1 //===- ELF.cpp - ELF object file implementation ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Object/ELF.h" 10 #include "llvm/BinaryFormat/ELF.h" 11 #include "llvm/Support/LEB128.h" 12 13 using namespace llvm; 14 using namespace object; 15 16 #define STRINGIFY_ENUM_CASE(ns, name) \ 17 case ns::name: \ 18 return #name; 19 20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name) 21 22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine, 23 uint32_t Type) { 24 switch (Machine) { 25 case ELF::EM_X86_64: 26 switch (Type) { 27 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" 28 default: 29 break; 30 } 31 break; 32 case ELF::EM_386: 33 case ELF::EM_IAMCU: 34 switch (Type) { 35 #include "llvm/BinaryFormat/ELFRelocs/i386.def" 36 default: 37 break; 38 } 39 break; 40 case ELF::EM_MIPS: 41 switch (Type) { 42 #include "llvm/BinaryFormat/ELFRelocs/Mips.def" 43 default: 44 break; 45 } 46 break; 47 case ELF::EM_AARCH64: 48 switch (Type) { 49 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" 50 default: 51 break; 52 } 53 break; 54 case ELF::EM_ARM: 55 switch (Type) { 56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def" 57 default: 58 break; 59 } 60 break; 61 case ELF::EM_ARC_COMPACT: 62 case ELF::EM_ARC_COMPACT2: 63 switch (Type) { 64 #include "llvm/BinaryFormat/ELFRelocs/ARC.def" 65 default: 66 break; 67 } 68 break; 69 case ELF::EM_AVR: 70 switch (Type) { 71 #include "llvm/BinaryFormat/ELFRelocs/AVR.def" 72 default: 73 break; 74 } 75 break; 76 case ELF::EM_HEXAGON: 77 switch (Type) { 78 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def" 79 default: 80 break; 81 } 82 break; 83 case ELF::EM_LANAI: 84 switch (Type) { 85 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def" 86 default: 87 break; 88 } 89 break; 90 case ELF::EM_PPC: 91 switch (Type) { 92 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def" 93 default: 94 break; 95 } 96 break; 97 case ELF::EM_PPC64: 98 switch (Type) { 99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def" 100 default: 101 break; 102 } 103 break; 104 case ELF::EM_RISCV: 105 switch (Type) { 106 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" 107 default: 108 break; 109 } 110 break; 111 case ELF::EM_S390: 112 switch (Type) { 113 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def" 114 default: 115 break; 116 } 117 break; 118 case ELF::EM_SPARC: 119 case ELF::EM_SPARC32PLUS: 120 case ELF::EM_SPARCV9: 121 switch (Type) { 122 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def" 123 default: 124 break; 125 } 126 break; 127 case ELF::EM_AMDGPU: 128 switch (Type) { 129 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def" 130 default: 131 break; 132 } 133 break; 134 case ELF::EM_BPF: 135 switch (Type) { 136 #include "llvm/BinaryFormat/ELFRelocs/BPF.def" 137 default: 138 break; 139 } 140 break; 141 case ELF::EM_MSP430: 142 switch (Type) { 143 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def" 144 default: 145 break; 146 } 147 break; 148 default: 149 break; 150 } 151 return "Unknown"; 152 } 153 154 #undef ELF_RELOC 155 156 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) { 157 switch (Machine) { 158 case ELF::EM_X86_64: 159 return ELF::R_X86_64_RELATIVE; 160 case ELF::EM_386: 161 case ELF::EM_IAMCU: 162 return ELF::R_386_RELATIVE; 163 case ELF::EM_MIPS: 164 break; 165 case ELF::EM_AARCH64: 166 return ELF::R_AARCH64_RELATIVE; 167 case ELF::EM_ARM: 168 return ELF::R_ARM_RELATIVE; 169 case ELF::EM_ARC_COMPACT: 170 case ELF::EM_ARC_COMPACT2: 171 return ELF::R_ARC_RELATIVE; 172 case ELF::EM_AVR: 173 break; 174 case ELF::EM_HEXAGON: 175 return ELF::R_HEX_RELATIVE; 176 case ELF::EM_LANAI: 177 break; 178 case ELF::EM_PPC: 179 break; 180 case ELF::EM_PPC64: 181 return ELF::R_PPC64_RELATIVE; 182 case ELF::EM_RISCV: 183 return ELF::R_RISCV_RELATIVE; 184 case ELF::EM_S390: 185 return ELF::R_390_RELATIVE; 186 case ELF::EM_SPARC: 187 case ELF::EM_SPARC32PLUS: 188 case ELF::EM_SPARCV9: 189 return ELF::R_SPARC_RELATIVE; 190 case ELF::EM_AMDGPU: 191 break; 192 case ELF::EM_BPF: 193 break; 194 default: 195 break; 196 } 197 return 0; 198 } 199 200 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) { 201 switch (Machine) { 202 case ELF::EM_ARM: 203 switch (Type) { 204 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX); 205 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP); 206 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES); 207 