1 //===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// This file defines a register mapping file class. This class is responsible 11 /// for managing hardware register files and the tracking of data dependencies 12 /// between registers. 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/MCA/HardwareUnits/RegisterFile.h" 17 #include "llvm/MCA/Instruction.h" 18 #include "llvm/Support/Debug.h" 19 20 #define DEBUG_TYPE "llvm-mca" 21 22 namespace llvm { 23 namespace mca { 24 25 const unsigned WriteRef::INVALID_IID = std::numeric_limits<unsigned>::max(); 26 27 WriteRef::WriteRef(unsigned SourceIndex, WriteState *WS) 28 : IID(SourceIndex), WriteBackCycle(), WriteResID(), RegisterID(), 29 Write(WS) {} 30 31 void WriteRef::commit() { 32 assert(Write && Write->isExecuted() && "Cannot commit before write back!"); 33 RegisterID = Write->getRegisterID(); 34 WriteResID = Write->getWriteResourceID(); 35 Write = nullptr; 36 } 37 38 void WriteRef::notifyExecuted(unsigned Cycle) { 39 assert(Write && Write->isExecuted() && "Not executed!"); 40 WriteBackCycle = Cycle; 41 } 42 43 bool WriteRef::hasKnownWriteBackCycle() const { 44 return isValid() && (!Write || Write->isExecuted()); 45 } 46 47 bool WriteRef::isWriteZero() const { 48 assert(isValid() && "Invalid null WriteState found!"); 49 return getWriteState()->isWriteZero(); 50 } 51 52 unsigned WriteRef::getWriteResourceID() const { 53 if (Write) 54 return Write->getWriteResourceID(); 55 return WriteResID; 56 } 57 58 MCPhysReg WriteRef::getRegisterID() const { 59 if (Write) 60 return Write->getRegisterID(); 61 return RegisterID; 62 } 63 64 RegisterFile::RegisterFile(const MCSchedModel &SM, const MCRegisterInfo &mri, 65 unsigned NumRegs) 66 : MRI(mri), 67 RegisterMappings(mri.getNumRegs(), {WriteRef(), RegisterRenamingInfo()}), 68 ZeroRegisters(mri.getNumRegs(), false), CurrentCycle() { 69 initialize(SM, NumRegs); 70 } 71 72 void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) { 73 // Create a default register file that "sees" all the machine registers 74 // declared by the target. The number of physical registers in the default 75 // register file is set equal to `NumRegs`. A value of zero for `NumRegs` 76 // means: this register file has an unbounded number of physical registers. 77 RegisterFiles.emplace_back(NumRegs); 78 if (!SM.hasExtraProcessorInfo()) 79 return; 80 81 // For each user defined register file, allocate a RegisterMappingTracker 82 // object. The size of every register file, as well as the mapping between 83 // register files and register classes is specified via tablegen. 84 const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo(); 85 86 // Skip invalid register file at index 0. 87 for (unsigned I = 1, E = Info.NumRegisterFiles; I < E; ++I) { 88 const MCRegisterFileDesc &RF = Info.RegisterFiles[I]; 89 assert(RF.NumPhysRegs && "Invalid PRF with zero physical registers!"); 90 91 // The cost of a register definition is equivalent to the number of 92 // physical registers that are allocated at register renaming stage. 93 unsigned Length = RF.NumRegisterCostEntries; 94 const MCRegisterCostEntry *FirstElt = 95 &Info.RegisterCostTable[RF.RegisterCostEntryIdx]; 96 addRegisterFile(RF, ArrayRef<MCRegisterCostEntry>(FirstElt, Length)); 97 } 98 } 99 100 void RegisterFile::cycleStart() { 101 for (RegisterMappingTracker &RMT : RegisterFiles) 102 RMT.NumMoveEliminated = 0; 103 } 104 105 void RegisterFile::onInstructionExecuted(Instruction *IS) { 106 assert(IS && IS->isExecuted() && "Unexpected internal state found!"); 107 for (WriteState &WS : IS->getDefs()) { 108 if (WS.isEliminated()) 109 return; 110 111 MCPhysReg RegID = WS.getRegisterID(); 112 assert(RegID != 0 && "A write of an invalid register?"); 113 assert(WS.getCyclesLeft() != UNKNOWN_CYCLES && 114 "The number of cycles should be