1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Wasm object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/BinaryFormat/Wasm.h" 16 #include "llvm/BinaryFormat/WasmTraits.h" 17 #include "llvm/Config/llvm-config.h" 18 #include "llvm/MC/MCAsmBackend.h" 19 #include "llvm/MC/MCAsmLayout.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCExpr.h" 23 #include "llvm/MC/MCFixupKindInfo.h" 24 #include "llvm/MC/MCObjectWriter.h" 25 #include "llvm/MC/MCSectionWasm.h" 26 #include "llvm/MC/MCSymbolWasm.h" 27 #include "llvm/MC/MCValue.h" 28 #include "llvm/MC/MCWasmObjectWriter.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/EndianStream.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/LEB128.h" 34 #include "llvm/Support/StringSaver.h" 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "mc" 40 41 namespace { 42 43 // When we create the indirect function table we start at 1, so that there is 44 // and empty slot at 0 and therefore calling a null function pointer will trap. 45 static const uint32_t InitialTableOffset = 1; 46 47 // For patching purposes, we need to remember where each section starts, both 48 // for patching up the section size field, and for patching up references to 49 // locations within the section. 50 struct SectionBookkeeping { 51 // Where the size of the section is written. 52 uint64_t SizeOffset; 53 // Where the section header ends (without custom section name). 54 uint64_t PayloadOffset; 55 // Where the contents of the section starts. 56 uint64_t ContentsOffset; 57 uint32_t Index; 58 }; 59 60 // A wasm data segment. A wasm binary contains only a single data section 61 // but that can contain many segments, each with their own virtual location 62 // in memory. Each MCSection data created by llvm is modeled as its own 63 // wasm data segment. 64 struct WasmDataSegment { 65 MCSectionWasm *Section; 66 StringRef Name; 67 uint32_t InitFlags; 68 uint64_t Offset; 69 uint32_t Alignment; 70 uint32_t LinkerFlags; 71 SmallVector<char, 4> Data; 72 }; 73 74 // A wasm function to be written into the function section. 75 struct WasmFunction { 76 uint32_t SigIndex; 77 const MCSymbolWasm *Sym; 78 }; 79 80 // A wasm global to be written into the global section. 81 struct WasmGlobal { 82 wasm::WasmGlobalType Type; 83 uint64_t InitialValue; 84 }; 85 86 // Information about a single item which is part of a COMDAT. For each data 87 // segment or function which is in the COMDAT, there is a corresponding 88 // WasmComdatEntry. 89 struct WasmComdatEntry { 90 unsigned Kind; 91 uint32_t Index; 92 }; 93 94 // Information about a single relocation. 95 struct WasmRelocationEntry { 96 uint64_t Offset; // Where is the relocation. 97 const MCSymbolWasm *Symbol; // The symbol to relocate with. 98 int64_t Addend; // A value to add to the symbol. 99 unsigned Type; // The type of the relocation. 100 const MCSectionWasm *FixupSection; // The section the relocation is targeting. 101 102 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, 103 int64_t Addend, unsigned Type, 104 const MCSectionWasm *FixupSection) 105 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), 106 FixupSection(FixupSection) {} 107 108 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); } 109 110 void print(raw_ostream &Out) const { 111 Out << wasm::relocTypetoString(Type) << " Off=" << Offset 112 << ", Sym=" << *Symbol << ", Addend=" << Addend 113 << ", FixupSection=" << FixupSection->getName(); 114 } 115 116 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 117 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 118 #endif 119 }; 120 121 static const uint32_t InvalidIndex = -1; 122 123 struct WasmCustomSection { 124 125 StringRef Name; 126 MCSectionWasm *Section; 127 128 uint32_t OutputContentsOffset; 129 uint32_t OutputIndex; 130 131 WasmCustomSection(StringRef Name, MCSectionWasm *Section) 132 : Name(Name), Section(Section), OutputContentsOffset(0), 133 OutputIndex(InvalidIndex) {} 134 }; 135 136 #if !defined(NDEBUG) 137 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { 138 Rel.print(OS); 139 return OS; 140 } 141 #endif 142 143 // Write X as an (unsigned) LEB value at offset Offset in Stream, padded 144 // to allow patching. 145 template <int W> 146 void writePatchableLEB(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 147 uint8_t Buffer[W]; 148 unsigned SizeLen = encodeULEB128(X, Buffer, W); 149 assert(SizeLen == W); 150 Stream.pwrite((char *)Buffer, SizeLen, Offset); 151 } 152 153 // Write X as an signed LEB value at offset Offset in Stream, padded 154 // to allow patching. 155 template <int W> 156 void writePatchableSLEB(raw_pwrite_stream &Stream, int64_t X, uint64_t Offset) { 157 uint8_t Buffer[W]; 158 unsigned SizeLen = encodeSLEB128(X, Buffer, W); 159 assert(SizeLen == W); 160 Stream.pwrite((char *)Buffer, SizeLen, Offset); 161 } 162 163 // Write X as a plain integer value at offset Offset in Stream. 164 static void patchI32(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { 165 uint8_t Buffer[4]; 166 support::endian::write32le(Buffer, X); 167 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 168 } 169 170 static void patchI64(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 171 uint8_t Buffer[8]; 172 support::endian::write64le(Buffer, X); 173 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 174 } 175 176 bool isDwoSection(const MCSection &Sec) { 177 return Sec.getName().endswith(".dwo"); 178 } 179 180 class WasmObjectWriter : public MCObjectWriter { 181 support::endian::Writer *W; 182 183 /// The target specific Wasm writer instance. 184 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; 185 186 // Relocations for fixing up references in the code section. 187 std::vector<WasmRelocationEntry> CodeRelocations; 188 // Relocations for fixing up references in the data section. 189 std::vector<WasmRelocationEntry> DataRelocations; 190 191 // Index values to use for fixing up call_indirect type indices. 192 // Maps function symbols to the index of the type of the function 193 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; 194 // Maps function symbols to the table element index space. Used 195 // for TABLE_INDEX relocation types (i.e. address taken functions). 196 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; 197 // Maps function/global/table symbols to the 198 // function/global/table/event/section index space. 199 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; 200 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; 201 // Maps data symbols to the Wasm segment and offset/size with the segment. 202 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; 203 204 // Stores output data (index, relocations, content offset) for custom 205 // section. 206 std::vector<WasmCustomSection> CustomSections; 207 std::unique_ptr<WasmCustomSection> ProducersSection; 208 std::unique_ptr<WasmCustomSection> TargetFeaturesSection; 209 // Relocations for fixing up references in the custom sections. 210 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> 211 CustomSectionsRelocations; 212 213 // Map from section to defining function symbol. 214 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; 215 216 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; 217 SmallVector<wasm::WasmSignature, 4> Signatures; 218 SmallVector<WasmDataSegment, 4> DataSegments; 219 unsigned NumFunctionImports = 0; 220 unsigned NumGlobalImports = 0; 221 unsigned NumTableImports = 0; 222 unsigned NumEventImports = 0; 223 uint32_t SectionCount = 0; 224 225 enum class DwoMode { 226 AllSections, 227 NonDwoOnly, 228 DwoOnly, 229 }; 230 bool IsSplitDwarf = false; 231 raw_pwrite_stream *OS = nullptr; 232 raw_pwrite_stream *DwoOS = nullptr; 233 234 // TargetObjectWriter wranppers. 