xref: /llvm-project-15.0.7/llvm/lib/Object/ELF.cpp (revision 730fca46)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/BinaryFormat/ELF.h"
11 #include "llvm/Support/DataExtractor.h"
12 
13 using namespace llvm;
14 using namespace object;
15 
16 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
17   case ns::name:                                                               \
18     return #name;
19 
20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
21 
22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
23                                                  uint32_t Type) {
24   switch (Machine) {
25   case ELF::EM_68K:
26     switch (Type) {
27 #include "llvm/BinaryFormat/ELFRelocs/M68k.def"
28     default:
29       break;
30     }
31     break;
32   case ELF::EM_X86_64:
33     switch (Type) {
34 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
35     default:
36       break;
37     }
38     break;
39   case ELF::EM_386:
40   case ELF::EM_IAMCU:
41     switch (Type) {
42 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
43     default:
44       break;
45     }
46     break;
47   case ELF::EM_MIPS:
48     switch (Type) {
49 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
50     default:
51       break;
52     }
53     break;
54   case ELF::EM_AARCH64:
55     switch (Type) {
56 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
57     default:
58       break;
59     }
60     break;
61   case ELF::EM_ARM:
62     switch (Type) {
63 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
64     default:
65       break;
66     }
67     break;
68   case ELF::EM_ARC_COMPACT:
69   case ELF::EM_ARC_COMPACT2:
70     switch (Type) {
71 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
72     default:
73       break;
74     }
75     break;
76   case ELF::EM_AVR:
77     switch (Type) {
78 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
79     default:
80       break;
81     }
82     break;
83   case ELF::EM_HEXAGON:
84     switch (Type) {
85 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
86     default:
87       break;
88     }
89     break;
90   case ELF::EM_LANAI:
91     switch (Type) {
92 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
93     default:
94       break;
95     }
96     break;
97   case ELF::EM_PPC:
98     switch (Type) {
99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
100     default:
101       break;
102     }
103     break;
104   case ELF::EM_PPC64:
105     switch (Type) {
106 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
107     default:
108       break;
109     }
110     break;
111   case ELF::EM_RISCV:
112     switch (Type) {
113 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
114     default:
115       break;
116     }
117     break;
118   case ELF::EM_S390:
119     switch (Type) {
120 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
121     default:
122       break;
123     }
124     break;
125   case ELF::EM_SPARC:
126   case ELF::EM_SPARC32PLUS:
127   case ELF::EM_SPARCV9:
128     switch (Type) {
129 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
130     default:
131       break;
132     }
133     break;
134   case ELF::EM_AMDGPU:
135     switch (Type) {
136 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
137     default:
138       break;
139     }
140     break;
141   case ELF::EM_BPF:
142     switch (Type) {
143 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
144     default:
145       break;
146     }
147     break;
148   case ELF::EM_MSP430:
149     switch (Type) {
150 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
151     default:
152       break;
153     }
154     break;
155   case ELF::EM_VE:
156     switch (Type) {
157 #include "llvm/BinaryFormat/ELFRelocs/VE.def"
158     default:
159       break;
160     }
161     break;
162   case ELF::EM_CSKY:
163     switch (Type) {
164 #include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
165     default:
166       break;
167     }
168     break;
169   default:
170     break;
171   }
172   return "Unknown";
173 }
174 
175 #undef ELF_RELOC
176 
177 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
178   switch (Machine) {
179   case ELF::EM_X86_64:
180     return ELF::R_X86_64_RELATIVE;
181   case ELF::EM_386:
182   case ELF::EM_IAMCU:
183     return ELF::R_386_RELATIVE;
184   case ELF::EM_MIPS:
185     break;
186   case ELF::EM_AARCH64:
187     return ELF::R_AARCH64_RELATIVE;
188   case ELF::EM_ARM:
189     return ELF::R_ARM_RELATIVE;
190   case ELF::EM_ARC_COMPACT:
191   case ELF::EM_ARC_COMPACT2:
192     return ELF::R_ARC_RELATIVE;
193   case ELF::EM_AVR:
194     break;
195   case ELF::EM_HEXAGON:
196     return ELF::R_HEX_RELATIVE;
197   case ELF::EM_LANAI:
198     break;
199   case ELF::EM_PPC:
200     break;
201   case ELF::EM_PPC64:
202     return ELF::R_PPC64_RELATIVE;
203   case ELF::EM_RISCV:
204     return ELF::R_RISCV_RELATIVE;
205   case ELF::EM_S390:
206     return ELF::R_390_RELATIVE;
207   case ELF::EM_SPARC:
208   case ELF::EM_SPARC32PLUS:
209   case ELF::EM_SPARCV9:
210     return ELF::R_SPARC_RELATIVE;
211   case ELF::EM_CSKY:
212     return ELF::R_CKCORE_RELATIVE;
213   case ELF::EM_AMDGPU:
214     break;
215   case ELF::EM_BPF:
216     break;
217   default:
218     break;
219   }
220   return 0;
221 }
222 
223 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
224   switch (Machine) {
225   case ELF::EM_ARM:
226     switch (Type) {
227       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
228       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
229       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
230       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
