1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Wasm object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/BinaryFormat/Wasm.h" 16 #include "llvm/BinaryFormat/WasmTraits.h" 17 #include "llvm/Config/llvm-config.h" 18 #include "llvm/MC/MCAsmBackend.h" 19 #include "llvm/MC/MCAsmLayout.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCExpr.h" 23 #include "llvm/MC/MCFixupKindInfo.h" 24 #include "llvm/MC/MCObjectWriter.h" 25 #include "llvm/MC/MCSectionWasm.h" 26 #include "llvm/MC/MCSymbolWasm.h" 27 #include "llvm/MC/MCValue.h" 28 #include "llvm/MC/MCWasmObjectWriter.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/EndianStream.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/LEB128.h" 34 #include "llvm/Support/StringSaver.h" 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "mc" 40 41 namespace { 42 43 // When we create the indirect function table we start at 1, so that there is 44 // and empty slot at 0 and therefore calling a null function pointer will trap. 45 static const uint32_t InitialTableOffset = 1; 46 47 // For patching purposes, we need to remember where each section starts, both 48 // for patching up the section size field, and for patching up references to 49 // locations within the section. 50 struct SectionBookkeeping { 51 // Where the size of the section is written. 52 uint64_t SizeOffset; 53 // Where the section header ends (without custom section name). 54 uint64_t PayloadOffset; 55 // Where the contents of the section starts. 56 uint64_t ContentsOffset; 57 uint32_t Index; 58 }; 59 60 // A wasm data segment. A wasm binary contains only a single data section 61 // but that can contain many segments, each with their own virtual location 62 // in memory. Each MCSection data created by llvm is modeled as its own 63 // wasm data segment. 64 struct WasmDataSegment { 65 MCSectionWasm *Section; 66 StringRef Name; 67 uint32_t InitFlags; 68 uint64_t Offset; 69 uint32_t Alignment; 70 uint32_t LinkingFlags; 71 SmallVector<char, 4> Data; 72 }; 73 74 // A wasm function to be written into the function section. 75 struct WasmFunction { 76 uint32_t SigIndex; 77 const MCSymbolWasm *Sym; 78 }; 79 80 // A wasm global to be written into the global section. 81 struct WasmGlobal { 82 wasm::WasmGlobalType Type; 83 uint64_t InitialValue; 84 }; 85 86 // Information about a single item which is part of a COMDAT. For each data 87 // segment or function which is in the COMDAT, there is a corresponding 88 // WasmComdatEntry. 89 struct WasmComdatEntry { 90 unsigned Kind; 91 uint32_t Index; 92 }; 93 94 // Information about a single relocation. 95 struct WasmRelocationEntry { 96 uint64_t Offset; // Where is the relocation. 97 const MCSymbolWasm *Symbol; // The symbol to relocate with. 98 int64_t Addend; // A value to add to the symbol. 99 unsigned Type; // The type of the relocation. 100 const MCSectionWasm *FixupSection; // The section the relocation is targeting. 101 102 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, 103 int64_t Addend, unsigned Type, 104 const MCSectionWasm *FixupSection) 105 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), 106 FixupSection(FixupSection) {} 107 108 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); } 109 110 void print(raw_ostream &Out) const { 111 Out << wasm::relocTypetoString(Type) << " Off=" << Offset 112 << ", Sym=" << *Symbol << ", Addend=" << Addend 113 << ", FixupSection=" << FixupSection->getName(); 114 } 115 116 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 117 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 118 #endif 119 }; 120 121 static const uint32_t InvalidIndex = -1; 122 123 struct WasmCustomSection { 124 125 StringRef Name; 126 MCSectionWasm *Section; 127 128 uint32_t OutputContentsOffset; 129 uint32_t OutputIndex; 130 131 WasmCustomSection(StringRef Name, MCSectionWasm *Section) 132 : Name(Name), Section(Section), OutputContentsOffset(0), 133 OutputIndex(InvalidIndex) {} 134 }; 135 136 #if !defined(NDEBUG) 137 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { 138 Rel.print(OS); 139 return OS; 140 } 141 #endif 142 143 // Write X as an (unsigned) LEB value at offset Offset in Stream, padded 144 // to allow patching. 145 template <int W> 146 void writePatchableLEB(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 147 uint8_t Buffer[W]; 148 unsigned SizeLen = encodeULEB128(X, Buffer, W); 149 assert(SizeLen == W); 150 Stream.pwrite((char *)Buffer, SizeLen, Offset); 151 } 152 153 // Write X as an signed LEB value at offset Offset in Stream, padded 154 // to allow patching. 155 template <int W> 156 void writePatchableSLEB(raw_pwrite_stream &Stream, int64_t X, uint64_t Offset) { 157 uint8_t Buffer[W]; 158 unsigned SizeLen = encodeSLEB128(X, Buffer, W); 159 assert(SizeLen == W); 160 Stream.pwrite((char *)Buffer, SizeLen, Offset); 161 } 162 163 // Write X as a plain integer value at offset Offset in Stream. 164 static void patchI32(raw_pwrite_stream &Stream, uint32_t X, uint64_t Offset) { 165 uint8_t Buffer[4]; 166 support::endian::write32le(Buffer, X); 167 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 168 } 169 170 static void patchI64(raw_pwrite_stream &Stream, uint64_t X, uint64_t Offset) { 171 uint8_t Buffer[8]; 172 support::endian::write64le(Buffer, X); 173 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 174 } 175 176 bool isDwoSection(const MCSection &Sec) { 177 return Sec.getName().endswith(".dwo"); 178 } 179 180 class WasmObjectWriter : public MCObjectWriter { 181 support::endian::Writer *W; 182 183 /// The target specific Wasm writer instance. 