1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Wasm object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/BinaryFormat/Wasm.h" 16 #include "llvm/BinaryFormat/WasmTraits.h" 17 #include "llvm/Config/llvm-config.h" 18 #include "llvm/MC/MCAsmBackend.h" 19 #include "llvm/MC/MCAsmLayout.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCExpr.h" 23 #include "llvm/MC/MCFixupKindInfo.h" 24 #include "llvm/MC/MCObjectWriter.h" 25 #include "llvm/MC/MCSectionWasm.h" 26 #include "llvm/MC/MCSymbolWasm.h" 27 #include "llvm/MC/MCValue.h" 28 #include "llvm/MC/MCWasmObjectWriter.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/EndianStream.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/LEB128.h" 34 #include "llvm/Support/StringSaver.h" 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "mc" 40 41 namespace { 42 43 // When we create the indirect function table we start at 1, so that there is 44 // and empty slot at 0 and therefore calling a null function pointer will trap. 45 static const uint32_t InitialTableOffset = 1; 46 47 // For patching purposes, we need to remember where each section starts, both 48 // for patching up the section size field, and for patching up references to 49 // locations within the section. 50 struct SectionBookkeeping { 51 // Where the size of the section is written. 52 uint64_t SizeOffset; 53 // Where the section header ends (without custom section name). 54 uint64_t PayloadOffset; 55 // Where the contents of the section starts. 56 uint64_t ContentsOffset; 57 uint32_t Index; 58 }; 59 60 // A wasm data segment. A wasm binary contains only a single data section 61 // but that can contain many segments, each with their own virtual location 62 // in memory. Each MCSection data created by llvm is modeled as its own 63 // wasm data segment. 64 struct WasmDataSegment { 65 MCSectionWasm *Section; 66 StringRef Name; 67 uint32_t InitFlags; 68 uint64_t Offset; 69 uint32_t Alignment; 70 uint32_t LinkingFlags; 71 SmallVector<char, 4> Data; 72 }; 73 74 // A wasm function to be written into the function section. 75 struct WasmFunction { 76 uint32_t SigIndex; 77 const MCSymbolWasm *Sym; 78 }; 79 80 // A wasm global to be written into the global section. 81 struct WasmGlobal { 82 wasm::WasmGlobalType Type; 83 uint64_t InitialValue; 84 }; 85 86 // Information about a single item which is part of a COMDAT. For each data 87 // segment or function which is in the COMDAT, there is a corresponding 88 // WasmComdatEntry. 89 struct WasmComdatEntry { 90 unsigned Kind; 91 uint32_t Index; 92 }; 93 94 // Information about a single relocation. 95 struct WasmRelocationEntry { 96 uint64_t Offset; // Where is the relocation. 97 const MCSymbolWasm *Symbol; // The symbol to relocate with. 98 int64_t Addend; // A value to add to the symbol. 99 unsigned Type; // The type of the relocation. 100 const MCSectionWasm *FixupSection; // The section the relocation is targeting. 101 102 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, 103 int64_t Addend, unsigned Type, 104 const MCSectionWasm *FixupSection) 105 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), 106 FixupSection(FixupSection) {} 107 108 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); } 109 110 void print(raw_ostream &Out) const { 111 Out << wasm::relocTypetoString(Type) << " Off=" << Offset 112 << ", Sym=" << *Symbol << ", Addend=" << Addend 113 << ", FixupSection=" << FixupSection->getName(); 114 } 115 116 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 117 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 118 #endif 119 }; 120 121 static const uint32_t InvalidIndex = -1; 122 123 struct WasmCustomSection { 124 125 StringRef Name; 126 MCSectionWasm *Section; 127 128 uint32_t OutputContentsOffset; 129 uint32_t OutputIndex; 130 131 WasmCustomSection(StringRef Name, MCSectionWasm *Section) 132 : Name(Name), Section(Section), OutputContentsOffset(0), 133 OutputIndex(InvalidIndex) {} 134 }; 135 136 #if !defined(NDEBUG) 137 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { 138 Rel.print(OS); 139 return OS; 140 } 141 #endif 142 143 // Write X as an (unsigned) LEB value at offset Offset in Stream, padded 144 // to allow patching. 145 template <int W> 146 void writePatchableLEB(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 147 uint8_t Buffer[W]; 148 unsigned SizeLen = encodeULEB128(X, Buffer, W); 149 assert(SizeLen == W); 150 Stream.pwrite((char *)Buffer, SizeLen, Offset); 151 } 152 153 // Write X as an signed LEB value at offset Offset in Stream, padded 154 // to allow patching. 155 template <int W> 156 void writePatchableSLEB(raw_pwrite_stream &Stream, int64_t X, uint64_t Offset) { 157 uint8_t Buffer[W]; 158 unsigned SizeLen = encodeSLEB128(X, Buffer, W); 159 assert(SizeLen == W); 160 Stream.pwrite((char *)Buffer, SizeLen, Offset); 161 } 162 163 // Write X as a plain integer value at offset Offset in Stream. 164 static void patchI32(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { 165 uint8_t Buffer[4]; 166 support::endian::write32le(Buffer, X); 167 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 168 } 169 170 static void patchI64(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 171 uint8_t Buffer[8]; 172 support::endian::write64le(Buffer, X); 173 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 174 } 175 176 bool isDwoSection(const MCSection &Sec) { 177 return Sec.getName().endswith(".dwo"); 178 } 179 180 class WasmObjectWriter : public MCObjectWriter { 181 support::endian::Writer *W; 182 183 /// The target specific Wasm writer instance. 184 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; 185 186 // Relocations for fixing up references in the code section. 187 std::vector<WasmRelocationEntry> CodeRelocations; 188 // Relocations for fixing up references in the data section. 189 std::vector<WasmRelocationEntry> DataRelocations; 190 191 // Index values to use for fixing up call_indirect type indices. 192 // Maps function symbols to the index of the type of the function 193 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; 194 // Maps function symbols to the table element index space. Used 195 // for TABLE_INDEX relocation types (i.e. address taken functions). 196 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; 197 // Maps function/global/table symbols to the 198 // function/global/table/event/section index space. 199 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; 200 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; 201 // Maps data symbols to the Wasm segment and offset/size with the segment. 202 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; 203 204 // Stores output data (index, relocations, content offset) for custom 205 // section. 206 std::vector<WasmCustomSection> CustomSections; 207 std::unique_ptr<WasmCustomSection> ProducersSection; 208 std::unique_ptr<WasmCustomSection> TargetFeaturesSection; 209 // Relocations for fixing up references in the custom sections. 210 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> 211 CustomSectionsRelocations; 212 213 // Map from section to defining function symbol. 214 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; 215 216 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; 217 SmallVector<wasm::WasmSignature, 4> Signatures; 218 SmallVector<WasmDataSegment, 4> DataSegments; 219 unsigned NumFunctionImports = 0; 220 unsigned NumGlobalImports = 0; 221 unsigned NumTableImports = 0; 222 unsigned NumEventImports = 0; 223 uint32_t SectionCount = 0; 224 225 enum class DwoMode { 226 AllSections, 227 NonDwoOnly, 228 DwoOnly, 229 }; 230 bool IsSplitDwarf = false; 231 raw_pwrite_stream *OS = nullptr; 232 raw_pwrite_stream *DwoOS = nullptr; 233 234 // TargetObjectWriter wranppers. 