1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Support/COFF.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cctype> 24 #include <limits> 25 26 using namespace llvm; 27 using namespace object; 28 29 using support::ulittle16_t; 30 using support::ulittle32_t; 31 using support::ulittle64_t; 32 using support::little16_t; 33 34 // Returns false if size is greater than the buffer size. And sets ec. 35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 36 if (M.getBufferSize() < Size) { 37 EC = object_error::unexpected_eof; 38 return false; 39 } 40 return true; 41 } 42 43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 44 const uint64_t Size) { 45 if (Addr + Size < Addr || Addr + Size < Size || 46 Addr + Size > uintptr_t(M.getBufferEnd()) || 47 Addr < uintptr_t(M.getBufferStart())) { 48 return object_error::unexpected_eof; 49 } 50 return std::error_code(); 51 } 52 53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 54 // Returns unexpected_eof if error. 55 template <typename T> 56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 57 const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = uintptr_t(Ptr); 60 if (std::error_code EC = checkOffset(M, Addr, Size)) 61 return EC; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return std::error_code(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 109 110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 111 "Symbol did not point to the beginning of a symbol"); 112 #endif 113 114 return Addr; 115 } 116 117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 119 120 # ifndef NDEBUG 121 // Verify that the section points to a valid entry in the section table. 122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 123 report_fatal_error("Section was outside of section table."); 124 125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 126 assert(Offset % sizeof(coff_section) == 0 && 127 "Section did not point to the beginning of a section"); 128 # endif 129 130 return Addr; 131 } 132 133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 134 auto End = reinterpret_cast<uintptr_t>(StringTable); 135 if (SymbolTable16) { 136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 137 Symb += 1 + Symb->NumberOfAuxSymbols; 138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 139 } else if (SymbolTable32) { 140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 141 Symb += 1 + Symb->NumberOfAuxSymbols; 142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 143 } else { 144 llvm_unreachable("no symbol table pointer!"); 145 } 146 } 147 148 ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 StringRef Result; 151 std::error_code EC = getSymbolName(Symb, Result); 152 if (EC) 153 return EC; 154 return Result; 155 } 156 157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 158 return getCOFFSymbol(Ref).getValue(); 159 } 160 161 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 162 uint64_t Result = getSymbolValue(Ref); 163 COFFSymbolRef Symb = getCOFFSymbol(Ref); 164 int32_t SectionNumber = Symb.getSectionNumber(); 165 166 if (Symb.isAnyUndefined() || Symb.isCommon() || 167 COFF::isReservedSectionNumber(SectionNumber)) 168 return Result; 169 170 const coff_section *Section = nullptr; 171 if (std::error_code EC = getSection(SectionNumber, Section)) 172 return EC; 173 Result += Section->VirtualAddress; 174 return Result; 175 } 176 177 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 178 COFFSymbolRef Symb = getCOFFSymbol(Ref); 179 int32_t SectionNumber = Symb.getSectionNumber(); 180 181 if (Symb.isAnyUndefined()) 182 return SymbolRef::ST_Unknown; 183 if (Symb.isFunctionDefinition()) 184 return SymbolRef::ST_Function; 185 if (Symb.isCommon()) 186 return SymbolRef::ST_Data; 187 if (Symb.isFileRecord()) 188 return SymbolRef::ST_File; 189 190 // TODO: perhaps we need a new symbol type ST_Section. 191 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 192 return SymbolRef::ST_Debug; 193 194 if (!COFF::isReservedSectionNumber(SectionNumber)) 195 return SymbolRef::ST_Data; 196 197 return SymbolRef::ST_Other; 198 } 199 200 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 201 COFFSymbolRef Symb = getCOFFSymbol(Ref); 202 uint32_t Result = SymbolRef::SF_None; 203 204 if (Symb.isExternal() || Symb.isWeakExternal()) 205 Result |= SymbolRef::SF_Global; 206 207 if (Symb.isWeakExternal()) 208 Result |= SymbolRef::SF_Weak; 209 210 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 211 Result |= SymbolRef::SF_Absolute; 212 213 if (Symb.isFileRecord()) 214 Result |= SymbolRef::SF_FormatSpecific; 215 216 if (Symb.isSectionDefinition()) 217 Result |= SymbolRef::SF_FormatSpecific; 218 219 if (Symb.isCommon()) 220 Result |= SymbolRef::SF_Common; 221 222 if (Symb.isAnyUndefined()) 223 Result |= SymbolRef::SF_Undefined; 224 225 return Result; 226 } 227 228 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 229 COFFSymbolRef Symb = getCOFFSymbol(Ref); 230 return Symb.getValue(); 231 } 232 233 std::error_code 234 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 235 section_iterator &Result) const { 236 COFFSymbolRef Symb = getCOFFSymbol(Ref); 237 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 238 Result = section_end(); 239 } else { 240 const coff_section *Sec = nullptr; 241 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 242 return EC; 243 DataRefImpl Ref; 244 Ref.p = reinterpret_cast<uintptr_t>(Sec); 245 Result = section_iterator(SectionRef(Ref, this)); 246 } 247 return std::error_code(); 248 } 249 250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 251 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 