184 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; 185 186 // Relocations for fixing up references in the code section. 187 std::vector<WasmRelocationEntry> CodeRelocations; 188 // Relocations for fixing up references in the data section. 189 std::vector<WasmRelocationEntry> DataRelocations; 190 191 // Index values to use for fixing up call_indirect type indices. 192 // Maps function symbols to the index of the type of the function 193 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; 194 // Maps function symbols to the table element index space. Used 195 // for TABLE_INDEX relocation types (i.e. address taken functions). 196 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; 197 // Maps function/global/table symbols to the 198 // function/global/table/tag/section index space. 199 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; 200 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; 201 // Maps data symbols to the Wasm segment and offset/size with the segment. 202 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; 203 204 // Stores output data (index, relocations, content offset) for custom 205 // section. 206 std::vector<WasmCustomSection> CustomSections; 207 std::unique_ptr<WasmCustomSection> ProducersSection; 208 std::unique_ptr<WasmCustomSection> TargetFeaturesSection; 209 // Relocations for fixing up references in the custom sections. 210 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> 211 CustomSectionsRelocations; 212 213 // Map from section to defining function symbol. 214 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; 215 216 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; 217 SmallVector<wasm::WasmSignature, 4> Signatures; 218 SmallVector<WasmDataSegment, 4> DataSegments; 219 unsigned NumFunctionImports = 0; 220 unsigned NumGlobalImports = 0; 221 unsigned NumTableImports = 0; 222 unsigned NumTagImports = 0; 223 uint32_t SectionCount = 0; 224 225 enum class DwoMode { 226 AllSections, 227 NonDwoOnly, 228 DwoOnly, 229 }; 230 bool IsSplitDwarf = false; 231 raw_pwrite_stream *OS = nullptr; 232 raw_pwrite_stream *DwoOS = nullptr; 233 234 // TargetObjectWriter wranppers. 235 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 236 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } 237 238 void startSection(SectionBookkeeping &Section, unsigned SectionId); 239 void startCustomSection(SectionBookkeeping &Section, StringRef Name); 240 void endSection(SectionBookkeeping &Section); 241 242 public: 243 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 244 raw_pwrite_stream &OS_) 245 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} 246 247 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 248 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) 249 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), 250 DwoOS(&DwoOS_) {} 251 252 private: 253 void reset() override { 254 CodeRelocations.clear(); 255 DataRelocations.clear(); 256 TypeIndices.clear(); 257 WasmIndices.clear(); 258 GOTIndices.clear(); 259 TableIndices.clear(); 260 DataLocations.clear(); 261 CustomSections.clear(); 262 ProducersSection.reset(); 263 TargetFeaturesSection.reset(); 264 CustomSectionsRelocations.clear(); 265 SignatureIndices.clear(); 266 Signatures.clear(); 267 DataSegments.clear(); 268 SectionFunctions.clear(); 269 NumFunctionImports = 0; 270 NumGlobalImports = 0; 271 NumTableImports = 0; 272 MCObjectWriter::reset(); 273 } 274 275 void writeHeader(const MCAssembler &Asm); 276 277 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 278 const MCFragment *Fragment, const MCFixup &Fixup, 279 MCValue Target, uint64_t &FixedValue) override; 280 281 void executePostLayoutBinding(MCAssembler &Asm, 282 const MCAsmLayout &Layout) override; 283 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, 284 MCAssembler &Asm, const MCAsmLayout &Layout); 285 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 286 287 uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout, 288 DwoMode Mode); 289 290 void writeString(const StringRef Str) { 291 encodeULEB128(Str.size(), W->OS); 292 W->OS << Str; 293 } 294 295 void writeI32(int32_t val) { 296 char Buffer[4]; 297 support::endian::write32le(Buffer, val); 298 W->OS.write(Buffer, sizeof(Buffer)); 299 } 300 301 void writeI64(int64_t val) { 302 char Buffer[8]; 303 support::endian::write64le(Buffer, val); 304 W->OS.write(Buffer, sizeof(Buffer)); 305 } 306 307 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } 308 309 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); 310 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, 311 uint32_t NumElements); 312 void writeFunctionSection(ArrayRef<WasmFunction> Functions); 313 void writeExportSection(ArrayRef<wasm::WasmExport> Exports); 314 void writeElemSection(const MCSymbolWasm *IndirectFunctionTable, 315 ArrayRef<uint32_t> TableElems); 316 void writeDataCountSection(); 317 uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, 318 ArrayRef<WasmFunction> Functions); 319 uint32_t writeDataSection(const MCAsmLayout &Layout); 320 void writeTagSection(ArrayRef<wasm::WasmTagType> Tags); 321 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); 322 void writeTableSection(ArrayRef<wasm::WasmTable> Tables); 323 void writeRelocSection(uint32_t SectionIndex, StringRef Name, 324 std::vector<WasmRelocationEntry> &Relocations); 325 void writeLinkingMetaDataSection( 