1 //===- ELFObject.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ELFObject.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/StringRef.h" 13 #include "llvm/ADT/Twine.h" 14 #include "llvm/ADT/iterator_range.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/MC/MCTargetOptions.h" 17 #include "llvm/Object/ELF.h" 18 #include "llvm/Object/ELFObjectFile.h" 19 #include "llvm/Support/Compression.h" 20 #include "llvm/Support/Endian.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/FileOutputBuffer.h" 23 #include "llvm/Support/Path.h" 24 #include <algorithm> 25 #include <cstddef> 26 #include <cstdint> 27 #include <iterator> 28 #include <unordered_set> 29 #include <utility> 30 #include <vector> 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::objcopy::elf; 35 using namespace llvm::object; 36 37 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { 38 uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + 39 Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); 40 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); 41 Phdr.p_type = Seg.Type; 42 Phdr.p_flags = Seg.Flags; 43 Phdr.p_offset = Seg.Offset; 44 Phdr.p_vaddr = Seg.VAddr; 45 Phdr.p_paddr = Seg.PAddr; 46 Phdr.p_filesz = Seg.FileSize; 47 Phdr.p_memsz = Seg.MemSize; 48 Phdr.p_align = Seg.Align; 49 } 50 51 Error SectionBase::removeSectionReferences( 52 bool, function_ref<bool(const SectionBase *)>) { 53 return Error::success(); 54 } 55 56 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) { 57 return Error::success(); 58 } 59 60 Error SectionBase::initialize(SectionTableRef) { return Error::success(); } 61 void SectionBase::finalize() {} 62 void SectionBase::markSymbols() {} 63 void SectionBase::replaceSectionReferences( 64 const DenseMap<SectionBase *, SectionBase *> &) {} 65 void SectionBase::onRemove() {} 66 67 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { 68 uint8_t *B = 69 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset; 70 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); 71 Shdr.sh_name = Sec.NameIndex; 72 Shdr.sh_type = Sec.Type; 73 Shdr.sh_flags = Sec.Flags; 74 Shdr.sh_addr = Sec.Addr; 75 Shdr.sh_offset = Sec.Offset; 76 Shdr.sh_size = Sec.Size; 77 Shdr.sh_link = Sec.Link; 78 Shdr.sh_info = Sec.Info; 79 Shdr.sh_addralign = Sec.Align; 80 Shdr.sh_entsize = Sec.EntrySize; 81 } 82 83 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) { 84 return Error::success(); 85 } 86 87 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) { 88 return Error::success(); 89 } 90 91 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) { 92 return Error::success(); 93 } 94 95 template <class ELFT> 96 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) { 97 return Error::success(); 98 } 99 100 template <class ELFT> 101 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) { 102 Sec.EntrySize = sizeof(Elf_Sym); 103 Sec.Size = Sec.Symbols.size() * Sec.EntrySize; 104 // Align to the largest field in Elf_Sym. 105 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); 106 return Error::success(); 107 } 108 109 template <class ELFT> 110 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) { 111 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); 112 Sec.Size = Sec.Relocations.size() * Sec.EntrySize; 113 // Align to the largest field in Elf_Rel(a). 114 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); 115 return Error::success(); 116 } 117 118 template <class ELFT> 119 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) { 120 return Error::success(); 121 } 122 123 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) { 124 Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word); 125 return Error::success(); 126 } 127 128 template <class ELFT> 129 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) { 130 return Error::success(); 131 } 132 133 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) { 134 return Error::success(); 135 } 136 137 template <class ELFT> 138 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) { 139 return Error::success(); 140 } 141 142 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) { 143 return createStringError(errc::operation_not_permitted, 144 "cannot write symbol section index table '" + 145 Sec.Name + "' "); 146 } 147 148 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) { 149 return createStringError(errc::operation_not_permitted, 150 "cannot write symbol table '" + Sec.Name + 151 "' out to binary"); 152 } 153 154 Error BinarySectionWriter::visit(const RelocationSection &Sec) { 155 return createStringError(errc::operation_not_permitted, 156 "cannot write relocation section '" + Sec.Name + 157 "' out to binary"); 158 } 159 160 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { 161 return createStringError(errc::operation_not_permitted, 162 "cannot write '" + Sec.Name + "' out to binary"); 163 } 164 165 Error BinarySectionWriter::visit(const GroupSection &Sec) { 166 return createStringError(errc::operation_not_permitted, 167 "cannot write '" + Sec.Name + "' out to binary"); 168 } 169 170 Error SectionWriter::visit(const Section &Sec) { 171 if (Sec.Type != SHT_NOBITS) 172 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); 173 174 return Error::success(); 175 } 176 177 static bool addressOverflows32bit(uint64_t Addr) { 178 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok 179 return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX; 180 } 181 182 template <class T> static T checkedGetHex(StringRef S) { 183 T Value; 184 bool Fail = S.getAsInteger(16, Value); 185 assert(!Fail); 186 (void)Fail; 187 return Value; 188 } 189 190 // Fills exactly Len bytes of buffer with hexadecimal characters 191 // representing value 'X' 192 template <class T, class Iterator> 193 static Iterator toHexStr(T X, Iterator It, size_t Len) { 194 // Fill range with '0' 195 std::fill(It, It + Len, '0'); 196 197 for (long I = Len - 1; I >= 0; --I) { 198 unsigned char Mod = static_cast<unsigned char>(X) & 15; 199 *(It + I) = hexdigit(Mod, false); 200 X >>= 4; 201 } 202 assert(X == 0); 203 return It + Len; 204 } 205 206 uint8_t IHexRecord::getChecksum(StringRef S) { 207 assert((S.size() & 1) == 0); 208 uint8_t Checksum = 0; 209 while (!S.empty()) { 210 Checksum += checkedGetHex<uint8_t>(S.take_front(2)); 211 S = S.drop_front(2); 212 } 213 return -Checksum; 214 } 215 216 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr, 217 ArrayRef<uint8_t> Data) { 218 IHexLineData Line(getLineLength(Data.size())); 219 assert(Line.size()); 220 auto Iter = Line.begin(); 221 *Iter++ = ':'; 222 Iter = toHexStr(Data.size(), Iter, 2); 223 Iter = toHexStr(Addr, Iter, 4); 224 Iter = toHexStr(Type, Iter, 2); 225 for (uint8_t X : Data) 226 Iter = toHexStr(X, Iter, 2); 227 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter)); 228 Iter = toHexStr(getChecksum(S), Iter, 2); 229 *Iter++ = '\r'; 230 *Iter++ = '\n'; 231 assert(Iter == Line.end()); 232 return Line; 233 } 234 235 static Error checkRecord(const IHexRecord &R) { 236 switch (R.Type) { 237 case IHexRecord::Data: 238 if (R.HexData.size() == 0) 239 return createStringError( 240 errc::invalid_argument, 241 "zero data length is not allowed for data records"); 242 break; 243 case IHexRecord::EndOfFile: 244 break; 245 case IHexRecord::SegmentAddr: 246 // 20-bit segment address. Data length must be 2 bytes 247 // (4 bytes in hex) 248 if (R.HexData.size() != 4) 249 return createStringError( 250 errc::invalid_argument, 251 "segment address data should be 2 bytes in size"); 252 break; 253 case IHexRecord::StartAddr80x86: 254 case IHexRecord::StartAddr: 255 if (R.HexData.size() != 8) 256 return createStringError(errc::invalid_argument, 257 "start address data should be 4 bytes in size"); 258 // According to Intel HEX specification '03' record 259 // only specifies the code address within the 20-bit 260 // segmented address space of the 8086/80186. This 261 // means 12 high order bits should be zeroes. 262 if (R.Type == IHexRecord::StartAddr80x86 && 263 R.HexData.take_front(3) != "000") 264 return createStringError(errc::invalid_argument, 265 "start address exceeds 20 bit for 80x86"); 266 break; 267 case IHexRecord::ExtendedAddr: 268 // 16-31 bits of linear base address 269 if (R.HexData.size() != 4) 270 return createStringError( 271 errc::invalid_argument, 272 "extended address data should be 2 bytes in size"); 273 break; 274 default: 275 // Unknown record type 276 return createStringError(errc::invalid_argument, "unknown record type: %u", 277 static_cast<unsigned>(R.Type)); 278 } 279 return Error::success(); 280 } 281 282 // Checks that IHEX line contains valid characters. 283 // This allows converting hexadecimal data to integers 284 // without extra verification. 285 static Error checkChars(StringRef Line) { 286 assert(!Line.empty()); 287 if (Line[0] != ':') 288 return createStringError(errc::invalid_argument, 289 "missing ':' in the beginning of line."); 290 291 for (size_t Pos = 1; Pos < Line.size(); ++Pos) 292 if (hexDigitValue(Line[Pos]) == -1U) 293 return createStringError(errc::invalid_argument, 294 "invalid character at position %zu.", Pos + 1); 295 return Error::success(); 296 } 297 298 Expected<IHexRecord> IHexRecord::parse(StringRef Line) { 299 assert(!Line.empty()); 300 301 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC' 302 if (Line.size() < 11) 303 return createStringError(errc::invalid_argument, 304 "line is too short: %zu chars.", Line.size()); 305 306 if (Error E = checkChars(Line)) 307 return std::move(E); 308 309 IHexRecord Rec; 310 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2)); 311 if (Line.size() != getLength(DataLen)) 312 return createStringError(errc::invalid_argument, 313 "invalid line length %zu (should be %zu)", 314 Line.size(), getLength(DataLen)); 315 316 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4)); 317 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2)); 318 Rec.HexData = Line.substr(9, DataLen * 2); 319 320 if (getChecksum(Line.drop_front(1)) != 0) 321 return createStringError(errc::invalid_argument, "incorrect checksum."); 322 if (Error E = checkRecord(Rec)) 323 return std::move(E); 324 return Rec; 325 } 326 327 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) { 328 Segment *Seg = Sec->ParentSegment; 329 if (Seg && Seg->Type != ELF::PT_LOAD) 330 Seg = nullptr; 331 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset 332 : Sec->Addr; 333 } 334 335 void IHexSectionWriterBase::writeSection(const SectionBase *Sec, 336 ArrayRef<uint8_t> Data) { 337 assert(Data.size() == Sec->Size); 338 const uint32_t ChunkSize = 16; 339 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU; 340 while (!Data.empty()) { 341 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize); 342 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) { 343 if (Addr > 0xFFFFFU) { 344 // Write extended address record, zeroing segment address 345 // if needed. 346 if (SegmentAddr != 0) 347 SegmentAddr = writeSegmentAddr(0U); 348 BaseAddr = writeBaseAddr(Addr); 349 } else { 350 // We can still remain 16-bit 351 SegmentAddr = writeSegmentAddr(Addr); 352 } 353 } 354 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr; 355 assert(SegOffset <= 0xFFFFU); 356 DataSize = std::min(DataSize, 0x10000U - SegOffset); 357 writeData(0, SegOffset, Data.take_front(DataSize)); 358 Addr += DataSize; 359 Data = Data.drop_front(DataSize); 360 } 361 } 362 363 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) { 364 assert(Addr <= 0xFFFFFU); 365 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0}; 366 writeData(2, 0, Data); 367 return Addr & 0xF0000U; 368 } 369 370 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) { 371 assert(Addr <= 0xFFFFFFFFU); 372 uint64_t Base = Addr & 0xFFFF0000U; 373 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24), 374 static_cast<uint8_t>((Base >> 16) & 0xFF)}; 375 writeData(4, 0, Data); 376 return Base; 377 } 378 379 void IHexSectionWriterBase::writeData(uint8_t, uint16_t, 380 ArrayRef<uint8_t> Data) { 381 Offset += IHexRecord::getLineLength(Data.size()); 382 } 383 384 Error IHexSectionWriterBase::visit(const Section &Sec) { 385 writeSection(&Sec, Sec.Contents); 386 return Error::success(); 387 } 388 389 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) { 390 writeSection(&Sec, Sec.Data); 391 return Error::success(); 392 } 393 394 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) { 395 // Check that sizer has already done its work 396 assert(Sec.Size == Sec.StrTabBuilder.getSize()); 397 // We are free to pass an invalid pointer to writeSection as long 398 // as we don't actually write any data. The real writer class has 399 // to override this method . 