xref: /llvm-project-15.0.7/llvm/lib/Object/ELF.cpp (revision 4bee2afc)
1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/ELF.h"
10 #include "llvm/BinaryFormat/ELF.h"
11 #include "llvm/Support/LEB128.h"
12 
13 using namespace llvm;
14 using namespace object;
15 
16 #define STRINGIFY_ENUM_CASE(ns, name)                                          \
17   case ns::name:                                                               \
18     return #name;
19 
20 #define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
21 
22 StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
23                                                  uint32_t Type) {
24   switch (Machine) {
25   case ELF::EM_X86_64:
26     switch (Type) {
27 #include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
28     default:
29       break;
30     }
31     break;
32   case ELF::EM_386:
33   case ELF::EM_IAMCU:
34     switch (Type) {
35 #include "llvm/BinaryFormat/ELFRelocs/i386.def"
36     default:
37       break;
38     }
39     break;
40   case ELF::EM_MIPS:
41     switch (Type) {
42 #include "llvm/BinaryFormat/ELFRelocs/Mips.def"
43     default:
44       break;
45     }
46     break;
47   case ELF::EM_AARCH64:
48     switch (Type) {
49 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
50     default:
51       break;
52     }
53     break;
54   case ELF::EM_ARM:
55     switch (Type) {
56 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
57     default:
58       break;
59     }
60     break;
61   case ELF::EM_ARC_COMPACT:
62   case ELF::EM_ARC_COMPACT2:
63     switch (Type) {
64 #include "llvm/BinaryFormat/ELFRelocs/ARC.def"
65     default:
66       break;
67     }
68     break;
69   case ELF::EM_AVR:
70     switch (Type) {
71 #include "llvm/BinaryFormat/ELFRelocs/AVR.def"
72     default:
73       break;
74     }
75     break;
76   case ELF::EM_HEXAGON:
77     switch (Type) {
78 #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
79     default:
80       break;
81     }
82     break;
83   case ELF::EM_LANAI:
84     switch (Type) {
85 #include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
86     default:
87       break;
88     }
89     break;
90   case ELF::EM_PPC:
91     switch (Type) {
92 #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
93     default:
94       break;
95     }
96     break;
97   case ELF::EM_PPC64:
98     switch (Type) {
99 #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
100     default:
101       break;
102     }
103     break;
104   case ELF::EM_RISCV:
105     switch (Type) {
106 #include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
107     default:
108       break;
109     }
110     break;
111   case ELF::EM_S390:
112     switch (Type) {
113 #include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
114     default:
115       break;
116     }
117     break;
118   case ELF::EM_SPARC:
119   case ELF::EM_SPARC32PLUS:
120   case ELF::EM_SPARCV9:
121     switch (Type) {
122 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
123     default:
124       break;
125     }
126     break;
127   case ELF::EM_AMDGPU:
128     switch (Type) {
129 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
130     default:
131       break;
132     }
133     break;
134   case ELF::EM_BPF:
135     switch (Type) {
136 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
137     default:
138       break;
139     }
140     break;
141   case ELF::EM_MSP430:
142     switch (Type) {
143 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
144     default:
145       break;
146     }
147     break;
148   default:
149     break;
150   }
151   return "Unknown";
152 }
153 
154 #undef ELF_RELOC
155 
156 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
157   switch (Machine) {
158   case ELF::EM_X86_64:
159     return ELF::R_X86_64_RELATIVE;
160   case ELF::EM_386:
161   case ELF::EM_IAMCU:
162     return ELF::R_386_RELATIVE;
163   case ELF::EM_MIPS:
164     break;
165   case ELF::EM_AARCH64:
166     return ELF::R_AARCH64_RELATIVE;
167   case ELF::EM_ARM:
168     return ELF::R_ARM_RELATIVE;
169   case ELF::EM_ARC_COMPACT:
170   case ELF::EM_ARC_COMPACT2:
171     return ELF::R_ARC_RELATIVE;
172   case ELF::EM_AVR:
173     break;
174   case ELF::EM_HEXAGON:
175     return ELF::R_HEX_RELATIVE;
176   case ELF::EM_LANAI:
177     break;
178   case ELF::EM_PPC:
179     break;
180   case ELF::EM_PPC64:
181     return ELF::R_PPC64_RELATIVE;
182   case ELF::EM_RISCV:
183     return ELF::R_RISCV_RELATIVE;
184   case ELF::EM_S390:
185     return ELF::R_390_RELATIVE;
186   case ELF::EM_SPARC:
187   case ELF::EM_SPARC32PLUS:
188   case ELF::EM_SPARCV9:
189     return ELF::R_SPARC_RELATIVE;
190   case ELF::EM_AMDGPU:
191     break;
192   case ELF::EM_BPF:
193     break;
194   default:
195     break;
196   }
197   return 0;
198 }
199 
200 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
201   switch (Machine) {
202   case ELF::EM_ARM:
203     switch (Type) {
204       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
205       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
206       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
207       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
208       STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
209     }
210     break;
211   case ELF::EM_HEXAGON:
212     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
213     break;
214   case ELF::EM_X86_64:
215     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
216     break;
217   case ELF::EM_MIPS:
218   case ELF::EM_MIPS_RS3_LE:
219     switch (Type) {
