1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Wasm object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/BinaryFormat/Wasm.h" 16 #include "llvm/BinaryFormat/WasmTraits.h" 17 #include "llvm/Config/llvm-config.h" 18 #include "llvm/MC/MCAsmBackend.h" 19 #include "llvm/MC/MCAsmLayout.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCExpr.h" 23 #include "llvm/MC/MCFixupKindInfo.h" 24 #include "llvm/MC/MCObjectWriter.h" 25 #include "llvm/MC/MCSectionWasm.h" 26 #include "llvm/MC/MCSymbolWasm.h" 27 #include "llvm/MC/MCValue.h" 28 #include "llvm/MC/MCWasmObjectWriter.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/EndianStream.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/LEB128.h" 34 #include "llvm/Support/StringSaver.h" 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "mc" 40 41 namespace { 42 43 // When we create the indirect function table we start at 1, so that there is 44 // and empty slot at 0 and therefore calling a null function pointer will trap. 45 static const uint32_t InitialTableOffset = 1; 46 47 // For patching purposes, we need to remember where each section starts, both 48 // for patching up the section size field, and for patching up references to 49 // locations within the section. 50 struct SectionBookkeeping { 51 // Where the size of the section is written. 52 uint64_t SizeOffset; 53 // Where the section header ends (without custom section name). 54 uint64_t PayloadOffset; 55 // Where the contents of the section starts. 56 uint64_t ContentsOffset; 57 uint32_t Index; 58 }; 59 60 // A wasm data segment. A wasm binary contains only a single data section 61 // but that can contain many segments, each with their own virtual location 62 // in memory. Each MCSection data created by llvm is modeled as its own 63 // wasm data segment. 64 struct WasmDataSegment { 65 MCSectionWasm *Section; 66 StringRef Name; 67 uint32_t InitFlags; 68 uint64_t Offset; 69 uint32_t Alignment; 70 uint32_t LinkingFlags; 71 SmallVector<char, 4> Data; 72 }; 73 74 // A wasm function to be written into the function section. 75 struct WasmFunction { 76 uint32_t SigIndex; 77 const MCSymbolWasm *Sym; 78 }; 79 80 // A wasm global to be written into the global section. 81 struct WasmGlobal { 82 wasm::WasmGlobalType Type; 83 uint64_t InitialValue; 84 }; 85 86 // Information about a single item which is part of a COMDAT. For each data 87 // segment or function which is in the COMDAT, there is a corresponding 88 // WasmComdatEntry. 89 struct WasmComdatEntry { 90 unsigned Kind; 91 uint32_t Index; 92 }; 93 94 // Information about a single relocation. 95 struct WasmRelocationEntry { 96 uint64_t Offset; // Where is the relocation. 97 const MCSymbolWasm *Symbol; // The symbol to relocate with. 98 int64_t Addend; // A value to add to the symbol. 99 unsigned Type; // The type of the relocation. 100 const MCSectionWasm *FixupSection; // The section the relocation is targeting. 101 102 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, 103 int64_t Addend, unsigned Type, 104 const MCSectionWasm *FixupSection) 105 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), 106 FixupSection(FixupSection) {} 107 108 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); } 109 110 void print(raw_ostream &Out) const { 111 Out << wasm::relocTypetoString(Type) << " Off=" << Offset 112 << ", Sym=" << *Symbol << ", Addend=" << Addend 113 << ", FixupSection=" << FixupSection->getName(); 114 } 115 116 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 117 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 118 #endif 119 }; 120 121 static const uint32_t InvalidIndex = -1; 122 123 struct WasmCustomSection { 124 125 StringRef Name; 126 MCSectionWasm *Section; 127 128 uint32_t OutputContentsOffset; 129 uint32_t OutputIndex; 130 131 WasmCustomSection(StringRef Name, MCSectionWasm *Section) 132 : Name(Name), Section(Section), OutputContentsOffset(0), 133 OutputIndex(InvalidIndex) {} 134 }; 135 136 #if !defined(NDEBUG) 137 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { 138 Rel.print(OS); 139 return OS; 140 } 141 #endif 142 143 // Write X as an (unsigned) LEB value at offset Offset in Stream, padded 144 // to allow patching. 145 template <int W> 146 void writePatchableLEB(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 147 uint8_t Buffer[W]; 148 unsigned SizeLen = encodeULEB128(X, Buffer, W); 149 assert(SizeLen == W); 150 Stream.pwrite((char *)Buffer, SizeLen, Offset); 151 } 152 153 // Write X as an signed LEB value at offset Offset in Stream, padded 154 // to allow patching. 155 template <int W> 156 void writePatchableSLEB(raw_pwrite_stream &Stream, int64_t X, uint64_t Offset) { 157 uint8_t Buffer[W]; 158 unsigned SizeLen = encodeSLEB128(X, Buffer, W); 159 assert(SizeLen == W); 160 Stream.pwrite((char *)Buffer, SizeLen, Offset); 161 } 162 163 // Write X as a plain integer value at offset Offset in Stream. 164 static void patchI32(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { 165 uint8_t Buffer[4]; 166 support::endian::write32le(Buffer, X); 167 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 168 } 169 170 static void patchI64(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 171 uint8_t Buffer[8]; 172 support::endian::write64le(Buffer, X); 173 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 174 } 175 176 bool isDwoSection(const MCSection &Sec) { 177 return Sec.getName().endswith(".dwo"); 178 } 179 180 class WasmObjectWriter : public MCObjectWriter { 181 support::endian::Writer *W; 182 183 /// The target specific Wasm writer instance. 184 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; 185 186 // Relocations for fixing up references in the code section. 187 std::vector<WasmRelocationEntry> CodeRelocations; 188 // Relocations for fixing up references in the data section. 189 std::vector<WasmRelocationEntry> DataRelocations; 190 191 // Index values to use for fixing up call_indirect type indices. 192 // Maps function symbols to the index of the type of the function 193 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; 194 // Maps function symbols to the table element index space. Used 195 // for TABLE_INDEX relocation types (i.e. address taken functions). 196 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; 197 // Maps function/global/table symbols to the 198 // function/global/table/event/section index space. 199 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; 200 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; 201 // Maps data symbols to the Wasm segment and offset/size with the segment. 202 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; 203 204 // Stores output data (index, relocations, content offset) for custom 205 // section. 206 std::vector<WasmCustomSection> CustomSections; 207 std::unique_ptr<WasmCustomSection> ProducersSection; 208 std::unique_ptr<WasmCustomSection> TargetFeaturesSection; 209 // Relocations for fixing up references in the custom sections. 210 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> 211 CustomSectionsRelocations; 212 213 // Map from section to defining function symbol. 214 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; 215 216 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; 217 SmallVector<wasm::WasmSignature, 4> Signatures; 218 SmallVector<WasmDataSegment, 4> DataSegments; 219 unsigned NumFunctionImports = 0; 220 unsigned NumGlobalImports = 0; 221 unsigned NumTableImports = 0; 222 unsigned NumEventImports = 0; 223 uint32_t SectionCount = 0; 224 225 enum class DwoMode { 226 AllSections, 227 NonDwoOnly, 228 DwoOnly, 229 }; 230 bool IsSplitDwarf = false; 231 raw_pwrite_stream *OS = nullptr; 232 raw_pwrite_stream *DwoOS = nullptr; 233 234 // TargetObjectWriter wranppers. 