231       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
232     }
233     break;
234   case ELF::EM_HEXAGON:
235     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
236     break;
237   case ELF::EM_X86_64:
238     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
239     break;
240   case ELF::EM_MIPS:
241   case ELF::EM_MIPS_RS3_LE:
242     switch (Type) {
243       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
244       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
245       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
246       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
247     }
248     break;
249   case ELF::EM_MSP430:
250     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
251     break;
252   case ELF::EM_RISCV:
253     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
254     break;
255   default:
256     break;
257   }
258 
259   switch (Type) {
260     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
261     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
262     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
263     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
264     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
265     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
266     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
267     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
268     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
269     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
270     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
271     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
272     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
273     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
274     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
275     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
276     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
277     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
278     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
279     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
280     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
281     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
282     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
283     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
284     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
285     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
286     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
287     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
288     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
289     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
290     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
291     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
292     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
293     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
294     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
295   default:
296     return "Unknown";
297   }
298 }
299 
300 template <class ELFT>
301 std::vector<typename ELFT::Rel>
302 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
303   // This function decodes the contents of an SHT_RELR packed relocation
304   // section.
305   //
306   // Proposal for adding SHT_RELR sections to generic-abi is here:
307   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
308   //
309   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
310   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
311   //
312   // i.e. start with an address, followed by any number of bitmaps. The address
313   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
314   // relocations each, at subsequent offsets following the last address entry.
315   //
316   // The bitmap entries must have 1 in the least significant bit. The assumption
317   // here is that an address cannot have 1 in lsb. Odd addresses are not
318   // supported.
319   //
320   // Excluding the least significant bit in the bitmap, each non-zero bit in
321   // the bitmap represents a relocation to be applied to a corresponding machine
322   // word that follows the base address word. The second least significant bit
323   // represents the machine word immediately following the initial address, and
324   // each bit that follows represents the next word, in linear order. As such,
325   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
326   // 63 relocations in a 64-bit object.
327   //
328   // This encoding has a couple of interesting properties:
329   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
330   //    even means address, odd means bitmap.
331   // 2. Just a simple list of addresses is a valid encoding.
332 
333   Elf_Rel Rel;
334   Rel.r_info = 0;
335   Rel.setType(getRelativeRelocationType(), false);
336   std::vector<Elf_Rel> Relocs;
337 
338   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
339   typedef typename ELFT::uint Word;
340 
341   // Word size in number of bytes.
342   const size_t WordSize = sizeof(Word);
343 
344   // Number of bits used for the relocation offsets bitmap.
345   // These many relative relocations can be encoded in a single entry.
346   const size_t NBits = 8*WordSize - 1;
347 
348   Word Base = 0;
349   for (const Elf_Relr &R : relrs) {
350     Word Entry = R;
351     if ((Entry&1) == 0) {
352       // Even entry: encodes the offset for next relocation.
353       Rel.r_offset = Entry;
354       Relocs.push_back(Rel);
355       // Set base offset for subsequent bitmap entries.
