1 //===- ELFObject.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ELFObject.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/ADT/iterator_range.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCTargetOptions.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/Compression.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FileOutputBuffer.h"
23 #include "llvm/Support/Path.h"
24 #include <algorithm>
25 #include <cstddef>
26 #include <cstdint>
27 #include <iterator>
28 #include <unordered_set>
29 #include <utility>
30 #include <vector>
31 
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::objcopy::elf;
35 using namespace llvm::object;
36 
37 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
38   uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
39                Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
40   Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
41   Phdr.p_type = Seg.Type;
42   Phdr.p_flags = Seg.Flags;
43   Phdr.p_offset = Seg.Offset;
44   Phdr.p_vaddr = Seg.VAddr;
45   Phdr.p_paddr = Seg.PAddr;
46   Phdr.p_filesz = Seg.FileSize;
47   Phdr.p_memsz = Seg.MemSize;
48   Phdr.p_align = Seg.Align;
49 }
50 
51 Error SectionBase::removeSectionReferences(
52     bool, function_ref<bool(const SectionBase *)>) {
53   return Error::success();
54 }
55 
56 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
57   return Error::success();
58 }
59 
60 Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
61 void SectionBase::finalize() {}
62 void SectionBase::markSymbols() {}
63 void SectionBase::replaceSectionReferences(
64     const DenseMap<SectionBase *, SectionBase *> &) {}
65 void SectionBase::onRemove() {}
66 
67 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
68   uint8_t *B =
69       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
70   Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
71   Shdr.sh_name = Sec.NameIndex;
72   Shdr.sh_type = Sec.Type;
73   Shdr.sh_flags = Sec.Flags;
74   Shdr.sh_addr = Sec.Addr;
75   Shdr.sh_offset = Sec.Offset;
76   Shdr.sh_size = Sec.Size;
77   Shdr.sh_link = Sec.Link;
78   Shdr.sh_info = Sec.Info;
79   Shdr.sh_addralign = Sec.Align;
80   Shdr.sh_entsize = Sec.EntrySize;
81 }
82 
83 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
84   return Error::success();
85 }
86 
87 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
88   return Error::success();
89 }
90 
91 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
92   return Error::success();
93 }
94 
95 template <class ELFT>
96 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
97   return Error::success();
98 }
99 
100 template <class ELFT>
101 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
102   Sec.EntrySize = sizeof(Elf_Sym);
103   Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
104   // Align to the largest field in Elf_Sym.
105   Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
106   return Error::success();
107 }
108 
109 template <class ELFT>
110 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
111   Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
112   Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
113   // Align to the largest field in Elf_Rel(a).
114   Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
115   return Error::success();
116 }
117 
118 template <class ELFT>
119 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
120   return Error::success();
121 }
122 
123 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
124   Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
125   return Error::success();
126 }
127 
128 template <class ELFT>
129 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
130   return Error::success();
131 }
132 
133 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
134   return Error::success();
135 }
136 
137 template <class ELFT>
138 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
139   return Error::success();
140 }
141 
142 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
143   return createStringError(errc::operation_not_permitted,
144                            "cannot write symbol section index table '" +
145                                Sec.Name + "' ");
146 }
147 
148 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
149   return createStringError(errc::operation_not_permitted,
150                            "cannot write symbol table '" + Sec.Name +
151                                "' out to binary");
152 }
153 
154 Error BinarySectionWriter::visit(const RelocationSection &Sec) {
155   return createStringError(errc::operation_not_permitted,
156                            "cannot write relocation section '" + Sec.Name +
157                                "' out to binary");
158 }
159 
160 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
161   return createStringError(errc::operation_not_permitted,
162                            "cannot write '" + Sec.Name + "' out to binary");
163 }
164 
165 Error BinarySectionWriter::visit(const GroupSection &Sec) {
166   return createStringError(errc::operation_not_permitted,
167                            "cannot write '" + Sec.Name + "' out to binary");
168 }
169 
170 Error SectionWriter::visit(const Section &Sec) {
171   if (Sec.Type != SHT_NOBITS)
172     llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
173 
174   return Error::success();
175 }
176 
177 static bool addressOverflows32bit(uint64_t Addr) {
178   // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
179   return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
180 }
181 
182 template <class T> static T checkedGetHex(StringRef S) {
183   T Value;
184   bool Fail = S.getAsInteger(16, Value);
185   assert(!Fail);
186   (void)Fail;
187   return Value;
188 }
189 
190 // Fills exactly Len bytes of buffer with hexadecimal characters
191 // representing value 'X'
192 template <class T, class Iterator>
193 static Iterator toHexStr(T X, Iterator It, size_t Len) {
194   // Fill range with '0'
195   std::fill(It, It + Len, '0');
196 
197   for (long I = Len - 1; I >= 0; --I) {
198     unsigned char Mod = static_cast<unsigned char>(X) & 15;
199     *(It + I) = hexdigit(Mod, false);
200     X >>= 4;
201   }
202   assert(X == 0);
203   return It + Len;
204 }
205 
206 uint8_t IHexRecord::getChecksum(StringRef S) {
207   assert((S.size() & 1) == 0);
208   uint8_t Checksum = 0;
209   while (!S.empty()) {
210     Checksum += checkedGetHex<uint8_t>(S.take_front(2));
211     S = S.drop_front(2);
212   }
213   return -Checksum;
214 }
215 
216 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
217                                  ArrayRef<uint8_t> Data) {
218   IHexLineData Line(getLineLength(Data.size()));
219   assert(Line.size());
220   auto Iter = Line.begin();
221   *Iter++ = ':';
222   Iter = toHexStr(Data.size(), Iter, 2);
223   Iter = toHexStr(Addr, Iter, 4);
224   Iter = toHexStr(Type, Iter, 2);
225   for (uint8_t X : Data)
226     Iter = toHexStr(X, Iter, 2);
227   StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
228   Iter = toHexStr(getChecksum(S), Iter, 2);
229   *Iter++ = '\r';
230   *Iter++ = '\n';
231   assert(Iter == Line.end());
232   return Line;
233 }
234 
235 static Error checkRecord(const IHexRecord &R) {
236   switch (R.Type) {
237   case IHexRecord::Data:
238     if (R.HexData.size() == 0)
239       return createStringError(
240           errc::invalid_argument,
241           "zero data length is not allowed for data records");
242     break;
243   case IHexRecord::EndOfFile:
244     break;
245   case IHexRecord::SegmentAddr:
246     // 20-bit segment address. Data length must be 2 bytes
247     // (4 bytes in hex)
248     if (R.HexData.size() != 4)
249       return createStringError(
250           errc::invalid_argument,
251           "segment address data should be 2 bytes in size");
252     break;
253   case IHexRecord::StartAddr80x86:
254   case IHexRecord::StartAddr:
255     if (R.HexData.size() != 8)
256       return createStringError(errc::invalid_argument,
257                                "start address data should be 4 bytes in size");
258     // According to Intel HEX specification '03' record
259     // only specifies the code address within the 20-bit
260     // segmented address space of the 8086/80186. This
261     // means 12 high order bits should be zeroes.
262     if (R.Type == IHexRecord::StartAddr80x86 &&
263         R.HexData.take_front(3) != "000")
264       return createStringError(errc::invalid_argument,
265                                "start address exceeds 20 bit for 80x86");
266     break;
267   case IHexRecord::ExtendedAddr:
268     // 16-31 bits of linear base address
269     if (R.HexData.size() != 4)
270       return createStringError(
271           errc::invalid_argument,
272           "extended address data should be 2 bytes in size");
273     break;
274   default:
275     // Unknown record type
276     return createStringError(errc::invalid_argument, "unknown record type: %u",
277                              static_cast<unsigned>(R.Type));
278   }
279   return Error::success();
280 }
281 
282 // Checks that IHEX line contains valid characters.
283 // This allows converting hexadecimal data to integers
284 // without extra verification.
285 static Error checkChars(StringRef Line) {
286   assert(!Line.empty());
287   if (Line[0] != ':')
288     return createStringError(errc::invalid_argument,
289                              "missing ':' in the beginning of line.");
290 
291   for (size_t Pos = 1; Pos < Line.size(); ++Pos)
292     if (hexDigitValue(Line[Pos]) == -1U)
293       return createStringError(errc::invalid_argument,
294                                "invalid character at position %zu.", Pos + 1);
295   return Error::success();
296 }
297 
298 Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
299   assert(!Line.empty());
300 
301   // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
302   if (Line.size() < 11)
303     return createStringError(errc::invalid_argument,
304                              "line is too short: %zu chars.", Line.size());
305 
306   if (Error E = checkChars(Line))
307     return std::move(E);
308 
309   IHexRecord Rec;
310   size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
311   if (Line.size() != getLength(DataLen))
312     return createStringError(errc::invalid_argument,
313                              "invalid line length %zu (should be %zu)",
314                              Line.size(), getLength(DataLen));
315 
316   Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
317   Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
318   Rec.HexData = Line.substr(9, DataLen * 2);
319 
320   if (getChecksum(Line.drop_front(1)) != 0)
321     return createStringError(errc::invalid_argument, "incorrect checksum.");
322   if (Error E = checkRecord(Rec))
323     return std::move(E);
324   return Rec;
325 }
326 
327 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
328   Segment *Seg = Sec->ParentSegment;
329   if (Seg && Seg->Type != ELF::PT_LOAD)
330     Seg = nullptr;
331   return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
332              : Sec->Addr;
333 }
334 
335 void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
336                                          ArrayRef<uint8_t> Data) {
337   assert(Data.size() == Sec->Size);
338   const uint32_t ChunkSize = 16;
339   uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
340   while (!Data.empty()) {
341     uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
342     if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
343       if (Addr > 0xFFFFFU) {
344         // Write extended address record, zeroing segment address
345         // if needed.
346         if (SegmentAddr != 0)
347           SegmentAddr = writeSegmentAddr(0U);
348         BaseAddr = writeBaseAddr(Addr);
349       } else {
350         // We can still remain 16-bit
351         SegmentAddr = writeSegmentAddr(Addr);
352       }
353     }
354     uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
355     assert(SegOffset <= 0xFFFFU);
356     DataSize = std::min(DataSize, 0x10000U - SegOffset);
357     writeData(0, SegOffset, Data.take_front(DataSize));
358     Addr += DataSize;
359     Data = Data.drop_front(DataSize);
360   }
361 }
362 
363 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
364   assert(Addr <= 0xFFFFFU);
365   uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
366   writeData(2, 0, Data);
367   return Addr & 0xF0000U;
368 }
369 
370 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
371   assert(Addr <= 0xFFFFFFFFU);
372   uint64_t Base = Addr & 0xFFFF0000U;
373   uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
374                     static_cast<uint8_t>((Base >> 16) & 0xFF)};
375   writeData(4, 0, Data);
376   return Base;
377 }
378 
379 void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
380                                       ArrayRef<uint8_t> Data) {
381   Offset += IHexRecord::getLineLength(Data.size());
382 }
383 
384 Error IHexSectionWriterBase::visit(const Section &Sec) {
385   writeSection(&Sec, Sec.Contents);
386   return Error::success();
387 }
388 
389 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
390   writeSection(&Sec, Sec.Data);
391   return Error::success();
392 }
393 
394 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
395   // Check that sizer has already done its work
396   assert(Sec.Size == Sec.StrTabBuilder.getSize());
397   // We are free to pass an invalid pointer to writeSection as long
398   // as we don't actually write any data. The real writer class has
399   // to override this method .