326 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 327 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 328 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); 329 void writeCustomSection(WasmCustomSection &CustomSection, 330 const MCAssembler &Asm, const MCAsmLayout &Layout); 331 void writeCustomRelocSections(); 332 333 uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry, 334 const MCAsmLayout &Layout); 335 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, 336 uint64_t ContentsOffset, const MCAsmLayout &Layout); 337 338 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); 339 uint32_t getFunctionType(const MCSymbolWasm &Symbol); 340 uint32_t getTagType(const MCSymbolWasm &Symbol); 341 void registerFunctionType(const MCSymbolWasm &Symbol); 342 void registerTagType(const MCSymbolWasm &Symbol); 343 }; 344 345 } // end anonymous namespace 346 347 // Write out a section header and a patchable section size field. 348 void WasmObjectWriter::startSection(SectionBookkeeping &Section, 349 unsigned SectionId) { 350 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n"); 351 W->OS << char(SectionId); 352 353 Section.SizeOffset = W->OS.tell(); 354 355 // The section size. We don't know the size yet, so reserve enough space 356 // for any 32-bit value; we'll patch it later. 357 encodeULEB128(0, W->OS, 5); 358 359 // The position where the section starts, for measuring its size. 360 Section.ContentsOffset = W->OS.tell(); 361 Section.PayloadOffset = W->OS.tell(); 362 Section.Index = SectionCount++; 363 } 364 365 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, 366 StringRef Name) { 367 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n"); 368 startSection(Section, wasm::WASM_SEC_CUSTOM); 369 370 // The position where the section header ends, for measuring its size. 371 Section.PayloadOffset = W->OS.tell(); 372 373 // Custom sections in wasm also have a string identifier. 374 writeString(Name); 375 376 // The position where the custom section starts. 377 Section.ContentsOffset = W->OS.tell(); 378 } 379 380 // Now that the section is complete and we know how big it is, patch up the 381 // section size field at the start of the section. 382 void WasmObjectWriter::endSection(SectionBookkeeping &Section) { 383 uint64_t Size = W->OS.tell(); 384 // /dev/null doesn't support seek/tell and can report offset of 0. 385 // Simply skip this patching in that case. 386 if (!Size) 387 return; 388 389 Size -= Section.PayloadOffset; 390 if (uint32_t(Size) != Size) 391 report_fatal_error("section size does not fit in a uint32_t"); 392 393 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n"); 394 395 // Write the final section size to the payload_len field, which follows 396 // the section id byte. 397 writePatchableLEB<5>(static_cast<raw_pwrite_stream &>(W->OS), Size, 398 Section.SizeOffset); 399 } 400 401 // Emit the Wasm header. 402 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { 403 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic)); 404 W->write<uint32_t>(wasm::WasmVersion); 405 } 406 407 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 408 const MCAsmLayout &Layout) { 409 // Some compilation units require the indirect function table to be present 410 // but don't explicitly reference it. This is the case for call_indirect 411 // without the reference-types feature, and also function bitcasts in all 412 // cases. In those cases the __indirect_function_table has the 413 // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to 414 // the assembler, if needed. 415 if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) { 416 const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym); 417 if (WasmSym->isNoStrip()) 418 Asm.registerSymbol(*Sym); 419 } 420 421 // Build a map of sections to the function that defines them, for use 422 // in recordRelocation. 423 for (const MCSymbol &S : Asm.symbols()) { 424 const auto &WS = static_cast<const MCSymbolWasm &>(S); 425 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { 426 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); 427 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S)); 428 if (!Pair.second) 429 report_fatal_error("section already has a defining function: " + 430 Sec.getName()); 431 } 432 } 433 } 434 435 void WasmObjectWriter::recordRelocation(MCAssembler &Asm, 436 const MCAsmLayout &Layout, 437 const MCFragment *Fragment, 438 const MCFixup &Fixup, MCValue Target, 439 uint64_t &FixedValue) { 440 // The WebAssembly backend should never generate FKF_IsPCRel fixups 441 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 442 MCFixupKindInfo::FKF_IsPCRel)); 443 444 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent()); 445 uint64_t C = Target.getConstant(); 446 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 447 MCContext &Ctx = Asm.getContext(); 448 bool IsLocRel = false; 449 450 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 451 452 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol()); 453 454 if (FixupSection.getKind().isText()) { 455 Ctx.reportError(Fixup.getLoc(), 456 Twine("symbol '") + SymB.getName() + 457 "' unsupported subtraction expression used in " 458 "relocation in code section."); 459 return; 460 } 461 462 if (SymB.isUndefined()) { 463 Ctx.reportError(Fixup.getLoc(), 464 Twine("symbol '") + SymB.getName() + 465 "' can not be undefined in a subtraction expression"); 466 return; 467 } 468 const MCSection &SecB = SymB.getSection(); 469 if (&SecB != &FixupSection) { 470 Ctx.reportError(Fixup.getLoc(), 471 Twine("symbol '") + SymB.getName() + 472 "' can not be placed in a different section"); 473 return; 474 } 475 IsLocRel = true; 476 C += FixupOffset - Layout.getSymbolOffset(SymB); 477 } 478 479 // We either rejected the fixup or folded B into C at this point. 