1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Support/COFF.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cctype> 24 #include <limits> 25 26 using namespace llvm; 27 using namespace object; 28 29 using support::ulittle16_t; 30 using support::ulittle32_t; 31 using support::ulittle64_t; 32 using support::little16_t; 33 34 // Returns false if size is greater than the buffer size. And sets ec. 35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 36 if (M.getBufferSize() < Size) { 37 EC = object_error::unexpected_eof; 38 return false; 39 } 40 return true; 41 } 42 43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 44 const uint64_t Size) { 45 if (Addr + Size < Addr || Addr + Size < Size || 46 Addr + Size > uintptr_t(M.getBufferEnd()) || 47 Addr < uintptr_t(M.getBufferStart())) { 48 return object_error::unexpected_eof; 49 } 50 return std::error_code(); 51 } 52 53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 54 // Returns unexpected_eof if error. 55 template <typename T> 56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 57 const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = uintptr_t(Ptr); 60 if (std::error_code EC = checkOffset(M, Addr, Size)) 61 return EC; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return std::error_code(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 109 110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 111 "Symbol did not point to the beginning of a symbol"); 112 #endif 113 114 return Addr; 115 } 116 117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 119 120 # ifndef NDEBUG 121 // Verify that the section points to a valid entry in the section table. 122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 123 report_fatal_error("Section was outside of section table."); 124 125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 126 assert(Offset % sizeof(coff_section) == 0 && 127 "Section did not point to the beginning of a section"); 128 # endif 129 130 return Addr; 131 } 132 133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 134 auto End = reinterpret_cast<uintptr_t>(StringTable); 135 if (SymbolTable16) { 136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 137 Symb += 1 + Symb->NumberOfAuxSymbols; 138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 139 } else if (SymbolTable32) { 140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 141 Symb += 1 + Symb->NumberOfAuxSymbols; 142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 143 } else { 144 llvm_unreachable("no symbol table pointer!"); 145 } 146 } 147 148 ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 StringRef Result; 151 std::error_code EC = getSymbolName(Symb, Result); 152 if (EC) 153 return EC; 154 return Result; 155 } 156 157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 158 return getCOFFSymbol(Ref).getValue(); 159 } 160 161 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 162 uint64_t Result = getSymbolValue(Ref); 163 COFFSymbolRef Symb = getCOFFSymbol(Ref); 164 int32_t SectionNumber = Symb.getSectionNumber(); 165 166 if (Symb.isAnyUndefined() || Symb.isCommon() || 167 COFF::isReservedSectionNumber(SectionNumber)) 168 return Result; 169 170 const coff_section *Section = nullptr; 171 if (std::error_code EC = getSection(SectionNumber, Section)) 172 return EC; 173 Result += Section->VirtualAddress; 174 175 // The section VirtualAddress does not include ImageBase, and we want to 176 // return virtual addresses. 177 if (PE32Header) 178 Result += PE32Header->ImageBase; 179 else if (PE32PlusHeader) 180 Result += PE32PlusHeader->ImageBase; 181 182 return Result; 183 } 184 185 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 186 COFFSymbolRef Symb = getCOFFSymbol(Ref); 187 int32_t SectionNumber = Symb.getSectionNumber(); 188 189 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 190 return SymbolRef::ST_Function; 191 if (Symb.isAnyUndefined()) 192 return SymbolRef::ST_Unknown; 193 if (Symb.isCommon()) 194 return SymbolRef::ST_Data; 195 if (Symb.isFileRecord()) 196 return SymbolRef::ST_File; 197 198 // TODO: perhaps we need a new symbol type ST_Section. 199 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 200 return SymbolRef::ST_Debug; 201 202 if (!COFF::isReservedSectionNumber(SectionNumber)) 203 return SymbolRef::ST_Data; 204 205 return SymbolRef::ST_Other; 206 } 207 208 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 209 COFFSymbolRef Symb = getCOFFSymbol(Ref); 210 uint32_t Result = SymbolRef::SF_None; 211 212 if (Symb.isExternal() || Symb.isWeakExternal()) 213 Result |= SymbolRef::SF_Global; 214 215 if (Symb.isWeakExternal()) 216 Result |= SymbolRef::SF_Weak; 217 218 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 219 Result |= SymbolRef::SF_Absolute; 220 221 if (Symb.isFileRecord()) 222 Result |= SymbolRef::SF_FormatSpecific; 223 224 if (Symb.isSectionDefinition()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isCommon()) 228 Result |= SymbolRef::SF_Common; 229 230 if (Symb.isAnyUndefined()) 231 Result |= SymbolRef::SF_Undefined; 232 233 return Result; 234 } 235 236 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 237 COFFSymbolRef Symb = getCOFFSymbol(Ref); 238 return Symb.getValue(); 239 } 240 241 ErrorOr<section_iterator> 242 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 243 COFFSymbolRef Symb = getCOFFSymbol(Ref); 244 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 245 return section_end(); 246 const coff_section *Sec = nullptr; 247 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 248 return EC; 249 DataRefImpl