400   writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
401   return Error::success();
402 }
403 
404 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
405   writeSection(&Sec, Sec.Contents);
406   return Error::success();
407 }
408 
409 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
410                                   ArrayRef<uint8_t> Data) {
411   IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
412   memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
413   Offset += HexData.size();
414 }
415 
416 Error IHexSectionWriter::visit(const StringTableSection &Sec) {
417   assert(Sec.Size == Sec.StrTabBuilder.getSize());
418   std::vector<uint8_t> Data(Sec.Size);
419   Sec.StrTabBuilder.write(Data.data());
420   writeSection(&Sec, Data);
421   return Error::success();
422 }
423 
424 Error Section::accept(SectionVisitor &Visitor) const {
425   return Visitor.visit(*this);
426 }
427 
428 Error Section::accept(MutableSectionVisitor &Visitor) {
429   return Visitor.visit(*this);
430 }
431 
432 Error SectionWriter::visit(const OwnedDataSection &Sec) {
433   llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
434   return Error::success();
435 }
436 
437 static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
438 
439 static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
440   return Data.size() > ZlibGnuMagic.size() &&
441          std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
442 }
443 
444 template <class ELFT>
445 static std::tuple<uint64_t, uint64_t>
446 getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
447   const bool IsGnuDebug = isDataGnuCompressed(Data);
448   const uint64_t DecompressedSize =
449       IsGnuDebug
450           ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
451           : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
452   const uint64_t DecompressedAlign =
453       IsGnuDebug ? 1
454                  : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
455                        ->ch_addralign;
456 
457   return std::make_tuple(DecompressedSize, DecompressedAlign);
458 }
459 
460 template <class ELFT>
461 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
462   const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
463                                 ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
464                                 : sizeof(Elf_Chdr_Impl<ELFT>);
465 
466   StringRef CompressedContent(
467       reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
468       Sec.OriginalData.size() - DataOffset);
469 
470   SmallVector<char, 128> DecompressedContent;
471   if (Error Err = zlib::uncompress(CompressedContent, DecompressedContent,
472                                    static_cast<size_t>(Sec.Size)))
473     return createStringError(errc::invalid_argument,
474                              "'" + Sec.Name + "': " + toString(std::move(Err)));
475 
476   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
477   std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
478 
479   return Error::success();
480 }
481 
482 Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
483   return createStringError(errc::operation_not_permitted,
484                            "cannot write compressed section '" + Sec.Name +
485                                "' ");
486 }
487 
488 Error DecompressedSection::accept(SectionVisitor &Visitor) const {
489   return Visitor.visit(*this);
490 }
491 
492 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
493   return Visitor.visit(*this);
494 }
495 
496 Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
497   return Visitor.visit(*this);
498 }
499 
500 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
501   return Visitor.visit(*this);
502 }
503 
504 void OwnedDataSection::appendHexData(StringRef HexData) {
505   assert((HexData.size() & 1) == 0);
506   while (!HexData.empty()) {
507     Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
508     HexData = HexData.drop_front(2);
509   }
510   Size = Data.size();
511 }
512 
513 Error BinarySectionWriter::visit(const CompressedSection &Sec) {
514   return createStringError(errc::operation_not_permitted,
515                            "cannot write compressed section '" + Sec.Name +
516                                "' ");
517 }
518 
519 template <class ELFT>
520 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
521   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
522   if (Sec.CompressionType == DebugCompressionType::None) {
523     std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
524     return Error::success();
525   }
526 
527   if (Sec.CompressionType == DebugCompressionType::GNU) {
528     const char *Magic = "ZLIB";
529     memcpy(Buf, Magic, strlen(Magic));
530     Buf += strlen(Magic);
531     const uint64_t DecompressedSize =
532         support::endian::read64be(&Sec.DecompressedSize);
533     memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
534     Buf += sizeof(DecompressedSize);
535   } else {
536     Elf_Chdr_Impl<ELFT> Chdr;
537     Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
538     Chdr.ch_size = Sec.DecompressedSize;
539     Chdr.ch_addralign = Sec.DecompressedAlign;
540     memcpy(Buf, &Chdr, sizeof(Chdr));
541     Buf += sizeof(Chdr);
542   }
543 
544   std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
545   return Error::success();
546 }
547 
548 CompressedSection::CompressedSection(const SectionBase &Sec,
549                                      DebugCompressionType CompressionType)
550     : SectionBase(Sec), CompressionType(CompressionType),
551       DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
552   zlib::compress(StringRef(reinterpret_cast<const char *>(OriginalData.data()),
553                            OriginalData.size()),
554                  CompressedData);
555 
556   size_t ChdrSize;
557   if (CompressionType == DebugCompressionType::GNU) {
558     Name = ".z" + Sec.Name.substr(1);
559     ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
560   } else {
561     Flags |= ELF::SHF_COMPRESSED;
562     ChdrSize =
563         std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
564                           sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
565                  std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
566                           sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
567   }
568   Size = ChdrSize + CompressedData.size();
569   Align = 8;
570 }
571 
572 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
573                                      uint64_t DecompressedSize,
574                                      uint64_t DecompressedAlign)
575     : CompressionType(DebugCompressionType::None),
576       DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
577   OriginalData = CompressedData;
578 }
579 
580 Error CompressedSection::accept(SectionVisitor &Visitor) const {
581   return Visitor.visit(*this);
582 }
583 
584 Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
585   return Visitor.visit(*this);
586 }
587 
588 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
589 
590 uint32_t StringTableSection::findIndex(StringRef Name) const {
591   return StrTabBuilder.getOffset(Name);
592 }
593 
594 void StringTableSection::prepareForLayout() {
595   StrTabBuilder.finalize();
596   Size = StrTabBuilder.getSize();
597 }
598 
599 Error SectionWriter::visit(const StringTableSection &Sec) {
600   Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
601                           Sec.Offset);
602   return Error::success();
603 }
604 
605 Error StringTableSection::accept(SectionVisitor &Visitor) const {
606   return Visitor.visit(*this);
607 }
608 
609 Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
610   return Visitor.visit(*this);
611 }
612 
613 template <class ELFT>
614 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
615   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
616   llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
617   return Error::success();
618 }
619 
620 Error SectionIndexSection::initialize(SectionTableRef SecTable) {
621   Size = 0;
622   Expected<SymbolTableSection *> Sec =
623       SecTable.getSectionOfType<SymbolTableSection>(
624           Link,
625           "Link field value " + Twine(Link) + " in section " + Name +
626               " is invalid",
627           "Link field value " + Twine(Link) + " in section " + Name +
628               " is not a symbol table");
629   if (!Sec)
630     return Sec.takeError();
631 
632   setSymTab(*Sec);
633   Symbols->setShndxTable(this);
634   return Error::success();
635 }
636 
637 void SectionIndexSection::finalize() { Link = Symbols->Index; }
638 
639 Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
640   return Visitor.visit(*this);
641 }
642 
643 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
644   return Visitor.visit(*this);
645 }
646 
647 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
648   switch (Index) {
649   case SHN_ABS:
650   case SHN_COMMON:
651     return true;
652   }
653 
654   if (Machine == EM_AMDGPU) {
655     return Index == SHN_AMDGPU_LDS;
656   }
657 
658   if (Machine == EM_MIPS) {
659     switch (Index) {
660     case SHN_MIPS_ACOMMON:
661     case SHN_MIPS_SCOMMON:
662     case SHN_MIPS_SUNDEFINED:
663       return true;
664     }
665   }
666 
667   if (Machine == EM_HEXAGON) {
668     switch (Index) {
669     case SHN_HEXAGON_SCOMMON:
670     case SHN_HEXAGON_SCOMMON_1:
671     case SHN_HEXAGON_SCOMMON_2:
672     case SHN_HEXAGON_SCOMMON_4:
673     case SHN_HEXAGON_SCOMMON_8:
674       return true;
675     }
676   }
677   return false;
678 }
679 
680 // Large indexes force us to clarify exactly what this function should do. This
681 // function should return the value that will appear in st_shndx when written
682 // out.
683 uint16_t Symbol::getShndx() const {
684   if (DefinedIn != nullptr) {
685     if (DefinedIn->Index >= SHN_LORESERVE)
686       return SHN_XINDEX;
687     return DefinedIn->Index;
688   }
689 
690   if (ShndxType == SYMBOL_SIMPLE_INDEX) {
691     // This means that we don't have a defined section but we do need to
692     // output a legitimate section index.
693     return SHN_UNDEF;
694   }
695 
696   assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
697          (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
698          (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
699   return static_cast<uint16_t>(ShndxType);
700 }
701 
702 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
703 
704 void SymbolTableSection::assignIndices() {
705   uint32_t Index = 0;
706   for (auto &Sym : Symbols)
707     Sym->Index = Index++;
708 }
709 
710 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
711                                    SectionBase *DefinedIn, uint64_t Value,
712                                    uint8_t Visibility, uint16_t Shndx,
713                                    uint64_t SymbolSize) {
714   Symbol Sym;
715   Sym.Name = Name.str();
716   Sym.Binding = Bind;
717   Sym.Type = Type;
718   Sym.DefinedIn = DefinedIn;
719   if (DefinedIn != nullptr)
720     DefinedIn->HasSymbol = true;
721   if (DefinedIn == nullptr) {
722     if (Shndx >= SHN_LORESERVE)
723       Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
724     else
725       Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
726   }
727   Sym.Value = Value;
728   Sym.Visibility = Visibility;
729   Sym.Size = SymbolSize;
730   Sym.Index = Symbols.size();
731   Symbols.emplace_back(std::make_unique<Symbol>(Sym));
732   Size += this->EntrySize;
733 }
734 
735 Error SymbolTableSection::removeSectionReferences(
736     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
737   if (ToRemove(SectionIndexTable))
738     SectionIndexTable = nullptr;
739   if (ToRemove(SymbolNames)) {
740     if (!AllowBrokenLinks)
741       return createStringError(
742           llvm::errc::invalid_argument,
743           "string table '%s' cannot be removed because it is "
744           "referenced by the symbol table '%s'",
745           SymbolNames->Name.data(), this->Name.data());
746     SymbolNames = nullptr;
747   }
748   return removeSymbols(
749       [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
750 }
751 
752 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
753   std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
754                 [Callable](SymPtr &Sym) { Callable(*Sym); });
755   std::stable_partition(
756       std::begin(Symbols), std::end(Symbols),
757       [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
758   assignIndices();
759 }
760 
761 Error SymbolTableSection::removeSymbols(
762     function_ref<bool(const Symbol &)> ToRemove) {
763   Symbols.erase(
764       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
765                      [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
766       std::end(Symbols));
767   Size = Symbols.size() * EntrySize;
768   assignIndices();
769   return Error::success();
770 }
771 
772 void SymbolTableSection::replaceSectionReferences(
773     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
774   for (std::unique_ptr<Symbol> &Sym : Symbols)
775     if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
776       Sym->DefinedIn = To;
777 }
778 
779 Error SymbolTableSection::initialize(SectionTableRef SecTable) {
780   Size = 0;
781   Expected<StringTableSection *> Sec =
782       SecTable.getSectionOfType<StringTableSection>(
783           Link,
784           "Symbol table has link index of " + Twine(Link) +
785               " which is not a valid index",
786           "Symbol table has link index of " + Twine(Link) +
787               " which is not a string table");
788   if (!Sec)
789     return Sec.takeError();
790 
791   setStrTab(*Sec);
792   return Error::success();
793 }
794 
795 void SymbolTableSection::finalize() {
796   uint32_t MaxLocalIndex = 0;
797   for (std::unique_ptr<Symbol> &Sym : Symbols) {
798     Sym->NameIndex =
799         SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
800     if (Sym->Binding == STB_LOCAL)
801       MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
802   }
803   // Now we need to set the Link and Info fields.