235 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 236 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } 237 238 void startSection(SectionBookkeeping &Section, unsigned SectionId); 239 void startCustomSection(SectionBookkeeping &Section, StringRef Name); 240 void endSection(SectionBookkeeping &Section); 241 242 public: 243 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 244 raw_pwrite_stream &OS_) 245 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} 246 247 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 248 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) 249 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), 250 DwoOS(&DwoOS_) {} 251 252 private: 253 void reset() override { 254 CodeRelocations.clear(); 255 DataRelocations.clear(); 256 TypeIndices.clear(); 257 WasmIndices.clear(); 258 GOTIndices.clear(); 259 TableIndices.clear(); 260 DataLocations.clear(); 261 CustomSections.clear(); 262 ProducersSection.reset(); 263 TargetFeaturesSection.reset(); 264 CustomSectionsRelocations.clear(); 265 SignatureIndices.clear(); 266 Signatures.clear(); 267 DataSegments.clear(); 268 SectionFunctions.clear(); 269 NumFunctionImports = 0; 270 NumGlobalImports = 0; 271 NumTableImports = 0; 272 MCObjectWriter::reset(); 273 } 274 275 void writeHeader(const MCAssembler &Asm); 276 277 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 278 const MCFragment *Fragment, const MCFixup &Fixup, 279 MCValue Target, uint64_t &FixedValue) override; 280 281 void executePostLayoutBinding(MCAssembler &Asm, 282 const MCAsmLayout &Layout) override; 283 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, 284 MCAssembler &Asm, const MCAsmLayout &Layout); 285 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 286 287 uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout, 288 DwoMode Mode); 289 290 void writeString(const StringRef Str) { 291 encodeULEB128(Str.size(), W->OS); 292 W->OS << Str; 293 } 294 295 void writeI32(int32_t val) { 296 char Buffer[4]; 297 support::endian::write32le(Buffer, val); 298 W->OS.write(Buffer, sizeof(Buffer)); 299 } 300 301 void writeI64(int64_t val) { 302 char Buffer[8]; 303 support::endian::write64le(Buffer, val); 304 W->OS.write(Buffer, sizeof(Buffer)); 305 } 306 307 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } 308 309 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); 310 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, 311 uint32_t NumElements); 312 void writeFunctionSection(ArrayRef<WasmFunction> Functions); 313 void writeExportSection(ArrayRef<wasm::WasmExport> Exports); 314 void writeElemSection(const MCSymbolWasm *IndirectFunctionTable, 315 ArrayRef<uint32_t> TableElems); 316 void writeDataCountSection(); 317 uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, 318 ArrayRef<WasmFunction> Functions); 319 uint32_t writeDataSection(const MCAsmLayout &Layout); 320 void writeEventSection(ArrayRef<wasm::WasmEventType> Events); 321 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); 322 void writeTableSection(ArrayRef<wasm::WasmTable> Tables); 323 void writeRelocSection(uint32_t SectionIndex, StringRef Name, 324 std::vector<WasmRelocationEntry> &Relocations); 325 void writeLinkingMetaDataSection( 326 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 327 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 328 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); 329 void writeCustomSection(WasmCustomSection &CustomSection, 330 const MCAssembler &Asm, const MCAsmLayout &Layout); 331 void writeCustomRelocSections(); 332 333 uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry, 334 const MCAsmLayout &Layout); 335 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, 336 uint64_t ContentsOffset, const MCAsmLayout &Layout); 337 338 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); 339 uint32_t getFunctionType(const MCSymbolWasm &Symbol); 340 uint32_t getEventType(const MCSymbolWasm &Symbol); 341 void registerFunctionType(const MCSymbolWasm &Symbol); 342 void registerEventType(const MCSymbolWasm &Symbol); 343 }; 344 345 } // end anonymous namespace 346 347 // Write out a section header and a patchable section size field. 348 void WasmObjectWriter::startSection(SectionBookkeeping &Section, 349 unsigned SectionId) { 350 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n"); 351 W->OS << char(SectionId); 352 353 Section.SizeOffset = W->OS.tell(); 354 355 // The section size. We don't know the size yet, so reserve enough space 356 // for any 32-bit value; we'll patch it later. 357 encodeULEB128(0, W->OS, 5); 358 359 // The position where the section starts, for measuring its size. 360 Section.ContentsOffset = W->OS.tell(); 361 Section.PayloadOffset = W->OS.tell(); 362 Section.Index = SectionCount++; 363 } 364 365 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, 366 StringRef Name) { 367 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n"); 368 startSection(Section, wasm::WASM_SEC_CUSTOM); 369 370 // The position where the section header ends, for measuring its size. 371 Section.PayloadOffset = W->OS.tell(); 372 373 // Custom sections in wasm also have a string identifier. 374 writeString(Name); 375 376 // The position where the custom section starts. 377 Section.ContentsOffset = W->OS.tell(); 378 } 379 380 // Now that the section is complete and we know how big it is, patch up the 381 // section size field at the start of the section. 382 void WasmObjectWriter::endSection(SectionBookkeeping &Section) { 383 uint64_t Size = W->OS.tell(); 384 // /dev/null doesn't support seek/tell and can report offset of 0. 385 // Simply skip this patching in that case. 386 if (!Size) 387 return; 388 389 Size -= Section.PayloadOffset; 390 if (uint32_t(Size) != Size) 391 report_fatal_error("section size does not fit in a uint32_t"); 392 393 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n"); 394 395 // Write the final section size to the payload_len field, which follows 396 // the section id byte. 397 writePatchableLEB<5>(static_cast<raw_pwrite_stream &>(W->OS), Size, 398 Section.SizeOffset); 399 } 400 401 // Emit the Wasm header. 402 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { 403 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic)); 404 W->write<uint32_t>(wasm::WasmVersion); 405 } 406 407 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 408 const MCAsmLayout &Layout) { 409 // Some compilation units require the indirect function table to be present 410 // but don't explicitly reference it. This is the case for call_indirect 411 // without the reference-types feature, and also function bitcasts in all 412 // cases. In those cases the __indirect_function_table has the 413 // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to 414 // the assembler, if needed. 415 if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) { 416 const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym); 417 if (WasmSym->isNoStrip()) 418 Asm.registerSymbol(*Sym); 419 } 420 421 // Build a map of sections to the function that defines them, for use 422 // in recordRelocation. 423 for (const MCSymbol &S : Asm.symbols()) { 424 const auto &WS = static_cast<const MCSymbolWasm &>(S); 425 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { 426 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); 427 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S)); 428 if (!Pair.second) 429 report_fatal_error("section already has a defining function: " + 430 Sec.getName()); 431 } 432 } 433 } 434 435 void WasmObjectWriter::recordRelocation(MCAssembler &Asm, 436 const MCAsmLayout &Layout, 437 const MCFragment *Fragment, 438 const MCFixup &Fixup, MCValue Target, 439 uint64_t &FixedValue) { 440 // The WebAssembly backend should never generate FKF_IsPCRel fixups 441 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 442 MCFixupKindInfo::FKF_IsPCRel)); 443 444 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent()); 445 uint64_t C = Target.getConstant(); 446 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 447 MCContext &Ctx = Asm.getContext(); 448 bool IsLocRel = false; 449 450 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 451 452 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol()); 453 454 if (FixupSection.getKind().isText()) { 455 Ctx.reportError(Fixup.getLoc(), 456 Twine("symbol '") + SymB.getName() + 457 "' unsupported subtraction expression used in " 458 "relocation in code section."); 459 return; 460 } 461 462 if (SymB.isUndefined()) { 463 Ctx.reportError(Fixup.getLoc(), 464 Twine("symbol '") + SymB.getName() + 465 "' can not be undefined in a subtraction expression"); 466 return; 467 } 468 const MCSection &SecB = SymB.getSection(); 469 if (&SecB != &FixupSection) { 470 Ctx.reportError(Fixup.getLoc(), 471 Twine("symbol '") + SymB.getName() + 472 "' can not be placed in a different section"); 473 return; 474 } 475 IsLocRel = true; 476 C += FixupOffset - Layout.getSymbolOffset(SymB); 477 } 478 479 // We either rejected the fixup or folded B into C at this point. 