252 return Symb.getSectionNumber(); 253 } 254 255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 256 const coff_section *Sec = toSec(Ref); 257 Sec += 1; 258 Ref.p = reinterpret_cast<uintptr_t>(Sec); 259 } 260 261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 262 StringRef &Result) const { 263 const coff_section *Sec = toSec(Ref); 264 return getSectionName(Sec, Result); 265 } 266 267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 268 const coff_section *Sec = toSec(Ref); 269 return Sec->VirtualAddress; 270 } 271 272 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 273 return getSectionSize(toSec(Ref)); 274 } 275 276 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 277 StringRef &Result) const { 278 const coff_section *Sec = toSec(Ref); 279 ArrayRef<uint8_t> Res; 280 std::error_code EC = getSectionContents(Sec, Res); 281 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 282 return EC; 283 } 284 285 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 286 const coff_section *Sec = toSec(Ref); 287 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 288 } 289 290 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 291 const coff_section *Sec = toSec(Ref); 292 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 293 } 294 295 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 296 const coff_section *Sec = toSec(Ref); 297 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 298 } 299 300 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 301 const coff_section *Sec = toSec(Ref); 302 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 303 COFF::IMAGE_SCN_MEM_READ | 304 COFF::IMAGE_SCN_MEM_WRITE; 305 return (Sec->Characteristics & BssFlags) == BssFlags; 306 } 307 308 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 309 uintptr_t Offset = 310 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 311 assert((Offset % sizeof(coff_section)) == 0); 312 return (Offset / sizeof(coff_section)) + 1; 313 } 314 315 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 316 const coff_section *Sec = toSec(Ref); 317 // In COFF, a virtual section won't have any in-file 318 // content, so the file pointer to the content will be zero. 319 return Sec->PointerToRawData == 0; 320 } 321 322 static uint32_t getNumberOfRelocations(const coff_section *Sec, 323 MemoryBufferRef M, const uint8_t *base) { 324 // The field for the number of relocations in COFF section table is only 325 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 326 // NumberOfRelocations field, and the actual relocation count is stored in the 327 // VirtualAddress field in the first relocation entry. 328 if (Sec->hasExtendedRelocations()) { 329 const coff_relocation *FirstReloc; 330 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 331 base + Sec->PointerToRelocations))) 332 return 0; 333 // -1 to exclude this first relocation entry. 334 return FirstReloc->VirtualAddress - 1; 335 } 336 return Sec->NumberOfRelocations; 337 } 338 339 static const coff_relocation * 340 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 341 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 342 if (!NumRelocs) 343 return nullptr; 344 auto begin = reinterpret_cast<const coff_relocation *>( 345 Base + Sec->PointerToRelocations); 346 if (Sec->hasExtendedRelocations()) { 347 // Skip the first relocation entry repurposed to store the number of 348 // relocations. 349 begin++; 350 } 351 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 352 return nullptr; 353 return begin; 354 } 355 356 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 357 const coff_section *Sec = toSec(Ref); 358 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 359 if (begin && Sec->VirtualAddress != 0) 360 report_fatal_error("Sections with relocations should have an address of 0"); 361 DataRefImpl Ret; 362 Ret.p = reinterpret_cast<uintptr_t>(begin); 363 return relocation_iterator(RelocationRef(Ret, this)); 364 } 365 366 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 367 const coff_section *Sec = toSec(Ref); 368 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 369 if (I) 370 I += getNumberOfRelocations(Sec, Data, base()); 371 DataRefImpl Ret; 372 Ret.p = reinterpret_cast<uintptr_t>(I); 373 return relocation_iterator(RelocationRef(Ret, this)); 374 } 375 376 // Initialize the pointer to the symbol table. 377 std::error_code COFFObjectFile::initSymbolTablePtr() { 378 if (COFFHeader) 379 if (std::error_code EC = getObject( 380 SymbolTable16, Data, base() + getPointerToSymbolTable(), 381 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 382 return EC; 383 384 if (COFFBigObjHeader) 385 if (std::error_code EC = getObject( 386 SymbolTable32, Data, base() + getPointerToSymbolTable(), 387 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 388 return EC; 389 390 // Find string table. The first four byte of the string table contains the 391 // total size of the string table, including the size field itself. If the 392 // string table is empty, the value of the first four byte would be 4. 393 uint32_t StringTableOffset = getPointerToSymbolTable() + 394 getNumberOfSymbols() * getSymbolTableEntrySize(); 395 const uint8_t *StringTableAddr = base() + StringTableOffset; 396 const ulittle32_t *StringTableSizePtr; 397 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 398 return EC; 399 StringTableSize = *StringTableSizePtr; 400 if (std::error_code EC = 401 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 402 return EC; 403 404 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 405 // tools like cvtres write a size of 0 for an empty table instead of 4. 