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY); 208 STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION); 209 } 210 break; 211 case ELF::EM_HEXAGON: 212 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); } 213 break; 214 case ELF::EM_X86_64: 215 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); } 216 break; 217 case ELF::EM_MIPS: 218 case ELF::EM_MIPS_RS3_LE: 219 switch (Type) { 220 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO); 221 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS); 222 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF); 223 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS); 224 } 225 break; 226 case ELF::EM_RISCV: 227 switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); } 228 break; 229 default: 230 break; 231 } 232 233 switch (Type) { 234 STRINGIFY_ENUM_CASE(ELF, SHT_NULL); 235 STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS); 236 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB); 237 STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB); 238 STRINGIFY_ENUM_CASE(ELF, SHT_RELA); 239 STRINGIFY_ENUM_CASE(ELF, SHT_HASH); 240 STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC); 241 STRINGIFY_ENUM_CASE(ELF, SHT_NOTE); 242 STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS); 243 STRINGIFY_ENUM_CASE(ELF, SHT_REL); 244 STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB); 245 STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM); 246 STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY); 247 STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY); 248 STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY); 249 STRINGIFY_ENUM_CASE(ELF, SHT_GROUP); 250 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX); 251 STRINGIFY_ENUM_CASE(ELF, SHT_RELR); 252 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL); 253 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA); 254 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR); 255 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB); 256 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS); 257 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE); 258 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG); 259 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES); 260 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART); 261 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR); 262 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR); 263 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES); 264 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH); 265 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef); 266 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed); 267 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym); 268 default: 269 return "Unknown"; 270 } 271 } 272 273 template <class ELFT> 274 Expected<std::vector<typename ELFT::Rela>> 275 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const { 276 // This function decodes the contents of an SHT_RELR packed relocation 277 // section. 278 // 279 // Proposal for adding SHT_RELR sections to generic-abi is here: 280 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 281 // 282 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks 283 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] 284 // 285 // i.e. start with an address, followed by any number of bitmaps. The address 286 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 287 // relocations each, at subsequent offsets following the last address entry. 288 // 289 // The bitmap entries must have 1 in the least significant bit. The assumption 290 // here is that an address cannot have 1 in lsb. Odd addresses are not 291 // supported. 292 // 293 // Excluding the least significant bit in the bitmap, each non-zero bit in 294 // the bitmap represents a relocation to be applied to a corresponding machine 295 // word that follows the base address word. The second least significant bit 296 // represents the machine word immediately following the initial address, and 297 // each bit that follows represents the next word, in linear order. As such, 298 // a single bitmap can encode up to 31 relocations in a 32-bit object, and 299 // 63 relocations in a 64-bit object. 300 // 301 // This encoding has a couple of interesting properties: 302 // 1. Looking at any entry, it is clear whether it's an address or a bitmap: 303 // even means address, odd means bitmap. 