Ret; 250 Ret.p = reinterpret_cast<uintptr_t>(Sec); 251 return section_iterator(SectionRef(Ret, this)); 252 } 253 254 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 255 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 256 return Symb.getSectionNumber(); 257 } 258 259 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 260 const coff_section *Sec = toSec(Ref); 261 Sec += 1; 262 Ref.p = reinterpret_cast<uintptr_t>(Sec); 263 } 264 265 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 266 StringRef &Result) const { 267 const coff_section *Sec = toSec(Ref); 268 return getSectionName(Sec, Result); 269 } 270 271 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 272 const coff_section *Sec = toSec(Ref); 273 uint64_t Result = Sec->VirtualAddress; 274 275 // The section VirtualAddress does not include ImageBase, and we want to 276 // return virtual addresses. 277 if (PE32Header) 278 Result += PE32Header->ImageBase; 279 else if (PE32PlusHeader) 280 Result += PE32PlusHeader->ImageBase; 281 return Result; 282 } 283 284 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 285 return getSectionSize(toSec(Ref)); 286 } 287 288 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 289 StringRef &Result) const { 290 const coff_section *Sec = toSec(Ref); 291 ArrayRef<uint8_t> Res; 292 std::error_code EC = getSectionContents(Sec, Res); 293 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 294 return EC; 295 } 296 297 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 298 const coff_section *Sec = toSec(Ref); 299 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 300 } 301 302 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 305 } 306 307 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 308 const coff_section *Sec = toSec(Ref); 309 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 310 } 311 312 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 313 const coff_section *Sec = toSec(Ref); 314 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 315 COFF::IMAGE_SCN_MEM_READ | 316 COFF::IMAGE_SCN_MEM_WRITE; 317 return (Sec->Characteristics & BssFlags) == BssFlags; 318 } 319 320 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 321 uintptr_t Offset = 322 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 323 assert((Offset % sizeof(coff_section)) == 0); 324 return (Offset / sizeof(coff_section)) + 1; 325 } 326 327 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 328 const coff_section *Sec = toSec(Ref); 329 // In COFF, a virtual section won't have any in-file 330 // content, so the file pointer to the content will be zero. 331 return Sec->PointerToRawData == 0; 332 } 333 334 static uint32_t getNumberOfRelocations(const coff_section *Sec, 335 MemoryBufferRef M, const uint8_t *base) { 336 // The field for the number of relocations in COFF section table is only 337 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 338 // NumberOfRelocations field, and the actual relocation count is stored in the 339 // VirtualAddress field in the first relocation entry. 340 if (Sec->hasExtendedRelocations()) { 341 const coff_relocation *FirstReloc; 342 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 343 base + Sec->PointerToRelocations))) 344 return 0; 345 // -1 to exclude this first relocation entry. 346 return FirstReloc->VirtualAddress - 1; 347 } 348 return Sec->NumberOfRelocations; 349 } 350 351 static const coff_relocation * 352 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 353 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 354 if (!NumRelocs) 355 return nullptr; 356 auto begin = reinterpret_cast<const coff_relocation *>( 357 Base + Sec->PointerToRelocations); 358 if (Sec->hasExtendedRelocations()) { 359 // Skip the first relocation entry repurposed to store the number of 360 // relocations. 361 begin++; 362 } 363 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 364 return nullptr; 365 return begin; 366 } 367 368 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 369 const coff_section *Sec = toSec(Ref); 370 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 371 if (begin && Sec->VirtualAddress != 0) 372 report_fatal_error("Sections with relocations should have an address of 0"); 373 DataRefImpl Ret; 374 Ret.p = reinterpret_cast<uintptr_t>(begin); 375 return relocation_iterator(RelocationRef(Ret, this)); 376 } 377 378 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 379 const coff_section *Sec = toSec(Ref); 380 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 381 if (I) 382 I += getNumberOfRelocations(Sec, Data, base()); 383 DataRefImpl Ret; 384 Ret.p = reinterpret_cast<uintptr_t>(I); 385 return relocation_iterator(RelocationRef(Ret, this)); 386 } 387 388 // Initialize the pointer to the symbol table. 389 std::error_code COFFObjectFile::initSymbolTablePtr() { 390 if (COFFHeader) 391 if (std::error_code EC = getObject( 392 SymbolTable16, Data, base() + getPointerToSymbolTable(), 393 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 394 return EC; 395 396 if (COFFBigObjHeader) 397 if (std::error_code EC = getObject( 398 SymbolTable32, Data, base() + getPointerToSymbolTable(), 399 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 400 return EC; 401 402 // Find string table. The first four byte of the string table contains the 403 // total size of the string table, including the size field itself. If the 404 // string table is empty, the value of the first four byte would be 4. 