406 if (StringTableSize < 4) 407 StringTableSize = 4; 408 409 // Check that the string table is null terminated if has any in it. 410 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 411 return object_error::parse_failed; 412 return std::error_code(); 413 } 414 415 // Returns the file offset for the given VA. 416 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 417 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 418 : (uint64_t)PE32PlusHeader->ImageBase; 419 uint64_t Rva = Addr - ImageBase; 420 assert(Rva <= UINT32_MAX); 421 return getRvaPtr((uint32_t)Rva, Res); 422 } 423 424 // Returns the file offset for the given RVA. 425 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 426 for (const SectionRef &S : sections()) { 427 const coff_section *Section = getCOFFSection(S); 428 uint32_t SectionStart = Section->VirtualAddress; 429 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 430 if (SectionStart <= Addr && Addr < SectionEnd) { 431 uint32_t Offset = Addr - SectionStart; 432 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 433 return std::error_code(); 434 } 435 } 436 return object_error::parse_failed; 437 } 438 439 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 440 // table entry. 441 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 442 StringRef &Name) const { 443 uintptr_t IntPtr = 0; 444 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 445 return EC; 446 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 447 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 448 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 449 return std::error_code(); 450 } 451 452 // Find the import table. 453 std::error_code COFFObjectFile::initImportTablePtr() { 454 // First, we get the RVA of the import table. If the file lacks a pointer to 455 // the import table, do nothing. 456 const data_directory *DataEntry; 457 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 458 return std::error_code(); 459 460 // Do nothing if the pointer to import table is NULL. 461 if (DataEntry->RelativeVirtualAddress == 0) 462 return std::error_code(); 463 464 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 465 // -1 because the last entry is the null entry. 466 NumberOfImportDirectory = DataEntry->Size / 467 sizeof(import_directory_table_entry) - 1; 468 469 // Find the section that contains the RVA. This is needed because the RVA is 470 // the import table's memory address which is different from its file offset. 471 uintptr_t IntPtr = 0; 472 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 473 return EC; 474 ImportDirectory = reinterpret_cast< 475 const import_directory_table_entry *>(IntPtr); 476 return std::error_code(); 477 } 478 479 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 480 std::error_code COFFObjectFile::initDelayImportTablePtr() { 481 const data_directory *DataEntry; 482 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 483 return std::error_code(); 484 if (DataEntry->RelativeVirtualAddress == 0) 485 return std::error_code(); 486 487 uint32_t RVA = DataEntry->RelativeVirtualAddress; 488 NumberOfDelayImportDirectory = DataEntry->Size / 489 sizeof(delay_import_directory_table_entry) - 1; 490 491 uintptr_t IntPtr = 0; 492 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 493 return EC; 494 DelayImportDirectory = reinterpret_cast< 495 const delay_import_directory_table_entry *>(IntPtr); 496 return std::error_code(); 497 } 498 499 // Find the export table. 500 std::error_code COFFObjectFile::initExportTablePtr() { 501 // First, we get the RVA of the export table. If the file lacks a pointer to 502 // the export table, do nothing. 503 const data_directory *DataEntry; 504 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 505 return std::error_code(); 506 507 // Do nothing if the pointer to export table is NULL. 508 if (DataEntry->RelativeVirtualAddress == 0) 509 return std::error_code(); 510 511 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 512 uintptr_t IntPtr = 0; 513 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 514 return EC; 515 ExportDirectory = 516 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 517 return std::error_code(); 518 } 519 520 std::error_code COFFObjectFile::initBaseRelocPtr() { 521 const data_directory *DataEntry; 522 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 523 return std::error_code(); 524 if (DataEntry->RelativeVirtualAddress == 0) 525 return std::error_code(); 526 527 uintptr_t IntPtr = 0; 528 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 529 return EC; 530 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 531 IntPtr); 532 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 533 IntPtr + DataEntry->Size); 534 return std::error_code(); 535 } 536 537 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 538 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 539 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 540 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 541 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 542 ImportDirectory(nullptr), NumberOfImportDirectory(0), 543 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 544 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 545 BaseRelocEnd(nullptr) { 546 // Check that we at least have enough room for a header. 547 if (!checkSize(Data, EC, sizeof(coff_file_header))) 548 return; 549 550 // The current location in the file where we are looking at. 551 uint64_t CurPtr = 0; 552 553 // PE header is optional and is present only in executables. If it exists, 554 // it is placed right after COFF header. 