235 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 236 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } 237 238 void startSection(SectionBookkeeping &Section, unsigned SectionId); 239 void startCustomSection(SectionBookkeeping &Section, StringRef Name); 240 void endSection(SectionBookkeeping &Section); 241 242 public: 243 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 244 raw_pwrite_stream &OS_) 245 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} 246 247 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 248 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) 249 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), 250 DwoOS(&DwoOS_) {} 251 252 private: 253 void reset() override { 254 CodeRelocations.clear(); 255 DataRelocations.clear(); 256 TypeIndices.clear(); 257 WasmIndices.clear(); 258 GOTIndices.clear(); 259 TableIndices.clear(); 260 DataLocations.clear(); 261 CustomSections.clear(); 262 ProducersSection.reset(); 263 TargetFeaturesSection.reset(); 264 CustomSectionsRelocations.clear(); 265 SignatureIndices.clear(); 266 Signatures.clear(); 267 DataSegments.clear(); 268 SectionFunctions.clear(); 269 NumFunctionImports = 0; 270 NumGlobalImports = 0; 271 NumTableImports = 0; 272 MCObjectWriter::reset(); 273 } 274 275 void writeHeader(const MCAssembler &Asm); 276 277 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 278 const MCFragment *Fragment, const MCFixup &Fixup, 279 MCValue Target, uint64_t &FixedValue) override; 280 281 void executePostLayoutBinding(MCAssembler &Asm, 282 const MCAsmLayout &Layout) override; 283 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, 284 MCAssembler &Asm, const MCAsmLayout &Layout); 285 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 286 287 uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout, 288 DwoMode Mode); 289 290 void writeString(const StringRef Str) { 291 encodeULEB128(Str.size(), W->OS); 292 W->OS << Str; 293 } 294 295 void writeI32(int32_t val) { 296 char Buffer[4]; 297 support::endian::write32le(Buffer, val); 298 W->OS.write(Buffer, sizeof(Buffer)); 299 } 300 301 void writeI64(int64_t val) { 302 char Buffer[8]; 303 support::endian::write64le(Buffer, val); 304 W->OS.write(Buffer, sizeof(Buffer)); 305 } 306 307 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } 308 309 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); 310 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, 311 uint32_t NumElements); 312 void writeFunctionSection(ArrayRef<WasmFunction> Functions); 313 void writeExportSection(ArrayRef<wasm::WasmExport> Exports); 314 void writeElemSection(ArrayRef<uint32_t> TableElems); 315 void writeDataCountSection(); 316 uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, 317 ArrayRef<WasmFunction> Functions); 318 uint32_t writeDataSection(const MCAsmLayout &Layout); 319 void writeEventSection(ArrayRef<wasm::WasmEventType> Events); 320 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); 321 void writeTableSection(ArrayRef<wasm::WasmTable> Tables); 322 void writeRelocSection(uint32_t SectionIndex, StringRef Name, 323 std::vector<WasmRelocationEntry> &Relocations); 324 void writeLinkingMetaDataSection( 325 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 326 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 327 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); 328 void writeCustomSection(WasmCustomSection &CustomSection, 329 const MCAssembler &Asm, const MCAsmLayout &Layout); 330 void writeCustomRelocSections(); 331 332 uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry, 333 const MCAsmLayout &Layout); 334 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, 335 uint64_t ContentsOffset, const MCAsmLayout &Layout); 336 337 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); 338 uint32_t getFunctionType(const MCSymbolWasm &Symbol); 339 uint32_t getEventType(const MCSymbolWasm &Symbol); 340 void registerFunctionType(const MCSymbolWasm &Symbol); 341 void registerEventType(const MCSymbolWasm &Symbol); 342 }; 343 344 } // end anonymous namespace 345 346 // Write out a section header and a patchable section size field. 347 void WasmObjectWriter::startSection(SectionBookkeeping &Section, 348 unsigned SectionId) { 349 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n"); 350 W->OS << char(SectionId); 351 352 Section.SizeOffset = W->OS.tell(); 353 354 // The section size. We don't know the size yet, so reserve enough space 355 // for any 32-bit value; we'll patch it later. 356 encodeULEB128(0, W->OS, 5); 357 358 // The position where the section starts, for measuring its size. 359 Section.ContentsOffset = W->OS.tell(); 360 Section.PayloadOffset = W->OS.tell(); 361 Section.Index = SectionCount++; 362 } 363 364 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, 365 StringRef Name) { 366 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n"); 367 startSection(Section, wasm::WASM_SEC_CUSTOM); 368 369 // The position where the section header ends, for measuring its size. 370 Section.PayloadOffset = W->OS.tell(); 371 372 // Custom sections in wasm also have a string identifier. 373 writeString(Name); 374 375 // The position where the custom section starts. 376 Section.ContentsOffset = W->OS.tell(); 377 } 378 379 // Now that the section is complete and we know how big it is, patch up the 380 // section size field at the start of the section. 381 void WasmObjectWriter::endSection(SectionBookkeeping &Section) { 382 uint64_t Size = W->OS.tell(); 383 // /dev/null doesn't support seek/tell and can report offset of 0. 384 // Simply skip this patching in that case. 385 if (!Size) 386 return; 387 388 Size -= Section.PayloadOffset; 389 if (uint32_t(Size) != Size) 390 report_fatal_error("section size does not fit in a uint32_t"); 391 392 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n"); 393 394 // Write the final section size to the payload_len field, which follows 395 // the section id byte. 396 writePatchableLEB<5>(static_cast<raw_pwrite_stream &>(W->OS), Size, 397 Section.SizeOffset); 398 } 399 400 // Emit the Wasm header. 401 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { 402 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic)); 403 W->write<uint32_t>(wasm::WasmVersion); 404 } 405 406 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 407 const MCAsmLayout &Layout) { 408 // Build a map of sections to the function that defines them, for use 409 // in recordRelocation. 410 for (const MCSymbol &S : Asm.symbols()) { 411 const auto &WS = static_cast<const MCSymbolWasm &>(S); 412 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { 413 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); 414 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S)); 415 if (!Pair.second) 416 report_fatal_error("section already has a defining function: " + 417 Sec.getName()); 418 } 419 } 420 } 421 422 void WasmObjectWriter::recordRelocation(MCAssembler &Asm, 423 const MCAsmLayout &Layout, 424 const MCFragment *Fragment, 425 const MCFixup &Fixup, MCValue Target, 426 uint64_t &FixedValue) { 427 // The WebAssembly backend should never generate FKF_IsPCRel fixups 428 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 429 MCFixupKindInfo::FKF_IsPCRel)); 430 431 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent()); 432 uint64_t C = Target.getConstant(); 433 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 434 MCContext &Ctx = Asm.getContext(); 435 436 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 437 // To get here the A - B expression must have failed evaluateAsRelocatable. 438 // This means either A or B must be undefined and in WebAssembly we can't 439 // support either of those cases. 440 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol()); 441 Ctx.reportError( 442 Fixup.getLoc(), 443 Twine("symbol '") + SymB.getName() + 444 "': unsupported subtraction expression used in relocation."); 445 return; 446 } 447 448 // We either rejected the fixup or folded B into C at this point. 449 const MCSymbolRefExpr *RefA = Target.getSymA(); 450 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol()); 451 452 // The .init_array isn't translated as data, so don't do relocations in it. 453 if (FixupSection.getName().startswith(".init_array")) { 454 SymA->setUsedInInitArray(); 455 return; 456 } 457 458 if (SymA->isVariable()) { 459 const MCExpr *Expr = SymA->getVariableValue(); 460 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) 461 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) 462 llvm_unreachable("weakref used in reloc not yet implemented"); 463 } 464 465 // Put any constant offset in an addend. Offsets can be negative, and 466 // LLVM expects wrapping, in contrast to wasm's immediates which can't 467 // be negative and don't wrap. 468 FixedValue = 0; 469 470 unsigned Type = TargetObjectWriter->getRelocType(Target, Fixup); 471 472 // Absolute offset within a section or a function. 