235 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 236 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } 237 238 void startSection(SectionBookkeeping &Section, unsigned SectionId); 239 void startCustomSection(SectionBookkeeping &Section, StringRef Name); 240 void endSection(SectionBookkeeping &Section); 241 242 public: 243 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 244 raw_pwrite_stream &OS_) 245 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} 246 247 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 248 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) 249 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), 250 DwoOS(&DwoOS_) {} 251 252 private: 253 void reset() override { 254 CodeRelocations.clear(); 255 DataRelocations.clear(); 256 TypeIndices.clear(); 257 WasmIndices.clear(); 258 GOTIndices.clear(); 259 TableIndices.clear(); 260 DataLocations.clear(); 261 CustomSections.clear(); 262 ProducersSection.reset(); 263 TargetFeaturesSection.reset(); 264 CustomSectionsRelocations.clear(); 265 SignatureIndices.clear(); 266 Signatures.clear(); 267 DataSegments.clear(); 268 SectionFunctions.clear(); 269 NumFunctionImports = 0; 270 NumGlobalImports = 0; 271 NumTableImports = 0; 272 MCObjectWriter::reset(); 273 } 274 275 void writeHeader(const MCAssembler &Asm); 276 277 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 278 const MCFragment *Fragment, const MCFixup &Fixup, 279 MCValue Target, uint64_t &FixedValue) override; 280 281 void executePostLayoutBinding(MCAssembler &Asm, 282 const MCAsmLayout &Layout) override; 283 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, 284 MCAssembler &Asm, const MCAsmLayout &Layout); 285 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 286 287 uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout, 288 DwoMode Mode); 289 290 void writeString(const StringRef Str) { 291 encodeULEB128(Str.size(), W->OS); 292 W->OS << Str; 293 } 294 295 void writeI32(int32_t val) { 296 char Buffer[4]; 297 support::endian::write32le(Buffer, val); 298 W->OS.write(Buffer, sizeof(Buffer)); 299 } 300 301 void writeI64(int64_t val) { 302 char Buffer[8]; 303 support::endian::write64le(Buffer, val); 304 W->OS.write(Buffer, sizeof(Buffer)); 305 } 306 307 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } 308 309 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); 310 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, 311 uint32_t NumElements); 312 void writeFunctionSection(ArrayRef<WasmFunction> Functions); 313 void writeExportSection(ArrayRef<wasm::WasmExport> Exports); 314 void writeElemSection(const MCSymbolWasm *IndirectFunctionTable, 315 ArrayRef<uint32_t> TableElems); 316 void writeDataCountSection(); 317 uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, 318 ArrayRef<WasmFunction> Functions); 319 uint32_t writeDataSection(const MCAsmLayout &Layout); 320 void writeEventSection(ArrayRef<wasm::WasmEventType> Events); 321 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); 322 void writeTableSection(ArrayRef<wasm::WasmTable> Tables); 323 void writeRelocSection(uint32_t SectionIndex, StringRef Name, 324 std::vector<WasmRelocationEntry> &Relocations); 325 void writeLinkingMetaDataSection( 326 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 327 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 328 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); 329 void writeCustomSection(WasmCustomSection &CustomSection, 330 const MCAssembler &Asm, const MCAsmLayout &Layout); 331 void writeCustomRelocSections(); 332 333 uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry, 334 const MCAsmLayout &Layout); 335 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, 336 uint64_t ContentsOffset, const MCAsmLayout &Layout); 337 338 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); 339 uint32_t getFunctionType(const MCSymbolWasm &Symbol); 340 uint32_t getEventType(const MCSymbolWasm &Symbol); 341 void registerFunctionType(const MCSymbolWasm &Symbol); 342 void registerEventType(const MCSymbolWasm &Symbol); 343 }; 344 345 } // end anonymous namespace 346 347 // Write out a section header and a patchable section size field. 348 void WasmObjectWriter::startSection(SectionBookkeeping &Section, 349 unsigned SectionId) { 350 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n"); 351 W->OS << char(SectionId); 352 353 Section.SizeOffset = W->OS.tell(); 354 355 // The section size. We don't know the size yet, so reserve enough space 356 // for any 32-bit value; we'll patch it later. 357 encodeULEB128(0, W->OS, 5); 358 359 // The position where the section starts, for measuring its size. 360 Section.ContentsOffset = W->OS.tell(); 361 Section.PayloadOffset = W->OS.tell(); 362 Section.Index = SectionCount++; 363 } 364 365 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, 366 StringRef Name) { 367 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n"); 368 startSection(Section, wasm::WASM_SEC_CUSTOM); 369 370 // The position where the section header ends, for measuring its size. 371 Section.PayloadOffset = W->OS.tell(); 372 373 // Custom sections in wasm also have a string identifier. 374 writeString(Name); 375 376 // The position where the custom section starts. 377 Section.ContentsOffset = W->OS.tell(); 378 } 379 380 // Now that the section is complete and we know how big it is, patch up the 381 // section size field at the start of the section. 382 void WasmObjectWriter::endSection(SectionBookkeeping &Section) { 383 uint64_t Size = W->OS.tell(); 384 // /dev/null doesn't support seek/tell and can report offset of 0. 385 // Simply skip this patching in that case. 386 if (!Size) 387 return; 388 389 Size -= Section.PayloadOffset; 390 if (uint32_t(Size) != Size) 391 report_fatal_error("section size does not fit in a uint32_t"); 392 393 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n"); 394 395 // Write the final section size to the payload_len field, which follows 396 // the section id byte. 397 writePatchableLEB<5>(static_cast<raw_pwrite_stream &>(W->OS), Size, 398 Section.SizeOffset); 399 } 400 401 // Emit the Wasm header. 402 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { 403 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic)); 404 W->write<uint32_t>(wasm::WasmVersion); 405 } 406 407 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 408 const MCAsmLayout &Layout) { 409 // Some compilation units require the indirect function table to be present 410 // but don't explicitly reference it. This is the case for call_indirect 411 // without the reference-types feature, and also function bitcasts in all 412 // cases. In those cases the __indirect_function_table has the 413 // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to 414 // the assembler, if needed. 415 if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) { 416 const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym); 417 if (WasmSym->isNoStrip()) 418 Asm.registerSymbol(*Sym); 419 } 420 421 // Build a map of sections to the function that defines them, for use 422 // in recordRelocation. 423 for (const MCSymbol &S : Asm.symbols()) { 424 const auto &WS = static_cast<const MCSymbolWasm &>(S); 425 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { 426 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); 427 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S)); 428 if (!Pair.second) 429 report_fatal_error("section already has a defining function: " + 430 Sec.getName()); 431 } 432 } 433 } 434 435 void WasmObjectWriter::recordRelocation(MCAssembler &Asm, 436 const MCAsmLayout &Layout, 437 const MCFragment *Fragment, 438 const MCFixup &Fixup, MCValue Target, 439 uint64_t &FixedValue) { 440 // The WebAssembly backend should never generate FKF_IsPCRel fixups 441 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 442 MCFixupKindInfo::FKF_IsPCRel)); 443 444 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent()); 445 uint64_t C = Target.getConstant(); 446 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 447 MCContext &Ctx = Asm.getContext(); 448 bool IsLocRel = false; 449 450 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 451 452 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol()); 453 454 if (FixupSection.getKind().isText()) { 455 Ctx.reportError(Fixup.getLoc(), 456 Twine("symbol '") + SymB.getName() + 457 "' unsupported subtraction expression used in " 458 "relocation in code section."); 459 return; 460 } 461 462 if (SymB.isUndefined()) { 463 Ctx.reportError(Fixup.getLoc(), 464 Twine("symbol '") + SymB.getName() + 465 "' can not be undefined in a subtraction expression"); 466 return; 467 } 468 const MCSection &SecB = SymB.getSection(); 469 if (&SecB != &FixupSection) { 470 Ctx.reportError(Fixup.getLoc(), 471 Twine("symbol '") + SymB.getName() + 472 "' can not be placed in a different section"); 473 return; 474 } 475 IsLocRel = true; 476 C += FixupOffset - Layout.getSymbolOffset(SymB); 477 } 478 479 // We either rejected the fixup or folded B into C at this point. 