804   Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
805   Info = MaxLocalIndex + 1;
806 }
807 
808 void SymbolTableSection::prepareForLayout() {
809   // Reserve proper amount of space in section index table, so we can
810   // layout sections correctly. We will fill the table with correct
811   // indexes later in fillShdnxTable.
812   if (SectionIndexTable)
813     SectionIndexTable->reserve(Symbols.size());
814 
815   // Add all of our strings to SymbolNames so that SymbolNames has the right
816   // size before layout is decided.
817   // If the symbol names section has been removed, don't try to add strings to
818   // the table.
819   if (SymbolNames != nullptr)
820     for (std::unique_ptr<Symbol> &Sym : Symbols)
821       SymbolNames->addString(Sym->Name);
822 }
823 
824 void SymbolTableSection::fillShndxTable() {
825   if (SectionIndexTable == nullptr)
826     return;
827   // Fill section index table with real section indexes. This function must
828   // be called after assignOffsets.
829   for (const std::unique_ptr<Symbol> &Sym : Symbols) {
830     if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
831       SectionIndexTable->addIndex(Sym->DefinedIn->Index);
832     else
833       SectionIndexTable->addIndex(SHN_UNDEF);
834   }
835 }
836 
837 Expected<const Symbol *>
838 SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
839   if (Symbols.size() <= Index)
840     return createStringError(errc::invalid_argument,
841                              "invalid symbol index: " + Twine(Index));
842   return Symbols[Index].get();
843 }
844 
845 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
846   Expected<const Symbol *> Sym =
847       static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
848   if (!Sym)
849     return Sym.takeError();
850 
851   return const_cast<Symbol *>(*Sym);
852 }
853 
854 template <class ELFT>
855 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
856   Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
857   // Loop though symbols setting each entry of the symbol table.
858   for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
859     Sym->st_name = Symbol->NameIndex;
860     Sym->st_value = Symbol->Value;
861     Sym->st_size = Symbol->Size;
862     Sym->st_other = Symbol->Visibility;
863     Sym->setBinding(Symbol->Binding);
864     Sym->setType(Symbol->Type);
865     Sym->st_shndx = Symbol->getShndx();
866     ++Sym;
867   }
868   return Error::success();
869 }
870 
871 Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
872   return Visitor.visit(*this);
873 }
874 
875 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
876   return Visitor.visit(*this);
877 }
878 
879 StringRef RelocationSectionBase::getNamePrefix() const {
880   switch (Type) {
881   case SHT_REL:
882     return ".rel";
883   case SHT_RELA:
884     return ".rela";
885   default:
886     llvm_unreachable("not a relocation section");
887   }
888 }
889 
890 Error RelocationSection::removeSectionReferences(
891     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
892   if (ToRemove(Symbols)) {
893     if (!AllowBrokenLinks)
894       return createStringError(
895           llvm::errc::invalid_argument,
896           "symbol table '%s' cannot be removed because it is "
897           "referenced by the relocation section '%s'",
898           Symbols->Name.data(), this->Name.data());
899     Symbols = nullptr;
900   }
901 
902   for (const Relocation &R : Relocations) {
903     if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
904         !ToRemove(R.RelocSymbol->DefinedIn))
905       continue;
906     return createStringError(llvm::errc::invalid_argument,
907                              "section '%s' cannot be removed: (%s+0x%" PRIx64
908                              ") has relocation against symbol '%s'",
909                              R.RelocSymbol->DefinedIn->Name.data(),
910                              SecToApplyRel->Name.data(), R.Offset,
911                              R.RelocSymbol->Name.c_str());
912   }
913 
914   return Error::success();
915 }
916 
917 template <class SymTabType>
918 Error RelocSectionWithSymtabBase<SymTabType>::initialize(
919     SectionTableRef SecTable) {
920   if (Link != SHN_UNDEF) {
921     Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
922         Link,
923         "Link field value " + Twine(Link) + " in section " + Name +
924             " is invalid",
925         "Link field value " + Twine(Link) + " in section " + Name +
926             " is not a symbol table");
927     if (!Sec)
928       return Sec.takeError();
929 
930     setSymTab(*Sec);
931   }
932 
933   if (Info != SHN_UNDEF) {
934     Expected<SectionBase *> Sec =
935         SecTable.getSection(Info, "Info field value " + Twine(Info) +
936                                       " in section " + Name + " is invalid");
937     if (!Sec)
938       return Sec.takeError();
939 
940     setSection(*Sec);
941   } else
942     setSection(nullptr);
943 
944   return Error::success();
945 }
946 
947 template <class SymTabType>
948 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
949   this->Link = Symbols ? Symbols->Index : 0;
950 
951   if (SecToApplyRel != nullptr)
952     this->Info = SecToApplyRel->Index;
953 }
954 
955 template <class ELFT>
956 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
957 
958 template <class ELFT>
959 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
960   Rela.r_addend = Addend;
961 }
962 
963 template <class RelRange, class T>
964 static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) {
965   for (const auto &Reloc : Relocations) {
966     Buf->r_offset = Reloc.Offset;
967     setAddend(*Buf, Reloc.Addend);
968     Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
969                           Reloc.Type, IsMips64EL);
970     ++Buf;
971   }
972 }
973 
974 template <class ELFT>
975 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
976   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
977   if (Sec.Type == SHT_REL)
978     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf),
979              Sec.getObject().IsMips64EL);
980   else
981     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf),
982              Sec.getObject().IsMips64EL);
983   return Error::success();
984 }
985 
986 Error RelocationSection::accept(SectionVisitor &Visitor) const {
987   return Visitor.visit(*this);
988 }
989 
990 Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
991   return Visitor.visit(*this);
992 }
993 
994 Error RelocationSection::removeSymbols(
995     function_ref<bool(const Symbol &)> ToRemove) {
996   for (const Relocation &Reloc : Relocations)
997     if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
998       return createStringError(
999           llvm::errc::invalid_argument,
1000           "not stripping symbol '%s' because it is named in a relocation",
1001           Reloc.RelocSymbol->Name.data());
1002   return Error::success();
1003 }
1004 
1005 void RelocationSection::markSymbols() {
1006   for (const Relocation &Reloc : Relocations)
1007     if (Reloc.RelocSymbol)
1008       Reloc.RelocSymbol->Referenced = true;
1009 }
1010 
1011 void RelocationSection::replaceSectionReferences(
1012     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1013   // Update the target section if it was replaced.
1014   if (SectionBase *To = FromTo.lookup(SecToApplyRel))
1015     SecToApplyRel = To;
1016 }
1017 
1018 Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
1019   llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
1020   return Error::success();
1021 }
1022 
1023 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
1024   return Visitor.visit(*this);
1025 }
1026 
1027 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
1028   return Visitor.visit(*this);
1029 }
1030 
1031 Error DynamicRelocationSection::removeSectionReferences(
1032     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1033   if (ToRemove(Symbols)) {
1034     if (!AllowBrokenLinks)
1035       return createStringError(
1036           llvm::errc::invalid_argument,
1037           "symbol table '%s' cannot be removed because it is "
1038           "referenced by the relocation section '%s'",
1039           Symbols->Name.data(), this->Name.data());
1040     Symbols = nullptr;
1041   }
1042 
1043   // SecToApplyRel contains a section referenced by sh_info field. It keeps
1044   // a section to which the relocation section applies. When we remove any
1045   // sections we also remove their relocation sections. Since we do that much
1046   // earlier, this assert should never be triggered.
1047   assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
1048   return Error::success();
1049 }
1050 
1051 Error Section::removeSectionReferences(
1052     bool AllowBrokenDependency,
1053     function_ref<bool(const SectionBase *)> ToRemove) {
1054   if (ToRemove(LinkSection)) {
1055     if (!AllowBrokenDependency)
1056       return createStringError(llvm::errc::invalid_argument,
1057                                "section '%s' cannot be removed because it is "
1058                                "referenced by the section '%s'",
1059                                LinkSection->Name.data(), this->Name.data());
1060     LinkSection = nullptr;
1061   }
1062   return Error::success();
1063 }
1064 
1065 void GroupSection::finalize() {
1066   this->Info = Sym ? Sym->Index : 0;
1067   this->Link = SymTab ? SymTab->Index : 0;
1068   // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1069   // status is not part of the equation. If Sym is localized, the intention is
1070   // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1071   // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1072   if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
1073     this->FlagWord &= ~GRP_COMDAT;
1074 }
1075 
1076 Error GroupSection::removeSectionReferences(
1077     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1078   if (ToRemove(SymTab)) {
1079     if (!AllowBrokenLinks)
1080       return createStringError(
1081           llvm::errc::invalid_argument,
1082           "section '.symtab' cannot be removed because it is "
1083           "referenced by the group section '%s'",
1084           this->Name.data());
1085     SymTab = nullptr;
1086     Sym = nullptr;
1087   }
1088   llvm::erase_if(GroupMembers, ToRemove);
1089   return Error::success();
1090 }
1091 
1092 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1093   if (ToRemove(*Sym))
1094     return createStringError(llvm::errc::invalid_argument,
1095                              "symbol '%s' cannot be removed because it is "
1096                              "referenced by the section '%s[%d]'",
1097                              Sym->Name.data(), this->Name.data(), this->Index);
1098   return Error::success();
1099 }
1100 
1101 void GroupSection::markSymbols() {
1102   if (Sym)
1103     Sym->Referenced = true;
1104 }
1105 
1106 void GroupSection::replaceSectionReferences(
1107     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1108   for (SectionBase *&Sec : GroupMembers)
1109     if (SectionBase *To = FromTo.lookup(Sec))
1110       Sec = To;
1111 }
1112 
1113 void GroupSection::onRemove() {
1114   // As the header section of the group is removed, drop the Group flag in its
1115   // former members.
1116   for (SectionBase *Sec : GroupMembers)
1117     Sec->Flags &= ~SHF_GROUP;
1118 }
1119 
1120 Error Section::initialize(SectionTableRef SecTable) {
1121   if (Link == ELF::SHN_UNDEF)
1122     return Error::success();
1123 
1124   Expected<SectionBase *> Sec =
1125       SecTable.getSection(Link, "Link field value " + Twine(Link) +
1126                                     " in section " + Name + " is invalid");
1127   if (!Sec)
1128     return Sec.takeError();
1129 
1130   LinkSection = *Sec;
1131 
1132   if (LinkSection->Type == ELF::SHT_SYMTAB)
1133     LinkSection = nullptr;
1134 
1135   return Error::success();
1136 }
1137 
1138 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1139 
1140 void GnuDebugLinkSection::init(StringRef File) {
1141   FileName = sys::path::filename(File);
1142   // The format for the .gnu_debuglink starts with the file name and is
1143   // followed by a null terminator and then the CRC32 of the file. The CRC32
1144   // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1145   // byte, and then finally push the size to alignment and add 4.
1146   Size = alignTo(FileName.size() + 1, 4) + 4;
1147   // The CRC32 will only be aligned if we align the whole section.