473 // Currently only supported for for metadata sections. 474 // See: test/MC/WebAssembly/blockaddress.ll 475 if (Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || 476 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || 477 Type == wasm::R_WASM_SECTION_OFFSET_I32) { 478 if (!FixupSection.getKind().isMetadata()) 479 report_fatal_error("relocations for function or section offsets are " 480 "only supported in metadata sections"); 481 482 const MCSymbol *SectionSymbol = nullptr; 483 const MCSection &SecA = SymA->getSection(); 484 if (SecA.getKind().isText()) 485 SectionSymbol = SectionFunctions.find(&SecA)->second; 486 else 487 SectionSymbol = SecA.getBeginSymbol(); 488 if (!SectionSymbol) 489 report_fatal_error("section symbol is required for relocation"); 490 491 C += Layout.getSymbolOffset(*SymA); 492 SymA = cast<MCSymbolWasm>(SectionSymbol); 493 } 494 495 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 496 Type == wasm::R_WASM_TABLE_INDEX_SLEB || 497 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || 498 Type == wasm::R_WASM_TABLE_INDEX_I32 || 499 Type == wasm::R_WASM_TABLE_INDEX_I64) { 500 // TABLE_INDEX relocs implicitly use the default indirect function table. 501 auto TableName = "__indirect_function_table"; 502 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName)); 503 if (Sym) { 504 if (!Sym->isFunctionTable()) 505 Ctx.reportError( 506 Fixup.getLoc(), 507 "symbol '__indirect_function_table' is not a function table"); 508 } else { 509 Sym = cast<MCSymbolWasm>(Ctx.getOrCreateSymbol(TableName)); 510 Sym->setFunctionTable(); 511 // The default function table is synthesized by the linker. 512 Sym->setUndefined(); 513 } 514 Sym->setUsedInReloc(); 515 Asm.registerSymbol(*Sym); 516 } 517 518 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be 519 // against a named symbol. 520 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { 521 if (SymA->getName().empty()) 522 report_fatal_error("relocations against un-named temporaries are not yet " 523 "supported by wasm"); 524 525 SymA->setUsedInReloc(); 526 } 527 528 if (RefA->getKind() == MCSymbolRefExpr::VK_GOT) 529 SymA->setUsedInGOT(); 530 531 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); 532 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); 533 534 if (FixupSection.isWasmData()) { 535 DataRelocations.push_back(Rec); 536 } else if (FixupSection.getKind().isText()) { 537 CodeRelocations.push_back(Rec); 538 } else if (FixupSection.getKind().isMetadata()) { 539 CustomSectionsRelocations[&FixupSection].push_back(Rec); 540 } else { 541 llvm_unreachable("unexpected section type"); 542 } 543 } 544 545 // Compute a value to write into the code at the location covered 546 // by RelEntry. This value isn't used by the static linker; it just serves 547 // to make the object format more readable and more likely to be directly 548 // useable. 549 uint64_t 550 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry, 551 const MCAsmLayout &Layout) { 552 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || 553 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && 554 !RelEntry.Symbol->isGlobal()) { 555 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space"); 556 return GOTIndices[RelEntry.Symbol]; 557 } 558 559 switch (RelEntry.Type) { 560 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 561 case wasm::R_WASM_TABLE_INDEX_SLEB: 562 case wasm::R_WASM_TABLE_INDEX_SLEB64: 563 case wasm::R_WASM_TABLE_INDEX_I32: 564 case wasm::R_WASM_TABLE_INDEX_I64: { 565 // Provisional value is table address of the resolved symbol itself 566 const MCSymbolWasm *Base = 567 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol)); 568 assert(Base->isFunction()); 569 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB) 570 return TableIndices[Base] - InitialTableOffset; 571 else 572 return TableIndices[Base]; 573 } 574 case wasm::R_WASM_TYPE_INDEX_LEB: 575 // Provisional value is same as the index 576 return getRelocationIndexValue(RelEntry); 577 case wasm::R_WASM_FUNCTION_INDEX_LEB: 578 case wasm::R_WASM_GLOBAL_INDEX_LEB: 579 case wasm::R_WASM_GLOBAL_INDEX_I32: 580 case wasm::R_WASM_EVENT_INDEX_LEB: 581 case wasm::R_WASM_TABLE_NUMBER_LEB: 582 // Provisional value is function/global/event Wasm index 583 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space"); 584 return WasmIndices[RelEntry.Symbol]; 585 case wasm::R_WASM_FUNCTION_OFFSET_I32: 586 case wasm::R_WASM_FUNCTION_OFFSET_I64: 587 case wasm::R_WASM_SECTION_OFFSET_I32: { 588 const auto &Section = 589 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); 590 return Section.getSectionOffset() + RelEntry.Addend; 591 } 592 case wasm::R_WASM_MEMORY_ADDR_LEB: 593 case wasm::R_WASM_MEMORY_ADDR_LEB64: 594 case wasm::R_WASM_MEMORY_ADDR_SLEB: 595 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 596 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 597 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 598 case wasm::R_WASM_MEMORY_ADDR_I32: 599 case wasm::R_WASM_MEMORY_ADDR_I64: 600 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: { 601 // Provisional value is address of the global plus the offset 602 const MCSymbolWasm *Base = 603 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol)); 604 // For undefined symbols, use zero 605 if (!Base->isDefined()) 606 return 0; 607 const wasm::WasmDataReference &BaseRef = DataLocations[Base], 608 &SymRef = DataLocations[RelEntry.Symbol]; 609 const WasmDataSegment &Segment = DataSegments[BaseRef.Segment]; 610 // Ignore overflow. LLVM allows address arithmetic to silently wrap. 611 return Segment.Offset + BaseRef.Offset + SymRef.Offset + RelEntry.Addend; 612 } 613 default: 614 llvm_unreachable("invalid relocation type"); 615 } 616 } 617 618 static void addData(SmallVectorImpl<char> &DataBytes, 619 MCSectionWasm &DataSection) { 620 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n"); 621 622 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlignment())); 623 624 for (const MCFragment &Frag : DataSection) { 625 if (Frag.hasInstructions()) 626 report_fatal_error("only data supported in data sections"); 627 628 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) { 629 if (Align->getValueSize() != 1) 630 report_fatal_error("only byte values supported for alignment"); 631 // If nops are requested, use zeros, as this is the data section. 632 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); 633 uint64_t Size = 634 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()), 635 DataBytes.size() + Align->getMaxBytesToEmit()); 636 DataBytes.resize(Size, Value); 637 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) { 638 int64_t NumValues; 639 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues)) 640 llvm_unreachable("The fill should be an assembler constant"); 641 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues, 642 Fill->getValue()); 643 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) { 644 const SmallVectorImpl<char> &Contents = LEB->getContents(); 645 DataBytes.insert(DataBytes.end(), Contents.begin(), Contents.end()); 646 } else { 647 const auto &DataFrag = cast<MCDataFragment>(Frag); 648 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 649 DataBytes.insert(DataBytes.end(), Contents.begin(), Contents.end()); 650 } 651 } 652 653 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); 654 } 655 656 uint32_t 657 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { 658 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { 659 if (!TypeIndices.count(RelEntry.Symbol)) 660 report_fatal_error("symbol not found in type index space: " + 661 RelEntry.Symbol->getName()); 662 return TypeIndices[RelEntry.Symbol]; 663 } 664 665 return RelEntry.Symbol->getIndex(); 666 } 667 668 // Apply the portions of the relocation records that we can handle ourselves 669 // directly. 