480 const MCSymbolRefExpr *RefA = Target.getSymA(); 481 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol()); 482 483 // The .init_array isn't translated as data, so don't do relocations in it. 484 if (FixupSection.getName().startswith(".init_array")) { 485 SymA->setUsedInInitArray(); 486 return; 487 } 488 489 if (SymA->isVariable()) { 490 const MCExpr *Expr = SymA->getVariableValue(); 491 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) 492 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) 493 llvm_unreachable("weakref used in reloc not yet implemented"); 494 } 495 496 // Put any constant offset in an addend. Offsets can be negative, and 497 // LLVM expects wrapping, in contrast to wasm's immediates which can't 498 // be negative and don't wrap. 499 FixedValue = 0; 500 501 unsigned Type = TargetObjectWriter->getRelocType(Target, Fixup, IsLocRel); 502 503 // Absolute offset within a section or a function. 504 // Currently only supported for for metadata sections. 505 // See: test/MC/WebAssembly/blockaddress.ll 506 if (Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || 507 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || 508 Type == wasm::R_WASM_SECTION_OFFSET_I32) { 509 if (!FixupSection.getKind().isMetadata()) 510 report_fatal_error("relocations for function or section offsets are " 511 "only supported in metadata sections"); 512 513 const MCSymbol *SectionSymbol = nullptr; 514 const MCSection &SecA = SymA->getSection(); 515 if (SecA.getKind().isText()) { 516 auto SecSymIt = SectionFunctions.find(&SecA); 517 if (SecSymIt == SectionFunctions.end()) 518 report_fatal_error("section doesn\'t have defining symbol"); 519 SectionSymbol = SecSymIt->second; 520 } else { 521 SectionSymbol = SecA.getBeginSymbol(); 522 } 523 if (!SectionSymbol) 524 report_fatal_error("section symbol is required for relocation"); 525 526 C += Layout.getSymbolOffset(*SymA); 527 SymA = cast<MCSymbolWasm>(SectionSymbol); 528 } 529 530 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 531 Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 || 532 Type == wasm::R_WASM_TABLE_INDEX_SLEB || 533 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || 534 Type == wasm::R_WASM_TABLE_INDEX_I32 || 535 Type == wasm::R_WASM_TABLE_INDEX_I64) { 536 // TABLE_INDEX relocs implicitly use the default indirect function table. 537 // We require the function table to have already been defined. 538 auto TableName = "__indirect_function_table"; 539 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName)); 540 if (!Sym) { 541 report_fatal_error("missing indirect function table symbol"); 542 } else { 543 if (!Sym->isFunctionTable()) 544 report_fatal_error("__indirect_function_table symbol has wrong type"); 545 // Ensure that __indirect_function_table reaches the output. 546 Sym->setNoStrip(); 547 Asm.registerSymbol(*Sym); 548 } 549 } 550 551 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be 552 // against a named symbol. 553 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { 554 if (SymA->getName().empty()) 555 report_fatal_error("relocations against un-named temporaries are not yet " 556 "supported by wasm"); 557 558 SymA->setUsedInReloc(); 559 } 560 561 if (RefA->getKind() == MCSymbolRefExpr::VK_GOT) 562 SymA->setUsedInGOT(); 563 564 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); 565 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); 566 567 if (FixupSection.isWasmData()) { 568 DataRelocations.push_back(Rec); 569 } else if (FixupSection.getKind().isText()) { 570 CodeRelocations.push_back(Rec); 571 } else if (FixupSection.getKind().isMetadata()) { 572 CustomSectionsRelocations[&FixupSection].push_back(Rec); 573 } else { 574 llvm_unreachable("unexpected section type"); 575 } 576 } 577 578 // Compute a value to write into the code at the location covered 579 // by RelEntry. This value isn't used by the static linker; it just serves 580 // to make the object format more readable and more likely to be directly 581 // useable. 582 uint64_t 583 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry, 584 const MCAsmLayout &Layout) { 585 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || 586 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && 587 !RelEntry.Symbol->isGlobal()) { 588 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space"); 589 return GOTIndices[RelEntry.Symbol]; 590 } 591 592 switch (RelEntry.Type) { 593 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 594 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 595 case wasm::R_WASM_TABLE_INDEX_SLEB: 596 case wasm::R_WASM_TABLE_INDEX_SLEB64: 597 case wasm::R_WASM_TABLE_INDEX_I32: 598 case wasm::R_WASM_TABLE_INDEX_I64: { 599 // Provisional value is table address of the resolved symbol itself 600 const MCSymbolWasm *Base = 601 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol)); 602 assert(Base->isFunction()); 603 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 604 RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 605 return TableIndices[Base] - InitialTableOffset; 606 else 607 return TableIndices[Base]; 608 } 609 case wasm::R_WASM_TYPE_INDEX_LEB: 610 // Provisional value is same as the index 611 return getRelocationIndexValue(RelEntry); 612 case wasm::R_WASM_FUNCTION_INDEX_LEB: 613 case wasm::R_WASM_GLOBAL_INDEX_LEB: 614 case wasm::R_WASM_GLOBAL_INDEX_I32: 615 case wasm::R_WASM_EVENT_INDEX_LEB: 616 case wasm::R_WASM_TABLE_NUMBER_LEB: 617 // Provisional value is function/global/event Wasm index 618 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space"); 619 return WasmIndices[RelEntry.Symbol]; 620 case wasm::R_WASM_FUNCTION_OFFSET_I32: 621 case wasm::R_WASM_FUNCTION_OFFSET_I64: 622 case wasm::R_WASM_SECTION_OFFSET_I32: { 623 const auto &Section = 624 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); 625 return Section.getSectionOffset() + RelEntry.Addend; 626 } 627 case wasm::R_WASM_MEMORY_ADDR_LEB: 628 case wasm::R_WASM_MEMORY_ADDR_LEB64: 629 case wasm::R_WASM_MEMORY_ADDR_SLEB: 630 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 631 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 632 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 633 case wasm::R_WASM_MEMORY_ADDR_I32: 634 case wasm::R_WASM_MEMORY_ADDR_I64: 635 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 636 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: { 637 // Provisional value is address of the global plus the offset 638 // For undefined symbols, use zero 639 if (!RelEntry.Symbol->isDefined()) 640 return 0; 641 const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol]; 642 const WasmDataSegment &Segment = DataSegments[SymRef.Segment]; 643 // Ignore overflow. LLVM allows address arithmetic to silently wrap. 644 return Segment.Offset + SymRef.Offset + RelEntry.Addend; 645 } 646 default: 647 llvm_unreachable("invalid relocation type"); 648 } 649 } 650 651 static void addData(SmallVectorImpl<char> &DataBytes, 652 MCSectionWasm &DataSection) { 653 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n"); 654 655 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlignment())); 656 657 for (const MCFragment &Frag : DataSection) { 658 if (Frag.hasInstructions()) 659 report_fatal_error("only data supported in data sections"); 660 661 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) { 662 if (Align->getValueSize() != 1) 663 report_fatal_error("only byte values supported for alignment"); 664 // If nops are requested, use zeros, as this is the data section. 665 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); 666 uint64_t Size = 667 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()), 668 DataBytes.size() + Align->getMaxBytesToEmit()); 669 DataBytes.resize(Size, Value); 670 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) { 671 int64_t NumValues; 672 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues)) 673 llvm_unreachable("The fill should be an assembler constant"); 674 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues, 675 Fill->getValue()); 676 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) { 677 const SmallVectorImpl<char> &Contents = LEB->getContents(); 678 llvm::append_range(DataBytes, Contents); 679 } else { 680 const auto &DataFrag = cast<MCDataFragment>(Frag); 681 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 682 llvm::append_range(DataBytes, Contents); 683 } 684 } 685 686 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); 687 } 688 689 uint32_t 690 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { 691 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { 692 if (!TypeIndices.count(RelEntry.Symbol)) 693 report_fatal_error("symbol not found in type index space: " + 694 RelEntry.Symbol->getName()); 695 return TypeIndices[RelEntry.Symbol]; 696 } 697 698 return RelEntry.Symbol->getIndex(); 699 } 700 701 // Apply the portions of the relocation records that we can handle ourselves 702 // directly. 