555 bool HasPEHeader = false; 556 557 // Check if this is a PE/COFF file. 558 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 559 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 560 // PE signature to find 'normal' COFF header. 561 const auto *DH = reinterpret_cast<const dos_header *>(base()); 562 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 563 CurPtr = DH->AddressOfNewExeHeader; 564 // Check the PE magic bytes. ("PE\0\0") 565 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 566 EC = object_error::parse_failed; 567 return; 568 } 569 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 570 HasPEHeader = true; 571 } 572 } 573 574 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 575 return; 576 577 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 578 // import libraries share a common prefix but bigobj is more restrictive. 579 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 580 COFFHeader->NumberOfSections == uint16_t(0xffff) && 581 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 582 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 583 return; 584 585 // Verify that we are dealing with bigobj. 586 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 587 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 588 sizeof(COFF::BigObjMagic)) == 0) { 589 COFFHeader = nullptr; 590 CurPtr += sizeof(coff_bigobj_file_header); 591 } else { 592 // It's not a bigobj. 593 COFFBigObjHeader = nullptr; 594 } 595 } 596 if (COFFHeader) { 597 // The prior checkSize call may have failed. This isn't a hard error 598 // because we were just trying to sniff out bigobj. 599 EC = std::error_code(); 600 CurPtr += sizeof(coff_file_header); 601 602 if (COFFHeader->isImportLibrary()) 603 return; 604 } 605 606 if (HasPEHeader) { 607 const pe32_header *Header; 608 if ((EC = getObject(Header, Data, base() + CurPtr))) 609 return; 610 611 const uint8_t *DataDirAddr; 612 uint64_t DataDirSize; 613 if (Header->Magic == COFF::PE32Header::PE32) { 614 PE32Header = Header; 615 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 616 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 617 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 618 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 619 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 620 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 621 } else { 622 // It's neither PE32 nor PE32+. 623 EC = object_error::parse_failed; 624 return; 625 } 626 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 627 return; 628 CurPtr += COFFHeader->SizeOfOptionalHeader; 629 } 630 631 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 632 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 633 return; 634 635 // Initialize the pointer to the symbol table. 636 if (getPointerToSymbolTable() != 0) { 637 if ((EC = initSymbolTablePtr())) 638 return; 639 } else { 640 // We had better not have any symbols if we don't have a symbol table. 641 if (getNumberOfSymbols() != 0) { 642 EC = object_error::parse_failed; 643 return; 644 } 645 } 646 647 // Initialize the pointer to the beginning of the import table. 648 if ((EC = initImportTablePtr())) 649 return; 650 if ((EC = initDelayImportTablePtr())) 651 return; 652 653 // Initialize the pointer to the export table. 654 if ((EC = initExportTablePtr())) 655 return; 656 657 // Initialize the pointer to the base relocation table. 658 if ((EC = initBaseRelocPtr())) 659 return; 660 661 EC = std::error_code(); 662 } 663 664 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 665 DataRefImpl Ret; 666 Ret.p = getSymbolTable(); 667 return basic_symbol_iterator(SymbolRef(Ret, this)); 668 } 669 670 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 671 // The symbol table ends where the string table begins. 672 DataRefImpl Ret; 673 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 674 return basic_symbol_iterator(SymbolRef(Ret, this)); 675 } 676 677 import_directory_iterator COFFObjectFile::import_directory_begin() const { 678 return import_directory_iterator( 679 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 680 } 681 682 import_directory_iterator COFFObjectFile::import_directory_end() const { 683 return import_directory_iterator( 684 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 685 } 686 687 delay_import_directory_iterator 688 COFFObjectFile::delay_import_directory_begin() const { 689 return delay_import_directory_iterator( 690 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 691 } 692 693 delay_import_directory_iterator 694 COFFObjectFile::delay_import_directory_end() const { 695 return delay_import_directory_iterator( 696 DelayImportDirectoryEntryRef( 697 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 698 } 699 700 export_directory_iterator COFFObjectFile::export_directory_begin() const { 701 return export_directory_iterator( 702 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 703 } 704 705 export_directory_iterator COFFObjectFile::export_directory_end() const { 706 if (!ExportDirectory) 707 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 708 ExportDirectoryEntryRef Ref(ExportDirectory, 709 ExportDirectory->AddressTableEntries, this); 710 return export_directory_iterator(Ref); 711 } 712 713 section_iterator COFFObjectFile::section_begin() const { 714 DataRefImpl Ret; 715 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 716 return section_iterator(SectionRef(Ret, this)); 717 } 718 719 section_iterator COFFObjectFile::section_end() const { 720 DataRefImpl Ret; 721 int NumSections = 722 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 723 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 724 return section_iterator(SectionRef(Ret, this)); 725 } 726 727 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 728 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 729 } 730 731 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 732 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 733 } 734 735 uint8_t COFFObjectFile::getBytesInAddress() const { 736 return getArch() == Triple::x86_64 ? 