405 uint32_t StringTableOffset = getPointerToSymbolTable() + 406 getNumberOfSymbols() * getSymbolTableEntrySize(); 407 const uint8_t *StringTableAddr = base() + StringTableOffset; 408 const ulittle32_t *StringTableSizePtr; 409 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 410 return EC; 411 StringTableSize = *StringTableSizePtr; 412 if (std::error_code EC = 413 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 414 return EC; 415 416 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 417 // tools like cvtres write a size of 0 for an empty table instead of 4. 418 if (StringTableSize < 4) 419 StringTableSize = 4; 420 421 // Check that the string table is null terminated if has any in it. 422 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 423 return object_error::parse_failed; 424 return std::error_code(); 425 } 426 427 // Returns the file offset for the given VA. 428 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 429 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 430 : (uint64_t)PE32PlusHeader->ImageBase; 431 uint64_t Rva = Addr - ImageBase; 432 assert(Rva <= UINT32_MAX); 433 return getRvaPtr((uint32_t)Rva, Res); 434 } 435 436 // Returns the file offset for the given RVA. 437 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 438 for (const SectionRef &S : sections()) { 439 const coff_section *Section = getCOFFSection(S); 440 uint32_t SectionStart = Section->VirtualAddress; 441 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 442 if (SectionStart <= Addr && Addr < SectionEnd) { 443 uint32_t Offset = Addr - SectionStart; 444 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 445 return std::error_code(); 446 } 447 } 448 return object_error::parse_failed; 449 } 450 451 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 452 // table entry. 453 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 454 StringRef &Name) const { 455 uintptr_t IntPtr = 0; 456 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 457 return EC; 458 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 459 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 460 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 461 return std::error_code(); 462 } 463 464 // Find the import table. 465 std::error_code COFFObjectFile::initImportTablePtr() { 466 // First, we get the RVA of the import table. If the file lacks a pointer to 467 // the import table, do nothing. 468 const data_directory *DataEntry; 469 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 470 return std::error_code(); 471 472 // Do nothing if the pointer to import table is NULL. 473 if (DataEntry->RelativeVirtualAddress == 0) 474 return std::error_code(); 475 476 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 477 // -1 because the last entry is the null entry. 478 NumberOfImportDirectory = DataEntry->Size / 479 sizeof(import_directory_table_entry) - 1; 480 481 // Find the section that contains the RVA. This is needed because the RVA is 482 // the import table's memory address which is different from its file offset. 483 uintptr_t IntPtr = 0; 484 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 485 return EC; 486 ImportDirectory = reinterpret_cast< 487 const import_directory_table_entry *>(IntPtr); 488 return std::error_code(); 489 } 490 491 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 492 std::error_code COFFObjectFile::initDelayImportTablePtr() { 493 const data_directory *DataEntry; 494 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 495 return std::error_code(); 496 if (DataEntry->RelativeVirtualAddress == 0) 497 return std::error_code(); 498 499 uint32_t RVA = DataEntry->RelativeVirtualAddress; 500 NumberOfDelayImportDirectory = DataEntry->Size / 501 sizeof(delay_import_directory_table_entry) - 1; 502 503 uintptr_t IntPtr = 0; 504 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 505 return EC; 506 DelayImportDirectory = reinterpret_cast< 507 const delay_import_directory_table_entry *>(IntPtr); 508 return std::error_code(); 509 } 510 511 // Find the export table. 512 std::error_code COFFObjectFile::initExportTablePtr() { 513 // First, we get the RVA of the export table. If the file lacks a pointer to 514 // the export table, do nothing. 515 const data_directory *DataEntry; 516 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 517 return std::error_code(); 518 519 // Do nothing if the pointer to export table is NULL. 520 if (DataEntry->RelativeVirtualAddress == 0) 521 return std::error_code(); 522 523 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 524 uintptr_t IntPtr = 0; 525 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 526 return EC; 527 ExportDirectory = 528 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 529 return std::error_code(); 530 } 531 532 std::error_code COFFObjectFile::initBaseRelocPtr() { 533 const data_directory *DataEntry; 534 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 535 return std::error_code(); 536 if (DataEntry->RelativeVirtualAddress == 0) 537 return std::error_code(); 538 539 uintptr_t IntPtr = 0; 540 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 541 return EC; 542 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 543 IntPtr); 544 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 545 IntPtr + DataEntry->Size); 546 return std::error_code(); 547 } 548 549 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 550 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 551 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 552 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 553 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 554 ImportDirectory(nullptr), NumberOfImportDirectory(0), 555 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 556 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 557 BaseRelocEnd(nullptr) { 558 // Check that we at least have enough room for a header. 