670 void WasmObjectWriter::applyRelocations( 671 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, 672 const MCAsmLayout &Layout) { 673 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); 674 for (const WasmRelocationEntry &RelEntry : Relocations) { 675 uint64_t Offset = ContentsOffset + 676 RelEntry.FixupSection->getSectionOffset() + 677 RelEntry.Offset; 678 679 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); 680 auto Value = getProvisionalValue(RelEntry, Layout); 681 682 switch (RelEntry.Type) { 683 case wasm::R_WASM_FUNCTION_INDEX_LEB: 684 case wasm::R_WASM_TYPE_INDEX_LEB: 685 case wasm::R_WASM_GLOBAL_INDEX_LEB: 686 case wasm::R_WASM_MEMORY_ADDR_LEB: 687 case wasm::R_WASM_EVENT_INDEX_LEB: 688 case wasm::R_WASM_TABLE_NUMBER_LEB: 689 writePatchableLEB<5>(Stream, Value, Offset); 690 break; 691 case wasm::R_WASM_MEMORY_ADDR_LEB64: 692 writePatchableLEB<10>(Stream, Value, Offset); 693 break; 694 case wasm::R_WASM_TABLE_INDEX_I32: 695 case wasm::R_WASM_MEMORY_ADDR_I32: 696 case wasm::R_WASM_FUNCTION_OFFSET_I32: 697 case wasm::R_WASM_SECTION_OFFSET_I32: 698 case wasm::R_WASM_GLOBAL_INDEX_I32: 699 patchI32(Stream, Value, Offset); 700 break; 701 case wasm::R_WASM_TABLE_INDEX_I64: 702 case wasm::R_WASM_MEMORY_ADDR_I64: 703 case wasm::R_WASM_FUNCTION_OFFSET_I64: 704 patchI64(Stream, Value, Offset); 705 break; 706 case wasm::R_WASM_TABLE_INDEX_SLEB: 707 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 708 case wasm::R_WASM_MEMORY_ADDR_SLEB: 709 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 710 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 711 writePatchableSLEB<5>(Stream, Value, Offset); 712 break; 713 case wasm::R_WASM_TABLE_INDEX_SLEB64: 714 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 715 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 716 writePatchableSLEB<10>(Stream, Value, Offset); 717 break; 718 default: 719 llvm_unreachable("invalid relocation type"); 720 } 721 } 722 } 723 724 void WasmObjectWriter::writeTypeSection( 725 ArrayRef<wasm::WasmSignature> Signatures) { 726 if (Signatures.empty()) 727 return; 728 729 SectionBookkeeping Section; 730 startSection(Section, wasm::WASM_SEC_TYPE); 731 732 encodeULEB128(Signatures.size(), W->OS); 733 734 for (const wasm::WasmSignature &Sig : Signatures) { 735 W->OS << char(wasm::WASM_TYPE_FUNC); 736 encodeULEB128(Sig.Params.size(), W->OS); 737 for (wasm::ValType Ty : Sig.Params) 738 writeValueType(Ty); 739 encodeULEB128(Sig.Returns.size(), W->OS); 740 for (wasm::ValType Ty : Sig.Returns) 741 writeValueType(Ty); 742 } 743 744 endSection(Section); 745 } 746 747 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, 748 uint64_t DataSize, 749 uint32_t NumElements) { 750 if (Imports.empty()) 751 return; 752 753 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; 754 755 SectionBookkeeping Section; 756 startSection(Section, wasm::WASM_SEC_IMPORT); 757 758 encodeULEB128(Imports.size(), W->OS); 759 for (const wasm::WasmImport &Import : Imports) { 760 writeString(Import.Module); 761 writeString(Import.Field); 762 W->OS << char(Import.Kind); 763 764 switch (Import.Kind) { 765 case wasm::WASM_EXTERNAL_FUNCTION: 766 encodeULEB128(Import.SigIndex, W->OS); 767 break; 768 case wasm::WASM_EXTERNAL_GLOBAL: 769 W->OS << char(Import.Global.Type); 770 W->OS << char(Import.Global.Mutable ? 1 : 0); 771 break; 772 case wasm::WASM_EXTERNAL_MEMORY: 773 encodeULEB128(Import.Memory.Flags, W->OS); 774 encodeULEB128(NumPages, W->OS); // initial 775 break; 776 case wasm::WASM_EXTERNAL_TABLE: 777 W->OS << char(Import.Table.ElemType); 778 encodeULEB128(0, W->OS); // flags 779 encodeULEB128(NumElements, W->OS); // initial 780 break; 781 case wasm::WASM_EXTERNAL_EVENT: 782 encodeULEB128(Import.Event.Attribute, W->OS); 783 encodeULEB128(Import.Event.SigIndex, W->OS); 784 break; 785 default: 786 llvm_unreachable("unsupported import kind"); 787 } 788 } 789 790 endSection(Section); 791 } 792 793 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { 794 if (Functions.empty()) 795 return; 796 797 SectionBookkeeping Section; 798 startSection(Section, wasm::WASM_SEC_FUNCTION); 799 800 encodeULEB128(Functions.size(), W->OS); 801 for (const WasmFunction &Func : Functions) 802 encodeULEB128(Func.SigIndex, W->OS); 803 804 endSection(Section); 805 } 806 807 void WasmObjectWriter::writeEventSection(ArrayRef<wasm::WasmEventType> Events) { 808 if (Events.empty()) 809 return; 810 811 SectionBookkeeping Section; 812 startSection(Section, wasm::WASM_SEC_EVENT); 813 814 encodeULEB128(Events.size(), W->OS); 815 for (const wasm::WasmEventType &Event : Events) { 816 encodeULEB128(Event.Attribute, W->OS); 817 encodeULEB128(Event.SigIndex, W->OS); 818 } 819 820 endSection(Section); 821 } 822 823 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { 824 if (Globals.empty()) 825 return; 826 827 SectionBookkeeping Section; 828 startSection(Section, wasm::WASM_SEC_GLOBAL); 829 830 encodeULEB128(Globals.size(), W->OS); 831 for (const wasm::WasmGlobal &Global : Globals) { 832 encodeULEB128(Global.Type.Type, W->OS); 833 W->OS << char(Global.Type.Mutable); 834 W->OS << char(Global.InitExpr.Opcode); 835 switch (Global.Type.Type) { 836 case wasm::WASM_TYPE_I32: 837 encodeSLEB128(0, W->OS); 838 break; 839 case wasm::WASM_TYPE_I64: 840 encodeSLEB128(0, W->OS); 841 break; 842 case wasm::WASM_TYPE_F32: 843 writeI32(0); 844 break; 845 case wasm::WASM_TYPE_F64: 846 writeI64(0); 847 break; 848 case wasm::WASM_TYPE_EXTERNREF: 849 writeValueType(wasm::ValType::EXTERNREF); 850 break; 851 default: 852 llvm_unreachable("unexpected type"); 853 } 854 W->OS << char(wasm::WASM_OPCODE_END); 855 } 856 857 endSection(Section); 858 } 859 860 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { 861 if (Tables.empty()) 862 return; 863 864 SectionBookkeeping Section; 865 startSection(Section, wasm::WASM_SEC_TABLE); 866 867 encodeULEB128(Tables.size(), W->OS); 868 for (const wasm::WasmTable &Table : Tables) { 869 encodeULEB128(Table.Type.ElemType, W->OS); 870 encodeULEB128(Table.Type.Limits.Flags, W->OS); 871 encodeULEB128(Table.Type.Limits.Initial, W->OS); 872 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) 873 encodeULEB128(Table.Type.Limits.Maximum, W->OS); 874 } 875 endSection(Section); 876 } 877 878 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { 879 if (Exports.empty()) 880 return; 881 882 SectionBookkeeping Section; 883 startSection(Section, wasm::WASM_SEC_EXPORT); 884 885 encodeULEB128(Exports.size(), W->OS); 886 for (const wasm::WasmExport &Export : Exports) { 887 writeString(Export.Name); 888 W->OS << char(Export.Kind); 889 encodeULEB128(Export.Index, W->OS); 890 } 891 892 endSection(Section); 893 } 894 895 void WasmObjectWriter::writeElemSection(ArrayRef<uint32_t> TableElems) { 896 if (TableElems.empty()) 897 return; 898 899 SectionBookkeeping Section; 900 startSection(Section, wasm::WASM_SEC_ELEM); 901 902 encodeULEB128(1, W->OS); // number of "segments" 903 encodeULEB128(0, W->OS); // the table index 904 905 // init expr for starting offset 906 W->OS << char(wasm::WASM_OPCODE_I32_CONST); 907 encodeSLEB128(InitialTableOffset, W->OS); 908 W->OS << char(wasm::WASM_OPCODE_END); 909 910 encodeULEB128(TableElems.size(), W->OS); 911 for (uint32_t Elem : TableElems) 912 encodeULEB128(Elem, W->OS); 913 914 endSection(Section); 915 } 916 917 void WasmObjectWriter::writeDataCountSection() { 918 if (DataSegments.empty()) 919 return; 920 921 SectionBookkeeping Section; 922 startSection(Section, wasm::WASM_SEC_DATACOUNT); 923 encodeULEB128(DataSegments.size(), W->OS); 924 endSection(Section); 925 } 926 927 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, 928 const MCAsmLayout &Layout, 929 ArrayRef<WasmFunction> Functions) { 930 if (Functions.empty()) 931 return 0; 932 933 SectionBookkeeping Section; 934 startSection(Section, wasm::WASM_SEC_CODE); 935 936 encodeULEB128(Functions.size(), W->OS); 937 938 for (const WasmFunction &Func : Functions) { 939 auto &FuncSection = static_cast<MCSectionWasm &>(Func.Sym->getSection()); 940 941 int64_t Size = 0; 942 if (!Func.Sym->getSize()->evaluateAsAbsolute(Size, Layout)) 943 report_fatal_error(".size expression must be evaluatable"); 944 945 encodeULEB128(Size, W->OS); 946 FuncSection.setSectionOffset(W->OS.tell() - Section.ContentsOffset); 947 Asm.writeSectionData(W->OS, &FuncSection, Layout); 948 } 949 950 // Apply fixups. 