400 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)}); 401 return Error::success(); 402 } 403 404 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) { 405 writeSection(&Sec, Sec.Contents); 406 return Error::success(); 407 } 408 409 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr, 410 ArrayRef<uint8_t> Data) { 411 IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data); 412 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size()); 413 Offset += HexData.size(); 414 } 415 416 Error IHexSectionWriter::visit(const StringTableSection &Sec) { 417 assert(Sec.Size == Sec.StrTabBuilder.getSize()); 418 std::vector<uint8_t> Data(Sec.Size); 419 Sec.StrTabBuilder.write(Data.data()); 420 writeSection(&Sec, Data); 421 return Error::success(); 422 } 423 424 Error Section::accept(SectionVisitor &Visitor) const { 425 return Visitor.visit(*this); 426 } 427 428 Error Section::accept(MutableSectionVisitor &Visitor) { 429 return Visitor.visit(*this); 430 } 431 432 Error SectionWriter::visit(const OwnedDataSection &Sec) { 433 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset); 434 return Error::success(); 435 } 436 437 static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}}; 438 439 static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) { 440 return Data.size() > ZlibGnuMagic.size() && 441 std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data()); 442 } 443 444 template <class ELFT> 445 static std::tuple<uint64_t, uint64_t> 446 getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) { 447 const bool IsGnuDebug = isDataGnuCompressed(Data); 448 const uint64_t DecompressedSize = 449 IsGnuDebug 450 ? support::endian::read64be(Data.data() + ZlibGnuMagic.size()) 451 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size; 452 const uint64_t DecompressedAlign = 453 IsGnuDebug ? 1 454 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data()) 455 ->ch_addralign; 456 457 return std::make_tuple(DecompressedSize, DecompressedAlign); 458 } 459 460 template <class ELFT> 461 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) { 462 const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData) 463 ? (ZlibGnuMagic.size() + sizeof(Sec.Size)) 464 : sizeof(Elf_Chdr_Impl<ELFT>); 465 466 StringRef CompressedContent( 467 reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset, 468 Sec.OriginalData.size() - DataOffset); 469 470 SmallVector<char, 128> DecompressedContent; 471 if (Error Err = zlib::uncompress(CompressedContent, DecompressedContent, 472 static_cast<size_t>(Sec.Size))) 473 return createStringError(errc::invalid_argument, 474 "'" + Sec.Name + "': " + toString(std::move(Err))); 475 476 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 477 std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf); 478 479 return Error::success(); 480 } 481 482 Error BinarySectionWriter::visit(const DecompressedSection &Sec) { 483 return createStringError(errc::operation_not_permitted, 484 "cannot write compressed section '" + Sec.Name + 485 "' "); 486 } 487 488 Error DecompressedSection::accept(SectionVisitor &Visitor) const { 489 return Visitor.visit(*this); 490 } 491 492 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) { 493 return Visitor.visit(*this); 494 } 495 496 Error OwnedDataSection::accept(SectionVisitor &Visitor) const { 497 return Visitor.visit(*this); 498 } 499 500 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) { 501 return Visitor.visit(*this); 502 } 503 504 void OwnedDataSection::appendHexData(StringRef HexData) { 505 assert((HexData.size() & 1) == 0); 506 while (!HexData.empty()) { 507 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2))); 508 HexData = HexData.drop_front(2); 509 } 510 Size = Data.size(); 511 } 512 513 Error BinarySectionWriter::visit(const CompressedSection &Sec) { 514 return createStringError(errc::operation_not_permitted, 515 "cannot write compressed section '" + Sec.Name + 516 "' "); 517 } 518 519 template <class ELFT> 520 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) { 521 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 522 if (Sec.CompressionType == DebugCompressionType::None) { 523 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); 524 return Error::success(); 525 } 526 527 if (Sec.CompressionType == DebugCompressionType::GNU) { 528 const char *Magic = "ZLIB"; 529 memcpy(Buf, Magic, strlen(Magic)); 530 Buf += strlen(Magic); 531 const uint64_t DecompressedSize = 532 support::endian::read64be(&Sec.DecompressedSize); 533 memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize)); 534 Buf += sizeof(DecompressedSize); 535 } else { 536 Elf_Chdr_Impl<ELFT> Chdr; 537 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; 538 Chdr.ch_size = Sec.DecompressedSize; 539 Chdr.ch_addralign = Sec.DecompressedAlign; 540 memcpy(Buf, &Chdr, sizeof(Chdr)); 541 Buf += sizeof(Chdr); 542 } 543 544 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); 545 return Error::success(); 546 } 547 548 Expected<CompressedSection> 549 CompressedSection::create(const SectionBase &Sec, 550 DebugCompressionType CompressionType) { 551 Error Err = Error::success(); 552 CompressedSection Section(Sec, CompressionType, Err); 553 554 if (Err) 555 return std::move(Err); 556 557 return Section; 558 } 559 Expected<CompressedSection> 560 CompressedSection::create(ArrayRef<uint8_t> CompressedData, 561 uint64_t DecompressedSize, 562 uint64_t DecompressedAlign) { 563 return CompressedSection(CompressedData, DecompressedSize, DecompressedAlign); 564 } 565 566 CompressedSection::CompressedSection(const SectionBase &Sec, 567 DebugCompressionType CompressionType, 568 Error &OutErr) 569 : SectionBase(Sec), CompressionType(CompressionType), 570 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { 571 ErrorAsOutParameter EAO(&OutErr); 572 573 if (Error Err = zlib::compress( 574 StringRef(reinterpret_cast<const char *>(OriginalData.data()), 575 OriginalData.size()), 576 CompressedData)) { 577 OutErr = createStringError(llvm::errc::invalid_argument, 578 "'" + Name + "': " + toString(std::move(Err))); 579 return; 580 } 581 582 size_t ChdrSize; 583 if (CompressionType == DebugCompressionType::GNU) { 584 Name = ".z" + Sec.Name.substr(1); 585 ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t); 586 } else { 587 Flags |= ELF::SHF_COMPRESSED; 588 ChdrSize = 589 std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>), 590 sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)), 591 std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>), 592 sizeof(object::Elf_Chdr_Impl<object::ELF32BE>))); 593 } 594 Size = ChdrSize + CompressedData.size(); 595 Align = 8; 596 } 597 598 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData, 599 uint64_t DecompressedSize, 600 uint64_t DecompressedAlign) 601 : CompressionType(DebugCompressionType::None), 602 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { 603 OriginalData = CompressedData; 604 } 605 606 Error CompressedSection::accept(SectionVisitor &Visitor) const { 607 return Visitor.visit(*this); 608 } 609 610 Error CompressedSection::accept(MutableSectionVisitor &Visitor) { 611 return Visitor.visit(*this); 612 } 613 614 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); } 615 616 uint32_t StringTableSection::findIndex(StringRef Name) const { 617 return StrTabBuilder.getOffset(Name); 618 } 619 620 void StringTableSection::prepareForLayout() { 621 StrTabBuilder.finalize(); 622 Size = StrTabBuilder.getSize(); 623 } 624 625 Error SectionWriter::visit(const StringTableSection &Sec) { 626 Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) + 627 Sec.Offset); 628 return Error::success(); 629 } 630 631 Error StringTableSection::accept(SectionVisitor &Visitor) const { 632 return Visitor.visit(*this); 633 } 634 635 Error StringTableSection::accept(MutableSectionVisitor &Visitor) { 636 return Visitor.visit(*this); 637 } 638 639 template <class ELFT> 640 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { 641 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 642 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf)); 643 return Error::success(); 644 } 645 646 Error SectionIndexSection::initialize(SectionTableRef SecTable) { 647 Size = 0; 648 Expected<SymbolTableSection *> Sec = 649 SecTable.getSectionOfType<SymbolTableSection>( 650 Link, 651 "Link field value " + Twine(Link) + " in section " + Name + 652 " is invalid", 653 "Link field value " + Twine(Link) + " in section " + Name + 654 " is not a symbol table"); 655 if (!Sec) 656 return Sec.takeError(); 657 658 setSymTab(*Sec); 659 Symbols->setShndxTable(this); 660 return Error::success(); 661 } 662 663 void SectionIndexSection::finalize() { Link = Symbols->Index; } 664 665 Error SectionIndexSection::accept(SectionVisitor &Visitor) const { 666 return Visitor.visit(*this); 667 } 668 669 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) { 670 return Visitor.visit(*this); 671 } 672 673 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { 674 switch (Index) { 675 case SHN_ABS: 676 case SHN_COMMON: 677 return true; 678 } 679 680 if (Machine == EM_AMDGPU) { 681 return Index == SHN_AMDGPU_LDS; 682 } 683 684 if (Machine == EM_HEXAGON) { 685 switch (Index) { 686 case SHN_HEXAGON_SCOMMON: 687 case SHN_HEXAGON_SCOMMON_1: 688 case SHN_HEXAGON_SCOMMON_2: 689 case SHN_HEXAGON_SCOMMON_4: 690 case SHN_HEXAGON_SCOMMON_8: 691 return true; 692 } 693 } 694 return false; 695 } 696 697 // Large indexes force us to clarify exactly what this function should do. This 698 // function should return the value that will appear in st_shndx when written 699 // out. 700 uint16_t Symbol::getShndx() const { 701 if (DefinedIn != nullptr) { 702 if (DefinedIn->Index >= SHN_LORESERVE) 703 return SHN_XINDEX; 704 return DefinedIn->Index; 705 } 706 707 if (ShndxType == SYMBOL_SIMPLE_INDEX) { 708 // This means that we don't have a defined section but we do need to 709 // output a legitimate section index. 710 return SHN_UNDEF; 711 } 712 713 assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON || 714 (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) || 715 (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS)); 716 return static_cast<uint16_t>(ShndxType); 717 } 718 719 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } 720 721 void SymbolTableSection::assignIndices() { 722 uint32_t Index = 0; 723 for (auto &Sym : Symbols) 724 Sym->Index = Index++; 725 } 726 727 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, 728 SectionBase *DefinedIn, uint64_t Value, 729 uint8_t Visibility, uint16_t Shndx, 730 uint64_t SymbolSize) { 731 Symbol Sym; 732 Sym.Name = Name.str(); 733 Sym.Binding = Bind; 734 Sym.Type = Type; 735 Sym.DefinedIn = DefinedIn; 736 if (DefinedIn != nullptr) 737 DefinedIn->HasSymbol = true; 738 if (DefinedIn == nullptr) { 739 if (Shndx >= SHN_LORESERVE) 740 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); 741 else 742 Sym.ShndxType = SYMBOL_SIMPLE_INDEX; 743 } 744 Sym.Value = Value; 745 Sym.Visibility = Visibility; 746 Sym.Size = SymbolSize; 747 Sym.Index = Symbols.size(); 748 Symbols.emplace_back(std::make_unique<Symbol>(Sym)); 749 Size += this->EntrySize; 750 } 751 752 Error SymbolTableSection::removeSectionReferences( 753 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 754 if (ToRemove(SectionIndexTable)) 755 SectionIndexTable = nullptr; 756 if (ToRemove(SymbolNames)) { 757 if (!AllowBrokenLinks) 758 return createStringError( 759 llvm::errc::invalid_argument, 760 "string table '%s' cannot be removed because it is " 761 "referenced by the symbol table '%s'", 762 SymbolNames->Name.data(), this->Name.data()); 763 SymbolNames = nullptr; 764 } 765 return removeSymbols( 766 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); }); 767 } 768 769 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { 770 std::for_each(std::begin(Symbols) + 1, std::end(Symbols), 771 [Callable](SymPtr &Sym) { Callable(*Sym); }); 772 std::stable_partition( 773 std::begin(Symbols), std::end(Symbols), 774 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); 775 assignIndices(); 776 } 777 778 Error SymbolTableSection::removeSymbols( 779 function_ref<bool(const Symbol &)> ToRemove) { 780 Symbols.erase( 781 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), 782 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), 783 std::end(Symbols)); 784 Size = Symbols.size() * EntrySize; 785 assignIndices(); 786 return Error::success(); 787 } 788 789 void SymbolTableSection::replaceSectionReferences( 790 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 791 for (std::unique_ptr<Symbol> &Sym : Symbols) 792 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn)) 793 Sym->DefinedIn = To; 794 } 795 796 Error SymbolTableSection::initialize(SectionTableRef SecTable) { 797 Size = 0; 798 Expected<StringTableSection *> Sec = 799 SecTable.getSectionOfType<StringTableSection>( 800 Link, 801 "Symbol table has link index of " + Twine(Link) + 802 " which is not a valid index", 803 "Symbol table has link index of " + Twine(Link) + 804 " which is not a string table"); 805 if (!Sec) 806 return Sec.takeError(); 807 808 setStrTab(*Sec); 809 return Error::success(); 810 } 811 812 void SymbolTableSection::finalize() { 813 uint32_t MaxLocalIndex = 0; 814 for (std::unique_ptr<Symbol> &Sym : Symbols) { 815 Sym->NameIndex = 816 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name); 817 if (Sym->Binding == STB_LOCAL) 818 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); 819 } 820 // Now we need to set the Link and Info fields. 