559 if (!checkSize(Data, EC, sizeof(coff_file_header))) 560 return; 561 562 // The current location in the file where we are looking at. 563 uint64_t CurPtr = 0; 564 565 // PE header is optional and is present only in executables. If it exists, 566 // it is placed right after COFF header. 567 bool HasPEHeader = false; 568 569 // Check if this is a PE/COFF file. 570 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 571 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 572 // PE signature to find 'normal' COFF header. 573 const auto *DH = reinterpret_cast<const dos_header *>(base()); 574 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 575 CurPtr = DH->AddressOfNewExeHeader; 576 // Check the PE magic bytes. ("PE\0\0") 577 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 578 EC = object_error::parse_failed; 579 return; 580 } 581 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 582 HasPEHeader = true; 583 } 584 } 585 586 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 587 return; 588 589 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 590 // import libraries share a common prefix but bigobj is more restrictive. 591 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 592 COFFHeader->NumberOfSections == uint16_t(0xffff) && 593 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 594 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 595 return; 596 597 // Verify that we are dealing with bigobj. 598 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 599 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 600 sizeof(COFF::BigObjMagic)) == 0) { 601 COFFHeader = nullptr; 602 CurPtr += sizeof(coff_bigobj_file_header); 603 } else { 604 // It's not a bigobj. 605 COFFBigObjHeader = nullptr; 606 } 607 } 608 if (COFFHeader) { 609 // The prior checkSize call may have failed. This isn't a hard error 610 // because we were just trying to sniff out bigobj. 611 EC = std::error_code(); 612 CurPtr += sizeof(coff_file_header); 613 614 if (COFFHeader->isImportLibrary()) 615 return; 616 } 617 618 if (HasPEHeader) { 619 const pe32_header *Header; 620 if ((EC = getObject(Header, Data, base() + CurPtr))) 621 return; 622 623 const uint8_t *DataDirAddr; 624 uint64_t DataDirSize; 625 if (Header->Magic == COFF::PE32Header::PE32) { 626 PE32Header = Header; 627 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 628 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 629 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 630 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 631 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 632 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 633 } else { 634 // It's neither PE32 nor PE32+. 635 EC = object_error::parse_failed; 636 return; 637 } 638 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 639 return; 640 CurPtr += COFFHeader->SizeOfOptionalHeader; 641 } 642 643 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 644 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 645 return; 646 647 // Initialize the pointer to the symbol table. 648 if (getPointerToSymbolTable() != 0) { 649 if ((EC = initSymbolTablePtr())) 650 return; 651 } else { 652 // We had better not have any symbols if we don't have a symbol table. 653 if (getNumberOfSymbols() != 0) { 654 EC = object_error::parse_failed; 655 return; 656 } 657 } 658 659 // Initialize the pointer to the beginning of the import table. 660 if ((EC = initImportTablePtr())) 661 return; 662 if ((EC = initDelayImportTablePtr())) 663 return; 664 665 // Initialize the pointer to the export table. 666 if ((EC = initExportTablePtr())) 667 return; 668 669 // Initialize the pointer to the base relocation table. 670 if ((EC = initBaseRelocPtr())) 671 return; 672 673 EC = std::error_code(); 674 } 675 676 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 677 DataRefImpl Ret; 678 Ret.p = getSymbolTable(); 679 return basic_symbol_iterator(SymbolRef(Ret, this)); 680 } 681 682 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 683 // The symbol table ends where the string table begins. 684 DataRefImpl Ret; 685 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 686 return basic_symbol_iterator(SymbolRef(Ret, this)); 687 } 688 689 import_directory_iterator COFFObjectFile::import_directory_begin() const { 690 return import_directory_iterator( 691 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 692 } 693 694 import_directory_iterator COFFObjectFile::import_directory_end() const { 695 return import_directory_iterator( 696 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 697 } 698 699 delay_import_directory_iterator 700 COFFObjectFile::delay_import_directory_begin() const { 701 return delay_import_directory_iterator( 702 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 703 } 704 705 delay_import_directory_iterator 706 COFFObjectFile::delay_import_directory_end() const { 707 return delay_import_directory_iterator( 708 DelayImportDirectoryEntryRef( 709 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 710 } 711 712 export_directory_iterator COFFObjectFile::export_directory_begin() const { 713 return export_directory_iterator( 714 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 715 } 716 717 export_directory_iterator COFFObjectFile::export_directory_end() const { 718 if (!ExportDirectory) 719 