951 applyRelocations(CodeRelocations, Section.ContentsOffset, Layout); 952 953 endSection(Section); 954 return Section.Index; 955 } 956 957 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) { 958 if (DataSegments.empty()) 959 return 0; 960 961 SectionBookkeeping Section; 962 startSection(Section, wasm::WASM_SEC_DATA); 963 964 encodeULEB128(DataSegments.size(), W->OS); // count 965 966 for (const WasmDataSegment &Segment : DataSegments) { 967 encodeULEB128(Segment.InitFlags, W->OS); // flags 968 if (Segment.InitFlags & wasm::WASM_SEGMENT_HAS_MEMINDEX) 969 encodeULEB128(0, W->OS); // memory index 970 if ((Segment.InitFlags & wasm::WASM_SEGMENT_IS_PASSIVE) == 0) { 971 W->OS << char(Segment.Offset > INT32_MAX ? wasm::WASM_OPCODE_I64_CONST 972 : wasm::WASM_OPCODE_I32_CONST); 973 encodeSLEB128(Segment.Offset, W->OS); // offset 974 W->OS << char(wasm::WASM_OPCODE_END); 975 } 976 encodeULEB128(Segment.Data.size(), W->OS); // size 977 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 978 W->OS << Segment.Data; // data 979 } 980 981 // Apply fixups. 982 applyRelocations(DataRelocations, Section.ContentsOffset, Layout); 983 984 endSection(Section); 985 return Section.Index; 986 } 987 988 void WasmObjectWriter::writeRelocSection( 989 uint32_t SectionIndex, StringRef Name, 990 std::vector<WasmRelocationEntry> &Relocs) { 991 // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md 992 // for descriptions of the reloc sections. 993 994 if (Relocs.empty()) 995 return; 996 997 // First, ensure the relocations are sorted in offset order. In general they 998 // should already be sorted since `recordRelocation` is called in offset 999 // order, but for the code section we combine many MC sections into single 1000 // wasm section, and this order is determined by the order of Asm.Symbols() 1001 // not the sections order. 1002 llvm::stable_sort( 1003 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { 1004 return (A.Offset + A.FixupSection->getSectionOffset()) < 1005 (B.Offset + B.FixupSection->getSectionOffset()); 1006 }); 1007 1008 SectionBookkeeping Section; 1009 startCustomSection(Section, std::string("reloc.") + Name.str()); 1010 1011 encodeULEB128(SectionIndex, W->OS); 1012 encodeULEB128(Relocs.size(), W->OS); 1013 for (const WasmRelocationEntry &RelEntry : Relocs) { 1014 uint64_t Offset = 1015 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); 1016 uint32_t Index = getRelocationIndexValue(RelEntry); 1017 1018 W->OS << char(RelEntry.Type); 1019 encodeULEB128(Offset, W->OS); 1020 encodeULEB128(Index, W->OS); 1021 if (RelEntry.hasAddend()) 1022 encodeSLEB128(RelEntry.Addend, W->OS); 1023 } 1024 1025 endSection(Section); 1026 } 1027 1028 void WasmObjectWriter::writeCustomRelocSections() { 1029 for (const auto &Sec : CustomSections) { 1030 auto &Relocations = CustomSectionsRelocations[Sec.Section]; 1031 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations); 1032 } 1033 } 1034 1035 void WasmObjectWriter::writeLinkingMetaDataSection( 1036 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 1037 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 1038 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { 1039 SectionBookkeeping Section; 1040 startCustomSection(Section, "linking"); 1041 encodeULEB128(wasm::WasmMetadataVersion, W->OS); 1042 1043 SectionBookkeeping SubSection; 1044 if (SymbolInfos.size() != 0) { 1045 startSection(SubSection, wasm::WASM_SYMBOL_TABLE); 1046 encodeULEB128(SymbolInfos.size(), W->OS); 1047 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { 1048 encodeULEB128(Sym.Kind, W->OS); 1049 encodeULEB128(Sym.Flags, W->OS); 1050 switch (Sym.Kind) { 1051 case wasm::WASM_SYMBOL_TYPE_FUNCTION: 1052 case wasm::WASM_SYMBOL_TYPE_GLOBAL: 1053 case wasm::WASM_SYMBOL_TYPE_EVENT: 1054 case wasm::WASM_SYMBOL_TYPE_TABLE: 1055 encodeULEB128(Sym.ElementIndex, W->OS); 1056 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || 1057 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) 1058 writeString(Sym.Name); 1059 break; 1060 case wasm::WASM_SYMBOL_TYPE_DATA: 1061 writeString(Sym.Name); 1062 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { 1063 encodeULEB128(Sym.DataRef.Segment, W->OS); 1064 encodeULEB128(Sym.DataRef.Offset, W->OS); 1065 encodeULEB128(Sym.DataRef.Size, W->OS); 1066 } 1067 break; 1068 case wasm::WASM_SYMBOL_TYPE_SECTION: { 1069 const uint32_t SectionIndex = 1070 CustomSections[Sym.ElementIndex].OutputIndex; 1071 encodeULEB128(SectionIndex, W->OS); 1072 break; 1073 } 1074 default: 1075 llvm_unreachable("unexpected kind"); 1076 } 1077 } 1078 endSection(SubSection); 1079 } 1080 1081 if (DataSegments.size()) { 1082 startSection(SubSection, wasm::WASM_SEGMENT_INFO); 1083 encodeULEB128(DataSegments.size(), W->OS); 1084 for (const WasmDataSegment &Segment : DataSegments) { 1085 writeString(Segment.Name); 1086 encodeULEB128(Segment.Alignment, W->OS); 1087 encodeULEB128(Segment.LinkerFlags, W->OS); 1088 } 1089 endSection(SubSection); 1090 } 1091 1092 if (!InitFuncs.empty()) { 1093 startSection(SubSection, wasm::WASM_INIT_FUNCS); 1094 encodeULEB128(InitFuncs.size(), W->OS); 1095 for (auto &StartFunc : InitFuncs) { 1096 encodeULEB128(StartFunc.first, W->OS); // priority 1097 encodeULEB128(StartFunc.second, W->OS); // function index 1098 } 1099 endSection(SubSection); 1100 } 1101 1102 if (Comdats.size()) { 1103 startSection(SubSection, wasm::WASM_COMDAT_INFO); 1104 encodeULEB128(Comdats.size(), W->OS); 1105 for (const auto &C : Comdats) { 1106 writeString(C.first); 1107 encodeULEB128(0, W->OS); // flags for future use 1108 encodeULEB128(C.second.size(), W->OS); 1109 for (const WasmComdatEntry &Entry : C.second) { 1110 encodeULEB128(Entry.Kind, W->OS); 1111 encodeULEB128(Entry.Index, W->OS); 1112 } 1113 } 1114 endSection(SubSection); 1115 } 1116 1117 endSection(Section); 1118 } 1119 1120 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, 1121 const MCAssembler &Asm, 1122 const MCAsmLayout &Layout) { 1123 SectionBookkeeping Section; 1124 auto *Sec = CustomSection.Section; 1125 startCustomSection(Section, CustomSection.Name); 1126 1127 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1128 Asm.writeSectionData(W->OS, Sec, Layout); 1129 1130 CustomSection.OutputContentsOffset = Section.ContentsOffset; 1131 CustomSection.OutputIndex = Section.Index; 1132 1133 endSection(Section); 1134 1135 // Apply fixups. 1136 auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; 1137 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout); 1138 } 1139 1140 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { 1141 assert(Symbol.isFunction()); 1142 assert(TypeIndices.count(&Symbol)); 1143 return TypeIndices[&Symbol]; 1144 } 1145 1146 uint32_t WasmObjectWriter::getEventType(const MCSymbolWasm &Symbol) { 1147 assert(Symbol.isEvent()); 1148 assert(TypeIndices.count(&Symbol)); 1149 return TypeIndices[&Symbol]; 1150 } 1151 1152 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { 1153 assert(Symbol.isFunction()); 1154 1155 wasm::WasmSignature S; 1156 1157 if (auto *Sig = Symbol.getSignature()) { 1158 S.Returns = Sig->Returns; 1159 S.Params = Sig->Params; 1160 } 1161 1162 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1163 if (Pair.second) 1164 Signatures.push_back(S); 1165 TypeIndices[&Symbol] = Pair.first->second; 1166 1167 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol 1168 << " new:" << Pair.second << "\n"); 1169 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1170 } 1171 1172 void WasmObjectWriter::registerEventType(const MCSymbolWasm &Symbol) { 1173 assert(Symbol.isEvent()); 1174 1175 // TODO Currently we don't generate imported exceptions, but if we do, we 1176 // should have a way of infering types of imported exceptions. 