1148   Align = 4;
1149   Type = OriginalType = ELF::SHT_PROGBITS;
1150   Name = ".gnu_debuglink";
1151   // For sections not found in segments, OriginalOffset is only used to
1152   // establish the order that sections should go in. By using the maximum
1153   // possible offset we cause this section to wind up at the end.
1154   OriginalOffset = std::numeric_limits<uint64_t>::max();
1155 }
1156 
1157 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1158                                          uint32_t PrecomputedCRC)
1159     : FileName(File), CRC32(PrecomputedCRC) {
1160   init(File);
1161 }
1162 
1163 template <class ELFT>
1164 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1165   unsigned char *Buf =
1166       reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1167   Elf_Word *CRC =
1168       reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1169   *CRC = Sec.CRC32;
1170   llvm::copy(Sec.FileName, Buf);
1171   return Error::success();
1172 }
1173 
1174 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1175   return Visitor.visit(*this);
1176 }
1177 
1178 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1179   return Visitor.visit(*this);
1180 }
1181 
1182 template <class ELFT>
1183 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1184   ELF::Elf32_Word *Buf =
1185       reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1186   support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord);
1187   for (SectionBase *S : Sec.GroupMembers)
1188     support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1189   return Error::success();
1190 }
1191 
1192 Error GroupSection::accept(SectionVisitor &Visitor) const {
1193   return Visitor.visit(*this);
1194 }
1195 
1196 Error GroupSection::accept(MutableSectionVisitor &Visitor) {
1197   return Visitor.visit(*this);
1198 }
1199 
1200 // Returns true IFF a section is wholly inside the range of a segment
1201 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1202   // If a section is empty it should be treated like it has a size of 1. This is
1203   // to clarify the case when an empty section lies on a boundary between two
1204   // segments and ensures that the section "belongs" to the second segment and
1205   // not the first.
1206   uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1207 
1208   // Ignore just added sections.
1209   if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1210     return false;
1211 
1212   if (Sec.Type == SHT_NOBITS) {
1213     if (!(Sec.Flags & SHF_ALLOC))
1214       return false;
1215 
1216     bool SectionIsTLS = Sec.Flags & SHF_TLS;
1217     bool SegmentIsTLS = Seg.Type == PT_TLS;
1218     if (SectionIsTLS != SegmentIsTLS)
1219       return false;
1220 
1221     return Seg.VAddr <= Sec.Addr &&
1222            Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1223   }
1224 
1225   return Seg.Offset <= Sec.OriginalOffset &&
1226          Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1227 }
1228 
1229 // Returns true IFF a segment's original offset is inside of another segment's
1230 // range.
1231 static bool segmentOverlapsSegment(const Segment &Child,
1232                                    const Segment &Parent) {
1233 
1234   return Parent.OriginalOffset <= Child.OriginalOffset &&
1235          Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1236 }
1237 
1238 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1239   // Any segment without a parent segment should come before a segment
1240   // that has a parent segment.
1241   if (A->OriginalOffset < B->OriginalOffset)
1242     return true;
1243   if (A->OriginalOffset > B->OriginalOffset)
1244     return false;
1245   return A->Index < B->Index;
1246 }
1247 
1248 void BasicELFBuilder::initFileHeader() {
1249   Obj->Flags = 0x0;
1250   Obj->Type = ET_REL;
1251   Obj->OSABI = ELFOSABI_NONE;
1252   Obj->ABIVersion = 0;
1253   Obj->Entry = 0x0;
1254   Obj->Machine = EM_NONE;
1255   Obj->Version = 1;
1256 }
1257 
1258 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1259 
1260 StringTableSection *BasicELFBuilder::addStrTab() {
1261   auto &StrTab = Obj->addSection<StringTableSection>();
1262   StrTab.Name = ".strtab";
1263 
1264   Obj->SectionNames = &StrTab;
1265   return &StrTab;
1266 }
1267 
1268 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1269   auto &SymTab = Obj->addSection<SymbolTableSection>();
1270 
1271   SymTab.Name = ".symtab";
1272   SymTab.Link = StrTab->Index;
1273 
1274   // The symbol table always needs a null symbol
1275   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1276 
1277   Obj->SymbolTable = &SymTab;
1278   return &SymTab;
1279 }
1280 
1281 Error BasicELFBuilder::initSections() {
1282   for (SectionBase &Sec : Obj->sections())
1283     if (Error Err = Sec.initialize(Obj->sections()))
1284       return Err;
1285 
1286   return Error::success();
1287 }
1288 
1289 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1290   auto Data = ArrayRef<uint8_t>(
1291       reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1292       MemBuf->getBufferSize());
1293   auto &DataSection = Obj->addSection<Section>(Data);
1294   DataSection.Name = ".data";
1295   DataSection.Type = ELF::SHT_PROGBITS;
1296   DataSection.Size = Data.size();
1297   DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1298 
1299   std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1300   std::replace_if(
1301       std::begin(SanitizedFilename), std::end(SanitizedFilename),
1302       [](char C) { return !isAlnum(C); }, '_');
1303   Twine Prefix = Twine("_binary_") + SanitizedFilename;
1304 
1305   SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1306                     /*Value=*/0, NewSymbolVisibility, 0, 0);
1307   SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1308                     /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1309   SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1310                     /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1311                     0);
1312 }
1313 
1314 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
1315   initFileHeader();
1316   initHeaderSegment();
1317 
1318   SymbolTableSection *SymTab = addSymTab(addStrTab());
1319   if (Error Err = initSections())
1320     return std::move(Err);
1321   addData(SymTab);
1322 
1323   return std::move(Obj);
1324 }
1325 
1326 // Adds sections from IHEX data file. Data should have been
1327 // fully validated by this time.
1328 void IHexELFBuilder::addDataSections() {
1329   OwnedDataSection *Section = nullptr;
1330   uint64_t SegmentAddr = 0, BaseAddr = 0;
1331   uint32_t SecNo = 1;
1332 
1333   for (const IHexRecord &R : Records) {
1334     uint64_t RecAddr;
1335     switch (R.Type) {
1336     case IHexRecord::Data:
1337       // Ignore empty data records
1338       if (R.HexData.empty())
1339         continue;
1340       RecAddr = R.Addr + SegmentAddr + BaseAddr;
1341       if (!Section || Section->Addr + Section->Size != RecAddr) {
1342         // OriginalOffset field is only used to sort sections before layout, so
1343         // instead of keeping track of real offsets in IHEX file, and as
1344         // layoutSections() and layoutSectionsForOnlyKeepDebug() use
1345         // llvm::stable_sort(), we can just set it to a constant (zero).
1346         Section = &Obj->addSection<OwnedDataSection>(
1347             ".sec" + std::to_string(SecNo), RecAddr,
1348             ELF::SHF_ALLOC | ELF::SHF_WRITE, 0);
1349         SecNo++;
1350       }
1351       Section->appendHexData(R.HexData);
1352       break;
1353     case IHexRecord::EndOfFile:
1354       break;
1355     case IHexRecord::SegmentAddr:
1356       // 20-bit segment address.
1357       SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1358       break;
1359     case IHexRecord::StartAddr80x86:
1360     case IHexRecord::StartAddr:
1361       Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1362       assert(Obj->Entry <= 0xFFFFFU);
1363       break;
1364     case IHexRecord::ExtendedAddr:
1365       // 16-31 bits of linear base address
1366       BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1367       break;
1368     default:
1369       llvm_unreachable("unknown record type");
1370     }
1371   }
1372 }
1373 
1374 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
1375   initFileHeader();
1376   initHeaderSegment();
1377   StringTableSection *StrTab = addStrTab();
1378   addSymTab(StrTab);
1379   if (Error Err = initSections())
1380     return std::move(Err);
1381   addDataSections();
1382 
1383   return std::move(Obj);
1384 }
1385 
1386 template <class ELFT>
1387 ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj,
1388                              Optional<StringRef> ExtractPartition)
1389     : ElfFile(ElfObj.getELFFile()), Obj(Obj),
1390       ExtractPartition(ExtractPartition) {
1391   Obj.IsMips64EL = ElfFile.isMips64EL();
1392 }
1393 
1394 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1395   for (Segment &Parent : Obj.segments()) {
1396     // Every segment will overlap with itself but we don't want a segment to
1397     // be its own parent so we avoid that situation.
1398     if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1399       // We want a canonical "most parental" segment but this requires
1400       // inspecting the ParentSegment.
1401       if (compareSegmentsByOffset(&Parent, &Child))
1402         if (Child.ParentSegment == nullptr ||
1403             compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1404           Child.ParentSegment = &Parent;
1405         }
1406     }
1407   }
1408 }
1409 
1410 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1411   if (!ExtractPartition)
1412     return Error::success();
1413 
1414   for (const SectionBase &Sec : Obj.sections()) {
1415     if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1416       EhdrOffset = Sec.Offset;
1417       return Error::success();
1418     }
1419   }
1420   return createStringError(errc::invalid_argument,
1421                            "could not find partition named '" +
1422                                *ExtractPartition + "'");
1423 }
1424 
1425 template <class ELFT>
1426 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1427   uint32_t Index = 0;
1428 
1429   Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
1430       HeadersFile.program_headers();
1431   if (!Headers)
1432     return Headers.takeError();
1433 
1434   for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1435     if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1436       return createStringError(
1437           errc::invalid_argument,
1438           "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1439               " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1440               " goes past the end of the file");
1441 
1442     ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1443                            (size_t)Phdr.p_filesz};
1444     Segment &Seg = Obj.addSegment(Data);
1445     Seg.Type = Phdr.p_type;
1446     Seg.Flags = Phdr.p_flags;
1447     Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1448     Seg.Offset = Phdr.p_offset + EhdrOffset;
1449     Seg.VAddr = Phdr.p_vaddr;
1450     Seg.PAddr = Phdr.p_paddr;
1451     Seg.FileSize = Phdr.p_filesz;
1452     Seg.MemSize = Phdr.p_memsz;
1453     Seg.Align = Phdr.p_align;
1454     Seg.Index = Index++;
1455     for (SectionBase &Sec : Obj.sections())
1456       if (sectionWithinSegment(Sec, Seg)) {
1457         Seg.addSection(&Sec);
1458         if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1459           Sec.ParentSegment = &Seg;
1460       }
1461   }
1462 
1463   auto &ElfHdr = Obj.ElfHdrSegment;
1464   ElfHdr.Index = Index++;
1465   ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1466 
1467   const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1468   auto &PrHdr = Obj.ProgramHdrSegment;
1469   PrHdr.Type = PT_PHDR;
1470   PrHdr.Flags = 0;
1471   // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1472   // Whereas this works automatically for ElfHdr, here OriginalOffset is
1473   // always non-zero and to ensure the equation we assign the same value to
1474   // VAddr as well.
1475   PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1476   PrHdr.PAddr = 0;
1477   PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1478   // The spec requires us to naturally align all the fields.
1479   PrHdr.Align = sizeof(Elf_Addr);
1480   PrHdr.Index = Index++;
1481 
1482   // Now we do an O(n^2) loop through the segments in order to match up
1483   // segments.