480 const MCSymbolRefExpr *RefA = Target.getSymA(); 481 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol()); 482 483 // The .init_array isn't translated as data, so don't do relocations in it. 484 if (FixupSection.getName().startswith(".init_array")) { 485 SymA->setUsedInInitArray(); 486 return; 487 } 488 489 if (SymA->isVariable()) { 490 const MCExpr *Expr = SymA->getVariableValue(); 491 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) 492 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) 493 llvm_unreachable("weakref used in reloc not yet implemented"); 494 } 495 496 // Put any constant offset in an addend. Offsets can be negative, and 497 // LLVM expects wrapping, in contrast to wasm's immediates which can't 498 // be negative and don't wrap. 499 FixedValue = 0; 500 501 unsigned Type = 502 TargetObjectWriter->getRelocType(Target, Fixup, FixupSection, IsLocRel); 503 504 // Absolute offset within a section or a function. 505 // Currently only supported for for metadata sections. 506 // See: test/MC/WebAssembly/blockaddress.ll 507 if ((Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || 508 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || 509 Type == wasm::R_WASM_SECTION_OFFSET_I32) && 510 SymA->isDefined()) { 511 // SymA can be a temp data symbol that represents a function (in which case 512 // it needs to be replaced by the section symbol), [XXX and it apparently 513 // later gets changed again to a func symbol?] or it can be a real 514 // function symbol, in which case it can be left as-is. 515 516 if (!FixupSection.getKind().isMetadata()) 517 report_fatal_error("relocations for function or section offsets are " 518 "only supported in metadata sections"); 519 520 const MCSymbol *SectionSymbol = nullptr; 521 const MCSection &SecA = SymA->getSection(); 522 if (SecA.getKind().isText()) { 523 auto SecSymIt = SectionFunctions.find(&SecA); 524 if (SecSymIt == SectionFunctions.end()) 525 report_fatal_error("section doesn\'t have defining symbol"); 526 SectionSymbol = SecSymIt->second; 527 } else { 528 SectionSymbol = SecA.getBeginSymbol(); 529 } 530 if (!SectionSymbol) 531 report_fatal_error("section symbol is required for relocation"); 532 533 C += Layout.getSymbolOffset(*SymA); 534 SymA = cast<MCSymbolWasm>(SectionSymbol); 535 } 536 537 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 538 Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 || 539 Type == wasm::R_WASM_TABLE_INDEX_SLEB || 540 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || 541 Type == wasm::R_WASM_TABLE_INDEX_I32 || 542 Type == wasm::R_WASM_TABLE_INDEX_I64) { 543 // TABLE_INDEX relocs implicitly use the default indirect function table. 544 // We require the function table to have already been defined. 545 auto TableName = "__indirect_function_table"; 546 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName)); 547 if (!Sym) { 548 report_fatal_error("missing indirect function table symbol"); 549 } else { 550 if (!Sym->isFunctionTable()) 551 report_fatal_error("__indirect_function_table symbol has wrong type"); 552 // Ensure that __indirect_function_table reaches the output. 553 Sym->setNoStrip(); 554 Asm.registerSymbol(*Sym); 555 } 556 } 557 558 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be 559 // against a named symbol. 560 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { 561 if (SymA->getName().empty()) 562 report_fatal_error("relocations against un-named temporaries are not yet " 563 "supported by wasm"); 564 565 SymA->setUsedInReloc(); 566 } 567 568 switch (RefA->getKind()) { 569 case MCSymbolRefExpr::VK_GOT: 570 case MCSymbolRefExpr::VK_WASM_GOT_TLS: 571 SymA->setUsedInGOT(); 572 break; 573 default: 574 break; 575 } 576 577 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); 578 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); 579 580 if (FixupSection.isWasmData()) { 581 DataRelocations.push_back(Rec); 582 } else if (FixupSection.getKind().isText()) { 583 CodeRelocations.push_back(Rec); 584 } else if (FixupSection.getKind().isMetadata()) { 585 CustomSectionsRelocations[&FixupSection].push_back(Rec); 586 } else { 587 llvm_unreachable("unexpected section type"); 588 } 589 } 590 591 // Compute a value to write into the code at the location covered 592 // by RelEntry. This value isn't used by the static linker; it just serves 593 // to make the object format more readable and more likely to be directly 594 // useable. 