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 720 ExportDirectoryEntryRef Ref(ExportDirectory, 721 ExportDirectory->AddressTableEntries, this); 722 return export_directory_iterator(Ref); 723 } 724 725 section_iterator COFFObjectFile::section_begin() const { 726 DataRefImpl Ret; 727 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 728 return section_iterator(SectionRef(Ret, this)); 729 } 730 731 section_iterator COFFObjectFile::section_end() const { 732 DataRefImpl Ret; 733 int NumSections = 734 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 735 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 736 return section_iterator(SectionRef(Ret, this)); 737 } 738 739 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 740 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 741 } 742 743 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 744 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 745 } 746 747 uint8_t COFFObjectFile::getBytesInAddress() const { 748 return getArch() == Triple::x86_64 ? 8 : 4; 749 } 750 751 StringRef COFFObjectFile::getFileFormatName() const { 752 switch(getMachine()) { 753 case COFF::IMAGE_FILE_MACHINE_I386: 754 return "COFF-i386"; 755 case COFF::IMAGE_FILE_MACHINE_AMD64: 756 return "COFF-x86-64"; 757 case COFF::IMAGE_FILE_MACHINE_ARMNT: 758 return "COFF-ARM"; 759 case COFF::IMAGE_FILE_MACHINE_ARM64: 760 return "COFF-ARM64"; 761 default: 762 return "COFF-<unknown arch>"; 763 } 764 } 765 766 unsigned COFFObjectFile::getArch() const { 767 switch (getMachine()) { 768 case COFF::IMAGE_FILE_MACHINE_I386: 769 return Triple::x86; 770 case COFF::IMAGE_FILE_MACHINE_AMD64: 771 return Triple::x86_64; 772 case COFF::IMAGE_FILE_MACHINE_ARMNT: 773 return Triple::thumb; 774 case COFF::IMAGE_FILE_MACHINE_ARM64: 775 return Triple::aarch64; 776 default: 777 return Triple::UnknownArch; 778 } 779 } 780 781 iterator_range<import_directory_iterator> 782 COFFObjectFile::import_directories() const { 783 return make_range(import_directory_begin(), import_directory_end()); 784 } 785 786 iterator_range<delay_import_directory_iterator> 787 COFFObjectFile::delay_import_directories() const { 788 return make_range(delay_import_directory_begin(), 789 delay_import_directory_end()); 790 } 791 792 iterator_range<export_directory_iterator> 793 COFFObjectFile::export_directories() const { 794 return make_range(export_directory_begin(), export_directory_end()); 795 } 796 797 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 798 return make_range(base_reloc_begin(), base_reloc_end()); 799 } 800 801 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 802 Res = PE32Header; 803 return std::error_code(); 804 } 805 806 std::error_code 807 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 808 Res = PE32PlusHeader; 809 return std::error_code(); 810 } 811 812 std::error_code 813 COFFObjectFile::getDataDirectory(uint32_t Index, 814 const data_directory *&Res) const { 815 // Error if if there's no data directory or the index is out of range. 816 if (!DataDirectory) { 817 Res = nullptr; 818 return object_error::parse_failed; 819 } 820 assert(PE32Header || PE32PlusHeader); 821 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 822 : PE32PlusHeader->NumberOfRvaAndSize; 823 if (Index >= NumEnt) { 824 Res = nullptr; 825 return object_error::parse_failed; 826 } 827 Res = &DataDirectory[Index]; 828 return std::error_code(); 829 } 830 831 std::error_code COFFObjectFile::getSection(int32_t Index, 832 const coff_section *&Result) const { 833 Result = nullptr; 834 if (COFF::isReservedSectionNumber(Index)) 835 return std::error_code(); 836 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 837 // We already verified the section table data, so no need to check again. 838 Result = SectionTable + (Index - 1); 839 return std::error_code(); 840 } 841 return object_error::parse_failed; 842 } 843 844 std::error_code COFFObjectFile::getString(uint32_t Offset, 845 StringRef &Result) const { 846 if (StringTableSize <= 4) 847 // Tried to get a string from an empty string table. 848 return object_error::parse_failed; 849 if (Offset >= StringTableSize) 850 return object_error::unexpected_eof; 851 Result = StringRef(StringTable + Offset); 852 return std::error_code(); 853 } 854 855 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 856 StringRef &Res) const { 857 return getSymbolName(Symbol.getGeneric(), Res); 858 } 859 860 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 861 StringRef &Res) const { 862 // Check for string table entry. First 4 bytes are 0. 863 if (Symbol->Name.Offset.Zeroes == 0) { 864 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 865 return EC; 866 return std::error_code(); 867 } 868 869 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 870 // Null terminated, let ::strlen figure out the length. 871 Res = StringRef(Symbol->Name.ShortName); 872 else 873 // Not null terminated, use all 8 bytes. 874 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 875 return std::error_code(); 876 } 877 878 ArrayRef<uint8_t> 879 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 880 const uint8_t *Aux = nullptr; 881 882 size_t SymbolSize = getSymbolTableEntrySize(); 883 if (Symbol.getNumberOfAuxSymbols() > 0) { 884 // AUX data comes immediately after the symbol in COFF 885 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 886 # ifndef NDEBUG 887 // Verify that the Aux symbol points to a valid entry in the symbol table. 