821 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index; 822 Info = MaxLocalIndex + 1; 823 } 824 825 void SymbolTableSection::prepareForLayout() { 826 // Reserve proper amount of space in section index table, so we can 827 // layout sections correctly. We will fill the table with correct 828 // indexes later in fillShdnxTable. 829 if (SectionIndexTable) 830 SectionIndexTable->reserve(Symbols.size()); 831 832 // Add all of our strings to SymbolNames so that SymbolNames has the right 833 // size before layout is decided. 834 // If the symbol names section has been removed, don't try to add strings to 835 // the table. 836 if (SymbolNames != nullptr) 837 for (std::unique_ptr<Symbol> &Sym : Symbols) 838 SymbolNames->addString(Sym->Name); 839 } 840 841 void SymbolTableSection::fillShndxTable() { 842 if (SectionIndexTable == nullptr) 843 return; 844 // Fill section index table with real section indexes. This function must 845 // be called after assignOffsets. 846 for (const std::unique_ptr<Symbol> &Sym : Symbols) { 847 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) 848 SectionIndexTable->addIndex(Sym->DefinedIn->Index); 849 else 850 SectionIndexTable->addIndex(SHN_UNDEF); 851 } 852 } 853 854 Expected<const Symbol *> 855 SymbolTableSection::getSymbolByIndex(uint32_t Index) const { 856 if (Symbols.size() <= Index) 857 return createStringError(errc::invalid_argument, 858 "invalid symbol index: " + Twine(Index)); 859 return Symbols[Index].get(); 860 } 861 862 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) { 863 Expected<const Symbol *> Sym = 864 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index); 865 if (!Sym) 866 return Sym.takeError(); 867 868 return const_cast<Symbol *>(*Sym); 869 } 870 871 template <class ELFT> 872 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { 873 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset); 874 // Loop though symbols setting each entry of the symbol table. 875 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) { 876 Sym->st_name = Symbol->NameIndex; 877 Sym->st_value = Symbol->Value; 878 Sym->st_size = Symbol->Size; 879 Sym->st_other = Symbol->Visibility; 880 Sym->setBinding(Symbol->Binding); 881 Sym->setType(Symbol->Type); 882 Sym->st_shndx = Symbol->getShndx(); 883 ++Sym; 884 } 885 return Error::success(); 886 } 887 888 Error SymbolTableSection::accept(SectionVisitor &Visitor) const { 889 return Visitor.visit(*this); 890 } 891 892 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) { 893 return Visitor.visit(*this); 894 } 895 896 StringRef RelocationSectionBase::getNamePrefix() const { 897 switch (Type) { 898 case SHT_REL: 899 return ".rel"; 900 case SHT_RELA: 901 return ".rela"; 902 default: 903 llvm_unreachable("not a relocation section"); 904 } 905 } 906 907 Error RelocationSection::removeSectionReferences( 908 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 909 if (ToRemove(Symbols)) { 910 if (!AllowBrokenLinks) 911 return createStringError( 912 llvm::errc::invalid_argument, 913 "symbol table '%s' cannot be removed because it is " 914 "referenced by the relocation section '%s'", 915 Symbols->Name.data(), this->Name.data()); 916 Symbols = nullptr; 917 } 918 919 for (const Relocation &R : Relocations) { 920 if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn || 921 !ToRemove(R.RelocSymbol->DefinedIn)) 922 continue; 923 return createStringError(llvm::errc::invalid_argument, 924 "section '%s' cannot be removed: (%s+0x%" PRIx64 925 ") has relocation against symbol '%s'", 926 R.RelocSymbol->DefinedIn->Name.data(), 927 SecToApplyRel->Name.data(), R.Offset, 928 R.RelocSymbol->Name.c_str()); 929 } 930 931 return Error::success(); 932 } 933 934 template <class SymTabType> 935 Error RelocSectionWithSymtabBase<SymTabType>::initialize( 936 SectionTableRef SecTable) { 937 if (Link != SHN_UNDEF) { 938 Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>( 939 Link, 940 "Link field value " + Twine(Link) + " in section " + Name + 941 " is invalid", 942 "Link field value " + Twine(Link) + " in section " + Name + 943 " is not a symbol table"); 944 if (!Sec) 945 return Sec.takeError(); 946 947 setSymTab(*Sec); 948 } 949 950 if (Info != SHN_UNDEF) { 951 Expected<SectionBase *> Sec = 952 SecTable.getSection(Info, "Info field value " + Twine(Info) + 953 " in section " + Name + " is invalid"); 954 if (!Sec) 955 return Sec.takeError(); 956 957 setSection(*Sec); 958 } else 959 setSection(nullptr); 960 961 return Error::success(); 962 } 963 964 template <class SymTabType> 965 void RelocSectionWithSymtabBase<SymTabType>::finalize() { 966 this->Link = Symbols ? Symbols->Index : 0; 967 968 if (SecToApplyRel != nullptr) 969 this->Info = SecToApplyRel->Index; 970 } 971 972 template <class ELFT> 973 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {} 974 975 template <class ELFT> 976 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { 977 Rela.r_addend = Addend; 978 } 979 980 template <class RelRange, class T> 981 static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) { 982 for (const auto &Reloc : Relocations) { 983 Buf->r_offset = Reloc.Offset; 984 setAddend(*Buf, Reloc.Addend); 985 Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0, 986 Reloc.Type, IsMips64EL); 987 ++Buf; 988 } 989 } 990 991 template <class ELFT> 992 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { 993 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 994 if (Sec.Type == SHT_REL) 995 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf), 996 Sec.getObject().IsMips64EL); 997 else 998 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf), 999 Sec.getObject().IsMips64EL); 1000 return Error::success(); 1001 } 1002 1003 Error RelocationSection::accept(SectionVisitor &Visitor) const { 1004 return Visitor.visit(*this); 1005 } 1006 1007 Error RelocationSection::accept(MutableSectionVisitor &Visitor) { 1008 return Visitor.visit(*this); 1009 } 1010 1011 Error RelocationSection::removeSymbols( 1012 function_ref<bool(const Symbol &)> ToRemove) { 1013 for (const Relocation &Reloc : Relocations) 1014 if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol)) 1015 return createStringError( 1016 llvm::errc::invalid_argument, 1017 "not stripping symbol '%s' because it is named in a relocation", 1018 Reloc.RelocSymbol->Name.data()); 1019 return Error::success(); 1020 } 1021 1022 void RelocationSection::markSymbols() { 1023 for (const Relocation &Reloc : Relocations) 1024 if (Reloc.RelocSymbol) 1025 Reloc.RelocSymbol->Referenced = true; 1026 } 1027 1028 void RelocationSection::replaceSectionReferences( 1029 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 1030 // Update the target section if it was replaced. 1031 if (SectionBase *To = FromTo.lookup(SecToApplyRel)) 1032 SecToApplyRel = To; 1033 } 1034 1035 Error SectionWriter::visit(const DynamicRelocationSection &Sec) { 1036 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); 1037 return Error::success(); 1038 } 1039 1040 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const { 1041 return Visitor.visit(*this); 1042 } 1043 1044 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { 1045 return Visitor.visit(*this); 1046 } 1047 1048 Error DynamicRelocationSection::removeSectionReferences( 1049 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 1050 if (ToRemove(Symbols)) { 1051 if (!AllowBrokenLinks) 1052 return createStringError( 1053 llvm::errc::invalid_argument, 1054 "symbol table '%s' cannot be removed because it is " 1055 "referenced by the relocation section '%s'", 1056 Symbols->Name.data(), this->Name.data()); 1057 Symbols = nullptr; 1058 } 1059 1060 // SecToApplyRel contains a section referenced by sh_info field. It keeps 1061 // a section to which the relocation section applies. When we remove any 1062 // sections we also remove their relocation sections. Since we do that much 1063 // earlier, this assert should never be triggered. 1064 assert(!SecToApplyRel || !ToRemove(SecToApplyRel)); 1065 return Error::success(); 1066 } 1067 1068 Error Section::removeSectionReferences( 1069 bool AllowBrokenDependency, 1070 function_ref<bool(const SectionBase *)> ToRemove) { 1071 if (ToRemove(LinkSection)) { 1072 if (!AllowBrokenDependency) 1073 return createStringError(llvm::errc::invalid_argument, 1074 "section '%s' cannot be removed because it is " 1075 "referenced by the section '%s'", 1076 LinkSection->Name.data(), this->Name.data()); 1077 LinkSection = nullptr; 1078 } 1079 return Error::success(); 1080 } 1081 1082 void GroupSection::finalize() { 1083 this->Info = Sym ? Sym->Index : 0; 1084 this->Link = SymTab ? SymTab->Index : 0; 1085 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global 1086 // status is not part of the equation. If Sym is localized, the intention is 1087 // likely to make the group fully localized. Drop GRP_COMDAT to suppress 1088 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc 1089 if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL) 1090 this->FlagWord &= ~GRP_COMDAT; 1091 } 1092 1093 Error GroupSection::removeSectionReferences( 1094 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) { 1095 if (ToRemove(SymTab)) { 1096 if (!AllowBrokenLinks) 1097 return createStringError( 1098 llvm::errc::invalid_argument, 1099 "section '.symtab' cannot be removed because it is " 1100 "referenced by the group section '%s'", 1101 this->Name.data()); 1102 SymTab = nullptr; 1103 Sym = nullptr; 1104 } 1105 llvm::erase_if(GroupMembers, ToRemove); 1106 return Error::success(); 1107 } 1108 1109 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 1110 if (ToRemove(*Sym)) 1111 return createStringError(llvm::errc::invalid_argument, 1112 "symbol '%s' cannot be removed because it is " 1113 "referenced by the section '%s[%d]'", 1114 Sym->Name.data(), this->Name.data(), this->Index); 1115 return Error::success(); 1116 } 1117 1118 void GroupSection::markSymbols() { 1119 if (Sym) 1120 Sym->Referenced = true; 1121 } 1122 1123 void GroupSection::replaceSectionReferences( 1124 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 1125 for (SectionBase *&Sec : GroupMembers) 1126 if (SectionBase *To = FromTo.lookup(Sec)) 1127 Sec = To; 1128 } 1129 1130 void GroupSection::onRemove() { 1131 // As the header section of the group is removed, drop the Group flag in its 1132 // former members. 