703 void WasmObjectWriter::applyRelocations( 704 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, 705 const MCAsmLayout &Layout) { 706 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); 707 for (const WasmRelocationEntry &RelEntry : Relocations) { 708 uint64_t Offset = ContentsOffset + 709 RelEntry.FixupSection->getSectionOffset() + 710 RelEntry.Offset; 711 712 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); 713 auto Value = getProvisionalValue(RelEntry, Layout); 714 715 switch (RelEntry.Type) { 716 case wasm::R_WASM_FUNCTION_INDEX_LEB: 717 case wasm::R_WASM_TYPE_INDEX_LEB: 718 case wasm::R_WASM_GLOBAL_INDEX_LEB: 719 case wasm::R_WASM_MEMORY_ADDR_LEB: 720 case wasm::R_WASM_EVENT_INDEX_LEB: 721 case wasm::R_WASM_TABLE_NUMBER_LEB: 722 writePatchableLEB<5>(Stream, Value, Offset); 723 break; 724 case wasm::R_WASM_MEMORY_ADDR_LEB64: 725 writePatchableLEB<10>(Stream, Value, Offset); 726 break; 727 case wasm::R_WASM_TABLE_INDEX_I32: 728 case wasm::R_WASM_MEMORY_ADDR_I32: 729 case wasm::R_WASM_FUNCTION_OFFSET_I32: 730 case wasm::R_WASM_SECTION_OFFSET_I32: 731 case wasm::R_WASM_GLOBAL_INDEX_I32: 732 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: 733 patchI32(Stream, Value, Offset); 734 break; 735 case wasm::R_WASM_TABLE_INDEX_I64: 736 case wasm::R_WASM_MEMORY_ADDR_I64: 737 case wasm::R_WASM_FUNCTION_OFFSET_I64: 738 patchI64(Stream, Value, Offset); 739 break; 740 case wasm::R_WASM_TABLE_INDEX_SLEB: 741 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 742 case wasm::R_WASM_MEMORY_ADDR_SLEB: 743 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 744 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 745 writePatchableSLEB<5>(Stream, Value, Offset); 746 break; 747 case wasm::R_WASM_TABLE_INDEX_SLEB64: 748 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 749 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 750 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 751 writePatchableSLEB<10>(Stream, Value, Offset); 752 break; 753 default: 754 llvm_unreachable("invalid relocation type"); 755 } 756 } 757 } 758 759 void WasmObjectWriter::writeTypeSection( 760 ArrayRef<wasm::WasmSignature> Signatures) { 761 if (Signatures.empty()) 762 return; 763 764 SectionBookkeeping Section; 765 startSection(Section, wasm::WASM_SEC_TYPE); 766 767 encodeULEB128(Signatures.size(), W->OS); 768 769 for (const wasm::WasmSignature &Sig : Signatures) { 770 W->OS << char(wasm::WASM_TYPE_FUNC); 771 encodeULEB128(Sig.Params.size(), W->OS); 772 for (wasm::ValType Ty : Sig.Params) 773 writeValueType(Ty); 774 encodeULEB128(Sig.Returns.size(), W->OS); 775 for (wasm::ValType Ty : Sig.Returns) 776 writeValueType(Ty); 777 } 778 779 endSection(Section); 780 } 781 782 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, 783 uint64_t DataSize, 784 uint32_t NumElements) { 785 if (Imports.empty()) 786 return; 787 788 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; 789 790 SectionBookkeeping Section; 791 startSection(Section, wasm::WASM_SEC_IMPORT); 792 793 encodeULEB128(Imports.size(), W->OS); 794 for (const wasm::WasmImport &Import : Imports) { 795 writeString(Import.Module); 796 writeString(Import.Field); 797 W->OS << char(Import.Kind); 798 799 switch (Import.Kind) { 800 case wasm::WASM_EXTERNAL_FUNCTION: 801 encodeULEB128(Import.SigIndex, W->OS); 802 break; 803 case wasm::WASM_EXTERNAL_GLOBAL: 804 W->OS << char(Import.Global.Type); 805 W->OS << char(Import.Global.Mutable ? 1 : 0); 806 break; 807 case wasm::WASM_EXTERNAL_MEMORY: 808 encodeULEB128(Import.Memory.Flags, W->OS); 809 encodeULEB128(NumPages, W->OS); // initial 810 break; 811 case wasm::WASM_EXTERNAL_TABLE: 812 W->OS << char(Import.Table.ElemType); 813 encodeULEB128(0, W->OS); // flags 814 encodeULEB128(NumElements, W->OS); // initial 815 break; 816 case wasm::WASM_EXTERNAL_EVENT: 817 encodeULEB128(Import.Event.Attribute, W->OS); 818 encodeULEB128(Import.Event.SigIndex, W->OS); 819 break; 820 default: 821 llvm_unreachable("unsupported import kind"); 822 } 823 } 824 825 endSection(Section); 826 } 827 828 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { 829 if (Functions.empty()) 830 return; 831 832 SectionBookkeeping Section; 833 startSection(Section, wasm::WASM_SEC_FUNCTION); 834 835 encodeULEB128(Functions.size(), W->OS); 836 for (const WasmFunction &Func : Functions) 837 encodeULEB128(Func.SigIndex, W->OS); 838 839 endSection(Section); 840 } 841 842 void WasmObjectWriter::writeEventSection(ArrayRef<wasm::WasmEventType> Events) { 843 if (Events.empty()) 844 return; 845 846 SectionBookkeeping Section; 847 startSection(Section, wasm::WASM_SEC_EVENT); 848 849 encodeULEB128(Events.size(), W->OS); 850 for (const wasm::WasmEventType &Event : Events) { 851 encodeULEB128(Event.Attribute, W->OS); 852 encodeULEB128(Event.SigIndex, W->OS); 853 } 854 855 endSection(Section); 856 } 857 858 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { 859 if (Globals.empty()) 860 return; 861 862 SectionBookkeeping Section; 863 startSection(Section, wasm::WASM_SEC_GLOBAL); 864 865 encodeULEB128(Globals.size(), W->OS); 866 for (const wasm::WasmGlobal &Global : Globals) { 867 encodeULEB128(Global.Type.Type, W->OS); 868 W->OS << char(Global.Type.Mutable); 869 W->OS << char(Global.InitExpr.Opcode); 870 switch (Global.Type.Type) { 871 case wasm::WASM_TYPE_I32: 872 encodeSLEB128(0, W->OS); 873 break; 874 case wasm::WASM_TYPE_I64: 875 encodeSLEB128(0, W->OS); 876 break; 877 case wasm::WASM_TYPE_F32: 878 writeI32(0); 879 break; 880 case wasm::WASM_TYPE_F64: 881 writeI64(0); 882 break; 883 case wasm::WASM_TYPE_EXTERNREF: 884 writeValueType(wasm::ValType::EXTERNREF); 885 break; 886 default: 887 llvm_unreachable("unexpected type"); 888 } 889 W->OS << char(wasm::WASM_OPCODE_END); 890 } 891 892 endSection(Section); 893 } 894 895 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { 896 if (Tables.empty()) 897 return; 898 899 SectionBookkeeping Section; 900 startSection(Section, wasm::WASM_SEC_TABLE); 901 902 encodeULEB128(Tables.size(), W->OS); 903 for (const wasm::WasmTable &Table : Tables) { 904 encodeULEB128(Table.Type.ElemType, W->OS); 905 encodeULEB128(Table.Type.Limits.Flags, W->OS); 906 encodeULEB128(Table.Type.Limits.Minimum, W->OS); 907 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) 908 encodeULEB128(Table.Type.Limits.Maximum, W->OS); 909 } 910 endSection(Section); 911 } 912 913 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { 914 if (Exports.empty()) 915 return; 916 917 SectionBookkeeping Section; 918 startSection(Section, wasm::WASM_SEC_EXPORT); 919 920 encodeULEB128(Exports.size(), W->OS); 921 for (const wasm::WasmExport &Export : Exports) { 922 writeString(Export.Name); 923 W->OS << char(Export.Kind); 924 encodeULEB128(Export.Index, W->OS); 925 } 926 927 endSection(Section); 928 } 929 930 void WasmObjectWriter::writeElemSection( 931 const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) { 932 if (TableElems.empty()) 933 return; 934 935 assert(IndirectFunctionTable); 936 937 SectionBookkeeping Section; 938 startSection(Section, wasm::WASM_SEC_ELEM); 939 940 encodeULEB128(1, W->OS); // number of "segments" 941 942 assert(WasmIndices.count(IndirectFunctionTable)); 943 uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second; 944 uint32_t Flags = 0; 945 if (TableNumber) 946 Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER; 947 encodeULEB128(Flags, W->OS); 948 if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER) 949 encodeULEB128(TableNumber, W->OS); // the table number 950 951 // init expr for starting offset 952 W->OS << char(wasm::WASM_OPCODE_I32_CONST); 953 encodeSLEB128(InitialTableOffset, W->OS); 954 W->OS << char(wasm::WASM_OPCODE_END); 955 956 if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) { 957 // We only write active function table initializers, for which the elem kind 958 // is specified to be written as 0x00 and interpreted to mean "funcref". 