known at this point!"); 115 assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!"); 116 117 MCPhysReg RenameAs = RegisterMappings[RegID].second.RenameAs; 118 if (RenameAs && RenameAs != RegID) 119 RegID = RenameAs; 120 121 WriteRef &WR = RegisterMappings[RegID].first; 122 if (WR.getWriteState() == &WS) 123 WR.notifyExecuted(CurrentCycle); 124 125 for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { 126 WriteRef &OtherWR = RegisterMappings[*I].first; 127 if (OtherWR.getWriteState() == &WS) 128 OtherWR.notifyExecuted(CurrentCycle); 129 } 130 131 if (!WS.clearsSuperRegisters()) 132 continue; 133 134 for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) { 135 WriteRef &OtherWR = RegisterMappings[*I].first; 136 if (OtherWR.getWriteState() == &WS) 137 OtherWR.notifyExecuted(CurrentCycle); 138 } 139 } 140 } 141 142 void RegisterFile::addRegisterFile(const MCRegisterFileDesc &RF, 143 ArrayRef<MCRegisterCostEntry> Entries) { 144 // A default register file is always allocated at index #0. That register file 145 // is mainly used to count the total number of mappings created by all 146 // register files at runtime. Users can limit the number of available physical 147 // registers in register file #0 through the command line flag 148 // `-register-file-size`. 149 unsigned RegisterFileIndex = RegisterFiles.size(); 150 RegisterFiles.emplace_back(RF.NumPhysRegs, RF.MaxMovesEliminatedPerCycle, 151 RF.AllowZeroMoveEliminationOnly); 152 153 // Special case where there is no register class identifier in the set. 154 // An empty set of register classes means: this register file contains all 155 // the physical registers specified by the target. 156 // We optimistically assume that a register can be renamed at the cost of a 157 // single physical register. The constructor of RegisterFile ensures that 158 // a RegisterMapping exists for each logical register defined by the Target. 159 if (Entries.empty()) 160 return; 161 162 // Now update the cost of individual registers. 163 for (const MCRegisterCostEntry &RCE : Entries) { 164 const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID); 165 for (const MCPhysReg Reg : RC) { 166 RegisterRenamingInfo &Entry = RegisterMappings[Reg].second; 167 IndexPlusCostPairTy &IPC = Entry.IndexPlusCost; 168 if (IPC.first && IPC.first != RegisterFileIndex) { 169 // The only register file that is allowed to overlap is the default 170 // register file at index #0. The analysis is inaccurate if register 171 // files overlap. 172 errs() << "warning: register " << MRI.getName(Reg) 173 << " defined in multiple register files."; 174 } 175 IPC = std::make_pair(RegisterFileIndex, RCE.Cost); 176 Entry.RenameAs = Reg; 177 Entry.AllowMoveElimination = RCE.AllowMoveElimination; 178 179 // Assume the same cost for each sub-register. 180 for (MCSubRegIterator I(Reg, &MRI); I.isValid(); ++I) { 181 RegisterRenamingInfo &OtherEntry = RegisterMappings[*I].second; 182 if (!OtherEntry.IndexPlusCost.first && 183 (!OtherEntry.RenameAs || 184 MRI.isSuperRegister(*I, OtherEntry.RenameAs))) { 185 OtherEntry.IndexPlusCost = IPC; 186 OtherEntry.RenameAs = Reg; 187 } 188 } 189 } 190 } 191 } 192 193 void RegisterFile::allocatePhysRegs(const RegisterRenamingInfo &Entry, 194 MutableArrayRef<unsigned> UsedPhysRegs) { 195 unsigned RegisterFileIndex = Entry.IndexPlusCost.first; 196 unsigned Cost = Entry.IndexPlusCost.second; 197 if (RegisterFileIndex) { 198 RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; 199 RMT.NumUsedPhysRegs += Cost; 200 UsedPhysRegs[RegisterFileIndex] += Cost; 201 } 202 203 // Now update the default register mapping tracker. 