595 uint64_t 596 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry, 597 const MCAsmLayout &Layout) { 598 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || 599 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && 600 !RelEntry.Symbol->isGlobal()) { 601 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space"); 602 return GOTIndices[RelEntry.Symbol]; 603 } 604 605 switch (RelEntry.Type) { 606 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 607 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 608 case wasm::R_WASM_TABLE_INDEX_SLEB: 609 case wasm::R_WASM_TABLE_INDEX_SLEB64: 610 case wasm::R_WASM_TABLE_INDEX_I32: 611 case wasm::R_WASM_TABLE_INDEX_I64: { 612 // Provisional value is table address of the resolved symbol itself 613 const MCSymbolWasm *Base = 614 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol)); 615 assert(Base->isFunction()); 616 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 617 RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 618 return TableIndices[Base] - InitialTableOffset; 619 else 620 return TableIndices[Base]; 621 } 622 case wasm::R_WASM_TYPE_INDEX_LEB: 623 // Provisional value is same as the index 624 return getRelocationIndexValue(RelEntry); 625 case wasm::R_WASM_FUNCTION_INDEX_LEB: 626 case wasm::R_WASM_GLOBAL_INDEX_LEB: 627 case wasm::R_WASM_GLOBAL_INDEX_I32: 628 case wasm::R_WASM_TAG_INDEX_LEB: 629 case wasm::R_WASM_TABLE_NUMBER_LEB: 630 // Provisional value is function/global/tag Wasm index 631 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space"); 632 return WasmIndices[RelEntry.Symbol]; 633 case wasm::R_WASM_FUNCTION_OFFSET_I32: 634 case wasm::R_WASM_FUNCTION_OFFSET_I64: 635 case wasm::R_WASM_SECTION_OFFSET_I32: { 636 if (!RelEntry.Symbol->isDefined()) 637 return 0; 638 const auto &Section = 639 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); 640 return Section.getSectionOffset() + RelEntry.Addend; 641 } 642 case wasm::R_WASM_MEMORY_ADDR_LEB: 643 case wasm::R_WASM_MEMORY_ADDR_LEB64: 644 case wasm::R_WASM_MEMORY_ADDR_SLEB: 645 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 646 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 647 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 648 case wasm::R_WASM_MEMORY_ADDR_I32: 649 case wasm::R_WASM_MEMORY_ADDR_I64: 650 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 651 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 652 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: { 653 // Provisional value is address of the global plus the offset 654 // For undefined symbols, use zero 655 if (!RelEntry.Symbol->isDefined()) 656 return 0; 657 const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol]; 658 const WasmDataSegment &Segment = DataSegments[SymRef.Segment]; 659 // Ignore overflow. LLVM allows address arithmetic to silently wrap. 660 return Segment.Offset + SymRef.Offset + RelEntry.Addend; 661 } 662 default: 663 llvm_unreachable("invalid relocation type"); 664 } 665 } 666 667 static void addData(SmallVectorImpl<char> &DataBytes, 668 MCSectionWasm &DataSection) { 669 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n"); 670 671 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlignment())); 672 673 for (const MCFragment &Frag : DataSection) { 674 if (Frag.hasInstructions()) 675 report_fatal_error("only data supported in data sections"); 676 677 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) { 678 if (Align->getValueSize() != 1) 679 report_fatal_error("only byte values supported for alignment"); 680 // If nops are requested, use zeros, as this is the data section. 681 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); 682 uint64_t Size = 683 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()), 684 DataBytes.size() + Align->getMaxBytesToEmit()); 685 DataBytes.resize(Size, Value); 686 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) { 687 int64_t NumValues; 688 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues)) 689 llvm_unreachable("The fill should be an assembler constant"); 690 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues, 691 Fill->getValue()); 692 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) { 693 const SmallVectorImpl<char> &Contents = LEB->getContents(); 694 llvm::append_range(DataBytes, Contents); 695 } else { 696 const auto &DataFrag = cast<MCDataFragment>(Frag); 697 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 698 llvm::append_range(DataBytes, Contents); 699 } 700 } 701 702 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); 703 } 704 705 uint32_t 706 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { 707 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { 708 if (!TypeIndices.count(RelEntry.Symbol)) 709 report_fatal_error("symbol not found in type index space: " + 710 RelEntry.Symbol->getName()); 711 return TypeIndices[RelEntry.Symbol]; 712 } 713 714 return RelEntry.Symbol->getIndex(); 715 } 716 717 // Apply the portions of the relocation records that we can handle ourselves 718 // directly. 719 void WasmObjectWriter::applyRelocations( 720 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, 721 const MCAsmLayout &Layout) { 722 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); 723 for (const WasmRelocationEntry &RelEntry : Relocations) { 724 uint64_t Offset = ContentsOffset + 725 RelEntry.FixupSection->getSectionOffset() + 726 RelEntry.Offset; 727 728 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); 729 auto Value = getProvisionalValue(RelEntry, Layout); 730 731 switch (RelEntry.Type) { 732 case wasm::R_WASM_FUNCTION_INDEX_LEB: 733 case wasm::R_WASM_TYPE_INDEX_LEB: 734 case wasm::R_WASM_GLOBAL_INDEX_LEB: 735 case wasm::R_WASM_MEMORY_ADDR_LEB: 736 case wasm::R_WASM_TAG_INDEX_LEB: 737 case wasm::R_WASM_TABLE_NUMBER_LEB: 738 writePatchableLEB<5>(Stream, Value, Offset); 739 break; 740 case wasm::R_WASM_MEMORY_ADDR_LEB64: 741 writePatchableLEB<10>(Stream, Value, Offset); 742 break; 743 case wasm::R_WASM_TABLE_INDEX_I32: 744 case wasm::R_WASM_MEMORY_ADDR_I32: 745 case wasm::R_WASM_FUNCTION_OFFSET_I32: 746 case wasm::R_WASM_SECTION_OFFSET_I32: 747 case wasm::R_WASM_GLOBAL_INDEX_I32: 748 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: 