959 const uint8_t ElemKind = 0; 960 W->OS << ElemKind; 961 } 962 963 encodeULEB128(TableElems.size(), W->OS); 964 for (uint32_t Elem : TableElems) 965 encodeULEB128(Elem, W->OS); 966 967 endSection(Section); 968 } 969 970 void WasmObjectWriter::writeDataCountSection() { 971 if (DataSegments.empty()) 972 return; 973 974 SectionBookkeeping Section; 975 startSection(Section, wasm::WASM_SEC_DATACOUNT); 976 encodeULEB128(DataSegments.size(), W->OS); 977 endSection(Section); 978 } 979 980 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, 981 const MCAsmLayout &Layout, 982 ArrayRef<WasmFunction> Functions) { 983 if (Functions.empty()) 984 return 0; 985 986 SectionBookkeeping Section; 987 startSection(Section, wasm::WASM_SEC_CODE); 988 989 encodeULEB128(Functions.size(), W->OS); 990 991 for (const WasmFunction &Func : Functions) { 992 auto &FuncSection = static_cast<MCSectionWasm &>(Func.Sym->getSection()); 993 994 int64_t Size = 0; 995 if (!Func.Sym->getSize()->evaluateAsAbsolute(Size, Layout)) 996 report_fatal_error(".size expression must be evaluatable"); 997 998 encodeULEB128(Size, W->OS); 999 FuncSection.setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1000 Asm.writeSectionData(W->OS, &FuncSection, Layout); 1001 } 1002 1003 // Apply fixups. 1004 applyRelocations(CodeRelocations, Section.ContentsOffset, Layout); 1005 1006 endSection(Section); 1007 return Section.Index; 1008 } 1009 1010 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) { 1011 if (DataSegments.empty()) 1012 return 0; 1013 1014 SectionBookkeeping Section; 1015 startSection(Section, wasm::WASM_SEC_DATA); 1016 1017 encodeULEB128(DataSegments.size(), W->OS); // count 1018 1019 for (const WasmDataSegment &Segment : DataSegments) { 1020 encodeULEB128(Segment.InitFlags, W->OS); // flags 1021 if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) 1022 encodeULEB128(0, W->OS); // memory index 1023 if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { 1024 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1025 : wasm::WASM_OPCODE_I32_CONST); 1026 encodeSLEB128(Segment.Offset, W->OS); // offset 1027 W->OS << char(wasm::WASM_OPCODE_END); 1028 } 1029 encodeULEB128(Segment.Data.size(), W->OS); // size 1030 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1031 W->OS << Segment.Data; // data 1032 } 1033 1034 // Apply fixups. 1035 applyRelocations(DataRelocations, Section.ContentsOffset, Layout); 1036 1037 endSection(Section); 1038 return Section.Index; 1039 } 1040 1041 void WasmObjectWriter::writeRelocSection( 1042 uint32_t SectionIndex, StringRef Name, 1043 std::vector<WasmRelocationEntry> &Relocs) { 1044 // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md 1045 // for descriptions of the reloc sections. 1046 1047 if (Relocs.empty()) 1048 return; 1049 1050 // First, ensure the relocations are sorted in offset order. In general they 1051 // should already be sorted since `recordRelocation` is called in offset 1052 // order, but for the code section we combine many MC sections into single 1053 // wasm section, and this order is determined by the order of Asm.Symbols() 1054 // not the sections order. 1055 llvm::stable_sort( 1056 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { 1057 return (A.Offset + A.FixupSection->getSectionOffset()) < 1058 (B.Offset + B.FixupSection->getSectionOffset()); 1059 }); 1060 1061 SectionBookkeeping Section; 1062 startCustomSection(Section, std::string("reloc.") + Name.str()); 1063 1064 encodeULEB128(SectionIndex, W->OS); 1065 encodeULEB128(Relocs.size(), W->OS); 1066 for (const WasmRelocationEntry &RelEntry : Relocs) { 1067 uint64_t Offset = 1068 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); 1069 uint32_t Index = getRelocationIndexValue(RelEntry); 1070 1071 W->OS << char(RelEntry.Type); 1072 encodeULEB128(Offset, W->OS); 1073 encodeULEB128(Index, W->OS); 1074 if (RelEntry.hasAddend()) 1075 encodeSLEB128(RelEntry.Addend, W->OS); 1076 } 1077 1078 endSection(Section); 1079 } 1080 1081 void WasmObjectWriter::writeCustomRelocSections() { 1082 for (const auto &Sec : CustomSections) { 1083 auto &Relocations = CustomSectionsRelocations[Sec.Section]; 1084 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations); 1085 } 1086 } 1087 1088 void WasmObjectWriter::writeLinkingMetaDataSection( 1089 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 1090 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 1091 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { 1092 SectionBookkeeping Section; 1093 startCustomSection(Section, "linking"); 1094 encodeULEB128(wasm::WasmMetadataVersion, W->OS); 1095 1096 SectionBookkeeping SubSection; 1097 if (SymbolInfos.size() != 0) { 1098 startSection(SubSection, wasm::WASM_SYMBOL_TABLE); 1099 encodeULEB128(SymbolInfos.size(), W->OS); 1100 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { 1101 encodeULEB128(Sym.Kind, W->OS); 1102 encodeULEB128(Sym.Flags, W->OS); 1103 switch (Sym.Kind) { 1104 case wasm::WASM_SYMBOL_TYPE_FUNCTION: 1105 case wasm::WASM_SYMBOL_TYPE_GLOBAL: 1106 case wasm::WASM_SYMBOL_TYPE_EVENT: 1107 case wasm::WASM_SYMBOL_TYPE_TABLE: 1108 encodeULEB128(Sym.ElementIndex, W->OS); 1109 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || 1110 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) 1111 writeString(Sym.Name); 1112 break; 1113 case wasm::WASM_SYMBOL_TYPE_DATA: 1114 writeString(Sym.Name); 1115 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { 1116 encodeULEB128(Sym.DataRef.Segment, W->OS); 1117 encodeULEB128(Sym.DataRef.Offset, W->OS); 1118 encodeULEB128(Sym.DataRef.Size, W->OS); 1119 } 1120 break; 1121 case wasm::WASM_SYMBOL_TYPE_SECTION: { 1122 const uint32_t SectionIndex = 1123 CustomSections[Sym.ElementIndex].OutputIndex; 1124 encodeULEB128(SectionIndex, W->OS); 1125 break; 1126 } 1127 default: 1128 llvm_unreachable("unexpected kind"); 1129 } 1130 } 1131 endSection(SubSection); 1132 } 1133 1134 if (DataSegments.size()) { 1135 startSection(SubSection, wasm::WASM_SEGMENT_INFO); 1136 encodeULEB128(DataSegments.size(), W->OS); 1137 for (const WasmDataSegment &Segment : DataSegments) { 1138 writeString(Segment.Name); 1139 encodeULEB128(Segment.Alignment, W->OS); 1140 encodeULEB128(Segment.LinkingFlags, W->OS); 1141 } 1142 endSection(SubSection); 1143 } 1144 1145 if (!InitFuncs.empty()) { 1146 startSection(SubSection, wasm::WASM_INIT_FUNCS); 1147 encodeULEB128(InitFuncs.size(), W->OS); 1148 for (auto &StartFunc : InitFuncs) { 1149 encodeULEB128(StartFunc.first, W->OS); // priority 1150 encodeULEB128(StartFunc.second, W->OS); // function index 1151 } 1152 endSection(SubSection); 1153 } 1154 1155 if (Comdats.size()) { 1156 startSection(SubSection, wasm::WASM_COMDAT_INFO); 1157 encodeULEB128(Comdats.size(), W->OS); 1158 for (const auto &C : Comdats) { 1159 writeString(C.first); 1160 encodeULEB128(0, W->OS); // flags for future use 1161 encodeULEB128(C.second.size(), W->OS); 1162 for (const WasmComdatEntry &Entry : C.second) { 1163 encodeULEB128(Entry.Kind, W->OS); 1164 encodeULEB128(Entry.Index, W->OS); 1165 } 1166 } 1167 endSection(SubSection); 1168 } 1169 1170 endSection(Section); 1171 } 1172 1173 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, 1174 const MCAssembler &Asm, 1175 const MCAsmLayout &Layout) { 1176 SectionBookkeeping Section; 1177 auto *Sec = CustomSection.Section; 1178 startCustomSection(Section, CustomSection.Name); 1179 1180 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1181 Asm.writeSectionData(W->OS, Sec, Layout); 1182 1183 CustomSection.OutputContentsOffset = Section.ContentsOffset; 1184 CustomSection.OutputIndex = Section.Index; 1185 1186 endSection(Section); 1187 1188 // Apply fixups. 1189 auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; 1190 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout); 1191 } 1192 1193 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { 1194 assert(Symbol.isFunction()); 1195 assert(TypeIndices.count(&Symbol)); 1196 return TypeIndices[&Symbol]; 1197 } 1198 1199 uint32_t WasmObjectWriter::getEventType(const MCSymbolWasm &Symbol) { 1200 assert(Symbol.isEvent()); 1201 assert(TypeIndices.count(&Symbol)); 1202 return TypeIndices[&Symbol]; 1203 } 1204 1205 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { 1206 assert(Symbol.isFunction()); 1207 1208 wasm::WasmSignature S; 1209 1210 if (auto *Sig = Symbol.getSignature()) { 1211 S.Returns = Sig->Returns; 1212 S.Params = Sig->Params; 1213 } 1214 1215 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1216 if (Pair.second) 1217 Signatures.push_back(S); 1218 TypeIndices[&Symbol] = Pair.first->second; 1219 1220 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol 1221 << " new:" << Pair.second << "\n"); 1222 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1223 } 1224 1225 void WasmObjectWriter::registerEventType(const MCSymbolWasm &Symbol) { 1226 assert(Symbol.isEvent()); 1227 1228 // TODO Currently we don't generate imported exceptions, but if we do, we 1229 // should have a way of infering types of imported exceptions. 