304 // 2. Just a simple list of addresses is a valid encoding. 305 306 Elf_Rela Rela; 307 Rela.r_info = 0; 308 Rela.r_addend = 0; 309 Rela.setType(getRelativeRelocationType(), false); 310 std::vector<Elf_Rela> Relocs; 311 312 // Word type: uint32_t for Elf32, and uint64_t for Elf64. 313 typedef typename ELFT::uint Word; 314 315 // Word size in number of bytes. 316 const size_t WordSize = sizeof(Word); 317 318 // Number of bits used for the relocation offsets bitmap. 319 // These many relative relocations can be encoded in a single entry. 320 const size_t NBits = 8*WordSize - 1; 321 322 Word Base = 0; 323 for (const Elf_Relr &R : relrs) { 324 Word Entry = R; 325 if ((Entry&1) == 0) { 326 // Even entry: encodes the offset for next relocation. 327 Rela.r_offset = Entry; 328 Relocs.push_back(Rela); 329 // Set base offset for subsequent bitmap entries. 330 Base = Entry + WordSize; 331 continue; 332 } 333 334 // Odd entry: encodes bitmap for relocations starting at base. 335 Word Offset = Base; 336 while (Entry != 0) { 337 Entry >>= 1; 338 if ((Entry&1) != 0) { 339 Rela.r_offset = Offset; 340 Relocs.push_back(Rela); 341 } 342 Offset += WordSize; 343 } 344 345 // Advance base offset by NBits words. 346 Base += NBits * WordSize; 347 } 348 349 return Relocs; 350 } 351 352 template <class ELFT> 353 Expected<std::vector<typename ELFT::Rela>> 354 ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const { 355 // This function reads relocations in Android's packed relocation format, 356 // which is based on SLEB128 and delta encoding. 357 Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec); 358 if (!ContentsOrErr) 359 return ContentsOrErr.takeError(); 360 const uint8_t *Cur = ContentsOrErr->begin(); 361 const uint8_t *End = ContentsOrErr->end(); 362 if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' || 363 Cur[2] != 'S' || Cur[3] != '2') 364 return createError("invalid packed relocation header"); 365 Cur += 4; 366 367 const char *ErrStr = nullptr; 368 auto ReadSLEB = [&]() -> int64_t { 369 if (ErrStr) 370 return 0; 371 unsigned Len; 372 int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr); 373 Cur += Len; 374 return Result; 375 }; 376 377 uint64_t NumRelocs = ReadSLEB(); 378 uint64_t Offset = ReadSLEB(); 379 uint64_t Addend = 0; 380 381 if (ErrStr) 382 return createError(ErrStr); 383 384 std::vector<Elf_Rela> Relocs; 385 Relocs.reserve(NumRelocs); 386 while (NumRelocs) { 387 uint64_t NumRelocsInGroup = ReadSLEB(); 388 if (NumRelocsInGroup > NumRelocs) 389 return createError("relocation group unexpectedly large"); 390 NumRelocs -= NumRelocsInGroup; 391 392 uint64_t GroupFlags = ReadSLEB(); 393 bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG; 394 bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG; 395 bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG; 396 bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG; 397 398 uint64_t GroupOffsetDelta; 399 if (GroupedByOffsetDelta) 400 GroupOffsetDelta = ReadSLEB(); 401 402 uint64_t GroupRInfo; 403 if (GroupedByInfo) 404 GroupRInfo = ReadSLEB(); 405 406 if (GroupedByAddend && GroupHasAddend) 407 Addend += ReadSLEB(); 408 409 if (!GroupHasAddend) 410 Addend = 0; 411 412 for (uint64_t I = 0; I != NumRelocsInGroup; ++I) { 413 Elf_Rela R; 414 Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB(); 415 R.r_offset = Offset; 416 R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB(); 417 if (GroupHasAddend && !GroupedByAddend) 418 Addend += ReadSLEB(); 419 R.r_addend = Addend; 420 Relocs.push_back(R); 421 422 if (ErrStr) 423 return createError(ErrStr); 424 } 425 426 if (ErrStr) 427 return createError(ErrStr); 428 } 429 430 return Relocs; 431 } 432 433 template <class ELFT> 434 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch, 435 uint64_t Type) const { 436 #define DYNAMIC_STRINGIFY_ENUM(tag, value) \ 437 case value: \ 438 return #tag; 439 440 #define DYNAMIC_TAG(n, v) 441 switch (Arch) { 442 case ELF::EM_AARCH64: 443 switch (Type) { 444 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 445 #include "llvm/BinaryFormat/DynamicTags.def" 446 #undef AARCH64_DYNAMIC_TAG 447 } 448 break; 449 450 case ELF::EM_HEXAGON: 451 switch (Type) { 452 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 453 #include "llvm/BinaryFormat/DynamicTags.def" 454 #undef HEXAGON_DYNAMIC_TAG 455 } 456 break; 457 458 case ELF::EM_MIPS: 459 switch (Type) { 460 