1133 for (SectionBase *Sec : GroupMembers) 1134 Sec->Flags &= ~SHF_GROUP; 1135 } 1136 1137 Error Section::initialize(SectionTableRef SecTable) { 1138 if (Link == ELF::SHN_UNDEF) 1139 return Error::success(); 1140 1141 Expected<SectionBase *> Sec = 1142 SecTable.getSection(Link, "Link field value " + Twine(Link) + 1143 " in section " + Name + " is invalid"); 1144 if (!Sec) 1145 return Sec.takeError(); 1146 1147 LinkSection = *Sec; 1148 1149 if (LinkSection->Type == ELF::SHT_SYMTAB) 1150 LinkSection = nullptr; 1151 1152 return Error::success(); 1153 } 1154 1155 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } 1156 1157 void GnuDebugLinkSection::init(StringRef File) { 1158 FileName = sys::path::filename(File); 1159 // The format for the .gnu_debuglink starts with the file name and is 1160 // followed by a null terminator and then the CRC32 of the file. The CRC32 1161 // should be 4 byte aligned. So we add the FileName size, a 1 for the null 1162 // byte, and then finally push the size to alignment and add 4. 1163 Size = alignTo(FileName.size() + 1, 4) + 4; 1164 // The CRC32 will only be aligned if we align the whole section. 1165 Align = 4; 1166 Type = OriginalType = ELF::SHT_PROGBITS; 1167 Name = ".gnu_debuglink"; 1168 // For sections not found in segments, OriginalOffset is only used to 1169 // establish the order that sections should go in. By using the maximum 1170 // possible offset we cause this section to wind up at the end. 1171 OriginalOffset = std::numeric_limits<uint64_t>::max(); 1172 } 1173 1174 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File, 1175 uint32_t PrecomputedCRC) 1176 : FileName(File), CRC32(PrecomputedCRC) { 1177 init(File); 1178 } 1179 1180 template <class ELFT> 1181 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { 1182 unsigned char *Buf = 1183 reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset; 1184 Elf_Word *CRC = 1185 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); 1186 *CRC = Sec.CRC32; 1187 llvm::copy(Sec.FileName, Buf); 1188 return Error::success(); 1189 } 1190 1191 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { 1192 return Visitor.visit(*this); 1193 } 1194 1195 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { 1196 return Visitor.visit(*this); 1197 } 1198 1199 template <class ELFT> 1200 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { 1201 ELF::Elf32_Word *Buf = 1202 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); 1203 support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord); 1204 for (SectionBase *S : Sec.GroupMembers) 1205 support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index); 1206 return Error::success(); 1207 } 1208 1209 Error GroupSection::accept(SectionVisitor &Visitor) const { 1210 return Visitor.visit(*this); 1211 } 1212 1213 Error GroupSection::accept(MutableSectionVisitor &Visitor) { 1214 return Visitor.visit(*this); 1215 } 1216 1217 // Returns true IFF a section is wholly inside the range of a segment 1218 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) { 1219 // If a section is empty it should be treated like it has a size of 1. This is 1220 // to clarify the case when an empty section lies on a boundary between two 1221 // segments and ensures that the section "belongs" to the second segment and 1222 // not the first. 1223 uint64_t SecSize = Sec.Size ? Sec.Size : 1; 1224 1225 // Ignore just added sections. 1226 if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max()) 1227 return false; 1228 1229 if (Sec.Type == SHT_NOBITS) { 1230 if (!(Sec.Flags & SHF_ALLOC)) 1231 return false; 1232 1233 bool SectionIsTLS = Sec.Flags & SHF_TLS; 1234 bool SegmentIsTLS = Seg.Type == PT_TLS; 1235 if (SectionIsTLS != SegmentIsTLS) 1236 return false; 1237 1238 return Seg.VAddr <= Sec.Addr && 1239 Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize; 1240 } 1241 1242 return Seg.Offset <= Sec.OriginalOffset && 1243 Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize; 1244 } 1245 1246 // Returns true IFF a segment's original offset is inside of another segment's 1247 // range. 1248 static bool segmentOverlapsSegment(const Segment &Child, 1249 const Segment &Parent) { 1250 1251 return Parent.OriginalOffset <= Child.OriginalOffset && 1252 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; 1253 } 1254 1255 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { 1256 // Any segment without a parent segment should come before a segment 1257 // that has a parent segment. 1258 if (A->OriginalOffset < B->OriginalOffset) 1259 return true; 1260 if (A->OriginalOffset > B->OriginalOffset) 1261 return false; 1262 return A->Index < B->Index; 1263 } 1264 1265 void BasicELFBuilder::initFileHeader() { 1266 Obj->Flags = 0x0; 1267 Obj->Type = ET_REL; 1268 Obj->OSABI = ELFOSABI_NONE; 1269 Obj->ABIVersion = 0; 1270 Obj->Entry = 0x0; 1271 Obj->Machine = EM_NONE; 1272 Obj->Version = 1; 1273 } 1274 1275 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; } 1276 1277 StringTableSection *BasicELFBuilder::addStrTab() { 1278 auto &StrTab = Obj->addSection<StringTableSection>(); 1279 StrTab.Name = ".strtab"; 1280 1281 Obj->SectionNames = &StrTab; 1282 return &StrTab; 1283 } 1284 1285 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) { 1286 auto &SymTab = Obj->addSection<SymbolTableSection>(); 1287 1288 SymTab.Name = ".symtab"; 1289 SymTab.Link = StrTab->Index; 1290 1291 // The symbol table always needs a null symbol 1292 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); 1293 1294 Obj->SymbolTable = &SymTab; 1295 return &SymTab; 1296 } 1297 1298 Error BasicELFBuilder::initSections() { 1299 for (SectionBase &Sec : Obj->sections()) 1300 if (Error Err = Sec.initialize(Obj->sections())) 1301 return Err; 1302 1303 return Error::success(); 1304 } 1305 1306 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { 1307 auto Data = ArrayRef<uint8_t>( 1308 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()), 1309 MemBuf->getBufferSize()); 1310 auto &DataSection = Obj->addSection<Section>(Data); 1311 DataSection.Name = ".data"; 1312 DataSection.Type = ELF::SHT_PROGBITS; 1313 DataSection.Size = Data.size(); 1314 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; 1315 1316 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); 1317 std::replace_if( 1318 std::begin(SanitizedFilename), std::end(SanitizedFilename), 1319 [](char C) { return !isAlnum(C); }, '_'); 1320 Twine Prefix = Twine("_binary_") + SanitizedFilename; 1321 1322 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection, 1323 /*Value=*/0, NewSymbolVisibility, 0, 0); 1324 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection, 1325 /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0); 1326 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr, 1327 /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS, 1328 0); 1329 } 1330 1331 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() { 1332 initFileHeader(); 1333 initHeaderSegment(); 1334 1335 SymbolTableSection *SymTab = addSymTab(addStrTab()); 1336 if (Error Err = initSections()) 1337 return std::move(Err); 1338 addData(SymTab); 1339 1340 return std::move(Obj); 1341 } 1342 1343 // Adds sections from IHEX data file. Data should have been 1344 // fully validated by this time. 1345 void IHexELFBuilder::addDataSections() { 1346 OwnedDataSection *Section = nullptr; 1347 uint64_t SegmentAddr = 0, BaseAddr = 0; 1348 uint32_t SecNo = 1; 1349 1350 for (const IHexRecord &R : Records) { 1351 uint64_t RecAddr; 1352 switch (R.Type) { 1353 case IHexRecord::Data: 1354 // Ignore empty data records 1355 if (R.HexData.empty()) 1356 continue; 1357 RecAddr = R.Addr + SegmentAddr + BaseAddr; 1358 if (!Section || Section->Addr + Section->Size != RecAddr) { 1359 // OriginalOffset field is only used to sort sections before layout, so 1360 // instead of keeping track of real offsets in IHEX file, and as 1361 // layoutSections() and layoutSectionsForOnlyKeepDebug() use 1362 // llvm::stable_sort(), we can just set it to a constant (zero). 1363 Section = &Obj->addSection<OwnedDataSection>( 1364 ".sec" + std::to_string(SecNo), RecAddr, 1365 ELF::SHF_ALLOC | ELF::SHF_WRITE, 0); 1366 SecNo++; 1367 } 1368 Section->appendHexData(R.HexData); 1369 break; 1370 case IHexRecord::EndOfFile: 1371 break; 1372 case IHexRecord::SegmentAddr: 1373 // 20-bit segment address. 1374 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4; 1375 break; 1376 case IHexRecord::StartAddr80x86: 1377 case IHexRecord::StartAddr: 1378 Obj->Entry = checkedGetHex<uint32_t>(R.HexData); 1379 assert(Obj->Entry <= 0xFFFFFU); 1380 break; 1381 case IHexRecord::ExtendedAddr: 1382 // 16-31 bits of linear base address 1383 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16; 1384 break; 1385 default: 1386 llvm_unreachable("unknown record type"); 1387 } 1388 } 1389 } 1390 1391 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() { 1392 initFileHeader(); 1393 initHeaderSegment(); 1394 StringTableSection *StrTab = addStrTab(); 1395 addSymTab(StrTab); 1396 if (Error Err = initSections()) 1397 return std::move(Err); 1398 addDataSections(); 1399 1400 return std::move(Obj); 1401 } 1402 1403 template <class ELFT> 1404 ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj, 1405 Optional<StringRef> ExtractPartition) 1406 : ElfFile(ElfObj.getELFFile()), Obj(Obj), 1407 ExtractPartition(ExtractPartition) { 1408 Obj.IsMips64EL = ElfFile.isMips64EL(); 1409 } 1410 1411 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { 1412 for (Segment &Parent : Obj.segments()) { 1413 // Every segment will overlap with itself but we don't want a segment to 1414 // be its own parent so we avoid that situation. 1415 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { 1416 // We want a canonical "most parental" segment but this requires 1417 // inspecting the ParentSegment. 1418 if (compareSegmentsByOffset(&Parent, &Child)) 1419 if (Child.ParentSegment == nullptr || 1420 compareSegmentsByOffset(&Parent, Child.ParentSegment)) { 1421 Child.ParentSegment = &Parent; 1422 } 1423 } 1424 } 1425 } 1426 1427 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() { 1428 if (!ExtractPartition) 1429 return Error::success(); 1430 1431 for (const SectionBase &Sec : Obj.sections()) { 1432 if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) { 1433 EhdrOffset = Sec.Offset; 1434 return Error::success(); 1435 } 1436 } 1437 return createStringError(errc::invalid_argument, 1438 "could not find partition named '" + 1439 *ExtractPartition + "'"); 1440 } 1441 1442 template <class ELFT> 1443 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) { 1444 uint32_t Index = 0; 1445 1446 Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers = 1447 HeadersFile.program_headers(); 1448 if (!Headers) 1449 return Headers.takeError(); 1450 1451 for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) { 1452 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize()) 1453 return createStringError( 1454 errc::invalid_argument, 1455 "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) + 1456 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) + 1457 " goes past the end of the file"); 1458 1459 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset, 1460 (size_t)Phdr.p_filesz}; 1461 Segment &Seg = Obj.addSegment(Data); 1462 Seg.Type = Phdr.p_type; 1463 Seg.Flags = Phdr.p_flags; 1464 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset; 1465 Seg.Offset = Phdr.p_offset + EhdrOffset; 1466 Seg.VAddr = Phdr.p_vaddr; 1467 Seg.PAddr = Phdr.p_paddr; 1468 Seg.FileSize = Phdr.p_filesz; 1469 Seg.MemSize = Phdr.p_memsz; 1470 Seg.Align = Phdr.p_align; 1471 Seg.Index = Index++; 1472 for (SectionBase &Sec : Obj.sections()) 1473 if (sectionWithinSegment(Sec, Seg)) { 1474 Seg.addSection(&Sec); 1475 if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset) 1476 Sec.ParentSegment = &Seg; 1477 } 1478 } 1479 1480 auto &ElfHdr = Obj.ElfHdrSegment; 1481 ElfHdr.Index = Index++; 1482 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset; 1483 1484 const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader(); 1485 auto &PrHdr = Obj.ProgramHdrSegment; 1486 PrHdr.Type = PT_PHDR; 1487 PrHdr.Flags = 0; 1488 // The spec requires us to have p_vaddr % p_align == p_offset % p_align. 1489 // Whereas this works automatically for ElfHdr, here OriginalOffset is 1490 // always non-zero and to ensure the equation we assign the same value to 1491 // VAddr as well. 1492 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff; 1493 PrHdr.PAddr = 0; 1494 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; 1495 // The spec requires us to naturally align all the fields. 1496 PrHdr.Align = sizeof(Elf_Addr); 1497 PrHdr.Index = Index++; 1498 1499 // Now we do an O(n^2) loop through the segments in order to match up 1500 // segments. 