480 const MCSymbolRefExpr *RefA = Target.getSymA(); 481 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol()); 482 483 // The .init_array isn't translated as data, so don't do relocations in it. 484 if (FixupSection.getName().startswith(".init_array")) { 485 SymA->setUsedInInitArray(); 486 return; 487 } 488 489 if (SymA->isVariable()) { 490 const MCExpr *Expr = SymA->getVariableValue(); 491 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) 492 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) 493 llvm_unreachable("weakref used in reloc not yet implemented"); 494 } 495 496 // Put any constant offset in an addend. Offsets can be negative, and 497 // LLVM expects wrapping, in contrast to wasm's immediates which can't 498 // be negative and don't wrap. 499 FixedValue = 0; 500 501 unsigned Type = TargetObjectWriter->getRelocType(Target, Fixup, IsLocRel); 502 503 // Absolute offset within a section or a function. 504 // Currently only supported for for metadata sections. 505 // See: test/MC/WebAssembly/blockaddress.ll 506 if (Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || 507 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || 508 Type == wasm::R_WASM_SECTION_OFFSET_I32) { 509 if (!FixupSection.getKind().isMetadata()) 510 report_fatal_error("relocations for function or section offsets are " 511 "only supported in metadata sections"); 512 513 const MCSymbol *SectionSymbol = nullptr; 514 const MCSection &SecA = SymA->getSection(); 515 if (SecA.getKind().isText()) { 516 auto SecSymIt = SectionFunctions.find(&SecA); 517 if (SecSymIt == SectionFunctions.end()) 518 report_fatal_error("section doesn\'t have defining symbol"); 519 SectionSymbol = SecSymIt->second; 520 } else { 521 SectionSymbol = SecA.getBeginSymbol(); 522 } 523 if (!SectionSymbol) 524 report_fatal_error("section symbol is required for relocation"); 525 526 C += Layout.getSymbolOffset(*SymA); 527 SymA = cast<MCSymbolWasm>(SectionSymbol); 528 } 529 530 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 531 Type == wasm::R_WASM_TABLE_INDEX_SLEB || 532 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || 533 Type == wasm::R_WASM_TABLE_INDEX_I32 || 534 Type == wasm::R_WASM_TABLE_INDEX_I64) { 535 // TABLE_INDEX relocs implicitly use the default indirect function table. 536 // We require the function table to have already been defined. 537 auto TableName = "__indirect_function_table"; 538 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName)); 539 if (!Sym) { 540 report_fatal_error("missing indirect function table symbol"); 541 } else { 542 if (!Sym->isFunctionTable()) 543 report_fatal_error("__indirect_function_table symbol has wrong type"); 544 // Ensure that __indirect_function_table reaches the output. 545 Sym->setNoStrip(); 546 Asm.registerSymbol(*Sym); 547 } 548 } 549 550 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be 551 // against a named symbol. 552 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { 553 if (SymA->getName().empty()) 554 report_fatal_error("relocations against un-named temporaries are not yet " 555 "supported by wasm"); 556 557 SymA->setUsedInReloc(); 558 } 559 560 if (RefA->getKind() == MCSymbolRefExpr::VK_GOT) 561 SymA->setUsedInGOT(); 562 563 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); 564 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); 565 566 if (FixupSection.isWasmData()) { 567 DataRelocations.push_back(Rec); 568 } else if (FixupSection.getKind().isText()) { 569 CodeRelocations.push_back(Rec); 570 } else if (FixupSection.getKind().isMetadata()) { 571 CustomSectionsRelocations[&FixupSection].push_back(Rec); 572 } else { 573 llvm_unreachable("unexpected section type"); 574 } 575 } 576 577 // Compute a value to write into the code at the location covered 578 // by RelEntry. This value isn't used by the static linker; it just serves 579 // to make the object format more readable and more likely to be directly 580 // useable. 581 uint64_t 582 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry, 583 const MCAsmLayout &Layout) { 584 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || 585 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && 586 !RelEntry.Symbol->isGlobal()) { 587 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space"); 588 return GOTIndices[RelEntry.Symbol]; 589 } 590 591 switch (RelEntry.Type) { 592 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 593 case wasm::R_WASM_TABLE_INDEX_SLEB: 594 case wasm::R_WASM_TABLE_INDEX_SLEB64: 595 case wasm::R_WASM_TABLE_INDEX_I32: 596 case wasm::R_WASM_TABLE_INDEX_I64: { 597 // Provisional value is table address of the resolved symbol itself 598 const MCSymbolWasm *Base = 599 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol)); 600 assert(Base->isFunction()); 601 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB) 602 return TableIndices[Base] - InitialTableOffset; 603 else 604 return TableIndices[Base]; 605 } 606 case wasm::R_WASM_TYPE_INDEX_LEB: 607 // Provisional value is same as the index 608 return getRelocationIndexValue(RelEntry); 609 case wasm::R_WASM_FUNCTION_INDEX_LEB: 610 case wasm::R_WASM_GLOBAL_INDEX_LEB: 611 case wasm::R_WASM_GLOBAL_INDEX_I32: 612 case wasm::R_WASM_EVENT_INDEX_LEB: 613 case wasm::R_WASM_TABLE_NUMBER_LEB: 614 // Provisional value is function/global/event Wasm index 615 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space"); 616 return WasmIndices[RelEntry.Symbol]; 617 case wasm::R_WASM_FUNCTION_OFFSET_I32: 618 case wasm::R_WASM_FUNCTION_OFFSET_I64: 619 case wasm::R_WASM_SECTION_OFFSET_I32: { 620 const auto &Section = 621 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); 622 return Section.getSectionOffset() + RelEntry.Addend; 623 } 624 case wasm::R_WASM_MEMORY_ADDR_LEB: 625 case wasm::R_WASM_MEMORY_ADDR_LEB64: 626 case wasm::R_WASM_MEMORY_ADDR_SLEB: 627 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 628 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 629 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 630 case wasm::R_WASM_MEMORY_ADDR_I32: 631 case wasm::R_WASM_MEMORY_ADDR_I64: 632 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 633 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: { 634 // Provisional value is address of the global plus the offset 635 // For undefined symbols, use zero 636 if (!RelEntry.Symbol->isDefined()) 637 return 0; 638 const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol]; 639 const WasmDataSegment &Segment = DataSegments[SymRef.Segment]; 640 // Ignore overflow. LLVM allows address arithmetic to silently wrap. 641 return Segment.Offset + SymRef.Offset + RelEntry.Addend; 642 } 643 default: 644 llvm_unreachable("invalid relocation type"); 645 } 646 } 647 648 static void addData(SmallVectorImpl<char> &DataBytes, 649 MCSectionWasm &DataSection) { 650 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n"); 651 652 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlignment())); 653 654 for (const MCFragment &Frag : DataSection) { 655 if (Frag.hasInstructions()) 656 report_fatal_error("only data supported in data sections"); 657 658 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) { 659 if (Align->getValueSize() != 1) 660 report_fatal_error("only byte values supported for alignment"); 661 // If nops are requested, use zeros, as this is the data section. 662 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); 663 uint64_t Size = 664 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()), 665 DataBytes.size() + Align->getMaxBytesToEmit()); 666 DataBytes.resize(Size, Value); 667 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) { 668 int64_t NumValues; 669 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues)) 670 llvm_unreachable("The fill should be an assembler constant"); 671 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues, 672 Fill->getValue()); 673 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) { 674 const SmallVectorImpl<char> &Contents = LEB->getContents(); 675 llvm::append_range(DataBytes, Contents); 676 } else { 677 const auto &DataFrag = cast<MCDataFragment>(Frag); 678 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 679 llvm::append_range(DataBytes, Contents); 680 } 681 } 682 683 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); 684 } 685 686 uint32_t 687 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { 688 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { 689 if (!TypeIndices.count(RelEntry.Symbol)) 690 report_fatal_error("symbol not found in type index space: " + 691 RelEntry.Symbol->getName()); 692 return TypeIndices[RelEntry.Symbol]; 693 } 694 695 return RelEntry.Symbol->getIndex(); 696 } 697 698 // Apply the portions of the relocation records that we can handle ourselves 699 // directly. 