204 RegisterFiles[0].NumUsedPhysRegs += Cost; 205 UsedPhysRegs[0] += Cost; 206 } 207 208 void RegisterFile::freePhysRegs(const RegisterRenamingInfo &Entry, 209 MutableArrayRef<unsigned> FreedPhysRegs) { 210 unsigned RegisterFileIndex = Entry.IndexPlusCost.first; 211 unsigned Cost = Entry.IndexPlusCost.second; 212 if (RegisterFileIndex) { 213 RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; 214 RMT.NumUsedPhysRegs -= Cost; 215 FreedPhysRegs[RegisterFileIndex] += Cost; 216 } 217 218 // Now update the default register mapping tracker. 219 RegisterFiles[0].NumUsedPhysRegs -= Cost; 220 FreedPhysRegs[0] += Cost; 221 } 222 223 void RegisterFile::addRegisterWrite(WriteRef Write, 224 MutableArrayRef<unsigned> UsedPhysRegs) { 225 WriteState &WS = *Write.getWriteState(); 226 MCPhysReg RegID = WS.getRegisterID(); 227 assert(RegID && "Adding an invalid register definition?"); 228 229 LLVM_DEBUG({ 230 dbgs() << "[PRF] addRegisterWrite [ " << Write.getSourceIndex() << ", " 231 << MRI.getName(RegID) << "]\n"; 232 }); 233 234 // If RenameAs is equal to RegID, then RegID is subject to register renaming 235 // and false dependencies on RegID are all eliminated. 236 237 // If RenameAs references the invalid register, then we optimistically assume 238 // that it can be renamed. In the absence of tablegen descriptors for register 239 // files, RenameAs is always set to the invalid register ID. In all other 240 // cases, RenameAs must be either equal to RegID, or it must reference a 241 // super-register of RegID. 242 243 // If RenameAs is a super-register of RegID, then a write to RegID has always 244 // a false dependency on RenameAs. The only exception is for when the write 245 // implicitly clears the upper portion of the underlying register. 246 // If a write clears its super-registers, then it is renamed as `RenameAs`. 247 bool IsWriteZero = WS.isWriteZero(); 248 bool IsEliminated = WS.isEliminated(); 249 bool ShouldAllocatePhysRegs = !IsWriteZero && !IsEliminated; 250 const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; 251 WS.setPRF(RRI.IndexPlusCost.first); 252 253 if (RRI.RenameAs && RRI.RenameAs != RegID) { 254 RegID = RRI.RenameAs; 255 WriteRef &OtherWrite = RegisterMappings[RegID].first; 256 257 if (!WS.clearsSuperRegisters()) { 258 // The processor keeps the definition of `RegID` together with register 259 // `RenameAs`. Since this partial write is not renamed, no physical 260 // register is allocated. 261 ShouldAllocatePhysRegs = false; 262 263 WriteState *OtherWS = OtherWrite.getWriteState(); 264 if (OtherWS && (OtherWrite.getSourceIndex() != Write.getSourceIndex())) { 265 // This partial write has a false dependency on RenameAs. 266 assert(!IsEliminated && "Unexpected partial update!"); 267 OtherWS->addUser(OtherWrite.getSourceIndex(), &WS); 268 } 269 } 270 } 271 272 // Update zero registers. 273 MCPhysReg ZeroRegisterID = 274 WS.clearsSuperRegisters() ? RegID : WS.getRegisterID(); 275 ZeroRegisters.setBitVal(ZeroRegisterID, IsWriteZero); 276 for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I) 277 ZeroRegisters.setBitVal(*I, IsWriteZero); 278 279 // If this move has been eliminated, then method tryEliminateMoveOrSwap should 280 // have already updated all the register mappings. 281 if (!IsEliminated) { 282 // Update the mapping for register RegID including its sub-registers. 283 RegisterMappings[RegID].first = Write; 284 RegisterMappings[RegID].second.AliasRegID = 0U; 285 for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { 286 RegisterMappings[*I].first = Write; 287 RegisterMappings[*I].second.AliasRegID = 0U; 288 } 289 290 // No physical registers are allocated for instructions that are optimized 291 // in hardware. For example, zero-latency data-dependency breaking 292 // instructions don't consume physical registers. 