1484   for (Segment &Child : Obj.segments())
1485     setParentSegment(Child);
1486   setParentSegment(ElfHdr);
1487   setParentSegment(PrHdr);
1488 
1489   return Error::success();
1490 }
1491 
1492 template <class ELFT>
1493 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1494   if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1495     return createStringError(errc::invalid_argument,
1496                              "invalid alignment " + Twine(GroupSec->Align) +
1497                                  " of group section '" + GroupSec->Name + "'");
1498   SectionTableRef SecTable = Obj.sections();
1499   if (GroupSec->Link != SHN_UNDEF) {
1500     auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1501         GroupSec->Link,
1502         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1503             GroupSec->Name + "' is invalid",
1504         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1505             GroupSec->Name + "' is not a symbol table");
1506     if (!SymTab)
1507       return SymTab.takeError();
1508 
1509     Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1510     if (!Sym)
1511       return createStringError(errc::invalid_argument,
1512                                "info field value '" + Twine(GroupSec->Info) +
1513                                    "' in section '" + GroupSec->Name +
1514                                    "' is not a valid symbol index");
1515     GroupSec->setSymTab(*SymTab);
1516     GroupSec->setSymbol(*Sym);
1517   }
1518   if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1519       GroupSec->Contents.empty())
1520     return createStringError(errc::invalid_argument,
1521                              "the content of the section " + GroupSec->Name +
1522                                  " is malformed");
1523   const ELF::Elf32_Word *Word =
1524       reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1525   const ELF::Elf32_Word *End =
1526       Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1527   GroupSec->setFlagWord(
1528       support::endian::read32<ELFT::TargetEndianness>(Word++));
1529   for (; Word != End; ++Word) {
1530     uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1531     Expected<SectionBase *> Sec = SecTable.getSection(
1532         Index, "group member index " + Twine(Index) + " in section '" +
1533                    GroupSec->Name + "' is invalid");
1534     if (!Sec)
1535       return Sec.takeError();
1536 
1537     GroupSec->addMember(*Sec);
1538   }
1539 
1540   return Error::success();
1541 }
1542 
1543 template <class ELFT>
1544 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1545   Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1546   if (!Shdr)
1547     return Shdr.takeError();
1548 
1549   Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1550   if (!StrTabData)
1551     return StrTabData.takeError();
1552 
1553   ArrayRef<Elf_Word> ShndxData;
1554 
1555   Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
1556       ElfFile.symbols(*Shdr);
1557   if (!Symbols)
1558     return Symbols.takeError();
1559 
1560   for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1561     SectionBase *DefSection = nullptr;
1562 
1563     Expected<StringRef> Name = Sym.getName(*StrTabData);
1564     if (!Name)
1565       return Name.takeError();
1566 
1567     if (Sym.st_shndx == SHN_XINDEX) {
1568       if (SymTab->getShndxTable() == nullptr)
1569         return createStringError(errc::invalid_argument,
1570                                  "symbol '" + *Name +
1571                                      "' has index SHN_XINDEX but no "
1572                                      "SHT_SYMTAB_SHNDX section exists");
1573       if (ShndxData.data() == nullptr) {
1574         Expected<const Elf_Shdr *> ShndxSec =
1575             ElfFile.getSection(SymTab->getShndxTable()->Index);
1576         if (!ShndxSec)
1577           return ShndxSec.takeError();
1578 
1579         Expected<ArrayRef<Elf_Word>> Data =
1580             ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1581         if (!Data)
1582           return Data.takeError();
1583 
1584         ShndxData = *Data;
1585         if (ShndxData.size() != Symbols->size())
1586           return createStringError(
1587               errc::invalid_argument,
1588               "symbol section index table does not have the same number of "
1589               "entries as the symbol table");
1590       }
1591       Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1592       Expected<SectionBase *> Sec = Obj.sections().getSection(
1593           Index,
1594           "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1595       if (!Sec)
1596         return Sec.takeError();
1597 
1598       DefSection = *Sec;
1599     } else if (Sym.st_shndx >= SHN_LORESERVE) {
1600       if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1601         return createStringError(
1602             errc::invalid_argument,
1603             "symbol '" + *Name +
1604                 "' has unsupported value greater than or equal "
1605                 "to SHN_LORESERVE: " +
1606                 Twine(Sym.st_shndx));
1607       }
1608     } else if (Sym.st_shndx != SHN_UNDEF) {
1609       Expected<SectionBase *> Sec = Obj.sections().getSection(
1610           Sym.st_shndx, "symbol '" + *Name +
1611                             "' is defined has invalid section index " +
1612                             Twine(Sym.st_shndx));
1613       if (!Sec)
1614         return Sec.takeError();
1615 
1616       DefSection = *Sec;
1617     }
1618 
1619     SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1620                       Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1621   }
1622 
1623   return Error::success();
1624 }
1625 
1626 template <class ELFT>
1627 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
1628 
1629 template <class ELFT>
1630 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1631   ToSet = Rela.r_addend;
1632 }
1633 
1634 template <class T>
1635 static Error initRelocations(RelocationSection *Relocs, T RelRange) {
1636   for (const auto &Rel : RelRange) {
1637     Relocation ToAdd;
1638     ToAdd.Offset = Rel.r_offset;
1639     getAddend(ToAdd.Addend, Rel);
1640     ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL);
1641 
1642     if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) {
1643       if (!Relocs->getObject().SymbolTable)
1644         return createStringError(
1645             errc::invalid_argument,
1646             "'" + Relocs->Name + "': relocation references symbol with index " +
1647                 Twine(Sym) + ", but there is no symbol table");
1648       Expected<Symbol *> SymByIndex =
1649           Relocs->getObject().SymbolTable->getSymbolByIndex(Sym);
1650       if (!SymByIndex)
1651         return SymByIndex.takeError();
1652 
1653       ToAdd.RelocSymbol = *SymByIndex;
1654     }
1655 
1656     Relocs->addRelocation(ToAdd);
1657   }
1658 
1659   return Error::success();
1660 }
1661 
1662 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
1663                                                     Twine ErrMsg) {
1664   if (Index == SHN_UNDEF || Index > Sections.size())
1665     return createStringError(errc::invalid_argument, ErrMsg);
1666   return Sections[Index - 1].get();
1667 }
1668 
1669 template <class T>
1670 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
1671                                                 Twine IndexErrMsg,
1672                                                 Twine TypeErrMsg) {
1673   Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1674   if (!BaseSec)
1675     return BaseSec.takeError();
1676 
1677   if (T *Sec = dyn_cast<T>(*BaseSec))
1678     return Sec;
1679 
1680   return createStringError(errc::invalid_argument, TypeErrMsg);
1681 }
1682 
1683 template <class ELFT>
1684 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1685   switch (Shdr.sh_type) {
1686   case SHT_REL:
1687   case SHT_RELA:
1688     if (Shdr.sh_flags & SHF_ALLOC) {
1689       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1690         return Obj.addSection<DynamicRelocationSection>(*Data);
1691       else
1692         return Data.takeError();
1693     }
1694     return Obj.addSection<RelocationSection>(Obj);
1695   case SHT_STRTAB:
1696     // If a string table is allocated we don't want to mess with it. That would
1697     // mean altering the memory image. There are no special link types or
1698     // anything so we can just use a Section.
1699     if (Shdr.sh_flags & SHF_ALLOC) {
1700       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1701         return Obj.addSection<Section>(*Data);
1702       else
1703         return Data.takeError();
1704     }
1705     return Obj.addSection<StringTableSection>();
1706   case SHT_HASH:
1707   case SHT_GNU_HASH:
1708     // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1709     // Because of this we don't need to mess with the hash tables either.
1710     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1711       return Obj.addSection<Section>(*Data);
1712     else
1713       return Data.takeError();
1714   case SHT_GROUP:
1715     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1716       return Obj.addSection<GroupSection>(*Data);
1717     else
1718       return Data.takeError();
1719   case SHT_DYNSYM:
1720     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1721       return Obj.addSection<DynamicSymbolTableSection>(*Data);
1722     else
1723       return Data.takeError();
1724   case SHT_DYNAMIC:
1725     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1726       return Obj.addSection<DynamicSection>(*Data);
1727     else
1728       return Data.takeError();
1729   case SHT_SYMTAB: {
1730     auto &SymTab = Obj.addSection<SymbolTableSection>();
1731     Obj.SymbolTable = &SymTab;
1732     return SymTab;
1733   }
1734   case SHT_SYMTAB_SHNDX: {
1735     auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1736     Obj.SectionIndexTable = &ShndxSection;
1737     return ShndxSection;
1738   }
1739   case SHT_NOBITS:
1740     return Obj.addSection<Section>(ArrayRef<uint8_t>());
1741   default: {
1742     Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1743     if (!Data)
1744       return Data.takeError();
1745 
1746     Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1747     if (!Name)
1748       return Name.takeError();
1749 
1750     if (Name->startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
1751       uint64_t DecompressedSize, DecompressedAlign;
1752       std::tie(DecompressedSize, DecompressedAlign) =
1753           getDecompressedSizeAndAlignment<ELFT>(*Data);
1754       return Obj.addSection<CompressedSection>(
1755           CompressedSection(*Data, DecompressedSize, DecompressedAlign));
1756     }
1757 
1758     return Obj.addSection<Section>(*Data);
1759   }
1760   }
1761 }
1762 
1763 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1764   uint32_t Index = 0;
1765   Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1766       ElfFile.sections();
1767   if (!Sections)
1768     return Sections.takeError();
1769 
1770   for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1771     if (Index == 0) {
1772       ++Index;
1773       continue;
1774     }
1775     Expected<SectionBase &> Sec = makeSection(Shdr);
1776     if (!Sec)
1777       return Sec.takeError();
1778 
1779     Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1780     if (!SecName)
1781       return SecName.takeError();
1782     Sec->Name = SecName->str();
1783     Sec->Type = Sec->OriginalType = Shdr.sh_type;
1784     Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1785     Sec->Addr = Shdr.sh_addr;
1786     Sec->Offset = Shdr.sh_offset;
1787     Sec->OriginalOffset = Shdr.sh_offset;
1788     Sec->Size = Shdr.sh_size;
1789     Sec->Link = Shdr.sh_link;
1790     Sec->Info = Shdr.sh_info;
1791     Sec->Align = Shdr.sh_addralign;
1792     Sec->EntrySize = Shdr.sh_entsize;
1793     Sec->Index = Index++;
1794     Sec->OriginalIndex = Sec->Index;
1795     Sec->OriginalData = ArrayRef<uint8_t>(
1796         ElfFile.base() + Shdr.sh_offset,
1797         (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
1798   }
1799 
1800   return Error::success();
1801 }
1802 
1803 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1804   uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1805   if (ShstrIndex == SHN_XINDEX) {
1806     Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1807     if (!Sec)
1808       return Sec.takeError();
1809 
1810     ShstrIndex = (*Sec)->sh_link;
1811   }
1812 
1813   if (ShstrIndex == SHN_UNDEF)
1814     Obj.HadShdrs = false;
1815   else {
1816     Expected<StringTableSection *> Sec =
1817         Obj.sections().template getSectionOfType<StringTableSection>(
1818             ShstrIndex,
1819             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1820                 " is invalid",
1821             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1822                 " does not reference a string table");
1823     if (!Sec)
1824       return Sec.takeError();
1825 
1826     Obj.SectionNames = *Sec;
1827   }
1828 
1829   // If a section index table exists we'll need to initialize it before we
1830   // initialize the symbol table because the symbol table might need to
1831   // reference it.
1832   if (Obj.SectionIndexTable)
1833     if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1834       return Err;
1835 
1836   // Now that all of the sections have been added we can fill out some extra
1837   // details about symbol tables. We need the symbol table filled out before
1838   // any relocations.