700 void WasmObjectWriter::applyRelocations( 701 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, 702 const MCAsmLayout &Layout) { 703 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); 704 for (const WasmRelocationEntry &RelEntry : Relocations) { 705 uint64_t Offset = ContentsOffset + 706 RelEntry.FixupSection->getSectionOffset() + 707 RelEntry.Offset; 708 709 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); 710 auto Value = getProvisionalValue(RelEntry, Layout); 711 712 switch (RelEntry.Type) { 713 case wasm::R_WASM_FUNCTION_INDEX_LEB: 714 case wasm::R_WASM_TYPE_INDEX_LEB: 715 case wasm::R_WASM_GLOBAL_INDEX_LEB: 716 case wasm::R_WASM_MEMORY_ADDR_LEB: 717 case wasm::R_WASM_EVENT_INDEX_LEB: 718 case wasm::R_WASM_TABLE_NUMBER_LEB: 719 writePatchableLEB<5>(Stream, Value, Offset); 720 break; 721 case wasm::R_WASM_MEMORY_ADDR_LEB64: 722 writePatchableLEB<10>(Stream, Value, Offset); 723 break; 724 case wasm::R_WASM_TABLE_INDEX_I32: 725 case wasm::R_WASM_MEMORY_ADDR_I32: 726 case wasm::R_WASM_FUNCTION_OFFSET_I32: 727 case wasm::R_WASM_SECTION_OFFSET_I32: 728 case wasm::R_WASM_GLOBAL_INDEX_I32: 729 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: 730 patchI32(Stream, Value, Offset); 731 break; 732 case wasm::R_WASM_TABLE_INDEX_I64: 733 case wasm::R_WASM_MEMORY_ADDR_I64: 734 case wasm::R_WASM_FUNCTION_OFFSET_I64: 735 patchI64(Stream, Value, Offset); 736 break; 737 case wasm::R_WASM_TABLE_INDEX_SLEB: 738 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 739 case wasm::R_WASM_MEMORY_ADDR_SLEB: 740 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 741 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 742 writePatchableSLEB<5>(Stream, Value, Offset); 743 break; 744 case wasm::R_WASM_TABLE_INDEX_SLEB64: 745 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 746 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 747 writePatchableSLEB<10>(Stream, Value, Offset); 748 break; 749 default: 750 llvm_unreachable("invalid relocation type"); 751 } 752 } 753 } 754 755 void WasmObjectWriter::writeTypeSection( 756 ArrayRef<wasm::WasmSignature> Signatures) { 757 if (Signatures.empty()) 758 return; 759 760 SectionBookkeeping Section; 761 startSection(Section, wasm::WASM_SEC_TYPE); 762 763 encodeULEB128(Signatures.size(), W->OS); 764 765 for (const wasm::WasmSignature &Sig : Signatures) { 766 W->OS << char(wasm::WASM_TYPE_FUNC); 767 encodeULEB128(Sig.Params.size(), W->OS); 768 for (wasm::ValType Ty : Sig.Params) 769 writeValueType(Ty); 770 encodeULEB128(Sig.Returns.size(), W->OS); 771 for (wasm::ValType Ty : Sig.Returns) 772 writeValueType(Ty); 773 } 774 775 endSection(Section); 776 } 777 778 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, 779 uint64_t DataSize, 780 uint32_t NumElements) { 781 if (Imports.empty()) 782 return; 783 784 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; 785 786 SectionBookkeeping Section; 787 startSection(Section, wasm::WASM_SEC_IMPORT); 788 789 encodeULEB128(Imports.size(), W->OS); 790 for (const wasm::WasmImport &Import : Imports) { 791 writeString(Import.Module); 792 writeString(Import.Field); 793 W->OS << char(Import.Kind); 794 795 switch (Import.Kind) { 796 case wasm::WASM_EXTERNAL_FUNCTION: 797 encodeULEB128(Import.SigIndex, W->OS); 798 break; 799 case wasm::WASM_EXTERNAL_GLOBAL: 800 W->OS << char(Import.Global.Type); 801 W->OS << char(Import.Global.Mutable ? 1 : 0); 802 break; 803 case wasm::WASM_EXTERNAL_MEMORY: 804 encodeULEB128(Import.Memory.Flags, W->OS); 805 encodeULEB128(NumPages, W->OS); // initial 806 break; 807 case wasm::WASM_EXTERNAL_TABLE: 808 W->OS << char(Import.Table.ElemType); 809 encodeULEB128(0, W->OS); // flags 810 encodeULEB128(NumElements, W->OS); // initial 811 break; 812 case wasm::WASM_EXTERNAL_EVENT: 813 encodeULEB128(Import.Event.Attribute, W->OS); 814 encodeULEB128(Import.Event.SigIndex, W->OS); 815 break; 816 default: 817 llvm_unreachable("unsupported import kind"); 818 } 819 } 820 821 endSection(Section); 822 } 823 824 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { 825 if (Functions.empty()) 826 return; 827 828 SectionBookkeeping Section; 829 startSection(Section, wasm::WASM_SEC_FUNCTION); 830 831 encodeULEB128(Functions.size(), W->OS); 832 for (const WasmFunction &Func : Functions) 833 encodeULEB128(Func.SigIndex, W->OS); 834 835 endSection(Section); 836 } 837 838 void WasmObjectWriter::writeEventSection(ArrayRef<wasm::WasmEventType> Events) { 839 if (Events.empty()) 840 return; 841 842 SectionBookkeeping Section; 843 startSection(Section, wasm::WASM_SEC_EVENT); 844 845 encodeULEB128(Events.size(), W->OS); 846 for (const wasm::WasmEventType &Event : Events) { 847 encodeULEB128(Event.Attribute, W->OS); 848 encodeULEB128(Event.SigIndex, W->OS); 849 } 850 851 endSection(Section); 852 } 853 854 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { 855 if (Globals.empty()) 856 return; 857 858 SectionBookkeeping Section; 859 startSection(Section, wasm::WASM_SEC_GLOBAL); 860 861 encodeULEB128(Globals.size(), W->OS); 862 for (const wasm::WasmGlobal &Global : Globals) { 863 encodeULEB128(Global.Type.Type, W->OS); 864 W->OS << char(Global.Type.Mutable); 865 W->OS << char(Global.InitExpr.Opcode); 866 switch (Global.Type.Type) { 867 case wasm::WASM_TYPE_I32: 868 encodeSLEB128(0, W->OS); 869 break; 870 case wasm::WASM_TYPE_I64: 871 encodeSLEB128(0, W->OS); 872 break; 873 case wasm::WASM_TYPE_F32: 874 writeI32(0); 875 break; 876 case wasm::WASM_TYPE_F64: 877 writeI64(0); 878 break; 879 case wasm::WASM_TYPE_EXTERNREF: 880 writeValueType(wasm::ValType::EXTERNREF); 881 break; 882 default: 883 llvm_unreachable("unexpected type"); 884 } 885 W->OS << char(wasm::WASM_OPCODE_END); 886 } 887 888 endSection(Section); 889 } 890 891 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { 892 if (Tables.empty()) 893 return; 894 895 SectionBookkeeping Section; 896 startSection(Section, wasm::WASM_SEC_TABLE); 897 898 encodeULEB128(Tables.size(), W->OS); 899 for (const wasm::WasmTable &Table : Tables) { 900 encodeULEB128(Table.Type.ElemType, W->OS); 901 encodeULEB128(Table.Type.Limits.Flags, W->OS); 902 encodeULEB128(Table.Type.Limits.Minimum, W->OS); 903 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) 904 encodeULEB128(Table.Type.Limits.Maximum, W->OS); 905 } 906 endSection(Section); 907 } 908 909 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { 910 if (Exports.empty()) 911 return; 912 913 SectionBookkeeping Section; 914 startSection(Section, wasm::WASM_SEC_EXPORT); 915 916 encodeULEB128(Exports.size(), W->OS); 917 for (const wasm::WasmExport &Export : Exports) { 918 writeString(Export.Name); 919 W->OS << char(Export.Kind); 920 encodeULEB128(Export.Index, W->OS); 921 } 922 923 endSection(Section); 924 } 925 926 void WasmObjectWriter::writeElemSection( 927 const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) { 928 if (TableElems.empty()) 929 return; 930 931 assert(IndirectFunctionTable); 932 933 SectionBookkeeping Section; 934 startSection(Section, wasm::WASM_SEC_ELEM); 935 936 encodeULEB128(1, W->OS); // number of "segments" 937 938 assert(WasmIndices.count(IndirectFunctionTable)); 939 uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second; 940 uint32_t Flags = 0; 941 if (TableNumber) 942 Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER; 943 encodeULEB128(Flags, W->OS); 944 if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER) 945 encodeULEB128(TableNumber, W->OS); // the table number 946 947 // init expr for starting offset 948 W->OS << char(wasm::WASM_OPCODE_I32_CONST); 949 encodeSLEB128(InitialTableOffset, W->OS); 950 W->OS << char(wasm::WASM_OPCODE_END); 951 952 if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) { 953 // We only write active function table initializers, for which the elem kind 954 // is specified to be written as 0x00 and interpreted to mean "funcref". 