749 patchI32(Stream, Value, Offset); 750 break; 751 case wasm::R_WASM_TABLE_INDEX_I64: 752 case wasm::R_WASM_MEMORY_ADDR_I64: 753 case wasm::R_WASM_FUNCTION_OFFSET_I64: 754 patchI64(Stream, Value, Offset); 755 break; 756 case wasm::R_WASM_TABLE_INDEX_SLEB: 757 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 758 case wasm::R_WASM_MEMORY_ADDR_SLEB: 759 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 760 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 761 writePatchableSLEB<5>(Stream, Value, Offset); 762 break; 763 case wasm::R_WASM_TABLE_INDEX_SLEB64: 764 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 765 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 766 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 767 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 768 writePatchableSLEB<10>(Stream, Value, Offset); 769 break; 770 default: 771 llvm_unreachable("invalid relocation type"); 772 } 773 } 774 } 775 776 void WasmObjectWriter::writeTypeSection( 777 ArrayRef<wasm::WasmSignature> Signatures) { 778 if (Signatures.empty()) 779 return; 780 781 SectionBookkeeping Section; 782 startSection(Section, wasm::WASM_SEC_TYPE); 783 784 encodeULEB128(Signatures.size(), W->OS); 785 786 for (const wasm::WasmSignature &Sig : Signatures) { 787 W->OS << char(wasm::WASM_TYPE_FUNC); 788 encodeULEB128(Sig.Params.size(), W->OS); 789 for (wasm::ValType Ty : Sig.Params) 790 writeValueType(Ty); 791 encodeULEB128(Sig.Returns.size(), W->OS); 792 for (wasm::ValType Ty : Sig.Returns) 793 writeValueType(Ty); 794 } 795 796 endSection(Section); 797 } 798 799 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, 800 uint64_t DataSize, 801 uint32_t NumElements) { 802 if (Imports.empty()) 803 return; 804 805 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; 806 807 SectionBookkeeping Section; 808 startSection(Section, wasm::WASM_SEC_IMPORT); 809 810 encodeULEB128(Imports.size(), W->OS); 811 for (const wasm::WasmImport &Import : Imports) { 812 writeString(Import.Module); 813 writeString(Import.Field); 814 W->OS << char(Import.Kind); 815 816 switch (Import.Kind) { 817 case wasm::WASM_EXTERNAL_FUNCTION: 818 encodeULEB128(Import.SigIndex, W->OS); 819 break; 820 case wasm::WASM_EXTERNAL_GLOBAL: 821 W->OS << char(Import.Global.Type); 822 W->OS << char(Import.Global.Mutable ? 1 : 0); 823 break; 824 case wasm::WASM_EXTERNAL_MEMORY: 825 encodeULEB128(Import.Memory.Flags, W->OS); 826 encodeULEB128(NumPages, W->OS); // initial 827 break; 828 case wasm::WASM_EXTERNAL_TABLE: 829 W->OS << char(Import.Table.ElemType); 830 encodeULEB128(0, W->OS); // flags 831 encodeULEB128(NumElements, W->OS); // initial 832 break; 833 case wasm::WASM_EXTERNAL_TAG: 834 W->OS << char(Import.Tag.Attribute); 835 encodeULEB128(Import.Tag.SigIndex, W->OS); 836 break; 837 default: 838 llvm_unreachable("unsupported import kind"); 839 } 840 } 841 842 endSection(Section); 843 } 844 845 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { 846 if (Functions.empty()) 847 return; 848 849 SectionBookkeeping Section; 850 startSection(Section, wasm::WASM_SEC_FUNCTION); 851 852 encodeULEB128(Functions.size(), W->OS); 853 for (const WasmFunction &Func : Functions) 854 encodeULEB128(Func.SigIndex, W->OS); 855 856 endSection(Section); 857 } 858 859 void WasmObjectWriter::writeTagSection(ArrayRef<wasm::WasmTagType> Tags) { 860 if (Tags.empty()) 861 return; 862 863 SectionBookkeeping Section; 864 startSection(Section, wasm::WASM_SEC_TAG); 865 866 encodeULEB128(Tags.size(), W->OS); 867 for (const wasm::WasmTagType &Tag : Tags) { 868 W->OS << char(Tag.Attribute); 869 encodeULEB128(Tag.SigIndex, W->OS); 870 } 871 872 endSection(Section); 873 } 874 875 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { 876 if (Globals.empty()) 877 return; 878 879 SectionBookkeeping Section; 880 startSection(Section, wasm::WASM_SEC_GLOBAL); 881 882 encodeULEB128(Globals.size(), W->OS); 883 for (const wasm::WasmGlobal &Global : Globals) { 884 encodeULEB128(Global.Type.Type, W->OS); 885 W->OS << char(Global.Type.Mutable); 886 W->OS << char(Global.InitExpr.Opcode); 887 switch (Global.Type.Type) { 888 case wasm::WASM_TYPE_I32: 889 encodeSLEB128(0, W->OS); 890 break; 891 case wasm::WASM_TYPE_I64: 892 encodeSLEB128(0, W->OS); 893 break; 894 case wasm::WASM_TYPE_F32: 895 writeI32(0); 896 break; 897 case wasm::WASM_TYPE_F64: 898 writeI64(0); 899 break; 900 case wasm::WASM_TYPE_EXTERNREF: 901 writeValueType(wasm::ValType::EXTERNREF); 902 break; 903 default: 904 llvm_unreachable("unexpected type"); 905 } 906 W->OS << char(wasm::WASM_OPCODE_END); 907 } 908 909 endSection(Section); 910 } 911 912 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { 913 if (Tables.empty()) 914 return; 915 916 SectionBookkeeping Section; 917 startSection(Section, wasm::WASM_SEC_TABLE); 918 919 encodeULEB128(Tables.size(), W->OS); 920 for (const wasm::WasmTable &Table : Tables) { 921 encodeULEB128(Table.Type.ElemType, W->OS); 922 encodeULEB128(Table.Type.Limits.Flags, W->OS); 923 encodeULEB128(Table.Type.Limits.Minimum, W->OS); 924 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) 925 encodeULEB128(Table.Type.Limits.Maximum, W->OS); 926 } 927 endSection(Section); 928 } 929 930 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { 931 if (Exports.empty()) 932 return; 933 934 SectionBookkeeping Section; 935 startSection(Section, wasm::WASM_SEC_EXPORT); 936 937 encodeULEB128(Exports.size(), W->OS); 938 for (const wasm::WasmExport &Export : Exports) { 939 writeString(Export.Name); 940 W->OS << char(Export.Kind); 941 encodeULEB128(Export.Index, W->OS); 942 } 943 944 endSection(Section); 945 } 946 947 void WasmObjectWriter::writeElemSection( 948 const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) { 949 if (TableElems.empty()) 950 return; 951 952 assert(IndirectFunctionTable); 953 954 SectionBookkeeping Section; 955 startSection(Section, wasm::WASM_SEC_ELEM); 956 957 encodeULEB128(1, W->OS); // number of "segments" 958 959 assert(WasmIndices.count(IndirectFunctionTable)); 960 uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second; 961 uint32_t Flags = 0; 962 if (TableNumber) 963 Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER; 964 encodeULEB128(Flags, W->OS); 965 if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER) 966 encodeULEB128(TableNumber, W->OS); // the table number 967 968 // init expr for starting offset 969 W->OS << char(wasm::WASM_OPCODE_I32_CONST); 970 encodeSLEB128(InitialTableOffset, W->OS); 971 W->OS << char(wasm::WASM_OPCODE_END); 972 973 if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) { 974 // We only write active function table initializers, for which the elem kind 975 // is specified to be written as 0x00 and interpreted to mean "funcref". 976 const uint8_t ElemKind = 0; 977 W->OS << ElemKind; 978 } 979 980 encodeULEB128(TableElems.size(), W->OS); 981 for (uint32_t Elem : TableElems) 982 encodeULEB128(Elem, W->OS); 983 984 endSection(Section); 985 } 986 987 void WasmObjectWriter::writeDataCountSection() { 988 if (DataSegments.empty()) 989 return; 990 991 SectionBookkeeping Section; 992 startSection(Section, wasm::WASM_SEC_DATACOUNT); 993 encodeULEB128(DataSegments.size(), W->OS); 994 endSection(Section); 995 } 996 997 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, 998 const MCAsmLayout &Layout, 999 ArrayRef<WasmFunction> Functions) { 1000 if (Functions.empty()) 1001 return 0; 1002 1003 SectionBookkeeping Section; 1004 startSection(Section, wasm::WASM_SEC_CODE); 1005 1006 encodeULEB128(Functions.size(), W->OS); 1007 1008 for (const WasmFunction &Func : Functions) { 1009 auto &FuncSection = static_cast<MCSectionWasm &>(Func.Sym->getSection()); 1010 1011 int64_t Size = 0; 1012 if (!Func.Sym->getSize()->evaluateAsAbsolute(Size, Layout)) 1013 report_fatal_error(".size expression must be evaluatable"); 1014 1015 encodeULEB128(Size, W->OS); 1016 FuncSection.setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1017 Asm.writeSectionData(W->OS, &FuncSection, Layout); 1018 } 1019 1020 // Apply fixups. 1021 applyRelocations(CodeRelocations, Section.ContentsOffset, Layout); 1022 1023 endSection(Section); 1024 return Section.Index; 1025 } 1026 1027 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) { 1028 if (DataSegments.empty()) 1029 return 0; 1030 1031 SectionBookkeeping Section; 1032 startSection(Section, wasm::WASM_SEC_DATA); 1033 1034 encodeULEB128(DataSegments.size(), W->OS); // count 1035 1036 for (const WasmDataSegment &Segment : DataSegments) { 1037 encodeULEB128(Segment.InitFlags, W->OS); // flags 1038 if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) 1039 encodeULEB128(0, W->OS); // memory index 1040 if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { 1041 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1042 : wasm::WASM_OPCODE_I32_CONST); 1043 encodeSLEB128(Segment.Offset, W->OS); // offset 1044 W->OS << char(wasm::WASM_OPCODE_END); 1045 } 1046 encodeULEB128(Segment.Data.size(), W->OS); // size 1047 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1048 W->OS << Segment.Data; // data 1049 } 1050 1051 // Apply fixups. 1052 applyRelocations(DataRelocations, Section.ContentsOffset, Layout); 1053 1054 endSection(Section); 1055 return Section.Index; 1056 } 1057 1058 void WasmObjectWriter::writeRelocSection( 1059 uint32_t SectionIndex, StringRef Name, 1060 std::vector<WasmRelocationEntry> &Relocs) { 1061 // See: https://github.com/WebAssembly/tool-conventions/blob/master/Linking.md 1062 // for descriptions of the reloc sections. 1063 1064 if (Relocs.empty()) 1065 return; 1066 1067 // First, ensure the relocations are sorted in offset order. In general they 1068 // should already be sorted since `recordRelocation` is called in offset 1069 // order, but for the code section we combine many MC sections into single 1070 // wasm section, and this order is determined by the order of Asm.Symbols() 1071 // not the sections order. 1072 llvm::stable_sort( 1073 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { 1074 return (A.Offset + A.FixupSection->getSectionOffset()) < 1075 (B.Offset + B.FixupSection->getSectionOffset()); 1076 }); 1077 1078 SectionBookkeeping Section; 1079 startCustomSection(Section, std::string("reloc.") + Name.str()); 1080 1081 encodeULEB128(SectionIndex, W->OS); 1082 encodeULEB128(Relocs.size(), W->OS); 1083 for (const WasmRelocationEntry &RelEntry : Relocs) { 1084 uint64_t Offset = 1085 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); 1086 uint32_t Index = getRelocationIndexValue(RelEntry); 1087 1088 W->OS << char(RelEntry.Type); 1089 encodeULEB128(Offset, W->OS); 1090 encodeULEB128(Index, W->OS); 1091 if (RelEntry.hasAddend()) 1092 encodeSLEB128(RelEntry.Addend, W->OS); 1093 } 1094 1095 endSection(Section); 1096 } 1097 1098 void WasmObjectWriter::writeCustomRelocSections() { 1099 for (const auto &Sec : CustomSections) { 1100 auto &Relocations = CustomSectionsRelocations[Sec.Section]; 1101 