1839   if (Obj.SymbolTable) {
1840     if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1841       return Err;
1842     if (Error Err = initSymbolTable(Obj.SymbolTable))
1843       return Err;
1844   } else if (EnsureSymtab) {
1845     if (Error Err = Obj.addNewSymbolTable())
1846       return Err;
1847   }
1848 
1849   // Now that all sections and symbols have been added we can add
1850   // relocations that reference symbols and set the link and info fields for
1851   // relocation sections.
1852   for (SectionBase &Sec : Obj.sections()) {
1853     if (&Sec == Obj.SymbolTable)
1854       continue;
1855     if (Error Err = Sec.initialize(Obj.sections()))
1856       return Err;
1857     if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1858       Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1859           ElfFile.sections();
1860       if (!Sections)
1861         return Sections.takeError();
1862 
1863       const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1864           Sections->begin() + RelSec->Index;
1865       if (RelSec->Type == SHT_REL) {
1866         Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
1867             ElfFile.rels(*Shdr);
1868         if (!Rels)
1869           return Rels.takeError();
1870 
1871         if (Error Err = initRelocations(RelSec, *Rels))
1872           return Err;
1873       } else {
1874         Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
1875             ElfFile.relas(*Shdr);
1876         if (!Relas)
1877           return Relas.takeError();
1878 
1879         if (Error Err = initRelocations(RelSec, *Relas))
1880           return Err;
1881       }
1882     } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1883       if (Error Err = initGroupSection(GroupSec))
1884         return Err;
1885     }
1886   }
1887 
1888   return Error::success();
1889 }
1890 
1891 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1892   if (Error E = readSectionHeaders())
1893     return E;
1894   if (Error E = findEhdrOffset())
1895     return E;
1896 
1897   // The ELFFile whose ELF headers and program headers are copied into the
1898   // output file. Normally the same as ElfFile, but if we're extracting a
1899   // loadable partition it will point to the partition's headers.
1900   Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
1901       {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1902   if (!HeadersFile)
1903     return HeadersFile.takeError();
1904 
1905   const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1906   Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1907   Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1908   Obj.Type = Ehdr.e_type;
1909   Obj.Machine = Ehdr.e_machine;
1910   Obj.Version = Ehdr.e_version;
1911   Obj.Entry = Ehdr.e_entry;
1912   Obj.Flags = Ehdr.e_flags;
1913 
1914   if (Error E = readSections(EnsureSymtab))
1915     return E;
1916   return readProgramHeaders(*HeadersFile);
1917 }
1918 
1919 Writer::~Writer() = default;
1920 
1921 Reader::~Reader() = default;
1922 
1923 Expected<std::unique_ptr<Object>>
1924 BinaryReader::create(bool /*EnsureSymtab*/) const {
1925   return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1926 }
1927 
1928 Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1929   SmallVector<StringRef, 16> Lines;
1930   std::vector<IHexRecord> Records;
1931   bool HasSections = false;
1932 
1933   MemBuf->getBuffer().split(Lines, '\n');
1934   Records.reserve(Lines.size());
1935   for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1936     StringRef Line = Lines[LineNo - 1].trim();
1937     if (Line.empty())
1938       continue;
1939 
1940     Expected<IHexRecord> R = IHexRecord::parse(Line);
1941     if (!R)
1942       return parseError(LineNo, R.takeError());
1943     if (R->Type == IHexRecord::EndOfFile)
1944       break;
1945     HasSections |= (R->Type == IHexRecord::Data);
1946     Records.push_back(*R);
1947   }
1948   if (!HasSections)
1949     return parseError(-1U, "no sections");
1950 
1951   return std::move(Records);
1952 }
1953 
1954 Expected<std::unique_ptr<Object>>
1955 IHexReader::create(bool /*EnsureSymtab*/) const {
1956   Expected<std::vector<IHexRecord>> Records = parse();
1957   if (!Records)
1958     return Records.takeError();
1959 
1960   return IHexELFBuilder(*Records).build();
1961 }
1962 
1963 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
1964   auto Obj = std::make_unique<Object>();
1965   if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1966     ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1967     if (Error Err = Builder.build(EnsureSymtab))
1968       return std::move(Err);
1969     return std::move(Obj);
1970   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1971     ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1972     if (Error Err = Builder.build(EnsureSymtab))
1973       return std::move(Err);
1974     return std::move(Obj);
1975   } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1976     ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1977     if (Error Err = Builder.build(EnsureSymtab))
1978       return std::move(Err);
1979     return std::move(Obj);
1980   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1981     ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1982     if (Error Err = Builder.build(EnsureSymtab))
1983       return std::move(Err);
1984     return std::move(Obj);
1985   }
1986   return createStringError(errc::invalid_argument, "invalid file type");
1987 }
1988 
1989 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1990   Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
1991   std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1992   Ehdr.e_ident[EI_MAG0] = 0x7f;
1993   Ehdr.e_ident[EI_MAG1] = 'E';
1994   Ehdr.e_ident[EI_MAG2] = 'L';
1995   Ehdr.e_ident[EI_MAG3] = 'F';
1996   Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1997   Ehdr.e_ident[EI_DATA] =
1998       ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1999   Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
2000   Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
2001   Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
2002 
2003   Ehdr.e_type = Obj.Type;
2004   Ehdr.e_machine = Obj.Machine;
2005   Ehdr.e_version = Obj.Version;
2006   Ehdr.e_entry = Obj.Entry;
2007   // We have to use the fully-qualified name llvm::size
2008   // since some compilers complain on ambiguous resolution.
2009   Ehdr.e_phnum = llvm::size(Obj.segments());
2010   Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
2011   Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
2012   Ehdr.e_flags = Obj.Flags;
2013   Ehdr.e_ehsize = sizeof(Elf_Ehdr);
2014   if (WriteSectionHeaders && Obj.sections().size() != 0) {
2015     Ehdr.e_shentsize = sizeof(Elf_Shdr);
2016     Ehdr.e_shoff = Obj.SHOff;
2017     // """
2018     // If the number of sections is greater than or equal to
2019     // SHN_LORESERVE (0xff00), this member has the value zero and the actual
2020     // number of section header table entries is contained in the sh_size field
2021     // of the section header at index 0.
2022     // """
2023     auto Shnum = Obj.sections().size() + 1;
2024     if (Shnum >= SHN_LORESERVE)
2025       Ehdr.e_shnum = 0;
2026     else
2027       Ehdr.e_shnum = Shnum;
2028     // """
2029     // If the section name string table section index is greater than or equal
2030     // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2031     // and the actual index of the section name string table section is
2032     // contained in the sh_link field of the section header at index 0.
2033     // """
2034     if (Obj.SectionNames->Index >= SHN_LORESERVE)
2035       Ehdr.e_shstrndx = SHN_XINDEX;
2036     else
2037       Ehdr.e_shstrndx = Obj.SectionNames->Index;
2038   } else {
2039     Ehdr.e_shentsize = 0;
2040     Ehdr.e_shoff = 0;
2041     Ehdr.e_shnum = 0;
2042     Ehdr.e_shstrndx = 0;
2043   }
2044 }
2045 
2046 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
2047   for (auto &Seg : Obj.segments())
2048     writePhdr(Seg);
2049 }
2050 
2051 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2052   // This reference serves to write the dummy section header at the begining
2053   // of the file. It is not used for anything else
2054   Elf_Shdr &Shdr =
2055       *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2056   Shdr.sh_name = 0;
2057   Shdr.sh_type = SHT_NULL;
2058   Shdr.sh_flags = 0;
2059   Shdr.sh_addr = 0;
2060   Shdr.sh_offset = 0;
2061   // See writeEhdr for why we do this.
2062   uint64_t Shnum = Obj.sections().size() + 1;
2063   if (Shnum >= SHN_LORESERVE)
2064     Shdr.sh_size = Shnum;
2065   else
2066     Shdr.sh_size = 0;
2067   // See writeEhdr for why we do this.
2068   if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2069     Shdr.sh_link = Obj.SectionNames->Index;
2070   else
2071     Shdr.sh_link = 0;
2072   Shdr.sh_info = 0;
2073   Shdr.sh_addralign = 0;
2074   Shdr.sh_entsize = 0;
2075 
2076   for (SectionBase &Sec : Obj.sections())
2077     writeShdr(Sec);
2078 }
2079 
2080 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2081   for (SectionBase &Sec : Obj.sections())
2082     // Segments are responsible for writing their contents, so only write the
2083     // section data if the section is not in a segment. Note that this renders
2084     // sections in segments effectively immutable.
2085     if (Sec.ParentSegment == nullptr)
2086       if (Error Err = Sec.accept(*SecWriter))
2087         return Err;
2088 
2089   return Error::success();
2090 }
2091 
2092 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2093   for (Segment &Seg : Obj.segments()) {
2094     size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2095     std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2096                 Size);
2097   }
2098 
2099   for (auto it : Obj.getUpdatedSections()) {
2100     SectionBase *Sec = it.first;
2101     ArrayRef<uint8_t> Data = it.second;
2102 
2103     auto *Parent = Sec->ParentSegment;
2104     assert(Parent && "This section should've been part of a segment.");
2105     uint64_t Offset =
2106         Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2107     llvm::copy(Data, Buf->getBufferStart() + Offset);
2108   }
2109 
2110   // Iterate over removed sections and overwrite their old data with zeroes.
2111   for (auto &Sec : Obj.removedSections()) {
2112     Segment *Parent = Sec.ParentSegment;
2113     if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2114       continue;
2115     uint64_t Offset =
2116         Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2117     std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2118   }
2119 }
2120 
2121 template <class ELFT>
2122 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
2123                            bool OnlyKeepDebug)
2124     : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2125       OnlyKeepDebug(OnlyKeepDebug) {}
2126 
2127 Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) {
2128   auto It = llvm::find_if(Sections,
2129                           [&](const SecPtr &Sec) { return Sec->Name == Name; });
2130   if (It == Sections.end())
2131     return createStringError(errc::invalid_argument, "section '%s' not found",
2132                              Name.str().c_str());
2133 
2134   auto *OldSec = It->get();
2135   if (!OldSec->hasContents())
2136     return createStringError(
2137         errc::invalid_argument,
2138         "section '%s' cannot be updated because it does not have contents",
2139         Name.str().c_str());
2140 
2141   if (Data.size() > OldSec->Size && OldSec->ParentSegment)
2142     return createStringError(errc::invalid_argument,
2143                              "cannot fit data of size %zu into section '%s' "
2144                              "with size %zu that is part of a segment",
2145                              Data.size(), Name.str().c_str(), OldSec->Size);
2146 
2147   if (!OldSec->ParentSegment) {
2148     *It = std::make_unique<OwnedDataSection>(*OldSec, Data);
2149   } else {
2150     // The segment writer will be in charge of updating these contents.
2151     OldSec->Size = Data.size();
2152     UpdatedSections[OldSec] = Data;
2153   }
2154 
2155   return Error::success();
2156 }
2157 
2158 Error Object::removeSections(
2159     bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2160 
2161   auto Iter = std::stable_partition(
2162       std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2163         if (ToRemove(*Sec))
2164           return false;
2165         if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2166           if (auto ToRelSec = RelSec->getSection())
2167             return !ToRemove(*ToRelSec);
2168         }
2169         return true;
2170       });
2171   if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2172     SymbolTable = nullptr;
2173   if (SectionNames != nullptr && ToRemove(*SectionNames))
2174     SectionNames = nullptr;
2175   if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2176     SectionIndexTable = nullptr;
2177   // Now make sure there are no remaining references to the sections that will
2178   // be removed. Sometimes it is impossible to remove a reference so we emit
2179   // an error here instead.