8 : 4; 737 } 738 739 StringRef COFFObjectFile::getFileFormatName() const { 740 switch(getMachine()) { 741 case COFF::IMAGE_FILE_MACHINE_I386: 742 return "COFF-i386"; 743 case COFF::IMAGE_FILE_MACHINE_AMD64: 744 return "COFF-x86-64"; 745 case COFF::IMAGE_FILE_MACHINE_ARMNT: 746 return "COFF-ARM"; 747 default: 748 return "COFF-<unknown arch>"; 749 } 750 } 751 752 unsigned COFFObjectFile::getArch() const { 753 switch (getMachine()) { 754 case COFF::IMAGE_FILE_MACHINE_I386: 755 return Triple::x86; 756 case COFF::IMAGE_FILE_MACHINE_AMD64: 757 return Triple::x86_64; 758 case COFF::IMAGE_FILE_MACHINE_ARMNT: 759 return Triple::thumb; 760 default: 761 return Triple::UnknownArch; 762 } 763 } 764 765 iterator_range<import_directory_iterator> 766 COFFObjectFile::import_directories() const { 767 return make_range(import_directory_begin(), import_directory_end()); 768 } 769 770 iterator_range<delay_import_directory_iterator> 771 COFFObjectFile::delay_import_directories() const { 772 return make_range(delay_import_directory_begin(), 773 delay_import_directory_end()); 774 } 775 776 iterator_range<export_directory_iterator> 777 COFFObjectFile::export_directories() const { 778 return make_range(export_directory_begin(), export_directory_end()); 779 } 780 781 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 782 return make_range(base_reloc_begin(), base_reloc_end()); 783 } 784 785 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 786 Res = PE32Header; 787 return std::error_code(); 788 } 789 790 std::error_code 791 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 792 Res = PE32PlusHeader; 793 return std::error_code(); 794 } 795 796 std::error_code 797 COFFObjectFile::getDataDirectory(uint32_t Index, 798 const data_directory *&Res) const { 799 // Error if if there's no data directory or the index is out of range. 800 if (!DataDirectory) { 801 Res = nullptr; 802 return object_error::parse_failed; 803 } 804 assert(PE32Header || PE32PlusHeader); 805 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 806 : PE32PlusHeader->NumberOfRvaAndSize; 807 if (Index >= NumEnt) { 808 Res = nullptr; 809 return object_error::parse_failed; 810 } 811 Res = &DataDirectory[Index]; 812 return std::error_code(); 813 } 814 815 std::error_code COFFObjectFile::getSection(int32_t Index, 816 const coff_section *&Result) const { 817 Result = nullptr; 818 if (COFF::isReservedSectionNumber(Index)) 819 return std::error_code(); 820 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 821 // We already verified the section table data, so no need to check again. 822 Result = SectionTable + (Index - 1); 823 return std::error_code(); 824 } 825 return object_error::parse_failed; 826 } 827 828 std::error_code COFFObjectFile::getString(uint32_t Offset, 829 StringRef &Result) const { 830 if (StringTableSize <= 4) 831 // Tried to get a string from an empty string table. 832 return object_error::parse_failed; 833 if (Offset >= StringTableSize) 834 return object_error::unexpected_eof; 835 Result = StringRef(StringTable + Offset); 836 return std::error_code(); 837 } 838 839 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 840 StringRef &Res) const { 841 return getSymbolName(Symbol.getGeneric(), Res); 842 } 843 844 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 845 StringRef &Res) const { 846 // Check for string table entry. First 4 bytes are 0. 847 if (Symbol->Name.Offset.Zeroes == 0) { 848 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 849 return EC; 850 return std::error_code(); 851 } 852 853 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 854 // Null terminated, let ::strlen figure out the length. 855 Res = StringRef(Symbol->Name.ShortName); 856 else 857 // Not null terminated, use all 8 bytes. 858 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 859 return std::error_code(); 860 } 861 862 ArrayRef<uint8_t> 863 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 864 const uint8_t *Aux = nullptr; 865 866 size_t SymbolSize = getSymbolTableEntrySize(); 867 if (Symbol.getNumberOfAuxSymbols() > 0) { 868 // AUX data comes immediately after the symbol in COFF 869 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 870 # ifndef NDEBUG 871 // Verify that the Aux symbol points to a valid entry in the symbol table. 872 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 873 if (Offset < getPointerToSymbolTable() || 874 Offset >= 875 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 876 report_fatal_error("Aux Symbol data was outside of symbol table."); 877 878 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 879 "Aux Symbol data did not point to the beginning of a symbol"); 880 # endif 881 } 882 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 883 } 884 885 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 886 StringRef &Res) const { 887 StringRef Name; 888 if (Sec->Name[COFF::NameSize - 1] == 0) 889 // Null terminated, let ::strlen figure out the length. 890 Name = Sec->Name; 891 else 892 // Not null terminated, use all 8 bytes. 