356       Base = Entry + WordSize;
357       continue;
358     }
359 
360     // Odd entry: encodes bitmap for relocations starting at base.
361     Word Offset = Base;
362     while (Entry != 0) {
363       Entry >>= 1;
364       if ((Entry&1) != 0) {
365         Rel.r_offset = Offset;
366         Relocs.push_back(Rel);
367       }
368       Offset += WordSize;
369     }
370 
371     // Advance base offset by NBits words.
372     Base += NBits * WordSize;
373   }
374 
375   return Relocs;
376 }
377 
378 template <class ELFT>
379 Expected<std::vector<typename ELFT::Rela>>
380 ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
381   // This function reads relocations in Android's packed relocation format,
382   // which is based on SLEB128 and delta encoding.
383   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
384   if (!ContentsOrErr)
385     return ContentsOrErr.takeError();
386   ArrayRef<uint8_t> Content = *ContentsOrErr;
387   if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
388       Content[2] != 'S' || Content[3] != '2')
389     return createError("invalid packed relocation header");
390   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
391   DataExtractor::Cursor Cur(/*Offset=*/4);
392 
393   uint64_t NumRelocs = Data.getSLEB128(Cur);
394   uint64_t Offset = Data.getSLEB128(Cur);
395   uint64_t Addend = 0;
396 
397   if (!Cur)
398     return std::move(Cur.takeError());
399 
400   std::vector<Elf_Rela> Relocs;
401   Relocs.reserve(NumRelocs);
402   while (NumRelocs) {
403     uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
404     if (!Cur)
405       return std::move(Cur.takeError());
406     if (NumRelocsInGroup > NumRelocs)
407       return createError("relocation group unexpectedly large");
408     NumRelocs -= NumRelocsInGroup;
409 
410     uint64_t GroupFlags = Data.getSLEB128(Cur);
411     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
412     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
413     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
414     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
415 
416     uint64_t GroupOffsetDelta;
417     if (GroupedByOffsetDelta)
418       GroupOffsetDelta = Data.getSLEB128(Cur);
419 
420     uint64_t GroupRInfo;
421     if (GroupedByInfo)
422       GroupRInfo = Data.getSLEB128(Cur);
423 
424     if (GroupedByAddend && GroupHasAddend)
425       Addend += Data.getSLEB128(Cur);
426 
427     if (!GroupHasAddend)
428       Addend = 0;
429 
430     for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
431       Elf_Rela R;
432       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
433       R.r_offset = Offset;
434       R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
435       if (GroupHasAddend && !GroupedByAddend)
436         Addend += Data.getSLEB128(Cur);
437       R.r_addend = Addend;
438       Relocs.push_back(R);
439     }
440     if (!Cur)
441       return std::move(Cur.takeError());
442   }
443 
444   return Relocs;
445 }
446 
447 template <class ELFT>
448 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
449                                                  uint64_t Type) const {
450 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
451   case value:                                                                  \
452     return #tag;
453 
454 #define DYNAMIC_TAG(n, v)
455   switch (Arch) {
456   case ELF::EM_AARCH64:
457     switch (Type) {
458 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
459 #include "llvm/BinaryFormat/DynamicTags.def"
460 #undef AARCH64_DYNAMIC_TAG
461     }
462     break;
463 
464   case ELF::EM_HEXAGON:
465     switch (Type) {
466 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
467 #include "llvm/BinaryFormat/DynamicTags.def"
468 #undef HEXAGON_DYNAMIC_TAG
469     }
470     break;
471 
472   case ELF::EM_MIPS:
473     switch (Type) {
474 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
475 #include "llvm/BinaryFormat/DynamicTags.def"
476 #undef MIPS_DYNAMIC_TAG
477     }
478     break;
479 
480   case ELF::EM_PPC:
481     switch (Type) {
482 #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
483 #include "llvm/BinaryFormat/DynamicTags.def"
484 #undef PPC_DYNAMIC_TAG
485     }
486     break;
487 
488   case ELF::EM_PPC64:
489     switch (Type) {
490 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
491 #include "llvm/BinaryFormat/DynamicTags.def"
492 #undef PPC64_DYNAMIC_TAG
493     }
494     break;
495 
496   case ELF::EM_RISCV:
497     switch (Type) {
498 #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
499 #include "llvm/BinaryFormat/DynamicTags.def"
500 #undef RISCV_DYNAMIC_TAG
501     }
502     break;
503   }
504 #undef DYNAMIC_TAG
505   switch (Type) {
506 // Now handle all dynamic tags except the architecture specific ones
507 #define AARCH64_DYNAMIC_TAG(name, value)
508 #define MIPS_DYNAMIC_TAG(name, value)
509 #define HEXAGON_DYNAMIC_TAG(name, value)
510 #define PPC_DYNAMIC_TAG(name, value)
511 #define PPC64_DYNAMIC_TAG(name, value)
512 #define RISCV_DYNAMIC_TAG(name, value)
513 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
514 #define DYNAMIC_TAG_MARKER(name, value)
515 #define DYNAMIC_TAG(name, value) case value: return #name;
516 #include "llvm/BinaryFormat/DynamicTags.def"
517 #undef DYNAMIC_TAG
518 #undef AARCH64_DYNAMIC_TAG
519 #undef MIPS_DYNAMIC_TAG
520 #undef HEXAGON_DYNAMIC_TAG
521 #undef PPC_DYNAMIC_TAG
522 #undef PPC64_DYNAMIC_TAG
523 #undef RISCV_DYNAMIC_TAG
524 #undef DYNAMIC_TAG_MARKER
525 #undef DYNAMIC_STRINGIFY_ENUM
526   default:
527     return "<unknown:>0x" + utohexstr(Type, true);
528   }
529 }
530 
531 template <class ELFT>
532 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
533   return getDynamicTagAsString(getHeader().e_machine, Type);
534 }
535 
536 template <class ELFT>
537 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
538   ArrayRef<Elf_Dyn> Dyn;
539 
540   auto ProgramHeadersOrError = program_headers();
541   if (!ProgramHeadersOrError)
542     return ProgramHeadersOrError.takeError();
543 
544   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
545     if (Phdr.p_type == ELF::PT_DYNAMIC) {
546       Dyn = makeArrayRef(
547           reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
548           Phdr.p_filesz / sizeof(Elf_Dyn));
549       break;
550     }
551   }
552 
553   // If we can't find the dynamic section in the program headers, we just fall
554   // back on the sections.
555   if (Dyn.empty()) {
556     auto SectionsOrError = sections();
557     if (!SectionsOrError)
558       return SectionsOrError.takeError();
559 
560     for (const Elf_Shdr &Sec : *SectionsOrError) {
561       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
562         Expected<ArrayRef<Elf_Dyn>> DynOrError =
563             getSectionContentsAsArray<Elf_Dyn>(Sec);
564         if (!DynOrError)
565           return DynOrError.takeError();
566         Dyn = *DynOrError;
567         break;
568       }
569     }
570 
571     if (!Dyn.data())
572       return ArrayRef<Elf_Dyn>();
573   }
574 
575   if (Dyn.empty())
576     // TODO: this error is untested.
577     return createError("invalid empty dynamic section");
578 
579   if (Dyn.back().d_tag != ELF::DT_NULL)
580     // TODO: this error is untested.