2180   std::unordered_set<const SectionBase *> RemoveSections;
2181   RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2182   for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2183     for (auto &Segment : Segments)
2184       Segment->removeSection(RemoveSec.get());
2185     RemoveSec->onRemove();
2186     RemoveSections.insert(RemoveSec.get());
2187   }
2188 
2189   // For each section that remains alive, we want to remove the dead references.
2190   // This either might update the content of the section (e.g. remove symbols
2191   // from symbol table that belongs to removed section) or trigger an error if
2192   // a live section critically depends on a section being removed somehow
2193   // (e.g. the removed section is referenced by a relocation).
2194   for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2195     if (Error E = KeepSec->removeSectionReferences(
2196             AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2197               return RemoveSections.find(Sec) != RemoveSections.end();
2198             }))
2199       return E;
2200   }
2201 
2202   // Transfer removed sections into the Object RemovedSections container for use
2203   // later.
2204   std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2205   // Now finally get rid of them all together.
2206   Sections.erase(Iter, std::end(Sections));
2207   return Error::success();
2208 }
2209 
2210 Error Object::replaceSections(
2211     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
2212   auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) {
2213     return Lhs->Index < Rhs->Index;
2214   };
2215   assert(llvm::is_sorted(Sections, SectionIndexLess) &&
2216          "Sections are expected to be sorted by Index");
2217   // Set indices of new sections so that they can be later sorted into positions
2218   // of removed ones.
2219   for (auto &I : FromTo)
2220     I.second->Index = I.first->Index;
2221 
2222   // Notify all sections about the replacement.
2223   for (auto &Sec : Sections)
2224     Sec->replaceSectionReferences(FromTo);
2225 
2226   if (Error E = removeSections(
2227           /*AllowBrokenLinks=*/false,
2228           [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }))
2229     return E;
2230   llvm::sort(Sections, SectionIndexLess);
2231   return Error::success();
2232 }
2233 
2234 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
2235   if (SymbolTable)
2236     for (const SecPtr &Sec : Sections)
2237       if (Error E = Sec->removeSymbols(ToRemove))
2238         return E;
2239   return Error::success();
2240 }
2241 
2242 Error Object::addNewSymbolTable() {
2243   assert(!SymbolTable && "Object must not has a SymbolTable.");
2244 
2245   // Reuse an existing SHT_STRTAB section if it exists.
2246   StringTableSection *StrTab = nullptr;
2247   for (SectionBase &Sec : sections()) {
2248     if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2249       StrTab = static_cast<StringTableSection *>(&Sec);
2250 
2251       // Prefer a string table that is not the section header string table, if
2252       // such a table exists.
2253       if (SectionNames != &Sec)
2254         break;
2255     }
2256   }
2257   if (!StrTab)
2258     StrTab = &addSection<StringTableSection>();
2259 
2260   SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2261   SymTab.Name = ".symtab";
2262   SymTab.Link = StrTab->Index;
2263   if (Error Err = SymTab.initialize(sections()))
2264     return Err;
2265   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2266 
2267   SymbolTable = &SymTab;
2268 
2269   return Error::success();
2270 }
2271 
2272 // Orders segments such that if x = y->ParentSegment then y comes before x.
2273 static void orderSegments(std::vector<Segment *> &Segments) {
2274   llvm::stable_sort(Segments, compareSegmentsByOffset);
2275 }
2276 
2277 // This function finds a consistent layout for a list of segments starting from
2278 // an Offset. It assumes that Segments have been sorted by orderSegments and
2279 // returns an Offset one past the end of the last segment.
2280 static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2281                                uint64_t Offset) {
2282   assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
2283   // The only way a segment should move is if a section was between two
2284   // segments and that section was removed. If that section isn't in a segment
2285   // then it's acceptable, but not ideal, to simply move it to after the
2286   // segments. So we can simply layout segments one after the other accounting
2287   // for alignment.
2288   for (Segment *Seg : Segments) {
2289     // We assume that segments have been ordered by OriginalOffset and Index
2290     // such that a parent segment will always come before a child segment in
2291     // OrderedSegments. This means that the Offset of the ParentSegment should
2292     // already be set and we can set our offset relative to it.
2293     if (Seg->ParentSegment != nullptr) {
2294       Segment *Parent = Seg->ParentSegment;
2295       Seg->Offset =
2296           Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2297     } else {
2298       Seg->Offset =
2299           alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2300     }
2301     Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2302   }
2303   return Offset;
2304 }
2305 
2306 // This function finds a consistent layout for a list of sections. It assumes
2307 // that the ->ParentSegment of each section has already been laid out. The
2308 // supplied starting Offset is used for the starting offset of any section that
2309 // does not have a ParentSegment. It returns either the offset given if all
2310 // sections had a ParentSegment or an offset one past the last section if there
2311 // was a section that didn't have a ParentSegment.
2312 template <class Range>
2313 static uint64_t layoutSections(Range Sections, uint64_t Offset) {
2314   // Now the offset of every segment has been set we can assign the offsets
2315   // of each section. For sections that are covered by a segment we should use
2316   // the segment's original offset and the section's original offset to compute
2317   // the offset from the start of the segment. Using the offset from the start
2318   // of the segment we can assign a new offset to the section. For sections not
2319   // covered by segments we can just bump Offset to the next valid location.
2320   // While it is not necessary, layout the sections in the order based on their
2321   // original offsets to resemble the input file as close as possible.
2322   std::vector<SectionBase *> OutOfSegmentSections;
2323   uint32_t Index = 1;
2324   for (auto &Sec : Sections) {
2325     Sec.Index = Index++;
2326     if (Sec.ParentSegment != nullptr) {
2327       auto Segment = *Sec.ParentSegment;
2328       Sec.Offset =
2329           Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2330     } else
2331       OutOfSegmentSections.push_back(&Sec);
2332   }
2333 
2334   llvm::stable_sort(OutOfSegmentSections,
2335                     [](const SectionBase *Lhs, const SectionBase *Rhs) {
2336                       return Lhs->OriginalOffset < Rhs->OriginalOffset;
2337                     });
2338   for (auto *Sec : OutOfSegmentSections) {
2339     Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align);
2340     Sec->Offset = Offset;
2341     if (Sec->Type != SHT_NOBITS)
2342       Offset += Sec->Size;
2343   }
2344   return Offset;
2345 }
2346 
2347 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2348 // occupy no space in the file.
2349 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
2350   // The layout algorithm requires the sections to be handled in the order of
2351   // their offsets in the input file, at least inside segments.
2352   std::vector<SectionBase *> Sections;
2353   Sections.reserve(Obj.sections().size());
2354   uint32_t Index = 1;
2355   for (auto &Sec : Obj.sections()) {
2356     Sec.Index = Index++;
2357     Sections.push_back(&Sec);
2358   }
2359   llvm::stable_sort(Sections,
2360                     [](const SectionBase *Lhs, const SectionBase *Rhs) {
2361                       return Lhs->OriginalOffset < Rhs->OriginalOffset;
2362                     });
2363 
2364   for (auto *Sec : Sections) {
2365     auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD
2366                          ? Sec->ParentSegment->firstSection()
2367                          : nullptr;
2368 
2369     // The first section in a PT_LOAD has to have congruent offset and address
2370     // modulo the alignment, which usually equals the maximum page size.
2371     if (FirstSec && FirstSec == Sec)
2372       Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr);
2373 
2374     // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2375     // rule must be followed if it is the first section in a PT_LOAD. Do not
2376     // advance Off.
2377     if (Sec->Type == SHT_NOBITS) {
2378       Sec->Offset = Off;
2379       continue;
2380     }
2381 
2382     if (!FirstSec) {
2383       // FirstSec being nullptr generally means that Sec does not have the
2384       // SHF_ALLOC flag.
2385       Off = Sec->Align ? alignTo(Off, Sec->Align) : Off;
2386     } else if (FirstSec != Sec) {
2387       // The offset is relative to the first section in the PT_LOAD segment. Use
2388       // sh_offset for non-SHF_ALLOC sections.
2389       Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2390     }
2391     Sec->Offset = Off;
2392     Off += Sec->Size;
2393   }
2394   return Off;
2395 }
2396 
2397 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2398 // have been updated.
2399 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2400                                                uint64_t HdrEnd) {
2401   uint64_t MaxOffset = 0;
2402   for (Segment *Seg : Segments) {
2403     if (Seg->Type == PT_PHDR)
2404       continue;
2405 
2406     // The segment offset is generally the offset of the first section.
2407     //
2408     // For a segment containing no section (see sectionWithinSegment), if it has
2409     // a parent segment, copy the parent segment's offset field. This works for
2410     // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2411     // debugging anyway.
2412     const SectionBase *FirstSec = Seg->firstSection();
2413     uint64_t Offset =
2414         FirstSec ? FirstSec->Offset
2415                  : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2416     uint64_t FileSize = 0;
2417     for (const SectionBase *Sec : Seg->Sections) {
2418       uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2419       if (Sec->Offset + Size > Offset)
2420         FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2421     }
2422 
2423     // If the segment includes EHDR and program headers, don't make it smaller
2424     // than the headers.
2425     if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2426       FileSize += Offset - Seg->Offset;
2427       Offset = Seg->Offset;
2428       FileSize = std::max(FileSize, HdrEnd - Offset);
2429     }
2430 
2431     Seg->Offset = Offset;
2432     Seg->FileSize = FileSize;
2433     MaxOffset = std::max(MaxOffset, Offset + FileSize);
2434   }
2435   return MaxOffset;
2436 }
2437 
2438 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2439   Segment &ElfHdr = Obj.ElfHdrSegment;
2440   ElfHdr.Type = PT_PHDR;
2441   ElfHdr.Flags = 0;
2442   ElfHdr.VAddr = 0;
2443   ElfHdr.PAddr = 0;
2444   ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2445   ElfHdr.Align = 0;
2446 }
2447 
2448 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2449   // We need a temporary list of segments that has a special order to it
2450   // so that we know that anytime ->ParentSegment is set that segment has
2451   // already had its offset properly set.
2452   std::vector<Segment *> OrderedSegments;
2453   for (Segment &Segment : Obj.segments())
2454     OrderedSegments.push_back(&Segment);
2455   OrderedSegments.push_back(&Obj.ElfHdrSegment);
2456   OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2457   orderSegments(OrderedSegments);
2458 
2459   uint64_t Offset;
2460   if (OnlyKeepDebug) {
2461     // For --only-keep-debug, the sections that did not preserve contents were
2462     // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2463     // then rewrite p_offset/p_filesz of program headers.
2464     uint64_t HdrEnd =
2465         sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2466     Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2467     Offset = std::max(Offset,
2468                       layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2469   } else {
2470     // Offset is used as the start offset of the first segment to be laid out.
2471     // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2472     // we start at offset 0.
2473     Offset = layoutSegments(OrderedSegments, 0);
2474     Offset = layoutSections(Obj.sections(), Offset);
2475   }
2476   // If we need to write the section header table out then we need to align the
2477   // Offset so that SHOffset is valid.
2478   if (WriteSectionHeaders)
2479     Offset = alignTo(Offset, sizeof(Elf_Addr));
2480   Obj.SHOff = Offset;
2481 }
2482 
2483 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2484   // We already have the section header offset so we can calculate the total
2485   // size by just adding up the size of each section header.