220       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
221       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
222       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
223       STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
224     }
225     break;
226   case ELF::EM_RISCV:
227     switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
228     break;
229   default:
230     break;
231   }
232 
233   switch (Type) {
234     STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
235     STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
236     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
237     STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
238     STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
239     STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
240     STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
241     STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
242     STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
243     STRINGIFY_ENUM_CASE(ELF, SHT_REL);
244     STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
245     STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
246     STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
247     STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
248     STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
249     STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
250     STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
251     STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
252     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
253     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
254     STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
255     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
256     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
257     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
258     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
259     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
260     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
261     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
262     STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
263     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
264     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
265     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
266     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
267     STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
268   default:
269     return "Unknown";
270   }
271 }
272 
273 template <class ELFT>
274 Expected<std::vector<typename ELFT::Rela>>
275 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
276   // This function decodes the contents of an SHT_RELR packed relocation
277   // section.
278   //
279   // Proposal for adding SHT_RELR sections to generic-abi is here:
280   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
281   //
282   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
283   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
284   //
285   // i.e. start with an address, followed by any number of bitmaps. The address
286   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
287   // relocations each, at subsequent offsets following the last address entry.
288   //
289   // The bitmap entries must have 1 in the least significant bit. The assumption
290   // here is that an address cannot have 1 in lsb. Odd addresses are not
291   // supported.
292   //
293   // Excluding the least significant bit in the bitmap, each non-zero bit in
294   // the bitmap represents a relocation to be applied to a corresponding machine
295   // word that follows the base address word. The second least significant bit
296   // represents the machine word immediately following the initial address, and
297   // each bit that follows represents the next word, in linear order. As such,
298   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
299   // 63 relocations in a 64-bit object.
300   //
301   // This encoding has a couple of interesting properties:
302   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
303   //    even means address, odd means bitmap.
304   // 2. Just a simple list of addresses is a valid encoding.
305 
306   Elf_Rela Rela;
307   Rela.r_info = 0;
308   Rela.r_addend = 0;
309   Rela.setType(getRelativeRelocationType(), false);
310   std::vector<Elf_Rela> Relocs;
311 
312   // Word type: uint32_t for Elf32, and uint64_t for Elf64.
313   typedef typename ELFT::uint Word;
314 
315   // Word size in number of bytes.
316   const size_t WordSize = sizeof(Word);
317 
318   // Number of bits used for the relocation offsets bitmap.
319   // These many relative relocations can be encoded in a single entry.
320   const size_t NBits = 8*WordSize - 1;
321 
322   Word Base = 0;
323   for (const Elf_Relr &R : relrs) {
324     Word Entry = R;
325     if ((Entry&1) == 0) {
326       // Even entry: encodes the offset for next relocation.
327       Rela.r_offset = Entry;
328       Relocs.push_back(Rela);
329       // Set base offset for subsequent bitmap entries.
330       Base = Entry + WordSize;
331       continue;
332     }
333 
334     // Odd entry: encodes bitmap for relocations starting at base.
335     Word Offset = Base;
336     while (Entry != 0) {
337       Entry >>= 1;
338       if ((Entry&1) != 0) {
339         Rela.r_offset = Offset;
340         Relocs.push_back(Rela);
341       }
342       Offset += WordSize;
343     }
344 
345     // Advance base offset by NBits words.