888 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 889 if (Offset < getPointerToSymbolTable() || 890 Offset >= 891 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 892 report_fatal_error("Aux Symbol data was outside of symbol table."); 893 894 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 895 "Aux Symbol data did not point to the beginning of a symbol"); 896 # endif 897 } 898 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 899 } 900 901 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 902 StringRef &Res) const { 903 StringRef Name; 904 if (Sec->Name[COFF::NameSize - 1] == 0) 905 // Null terminated, let ::strlen figure out the length. 906 Name = Sec->Name; 907 else 908 // Not null terminated, use all 8 bytes. 909 Name = StringRef(Sec->Name, COFF::NameSize); 910 911 // Check for string table entry. First byte is '/'. 912 if (Name.startswith("/")) { 913 uint32_t Offset; 914 if (Name.startswith("//")) { 915 if (decodeBase64StringEntry(Name.substr(2), Offset)) 916 return object_error::parse_failed; 917 } else { 918 if (Name.substr(1).getAsInteger(10, Offset)) 919 return object_error::parse_failed; 920 } 921 if (std::error_code EC = getString(Offset, Name)) 922 return EC; 923 } 924 925 Res = Name; 926 return std::error_code(); 927 } 928 929 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 930 // SizeOfRawData and VirtualSize change what they represent depending on 931 // whether or not we have an executable image. 932 // 933 // For object files, SizeOfRawData contains the size of section's data; 934 // VirtualSize should be zero but isn't due to buggy COFF writers. 935 // 936 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 937 // actual section size is in VirtualSize. It is possible for VirtualSize to 938 // be greater than SizeOfRawData; the contents past that point should be 939 // considered to be zero. 940 if (getDOSHeader()) 941 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 942 return Sec->SizeOfRawData; 943 } 944 945 std::error_code 946 COFFObjectFile::getSectionContents(const coff_section *Sec, 947 ArrayRef<uint8_t> &Res) const { 948 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 949 // don't do anything interesting for them. 950 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 951 "BSS sections don't have contents!"); 952 // The only thing that we need to verify is that the contents is contained 953 // within the file bounds. We don't need to make sure it doesn't cover other 954 // data, as there's nothing that says that is not allowed. 955 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 956 uint32_t SectionSize = getSectionSize(Sec); 957 if (checkOffset(Data, ConStart, SectionSize)) 958 return object_error::parse_failed; 959 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 960 return std::error_code(); 961 } 962 963 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 964 return reinterpret_cast<const coff_relocation*>(Rel.p); 965 } 966 967 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 968 Rel.p = reinterpret_cast<uintptr_t>( 969 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 970 } 971 972 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 973 const coff_relocation *R = toRel(Rel); 974 return R->VirtualAddress; 975 } 976 977 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 978 const coff_relocation *R = toRel(Rel); 979 DataRefImpl Ref; 980 if (R->SymbolTableIndex >= getNumberOfSymbols()) 981 return symbol_end(); 982 if (SymbolTable16) 983 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 984 else if (SymbolTable32) 985 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 986 else 987 llvm_unreachable("no symbol table pointer!"); 988 return symbol_iterator(SymbolRef(Ref, this)); 989 } 990 991 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 992 const coff_relocation* R = toRel(Rel); 993 return R->Type; 994 } 995 996 const coff_section * 997 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 998 return toSec(Section.getRawDataRefImpl()); 999 } 1000 1001 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1002 if (SymbolTable16) 1003 return toSymb<coff_symbol16>(Ref); 1004 if (SymbolTable32) 1005 return toSymb<coff_symbol32>(Ref); 1006 llvm_unreachable("no symbol table pointer!"); 1007 } 1008 1009 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1010 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1011 } 1012 1013 const coff_relocation * 1014 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1015 return toRel(Reloc.getRawDataRefImpl()); 1016 } 1017 1018 iterator_range<const coff_relocation *> 1019 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1020 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1021 const coff_relocation *E = I; 1022 if (I) 1023 E += getNumberOfRelocations(Sec, Data, base()); 1024 return make_range(I, E); 1025 } 1026 1027 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1028 case COFF::reloc_type: \ 1029 Res = #reloc_type; \ 1030 break; 1031 1032 void COFFObjectFile::getRelocationTypeName( 1033 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1034 const coff_relocation *Reloc = toRel(Rel); 1035 StringRef Res; 1036 switch (getMachine()) { 1037 case COFF::IMAGE_FILE_MACHINE_AMD64: 1038 switch (Reloc->Type) { 1039 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1040 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1056 default: 1057 Res = "Unknown"; 1058 } 1059 break; 1060 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1061 switch (Reloc->Type) { 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1077 default: 1078 Res = "Unknown"; 1079 } 1080 break; 1081 case COFF::IMAGE_FILE_MACHINE_I386: 