955 const uint8_t ElemKind = 0; 956 W->OS << ElemKind; 957 } 958 959 encodeULEB128(TableElems.size(), W->OS); 960 for (uint32_t Elem : TableElems) 961 encodeULEB128(Elem, W->OS); 962 963 endSection(Section); 964 } 965 966 void WasmObjectWriter::writeDataCountSection() { 967 if (DataSegments.empty()) 968 return; 969 970 SectionBookkeeping Section; 971 startSection(Section, wasm::WASM_SEC_DATACOUNT); 972 encodeULEB128(DataSegments.size(), W->OS); 973 endSection(Section); 974 } 975 976 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, 977 const MCAsmLayout &Layout, 978 ArrayRef<WasmFunction> Functions) { 979 if (Functions.empty()) 980 return 0; 981 982 SectionBookkeeping Section; 983 startSection(Section, wasm::WASM_SEC_CODE); 984 985 encodeULEB128(Functions.size(), W->OS); 986 987 for (const WasmFunction &Func : Functions) { 988 auto &FuncSection = static_cast<MCSectionWasm &>(Func.Sym->getSection()); 989 990 int64_t Size = 0; 991 if (!Func.Sym->getSize()->evaluateAsAbsolute(Size, Layout)) 992 report_fatal_error(".size expression must be evaluatable"); 993 994 encodeULEB128(Size, W->OS); 995 FuncSection.setSectionOffset(W->OS.tell() - Section.ContentsOffset); 996 Asm.writeSectionData(W->OS, &FuncSection, Layout); 997 } 998 999 // Apply fixups. 1000 applyRelocations(CodeRelocations, Section.ContentsOffset, Layout); 1001 1002 endSection(Section); 1003 return Section.Index; 1004 } 1005 1006 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) { 1007 if (DataSegments.empty()) 1008 return 0; 1009 1010 SectionBookkeeping Section; 1011 startSection(Section, wasm::WASM_SEC_DATA); 1012 1013 encodeULEB128(DataSegments.size(), W->OS); // count 1014 1015 for (const WasmDataSegment &Segment : DataSegments) { 1016 encodeULEB128(Segment.InitFlags, W->OS); // flags 1017 if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) 1018 encodeULEB128(0, W->OS); // memory index 1019 if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { 1020 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1021 : wasm::WASM_OPCODE_I32_CONST); 1022 encodeSLEB128(Segment.Offset, W->OS); // offset 1023 W->OS << char(wasm::WASM_OPCODE_END); 1024 } 1025 encodeULEB128(Segment.Data.size(), W->OS); // size 1026 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1027 W->OS << Segment.Data; // data 1028 } 1029 1030 // Apply fixups. 1031 applyRelocations(DataRelocations, Section.ContentsOffset, Layout); 1032 1033 endSection(Section); 1034 return Section.Index; 1035 } 1036 1037 void WasmObjectWriter::writeRelocSection( 1038 uint32_t SectionIndex, StringRef Name, 1039 std::vector<WasmRelocationEntry> &Relocs) { 1040 // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md 1041 // for descriptions of the reloc sections. 1042 1043 if (Relocs.empty()) 1044 return; 1045 1046 // First, ensure the relocations are sorted in offset order. In general they 1047 // should already be sorted since `recordRelocation` is called in offset 1048 // order, but for the code section we combine many MC sections into single 1049 // wasm section, and this order is determined by the order of Asm.Symbols() 1050 // not the sections order. 1051 llvm::stable_sort( 1052 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { 1053 return (A.Offset + A.FixupSection->getSectionOffset()) < 1054 (B.Offset + B.FixupSection->getSectionOffset()); 1055 }); 1056 1057 SectionBookkeeping Section; 1058 startCustomSection(Section, std::string("reloc.") + Name.str()); 1059 1060 encodeULEB128(SectionIndex, W->OS); 1061 encodeULEB128(Relocs.size(), W->OS); 1062 for (const WasmRelocationEntry &RelEntry : Relocs) { 1063 uint64_t Offset = 1064 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); 1065 uint32_t Index = getRelocationIndexValue(RelEntry); 1066 1067 W->OS << char(RelEntry.Type); 1068 encodeULEB128(Offset, W->OS); 1069 encodeULEB128(Index, W->OS); 1070 if (RelEntry.hasAddend()) 1071 encodeSLEB128(RelEntry.Addend, W->OS); 1072 } 1073 1074 endSection(Section); 1075 } 1076 1077 void WasmObjectWriter::writeCustomRelocSections() { 1078 for (const auto &Sec : CustomSections) { 1079 auto &Relocations = CustomSectionsRelocations[Sec.Section]; 1080 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations); 1081 } 1082 } 1083 1084 void WasmObjectWriter::writeLinkingMetaDataSection( 1085 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 1086 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 1087 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { 1088 SectionBookkeeping Section; 1089 startCustomSection(Section, "linking"); 1090 encodeULEB128(wasm::WasmMetadataVersion, W->OS); 1091 1092 SectionBookkeeping SubSection; 1093 if (SymbolInfos.size() != 0) { 1094 startSection(SubSection, wasm::WASM_SYMBOL_TABLE); 1095 encodeULEB128(SymbolInfos.size(), W->OS); 1096 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { 1097 encodeULEB128(Sym.Kind, W->OS); 1098 encodeULEB128(Sym.Flags, W->OS); 1099 switch (Sym.Kind) { 1100 case wasm::WASM_SYMBOL_TYPE_FUNCTION: 1101 case wasm::WASM_SYMBOL_TYPE_GLOBAL: 1102 case wasm::WASM_SYMBOL_TYPE_EVENT: 1103 case wasm::WASM_SYMBOL_TYPE_TABLE: 1104 encodeULEB128(Sym.ElementIndex, W->OS); 1105 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || 1106 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) 1107 writeString(Sym.Name); 1108 break; 1109 case wasm::WASM_SYMBOL_TYPE_DATA: 1110 writeString(Sym.Name); 1111 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { 1112 encodeULEB128(Sym.DataRef.Segment, W->OS); 1113 encodeULEB128(Sym.DataRef.Offset, W->OS); 1114 encodeULEB128(Sym.DataRef.Size, W->OS); 1115 } 1116 break; 1117 case wasm::WASM_SYMBOL_TYPE_SECTION: { 1118 const uint32_t SectionIndex = 1119 CustomSections[Sym.ElementIndex].OutputIndex; 1120 encodeULEB128(SectionIndex, W->OS); 1121 break; 1122 } 1123 default: 1124 llvm_unreachable("unexpected kind"); 1125 } 1126 } 1127 endSection(SubSection); 1128 } 1129 1130 if (DataSegments.size()) { 1131 startSection(SubSection, wasm::WASM_SEGMENT_INFO); 1132 encodeULEB128(DataSegments.size(), W->OS); 1133 for (const WasmDataSegment &Segment : DataSegments) { 1134 writeString(Segment.Name); 1135 encodeULEB128(Segment.Alignment, W->OS); 1136 encodeULEB128(Segment.LinkingFlags, W->OS); 1137 } 1138 endSection(SubSection); 1139 } 1140 1141 if (!InitFuncs.empty()) { 1142 startSection(SubSection, wasm::WASM_INIT_FUNCS); 1143 encodeULEB128(InitFuncs.size(), W->OS); 1144 for (auto &StartFunc : InitFuncs) { 1145 encodeULEB128(StartFunc.first, W->OS); // priority 1146 encodeULEB128(StartFunc.second, W->OS); // function index 1147 } 1148 endSection(SubSection); 1149 } 1150 1151 if (Comdats.size()) { 1152 startSection(SubSection, wasm::WASM_COMDAT_INFO); 1153 encodeULEB128(Comdats.size(), W->OS); 1154 for (const auto &C : Comdats) { 1155 writeString(C.first); 1156 encodeULEB128(0, W->OS); // flags for future use 1157 encodeULEB128(C.second.size(), W->OS); 1158 for (const WasmComdatEntry &Entry : C.second) { 1159 encodeULEB128(Entry.Kind, W->OS); 1160 encodeULEB128(Entry.Index, W->OS); 1161 } 1162 } 1163 endSection(SubSection); 1164 } 1165 1166 endSection(Section); 1167 } 1168 1169 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, 1170 const MCAssembler &Asm, 1171 const MCAsmLayout &Layout) { 1172 SectionBookkeeping Section; 1173 auto *Sec = CustomSection.Section; 1174 startCustomSection(Section, CustomSection.Name); 1175 1176 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1177 Asm.writeSectionData(W->OS, Sec, Layout); 1178 1179 CustomSection.OutputContentsOffset = Section.ContentsOffset; 1180 CustomSection.OutputIndex = Section.Index; 1181 1182 endSection(Section); 1183 1184 // Apply fixups. 1185 auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; 1186 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout); 1187 } 1188 1189 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { 1190 assert(Symbol.isFunction()); 1191 assert(TypeIndices.count(&Symbol)); 1192 return TypeIndices[&Symbol]; 1193 } 1194 1195 uint32_t WasmObjectWriter::getEventType(const MCSymbolWasm &Symbol) { 1196 assert(Symbol.isEvent()); 1197 assert(TypeIndices.count(&Symbol)); 1198 return TypeIndices[&Symbol]; 1199 } 1200 1201 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { 1202 assert(Symbol.isFunction()); 1203 1204 wasm::WasmSignature S; 1205 1206 if (auto *Sig = Symbol.getSignature()) { 1207 S.Returns = Sig->Returns; 1208 S.Params = Sig->Params; 1209 } 1210 1211 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1212 if (Pair.second) 1213 Signatures.push_back(S); 1214 TypeIndices[&Symbol] = Pair.first->second; 1215 1216 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol 1217 << " new:" << Pair.second << "\n"); 1218 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1219 } 1220 1221 void WasmObjectWriter::registerEventType(const MCSymbolWasm &Symbol) { 1222 assert(Symbol.isEvent()); 1223 1224 // TODO Currently we don't generate imported exceptions, but if we do, we 1225 // should have a way of infering types of imported exceptions. 