1177 wasm::WasmSignature S; 1178 if (auto *Sig = Symbol.getSignature()) { 1179 S.Returns = Sig->Returns; 1180 S.Params = Sig->Params; 1181 } 1182 1183 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1184 if (Pair.second) 1185 Signatures.push_back(S); 1186 TypeIndices[&Symbol] = Pair.first->second; 1187 1188 LLVM_DEBUG(dbgs() << "registerEventType: " << Symbol << " new:" << Pair.second 1189 << "\n"); 1190 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1191 } 1192 1193 static bool isInSymtab(const MCSymbolWasm &Sym) { 1194 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) 1195 return true; 1196 1197 if (Sym.isComdat() && !Sym.isDefined()) 1198 return false; 1199 1200 if (Sym.isTemporary()) 1201 return false; 1202 1203 if (Sym.isSection()) 1204 return false; 1205 1206 return true; 1207 } 1208 void WasmObjectWriter::prepareImports( 1209 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm, 1210 const MCAsmLayout &Layout) { 1211 // For now, always emit the memory import, since loads and stores are not 1212 // valid without it. In the future, we could perhaps be more clever and omit 1213 // it if there are no loads or stores. 1214 wasm::WasmImport MemImport; 1215 MemImport.Module = "env"; 1216 MemImport.Field = "__linear_memory"; 1217 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; 1218 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 1219 : wasm::WASM_LIMITS_FLAG_NONE; 1220 Imports.push_back(MemImport); 1221 1222 // Populate SignatureIndices, and Imports and WasmIndices for undefined 1223 // symbols. This must be done before populating WasmIndices for defined 1224 // symbols. 1225 for (const MCSymbol &S : Asm.symbols()) { 1226 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1227 1228 // Register types for all functions, including those with private linkage 1229 // (because wasm always needs a type signature). 1230 if (WS.isFunction()) { 1231 const auto *BS = Layout.getBaseSymbol(S); 1232 if (!BS) 1233 report_fatal_error(Twine(S.getName()) + 1234 ": absolute addressing not supported!"); 1235 registerFunctionType(*cast<MCSymbolWasm>(BS)); 1236 } 1237 1238 if (WS.isEvent()) 1239 registerEventType(WS); 1240 1241 if (WS.isTemporary()) 1242 continue; 1243 1244 // If the symbol is not defined in this translation unit, import it. 1245 if (!WS.isDefined() && !WS.isComdat()) { 1246 if (WS.isFunction()) { 1247 wasm::WasmImport Import; 1248 Import.Module = WS.getImportModule(); 1249 Import.Field = WS.getImportName(); 1250 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1251 Import.SigIndex = getFunctionType(WS); 1252 Imports.push_back(Import); 1253 assert(WasmIndices.count(&WS) == 0); 1254 WasmIndices[&WS] = NumFunctionImports++; 1255 } else if (WS.isGlobal()) { 1256 if (WS.isWeak()) 1257 report_fatal_error("undefined global symbol cannot be weak"); 1258 1259 wasm::WasmImport Import; 1260 Import.Field = WS.getImportName(); 1261 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1262 Import.Module = WS.getImportModule(); 1263 Import.Global = WS.getGlobalType(); 1264 Imports.push_back(Import); 1265 assert(WasmIndices.count(&WS) == 0); 1266 WasmIndices[&WS] = NumGlobalImports++; 1267 } else if (WS.isEvent()) { 1268 if (WS.isWeak()) 1269 report_fatal_error("undefined event symbol cannot be weak"); 1270 1271 wasm::WasmImport Import; 1272 Import.Module = WS.getImportModule(); 1273 Import.Field = WS.getImportName(); 1274 Import.Kind = wasm::WASM_EXTERNAL_EVENT; 1275 Import.Event.Attribute = wasm::WASM_EVENT_ATTRIBUTE_EXCEPTION; 1276 Import.Event.SigIndex = getEventType(WS); 1277 Imports.push_back(Import); 1278 assert(WasmIndices.count(&WS) == 0); 1279 WasmIndices[&WS] = NumEventImports++; 1280 } else if (WS.isTable()) { 1281 if (WS.isWeak()) 1282 report_fatal_error("undefined table symbol cannot be weak"); 1283 1284 wasm::WasmImport Import; 1285 Import.Module = WS.getImportModule(); 1286 Import.Field = WS.getImportName(); 1287 Import.Kind = wasm::WASM_EXTERNAL_TABLE; 1288 wasm::ValType ElemType = WS.getTableType(); 1289 Import.Table.ElemType = uint8_t(ElemType); 1290 // FIXME: Extend table type to include limits? For now we don't specify 1291 // a min or max which does not place any restrictions on the size of the 1292 // imported table. 1293 Import.Table.Limits = {wasm::WASM_LIMITS_FLAG_NONE, 0, 0}; 1294 Imports.push_back(Import); 1295 assert(WasmIndices.count(&WS) == 0); 1296 WasmIndices[&WS] = NumTableImports++; 1297 } 1298 } 1299 } 1300 1301 // Add imports for GOT globals 1302 for (const MCSymbol &S : Asm.symbols()) { 1303 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1304 if (WS.isUsedInGOT()) { 1305 wasm::WasmImport Import; 1306 if (WS.isFunction()) 1307 Import.Module = "GOT.func"; 1308 else 1309 Import.Module = "GOT.mem"; 1310 Import.Field = WS.getName(); 1311 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1312 Import.Global = {wasm::WASM_TYPE_I32, true}; 1313 Imports.push_back(Import); 1314 assert(GOTIndices.count(&WS) == 0); 1315 GOTIndices[&WS] = NumGlobalImports++; 1316 } 1317 } 1318 } 1319 1320 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm, 1321 const MCAsmLayout &Layout) { 1322 support::endian::Writer MainWriter(*OS, support::little); 1323 W = &MainWriter; 1324 if (IsSplitDwarf) { 1325 uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly); 1326 assert(DwoOS); 1327 support::endian::Writer DwoWriter(*DwoOS, support::little); 1328 W = &DwoWriter; 1329 return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly); 1330 } else { 1331 return writeOneObject(Asm, Layout, DwoMode::AllSections); 1332 } 1333 } 1334 1335 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, 1336 const MCAsmLayout &Layout, 1337 DwoMode Mode) { 1338 uint64_t StartOffset = W->OS.tell(); 1339 SectionCount = 0; 1340 CustomSections.clear(); 1341 1342 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); 1343 1344 // Collect information from the available symbols. 1345 SmallVector<WasmFunction, 4> Functions; 1346 SmallVector<uint32_t, 4> TableElems; 1347 SmallVector<wasm::WasmImport, 4> Imports; 1348 SmallVector<wasm::WasmExport, 4> Exports; 1349 SmallVector<wasm::WasmEventType, 1> Events; 1350 SmallVector<wasm::WasmGlobal, 1> Globals; 1351 SmallVector<wasm::WasmTable, 1> Tables; 1352 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; 1353 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; 1354 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; 1355 uint64_t DataSize = 0; 1356 if (Mode != DwoMode::DwoOnly) { 1357 prepareImports(Imports, Asm, Layout); 1358 } 1359 // Populate DataSegments and CustomSections, which must be done before 1360 // populating DataLocations. 1361 for (MCSection &Sec : Asm) { 1362 auto &Section = static_cast<MCSectionWasm &>(Sec); 1363 StringRef SectionName = Section.getName(); 1364 1365 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) 1366 continue; 1367 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) 1368 continue; 1369 1370 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " 1371 << Section.getGroup() << "\n";); 1372 1373 // .init_array sections are handled specially elsewhere. 1374 if (SectionName.startswith(".init_array")) 1375 continue; 1376 1377 // Code is handled separately 1378 if (Section.getKind().isText()) 1379 continue; 1380 1381 if (Section.isWasmData()) { 1382 uint32_t SegmentIndex = DataSegments.size(); 1383 DataSize = alignTo(DataSize, Section.getAlignment()); 1384 DataSegments.emplace_back(); 1385 WasmDataSegment &Segment = DataSegments.back(); 1386 Segment.Name = SectionName; 1387 Segment.InitFlags = 1388 Section.getPassive() ? (uint32_t)wasm::WASM_SEGMENT_IS_PASSIVE : 0; 1389 Segment.Offset = DataSize; 1390 Segment.Section = &Section; 1391 addData(Segment.Data, Section); 1392 Segment.Alignment = Log2_32(Section.getAlignment()); 1393 Segment.LinkerFlags = 0; 1394 DataSize += Segment.Data.size(); 1395 Section.setSegmentIndex(SegmentIndex); 1396 1397 if (const MCSymbolWasm *C = Section.getGroup()) { 1398 Comdats[C->getName()].emplace_back( 1399 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); 1400 } 1401 } else { 1402 // Create custom sections 1403 assert(Sec.getKind().isMetadata()); 1404 1405 StringRef Name = SectionName; 1406 1407 // For user-defined custom sections, strip the prefix 1408 if (Name.startswith(".custom_section.")) 