893 Name = StringRef(Sec->Name, COFF::NameSize); 894 895 // Check for string table entry. First byte is '/'. 896 if (Name.startswith("/")) { 897 uint32_t Offset; 898 if (Name.startswith("//")) { 899 if (decodeBase64StringEntry(Name.substr(2), Offset)) 900 return object_error::parse_failed; 901 } else { 902 if (Name.substr(1).getAsInteger(10, Offset)) 903 return object_error::parse_failed; 904 } 905 if (std::error_code EC = getString(Offset, Name)) 906 return EC; 907 } 908 909 Res = Name; 910 return std::error_code(); 911 } 912 913 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 914 // SizeOfRawData and VirtualSize change what they represent depending on 915 // whether or not we have an executable image. 916 // 917 // For object files, SizeOfRawData contains the size of section's data; 918 // VirtualSize should be zero but isn't due to buggy COFF writers. 919 // 920 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 921 // actual section size is in VirtualSize. It is possible for VirtualSize to 922 // be greater than SizeOfRawData; the contents past that point should be 923 // considered to be zero. 924 if (getDOSHeader()) 925 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 926 return Sec->SizeOfRawData; 927 } 928 929 std::error_code 930 COFFObjectFile::getSectionContents(const coff_section *Sec, 931 ArrayRef<uint8_t> &Res) const { 932 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 933 // don't do anything interesting for them. 934 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 935 "BSS sections don't have contents!"); 936 // The only thing that we need to verify is that the contents is contained 937 // within the file bounds. We don't need to make sure it doesn't cover other 938 // data, as there's nothing that says that is not allowed. 939 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 940 uint32_t SectionSize = getSectionSize(Sec); 941 if (checkOffset(Data, ConStart, SectionSize)) 942 return object_error::parse_failed; 943 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 944 return std::error_code(); 945 } 946 947 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 948 return reinterpret_cast<const coff_relocation*>(Rel.p); 949 } 950 951 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 952 Rel.p = reinterpret_cast<uintptr_t>( 953 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 954 } 955 956 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 957 const coff_relocation *R = toRel(Rel); 958 return R->VirtualAddress; 959 } 960 961 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 962 const coff_relocation *R = toRel(Rel); 963 DataRefImpl Ref; 964 if (R->SymbolTableIndex >= getNumberOfSymbols()) 965 return symbol_end(); 966 if (SymbolTable16) 967 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 968 else if (SymbolTable32) 969 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 970 else 971 llvm_unreachable("no symbol table pointer!"); 972 return symbol_iterator(SymbolRef(Ref, this)); 973 } 974 975 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 976 const coff_relocation* R = toRel(Rel); 977 return R->Type; 978 } 979 980 const coff_section * 981 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 982 return toSec(Section.getRawDataRefImpl()); 983 } 984 985 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 986 if (SymbolTable16) 987 return toSymb<coff_symbol16>(Ref); 988 if (SymbolTable32) 989 return toSymb<coff_symbol32>(Ref); 990 llvm_unreachable("no symbol table pointer!"); 991 } 992 993 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 994 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 995 } 996 997 const coff_relocation * 998 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 999 return toRel(Reloc.getRawDataRefImpl()); 1000 } 1001 1002 iterator_range<const coff_relocation *> 1003 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1004 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1005 const coff_relocation *E = I; 1006 if (I) 1007 E += getNumberOfRelocations(Sec, Data, base()); 1008 return make_range(I, E); 1009 } 1010 1011 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1012 case COFF::reloc_type: \ 1013 Res = #reloc_type; \ 1014 break; 1015 1016 void COFFObjectFile::getRelocationTypeName( 1017 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1018 const coff_relocation *Reloc = toRel(Rel); 1019 StringRef Res; 1020 switch (getMachine()) { 1021 case COFF::IMAGE_FILE_MACHINE_AMD64: 1022 switch (Reloc->Type) { 1023 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1024 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1025 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1026 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1027 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1028 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1029 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1030 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1031 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1032 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1033 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1034 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1035 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1036 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1037 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1038 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1039 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1040 default: 1041 Res = "Unknown"; 1042 } 1043 break; 1044 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1045 switch (Reloc->Type) { 