1501 for (Segment &Child : Obj.segments()) 1502 setParentSegment(Child); 1503 setParentSegment(ElfHdr); 1504 setParentSegment(PrHdr); 1505 1506 return Error::success(); 1507 } 1508 1509 template <class ELFT> 1510 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { 1511 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0) 1512 return createStringError(errc::invalid_argument, 1513 "invalid alignment " + Twine(GroupSec->Align) + 1514 " of group section '" + GroupSec->Name + "'"); 1515 SectionTableRef SecTable = Obj.sections(); 1516 if (GroupSec->Link != SHN_UNDEF) { 1517 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( 1518 GroupSec->Link, 1519 "link field value '" + Twine(GroupSec->Link) + "' in section '" + 1520 GroupSec->Name + "' is invalid", 1521 "link field value '" + Twine(GroupSec->Link) + "' in section '" + 1522 GroupSec->Name + "' is not a symbol table"); 1523 if (!SymTab) 1524 return SymTab.takeError(); 1525 1526 Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info); 1527 if (!Sym) 1528 return createStringError(errc::invalid_argument, 1529 "info field value '" + Twine(GroupSec->Info) + 1530 "' in section '" + GroupSec->Name + 1531 "' is not a valid symbol index"); 1532 GroupSec->setSymTab(*SymTab); 1533 GroupSec->setSymbol(*Sym); 1534 } 1535 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || 1536 GroupSec->Contents.empty()) 1537 return createStringError(errc::invalid_argument, 1538 "the content of the section " + GroupSec->Name + 1539 " is malformed"); 1540 const ELF::Elf32_Word *Word = 1541 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); 1542 const ELF::Elf32_Word *End = 1543 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); 1544 GroupSec->setFlagWord( 1545 support::endian::read32<ELFT::TargetEndianness>(Word++)); 1546 for (; Word != End; ++Word) { 1547 uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word); 1548 Expected<SectionBase *> Sec = SecTable.getSection( 1549 Index, "group member index " + Twine(Index) + " in section '" + 1550 GroupSec->Name + "' is invalid"); 1551 if (!Sec) 1552 return Sec.takeError(); 1553 1554 GroupSec->addMember(*Sec); 1555 } 1556 1557 return Error::success(); 1558 } 1559 1560 template <class ELFT> 1561 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { 1562 Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index); 1563 if (!Shdr) 1564 return Shdr.takeError(); 1565 1566 Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr); 1567 if (!StrTabData) 1568 return StrTabData.takeError(); 1569 1570 ArrayRef<Elf_Word> ShndxData; 1571 1572 Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols = 1573 ElfFile.symbols(*Shdr); 1574 if (!Symbols) 1575 return Symbols.takeError(); 1576 1577 for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) { 1578 SectionBase *DefSection = nullptr; 1579 1580 Expected<StringRef> Name = Sym.getName(*StrTabData); 1581 if (!Name) 1582 return Name.takeError(); 1583 1584 if (Sym.st_shndx == SHN_XINDEX) { 1585 if (SymTab->getShndxTable() == nullptr) 1586 return createStringError(errc::invalid_argument, 1587 "symbol '" + *Name + 1588 "' has index SHN_XINDEX but no " 1589 "SHT_SYMTAB_SHNDX section exists"); 1590 if (ShndxData.data() == nullptr) { 1591 Expected<const Elf_Shdr *> ShndxSec = 1592 ElfFile.getSection(SymTab->getShndxTable()->Index); 1593 if (!ShndxSec) 1594 return ShndxSec.takeError(); 1595 1596 Expected<ArrayRef<Elf_Word>> Data = 1597 ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec); 1598 if (!Data) 1599 return Data.takeError(); 1600 1601 ShndxData = *Data; 1602 if (ShndxData.size() != Symbols->size()) 1603 return createStringError( 1604 errc::invalid_argument, 1605 "symbol section index table does not have the same number of " 1606 "entries as the symbol table"); 1607 } 1608 Elf_Word Index = ShndxData[&Sym - Symbols->begin()]; 1609 Expected<SectionBase *> Sec = Obj.sections().getSection( 1610 Index, 1611 "symbol '" + *Name + "' has invalid section index " + Twine(Index)); 1612 if (!Sec) 1613 return Sec.takeError(); 1614 1615 DefSection = *Sec; 1616 } else if (Sym.st_shndx >= SHN_LORESERVE) { 1617 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { 1618 return createStringError( 1619 errc::invalid_argument, 1620 "symbol '" + *Name + 1621 "' has unsupported value greater than or equal " 1622 "to SHN_LORESERVE: " + 1623 Twine(Sym.st_shndx)); 1624 } 1625 } else if (Sym.st_shndx != SHN_UNDEF) { 1626 Expected<SectionBase *> Sec = Obj.sections().getSection( 1627 Sym.st_shndx, "symbol '" + *Name + 1628 "' is defined has invalid section index " + 1629 Twine(Sym.st_shndx)); 1630 if (!Sec) 1631 return Sec.takeError(); 1632 1633 DefSection = *Sec; 1634 } 1635 1636 SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection, 1637 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); 1638 } 1639 1640 return Error::success(); 1641 } 1642 1643 template <class ELFT> 1644 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {} 1645 1646 template <class ELFT> 1647 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { 1648 ToSet = Rela.r_addend; 1649 } 1650 1651 template <class T> 1652 static Error initRelocations(RelocationSection *Relocs, T RelRange) { 1653 for (const auto &Rel : RelRange) { 1654 Relocation ToAdd; 1655 ToAdd.Offset = Rel.r_offset; 1656 getAddend(ToAdd.Addend, Rel); 1657 ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL); 1658 1659 if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) { 1660 if (!Relocs->getObject().SymbolTable) 1661 return createStringError( 1662 errc::invalid_argument, 1663 "'" + Relocs->Name + "': relocation references symbol with index " + 1664 Twine(Sym) + ", but there is no symbol table"); 1665 Expected<Symbol *> SymByIndex = 1666 Relocs->getObject().SymbolTable->getSymbolByIndex(Sym); 1667 if (!SymByIndex) 1668 return SymByIndex.takeError(); 1669 1670 ToAdd.RelocSymbol = *SymByIndex; 1671 } 1672 1673 Relocs->addRelocation(ToAdd); 1674 } 1675 1676 return Error::success(); 1677 } 1678 1679 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index, 1680 Twine ErrMsg) { 1681 if (Index == SHN_UNDEF || Index > Sections.size()) 1682 return createStringError(errc::invalid_argument, ErrMsg); 1683 return Sections[Index - 1].get(); 1684 } 1685 1686 template <class T> 1687 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index, 1688 Twine IndexErrMsg, 1689 Twine TypeErrMsg) { 1690 Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg); 1691 if (!BaseSec) 1692 return BaseSec.takeError(); 1693 1694 if (T *Sec = dyn_cast<T>(*BaseSec)) 1695 return Sec; 1696 1697 return createStringError(errc::invalid_argument, TypeErrMsg); 1698 } 1699 1700 template <class ELFT> 1701 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { 1702 switch (Shdr.sh_type) { 1703 case SHT_REL: 1704 case SHT_RELA: 1705 if (Shdr.sh_flags & SHF_ALLOC) { 1706 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1707 return Obj.addSection<DynamicRelocationSection>(*Data); 1708 else 1709 return Data.takeError(); 1710 } 1711 return Obj.addSection<RelocationSection>(Obj); 1712 case SHT_STRTAB: 1713 // If a string table is allocated we don't want to mess with it. That would 1714 // mean altering the memory image. There are no special link types or 1715 // anything so we can just use a Section. 1716 if (Shdr.sh_flags & SHF_ALLOC) { 1717 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1718 return Obj.addSection<Section>(*Data); 1719 else 1720 return Data.takeError(); 1721 } 1722 return Obj.addSection<StringTableSection>(); 1723 case SHT_HASH: 1724 case SHT_GNU_HASH: 1725 // Hash tables should refer to SHT_DYNSYM which we're not going to change. 1726 // Because of this we don't need to mess with the hash tables either. 1727 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1728 return Obj.addSection<Section>(*Data); 1729 else 1730 return Data.takeError(); 1731 case SHT_GROUP: 1732 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1733 return Obj.addSection<GroupSection>(*Data); 1734 else 1735 return Data.takeError(); 1736 case SHT_DYNSYM: 1737 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1738 return Obj.addSection<DynamicSymbolTableSection>(*Data); 1739 else 1740 return Data.takeError(); 1741 case SHT_DYNAMIC: 1742 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr)) 1743 return Obj.addSection<DynamicSection>(*Data); 1744 else 1745 return Data.takeError(); 1746 case SHT_SYMTAB: { 1747 auto &SymTab = Obj.addSection<SymbolTableSection>(); 1748 Obj.SymbolTable = &SymTab; 1749 return SymTab; 1750 } 1751 case SHT_SYMTAB_SHNDX: { 1752 auto &ShndxSection = Obj.addSection<SectionIndexSection>(); 1753 Obj.SectionIndexTable = &ShndxSection; 1754 return ShndxSection; 1755 } 1756 case SHT_NOBITS: 1757 return Obj.addSection<Section>(ArrayRef<uint8_t>()); 1758 default: { 1759 Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr); 1760 if (!Data) 1761 return Data.takeError(); 1762 1763 Expected<StringRef> Name = ElfFile.getSectionName(Shdr); 1764 if (!Name) 1765 return Name.takeError(); 1766 1767 if (Name->startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) { 1768 uint64_t DecompressedSize, DecompressedAlign; 1769 std::tie(DecompressedSize, DecompressedAlign) = 1770 getDecompressedSizeAndAlignment<ELFT>(*Data); 1771 Expected<CompressedSection> NewSection = 1772 CompressedSection::create(*Data, DecompressedSize, DecompressedAlign); 1773 if (!NewSection) 1774 return NewSection.takeError(); 1775 1776 return Obj.addSection<CompressedSection>(std::move(*NewSection)); 1777 } 1778 1779 return Obj.addSection<Section>(*Data); 1780 } 1781 } 1782 } 1783 1784 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() { 1785 uint32_t Index = 0; 1786 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = 1787 ElfFile.sections(); 1788 if (!Sections) 1789 return Sections.takeError(); 1790 1791 for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) { 1792 if (Index == 0) { 1793 ++Index; 1794 continue; 1795 } 1796 Expected<SectionBase &> Sec = makeSection(Shdr); 1797 if (!Sec) 1798 return Sec.takeError(); 1799 1800 Expected<StringRef> SecName = ElfFile.getSectionName(Shdr); 1801 if (!SecName) 1802 return SecName.takeError(); 1803 Sec->Name = SecName->str(); 1804 Sec->Type = Sec->OriginalType = Shdr.sh_type; 1805 Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags; 1806 Sec->Addr = Shdr.sh_addr; 1807 Sec->Offset = Shdr.sh_offset; 1808 Sec->OriginalOffset = Shdr.sh_offset; 1809 Sec->Size = Shdr.sh_size; 1810 Sec->Link = Shdr.sh_link; 1811 Sec->Info = Shdr.sh_info; 1812 Sec->Align = Shdr.sh_addralign; 1813 Sec->EntrySize = Shdr.sh_entsize; 1814 Sec->Index = Index++; 1815 Sec->OriginalIndex = Sec->Index; 1816 Sec->OriginalData = ArrayRef<uint8_t>( 1817 ElfFile.base() + Shdr.sh_offset, 1818 (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size); 1819 } 1820 1821 return Error::success(); 1822 } 1823 1824 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) { 1825 uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx; 1826 if (ShstrIndex == SHN_XINDEX) { 1827 Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0); 1828 if (!Sec) 1829 return Sec.takeError(); 1830 1831 ShstrIndex = (*Sec)->sh_link; 1832 } 1833 1834 if (ShstrIndex == SHN_UNDEF) 1835 Obj.HadShdrs = false; 1836 else { 1837 Expected<StringTableSection *> Sec = 1838 Obj.sections().template getSectionOfType<StringTableSection>( 1839 ShstrIndex, 1840 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + 1841 " is invalid", 1842 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + 1843 " does not reference a string table"); 1844 if (!Sec) 1845 return Sec.takeError(); 1846 1847 Obj.SectionNames = *Sec; 1848 } 1849 1850 // If a section index table exists we'll need to initialize it before we 1851 // initialize the symbol table because the symbol table might need to 1852 // reference it. 1853 if (Obj.SectionIndexTable) 1854 if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections())) 1855 return Err; 1856 1857 // Now that all of the sections have been added we can fill out some extra 1858 // details about symbol tables. We need the symbol table filled out before 1859 // any relocations. 