1226 wasm::WasmSignature S; 1227 if (auto *Sig = Symbol.getSignature()) { 1228 S.Returns = Sig->Returns; 1229 S.Params = Sig->Params; 1230 } 1231 1232 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1233 if (Pair.second) 1234 Signatures.push_back(S); 1235 TypeIndices[&Symbol] = Pair.first->second; 1236 1237 LLVM_DEBUG(dbgs() << "registerEventType: " << Symbol << " new:" << Pair.second 1238 << "\n"); 1239 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1240 } 1241 1242 static bool isInSymtab(const MCSymbolWasm &Sym) { 1243 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) 1244 return true; 1245 1246 if (Sym.isComdat() && !Sym.isDefined()) 1247 return false; 1248 1249 if (Sym.isTemporary()) 1250 return false; 1251 1252 if (Sym.isSection()) 1253 return false; 1254 1255 if (Sym.omitFromLinkingSection()) 1256 return false; 1257 1258 return true; 1259 } 1260 1261 void WasmObjectWriter::prepareImports( 1262 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm, 1263 const MCAsmLayout &Layout) { 1264 // For now, always emit the memory import, since loads and stores are not 1265 // valid without it. In the future, we could perhaps be more clever and omit 1266 // it if there are no loads or stores. 1267 wasm::WasmImport MemImport; 1268 MemImport.Module = "env"; 1269 MemImport.Field = "__linear_memory"; 1270 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; 1271 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 1272 : wasm::WASM_LIMITS_FLAG_NONE; 1273 Imports.push_back(MemImport); 1274 1275 // Populate SignatureIndices, and Imports and WasmIndices for undefined 1276 // symbols. This must be done before populating WasmIndices for defined 1277 // symbols. 1278 for (const MCSymbol &S : Asm.symbols()) { 1279 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1280 1281 // Register types for all functions, including those with private linkage 1282 // (because wasm always needs a type signature). 1283 if (WS.isFunction()) { 1284 const auto *BS = Layout.getBaseSymbol(S); 1285 if (!BS) 1286 report_fatal_error(Twine(S.getName()) + 1287 ": absolute addressing not supported!"); 1288 registerFunctionType(*cast<MCSymbolWasm>(BS)); 1289 } 1290 1291 if (WS.isEvent()) 1292 registerEventType(WS); 1293 1294 if (WS.isTemporary()) 1295 continue; 1296 1297 // If the symbol is not defined in this translation unit, import it. 1298 if (!WS.isDefined() && !WS.isComdat()) { 1299 if (WS.isFunction()) { 1300 wasm::WasmImport Import; 1301 Import.Module = WS.getImportModule(); 1302 Import.Field = WS.getImportName(); 1303 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1304 Import.SigIndex = getFunctionType(WS); 1305 Imports.push_back(Import); 1306 assert(WasmIndices.count(&WS) == 0); 1307 WasmIndices[&WS] = NumFunctionImports++; 1308 } else if (WS.isGlobal()) { 1309 if (WS.isWeak()) 1310 report_fatal_error("undefined global symbol cannot be weak"); 1311 1312 wasm::WasmImport Import; 1313 Import.Field = WS.getImportName(); 1314 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1315 Import.Module = WS.getImportModule(); 1316 Import.Global = WS.getGlobalType(); 1317 Imports.push_back(Import); 1318 assert(WasmIndices.count(&WS) == 0); 1319 WasmIndices[&WS] = NumGlobalImports++; 1320 } else if (WS.isEvent()) { 1321 if (WS.isWeak()) 1322 report_fatal_error("undefined event symbol cannot be weak"); 1323 1324 wasm::WasmImport Import; 1325 Import.Module = WS.getImportModule(); 1326 Import.Field = WS.getImportName(); 1327 Import.Kind = wasm::WASM_EXTERNAL_EVENT; 1328 Import.Event.Attribute = wasm::WASM_EVENT_ATTRIBUTE_EXCEPTION; 1329 Import.Event.SigIndex = getEventType(WS); 1330 Imports.push_back(Import); 1331 assert(WasmIndices.count(&WS) == 0); 1332 WasmIndices[&WS] = NumEventImports++; 1333 } else if (WS.isTable()) { 1334 if (WS.isWeak()) 1335 report_fatal_error("undefined table symbol cannot be weak"); 1336 1337 wasm::WasmImport Import; 1338 Import.Module = WS.getImportModule(); 1339 Import.Field = WS.getImportName(); 1340 Import.Kind = wasm::WASM_EXTERNAL_TABLE; 1341 Import.Table = WS.getTableType(); 1342 Imports.push_back(Import); 1343 assert(WasmIndices.count(&WS) == 0); 1344 WasmIndices[&WS] = NumTableImports++; 1345 } 1346 } 1347 } 1348 1349 // Add imports for GOT globals 1350 for (const MCSymbol &S : Asm.symbols()) { 1351 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1352 if (WS.isUsedInGOT()) { 1353 wasm::WasmImport Import; 1354 if (WS.isFunction()) 1355 Import.Module = "GOT.func"; 1356 else 1357 Import.Module = "GOT.mem"; 1358 Import.Field = WS.getName(); 1359 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1360 Import.Global = {wasm::WASM_TYPE_I32, true}; 1361 Imports.push_back(Import); 1362 assert(GOTIndices.count(&WS) == 0); 1363 GOTIndices[&WS] = NumGlobalImports++; 1364 } 1365 } 1366 } 1367 1368 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm, 1369 const MCAsmLayout &Layout) { 1370 support::endian::Writer MainWriter(*OS, support::little); 1371 W = &MainWriter; 1372 if (IsSplitDwarf) { 1373 uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly); 1374 assert(DwoOS); 1375 support::endian::Writer DwoWriter(*DwoOS, support::little); 1376 W = &DwoWriter; 1377 return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly); 1378 } else { 1379 return writeOneObject(Asm, Layout, DwoMode::AllSections); 1380 } 1381 } 1382 1383 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, 1384 const MCAsmLayout &Layout, 1385 DwoMode Mode) { 1386 uint64_t StartOffset = W->OS.tell(); 1387 SectionCount = 0; 1388 CustomSections.clear(); 1389 1390 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); 1391 1392 // Collect information from the available symbols. 1393 SmallVector<WasmFunction, 4> Functions; 1394 SmallVector<uint32_t, 4> TableElems; 1395 SmallVector<wasm::WasmImport, 4> Imports; 1396 SmallVector<wasm::WasmExport, 4> Exports; 1397 SmallVector<wasm::WasmEventType, 1> Events; 1398 SmallVector<wasm::WasmGlobal, 1> Globals; 1399 SmallVector<wasm::WasmTable, 1> Tables; 1400 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; 1401 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; 1402 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; 1403 uint64_t DataSize = 0; 1404 if (Mode != DwoMode::DwoOnly) { 1405 prepareImports(Imports, Asm, Layout); 1406 } 1407 1408 // Populate DataSegments and CustomSections, which must be done before 1409 // populating DataLocations. 1410 for (MCSection &Sec : Asm) { 1411 auto &Section = static_cast<MCSectionWasm &>(Sec); 1412 StringRef SectionName = Section.getName(); 1413 1414 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) 1415 continue; 1416 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) 1417 continue; 1418 1419 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " 1420 << Section.getGroup() << "\n";); 1421 1422 // .init_array sections are handled specially elsewhere. 1423 if (SectionName.startswith(".init_array")) 1424 continue; 1425 1426 // Code is handled separately 1427 if (Section.getKind().isText()) 1428 continue; 1429 1430 if (Section.isWasmData()) { 1431 uint32_t SegmentIndex = DataSegments.size(); 1432 DataSize = alignTo(DataSize, Section.getAlignment()); 1433 DataSegments.emplace_back(); 1434 WasmDataSegment &Segment = DataSegments.back(); 1435 Segment.Name = SectionName; 1436 Segment.InitFlags = Section.getPassive() 1437 ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE 1438 : 0; 1439 Segment.Offset = DataSize; 1440 Segment.Section = &Section; 1441 addData(Segment.Data, Section); 1442 Segment.Alignment = Log2_32(Section.getAlignment()); 1443 Segment.LinkingFlags = Section.getSegmentFlags(); 1444 DataSize += Segment.Data.size(); 1445 Section.setSegmentIndex(SegmentIndex); 1446 1447 if (const MCSymbolWasm *C = Section.getGroup()) { 1448 Comdats[C->getName()].emplace_back( 1449 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); 1450 } 1451 } else { 1452 // Create custom sections 1453 assert(Sec.getKind().isMetadata()); 1454 1455 StringRef Name = SectionName; 1456 1457 // For user-defined custom sections, strip the prefix 1458 if (Name.startswith(".custom_section.")) 