1409 Name = Name.substr(strlen(".custom_section.")); 1410 1411 MCSymbol *Begin = Sec.getBeginSymbol(); 1412 if (Begin) { 1413 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size(); 1414 } 1415 1416 // Separate out the producers and target features sections 1417 if (Name == "producers") { 1418 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section); 1419 continue; 1420 } 1421 if (Name == "target_features") { 1422 TargetFeaturesSection = 1423 std::make_unique<WasmCustomSection>(Name, &Section); 1424 continue; 1425 } 1426 1427 // Custom sections can also belong to COMDAT groups. In this case the 1428 // decriptor's "index" field is the section index (in the final object 1429 // file), but that is not known until after layout, so it must be fixed up 1430 // later 1431 if (const MCSymbolWasm *C = Section.getGroup()) { 1432 Comdats[C->getName()].emplace_back( 1433 WasmComdatEntry{wasm::WASM_COMDAT_SECTION, 1434 static_cast<uint32_t>(CustomSections.size())}); 1435 } 1436 1437 CustomSections.emplace_back(Name, &Section); 1438 } 1439 } 1440 1441 // Populate WasmIndices and DataLocations for defined symbols. 1442 for (const MCSymbol &S : Asm.symbols()) { 1443 // Ignore unnamed temporary symbols, which aren't ever exported, imported, 1444 // or used in relocations. 1445 if (S.isTemporary() && S.getName().empty()) 1446 continue; 1447 1448 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1449 LLVM_DEBUG( 1450 dbgs() << "MCSymbol: " << toString(WS.getType()) << " '" << S << "'" 1451 << " isDefined=" << S.isDefined() << " isExternal=" 1452 << S.isExternal() << " isTemporary=" << S.isTemporary() 1453 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() 1454 << " isVariable=" << WS.isVariable() << "\n"); 1455 1456 if (WS.isVariable()) 1457 continue; 1458 if (WS.isComdat() && !WS.isDefined()) 1459 continue; 1460 1461 if (WS.isFunction()) { 1462 unsigned Index; 1463 if (WS.isDefined()) { 1464 if (WS.getOffset() != 0) 1465 report_fatal_error( 1466 "function sections must contain one function each"); 1467 1468 if (WS.getSize() == nullptr) 1469 report_fatal_error( 1470 "function symbols must have a size set with .size"); 1471 1472 // A definition. Write out the function body. 1473 Index = NumFunctionImports + Functions.size(); 1474 WasmFunction Func; 1475 Func.SigIndex = getFunctionType(WS); 1476 Func.Sym = &WS; 1477 WasmIndices[&WS] = Index; 1478 Functions.push_back(Func); 1479 1480 auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); 1481 if (const MCSymbolWasm *C = Section.getGroup()) { 1482 Comdats[C->getName()].emplace_back( 1483 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); 1484 } 1485 1486 if (WS.hasExportName()) { 1487 wasm::WasmExport Export; 1488 Export.Name = WS.getExportName(); 1489 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1490 Export.Index = Index; 1491 Exports.push_back(Export); 1492 } 1493 } else { 1494 // An import; the index was assigned above. 1495 Index = WasmIndices.find(&WS)->second; 1496 } 1497 1498 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n"); 1499 1500 } else if (WS.isData()) { 1501 if (!isInSymtab(WS)) 1502 continue; 1503 1504 if (!WS.isDefined()) { 1505 LLVM_DEBUG(dbgs() << " -> segment index: -1" 1506 << "\n"); 1507 continue; 1508 } 1509 1510 if (!WS.getSize()) 1511 report_fatal_error("data symbols must have a size set with .size: " + 1512 WS.getName()); 1513 1514 int64_t Size = 0; 1515 if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) 1516 report_fatal_error(".size expression must be evaluatable"); 1517 1518 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1519 if (!DataSection.isWasmData()) 1520 report_fatal_error("data symbols must live in a data section: " + 1521 WS.getName()); 1522 1523 // For each data symbol, export it in the symtab as a reference to the 1524 // corresponding Wasm data segment. 1525 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1526 DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS), 1527 static_cast<uint64_t>(Size)}; 1528 DataLocations[&WS] = Ref; 1529 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n"); 1530 1531 } else if (WS.isGlobal()) { 1532 // A "true" Wasm global (currently just __stack_pointer) 1533 if (WS.isDefined()) { 1534 assert(WasmIndices.count(&WS) == 0); 1535 wasm::WasmGlobal Global; 1536 Global.Type = WS.getGlobalType(); 1537 Global.Index = NumGlobalImports + Globals.size(); 1538 switch (Global.Type.Type) { 1539 case wasm::WASM_TYPE_I32: 1540 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I32_CONST; 1541 break; 1542 case wasm::WASM_TYPE_I64: 1543 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I64_CONST; 1544 break; 1545 case wasm::WASM_TYPE_F32: 1546 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F32_CONST; 1547 break; 1548 case wasm::WASM_TYPE_F64: 1549 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F64_CONST; 1550 break; 1551 case wasm::WASM_TYPE_EXTERNREF: 1552 Global.InitExpr.Opcode = wasm::WASM_OPCODE_REF_NULL; 1553 break; 1554 default: 1555 llvm_unreachable("unexpected type"); 1556 } 1557 WasmIndices[&WS] = Global.Index; 1558 Globals.push_back(Global); 1559 } else { 1560 // An import; the index was assigned above 1561 LLVM_DEBUG(dbgs() << " -> global index: " 1562 << WasmIndices.find(&WS)->second << "\n"); 1563 } 1564 } else if (WS.isTable()) { 1565 if (WS.isDefined()) { 1566 assert(WasmIndices.count(&WS) == 0); 1567 wasm::WasmTable Table; 1568 Table.Index = NumTableImports + Tables.size(); 1569 Table.Type.ElemType = static_cast<uint8_t>(WS.getTableType()); 1570 // FIXME: Work on custom limits is ongoing 1571 Table.Type.Limits = {wasm::WASM_LIMITS_FLAG_NONE, 0, 0}; 1572 1573 WasmIndices[&WS] = Table.Index; 1574 Tables.push_back(Table); 1575 } 1576 LLVM_DEBUG(dbgs() << " -> table index: " << WasmIndices.find(&WS)->second 1577 << "\n"); 1578 } else if (WS.isEvent()) { 1579 // C++ exception symbol (__cpp_exception) 1580 unsigned Index; 1581 if (WS.isDefined()) { 1582 assert(WasmIndices.count(&WS) == 0); 1583 Index = NumEventImports + Events.size(); 1584 wasm::WasmEventType Event; 1585 Event.SigIndex = getEventType(WS); 1586 Event.Attribute = wasm::WASM_EVENT_ATTRIBUTE_EXCEPTION; 1587 WasmIndices[&WS] = Index; 1588 Events.push_back(Event); 1589 } else { 1590 // An import; the index was assigned above. 1591 assert(WasmIndices.count(&WS) > 0); 1592 } 1593 LLVM_DEBUG(dbgs() << " -> event index: " << WasmIndices.find(&WS)->second 1594 << "\n"); 1595 1596 } else { 1597 assert(WS.isSection()); 1598 } 1599 } 1600 1601 // Populate WasmIndices and DataLocations for aliased symbols. We need to 1602 // process these in a separate pass because we need to have processed the 1603 // target of the alias before the alias itself and the symbols are not 1604 // necessarily ordered in this way. 1605 for (const MCSymbol &S : Asm.symbols()) { 1606 if (!S.isVariable()) 1607 continue; 1608 1609 assert(S.isDefined()); 1610 1611 const auto *BS = Layout.getBaseSymbol(S); 1612 if (!BS) 1613 report_fatal_error(Twine(S.getName()) + 1614 ": absolute addressing not supported!"); 1615 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS); 1616 1617 // Find the target symbol of this weak alias and export that index 1618 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1619 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base << "'\n"); 1620 1621 if (Base->isFunction()) { 1622 assert(WasmIndices.count(Base) > 0); 1623 uint32_t WasmIndex = WasmIndices.find(Base)->second; 1624 assert(WasmIndices.count(&WS) == 0); 1625 WasmIndices[&WS] = WasmIndex; 1626 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); 1627 } else if (Base->isData()) { 1628 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1629 uint64_t Offset = Layout.getSymbolOffset(S); 1630 int64_t Size = 0; 1631 // For data symbol alias we use the size of the base symbol as the 1632 // size of the alias. When an offset from the base is involved this 1633 // can result in a offset + size goes past the end of the data section 1634 // which out object format doesn't support. So we must clamp it. 1635 if (!Base->getSize()->evaluateAsAbsolute(Size, Layout)) 1636 report_fatal_error(".size expression must be evaluatable"); 1637 const WasmDataSegment &Segment = 1638 DataSegments[DataSection.getSegmentIndex()]; 1639 Size = 1640 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset); 1641 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1642 DataSection.getSegmentIndex(), 1643 static_cast<uint32_t>(Layout.getSymbolOffset(S)), 1644 static_cast<uint32_t>(Size)}; 1645 DataLocations[&WS] = Ref; 1646 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); 1647 } else { 1648 report_fatal_error("don't yet support global/event aliases"); 1649 } 1650 } 1651 1652 // Finally, populate the symbol table itself, in its "natural" order. 