2486   if (!WriteSectionHeaders)
2487     return Obj.SHOff;
2488   size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2489   return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2490 }
2491 
2492 template <class ELFT> Error ELFWriter<ELFT>::write() {
2493   // Segment data must be written first, so that the ELF header and program
2494   // header tables can overwrite it, if covered by a segment.
2495   writeSegmentData();
2496   writeEhdr();
2497   writePhdrs();
2498   if (Error E = writeSectionData())
2499     return E;
2500   if (WriteSectionHeaders)
2501     writeShdrs();
2502 
2503   // TODO: Implement direct writing to the output stream (without intermediate
2504   // memory buffer Buf).
2505   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2506   return Error::success();
2507 }
2508 
2509 static Error removeUnneededSections(Object &Obj) {
2510   // We can remove an empty symbol table from non-relocatable objects.
2511   // Relocatable objects typically have relocation sections whose
2512   // sh_link field points to .symtab, so we can't remove .symtab
2513   // even if it is empty.
2514   if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2515       !Obj.SymbolTable->empty())
2516     return Error::success();
2517 
2518   // .strtab can be used for section names. In such a case we shouldn't
2519   // remove it.
2520   auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2521                      ? nullptr
2522                      : Obj.SymbolTable->getStrTab();
2523   return Obj.removeSections(false, [&](const SectionBase &Sec) {
2524     return &Sec == Obj.SymbolTable || &Sec == StrTab;
2525   });
2526 }
2527 
2528 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2529   // It could happen that SectionNames has been removed and yet the user wants
2530   // a section header table output. We need to throw an error if a user tries
2531   // to do that.
2532   if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2533     return createStringError(llvm::errc::invalid_argument,
2534                              "cannot write section header table because "
2535                              "section header string table was removed");
2536 
2537   if (Error E = removeUnneededSections(Obj))
2538     return E;
2539 
2540   // We need to assign indexes before we perform layout because we need to know
2541   // if we need large indexes or not. We can assign indexes first and check as
2542   // we go to see if we will actully need large indexes.
2543   bool NeedsLargeIndexes = false;
2544   if (Obj.sections().size() >= SHN_LORESERVE) {
2545     SectionTableRef Sections = Obj.sections();
2546     // Sections doesn't include the null section header, so account for this
2547     // when skipping the first N sections.
2548     NeedsLargeIndexes =
2549         any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2550                [](const SectionBase &Sec) { return Sec.HasSymbol; });
2551     // TODO: handle case where only one section needs the large index table but
2552     // only needs it because the large index table hasn't been removed yet.
2553   }
2554 
2555   if (NeedsLargeIndexes) {
2556     // This means we definitely need to have a section index table but if we
2557     // already have one then we should use it instead of making a new one.
2558     if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2559       // Addition of a section to the end does not invalidate the indexes of
2560       // other sections and assigns the correct index to the new section.
2561       auto &Shndx = Obj.addSection<SectionIndexSection>();
2562       Obj.SymbolTable->setShndxTable(&Shndx);
2563       Shndx.setSymTab(Obj.SymbolTable);
2564     }
2565   } else {
2566     // Since we don't need SectionIndexTable we should remove it and all
2567     // references to it.
2568     if (Obj.SectionIndexTable != nullptr) {
2569       // We do not support sections referring to the section index table.
2570       if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2571                                        [this](const SectionBase &Sec) {
2572                                          return &Sec == Obj.SectionIndexTable;
2573                                        }))
2574         return E;
2575     }
2576   }
2577 
2578   // Make sure we add the names of all the sections. Importantly this must be
2579   // done after we decide to add or remove SectionIndexes.
2580   if (Obj.SectionNames != nullptr)
2581     for (const SectionBase &Sec : Obj.sections())
2582       Obj.SectionNames->addString(Sec.Name);
2583 
2584   initEhdrSegment();
2585 
2586   // Before we can prepare for layout the indexes need to be finalized.
2587   // Also, the output arch may not be the same as the input arch, so fix up
2588   // size-related fields before doing layout calculations.
2589   uint64_t Index = 0;
2590   auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2591   for (SectionBase &Sec : Obj.sections()) {
2592     Sec.Index = Index++;
2593     if (Error Err = Sec.accept(*SecSizer))
2594       return Err;
2595   }
2596 
2597   // The symbol table does not update all other sections on update. For
2598   // instance, symbol names are not added as new symbols are added. This means
2599   // that some sections, like .strtab, don't yet have their final size.
2600   if (Obj.SymbolTable != nullptr)
2601     Obj.SymbolTable->prepareForLayout();
2602 
2603   // Now that all strings are added we want to finalize string table builders,
2604   // because that affects section sizes which in turn affects section offsets.
2605   for (SectionBase &Sec : Obj.sections())
2606     if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2607       StrTab->prepareForLayout();
2608 
2609   assignOffsets();
2610 
2611   // layoutSections could have modified section indexes, so we need
2612   // to fill the index table after assignOffsets.
2613   if (Obj.SymbolTable != nullptr)
2614     Obj.SymbolTable->fillShndxTable();
2615 
2616   // Finally now that all offsets and indexes have been set we can finalize any
2617   // remaining issues.
2618   uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2619   for (SectionBase &Sec : Obj.sections()) {
2620     Sec.HeaderOffset = Offset;
2621     Offset += sizeof(Elf_Shdr);
2622     if (WriteSectionHeaders)
2623       Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2624     Sec.finalize();
2625   }
2626 
2627   size_t TotalSize = totalSize();
2628   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2629   if (!Buf)
2630     return createStringError(errc::not_enough_memory,
2631                              "failed to allocate memory buffer of " +
2632                                  Twine::utohexstr(TotalSize) + " bytes");
2633 
2634   SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2635   return Error::success();
2636 }
2637 
2638 Error BinaryWriter::write() {
2639   for (const SectionBase &Sec : Obj.allocSections())
2640     if (Error Err = Sec.accept(*SecWriter))
2641       return Err;
2642 
2643   // TODO: Implement direct writing to the output stream (without intermediate
2644   // memory buffer Buf).
2645   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2646   return Error::success();
2647 }
2648 
2649 Error BinaryWriter::finalize() {
2650   // Compute the section LMA based on its sh_offset and the containing segment's
2651   // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2652   // sections as MinAddr. In the output, the contents between address 0 and
2653   // MinAddr will be skipped.
2654   uint64_t MinAddr = UINT64_MAX;
2655   for (SectionBase &Sec : Obj.allocSections()) {
2656     if (Sec.ParentSegment != nullptr)
2657       Sec.Addr =
2658           Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
2659     if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2660       MinAddr = std::min(MinAddr, Sec.Addr);
2661   }
2662 
2663   // Now that every section has been laid out we just need to compute the total
2664   // file size. This might not be the same as the offset returned by
2665   // layoutSections, because we want to truncate the last segment to the end of
2666   // its last non-empty section, to match GNU objcopy's behaviour.
2667   TotalSize = 0;
2668   for (SectionBase &Sec : Obj.allocSections())
2669     if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2670       Sec.Offset = Sec.Addr - MinAddr;
2671       TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2672     }
2673 
2674   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2675   if (!Buf)
2676     return createStringError(errc::not_enough_memory,
2677                              "failed to allocate memory buffer of " +
2678                                  Twine::utohexstr(TotalSize) + " bytes");
2679   SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2680   return Error::success();
2681 }
2682 
2683 bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2684                                             const SectionBase *Rhs) const {
2685   return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2686          (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2687 }
2688 
2689 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2690   IHexLineData HexData;
2691   uint8_t Data[4] = {};
2692   // We don't write entry point record if entry is zero.
2693   if (Obj.Entry == 0)
2694     return 0;
2695 
2696   if (Obj.Entry <= 0xFFFFFU) {
2697     Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2698     support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2699                            support::big);
2700     HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2701   } else {
2702     support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2703                            support::big);
2704     HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2705   }
2706   memcpy(Buf, HexData.data(), HexData.size());
2707   return HexData.size();
2708 }
2709 
2710 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2711   IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2712   memcpy(Buf, HexData.data(), HexData.size());
2713   return HexData.size();
2714 }
2715 
2716 Error IHexWriter::write() {
2717   IHexSectionWriter Writer(*Buf);
2718   // Write sections.
2719   for (const SectionBase *Sec : Sections)
2720     if (Error Err = Sec->accept(Writer))
2721       return Err;
2722 
2723   uint64_t Offset = Writer.getBufferOffset();
2724   // Write entry point address.
2725   Offset += writeEntryPointRecord(
2726       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2727   // Write EOF.
2728   Offset += writeEndOfFileRecord(
2729       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2730   assert(Offset == TotalSize);
2731 
2732   // TODO: Implement direct writing to the output stream (without intermediate
2733   // memory buffer Buf).
2734   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2735   return Error::success();
2736 }
2737 
2738 Error IHexWriter::checkSection(const SectionBase &Sec) {
2739   uint64_t Addr = sectionPhysicalAddr(&Sec);
2740   if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2741     return createStringError(
2742         errc::invalid_argument,
2743         "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2744         Sec.Name.c_str(), Addr, Addr + Sec.Size - 1);
2745   return Error::success();
2746 }
2747 
2748 Error IHexWriter::finalize() {
2749   // We can't write 64-bit addresses.
2750   if (addressOverflows32bit(Obj.Entry))
2751     return createStringError(errc::invalid_argument,
2752                              "Entry point address 0x%llx overflows 32 bits",
2753                              Obj.Entry);
2754 
2755   for (const SectionBase &Sec : Obj.sections())
2756     if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS &&
2757         Sec.Size > 0) {
2758       if (Error E = checkSection(Sec))
2759         return E;
2760       Sections.insert(&Sec);
2761     }
2762 
2763   std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2764       WritableMemoryBuffer::getNewMemBuffer(0);
2765   if (!EmptyBuffer)
2766     return createStringError(errc::not_enough_memory,
2767                              "failed to allocate memory buffer of 0 bytes");
2768 
2769   IHexSectionWriterBase LengthCalc(*EmptyBuffer);
2770   for (const SectionBase *Sec : Sections)
2771     if (Error Err = Sec->accept(LengthCalc))
2772       return Err;
2773 
2774   // We need space to write section records + StartAddress record
2775   // (if start adress is not zero) + EndOfFile record.
2776   TotalSize = LengthCalc.getBufferOffset() +
2777               (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2778               IHexRecord::getLineLength(0);
2779 
2780   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2781   if (!Buf)
2782     return createStringError(errc::not_enough_memory,
2783                              "failed to allocate memory buffer of " +
2784                                  Twine::utohexstr(TotalSize) + " bytes");
2785 
2786   return Error::success();
2787 }
2788 
2789 namespace llvm {
2790 namespace objcopy {
2791 namespace elf {
2792 
2793 template class ELFBuilder<ELF64LE>;
2794 template class ELFBuilder<ELF64BE>;
2795 template class ELFBuilder<ELF32LE>;
2796 template class ELFBuilder<ELF32BE>;
2797 
2798 template class ELFWriter<ELF64LE>;
2799 template class ELFWriter<ELF64BE>;
2800 template class ELFWriter<ELF32LE>;
2801 template class ELFWriter<ELF32BE>;
2802 
2803 } // end namespace elf
2804 } // end namespace objcopy
2805 } // end namespace llvm
2806