1230 wasm::WasmSignature S; 1231 if (auto *Sig = Symbol.getSignature()) { 1232 S.Returns = Sig->Returns; 1233 S.Params = Sig->Params; 1234 } 1235 1236 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1237 if (Pair.second) 1238 Signatures.push_back(S); 1239 TypeIndices[&Symbol] = Pair.first->second; 1240 1241 LLVM_DEBUG(dbgs() << "registerEventType: " << Symbol << " new:" << Pair.second 1242 << "\n"); 1243 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1244 } 1245 1246 static bool isInSymtab(const MCSymbolWasm &Sym) { 1247 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) 1248 return true; 1249 1250 if (Sym.isComdat() && !Sym.isDefined()) 1251 return false; 1252 1253 if (Sym.isTemporary()) 1254 return false; 1255 1256 if (Sym.isSection()) 1257 return false; 1258 1259 if (Sym.omitFromLinkingSection()) 1260 return false; 1261 1262 return true; 1263 } 1264 1265 void WasmObjectWriter::prepareImports( 1266 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm, 1267 const MCAsmLayout &Layout) { 1268 // For now, always emit the memory import, since loads and stores are not 1269 // valid without it. In the future, we could perhaps be more clever and omit 1270 // it if there are no loads or stores. 1271 wasm::WasmImport MemImport; 1272 MemImport.Module = "env"; 1273 MemImport.Field = "__linear_memory"; 1274 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; 1275 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 1276 : wasm::WASM_LIMITS_FLAG_NONE; 1277 Imports.push_back(MemImport); 1278 1279 // Populate SignatureIndices, and Imports and WasmIndices for undefined 1280 // symbols. This must be done before populating WasmIndices for defined 1281 // symbols. 1282 for (const MCSymbol &S : Asm.symbols()) { 1283 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1284 1285 // Register types for all functions, including those with private linkage 1286 // (because wasm always needs a type signature). 1287 if (WS.isFunction()) { 1288 const auto *BS = Layout.getBaseSymbol(S); 1289 if (!BS) 1290 report_fatal_error(Twine(S.getName()) + 1291 ": absolute addressing not supported!"); 1292 registerFunctionType(*cast<MCSymbolWasm>(BS)); 1293 } 1294 1295 if (WS.isEvent()) 1296 registerEventType(WS); 1297 1298 if (WS.isTemporary()) 1299 continue; 1300 1301 // If the symbol is not defined in this translation unit, import it. 1302 if (!WS.isDefined() && !WS.isComdat()) { 1303 if (WS.isFunction()) { 1304 wasm::WasmImport Import; 1305 Import.Module = WS.getImportModule(); 1306 Import.Field = WS.getImportName(); 1307 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1308 Import.SigIndex = getFunctionType(WS); 1309 Imports.push_back(Import); 1310 assert(WasmIndices.count(&WS) == 0); 1311 WasmIndices[&WS] = NumFunctionImports++; 1312 } else if (WS.isGlobal()) { 1313 if (WS.isWeak()) 1314 report_fatal_error("undefined global symbol cannot be weak"); 1315 1316 wasm::WasmImport Import; 1317 Import.Field = WS.getImportName(); 1318 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1319 Import.Module = WS.getImportModule(); 1320 Import.Global = WS.getGlobalType(); 1321 Imports.push_back(Import); 1322 assert(WasmIndices.count(&WS) == 0); 1323 WasmIndices[&WS] = NumGlobalImports++; 1324 } else if (WS.isEvent()) { 1325 if (WS.isWeak()) 1326 report_fatal_error("undefined event symbol cannot be weak"); 1327 1328 wasm::WasmImport Import; 1329 Import.Module = WS.getImportModule(); 1330 Import.Field = WS.getImportName(); 1331 Import.Kind = wasm::WASM_EXTERNAL_EVENT; 1332 Import.Event.Attribute = wasm::WASM_EVENT_ATTRIBUTE_EXCEPTION; 1333 Import.Event.SigIndex = getEventType(WS); 1334 Imports.push_back(Import); 1335 assert(WasmIndices.count(&WS) == 0); 1336 WasmIndices[&WS] = NumEventImports++; 1337 } else if (WS.isTable()) { 1338 if (WS.isWeak()) 1339 report_fatal_error("undefined table symbol cannot be weak"); 1340 1341 wasm::WasmImport Import; 1342 Import.Module = WS.getImportModule(); 1343 Import.Field = WS.getImportName(); 1344 Import.Kind = wasm::WASM_EXTERNAL_TABLE; 1345 Import.Table = WS.getTableType(); 1346 Imports.push_back(Import); 1347 assert(WasmIndices.count(&WS) == 0); 1348 WasmIndices[&WS] = NumTableImports++; 1349 } 1350 } 1351 } 1352 1353 // Add imports for GOT globals 1354 for (const MCSymbol &S : Asm.symbols()) { 1355 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1356 if (WS.isUsedInGOT()) { 1357 wasm::WasmImport Import; 1358 if (WS.isFunction()) 1359 Import.Module = "GOT.func"; 1360 else 1361 Import.Module = "GOT.mem"; 1362 Import.Field = WS.getName(); 1363 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1364 Import.Global = {wasm::WASM_TYPE_I32, true}; 1365 Imports.push_back(Import); 1366 assert(GOTIndices.count(&WS) == 0); 1367 GOTIndices[&WS] = NumGlobalImports++; 1368 } 1369 } 1370 } 1371 1372 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm, 1373 const MCAsmLayout &Layout) { 1374 support::endian::Writer MainWriter(*OS, support::little); 1375 W = &MainWriter; 1376 if (IsSplitDwarf) { 1377 uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly); 1378 assert(DwoOS); 1379 support::endian::Writer DwoWriter(*DwoOS, support::little); 1380 W = &DwoWriter; 1381 return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly); 1382 } else { 1383 return writeOneObject(Asm, Layout, DwoMode::AllSections); 1384 } 1385 } 1386 1387 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, 1388 const MCAsmLayout &Layout, 1389 DwoMode Mode) { 1390 uint64_t StartOffset = W->OS.tell(); 1391 SectionCount = 0; 1392 CustomSections.clear(); 1393 1394 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); 1395 1396 // Collect information from the available symbols. 1397 SmallVector<WasmFunction, 4> Functions; 1398 SmallVector<uint32_t, 4> TableElems; 1399 SmallVector<wasm::WasmImport, 4> Imports; 1400 SmallVector<wasm::WasmExport, 4> Exports; 1401 SmallVector<wasm::WasmEventType, 1> Events; 1402 SmallVector<wasm::WasmGlobal, 1> Globals; 1403 SmallVector<wasm::WasmTable, 1> Tables; 1404 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; 1405 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; 1406 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; 1407 uint64_t DataSize = 0; 1408 if (Mode != DwoMode::DwoOnly) { 1409 prepareImports(Imports, Asm, Layout); 1410 } 1411 1412 // Populate DataSegments and CustomSections, which must be done before 1413 // populating DataLocations. 1414 for (MCSection &Sec : Asm) { 1415 auto &Section = static_cast<MCSectionWasm &>(Sec); 1416 StringRef SectionName = Section.getName(); 1417 1418 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) 1419 continue; 1420 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) 1421 continue; 1422 1423 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " 1424 << Section.getGroup() << "\n";); 1425 1426 // .init_array sections are handled specially elsewhere. 1427 if (SectionName.startswith(".init_array")) 1428 continue; 1429 1430 // Code is handled separately 1431 if (Section.getKind().isText()) 1432 continue; 1433 1434 if (Section.isWasmData()) { 1435 uint32_t SegmentIndex = DataSegments.size(); 1436 DataSize = alignTo(DataSize, Section.getAlignment()); 1437 DataSegments.emplace_back(); 1438 WasmDataSegment &Segment = DataSegments.back(); 1439 Segment.Name = SectionName; 1440 Segment.InitFlags = Section.getPassive() 1441 ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE 1442 : 0; 1443 Segment.Offset = DataSize; 1444 Segment.Section = &Section; 1445 addData(Segment.Data, Section); 1446 Segment.Alignment = Log2_32(Section.getAlignment()); 1447 Segment.LinkingFlags = Section.getSegmentFlags(); 1448 DataSize += Segment.Data.size(); 1449 Section.setSegmentIndex(SegmentIndex); 1450 1451 if (const MCSymbolWasm *C = Section.getGroup()) { 1452 Comdats[C->getName()].emplace_back( 1453 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); 1454 } 1455 } else { 1456 // Create custom sections 1457 assert(Sec.getKind().isMetadata()); 1458 1459 StringRef Name = SectionName; 1460 1461 // For user-defined custom sections, strip the prefix 1462 if (Name.startswith(".custom_section.")) 