1653 for (const MCSymbol &S : Asm.symbols()) { 1654 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1655 if (!isInSymtab(WS)) { 1656 WS.setIndex(InvalidIndex); 1657 continue; 1658 } 1659 if (WS.isTable() && WS.getName() == "__indirect_function_table") { 1660 // For the moment, don't emit table symbols -- wasm-ld can't handle them. 1661 continue; 1662 } 1663 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n"); 1664 1665 uint32_t Flags = 0; 1666 if (WS.isWeak()) 1667 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; 1668 if (WS.isHidden()) 1669 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; 1670 if (!WS.isExternal() && WS.isDefined()) 1671 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; 1672 if (WS.isUndefined()) 1673 Flags |= wasm::WASM_SYMBOL_UNDEFINED; 1674 if (WS.isNoStrip()) { 1675 Flags |= wasm::WASM_SYMBOL_NO_STRIP; 1676 if (isEmscripten()) { 1677 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1678 } 1679 } 1680 if (WS.hasImportName()) 1681 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; 1682 if (WS.hasExportName()) 1683 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1684 1685 wasm::WasmSymbolInfo Info; 1686 Info.Name = WS.getName(); 1687 Info.Kind = WS.getType(); 1688 Info.Flags = Flags; 1689 if (!WS.isData()) { 1690 assert(WasmIndices.count(&WS) > 0); 1691 Info.ElementIndex = WasmIndices.find(&WS)->second; 1692 } else if (WS.isDefined()) { 1693 assert(DataLocations.count(&WS) > 0); 1694 Info.DataRef = DataLocations.find(&WS)->second; 1695 } 1696 WS.setIndex(SymbolInfos.size()); 1697 SymbolInfos.emplace_back(Info); 1698 } 1699 1700 { 1701 auto HandleReloc = [&](const WasmRelocationEntry &Rel) { 1702 // Functions referenced by a relocation need to put in the table. This is 1703 // purely to make the object file's provisional values readable, and is 1704 // ignored by the linker, which re-calculates the relocations itself. 1705 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && 1706 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && 1707 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && 1708 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && 1709 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB) 1710 return; 1711 assert(Rel.Symbol->isFunction()); 1712 const MCSymbolWasm *Base = 1713 cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol)); 1714 uint32_t FunctionIndex = WasmIndices.find(Base)->second; 1715 uint32_t TableIndex = TableElems.size() + InitialTableOffset; 1716 if (TableIndices.try_emplace(Base, TableIndex).second) { 1717 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() 1718 << " to table: " << TableIndex << "\n"); 1719 TableElems.push_back(FunctionIndex); 1720 registerFunctionType(*Base); 1721 } 1722 }; 1723 1724 for (const WasmRelocationEntry &RelEntry : CodeRelocations) 1725 HandleReloc(RelEntry); 1726 for (const WasmRelocationEntry &RelEntry : DataRelocations) 1727 HandleReloc(RelEntry); 1728 } 1729 1730 // Translate .init_array section contents into start functions. 1731 for (const MCSection &S : Asm) { 1732 const auto &WS = static_cast<const MCSectionWasm &>(S); 1733 if (WS.getName().startswith(".fini_array")) 1734 report_fatal_error(".fini_array sections are unsupported"); 1735 if (!WS.getName().startswith(".init_array")) 1736 continue; 1737 if (WS.getFragmentList().empty()) 1738 continue; 1739 1740 // init_array is expected to contain a single non-empty data fragment 1741 if (WS.getFragmentList().size() != 3) 1742 report_fatal_error("only one .init_array section fragment supported"); 1743 1744 auto IT = WS.begin(); 1745 const MCFragment &EmptyFrag = *IT; 1746 if (EmptyFrag.getKind() != MCFragment::FT_Data) 1747 report_fatal_error(".init_array section should be aligned"); 1748 1749 IT = std::next(IT); 1750 const MCFragment &AlignFrag = *IT; 1751 if (AlignFrag.getKind() != MCFragment::FT_Align) 1752 report_fatal_error(".init_array section should be aligned"); 1753 if (cast<MCAlignFragment>(AlignFrag).getAlignment() != (is64Bit() ? 8 : 4)) 1754 report_fatal_error(".init_array section should be aligned for pointers"); 1755 1756 const MCFragment &Frag = *std::next(IT); 1757 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) 1758 report_fatal_error("only data supported in .init_array section"); 1759 1760 uint16_t Priority = UINT16_MAX; 1761 unsigned PrefixLength = strlen(".init_array"); 1762 if (WS.getName().size() > PrefixLength) { 1763 if (WS.getName()[PrefixLength] != '.') 1764 report_fatal_error( 1765 ".init_array section priority should start with '.'"); 1766 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority)) 1767 report_fatal_error("invalid .init_array section priority"); 1768 } 1769 const auto &DataFrag = cast<MCDataFragment>(Frag); 1770 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 1771 for (const uint8_t * 1772 P = (const uint8_t *)Contents.data(), 1773 *End = (const uint8_t *)Contents.data() + Contents.size(); 1774 P != End; ++P) { 1775 if (*P != 0) 1776 report_fatal_error("non-symbolic data in .init_array section"); 1777 } 1778 for (const MCFixup &Fixup : DataFrag.getFixups()) { 1779 assert(Fixup.getKind() == 1780 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); 1781 const MCExpr *Expr = Fixup.getValue(); 1782 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr); 1783 if (!SymRef) 1784 report_fatal_error("fixups in .init_array should be symbol references"); 1785 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol()); 1786 if (TargetSym.getIndex() == InvalidIndex) 1787 report_fatal_error("symbols in .init_array should exist in symtab"); 1788 if (!TargetSym.isFunction()) 1789 report_fatal_error("symbols in .init_array should be for functions"); 1790 InitFuncs.push_back( 1791 std::make_pair(Priority, TargetSym.getIndex())); 1792 } 1793 } 1794 1795 // Write out the Wasm header. 1796 writeHeader(Asm); 1797 1798 uint32_t CodeSectionIndex, DataSectionIndex; 1799 if (Mode != DwoMode::DwoOnly) { 1800 writeTypeSection(Signatures); 1801 writeImportSection(Imports, DataSize, TableElems.size()); 1802 writeFunctionSection(Functions); 1803 writeTableSection(Tables); 1804 // Skip the "memory" section; we import the memory instead. 1805 writeEventSection(Events); 1806 writeGlobalSection(Globals); 1807 writeExportSection(Exports); 1808 writeElemSection(TableElems); 1809 writeDataCountSection(); 1810 1811 CodeSectionIndex = writeCodeSection(Asm, Layout, Functions); 1812 DataSectionIndex = writeDataSection(Layout); 1813 } 1814 1815 // The Sections in the COMDAT list have placeholder indices (their index among 1816 // custom sections, rather than among all sections). Fix them up here. 1817 for (auto &Group : Comdats) { 1818 for (auto &Entry : Group.second) { 1819 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { 1820 Entry.Index += SectionCount; 1821 } 1822 } 1823 } 1824 for (auto &CustomSection : CustomSections) 1825 writeCustomSection(CustomSection, Asm, Layout); 1826 1827 if (Mode != DwoMode::DwoOnly) { 1828 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); 1829 1830 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations); 1831 writeRelocSection(DataSectionIndex, "DATA", DataRelocations); 1832 } 1833 writeCustomRelocSections(); 1834 if (ProducersSection) 1835 writeCustomSection(*ProducersSection, Asm, Layout); 1836 if (TargetFeaturesSection) 1837 writeCustomSection(*TargetFeaturesSection, Asm, Layout); 1838 1839 // TODO: Translate the .comment section to the output. 1840 return W->OS.tell() - StartOffset; 1841 } 1842 1843 std::unique_ptr<MCObjectWriter> 1844 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1845 raw_pwrite_stream &OS) { 1846 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS); 1847 } 1848 1849 std::unique_ptr<MCObjectWriter> 1850 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1851 raw_pwrite_stream &OS, 1852 raw_pwrite_stream &DwoOS) { 1853 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS); 1854 } 1855