1860 if (Obj.SymbolTable) { 1861 if (Error Err = Obj.SymbolTable->initialize(Obj.sections())) 1862 return Err; 1863 if (Error Err = initSymbolTable(Obj.SymbolTable)) 1864 return Err; 1865 } else if (EnsureSymtab) { 1866 if (Error Err = Obj.addNewSymbolTable()) 1867 return Err; 1868 } 1869 1870 // Now that all sections and symbols have been added we can add 1871 // relocations that reference symbols and set the link and info fields for 1872 // relocation sections. 1873 for (SectionBase &Sec : Obj.sections()) { 1874 if (&Sec == Obj.SymbolTable) 1875 continue; 1876 if (Error Err = Sec.initialize(Obj.sections())) 1877 return Err; 1878 if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) { 1879 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections = 1880 ElfFile.sections(); 1881 if (!Sections) 1882 return Sections.takeError(); 1883 1884 const typename ELFFile<ELFT>::Elf_Shdr *Shdr = 1885 Sections->begin() + RelSec->Index; 1886 if (RelSec->Type == SHT_REL) { 1887 Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels = 1888 ElfFile.rels(*Shdr); 1889 if (!Rels) 1890 return Rels.takeError(); 1891 1892 if (Error Err = initRelocations(RelSec, *Rels)) 1893 return Err; 1894 } else { 1895 Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = 1896 ElfFile.relas(*Shdr); 1897 if (!Relas) 1898 return Relas.takeError(); 1899 1900 if (Error Err = initRelocations(RelSec, *Relas)) 1901 return Err; 1902 } 1903 } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) { 1904 if (Error Err = initGroupSection(GroupSec)) 1905 return Err; 1906 } 1907 } 1908 1909 return Error::success(); 1910 } 1911 1912 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) { 1913 if (Error E = readSectionHeaders()) 1914 return E; 1915 if (Error E = findEhdrOffset()) 1916 return E; 1917 1918 // The ELFFile whose ELF headers and program headers are copied into the 1919 // output file. Normally the same as ElfFile, but if we're extracting a 1920 // loadable partition it will point to the partition's headers. 1921 Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef( 1922 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})); 1923 if (!HeadersFile) 1924 return HeadersFile.takeError(); 1925 1926 const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader(); 1927 Obj.OSABI = Ehdr.e_ident[EI_OSABI]; 1928 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; 1929 Obj.Type = Ehdr.e_type; 1930 Obj.Machine = Ehdr.e_machine; 1931 Obj.Version = Ehdr.e_version; 1932 Obj.Entry = Ehdr.e_entry; 1933 Obj.Flags = Ehdr.e_flags; 1934 1935 if (Error E = readSections(EnsureSymtab)) 1936 return E; 1937 return readProgramHeaders(*HeadersFile); 1938 } 1939 1940 Writer::~Writer() {} 1941 1942 Reader::~Reader() {} 1943 1944 Expected<std::unique_ptr<Object>> 1945 BinaryReader::create(bool /*EnsureSymtab*/) const { 1946 return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build(); 1947 } 1948 1949 Expected<std::vector<IHexRecord>> IHexReader::parse() const { 1950 SmallVector<StringRef, 16> Lines; 1951 std::vector<IHexRecord> Records; 1952 bool HasSections = false; 1953 1954 MemBuf->getBuffer().split(Lines, '\n'); 1955 Records.reserve(Lines.size()); 1956 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) { 1957 StringRef Line = Lines[LineNo - 1].trim(); 1958 if (Line.empty()) 1959 continue; 1960 1961 Expected<IHexRecord> R = IHexRecord::parse(Line); 1962 if (!R) 1963 return parseError(LineNo, R.takeError()); 1964 if (R->Type == IHexRecord::EndOfFile) 1965 break; 1966 HasSections |= (R->Type == IHexRecord::Data); 1967 Records.push_back(*R); 1968 } 1969 if (!HasSections) 1970 return parseError(-1U, "no sections"); 1971 1972 return std::move(Records); 1973 } 1974 1975 Expected<std::unique_ptr<Object>> 1976 IHexReader::create(bool /*EnsureSymtab*/) const { 1977 Expected<std::vector<IHexRecord>> Records = parse(); 1978 if (!Records) 1979 return Records.takeError(); 1980 1981 return IHexELFBuilder(*Records).build(); 1982 } 1983 1984 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const { 1985 auto Obj = std::make_unique<Object>(); 1986 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { 1987 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition); 1988 if (Error Err = Builder.build(EnsureSymtab)) 1989 return std::move(Err); 1990 return std::move(Obj); 1991 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { 1992 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition); 1993 if (Error Err = Builder.build(EnsureSymtab)) 1994 return std::move(Err); 1995 return std::move(Obj); 1996 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { 1997 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition); 1998 if (Error Err = Builder.build(EnsureSymtab)) 1999 return std::move(Err); 2000 return std::move(Obj); 2001 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { 2002 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition); 2003 if (Error Err = Builder.build(EnsureSymtab)) 2004 return std::move(Err); 2005 return std::move(Obj); 2006 } 2007 return createStringError(errc::invalid_argument, "invalid file type"); 2008 } 2009 2010 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { 2011 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart()); 2012 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); 2013 Ehdr.e_ident[EI_MAG0] = 0x7f; 2014 Ehdr.e_ident[EI_MAG1] = 'E'; 2015 Ehdr.e_ident[EI_MAG2] = 'L'; 2016 Ehdr.e_ident[EI_MAG3] = 'F'; 2017 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; 2018 Ehdr.e_ident[EI_DATA] = 2019 ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB; 2020 Ehdr.e_ident[EI_VERSION] = EV_CURRENT; 2021 Ehdr.e_ident[EI_OSABI] = Obj.OSABI; 2022 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; 2023 2024 Ehdr.e_type = Obj.Type; 2025 Ehdr.e_machine = Obj.Machine; 2026 Ehdr.e_version = Obj.Version; 2027 Ehdr.e_entry = Obj.Entry; 2028 // We have to use the fully-qualified name llvm::size 2029 // since some compilers complain on ambiguous resolution. 2030 Ehdr.e_phnum = llvm::size(Obj.segments()); 2031 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; 2032 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; 2033 Ehdr.e_flags = Obj.Flags; 2034 Ehdr.e_ehsize = sizeof(Elf_Ehdr); 2035 if (WriteSectionHeaders && Obj.sections().size() != 0) { 2036 Ehdr.e_shentsize = sizeof(Elf_Shdr); 2037 Ehdr.e_shoff = Obj.SHOff; 2038 // """ 2039 // If the number of sections is greater than or equal to 2040 // SHN_LORESERVE (0xff00), this member has the value zero and the actual 2041 // number of section header table entries is contained in the sh_size field 2042 // of the section header at index 0. 2043 // """ 2044 auto Shnum = Obj.sections().size() + 1; 2045 if (Shnum >= SHN_LORESERVE) 2046 Ehdr.e_shnum = 0; 2047 else 2048 Ehdr.e_shnum = Shnum; 2049 // """ 2050 // If the section name string table section index is greater than or equal 2051 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) 2052 // and the actual index of the section name string table section is 2053 // contained in the sh_link field of the section header at index 0. 2054 // """ 2055 if (Obj.SectionNames->Index >= SHN_LORESERVE) 2056 Ehdr.e_shstrndx = SHN_XINDEX; 2057 else 2058 Ehdr.e_shstrndx = Obj.SectionNames->Index; 2059 } else { 2060 Ehdr.e_shentsize = 0; 2061 Ehdr.e_shoff = 0; 2062 Ehdr.e_shnum = 0; 2063 Ehdr.e_shstrndx = 0; 2064 } 2065 } 2066 2067 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { 2068 for (auto &Seg : Obj.segments()) 2069 writePhdr(Seg); 2070 } 2071 2072 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { 2073 // This reference serves to write the dummy section header at the begining 2074 // of the file. It is not used for anything else 2075 Elf_Shdr &Shdr = 2076 *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff); 2077 Shdr.sh_name = 0; 2078 Shdr.sh_type = SHT_NULL; 2079 Shdr.sh_flags = 0; 2080 Shdr.sh_addr = 0; 2081 Shdr.sh_offset = 0; 2082 // See writeEhdr for why we do this. 2083 uint64_t Shnum = Obj.sections().size() + 1; 2084 if (Shnum >= SHN_LORESERVE) 2085 Shdr.sh_size = Shnum; 2086 else 2087 Shdr.sh_size = 0; 2088 // See writeEhdr for why we do this. 2089 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) 2090 Shdr.sh_link = Obj.SectionNames->Index; 2091 else 2092 Shdr.sh_link = 0; 2093 Shdr.sh_info = 0; 2094 Shdr.sh_addralign = 0; 2095 Shdr.sh_entsize = 0; 2096 2097 for (SectionBase &Sec : Obj.sections()) 2098 writeShdr(Sec); 2099 } 2100 2101 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() { 2102 for (SectionBase &Sec : Obj.sections()) 2103 // Segments are responsible for writing their contents, so only write the 2104 // section data if the section is not in a segment. Note that this renders 2105 // sections in segments effectively immutable. 2106 if (Sec.ParentSegment == nullptr) 2107 if (Error Err = Sec.accept(*SecWriter)) 2108 return Err; 2109 2110 return Error::success(); 2111 } 2112 2113 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() { 2114 for (Segment &Seg : Obj.segments()) { 2115 size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size()); 2116 std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(), 2117 Size); 2118 } 2119 2120 for (auto it : Obj.getUpdatedSections()) { 2121 SectionBase *Sec = it.first; 2122 ArrayRef<uint8_t> Data = it.second; 2123 2124 auto *Parent = Sec->ParentSegment; 2125 assert(Parent && "This section should've been part of a segment."); 2126 uint64_t Offset = 2127 Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset; 2128 llvm::copy(Data, Buf->getBufferStart() + Offset); 2129 } 2130 2131 // Iterate over removed sections and overwrite their old data with zeroes. 2132 for (auto &Sec : Obj.removedSections()) { 2133 Segment *Parent = Sec.ParentSegment; 2134 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0) 2135 continue; 2136 uint64_t Offset = 2137 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset; 2138 std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size); 2139 } 2140 } 2141 2142 template <class ELFT> 2143 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH, 2144 bool OnlyKeepDebug) 2145 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs), 2146 OnlyKeepDebug(OnlyKeepDebug) {} 2147 2148 Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) { 2149 auto It = llvm::find_if(Sections, 2150 [&](const SecPtr &Sec) { return Sec->Name == Name; }); 2151 if (It == Sections.end()) 2152 return createStringError(errc::invalid_argument, "section '%s' not found", 2153 Name.str().c_str()); 2154 2155 auto *OldSec = It->get(); 2156 if (!OldSec->hasContents()) 2157 return createStringError( 2158 errc::invalid_argument, 2159 "section '%s' cannot be updated because it does not have contents", 2160 Name.str().c_str()); 2161 2162 if (Data.size() > OldSec->Size && OldSec->ParentSegment) 2163 return createStringError(errc::invalid_argument, 2164 "cannot fit data of size %zu into section '%s' " 2165 "with size %zu that is part of a segment", 2166 Data.size(), Name.str().c_str(), OldSec->Size); 2167 2168 if (!OldSec->ParentSegment) { 2169 *It = std::make_unique<OwnedDataSection>(*OldSec, Data); 2170 } else { 2171 // The segment writer will be in charge of updating these contents. 2172 OldSec->Size = Data.size(); 2173 UpdatedSections[OldSec] = Data; 2174 } 2175 2176 return Error::success(); 2177 } 2178 2179 Error Object::removeSections( 2180 bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) { 2181 2182 auto Iter = std::stable_partition( 2183 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { 2184 if (ToRemove(*Sec)) 2185 return false; 2186 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { 2187 if (auto ToRelSec = RelSec->getSection()) 2188 return !ToRemove(*ToRelSec); 2189 } 2190 return true; 2191 }); 2192 if (SymbolTable != nullptr && ToRemove(*SymbolTable)) 2193 SymbolTable = nullptr; 2194 if (SectionNames != nullptr && ToRemove(*SectionNames)) 2195 SectionNames = nullptr; 2196 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) 2197 SectionIndexTable = nullptr; 2198 // Now make sure there are no remaining references to the sections that will 2199 // be removed. Sometimes it is impossible to remove a reference so we emit 2200 // an error here instead. 2201 std::unordered_set<const SectionBase *> RemoveSections; 2202 RemoveSections.reserve(std::distance(Iter, std::end(Sections))); 2203 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { 2204 for (auto &Segment : Segments) 2205 Segment->removeSection(RemoveSec.get()); 2206 RemoveSec->onRemove(); 2207 RemoveSections.insert(RemoveSec.get()); 2208 } 2209 2210 // For each section that remains alive, we want to remove the dead references. 