1082 switch (Reloc->Type) { 1083 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1087 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1094 default: 1095 Res = "Unknown"; 1096 } 1097 break; 1098 default: 1099 Res = "Unknown"; 1100 } 1101 Result.append(Res.begin(), Res.end()); 1102 } 1103 1104 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1105 1106 bool COFFObjectFile::isRelocatableObject() const { 1107 return !DataDirectory; 1108 } 1109 1110 bool ImportDirectoryEntryRef:: 1111 operator==(const ImportDirectoryEntryRef &Other) const { 1112 return ImportTable == Other.ImportTable && Index == Other.Index; 1113 } 1114 1115 void ImportDirectoryEntryRef::moveNext() { 1116 ++Index; 1117 } 1118 1119 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1120 const import_directory_table_entry *&Result) const { 1121 Result = ImportTable + Index; 1122 return std::error_code(); 1123 } 1124 1125 static imported_symbol_iterator 1126 makeImportedSymbolIterator(const COFFObjectFile *Object, 1127 uintptr_t Ptr, int Index) { 1128 if (Object->getBytesInAddress() == 4) { 1129 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1130 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1131 } 1132 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1133 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1134 } 1135 1136 static imported_symbol_iterator 1137 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1138 uintptr_t IntPtr = 0; 1139 Object->getRvaPtr(RVA, IntPtr); 1140 return makeImportedSymbolIterator(Object, IntPtr, 0); 1141 } 1142 1143 static imported_symbol_iterator 1144 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1145 uintptr_t IntPtr = 0; 1146 Object->getRvaPtr(RVA, IntPtr); 1147 // Forward the pointer to the last entry which is null. 1148 int Index = 0; 1149 if (Object->getBytesInAddress() == 4) { 1150 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1151 while (*Entry++) 1152 ++Index; 1153 } else { 1154 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1155 while (*Entry++) 1156 ++Index; 1157 } 1158 return makeImportedSymbolIterator(Object, IntPtr, Index); 1159 } 1160 1161 imported_symbol_iterator 1162 ImportDirectoryEntryRef::imported_symbol_begin() const { 1163 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1164 OwningObject); 1165 } 1166 1167 imported_symbol_iterator 1168 ImportDirectoryEntryRef::imported_symbol_end() const { 1169 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1170 OwningObject); 1171 } 1172 1173 iterator_range<imported_symbol_iterator> 1174 ImportDirectoryEntryRef::imported_symbols() const { 1175 return make_range(imported_symbol_begin(), imported_symbol_end()); 1176 } 1177 1178 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1179 uintptr_t IntPtr = 0; 1180 if (std::error_code EC = 1181 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1182 return EC; 1183 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1184 return std::error_code(); 1185 } 1186 1187 std::error_code 1188 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1189 Result = ImportTable[Index].ImportLookupTableRVA; 1190 return std::error_code(); 1191 } 1192 1193 std::error_code 1194 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1195 Result = ImportTable[Index].ImportAddressTableRVA; 1196 return std::error_code(); 1197 } 1198 1199 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1200 const import_lookup_table_entry32 *&Result) const { 1201 uintptr_t IntPtr = 0; 1202 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1203 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1204 return EC; 1205 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1206 return std::error_code(); 1207 } 1208 1209 bool DelayImportDirectoryEntryRef:: 1210 operator==(const DelayImportDirectoryEntryRef &Other) const { 1211 return Table == Other.Table && Index == Other.Index; 1212 } 1213 1214 void DelayImportDirectoryEntryRef::moveNext() { 1215 ++Index; 1216 } 1217 1218 imported_symbol_iterator 1219 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1220 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1221 OwningObject); 1222 } 1223 1224 imported_symbol_iterator 1225 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1226 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1227 OwningObject); 1228 } 1229 1230 iterator_range<imported_symbol_iterator> 1231 DelayImportDirectoryEntryRef::imported_symbols() const { 1232 return make_range(imported_symbol_begin(), imported_symbol_end()); 1233 } 1234 1235 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1236 uintptr_t IntPtr = 0; 1237 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1238 return EC; 1239 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1240 return std::error_code(); 1241 } 1242 1243 std::error_code DelayImportDirectoryEntryRef:: 1244 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1245 Result = Table; 1246 return std::error_code(); 1247 } 1248 1249 std::error_code DelayImportDirectoryEntryRef:: 1250 getImportAddress(int AddrIndex, uint64_t &Result) const { 1251 uint32_t RVA = Table[Index].DelayImportAddressTable + 1252 AddrIndex * (OwningObject->is64() ? 8 : 4); 1253 uintptr_t IntPtr = 0; 1254 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1255 return EC; 1256 if (OwningObject->is64()) 1257 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1258 else 1259 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1260 return std::error_code(); 1261 } 1262 1263 bool ExportDirectoryEntryRef:: 1264 operator==(const ExportDirectoryEntryRef &Other) const { 1265 return ExportTable == Other.ExportTable && Index == Other.Index; 1266 } 1267 1268 void ExportDirectoryEntryRef::moveNext() { 1269 ++Index; 1270 } 1271 1272 // Returns the name of the current export symbol. If the symbol is exported only 1273 // by ordinal, the empty string is set as a result. 