1463 Name = Name.substr(strlen(".custom_section.")); 1464 1465 MCSymbol *Begin = Sec.getBeginSymbol(); 1466 if (Begin) { 1467 assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0); 1468 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size(); 1469 } 1470 1471 // Separate out the producers and target features sections 1472 if (Name == "producers") { 1473 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section); 1474 continue; 1475 } 1476 if (Name == "target_features") { 1477 TargetFeaturesSection = 1478 std::make_unique<WasmCustomSection>(Name, &Section); 1479 continue; 1480 } 1481 1482 // Custom sections can also belong to COMDAT groups. In this case the 1483 // decriptor's "index" field is the section index (in the final object 1484 // file), but that is not known until after layout, so it must be fixed up 1485 // later 1486 if (const MCSymbolWasm *C = Section.getGroup()) { 1487 Comdats[C->getName()].emplace_back( 1488 WasmComdatEntry{wasm::WASM_COMDAT_SECTION, 1489 static_cast<uint32_t>(CustomSections.size())}); 1490 } 1491 1492 CustomSections.emplace_back(Name, &Section); 1493 } 1494 } 1495 1496 if (Mode != DwoMode::DwoOnly) { 1497 // Populate WasmIndices and DataLocations for defined symbols. 1498 for (const MCSymbol &S : Asm.symbols()) { 1499 // Ignore unnamed temporary symbols, which aren't ever exported, imported, 1500 // or used in relocations. 1501 if (S.isTemporary() && S.getName().empty()) 1502 continue; 1503 1504 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1505 LLVM_DEBUG(dbgs() 1506 << "MCSymbol: " 1507 << toString(WS.getType().getValueOr(wasm::WASM_SYMBOL_TYPE_DATA)) 1508 << " '" << S << "'" 1509 << " isDefined=" << S.isDefined() << " isExternal=" 1510 << S.isExternal() << " isTemporary=" << S.isTemporary() 1511 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() 1512 << " isVariable=" << WS.isVariable() << "\n"); 1513 1514 if (WS.isVariable()) 1515 continue; 1516 if (WS.isComdat() && !WS.isDefined()) 1517 continue; 1518 1519 if (WS.isFunction()) { 1520 unsigned Index; 1521 if (WS.isDefined()) { 1522 if (WS.getOffset() != 0) 1523 report_fatal_error( 1524 "function sections must contain one function each"); 1525 1526 if (WS.getSize() == nullptr) 1527 report_fatal_error( 1528 "function symbols must have a size set with .size"); 1529 1530 // A definition. Write out the function body. 1531 Index = NumFunctionImports + Functions.size(); 1532 WasmFunction Func; 1533 Func.SigIndex = getFunctionType(WS); 1534 Func.Sym = &WS; 1535 assert(WasmIndices.count(&WS) == 0); 1536 WasmIndices[&WS] = Index; 1537 Functions.push_back(Func); 1538 1539 auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); 1540 if (const MCSymbolWasm *C = Section.getGroup()) { 1541 Comdats[C->getName()].emplace_back( 1542 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); 1543 } 1544 1545 if (WS.hasExportName()) { 1546 wasm::WasmExport Export; 1547 Export.Name = WS.getExportName(); 1548 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1549 Export.Index = Index; 1550 Exports.push_back(Export); 1551 } 1552 } else { 1553 // An import; the index was assigned above. 1554 Index = WasmIndices.find(&WS)->second; 1555 } 1556 1557 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n"); 1558 1559 } else if (WS.isData()) { 1560 if (!isInSymtab(WS)) 1561 continue; 1562 1563 if (!WS.isDefined()) { 1564 LLVM_DEBUG(dbgs() << " -> segment index: -1" 1565 << "\n"); 1566 continue; 1567 } 1568 1569 if (!WS.getSize()) 1570 report_fatal_error("data symbols must have a size set with .size: " + 1571 WS.getName()); 1572 1573 int64_t Size = 0; 1574 if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) 1575 report_fatal_error(".size expression must be evaluatable"); 1576 1577 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1578 if (!DataSection.isWasmData()) 1579 report_fatal_error("data symbols must live in a data section: " + 1580 WS.getName()); 1581 1582 // For each data symbol, export it in the symtab as a reference to the 1583 // corresponding Wasm data segment. 1584 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1585 DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS), 1586 static_cast<uint64_t>(Size)}; 1587 assert(DataLocations.count(&WS) == 0); 1588 DataLocations[&WS] = Ref; 1589 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n"); 1590 1591 } else if (WS.isGlobal()) { 1592 // A "true" Wasm global (currently just __stack_pointer) 1593 if (WS.isDefined()) { 1594 wasm::WasmGlobal Global; 1595 Global.Type = WS.getGlobalType(); 1596 Global.Index = NumGlobalImports + Globals.size(); 1597 switch (Global.Type.Type) { 1598 case wasm::WASM_TYPE_I32: 1599 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I32_CONST; 1600 break; 1601 case wasm::WASM_TYPE_I64: 1602 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I64_CONST; 1603 break; 1604 case wasm::WASM_TYPE_F32: 1605 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F32_CONST; 1606 break; 1607 case wasm::WASM_TYPE_F64: 1608 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F64_CONST; 1609 break; 1610 case wasm::WASM_TYPE_EXTERNREF: 1611 Global.InitExpr.Opcode = wasm::WASM_OPCODE_REF_NULL; 1612 break; 1613 default: 1614 llvm_unreachable("unexpected type"); 1615 } 1616 assert(WasmIndices.count(&WS) == 0); 1617 WasmIndices[&WS] = Global.Index; 1618 Globals.push_back(Global); 1619 } else { 1620 // An import; the index was assigned above 1621 LLVM_DEBUG(dbgs() << " -> global index: " 1622 << WasmIndices.find(&WS)->second << "\n"); 1623 } 1624 } else if (WS.isTable()) { 1625 if (WS.isDefined()) { 1626 wasm::WasmTable Table; 1627 Table.Index = NumTableImports + Tables.size(); 1628 Table.Type = WS.getTableType(); 1629 assert(WasmIndices.count(&WS) == 0); 1630 WasmIndices[&WS] = Table.Index; 1631 Tables.push_back(Table); 1632 } 1633 LLVM_DEBUG(dbgs() << " -> table index: " 1634 << WasmIndices.find(&WS)->second << "\n"); 1635 } else if (WS.isEvent()) { 1636 // C++ exception symbol (__cpp_exception) 1637 unsigned Index; 1638 if (WS.isDefined()) { 1639 Index = NumEventImports + Events.size(); 1640 wasm::WasmEventType Event; 1641 Event.SigIndex = getEventType(WS); 1642 Event.Attribute = wasm::WASM_EVENT_ATTRIBUTE_EXCEPTION; 1643 assert(WasmIndices.count(&WS) == 0); 1644 WasmIndices[&WS] = Index; 1645 Events.push_back(Event); 1646 } else { 1647 // An import; the index was assigned above. 1648 assert(WasmIndices.count(&WS) > 0); 1649 } 1650 LLVM_DEBUG(dbgs() << " -> event index: " 1651 << WasmIndices.find(&WS)->second << "\n"); 1652 1653 } else { 1654 assert(WS.isSection()); 1655 } 1656 } 1657 1658 // Populate WasmIndices and DataLocations for aliased symbols. We need to 1659 // process these in a separate pass because we need to have processed the 1660 // target of the alias before the alias itself and the symbols are not 1661 // necessarily ordered in this way. 1662 for (const MCSymbol &S : Asm.symbols()) { 1663 if (!S.isVariable()) 1664 continue; 1665 1666 assert(S.isDefined()); 1667 1668 const auto *BS = Layout.getBaseSymbol(S); 1669 if (!BS) 1670 report_fatal_error(Twine(S.getName()) + 1671 ": absolute addressing not supported!"); 1672 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS); 1673 1674 // Find the target symbol of this weak alias and export that index 1675 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1676 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base 1677 << "'\n"); 1678 1679 if (Base->isFunction()) { 1680 assert(WasmIndices.count(Base) > 0); 1681 uint32_t WasmIndex = WasmIndices.find(Base)->second; 1682 assert(WasmIndices.count(&WS) == 0); 1683 WasmIndices[&WS] = WasmIndex; 1684 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); 1685 } else if (Base->isData()) { 1686 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1687 uint64_t Offset = Layout.getSymbolOffset(S); 1688 int64_t Size = 0; 1689 // For data symbol alias we use the size of the base symbol as the 1690 // size of the alias. When an offset from the base is involved this 1691 // can result in a offset + size goes past the end of the data section 1692 // which out object format doesn't support. So we must clamp it. 1693 if (!Base->getSize()->evaluateAsAbsolute(Size, Layout)) 1694 report_fatal_error(".size expression must be evaluatable"); 1695 const WasmDataSegment &Segment = 1696 DataSegments[DataSection.getSegmentIndex()]; 1697 Size = 1698 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset); 1699 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1700 DataSection.getSegmentIndex(), 1701 static_cast<uint32_t>(Layout.getSymbolOffset(S)), 1702 static_cast<uint32_t>(Size)}; 1703 DataLocations[&WS] = Ref; 1704 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); 1705 } else { 1706 report_fatal_error("don't yet support global/event aliases"); 1707 } 1708 } 1709 } 1710 1711 // Finally, populate the symbol table itself, in its "natural" order. 