1459 Name = Name.substr(strlen(".custom_section.")); 1460 1461 MCSymbol *Begin = Sec.getBeginSymbol(); 1462 if (Begin) { 1463 assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0); 1464 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size(); 1465 } 1466 1467 // Separate out the producers and target features sections 1468 if (Name == "producers") { 1469 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section); 1470 continue; 1471 } 1472 if (Name == "target_features") { 1473 TargetFeaturesSection = 1474 std::make_unique<WasmCustomSection>(Name, &Section); 1475 continue; 1476 } 1477 1478 // Custom sections can also belong to COMDAT groups. In this case the 1479 // decriptor's "index" field is the section index (in the final object 1480 // file), but that is not known until after layout, so it must be fixed up 1481 // later 1482 if (const MCSymbolWasm *C = Section.getGroup()) { 1483 Comdats[C->getName()].emplace_back( 1484 WasmComdatEntry{wasm::WASM_COMDAT_SECTION, 1485 static_cast<uint32_t>(CustomSections.size())}); 1486 } 1487 1488 CustomSections.emplace_back(Name, &Section); 1489 } 1490 } 1491 1492 if (Mode != DwoMode::DwoOnly) { 1493 // Populate WasmIndices and DataLocations for defined symbols. 1494 for (const MCSymbol &S : Asm.symbols()) { 1495 // Ignore unnamed temporary symbols, which aren't ever exported, imported, 1496 // or used in relocations. 1497 if (S.isTemporary() && S.getName().empty()) 1498 continue; 1499 1500 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1501 LLVM_DEBUG(dbgs() 1502 << "MCSymbol: " 1503 << toString(WS.getType().getValueOr(wasm::WASM_SYMBOL_TYPE_DATA)) 1504 << " '" << S << "'" 1505 << " isDefined=" << S.isDefined() << " isExternal=" 1506 << S.isExternal() << " isTemporary=" << S.isTemporary() 1507 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() 1508 << " isVariable=" << WS.isVariable() << "\n"); 1509 1510 if (WS.isVariable()) 1511 continue; 1512 if (WS.isComdat() && !WS.isDefined()) 1513 continue; 1514 1515 if (WS.isFunction()) { 1516 unsigned Index; 1517 if (WS.isDefined()) { 1518 if (WS.getOffset() != 0) 1519 report_fatal_error( 1520 "function sections must contain one function each"); 1521 1522 if (WS.getSize() == nullptr) 1523 report_fatal_error( 1524 "function symbols must have a size set with .size"); 1525 1526 // A definition. Write out the function body. 1527 Index = NumFunctionImports + Functions.size(); 1528 WasmFunction Func; 1529 Func.SigIndex = getFunctionType(WS); 1530 Func.Sym = &WS; 1531 assert(WasmIndices.count(&WS) == 0); 1532 WasmIndices[&WS] = Index; 1533 Functions.push_back(Func); 1534 1535 auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); 1536 if (const MCSymbolWasm *C = Section.getGroup()) { 1537 Comdats[C->getName()].emplace_back( 1538 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); 1539 } 1540 1541 if (WS.hasExportName()) { 1542 wasm::WasmExport Export; 1543 Export.Name = WS.getExportName(); 1544 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1545 Export.Index = Index; 1546 Exports.push_back(Export); 1547 } 1548 } else { 1549 // An import; the index was assigned above. 1550 Index = WasmIndices.find(&WS)->second; 1551 } 1552 1553 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n"); 1554 1555 } else if (WS.isData()) { 1556 if (!isInSymtab(WS)) 1557 continue; 1558 1559 if (!WS.isDefined()) { 1560 LLVM_DEBUG(dbgs() << " -> segment index: -1" 1561 << "\n"); 1562 continue; 1563 } 1564 1565 if (!WS.getSize()) 1566 report_fatal_error("data symbols must have a size set with .size: " + 1567 WS.getName()); 1568 1569 int64_t Size = 0; 1570 if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) 1571 report_fatal_error(".size expression must be evaluatable"); 1572 1573 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1574 if (!DataSection.isWasmData()) 1575 report_fatal_error("data symbols must live in a data section: " + 1576 WS.getName()); 1577 1578 // For each data symbol, export it in the symtab as a reference to the 1579 // corresponding Wasm data segment. 1580 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1581 DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS), 1582 static_cast<uint64_t>(Size)}; 1583 assert(DataLocations.count(&WS) == 0); 1584 DataLocations[&WS] = Ref; 1585 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n"); 1586 1587 } else if (WS.isGlobal()) { 1588 // A "true" Wasm global (currently just __stack_pointer) 1589 if (WS.isDefined()) { 1590 wasm::WasmGlobal Global; 1591 Global.Type = WS.getGlobalType(); 1592 Global.Index = NumGlobalImports + Globals.size(); 1593 switch (Global.Type.Type) { 1594 case wasm::WASM_TYPE_I32: 1595 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I32_CONST; 1596 break; 1597 case wasm::WASM_TYPE_I64: 1598 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I64_CONST; 1599 break; 1600 case wasm::WASM_TYPE_F32: 1601 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F32_CONST; 1602 break; 1603 case wasm::WASM_TYPE_F64: 1604 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F64_CONST; 1605 break; 1606 case wasm::WASM_TYPE_EXTERNREF: 1607 Global.InitExpr.Opcode = wasm::WASM_OPCODE_REF_NULL; 1608 break; 1609 default: 1610 llvm_unreachable("unexpected type"); 1611 } 1612 assert(WasmIndices.count(&WS) == 0); 1613 WasmIndices[&WS] = Global.Index; 1614 Globals.push_back(Global); 1615 } else { 1616 // An import; the index was assigned above 1617 LLVM_DEBUG(dbgs() << " -> global index: " 1618 << WasmIndices.find(&WS)->second << "\n"); 1619 } 1620 } else if (WS.isTable()) { 1621 if (WS.isDefined()) { 1622 wasm::WasmTable Table; 1623 Table.Index = NumTableImports + Tables.size(); 1624 Table.Type = WS.getTableType(); 1625 assert(WasmIndices.count(&WS) == 0); 1626 WasmIndices[&WS] = Table.Index; 1627 Tables.push_back(Table); 1628 } 1629 LLVM_DEBUG(dbgs() << " -> table index: " 1630 << WasmIndices.find(&WS)->second << "\n"); 1631 } else if (WS.isEvent()) { 1632 // C++ exception symbol (__cpp_exception) 1633 unsigned Index; 1634 if (WS.isDefined()) { 1635 Index = NumEventImports + Events.size(); 1636 wasm::WasmEventType Event; 1637 Event.SigIndex = getEventType(WS); 1638 Event.Attribute = wasm::WASM_EVENT_ATTRIBUTE_EXCEPTION; 1639 assert(WasmIndices.count(&WS) == 0); 1640 WasmIndices[&WS] = Index; 1641 Events.push_back(Event); 1642 } else { 1643 // An import; the index was assigned above. 1644 assert(WasmIndices.count(&WS) > 0); 1645 } 1646 LLVM_DEBUG(dbgs() << " -> event index: " 1647 << WasmIndices.find(&WS)->second << "\n"); 1648 1649 } else { 1650 assert(WS.isSection()); 1651 } 1652 } 1653 1654 // Populate WasmIndices and DataLocations for aliased symbols. We need to 1655 // process these in a separate pass because we need to have processed the 1656 // target of the alias before the alias itself and the symbols are not 1657 // necessarily ordered in this way. 1658 for (const MCSymbol &S : Asm.symbols()) { 1659 if (!S.isVariable()) 1660 continue; 1661 1662 assert(S.isDefined()); 1663 1664 const auto *BS = Layout.getBaseSymbol(S); 1665 if (!BS) 1666 report_fatal_error(Twine(S.getName()) + 1667 ": absolute addressing not supported!"); 1668 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS); 1669 1670 // Find the target symbol of this weak alias and export that index 1671 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1672 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base 1673 << "'\n"); 1674 1675 if (Base->isFunction()) { 1676 assert(WasmIndices.count(Base) > 0); 1677 uint32_t WasmIndex = WasmIndices.find(Base)->second; 1678 assert(WasmIndices.count(&WS) == 0); 1679 WasmIndices[&WS] = WasmIndex; 1680 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); 1681 } else if (Base->isData()) { 1682 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1683 uint64_t Offset = Layout.getSymbolOffset(S); 1684 int64_t Size = 0; 1685 // For data symbol alias we use the size of the base symbol as the 1686 // size of the alias. When an offset from the base is involved this 1687 // can result in a offset + size goes past the end of the data section 1688 // which out object format doesn't support. So we must clamp it. 1689 if (!Base->getSize()->evaluateAsAbsolute(Size, Layout)) 1690 report_fatal_error(".size expression must be evaluatable"); 1691 const WasmDataSegment &Segment = 1692 DataSegments[DataSection.getSegmentIndex()]; 1693 Size = 1694 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset); 1695 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1696 DataSection.getSegmentIndex(), 1697 static_cast<uint32_t>(Layout.getSymbolOffset(S)), 1698 static_cast<uint32_t>(Size)}; 1699 DataLocations[&WS] = Ref; 1700 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); 1701 } else { 1702 report_fatal_error("don't yet support global/event aliases"); 1703 } 1704 } 1705 } 1706 1707 // Finally, populate the symbol table itself, in its "natural" order. 