346     Base += NBits * WordSize;
347   }
348 
349   return Relocs;
350 }
351 
352 template <class ELFT>
353 Expected<std::vector<typename ELFT::Rela>>
354 ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const {
355   // This function reads relocations in Android's packed relocation format,
356   // which is based on SLEB128 and delta encoding.
357   Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
358   if (!ContentsOrErr)
359     return ContentsOrErr.takeError();
360   const uint8_t *Cur = ContentsOrErr->begin();
361   const uint8_t *End = ContentsOrErr->end();
362   if (ContentsOrErr->size() < 4 || Cur[0] != 'A' || Cur[1] != 'P' ||
363       Cur[2] != 'S' || Cur[3] != '2')
364     return createError("invalid packed relocation header");
365   Cur += 4;
366 
367   const char *ErrStr = nullptr;
368   auto ReadSLEB = [&]() -> int64_t {
369     if (ErrStr)
370       return 0;
371     unsigned Len;
372     int64_t Result = decodeSLEB128(Cur, &Len, End, &ErrStr);
373     Cur += Len;
374     return Result;
375   };
376 
377   uint64_t NumRelocs = ReadSLEB();
378   uint64_t Offset = ReadSLEB();
379   uint64_t Addend = 0;
380 
381   if (ErrStr)
382     return createError(ErrStr);
383 
384   std::vector<Elf_Rela> Relocs;
385   Relocs.reserve(NumRelocs);
386   while (NumRelocs) {
387     uint64_t NumRelocsInGroup = ReadSLEB();
388     if (NumRelocsInGroup > NumRelocs)
389       return createError("relocation group unexpectedly large");
390     NumRelocs -= NumRelocsInGroup;
391 
392     uint64_t GroupFlags = ReadSLEB();
393     bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
394     bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
395     bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
396     bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
397 
398     uint64_t GroupOffsetDelta;
399     if (GroupedByOffsetDelta)
400       GroupOffsetDelta = ReadSLEB();
401 
402     uint64_t GroupRInfo;
403     if (GroupedByInfo)
404       GroupRInfo = ReadSLEB();
405 
406     if (GroupedByAddend && GroupHasAddend)
407       Addend += ReadSLEB();
408 
409     if (!GroupHasAddend)
410       Addend = 0;
411 
412     for (uint64_t I = 0; I != NumRelocsInGroup; ++I) {
413       Elf_Rela R;
414       Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB();
415       R.r_offset = Offset;
416       R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB();
417       if (GroupHasAddend && !GroupedByAddend)
418         Addend += ReadSLEB();
419       R.r_addend = Addend;
420       Relocs.push_back(R);
421 
422       if (ErrStr)
423         return createError(ErrStr);
424     }
425 
426     if (ErrStr)
427       return createError(ErrStr);
428   }
429 
430   return Relocs;
431 }
432 
433 template <class ELFT>
434 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
435                                                  uint64_t Type) const {
436 #define DYNAMIC_STRINGIFY_ENUM(tag, value)                                     \
437   case value:                                                                  \
438     return #tag;
439 
440 #define DYNAMIC_TAG(n, v)
441   switch (Arch) {
442   case ELF::EM_AARCH64:
443     switch (Type) {
444 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
445 #include "llvm/BinaryFormat/DynamicTags.def"
446 #undef AARCH64_DYNAMIC_TAG
447     }
448     break;
449 
450   case ELF::EM_HEXAGON:
451     switch (Type) {
452 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
453 #include "llvm/BinaryFormat/DynamicTags.def"
454 #undef HEXAGON_DYNAMIC_TAG
455     }
456     break;
457 
458   case ELF::EM_MIPS:
459     switch (Type) {
460 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
461 #include "llvm/BinaryFormat/DynamicTags.def"
462 #undef MIPS_DYNAMIC_TAG
463     }
464     break;
465 
466   case ELF::EM_PPC64:
467     switch (Type) {
468 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
469 #include "llvm/BinaryFormat/DynamicTags.def"
470 #undef PPC64_DYNAMIC_TAG
471     }
472     break;
473   }
474 #undef DYNAMIC_TAG
475   switch (Type) {
476 // Now handle all dynamic tags except the architecture specific ones
477 #define AARCH64_DYNAMIC_TAG(name, value)
478 #define MIPS_DYNAMIC_TAG(name, value)
479 #define HEXAGON_DYNAMIC_TAG(name, value)