293 if (ShouldAllocatePhysRegs) 294 allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs); 295 } 296 297 if (!WS.clearsSuperRegisters()) 298 return; 299 300 for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) { 301 if (!IsEliminated) { 302 RegisterMappings[*I].first = Write; 303 RegisterMappings[*I].second.AliasRegID = 0U; 304 } 305 306 ZeroRegisters.setBitVal(*I, IsWriteZero); 307 } 308 } 309 310 void RegisterFile::removeRegisterWrite( 311 const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) { 312 // Early exit if this write was eliminated. A write eliminated at register 313 // renaming stage generates an alias, and it is not added to the PRF. 314 if (WS.isEliminated()) 315 return; 316 317 MCPhysReg RegID = WS.getRegisterID(); 318 319 assert(RegID != 0 && "Invalidating an already invalid register?"); 320 assert(WS.getCyclesLeft() != UNKNOWN_CYCLES && 321 "Invalidating a write of unknown cycles!"); 322 assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!"); 323 324 bool ShouldFreePhysRegs = !WS.isWriteZero(); 325 MCPhysReg RenameAs = RegisterMappings[RegID].second.RenameAs; 326 if (RenameAs && RenameAs != RegID) { 327 RegID = RenameAs; 328 329 if (!WS.clearsSuperRegisters()) { 330 // Keep the definition of `RegID` together with register `RenameAs`. 331 ShouldFreePhysRegs = false; 332 } 333 } 334 335 if (ShouldFreePhysRegs) 336 freePhysRegs(RegisterMappings[RegID].second, FreedPhysRegs); 337 338 WriteRef &WR = RegisterMappings[RegID].first; 339 if (WR.getWriteState() == &WS) 340 WR.commit(); 341 342 for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { 343 WriteRef &OtherWR = RegisterMappings[*I].first; 344 if (OtherWR.getWriteState() == &WS) 345 OtherWR.commit(); 346 } 347 348 if (!WS.clearsSuperRegisters()) 349 return; 350 351 for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) { 352 WriteRef &OtherWR = RegisterMappings[*I].first; 353 if (OtherWR.getWriteState() == &WS) 354 OtherWR.commit(); 355 } 356 } 357 358 bool RegisterFile::canEliminateMove(const WriteState &WS, const ReadState &RS, 359 unsigned RegisterFileIndex) const { 360 const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()]; 361 const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()]; 362 const RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; 363 364 // From and To must be owned by the PRF at index `RegisterFileIndex`. 365 const RegisterRenamingInfo &RRIFrom = RMFrom.second; 366 if (RRIFrom.IndexPlusCost.first != RegisterFileIndex) 367 return false; 368 369 const RegisterRenamingInfo &RRITo = RMTo.second; 370 if (RRITo.IndexPlusCost.first != RegisterFileIndex) 371 return false; 372 373 // Early exit if the destination register is from a register class that 374 // doesn't allow move elimination. 375 if (!RegisterMappings[RRITo.RenameAs].second.AllowMoveElimination) 376 return false; 377 378 // We only allow move elimination for writes that update a full physical 379 // register. On X86, move elimination is possible with 32-bit general purpose 380 // registers because writes to those registers are not partial writes. If a 381 // register move is a partial write, then we conservatively assume that move 382 // elimination fails, since it would either trigger a partial update, or the 383 // issue of a merge opcode. 384 // 385 // Note that this constraint may be lifted in future. For example, we could 386 // make this model more flexible, and let users customize the set of registers 387 // (i.e. register classes) that allow move elimination. 388 // 389 // For now, we assume that there is a strong correlation between registers 390 // that allow move elimination, and how those same registers are renamed in 391 // hardware. 