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 461 #include "llvm/BinaryFormat/DynamicTags.def" 462 #undef MIPS_DYNAMIC_TAG 463 } 464 break; 465 466 case ELF::EM_PPC64: 467 switch (Type) { 468 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value) 469 #include "llvm/BinaryFormat/DynamicTags.def" 470 #undef PPC64_DYNAMIC_TAG 471 } 472 break; 473 } 474 #undef DYNAMIC_TAG 475 switch (Type) { 476 // Now handle all dynamic tags except the architecture specific ones 477 #define AARCH64_DYNAMIC_TAG(name, value) 478 #define MIPS_DYNAMIC_TAG(name, value) 479 #define HEXAGON_DYNAMIC_TAG(name, value) 480 #define PPC64_DYNAMIC_TAG(name, value) 481 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. 482 #define DYNAMIC_TAG_MARKER(name, value) 483 #define DYNAMIC_TAG(name, value) case value: return #name; 484 #include "llvm/BinaryFormat/DynamicTags.def" 485 #undef DYNAMIC_TAG 486 #undef AARCH64_DYNAMIC_TAG 487 #undef MIPS_DYNAMIC_TAG 488 #undef HEXAGON_DYNAMIC_TAG 489 #undef PPC64_DYNAMIC_TAG 490 #undef DYNAMIC_TAG_MARKER 491 #undef DYNAMIC_STRINGIFY_ENUM 492 default: 493 return "<unknown:>0x" + utohexstr(Type, true); 494 } 495 } 496 497 template <class ELFT> 498 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const { 499 return getDynamicTagAsString(getHeader()->e_machine, Type); 500 } 501 502 template <class ELFT> 503 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const { 504 ArrayRef<Elf_Dyn> Dyn; 505 506 auto ProgramHeadersOrError = program_headers(); 507 if (!ProgramHeadersOrError) 508 return ProgramHeadersOrError.takeError(); 509 510 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) { 511 if (Phdr.p_type == ELF::PT_DYNAMIC) { 512 Dyn = makeArrayRef( 513 reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset), 514 Phdr.p_filesz / sizeof(Elf_Dyn)); 515 break; 516 } 517 } 518 519 // If we can't find the dynamic section in the program headers, we just fall 520 // back on the sections. 521 if (Dyn.empty()) { 522 auto SectionsOrError = sections(); 523 if (!SectionsOrError) 524 return SectionsOrError.takeError(); 525 526 for (const Elf_Shdr &Sec : *SectionsOrError) { 527 if (Sec.sh_type == ELF::SHT_DYNAMIC) { 528 Expected<ArrayRef<Elf_Dyn>> DynOrError = 529 getSectionContentsAsArray<Elf_Dyn>(&Sec); 530 if (!DynOrError) 531 return DynOrError.takeError(); 532 Dyn = *DynOrError; 533 break; 534 } 535 } 536 537 if (!Dyn.data()) 538 return ArrayRef<Elf_Dyn>(); 539 } 540 541 if (Dyn.empty()) 542 // TODO: this error is untested. 543 return createError("invalid empty dynamic section"); 544 545 if (Dyn.back().d_tag != ELF::DT_NULL) 546 // TODO: this error is untested. 547 return createError("dynamic sections must be DT_NULL terminated"); 548 549 return Dyn; 550 } 551 552 template <class ELFT> 553 Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const { 554 auto ProgramHeadersOrError = program_headers(); 555 if (!ProgramHeadersOrError) 556 return ProgramHeadersOrError.takeError(); 557 558 llvm::SmallVector<Elf_Phdr *, 4> LoadSegments; 559 560 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) 561 if (Phdr.p_type == ELF::PT_LOAD) 562 LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr)); 563 564 const Elf_Phdr *const *I = 565 std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr, 566 [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) { 567 return VAddr < Phdr->p_vaddr; 568 }); 569 570 if (I == LoadSegments.begin()) 571 return createError("virtual address is not in any segment: 0x" + 572 Twine::utohexstr(VAddr)); 573 --I; 574 const Elf_Phdr &Phdr = **I; 575 uint64_t Delta = VAddr - Phdr.p_vaddr; 576 if (Delta >= Phdr.p_filesz) 577 return createError("virtual address is not in any segment: 0x" + 578 Twine::utohexstr(VAddr)); 579 580 uint64_t Offset = Phdr.p_offset + Delta; 581 if (Offset >= getBufSize()) 582 return createError("can't map virtual address 0x" + 583 Twine::utohexstr(VAddr) + " to the segment with index " + 584 Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) + 585 ": the segment ends at 0x" + 586 Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) + 587 ", which is greater than the file size (0x" + 588 Twine::utohexstr(getBufSize()) + ")"); 589 590 return base() + Offset; 591 } 592 593 template class llvm::object::ELFFile<ELF32LE>; 594 template class llvm::object::ELFFile<ELF32BE>; 595 template class llvm::object::ELFFile<ELF64LE>; 596 template class llvm::object::ELFFile<ELF64BE>; 597