581     return createError("dynamic sections must be DT_NULL terminated");
582 
583   return Dyn;
584 }
585 
586 template <class ELFT>
587 Expected<const uint8_t *>
588 ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
589   auto ProgramHeadersOrError = program_headers();
590   if (!ProgramHeadersOrError)
591     return ProgramHeadersOrError.takeError();
592 
593   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
594 
595   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
596     if (Phdr.p_type == ELF::PT_LOAD)
597       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
598 
599   auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
600                      const Elf_Phdr_Impl<ELFT> *B) {
601     return A->p_vaddr < B->p_vaddr;
602   };
603   if (!llvm::is_sorted(LoadSegments, SortPred)) {
604     if (Error E =
605             WarnHandler("loadable segments are unsorted by virtual address"))
606       return std::move(E);
607     llvm::stable_sort(LoadSegments, SortPred);
608   }
609 
610   const Elf_Phdr *const *I = llvm::upper_bound(
611       LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
612         return VAddr < Phdr->p_vaddr;
613       });
614 
615   if (I == LoadSegments.begin())
616     return createError("virtual address is not in any segment: 0x" +
617                        Twine::utohexstr(VAddr));
618   --I;
619   const Elf_Phdr &Phdr = **I;
620   uint64_t Delta = VAddr - Phdr.p_vaddr;
621   if (Delta >= Phdr.p_filesz)
622     return createError("virtual address is not in any segment: 0x" +
623                        Twine::utohexstr(VAddr));
624 
625   uint64_t Offset = Phdr.p_offset + Delta;
626   if (Offset >= getBufSize())
627     return createError("can't map virtual address 0x" +
628                        Twine::utohexstr(VAddr) + " to the segment with index " +
629                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
630                        ": the segment ends at 0x" +
631                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
632                        ", which is greater than the file size (0x" +
633                        Twine::utohexstr(getBufSize()) + ")");
634 
635   return base() + Offset;
636 }
637 
638 template <class ELFT>
639 Expected<std::vector<typename ELFT::BBAddrMap>>
640 ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec) const {
641   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
642   if (!ContentsOrErr)
643     return ContentsOrErr.takeError();
644   ArrayRef<uint8_t> Content = *ContentsOrErr;
645   DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
646   std::vector<Elf_BBAddrMap> FunctionEntries;
647 
648   DataExtractor::Cursor Cur(0);
649   Error ULEBSizeErr = Error::success();
650 
651   // Helper to extract and decode the next ULEB128 value as uint32_t.
652   // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the uint32_t
653   // limit.
654   // Also returns zero if ULEBSizeErr is already in an error state.
655   auto ReadULEB128AsUInt32 = [&Data, &Cur, &ULEBSizeErr]() -> uint32_t {
656     // Bail out and do not extract data if ULEBSizeErr is already set.
657     if (ULEBSizeErr)
658       return 0;
659     uint64_t Offset = Cur.tell();
660     uint64_t Value = Data.getULEB128(Cur);
661     if (Value > UINT32_MAX) {
662       ULEBSizeErr = createError(
663           "ULEB128 value at offset 0x" + Twine::utohexstr(Offset) +
664           " exceeds UINT32_MAX (0x" + Twine::utohexstr(Value) + ")");
665       return 0;
666     }
667     return static_cast<uint32_t>(Value);
668   };
669 
670   while (!ULEBSizeErr && Cur && Cur.tell() < Content.size()) {
671     uintX_t Address = static_cast<uintX_t>(Data.getAddress(Cur));
672     uint32_t NumBlocks = ReadULEB128AsUInt32();
673     std::vector<typename Elf_BBAddrMap::BBEntry> BBEntries;
674     for (uint32_t BlockID = 0; !ULEBSizeErr && Cur && (BlockID < NumBlocks);
675          ++BlockID) {
676       uint32_t Offset = ReadULEB128AsUInt32();
677       uint32_t Size = ReadULEB128AsUInt32();
678       uint32_t Metadata = ReadULEB128AsUInt32();
679       BBEntries.push_back({Offset, Size, Metadata});
680     }
681     FunctionEntries.push_back({Address, BBEntries});
682   }
683   // Either Cur is in the error state, or ULEBSizeError is set (not both), but
684   // we join the two errors here to be safe.
685   if (!Cur || ULEBSizeErr)
686     return joinErrors(Cur.takeError(), std::move(ULEBSizeErr));
687   return FunctionEntries;
688 }
689 
690 template class llvm::object::ELFFile<ELF32LE>;
691 template class llvm::object::ELFFile<ELF32BE>;
692 template class llvm::object::ELFFile<ELF64LE>;
693 template class llvm::object::ELFFile<ELF64BE>;
694