2211 // This either might update the content of the section (e.g. remove symbols 2212 // from symbol table that belongs to removed section) or trigger an error if 2213 // a live section critically depends on a section being removed somehow 2214 // (e.g. the removed section is referenced by a relocation). 2215 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) { 2216 if (Error E = KeepSec->removeSectionReferences( 2217 AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) { 2218 return RemoveSections.find(Sec) != RemoveSections.end(); 2219 })) 2220 return E; 2221 } 2222 2223 // Transfer removed sections into the Object RemovedSections container for use 2224 // later. 2225 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections)); 2226 // Now finally get rid of them all together. 2227 Sections.erase(Iter, std::end(Sections)); 2228 return Error::success(); 2229 } 2230 2231 Error Object::replaceSections( 2232 const DenseMap<SectionBase *, SectionBase *> &FromTo) { 2233 auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) { 2234 return Lhs->Index < Rhs->Index; 2235 }; 2236 assert(llvm::is_sorted(Sections, SectionIndexLess) && 2237 "Sections are expected to be sorted by Index"); 2238 // Set indices of new sections so that they can be later sorted into positions 2239 // of removed ones. 2240 for (auto &I : FromTo) 2241 I.second->Index = I.first->Index; 2242 2243 // Notify all sections about the replacement. 2244 for (auto &Sec : Sections) 2245 Sec->replaceSectionReferences(FromTo); 2246 2247 if (Error E = removeSections( 2248 /*AllowBrokenLinks=*/false, 2249 [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; })) 2250 return E; 2251 llvm::sort(Sections, SectionIndexLess); 2252 return Error::success(); 2253 } 2254 2255 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { 2256 if (SymbolTable) 2257 for (const SecPtr &Sec : Sections) 2258 if (Error E = Sec->removeSymbols(ToRemove)) 2259 return E; 2260 return Error::success(); 2261 } 2262 2263 Error Object::addNewSymbolTable() { 2264 assert(!SymbolTable && "Object must not has a SymbolTable."); 2265 2266 // Reuse an existing SHT_STRTAB section if it exists. 2267 StringTableSection *StrTab = nullptr; 2268 for (SectionBase &Sec : sections()) { 2269 if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) { 2270 StrTab = static_cast<StringTableSection *>(&Sec); 2271 2272 // Prefer a string table that is not the section header string table, if 2273 // such a table exists. 2274 if (SectionNames != &Sec) 2275 break; 2276 } 2277 } 2278 if (!StrTab) 2279 StrTab = &addSection<StringTableSection>(); 2280 2281 SymbolTableSection &SymTab = addSection<SymbolTableSection>(); 2282 SymTab.Name = ".symtab"; 2283 SymTab.Link = StrTab->Index; 2284 if (Error Err = SymTab.initialize(sections())) 2285 return Err; 2286 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); 2287 2288 SymbolTable = &SymTab; 2289 2290 return Error::success(); 2291 } 2292 2293 // Orders segments such that if x = y->ParentSegment then y comes before x. 2294 static void orderSegments(std::vector<Segment *> &Segments) { 2295 llvm::stable_sort(Segments, compareSegmentsByOffset); 2296 } 2297 2298 // This function finds a consistent layout for a list of segments starting from 2299 // an Offset. It assumes that Segments have been sorted by orderSegments and 2300 // returns an Offset one past the end of the last segment. 2301 static uint64_t layoutSegments(std::vector<Segment *> &Segments, 2302 uint64_t Offset) { 2303 assert(llvm::is_sorted(Segments, compareSegmentsByOffset)); 2304 // The only way a segment should move is if a section was between two 2305 // segments and that section was removed. If that section isn't in a segment 2306 // then it's acceptable, but not ideal, to simply move it to after the 2307 // segments. So we can simply layout segments one after the other accounting 2308 // for alignment. 2309 for (Segment *Seg : Segments) { 2310 // We assume that segments have been ordered by OriginalOffset and Index 2311 // such that a parent segment will always come before a child segment in 2312 // OrderedSegments. This means that the Offset of the ParentSegment should 2313 // already be set and we can set our offset relative to it. 2314 if (Seg->ParentSegment != nullptr) { 2315 Segment *Parent = Seg->ParentSegment; 2316 Seg->Offset = 2317 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset; 2318 } else { 2319 Seg->Offset = 2320 alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr); 2321 } 2322 Offset = std::max(Offset, Seg->Offset + Seg->FileSize); 2323 } 2324 return Offset; 2325 } 2326 2327 // This function finds a consistent layout for a list of sections. It assumes 2328 // that the ->ParentSegment of each section has already been laid out. The 2329 // supplied starting Offset is used for the starting offset of any section that 2330 // does not have a ParentSegment. It returns either the offset given if all 2331 // sections had a ParentSegment or an offset one past the last section if there 2332 // was a section that didn't have a ParentSegment. 2333 template <class Range> 2334 static uint64_t layoutSections(Range Sections, uint64_t Offset) { 2335 // Now the offset of every segment has been set we can assign the offsets 2336 // of each section. For sections that are covered by a segment we should use 2337 // the segment's original offset and the section's original offset to compute 2338 // the offset from the start of the segment. Using the offset from the start 2339 // of the segment we can assign a new offset to the section. For sections not 2340 // covered by segments we can just bump Offset to the next valid location. 2341 // While it is not necessary, layout the sections in the order based on their 2342 // original offsets to resemble the input file as close as possible. 2343 std::vector<SectionBase *> OutOfSegmentSections; 2344 uint32_t Index = 1; 2345 for (auto &Sec : Sections) { 2346 Sec.Index = Index++; 2347 if (Sec.ParentSegment != nullptr) { 2348 auto Segment = *Sec.ParentSegment; 2349 Sec.Offset = 2350 Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset); 2351 } else 2352 OutOfSegmentSections.push_back(&Sec); 2353 } 2354 2355 llvm::stable_sort(OutOfSegmentSections, 2356 [](const SectionBase *Lhs, const SectionBase *Rhs) { 2357 return Lhs->OriginalOffset < Rhs->OriginalOffset; 2358 }); 2359 for (auto *Sec : OutOfSegmentSections) { 2360 Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align); 2361 Sec->Offset = Offset; 2362 if (Sec->Type != SHT_NOBITS) 2363 Offset += Sec->Size; 2364 } 2365 return Offset; 2366 } 2367 2368 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus 2369 // occupy no space in the file. 2370 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) { 2371 // The layout algorithm requires the sections to be handled in the order of 2372 // their offsets in the input file, at least inside segments. 2373 std::vector<SectionBase *> Sections; 2374 Sections.reserve(Obj.sections().size()); 2375 uint32_t Index = 1; 2376 for (auto &Sec : Obj.sections()) { 2377 Sec.Index = Index++; 2378 Sections.push_back(&Sec); 2379 } 2380 llvm::stable_sort(Sections, 2381 [](const SectionBase *Lhs, const SectionBase *Rhs) { 2382 return Lhs->OriginalOffset < Rhs->OriginalOffset; 2383 }); 2384 2385 for (auto *Sec : Sections) { 2386 auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD 2387 ? Sec->ParentSegment->firstSection() 2388 : nullptr; 2389 2390 // The first section in a PT_LOAD has to have congruent offset and address 2391 // modulo the alignment, which usually equals the maximum page size. 2392 if (FirstSec && FirstSec == Sec) 2393 Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr); 2394 2395 // sh_offset is not significant for SHT_NOBITS sections, but the congruence 2396 // rule must be followed if it is the first section in a PT_LOAD. Do not 2397 // advance Off. 2398 if (Sec->Type == SHT_NOBITS) { 2399 Sec->Offset = Off; 2400 continue; 2401 } 2402 2403 if (!FirstSec) { 2404 // FirstSec being nullptr generally means that Sec does not have the 2405 // SHF_ALLOC flag. 2406 Off = Sec->Align ? alignTo(Off, Sec->Align) : Off; 2407 } else if (FirstSec != Sec) { 2408 // The offset is relative to the first section in the PT_LOAD segment. Use 2409 // sh_offset for non-SHF_ALLOC sections. 2410 Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset; 2411 } 2412 Sec->Offset = Off; 2413 Off += Sec->Size; 2414 } 2415 return Off; 2416 } 2417 2418 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values 2419 // have been updated. 2420 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments, 2421 uint64_t HdrEnd) { 2422 uint64_t MaxOffset = 0; 2423 for (Segment *Seg : Segments) { 2424 if (Seg->Type == PT_PHDR) 2425 continue; 2426 2427 // The segment offset is generally the offset of the first section. 2428 // 2429 // For a segment containing no section (see sectionWithinSegment), if it has 2430 // a parent segment, copy the parent segment's offset field. This works for 2431 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for 2432 // debugging anyway. 2433 const SectionBase *FirstSec = Seg->firstSection(); 2434 uint64_t Offset = 2435 FirstSec ? FirstSec->Offset 2436 : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0); 2437 uint64_t FileSize = 0; 2438 for (const SectionBase *Sec : Seg->Sections) { 2439 uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size; 2440 if (Sec->Offset + Size > Offset) 2441 FileSize = std::max(FileSize, Sec->Offset + Size - Offset); 2442 } 2443 2444 // If the segment includes EHDR and program headers, don't make it smaller 2445 // than the headers. 2446 if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) { 2447 FileSize += Offset - Seg->Offset; 2448 Offset = Seg->Offset; 2449 FileSize = std::max(FileSize, HdrEnd - Offset); 2450 } 2451 2452 Seg->Offset = Offset; 2453 Seg->FileSize = FileSize; 2454 MaxOffset = std::max(MaxOffset, Offset + FileSize); 2455 } 2456 return MaxOffset; 2457 } 2458 2459 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() { 2460 Segment &ElfHdr = Obj.ElfHdrSegment; 2461 ElfHdr.Type = PT_PHDR; 2462 ElfHdr.Flags = 0; 2463 ElfHdr.VAddr = 0; 2464 ElfHdr.PAddr = 0; 2465 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); 2466 ElfHdr.Align = 0; 2467 } 2468 2469 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { 2470 // We need a temporary list of segments that has a special order to it 2471 // so that we know that anytime ->ParentSegment is set that segment has 2472 // already had its offset properly set. 2473 std::vector<Segment *> OrderedSegments; 2474 for (Segment &Segment : Obj.segments()) 2475 OrderedSegments.push_back(&Segment); 2476 OrderedSegments.push_back(&Obj.ElfHdrSegment); 2477 OrderedSegments.push_back(&Obj.ProgramHdrSegment); 2478 orderSegments(OrderedSegments); 2479 2480 uint64_t Offset; 2481 if (OnlyKeepDebug) { 2482 // For --only-keep-debug, the sections that did not preserve contents were 2483 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and 2484 // then rewrite p_offset/p_filesz of program headers. 2485 uint64_t HdrEnd = 2486 sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr); 2487 Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd); 2488 Offset = std::max(Offset, 2489 layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd)); 2490 } else { 2491 // Offset is used as the start offset of the first segment to be laid out. 2492 // Since the ELF Header (ElfHdrSegment) must be at the start of the file, 2493 // we start at offset 0. 2494 Offset = layoutSegments(OrderedSegments, 0); 2495 Offset = layoutSections(Obj.sections(), Offset); 2496 } 2497 // If we need to write the section header table out then we need to align the 2498 // Offset so that SHOffset is valid. 2499 if (WriteSectionHeaders) 2500 Offset = alignTo(Offset, sizeof(Elf_Addr)); 2501 Obj.SHOff = Offset; 2502 } 2503 2504 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { 2505 // We already have the section header offset so we can calculate the total 2506 // size by just adding up the size of each section header. 