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1061 default: 1062 Res = "Unknown"; 1063 } 1064 break; 1065 case COFF::IMAGE_FILE_MACHINE_I386: 1066 switch (Reloc->Type) { 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1078 default: 1079 Res = "Unknown"; 1080 } 1081 break; 1082 default: 1083 Res = "Unknown"; 1084 } 1085 Result.append(Res.begin(), Res.end()); 1086 } 1087 1088 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1089 1090 bool COFFObjectFile::isRelocatableObject() const { 1091 return !DataDirectory; 1092 } 1093 1094 bool ImportDirectoryEntryRef:: 1095 operator==(const ImportDirectoryEntryRef &Other) const { 1096 return ImportTable == Other.ImportTable && Index == Other.Index; 1097 } 1098 1099 void ImportDirectoryEntryRef::moveNext() { 1100 ++Index; 1101 } 1102 1103 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1104 const import_directory_table_entry *&Result) const { 1105 Result = ImportTable + Index; 1106 return std::error_code(); 1107 } 1108 1109 static imported_symbol_iterator 1110 makeImportedSymbolIterator(const COFFObjectFile *Object, 1111 uintptr_t Ptr, int Index) { 1112 if (Object->getBytesInAddress() == 4) { 1113 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1114 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1115 } 1116 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1117 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1118 } 1119 1120 static imported_symbol_iterator 1121 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1122 uintptr_t IntPtr = 0; 1123 Object->getRvaPtr(RVA, IntPtr); 1124 return makeImportedSymbolIterator(Object, IntPtr, 0); 1125 } 1126 1127 static imported_symbol_iterator 1128 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1129 uintptr_t IntPtr = 0; 1130 Object->getRvaPtr(RVA, IntPtr); 1131 // Forward the pointer to the last entry which is null. 1132 int Index = 0; 1133 if (Object->getBytesInAddress() == 4) { 1134 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1135 while (*Entry++) 1136 ++Index; 1137 } else { 1138 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1139 while (*Entry++) 1140 ++Index; 1141 } 1142 return makeImportedSymbolIterator(Object, IntPtr, Index); 1143 } 1144 1145 imported_symbol_iterator 1146 ImportDirectoryEntryRef::imported_symbol_begin() const { 1147 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1148 OwningObject); 1149 } 1150 1151 imported_symbol_iterator 1152 ImportDirectoryEntryRef::imported_symbol_end() const { 1153 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1154 OwningObject); 1155 } 1156 1157 iterator_range<imported_symbol_iterator> 1158 ImportDirectoryEntryRef::imported_symbols() const { 1159 return make_range(imported_symbol_begin(), imported_symbol_end()); 1160 } 1161 1162 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1163 uintptr_t IntPtr = 0; 1164 if (std::error_code EC = 1165 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1166 return EC; 1167 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1168 return std::error_code(); 1169 } 1170 1171 std::error_code 1172 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1173 Result = ImportTable[Index].ImportLookupTableRVA; 1174 return std::error_code(); 1175 } 1176 1177 std::error_code 1178 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1179 Result = ImportTable[Index].ImportAddressTableRVA; 1180 return std::error_code(); 1181 } 1182 1183 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1184 const import_lookup_table_entry32 *&Result) const { 1185 uintptr_t IntPtr = 0; 1186 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1187 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1188 return EC; 1189 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1190 return std::error_code(); 1191 } 1192 1193 bool DelayImportDirectoryEntryRef:: 1194 operator==(const DelayImportDirectoryEntryRef &Other) const { 1195 return Table == Other.Table && Index == Other.Index; 1196 } 1197 1198 void DelayImportDirectoryEntryRef::moveNext() { 1199 ++Index; 1200 } 1201 1202 imported_symbol_iterator 1203 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1204 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1205 OwningObject); 1206 } 1207 1208 imported_symbol_iterator 1209 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1210 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1211 OwningObject); 1212 } 1213 1214 iterator_range<imported_symbol_iterator> 1215 DelayImportDirectoryEntryRef::imported_symbols() const { 1216 return make_range(imported_symbol_begin(), imported_symbol_end()); 1217 } 1218 1219 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1220 uintptr_t IntPtr = 0; 1221 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1222 return EC; 1223 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1224 return std::error_code(); 1225 } 1226 1227 std::error_code DelayImportDirectoryEntryRef:: 1228 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1229 Result = Table; 1230 return std::error_code(); 1231 } 1232 1233 std::error_code DelayImportDirectoryEntryRef:: 1234 getImportAddress(int AddrIndex, uint64_t &Result) const { 1235 uint32_t RVA = Table[Index].DelayImportAddressTable + 1236 AddrIndex * (OwningObject->is64() ? 8 : 4); 1237 uintptr_t IntPtr = 0; 1238 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1239 return EC; 1240 if (OwningObject->is64()) 1241 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1242 else 1243 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1244 return std::error_code(); 1245 } 1246 1247 bool ExportDirectoryEntryRef:: 1248 operator==(const ExportDirectoryEntryRef &Other) const { 1249 return ExportTable == Other.ExportTable && Index == Other.Index; 1250 } 1251 1252 void ExportDirectoryEntryRef::moveNext() { 1253 ++Index; 1254 } 1255 1256 // Returns the name of the current export symbol. If the symbol is exported only 1257 // by ordinal, the empty string is set as a result. 