1708 for (const MCSymbol &S : Asm.symbols()) { 1709 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1710 if (!isInSymtab(WS)) { 1711 WS.setIndex(InvalidIndex); 1712 continue; 1713 } 1714 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n"); 1715 1716 uint32_t Flags = 0; 1717 if (WS.isWeak()) 1718 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; 1719 if (WS.isHidden()) 1720 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; 1721 if (!WS.isExternal() && WS.isDefined()) 1722 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; 1723 if (WS.isUndefined()) 1724 Flags |= wasm::WASM_SYMBOL_UNDEFINED; 1725 if (WS.isNoStrip()) { 1726 Flags |= wasm::WASM_SYMBOL_NO_STRIP; 1727 if (isEmscripten()) { 1728 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1729 } 1730 } 1731 if (WS.hasImportName()) 1732 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; 1733 if (WS.hasExportName()) 1734 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1735 1736 wasm::WasmSymbolInfo Info; 1737 Info.Name = WS.getName(); 1738 Info.Kind = WS.getType().getValueOr(wasm::WASM_SYMBOL_TYPE_DATA); 1739 Info.Flags = Flags; 1740 if (!WS.isData()) { 1741 assert(WasmIndices.count(&WS) > 0); 1742 Info.ElementIndex = WasmIndices.find(&WS)->second; 1743 } else if (WS.isDefined()) { 1744 assert(DataLocations.count(&WS) > 0); 1745 Info.DataRef = DataLocations.find(&WS)->second; 1746 } 1747 WS.setIndex(SymbolInfos.size()); 1748 SymbolInfos.emplace_back(Info); 1749 } 1750 1751 { 1752 auto HandleReloc = [&](const WasmRelocationEntry &Rel) { 1753 // Functions referenced by a relocation need to put in the table. This is 1754 // purely to make the object file's provisional values readable, and is 1755 // ignored by the linker, which re-calculates the relocations itself. 1756 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && 1757 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && 1758 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && 1759 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && 1760 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB) 1761 return; 1762 assert(Rel.Symbol->isFunction()); 1763 const MCSymbolWasm *Base = 1764 cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol)); 1765 uint32_t FunctionIndex = WasmIndices.find(Base)->second; 1766 uint32_t TableIndex = TableElems.size() + InitialTableOffset; 1767 if (TableIndices.try_emplace(Base, TableIndex).second) { 1768 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() 1769 << " to table: " << TableIndex << "\n"); 1770 TableElems.push_back(FunctionIndex); 1771 registerFunctionType(*Base); 1772 } 1773 }; 1774 1775 for (const WasmRelocationEntry &RelEntry : CodeRelocations) 1776 HandleReloc(RelEntry); 1777 for (const WasmRelocationEntry &RelEntry : DataRelocations) 1778 HandleReloc(RelEntry); 1779 } 1780 1781 // Translate .init_array section contents into start functions. 1782 for (const MCSection &S : Asm) { 1783 const auto &WS = static_cast<const MCSectionWasm &>(S); 1784 if (WS.getName().startswith(".fini_array")) 1785 report_fatal_error(".fini_array sections are unsupported"); 1786 if (!WS.getName().startswith(".init_array")) 1787 continue; 1788 if (WS.getFragmentList().empty()) 1789 continue; 1790 1791 // init_array is expected to contain a single non-empty data fragment 1792 if (WS.getFragmentList().size() != 3) 1793 report_fatal_error("only one .init_array section fragment supported"); 1794 1795 auto IT = WS.begin(); 1796 const MCFragment &EmptyFrag = *IT; 1797 if (EmptyFrag.getKind() != MCFragment::FT_Data) 1798 report_fatal_error(".init_array section should be aligned"); 1799 1800 IT = std::next(IT); 1801 const MCFragment &AlignFrag = *IT; 1802 if (AlignFrag.getKind() != MCFragment::FT_Align) 1803 report_fatal_error(".init_array section should be aligned"); 1804 if (cast<MCAlignFragment>(AlignFrag).getAlignment() != (is64Bit() ? 8 : 4)) 1805 report_fatal_error(".init_array section should be aligned for pointers"); 1806 1807 const MCFragment &Frag = *std::next(IT); 1808 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) 1809 report_fatal_error("only data supported in .init_array section"); 1810 1811 uint16_t Priority = UINT16_MAX; 1812 unsigned PrefixLength = strlen(".init_array"); 1813 if (WS.getName().size() > PrefixLength) { 1814 if (WS.getName()[PrefixLength] != '.') 1815 report_fatal_error( 1816 ".init_array section priority should start with '.'"); 1817 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority)) 1818 report_fatal_error("invalid .init_array section priority"); 1819 } 1820 const auto &DataFrag = cast<MCDataFragment>(Frag); 1821 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 1822 for (const uint8_t * 1823 P = (const uint8_t *)Contents.data(), 1824 *End = (const uint8_t *)Contents.data() + Contents.size(); 1825 P != End; ++P) { 1826 if (*P != 0) 1827 report_fatal_error("non-symbolic data in .init_array section"); 1828 } 1829 for (const MCFixup &Fixup : DataFrag.getFixups()) { 1830 assert(Fixup.getKind() == 1831 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); 1832 const MCExpr *Expr = Fixup.getValue(); 1833 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr); 1834 if (!SymRef) 1835 report_fatal_error("fixups in .init_array should be symbol references"); 1836 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol()); 1837 if (TargetSym.getIndex() == InvalidIndex) 1838 report_fatal_error("symbols in .init_array should exist in symtab"); 1839 if (!TargetSym.isFunction()) 1840 report_fatal_error("symbols in .init_array should be for functions"); 1841 InitFuncs.push_back( 1842 std::make_pair(Priority, TargetSym.getIndex())); 1843 } 1844 } 1845 1846 // Write out the Wasm header. 1847 writeHeader(Asm); 1848 1849 uint32_t CodeSectionIndex, DataSectionIndex; 1850 if (Mode != DwoMode::DwoOnly) { 1851 writeTypeSection(Signatures); 1852 writeImportSection(Imports, DataSize, TableElems.size()); 1853 writeFunctionSection(Functions); 1854 writeTableSection(Tables); 1855 // Skip the "memory" section; we import the memory instead. 1856 writeEventSection(Events); 1857 writeGlobalSection(Globals); 1858 writeExportSection(Exports); 1859 const MCSymbol *IndirectFunctionTable = 1860 Asm.getContext().lookupSymbol("__indirect_function_table"); 1861 writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable), 1862 TableElems); 1863 writeDataCountSection(); 1864 1865 CodeSectionIndex = writeCodeSection(Asm, Layout, Functions); 1866 DataSectionIndex = writeDataSection(Layout); 1867 } 1868 1869 // The Sections in the COMDAT list have placeholder indices (their index among 1870 // custom sections, rather than among all sections). Fix them up here. 1871 for (auto &Group : Comdats) { 1872 for (auto &Entry : Group.second) { 1873 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { 1874 Entry.Index += SectionCount; 1875 } 1876 } 1877 } 1878 for (auto &CustomSection : CustomSections) 1879 writeCustomSection(CustomSection, Asm, Layout); 1880 1881 if (Mode != DwoMode::DwoOnly) { 1882 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); 1883 1884 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations); 1885 writeRelocSection(DataSectionIndex, "DATA", DataRelocations); 1886 } 1887 writeCustomRelocSections(); 1888 if (ProducersSection) 1889 writeCustomSection(*ProducersSection, Asm, Layout); 1890 if (TargetFeaturesSection) 1891 writeCustomSection(*TargetFeaturesSection, Asm, Layout); 1892 1893 // TODO: Translate the .comment section to the output. 1894 return W->OS.tell() - StartOffset; 1895 } 1896 1897 std::unique_ptr<MCObjectWriter> 1898 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1899 raw_pwrite_stream &OS) { 1900 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS); 1901 } 1902 1903 std::unique_ptr<MCObjectWriter> 1904 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1905 raw_pwrite_stream &OS, 1906 raw_pwrite_stream &DwoOS) { 1907 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS); 1908 } 1909