1274 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1275 uintptr_t IntPtr = 0; 1276 if (std::error_code EC = 1277 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1278 return EC; 1279 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1280 return std::error_code(); 1281 } 1282 1283 // Returns the starting ordinal number. 1284 std::error_code 1285 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1286 Result = ExportTable->OrdinalBase; 1287 return std::error_code(); 1288 } 1289 1290 // Returns the export ordinal of the current export symbol. 1291 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1292 Result = ExportTable->OrdinalBase + Index; 1293 return std::error_code(); 1294 } 1295 1296 // Returns the address of the current export symbol. 1297 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1298 uintptr_t IntPtr = 0; 1299 if (std::error_code EC = 1300 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1301 return EC; 1302 const export_address_table_entry *entry = 1303 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1304 Result = entry[Index].ExportRVA; 1305 return std::error_code(); 1306 } 1307 1308 // Returns the name of the current export symbol. If the symbol is exported only 1309 // by ordinal, the empty string is set as a result. 1310 std::error_code 1311 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1312 uintptr_t IntPtr = 0; 1313 if (std::error_code EC = 1314 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1315 return EC; 1316 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1317 1318 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1319 int Offset = 0; 1320 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1321 I < E; ++I, ++Offset) { 1322 if (*I != Index) 1323 continue; 1324 if (std::error_code EC = 1325 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1326 return EC; 1327 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1328 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1329 return EC; 1330 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1331 return std::error_code(); 1332 } 1333 Result = ""; 1334 return std::error_code(); 1335 } 1336 1337 bool ImportedSymbolRef:: 1338 operator==(const ImportedSymbolRef &Other) const { 1339 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1340 && Index == Other.Index; 1341 } 1342 1343 void ImportedSymbolRef::moveNext() { 1344 ++Index; 1345 } 1346 1347 std::error_code 1348 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1349 uint32_t RVA; 1350 if (Entry32) { 1351 // If a symbol is imported only by ordinal, it has no name. 1352 if (Entry32[Index].isOrdinal()) 1353 return std::error_code(); 1354 RVA = Entry32[Index].getHintNameRVA(); 1355 } else { 1356 if (Entry64[Index].isOrdinal()) 1357 return std::error_code(); 1358 RVA = Entry64[Index].getHintNameRVA(); 1359 } 1360 uintptr_t IntPtr = 0; 1361 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1362 return EC; 1363 // +2 because the first two bytes is hint. 1364 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1365 return std::error_code(); 1366 } 1367 1368 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1369 uint32_t RVA; 1370 if (Entry32) { 1371 if (Entry32[Index].isOrdinal()) { 1372 Result = Entry32[Index].getOrdinal(); 1373 return std::error_code(); 1374 } 1375 RVA = Entry32[Index].getHintNameRVA(); 1376 } else { 1377 if (Entry64[Index].isOrdinal()) { 1378 Result = Entry64[Index].getOrdinal(); 1379 return std::error_code(); 1380 } 1381 RVA = Entry64[Index].getHintNameRVA(); 1382 } 1383 uintptr_t IntPtr = 0; 1384 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1385 return EC; 1386 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1387 return std::error_code(); 1388 } 1389 1390 ErrorOr<std::unique_ptr<COFFObjectFile>> 1391 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1392 std::error_code EC; 1393 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1394 if (EC) 1395 return EC; 1396 return std::move(Ret); 1397 } 1398 1399 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1400 return Header == Other.Header && Index == Other.Index; 1401 } 1402 1403 void BaseRelocRef::moveNext() { 1404 // Header->BlockSize is the size of the current block, including the 1405 // size of the header itself. 1406 uint32_t Size = sizeof(*Header) + 1407 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1408 if (Size == Header->BlockSize) { 1409 // .reloc contains a list of base relocation blocks. Each block 1410 // consists of the header followed by entries. The header contains 1411 // how many entories will follow. When we reach the end of the 1412 // current block, proceed to the next block. 1413 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1414 reinterpret_cast<const uint8_t *>(Header) + Size); 1415 Index = 0; 1416 } else { 1417 ++Index; 1418 } 1419 } 1420 1421 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1422 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1423 Type = Entry[Index].getType(); 1424 return std::error_code(); 1425 } 1426 1427 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1428 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1429 Result = Header->PageRVA + Entry[Index].getOffset(); 1430 return std::error_code(); 1431 } 1432