480 #define PPC64_DYNAMIC_TAG(name, value)
481 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
482 #define DYNAMIC_TAG_MARKER(name, value)
483 #define DYNAMIC_TAG(name, value) case value: return #name;
484 #include "llvm/BinaryFormat/DynamicTags.def"
485 #undef DYNAMIC_TAG
486 #undef AARCH64_DYNAMIC_TAG
487 #undef MIPS_DYNAMIC_TAG
488 #undef HEXAGON_DYNAMIC_TAG
489 #undef PPC64_DYNAMIC_TAG
490 #undef DYNAMIC_TAG_MARKER
491 #undef DYNAMIC_STRINGIFY_ENUM
492   default:
493     return "<unknown:>0x" + utohexstr(Type, true);
494   }
495 }
496 
497 template <class ELFT>
498 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
499   return getDynamicTagAsString(getHeader()->e_machine, Type);
500 }
501 
502 template <class ELFT>
503 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
504   ArrayRef<Elf_Dyn> Dyn;
505 
506   auto ProgramHeadersOrError = program_headers();
507   if (!ProgramHeadersOrError)
508     return ProgramHeadersOrError.takeError();
509 
510   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
511     if (Phdr.p_type == ELF::PT_DYNAMIC) {
512       Dyn = makeArrayRef(
513           reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
514           Phdr.p_filesz / sizeof(Elf_Dyn));
515       break;
516     }
517   }
518 
519   // If we can't find the dynamic section in the program headers, we just fall
520   // back on the sections.
521   if (Dyn.empty()) {
522     auto SectionsOrError = sections();
523     if (!SectionsOrError)
524       return SectionsOrError.takeError();
525 
526     for (const Elf_Shdr &Sec : *SectionsOrError) {
527       if (Sec.sh_type == ELF::SHT_DYNAMIC) {
528         Expected<ArrayRef<Elf_Dyn>> DynOrError =
529             getSectionContentsAsArray<Elf_Dyn>(&Sec);
530         if (!DynOrError)
531           return DynOrError.takeError();
532         Dyn = *DynOrError;
533         break;
534       }
535     }
536 
537     if (!Dyn.data())
538       return ArrayRef<Elf_Dyn>();
539   }
540 
541   if (Dyn.empty())
542     // TODO: this error is untested.
543     return createError("invalid empty dynamic section");
544 
545   if (Dyn.back().d_tag != ELF::DT_NULL)
546     // TODO: this error is untested.
547     return createError("dynamic sections must be DT_NULL terminated");
548 
549   return Dyn;
550 }
551 
552 template <class ELFT>
553 Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const {
554   auto ProgramHeadersOrError = program_headers();
555   if (!ProgramHeadersOrError)
556     return ProgramHeadersOrError.takeError();
557 
558   llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
559 
560   for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
561     if (Phdr.p_type == ELF::PT_LOAD)
562       LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
563 
564   const Elf_Phdr *const *I =
565       std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
566                        [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
567                          return VAddr < Phdr->p_vaddr;
568                        });
569 
570   if (I == LoadSegments.begin())
571     return createError("virtual address is not in any segment: 0x" +
572                        Twine::utohexstr(VAddr));
573   --I;
574   const Elf_Phdr &Phdr = **I;
575   uint64_t Delta = VAddr - Phdr.p_vaddr;
576   if (Delta >= Phdr.p_filesz)
577     return createError("virtual address is not in any segment: 0x" +
578                        Twine::utohexstr(VAddr));
579 
580   uint64_t Offset = Phdr.p_offset + Delta;
581   if (Offset >= getBufSize())
582     return createError("can't map virtual address 0x" +
583                        Twine::utohexstr(VAddr) + " to the segment with index " +
584                        Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
585                        ": the segment ends at 0x" +
586                        Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
587                        ", which is greater than the file size (0x" +
588                        Twine::utohexstr(getBufSize()) + ")");
589 
590   return base() + Offset;
591 }
592 
593 template class llvm::object::ELFFile<ELF32LE>;
594 template class llvm::object::ELFFile<ELF32BE>;
595 template class llvm::object::ELFFile<ELF64LE>;
596 template class llvm::object::ELFFile<ELF64BE>;
597