392 if (RRITo.RenameAs && RRITo.RenameAs != WS.getRegisterID()) 393 if (!WS.clearsSuperRegisters()) 394 return false; 395 396 bool IsZeroMove = ZeroRegisters[RS.getRegisterID()]; 397 return (!RMT.AllowZeroMoveEliminationOnly || IsZeroMove); 398 } 399 400 bool RegisterFile::tryEliminateMoveOrSwap(MutableArrayRef<WriteState> Writes, 401 MutableArrayRef<ReadState> Reads) { 402 if (Writes.size() != Reads.size()) 403 return false; 404 405 // This logic assumes that writes and reads are contributed by a register move 406 // or a register swap operation. In particular, it assumes a simple register 407 // move if there is only one write. It assumes a swap operation if there are 408 // exactly two writes. 409 if (Writes.empty() || Writes.size() > 2) 410 return false; 411 412 // All registers must be owned by the same PRF. 413 const RegisterRenamingInfo &RRInfo = 414 RegisterMappings[Writes[0].getRegisterID()].second; 415 unsigned RegisterFileIndex = RRInfo.IndexPlusCost.first; 416 RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; 417 418 // Early exit if the PRF cannot eliminate more moves/xchg in this cycle. 419 if (RMT.MaxMoveEliminatedPerCycle && 420 (RMT.NumMoveEliminated + Writes.size()) > RMT.MaxMoveEliminatedPerCycle) 421 return false; 422 423 for (size_t I = 0, E = Writes.size(); I < E; ++I) { 424 const ReadState &RS = Reads[I]; 425 const WriteState &WS = Writes[E - (I + 1)]; 426 if (!canEliminateMove(WS, RS, RegisterFileIndex)) 427 return false; 428 } 429 430 for (size_t I = 0, E = Writes.size(); I < E; ++I) { 431 ReadState &RS = Reads[I]; 432 WriteState &WS = Writes[E - (I + 1)]; 433 434 const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()]; 435 const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()]; 436 const RegisterRenamingInfo &RRIFrom = RMFrom.second; 437 const RegisterRenamingInfo &RRITo = RMTo.second; 438 439 // Construct an alias. 440 MCPhysReg AliasedReg = 441 RRIFrom.RenameAs ? RRIFrom.RenameAs : RS.getRegisterID(); 442 MCPhysReg AliasReg = RRITo.RenameAs ? RRITo.RenameAs : WS.getRegisterID(); 443 444 const RegisterRenamingInfo &RMAlias = RegisterMappings[AliasedReg].second; 445 if (RMAlias.AliasRegID) 446 AliasedReg = RMAlias.AliasRegID; 447 448 RegisterMappings[AliasReg].second.AliasRegID = AliasedReg; 449 for (MCSubRegIterator I(AliasReg, &MRI); I.isValid(); ++I) 450 RegisterMappings[*I].second.AliasRegID = AliasedReg; 451 452 if (ZeroRegisters[RS.getRegisterID()]) { 453 WS.setWriteZero(); 454 RS.setReadZero(); 455 } 456 457 WS.setEliminated(); 458 RMT.NumMoveEliminated++; 459 } 460 461 return true; 462 } 463 464 unsigned WriteRef::getWriteBackCycle() const { 465 assert(hasKnownWriteBackCycle() && "Instruction not executed!"); 466 assert((!Write || Write->getCyclesLeft() <= 0) && 467 "Inconsistent state found!"); 468 return WriteBackCycle; 469 } 470 471 unsigned RegisterFile::getElapsedCyclesFromWriteBack(const WriteRef &WR) const { 472 assert(WR.hasKnownWriteBackCycle() && "Write hasn't been committed yet!"); 473 return CurrentCycle - WR.getWriteBackCycle(); 474 } 475 476 void RegisterFile::collectWrites( 477 const MCSubtargetInfo &STI, const ReadState &RS, 478 SmallVectorImpl<WriteRef> &Writes, 479 SmallVectorImpl<WriteRef> &CommittedWrites) const { 480 const ReadDescriptor &RD = RS.getDescriptor(); 481 const MCSchedModel &SM = STI.getSchedModel(); 482 const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID); 483 MCPhysReg RegID = RS.getRegisterID(); 484 assert(RegID && RegID < RegisterMappings.size()); 485 LLVM_DEBUG(dbgs() << "[PRF] collecting writes for register " 486 << MRI.getName(RegID) << '\n'); 487 488 // Check if this is an alias. 489 const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; 490 if (RRI.AliasRegID) 491 RegID = RRI.AliasRegID; 492 493 const WriteRef &WR = RegisterMappings[RegID].first; 494 if (WR.getWriteState()) { 495 Writes.push_back(WR); 496 } else if (WR.hasKnownWriteBackCycle()) { 497 unsigned WriteResID = WR.getWriteResourceID(); 498 int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID); 499 if (ReadAdvance < 0) { 500 unsigned Elapsed = getElapsedCyclesFromWriteBack(WR); 501 if (Elapsed < static_cast<unsigned>(-ReadAdvance)) 502 CommittedWrites.push_back(WR); 503 } 504 } 505 506 // Handle potential partial register updates. 