1258 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1259 uintptr_t IntPtr = 0; 1260 if (std::error_code EC = 1261 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1262 return EC; 1263 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1264 return std::error_code(); 1265 } 1266 1267 // Returns the starting ordinal number. 1268 std::error_code 1269 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1270 Result = ExportTable->OrdinalBase; 1271 return std::error_code(); 1272 } 1273 1274 // Returns the export ordinal of the current export symbol. 1275 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1276 Result = ExportTable->OrdinalBase + Index; 1277 return std::error_code(); 1278 } 1279 1280 // Returns the address of the current export symbol. 1281 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1282 uintptr_t IntPtr = 0; 1283 if (std::error_code EC = 1284 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1285 return EC; 1286 const export_address_table_entry *entry = 1287 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1288 Result = entry[Index].ExportRVA; 1289 return std::error_code(); 1290 } 1291 1292 // Returns the name of the current export symbol. If the symbol is exported only 1293 // by ordinal, the empty string is set as a result. 1294 std::error_code 1295 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1296 uintptr_t IntPtr = 0; 1297 if (std::error_code EC = 1298 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1299 return EC; 1300 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1301 1302 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1303 int Offset = 0; 1304 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1305 I < E; ++I, ++Offset) { 1306 if (*I != Index) 1307 continue; 1308 if (std::error_code EC = 1309 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1310 return EC; 1311 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1312 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1313 return EC; 1314 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1315 return std::error_code(); 1316 } 1317 Result = ""; 1318 return std::error_code(); 1319 } 1320 1321 bool ImportedSymbolRef:: 1322 operator==(const ImportedSymbolRef &Other) const { 1323 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1324 && Index == Other.Index; 1325 } 1326 1327 void ImportedSymbolRef::moveNext() { 1328 ++Index; 1329 } 1330 1331 std::error_code 1332 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1333 uint32_t RVA; 1334 if (Entry32) { 1335 // If a symbol is imported only by ordinal, it has no name. 1336 if (Entry32[Index].isOrdinal()) 1337 return std::error_code(); 1338 RVA = Entry32[Index].getHintNameRVA(); 1339 } else { 1340 if (Entry64[Index].isOrdinal()) 1341 return std::error_code(); 1342 RVA = Entry64[Index].getHintNameRVA(); 1343 } 1344 uintptr_t IntPtr = 0; 1345 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1346 return EC; 1347 // +2 because the first two bytes is hint. 1348 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1349 return std::error_code(); 1350 } 1351 1352 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1353 uint32_t RVA; 1354 if (Entry32) { 1355 if (Entry32[Index].isOrdinal()) { 1356 Result = Entry32[Index].getOrdinal(); 1357 return std::error_code(); 1358 } 1359 RVA = Entry32[Index].getHintNameRVA(); 1360 } else { 1361 if (Entry64[Index].isOrdinal()) { 1362 Result = Entry64[Index].getOrdinal(); 1363 return std::error_code(); 1364 } 1365 RVA = Entry64[Index].getHintNameRVA(); 1366 } 1367 uintptr_t IntPtr = 0; 1368 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1369 return EC; 1370 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1371 return std::error_code(); 1372 } 1373 1374 ErrorOr<std::unique_ptr<COFFObjectFile>> 1375 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1376 std::error_code EC; 1377 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1378 if (EC) 1379 return EC; 1380 return std::move(Ret); 1381 } 1382 1383 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1384 return Header == Other.Header && Index == Other.Index; 1385 } 1386 1387 void BaseRelocRef::moveNext() { 1388 // Header->BlockSize is the size of the current block, including the 1389 // size of the header itself. 1390 uint32_t Size = sizeof(*Header) + 1391 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1392 if (Size == Header->BlockSize) { 1393 // .reloc contains a list of base relocation blocks. Each block 1394 // consists of the header followed by entries. The header contains 1395 // how many entories will follow. When we reach the end of the 1396 // current block, proceed to the next block. 1397 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1398 reinterpret_cast<const uint8_t *>(Header) + Size); 1399 Index = 0; 1400 } else { 1401 ++Index; 1402 } 1403 } 1404 1405 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1406 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1407 Type = Entry[Index].getType(); 1408 return std::error_code(); 1409 } 1410 1411 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1412 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1413 Result = Header->PageRVA + Entry[Index].getOffset(); 1414 return std::error_code(); 1415 } 1416