1712 for (const MCSymbol &S : Asm.symbols()) { 1713 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1714 if (!isInSymtab(WS)) { 1715 WS.setIndex(InvalidIndex); 1716 continue; 1717 } 1718 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n"); 1719 1720 uint32_t Flags = 0; 1721 if (WS.isWeak()) 1722 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; 1723 if (WS.isHidden()) 1724 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; 1725 if (!WS.isExternal() && WS.isDefined()) 1726 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; 1727 if (WS.isUndefined()) 1728 Flags |= wasm::WASM_SYMBOL_UNDEFINED; 1729 if (WS.isNoStrip()) { 1730 Flags |= wasm::WASM_SYMBOL_NO_STRIP; 1731 if (isEmscripten()) { 1732 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1733 } 1734 } 1735 if (WS.hasImportName()) 1736 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; 1737 if (WS.hasExportName()) 1738 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1739 1740 wasm::WasmSymbolInfo Info; 1741 Info.Name = WS.getName(); 1742 Info.Kind = WS.getType().getValueOr(wasm::WASM_SYMBOL_TYPE_DATA); 1743 Info.Flags = Flags; 1744 if (!WS.isData()) { 1745 assert(WasmIndices.count(&WS) > 0); 1746 Info.ElementIndex = WasmIndices.find(&WS)->second; 1747 } else if (WS.isDefined()) { 1748 assert(DataLocations.count(&WS) > 0); 1749 Info.DataRef = DataLocations.find(&WS)->second; 1750 } 1751 WS.setIndex(SymbolInfos.size()); 1752 SymbolInfos.emplace_back(Info); 1753 } 1754 1755 { 1756 auto HandleReloc = [&](const WasmRelocationEntry &Rel) { 1757 // Functions referenced by a relocation need to put in the table. This is 1758 // purely to make the object file's provisional values readable, and is 1759 // ignored by the linker, which re-calculates the relocations itself. 1760 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && 1761 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && 1762 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && 1763 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && 1764 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB && 1765 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 1766 return; 1767 assert(Rel.Symbol->isFunction()); 1768 const MCSymbolWasm *Base = 1769 cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol)); 1770 uint32_t FunctionIndex = WasmIndices.find(Base)->second; 1771 uint32_t TableIndex = TableElems.size() + InitialTableOffset; 1772 if (TableIndices.try_emplace(Base, TableIndex).second) { 1773 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() 1774 << " to table: " << TableIndex << "\n"); 1775 TableElems.push_back(FunctionIndex); 1776 registerFunctionType(*Base); 1777 } 1778 }; 1779 1780 for (const WasmRelocationEntry &RelEntry : CodeRelocations) 1781 HandleReloc(RelEntry); 1782 for (const WasmRelocationEntry &RelEntry : DataRelocations) 1783 HandleReloc(RelEntry); 1784 } 1785 1786 // Translate .init_array section contents into start functions. 1787 for (const MCSection &S : Asm) { 1788 const auto &WS = static_cast<const MCSectionWasm &>(S); 1789 if (WS.getName().startswith(".fini_array")) 1790 report_fatal_error(".fini_array sections are unsupported"); 1791 if (!WS.getName().startswith(".init_array")) 1792 continue; 1793 if (WS.getFragmentList().empty()) 1794 continue; 1795 1796 // init_array is expected to contain a single non-empty data fragment 1797 if (WS.getFragmentList().size() != 3) 1798 report_fatal_error("only one .init_array section fragment supported"); 1799 1800 auto IT = WS.begin(); 1801 const MCFragment &EmptyFrag = *IT; 1802 if (EmptyFrag.getKind() != MCFragment::FT_Data) 1803 report_fatal_error(".init_array section should be aligned"); 1804 1805 IT = std::next(IT); 1806 const MCFragment &AlignFrag = *IT; 1807 if (AlignFrag.getKind() != MCFragment::FT_Align) 1808 report_fatal_error(".init_array section should be aligned"); 1809 if (cast<MCAlignFragment>(AlignFrag).getAlignment() != (is64Bit() ? 8 : 4)) 1810 report_fatal_error(".init_array section should be aligned for pointers"); 1811 1812 const MCFragment &Frag = *std::next(IT); 1813 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) 1814 report_fatal_error("only data supported in .init_array section"); 1815 1816 uint16_t Priority = UINT16_MAX; 1817 unsigned PrefixLength = strlen(".init_array"); 1818 if (WS.getName().size() > PrefixLength) { 1819 if (WS.getName()[PrefixLength] != '.') 1820 report_fatal_error( 1821 ".init_array section priority should start with '.'"); 1822 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority)) 1823 report_fatal_error("invalid .init_array section priority"); 1824 } 1825 const auto &DataFrag = cast<MCDataFragment>(Frag); 1826 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 1827 for (const uint8_t * 1828 P = (const uint8_t *)Contents.data(), 1829 *End = (const uint8_t *)Contents.data() + Contents.size(); 1830 P != End; ++P) { 1831 if (*P != 0) 1832 report_fatal_error("non-symbolic data in .init_array section"); 1833 } 1834 for (const MCFixup &Fixup : DataFrag.getFixups()) { 1835 assert(Fixup.getKind() == 1836 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); 1837 const MCExpr *Expr = Fixup.getValue(); 1838 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr); 1839 if (!SymRef) 1840 report_fatal_error("fixups in .init_array should be symbol references"); 1841 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol()); 1842 if (TargetSym.getIndex() == InvalidIndex) 1843 report_fatal_error("symbols in .init_array should exist in symtab"); 1844 if (!TargetSym.isFunction()) 1845 report_fatal_error("symbols in .init_array should be for functions"); 1846 InitFuncs.push_back( 1847 std::make_pair(Priority, TargetSym.getIndex())); 1848 } 1849 } 1850 1851 // Write out the Wasm header. 1852 writeHeader(Asm); 1853 1854 uint32_t CodeSectionIndex, DataSectionIndex; 1855 if (Mode != DwoMode::DwoOnly) { 1856 writeTypeSection(Signatures); 1857 writeImportSection(Imports, DataSize, TableElems.size()); 1858 writeFunctionSection(Functions); 1859 writeTableSection(Tables); 1860 // Skip the "memory" section; we import the memory instead. 1861 writeEventSection(Events); 1862 writeGlobalSection(Globals); 1863 writeExportSection(Exports); 1864 const MCSymbol *IndirectFunctionTable = 1865 Asm.getContext().lookupSymbol("__indirect_function_table"); 1866 writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable), 1867 TableElems); 1868 writeDataCountSection(); 1869 1870 CodeSectionIndex = writeCodeSection(Asm, Layout, Functions); 1871 DataSectionIndex = writeDataSection(Layout); 1872 } 1873 1874 // The Sections in the COMDAT list have placeholder indices (their index among 1875 // custom sections, rather than among all sections). Fix them up here. 1876 for (auto &Group : Comdats) { 1877 for (auto &Entry : Group.second) { 1878 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { 1879 Entry.Index += SectionCount; 1880 } 1881 } 1882 } 1883 for (auto &CustomSection : CustomSections) 1884 writeCustomSection(CustomSection, Asm, Layout); 1885 1886 if (Mode != DwoMode::DwoOnly) { 1887 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); 1888 1889 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations); 1890 writeRelocSection(DataSectionIndex, "DATA", DataRelocations); 1891 } 1892 writeCustomRelocSections(); 1893 if (ProducersSection) 1894 writeCustomSection(*ProducersSection, Asm, Layout); 1895 if (TargetFeaturesSection) 1896 writeCustomSection(*TargetFeaturesSection, Asm, Layout); 1897 1898 // TODO: Translate the .comment section to the output. 1899 return W->OS.tell() - StartOffset; 1900 } 1901 1902 std::unique_ptr<MCObjectWriter> 1903 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1904 raw_pwrite_stream &OS) { 1905 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS); 1906 } 1907 1908 std::unique_ptr<MCObjectWriter> 1909 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1910 raw_pwrite_stream &OS, 1911 raw_pwrite_stream &DwoOS) { 1912 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS); 1913 } 1914