507 for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { 508 const WriteRef &WR = RegisterMappings[*I].first; 509 if (WR.getWriteState()) { 510 Writes.push_back(WR); 511 } else if (WR.hasKnownWriteBackCycle()) { 512 unsigned WriteResID = WR.getWriteResourceID(); 513 int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID); 514 if (ReadAdvance < 0) { 515 unsigned Elapsed = getElapsedCyclesFromWriteBack(WR); 516 if (Elapsed < static_cast<unsigned>(-ReadAdvance)) 517 CommittedWrites.push_back(WR); 518 } 519 } 520 } 521 522 // Remove duplicate entries and resize the input vector. 523 if (Writes.size() > 1) { 524 sort(Writes, [](const WriteRef &Lhs, const WriteRef &Rhs) { 525 return Lhs.getWriteState() < Rhs.getWriteState(); 526 }); 527 auto It = std::unique(Writes.begin(), Writes.end()); 528 Writes.resize(std::distance(Writes.begin(), It)); 529 } 530 531 LLVM_DEBUG({ 532 for (const WriteRef &WR : Writes) { 533 const WriteState &WS = *WR.getWriteState(); 534 dbgs() << "[PRF] Found a dependent use of Register " 535 << MRI.getName(WS.getRegisterID()) << " (defined by instruction #" 536 << WR.getSourceIndex() << ")\n"; 537 } 538 }); 539 } 540 541 RegisterFile::RAWHazard 542 RegisterFile::checkRAWHazards(const MCSubtargetInfo &STI, 543 const ReadState &RS) const { 544 RAWHazard Hazard; 545 SmallVector<WriteRef, 4> Writes; 546 SmallVector<WriteRef, 4> CommittedWrites; 547 548 const MCSchedModel &SM = STI.getSchedModel(); 549 const ReadDescriptor &RD = RS.getDescriptor(); 550 const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID); 551 552 collectWrites(STI, RS, Writes, CommittedWrites); 553 for (const WriteRef &WR : Writes) { 554 const WriteState *WS = WR.getWriteState(); 555 unsigned WriteResID = WS->getWriteResourceID(); 556 int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID); 557 558 if (WS->getCyclesLeft() == UNKNOWN_CYCLES) { 559 if (Hazard.isValid()) 560 continue; 561 562 Hazard.RegisterID = WR.getRegisterID(); 563 Hazard.CyclesLeft = UNKNOWN_CYCLES; 564 continue; 565 } 566 567 int CyclesLeft = WS->getCyclesLeft() - ReadAdvance; 568 if (CyclesLeft > 0) { 569 if (Hazard.CyclesLeft < CyclesLeft) { 570 Hazard.RegisterID = WR.getRegisterID(); 571 Hazard.CyclesLeft = CyclesLeft; 572 } 573 } 574 } 575 Writes.clear(); 576 577 for (const WriteRef &WR : CommittedWrites) { 578 unsigned WriteResID = WR.getWriteResourceID(); 579 int NegReadAdvance = -STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID); 580 int Elapsed = static_cast<int>(getElapsedCyclesFromWriteBack(WR)); 581 int CyclesLeft = NegReadAdvance - Elapsed; 582 assert(CyclesLeft > 0 && "Write should not be in the CommottedWrites set!"); 583 if (Hazard.CyclesLeft < CyclesLeft) { 584 Hazard.RegisterID = WR.getRegisterID(); 585 Hazard.CyclesLeft = CyclesLeft; 586 } 587 } 588 589 return Hazard; 590 } 591 592 void RegisterFile::addRegisterRead(ReadState &RS, 593 const MCSubtargetInfo &STI) const { 594 MCPhysReg RegID = RS.getRegisterID(); 595 const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; 596 RS.setPRF(RRI.IndexPlusCost.first); 597 if (RS.isIndependentFromDef()) 598 return; 599 600 if (ZeroRegisters[RS.getRegisterID()]) 601 RS.setReadZero(); 602 603 SmallVector<WriteRef, 4> DependentWrites; 604 SmallVector<WriteRef, 4> CompletedWrites; 605 collectWrites(STI, RS, DependentWrites, CompletedWrites); 606 RS.setDependentWrites(DependentWrites.size() + CompletedWrites.size()); 607 608 // We know that this read depends on all the writes in DependentWrites. 609 // For each write, check if we have ReadAdvance information, and use it 610 // to figure out in how many cycles this read will be available. 