 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES); 276 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART); 277 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR); 278 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR); 279 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP); 280 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES); 281 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH); 282 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef); 283 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed); 284 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym); 285 default: 286 return "Unknown"; 287 } 288 } 289 290 template <class ELFT> 291 std::vector<typename ELFT::Rel> 292 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const { 293 // This function decodes the contents of an SHT_RELR packed relocation 294 // section. 295 // 296 // Proposal for adding SHT_RELR sections to generic-abi is here: 297 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 298 // 299 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 300 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 301 // 302 // i.e. start with an address, followed by any number of bitmaps. The address 303 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 304 // relocations each, at subsequent offsets following the last address entry. 305 // 306 // The bitmap entries must have 1 in the least significant bit. The assumption 307 // here is that an address cannot have 1 in lsb. Odd addresses are not 308 // supported. 309 // 310 // Excluding the least significant bit in the bitmap, each non-zero bit in 311 // the bitmap represents a relocation to be applied to a corresponding machine 312 // word that follows the base address word. The second least significant bit 313 // represents the machine word immediately following the initial address, and 314 // each bit that follows represents the next word, in linear order. As such, 315 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 316 // 63 relocations in a 64-bit object. 317 // 318 // This encoding has a couple of interesting properties: 319 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 320 // even means address, odd means bitmap. 321 // 2. Just a simple list of addresses is a valid encoding. 322 323 Elf_Rel Rel; 324 Rel.r_info = 0; 325 Rel.setType(getRelativeRelocationType(), false); 326 std::vector<Elf_Rel> Relocs; 327 328 // Word type: uint32_t for Elf32, and uint64_t for Elf64. 329 typedef typename ELFT::uint Word; 330 331 // Word size in number of bytes. 332 const size_t WordSize = sizeof(Word); 333 334 // Number of bits used for the relocation offsets bitmap. 335 // These many relative relocations can be encoded in a single entry. 336 const size_t NBits = 8*WordSize - 1; 337 338 Word Base = 0; 339 for (const Elf_Relr &R : relrs) { 340 Word Entry = R; 341 if ((Entry&1) == 0) { 342 // Even entry: encodes the offset for next relocation. 343 Rel.r_offset = Entry; 344 Relocs.push_back(Rel); 345 // Set base offset for subsequent bitmap entries. 346 Base = Entry + WordSize; 347 continue; 348 } 349 350 // Odd entry: encodes bitmap for relocations starting at base. 351 Word Offset = Base; 352 while (Entry != 0) { 353 Entry >>= 1; 354 if ((Entry&1) != 0) { 355 Rel.r_offset = Offset; 356 Relocs.push_back(Rel); 357 } 358 Offset += WordSize; 359 } 360 361 // Advance base offset by NBits words. 362 Base += NBits * WordSize; 363 } 364 365 return Relocs; 366 } 367 368 template <class ELFT> 369 Expected<std::vector<typename ELFT::Rela>> 370 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const { 371 // This function reads relocations in Android's packed relocation format, 372 // which is based on SLEB128 and delta encoding. 373 Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec); 374 if (!ContentsOrErr) 375 return ContentsOrErr.takeError(); 376 ArrayRef<uint8_t> Content = *ContentsOrErr; 377 if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' || 378 Content[2] != 'S' || Content[3] != '2') 379 return createError("invalid packed relocation header"); 380 DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4); 381 DataExtractor::Cursor Cur(/*Offset=*/4); 382 383 uint64_t NumRelocs = Data.getSLEB128(Cur); 384 uint64_t Offset = Data.getSLEB128(Cur); 385 uint64_t Addend = 0; 386 387 if (!Cur) 388 return std::move(Cur.takeError()); 389 390 std::vector<Elf_Rela> Relocs; 391 Relocs.reserve(NumRelocs); 392 while (NumRelocs) { 393 uint64_t NumRelocsInGroup = Data.getSLEB128(Cur); 394 if (!Cur) 395 return std::move(Cur.takeError()); 396 if (NumRelocsInGroup > NumRelocs) 397 return createError("relocation group unexpectedly large"); 398 NumRelocs -= NumRelocsInGroup; 399 400 uint64_t GroupFlags = Data.getSLEB128(Cur); 401 bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG; 402 bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG; 403 bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG; 404 bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG; 405 406 uint64_t GroupOffsetDelta; 407 if (GroupedByOffsetDelta) 408 GroupOffsetDelta = Data.getSLEB128(Cur); 409 410 uint64_t GroupRInfo; 411 if (GroupedByInfo) 412 GroupRInfo = Data.getSLEB128(Cur); 413 414 if (GroupedByAddend && GroupHasAddend) 415 Addend += Data.getSLEB128(Cur); 416 417 if (!GroupHasAddend) 418 Addend = 0; 419 420 for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) { 421 Elf_Rela R; 422 Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur); 423 R.r_offset = Offset; 424 R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur); 425 if (GroupHasAddend && !GroupedByAddend) 426 Addend += Data.getSLEB128(Cur); 427 R.r_addend = Addend; 428 Relocs.push_back(R); 429 } 430 if (!Cur) 431 return std::move(Cur.takeError()); 432 } 433 434 return Relocs; 435 } 436 437 template <class ELFT> 438 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch, 439 uint64_t Type) const { 440 #define DYNAMIC_STRINGIFY_ENUM(tag, value) \ 441 case value: \ 442 return #tag; 443 444 #define DYNAMIC_TAG(n, v) 445 switch (Arch) { 446 case ELF::EM_AARCH64: 447 switch (Type) { 448 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 449 #include "llvm/BinaryFormat/DynamicTags.def" 450 #undef AARCH64_DYNAMIC_TAG 451 } 452 break; 453 454 case ELF::EM_HEXAGON: 455 switch (Type) { 456 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 457 #include "llvm/BinaryFormat/DynamicTags.def" 458 #undef HEXAGON_DYNAMIC_TAG 459 } 460 break; 461 462 case ELF::EM_MIPS: 463 switch (Type) { 464 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 465 #include "llvm/BinaryFormat/DynamicTags.def" 466 #undef MIPS_DYNAMIC_TAG 467 } 468 break; 469 470 case ELF::EM_PPC64: 471 switch (Type) { 472 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 473 #include "llvm/BinaryFormat/DynamicTags.def" 474 #undef PPC64_DYNAMIC_TAG 475 } 476 break; 477 } 478 #undef DYNAMIC_TAG 479 switch (Type) { 480 // Now handle all dynamic tags except the architecture specific ones 481 #define AARCH64_DYNAMIC_TAG(name, value) 482 #define MIPS_DYNAMIC_TAG(name, value) 483 #define HEXAGON_DYNAMIC_TAG(name, value) 484 #define PPC64_DYNAMIC_TAG(name, value) 485 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. 486 #define DYNAMIC_TAG_MARKER(name, value) 487 #define DYNAMIC_TAG(name, value) case value: return #name; 488 #include "llvm/BinaryFormat/DynamicTags.def" 489 #undef DYNAMIC_TAG 490 #undef AARCH64_DYNAMIC_TAG 491 #undef MIPS_DYNAMIC_TAG 492 #undef HEXAGON_DYNAMIC_TAG 493 #undef PPC64_DYNAMIC_TAG 494 #undef DYNAMIC_TAG_MARKER 495 #undef DYNAMIC_STRINGIFY_ENUM 496 default: 497 return "<unknown:>0x" + utohexstr(Type, true); 498 } 499 } 500 501 template <class ELFT> 502 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const { 503 return getDynamicTagAsString(getHeader().e_machine, Type); 504 } 505 506 template <class ELFT> 507 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const { 508 ArrayRef<Elf_Dyn> Dyn; 509 510 auto ProgramHeadersOrError = program_headers(); 511 if (!ProgramHeadersOrError) 512 return ProgramHeadersOrError.takeError(); 513 514 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) { 515 if (Phdr.p_type == ELF::PT_DYNAMIC) { 516 Dyn = makeArrayRef( 517 reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset), 518 Phdr.p_filesz / sizeof(Elf_Dyn)); 519 break; 520 } 521 } 522 523 // If we can't find the dynamic section in the program headers, we just fall 524 // back on the sections. 525 if (Dyn.empty()) { 526 auto SectionsOrError = sections(); 527 if (!SectionsOrError) 528 return SectionsOrError.takeError(); 529 530 for (const Elf_Shdr &Sec : *SectionsOrError) { 531 if (Sec.sh_type == ELF::SHT_DYNAMIC) { 532 Expected<ArrayRef<Elf_Dyn>> DynOrError = 533 getSectionContentsAsArray<Elf_Dyn>(Sec); 534 if (!DynOrError) 535 return DynOrError.takeError(); 536 Dyn = *DynOrError; 537 break; 538 } 539 } 540 541 if (!Dyn.data()) 542 return ArrayRef<Elf_Dyn>(); 543 } 544 545 if (Dyn.empty()) 546 // TODO: this error is untested. 547 return createError("invalid empty dynamic section"); 548 549 if (Dyn.back().d_tag != ELF::DT_NULL) 550 // TODO: this error is untested. 551 return createError("dynamic sections must be DT_NULL terminated"); 552 553 return Dyn; 554 } 555 556 template <class ELFT> 557 Expected<const uint8_t *> 558 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const { 559 auto ProgramHeadersOrError = program_headers(); 560 if (!ProgramHeadersOrError) 561 return ProgramHeadersOrError.takeError(); 562 563 llvm::SmallVector<Elf_Phdr *, 4> LoadSegments; 564 565 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) 566 if (Phdr.p_type == ELF::PT_LOAD) 567 LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr)); 568 569 auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A, 570 const Elf_Phdr_Impl<ELFT> *B) { 571 return A->p_vaddr < B->p_vaddr; 572 }; 573 if (!llvm::is_sorted(LoadSegments, SortPred)) { 574 if (Error E = 575 WarnHandler("loadable segments are unsorted by virtual address")) 576 return std::move(E); 577 llvm::stable_sort(LoadSegments, SortPred); 578 } 579 580 const Elf_Phdr *const *I = llvm::upper_bound( 581 LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) { 582 return VAddr < Phdr->p_vaddr; 583 }); 584 585 if (I == LoadSegments.begin()) 586 return createError("virtual address is not in any segment: 0x" + 587 Twine::utohexstr(VAddr)); 588 --I; 589 const Elf_Phdr &Phdr = **I; 590 uint64_t Delta = VAddr - Phdr.p_vaddr; 591 if (Delta >= Phdr.p_filesz) 592 return createError("virtual address is not in any segment: 0x" + 593 Twine::utohexstr(VAddr)); 594 595 uint64_t Offset = Phdr.p_offset + Delta; 596 if (Offset >= getBufSize()) 597 return createError("can't map virtual address 0x" + 598 Twine::utohexstr(VAddr) + " to the segment with index " + 599 Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) + 600 ": the segment ends at 0x" + 601 Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) + 602 ", which is greater than the file size (0x" + 603 Twine::utohexstr(getBufSize()) + ")"); 604 605 return base() + Offset; 606 } 607 608 template class llvm::object::ELFFile<ELF32LE>; 609 template class llvm::object::ELFFile<ELF32BE>; 610 template class llvm::object::ELFFile<ELF64LE>; 611 template class llvm::object::ELFFile<ELF64BE>; 612