2507 if (!WriteSectionHeaders) 2508 return Obj.SHOff; 2509 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr. 2510 return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr); 2511 } 2512 2513 template <class ELFT> Error ELFWriter<ELFT>::write() { 2514 // Segment data must be written first, so that the ELF header and program 2515 // header tables can overwrite it, if covered by a segment. 2516 writeSegmentData(); 2517 writeEhdr(); 2518 writePhdrs(); 2519 if (Error E = writeSectionData()) 2520 return E; 2521 if (WriteSectionHeaders) 2522 writeShdrs(); 2523 2524 // TODO: Implement direct writing to the output stream (without intermediate 2525 // memory buffer Buf). 2526 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2527 return Error::success(); 2528 } 2529 2530 static Error removeUnneededSections(Object &Obj) { 2531 // We can remove an empty symbol table from non-relocatable objects. 2532 // Relocatable objects typically have relocation sections whose 2533 // sh_link field points to .symtab, so we can't remove .symtab 2534 // even if it is empty. 2535 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr || 2536 !Obj.SymbolTable->empty()) 2537 return Error::success(); 2538 2539 // .strtab can be used for section names. In such a case we shouldn't 2540 // remove it. 2541 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames 2542 ? nullptr 2543 : Obj.SymbolTable->getStrTab(); 2544 return Obj.removeSections(false, [&](const SectionBase &Sec) { 2545 return &Sec == Obj.SymbolTable || &Sec == StrTab; 2546 }); 2547 } 2548 2549 template <class ELFT> Error ELFWriter<ELFT>::finalize() { 2550 // It could happen that SectionNames has been removed and yet the user wants 2551 // a section header table output. We need to throw an error if a user tries 2552 // to do that. 2553 if (Obj.SectionNames == nullptr && WriteSectionHeaders) 2554 return createStringError(llvm::errc::invalid_argument, 2555 "cannot write section header table because " 2556 "section header string table was removed"); 2557 2558 if (Error E = removeUnneededSections(Obj)) 2559 return E; 2560 2561 // We need to assign indexes before we perform layout because we need to know 2562 // if we need large indexes or not. We can assign indexes first and check as 2563 // we go to see if we will actully need large indexes. 2564 bool NeedsLargeIndexes = false; 2565 if (Obj.sections().size() >= SHN_LORESERVE) { 2566 SectionTableRef Sections = Obj.sections(); 2567 // Sections doesn't include the null section header, so account for this 2568 // when skipping the first N sections. 2569 NeedsLargeIndexes = 2570 any_of(drop_begin(Sections, SHN_LORESERVE - 1), 2571 [](const SectionBase &Sec) { return Sec.HasSymbol; }); 2572 // TODO: handle case where only one section needs the large index table but 2573 // only needs it because the large index table hasn't been removed yet. 2574 } 2575 2576 if (NeedsLargeIndexes) { 2577 // This means we definitely need to have a section index table but if we 2578 // already have one then we should use it instead of making a new one. 2579 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { 2580 // Addition of a section to the end does not invalidate the indexes of 2581 // other sections and assigns the correct index to the new section. 2582 auto &Shndx = Obj.addSection<SectionIndexSection>(); 2583 Obj.SymbolTable->setShndxTable(&Shndx); 2584 Shndx.setSymTab(Obj.SymbolTable); 2585 } 2586 } else { 2587 // Since we don't need SectionIndexTable we should remove it and all 2588 // references to it. 2589 if (Obj.SectionIndexTable != nullptr) { 2590 // We do not support sections referring to the section index table. 2591 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/, 2592 [this](const SectionBase &Sec) { 2593 return &Sec == Obj.SectionIndexTable; 2594 })) 2595 return E; 2596 } 2597 } 2598 2599 // Make sure we add the names of all the sections. Importantly this must be 2600 // done after we decide to add or remove SectionIndexes. 2601 if (Obj.SectionNames != nullptr) 2602 for (const SectionBase &Sec : Obj.sections()) 2603 Obj.SectionNames->addString(Sec.Name); 2604 2605 initEhdrSegment(); 2606 2607 // Before we can prepare for layout the indexes need to be finalized. 2608 // Also, the output arch may not be the same as the input arch, so fix up 2609 // size-related fields before doing layout calculations. 2610 uint64_t Index = 0; 2611 auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>(); 2612 for (SectionBase &Sec : Obj.sections()) { 2613 Sec.Index = Index++; 2614 if (Error Err = Sec.accept(*SecSizer)) 2615 return Err; 2616 } 2617 2618 // The symbol table does not update all other sections on update. For 2619 // instance, symbol names are not added as new symbols are added. This means 2620 // that some sections, like .strtab, don't yet have their final size. 2621 if (Obj.SymbolTable != nullptr) 2622 Obj.SymbolTable->prepareForLayout(); 2623 2624 // Now that all strings are added we want to finalize string table builders, 2625 // because that affects section sizes which in turn affects section offsets. 2626 for (SectionBase &Sec : Obj.sections()) 2627 if (auto StrTab = dyn_cast<StringTableSection>(&Sec)) 2628 StrTab->prepareForLayout(); 2629 2630 assignOffsets(); 2631 2632 // layoutSections could have modified section indexes, so we need 2633 // to fill the index table after assignOffsets. 2634 if (Obj.SymbolTable != nullptr) 2635 Obj.SymbolTable->fillShndxTable(); 2636 2637 // Finally now that all offsets and indexes have been set we can finalize any 2638 // remaining issues. 2639 uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr); 2640 for (SectionBase &Sec : Obj.sections()) { 2641 Sec.HeaderOffset = Offset; 2642 Offset += sizeof(Elf_Shdr); 2643 if (WriteSectionHeaders) 2644 Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name); 2645 Sec.finalize(); 2646 } 2647 2648 size_t TotalSize = totalSize(); 2649 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2650 if (!Buf) 2651 return createStringError(errc::not_enough_memory, 2652 "failed to allocate memory buffer of " + 2653 Twine::utohexstr(TotalSize) + " bytes"); 2654 2655 SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf); 2656 return Error::success(); 2657 } 2658 2659 Error BinaryWriter::write() { 2660 for (const SectionBase &Sec : Obj.allocSections()) 2661 if (Error Err = Sec.accept(*SecWriter)) 2662 return Err; 2663 2664 // TODO: Implement direct writing to the output stream (without intermediate 2665 // memory buffer Buf). 2666 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2667 return Error::success(); 2668 } 2669 2670 Error BinaryWriter::finalize() { 2671 // Compute the section LMA based on its sh_offset and the containing segment's 2672 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty 2673 // sections as MinAddr. In the output, the contents between address 0 and 2674 // MinAddr will be skipped. 2675 uint64_t MinAddr = UINT64_MAX; 2676 for (SectionBase &Sec : Obj.allocSections()) { 2677 if (Sec.ParentSegment != nullptr) 2678 Sec.Addr = 2679 Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr; 2680 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) 2681 MinAddr = std::min(MinAddr, Sec.Addr); 2682 } 2683 2684 // Now that every section has been laid out we just need to compute the total 2685 // file size. This might not be the same as the offset returned by 2686 // layoutSections, because we want to truncate the last segment to the end of 2687 // its last non-empty section, to match GNU objcopy's behaviour. 2688 TotalSize = 0; 2689 for (SectionBase &Sec : Obj.allocSections()) 2690 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) { 2691 Sec.Offset = Sec.Addr - MinAddr; 2692 TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size); 2693 } 2694 2695 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2696 if (!Buf) 2697 return createStringError(errc::not_enough_memory, 2698 "failed to allocate memory buffer of " + 2699 Twine::utohexstr(TotalSize) + " bytes"); 2700 SecWriter = std::make_unique<BinarySectionWriter>(*Buf); 2701 return Error::success(); 2702 } 2703 2704 bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs, 2705 const SectionBase *Rhs) const { 2706 return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) < 2707 (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU); 2708 } 2709 2710 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) { 2711 IHexLineData HexData; 2712 uint8_t Data[4] = {}; 2713 // We don't write entry point record if entry is zero. 2714 if (Obj.Entry == 0) 2715 return 0; 2716 2717 if (Obj.Entry <= 0xFFFFFU) { 2718 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF; 2719 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry), 2720 support::big); 2721 HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data); 2722 } else { 2723 support::endian::write(Data, static_cast<uint32_t>(Obj.Entry), 2724 support::big); 2725 HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data); 2726 } 2727 memcpy(Buf, HexData.data(), HexData.size()); 2728 return HexData.size(); 2729 } 2730 2731 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) { 2732 IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {}); 2733 memcpy(Buf, HexData.data(), HexData.size()); 2734 return HexData.size(); 2735 } 2736 2737 Error IHexWriter::write() { 2738 IHexSectionWriter Writer(*Buf); 2739 // Write sections. 2740 for (const SectionBase *Sec : Sections) 2741 if (Error Err = Sec->accept(Writer)) 2742 return Err; 2743 2744 uint64_t Offset = Writer.getBufferOffset(); 2745 // Write entry point address. 2746 Offset += writeEntryPointRecord( 2747 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); 2748 // Write EOF. 2749 Offset += writeEndOfFileRecord( 2750 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset); 2751 assert(Offset == TotalSize); 2752 2753 // TODO: Implement direct writing to the output stream (without intermediate 2754 // memory buffer Buf). 2755 Out.write(Buf->getBufferStart(), Buf->getBufferSize()); 2756 return Error::success(); 2757 } 2758 2759 Error IHexWriter::checkSection(const SectionBase &Sec) { 2760 uint64_t Addr = sectionPhysicalAddr(&Sec); 2761 if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1)) 2762 return createStringError( 2763 errc::invalid_argument, 2764 "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", 2765 Sec.Name.c_str(), Addr, Addr + Sec.Size - 1); 2766 return Error::success(); 2767 } 2768 2769 Error IHexWriter::finalize() { 2770 // We can't write 64-bit addresses. 2771 if (addressOverflows32bit(Obj.Entry)) 2772 return createStringError(errc::invalid_argument, 2773 "Entry point address 0x%llx overflows 32 bits", 2774 Obj.Entry); 2775 2776 for (const SectionBase &Sec : Obj.sections()) 2777 if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS && 2778 Sec.Size > 0) { 2779 if (Error E = checkSection(Sec)) 2780 return E; 2781 Sections.insert(&Sec); 2782 } 2783 2784 std::unique_ptr<WritableMemoryBuffer> EmptyBuffer = 2785 WritableMemoryBuffer::getNewMemBuffer(0); 2786 if (!EmptyBuffer) 2787 return createStringError(errc::not_enough_memory, 2788 "failed to allocate memory buffer of 0 bytes"); 2789 2790 IHexSectionWriterBase LengthCalc(*EmptyBuffer); 2791 for (const SectionBase *Sec : Sections) 2792 if (Error Err = Sec->accept(LengthCalc)) 2793 return Err; 2794 2795 // We need space to write section records + StartAddress record 2796 // (if start adress is not zero) + EndOfFile record. 2797 TotalSize = LengthCalc.getBufferOffset() + 2798 (Obj.Entry ? IHexRecord::getLineLength(4) : 0) + 2799 IHexRecord::getLineLength(0); 2800 2801 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); 2802 if (!Buf) 2803 return createStringError(errc::not_enough_memory, 2804 "failed to allocate memory buffer of " + 2805 Twine::utohexstr(TotalSize) + " bytes"); 2806 2807 return Error::success(); 2808 } 2809 2810 namespace llvm { 2811 namespace objcopy { 2812 namespace elf { 2813 2814 template class ELFBuilder<ELF64LE>; 2815 template class ELFBuilder<ELF64BE>; 2816 template class ELFBuilder<ELF32LE>; 2817 template class ELFBuilder<ELF32BE>; 2818 2819 template class ELFWriter<ELF64LE>; 2820 template class ELFWriter<ELF64BE>; 2821 template class ELFWriter<ELF32LE>; 2822 template class ELFWriter<ELF32BE>; 2823 2824 } // end namespace elf 2825 } // end namespace objcopy 2826 } // end namespace llvm 2827