611 const ReadDescriptor &RD = RS.getDescriptor(); 612 const MCSchedModel &SM = STI.getSchedModel(); 613 const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID); 614 for (WriteRef &WR : DependentWrites) { 615 unsigned WriteResID = WR.getWriteResourceID(); 616 WriteState &WS = *WR.getWriteState(); 617 int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID); 618 WS.addUser(WR.getSourceIndex(), &RS, ReadAdvance); 619 } 620 621 for (WriteRef &WR : CompletedWrites) { 622 unsigned WriteResID = WR.getWriteResourceID(); 623 assert(WR.hasKnownWriteBackCycle() && "Invalid write!"); 624 assert(STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID) < 0); 625 unsigned ReadAdvance = static_cast<unsigned>( 626 -STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID)); 627 unsigned Elapsed = getElapsedCyclesFromWriteBack(WR); 628 assert(Elapsed < ReadAdvance && "Should not have been added to the set!"); 629 RS.writeStartEvent(WR.getSourceIndex(), WR.getRegisterID(), 630 ReadAdvance - Elapsed); 631 } 632 } 633 634 unsigned RegisterFile::isAvailable(ArrayRef<MCPhysReg> Regs) const { 635 SmallVector<unsigned, 4> NumPhysRegs(getNumRegisterFiles()); 636 637 // Find how many new mappings must be created for each register file. 638 for (const MCPhysReg RegID : Regs) { 639 const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; 640 const IndexPlusCostPairTy &Entry = RRI.IndexPlusCost; 641 if (Entry.first) 642 NumPhysRegs[Entry.first] += Entry.second; 643 NumPhysRegs[0] += Entry.second; 644 } 645 646 unsigned Response = 0; 647 for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { 648 unsigned NumRegs = NumPhysRegs[I]; 649 if (!NumRegs) 650 continue; 651 652 const RegisterMappingTracker &RMT = RegisterFiles[I]; 653 if (!RMT.NumPhysRegs) { 654 // The register file has an unbounded number of microarchitectural 655 // registers. 656 continue; 657 } 658 659 if (RMT.NumPhysRegs < NumRegs) { 660 // The current register file is too small. This may occur if the number of 661 // microarchitectural registers in register file #0 was changed by the 662 // users via flag -reg-file-size. Alternatively, the scheduling model 663 // specified a too small number of registers for this register file. 664 LLVM_DEBUG( 665 dbgs() << "[PRF] Not enough registers in the register file.\n"); 666 667 // FIXME: Normalize the instruction register count to match the 668 // NumPhysRegs value. This is a highly unusual case, and is not expected 669 // to occur. This normalization is hiding an inconsistency in either the 670 // scheduling model or in the value that the user might have specified 671 // for NumPhysRegs. 672 NumRegs = RMT.NumPhysRegs; 673 } 674 675 if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs)) 676 Response |= (1U << I); 677 } 678 679 return Response; 680 } 681 682 #ifndef NDEBUG 683 void WriteRef::dump() const { 684 dbgs() << "IID=" << getSourceIndex() << ' '; 685 if (isValid()) 686 getWriteState()->dump(); 687 else 688 dbgs() << "(null)"; 689 } 690 691 void RegisterFile::dump() const { 692 for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) { 693 const RegisterMapping &RM = RegisterMappings[I]; 694 const RegisterRenamingInfo &RRI = RM.second; 695 if (ZeroRegisters[I]) { 696 dbgs() << MRI.getName(I) << ", " << I 697 << ", PRF=" << RRI.IndexPlusCost.first 698 << ", Cost=" << RRI.IndexPlusCost.second 699 << ", RenameAs=" << RRI.RenameAs << ", IsZero=" << ZeroRegisters[I] 700 << ","; 701 RM.first.dump(); 702 dbgs() << '\n'; 703 } 704 } 705 706 for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { 707 dbgs() << "Register File #" << I; 708 const RegisterMappingTracker &RMT = RegisterFiles[I]; 709 dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs 710 << "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n'; 711 } 712 } 713 #endif 714 715 } // namespace mca 716 } // namespace llvm 717