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations); 1102 } 1103 } 1104 1105 void WasmObjectWriter::writeLinkingMetaDataSection( 1106 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 1107 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 1108 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { 1109 SectionBookkeeping Section; 1110 startCustomSection(Section, "linking"); 1111 encodeULEB128(wasm::WasmMetadataVersion, W->OS); 1112 1113 SectionBookkeeping SubSection; 1114 if (SymbolInfos.size() != 0) { 1115 startSection(SubSection, wasm::WASM_SYMBOL_TABLE); 1116 encodeULEB128(SymbolInfos.size(), W->OS); 1117 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { 1118 encodeULEB128(Sym.Kind, W->OS); 1119 encodeULEB128(Sym.Flags, W->OS); 1120 switch (Sym.Kind) { 1121 case wasm::WASM_SYMBOL_TYPE_FUNCTION: 1122 case wasm::WASM_SYMBOL_TYPE_GLOBAL: 1123 case wasm::WASM_SYMBOL_TYPE_TAG: 1124 case wasm::WASM_SYMBOL_TYPE_TABLE: 1125 encodeULEB128(Sym.ElementIndex, W->OS); 1126 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || 1127 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) 1128 writeString(Sym.Name); 1129 break; 1130 case wasm::WASM_SYMBOL_TYPE_DATA: 1131 writeString(Sym.Name); 1132 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { 1133 encodeULEB128(Sym.DataRef.Segment, W->OS); 1134 encodeULEB128(Sym.DataRef.Offset, W->OS); 1135 encodeULEB128(Sym.DataRef.Size, W->OS); 1136 } 1137 break; 1138 case wasm::WASM_SYMBOL_TYPE_SECTION: { 1139 const uint32_t SectionIndex = 1140 CustomSections[Sym.ElementIndex].OutputIndex; 1141 encodeULEB128(SectionIndex, W->OS); 1142 break; 1143 } 1144 default: 1145 llvm_unreachable("unexpected kind"); 1146 } 1147 } 1148 endSection(SubSection); 1149 } 1150 1151 if (DataSegments.size()) { 1152 startSection(SubSection, wasm::WASM_SEGMENT_INFO); 1153 encodeULEB128(DataSegments.size(), W->OS); 1154 for (const WasmDataSegment &Segment : DataSegments) { 1155 writeString(Segment.Name); 1156 encodeULEB128(Segment.Alignment, W->OS); 1157 encodeULEB128(Segment.LinkingFlags, W->OS); 1158 } 1159 endSection(SubSection); 1160 } 1161 1162 if (!InitFuncs.empty()) { 1163 startSection(SubSection, wasm::WASM_INIT_FUNCS); 1164 encodeULEB128(InitFuncs.size(), W->OS); 1165 for (auto &StartFunc : InitFuncs) { 1166 encodeULEB128(StartFunc.first, W->OS); // priority 1167 encodeULEB128(StartFunc.second, W->OS); // function index 1168 } 1169 endSection(SubSection); 1170 } 1171 1172 if (Comdats.size()) { 1173 startSection(SubSection, wasm::WASM_COMDAT_INFO); 1174 encodeULEB128(Comdats.size(), W->OS); 1175 for (const auto &C : Comdats) { 1176 writeString(C.first); 1177 encodeULEB128(0, W->OS); // flags for future use 1178 encodeULEB128(C.second.size(), W->OS); 1179 for (const WasmComdatEntry &Entry : C.second) { 1180 encodeULEB128(Entry.Kind, W->OS); 1181 encodeULEB128(Entry.Index, W->OS); 1182 } 1183 } 1184 endSection(SubSection); 1185 } 1186 1187 endSection(Section); 1188 } 1189 1190 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, 1191 const MCAssembler &Asm, 1192 const MCAsmLayout &Layout) { 1193 SectionBookkeeping Section; 1194 auto *Sec = CustomSection.Section; 1195 startCustomSection(Section, CustomSection.Name); 1196 1197 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1198 Asm.writeSectionData(W->OS, Sec, Layout); 1199 1200 CustomSection.OutputContentsOffset = Section.ContentsOffset; 1201 CustomSection.OutputIndex = Section.Index; 1202 1203 endSection(Section); 1204 1205 // Apply fixups. 1206 auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; 1207 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout); 1208 } 1209 1210 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { 1211 assert(Symbol.isFunction()); 1212 assert(TypeIndices.count(&Symbol)); 1213 return TypeIndices[&Symbol]; 1214 } 1215 1216 uint32_t WasmObjectWriter::getTagType(const MCSymbolWasm &Symbol) { 1217 assert(Symbol.isTag()); 1218 assert(TypeIndices.count(&Symbol)); 1219 return TypeIndices[&Symbol]; 1220 } 1221 1222 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { 1223 assert(Symbol.isFunction()); 1224 1225 wasm::WasmSignature S; 1226 1227 if (auto *Sig = Symbol.getSignature()) { 1228 S.Returns = Sig->Returns; 1229 S.Params = Sig->Params; 1230 } 1231 1232 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1233 if (Pair.second) 1234 Signatures.push_back(S); 1235 TypeIndices[&Symbol] = Pair.first->second; 1236 1237 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol 1238 << " new:" << Pair.second << "\n"); 1239 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1240 } 1241 1242 void WasmObjectWriter::registerTagType(const MCSymbolWasm &Symbol) { 1243 assert(Symbol.isTag()); 1244 1245 // TODO Currently we don't generate imported exceptions, but if we do, we 1246 // should have a way of infering types of imported exceptions. 1247 wasm::WasmSignature S; 1248 if (auto *Sig = Symbol.getSignature()) { 1249 S.Returns = Sig->Returns; 1250 S.Params = Sig->Params; 1251 } 1252 1253 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1254 if (Pair.second) 1255 Signatures.push_back(S); 1256 TypeIndices[&Symbol] = Pair.first->second; 1257 1258 LLVM_DEBUG(dbgs() << "registerTagType: " << Symbol << " new:" << Pair.second 1259 << "\n"); 1260 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1261 } 1262 1263 static bool isInSymtab(const MCSymbolWasm &Sym) { 1264 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) 1265 return true; 1266 1267 if (Sym.isComdat() && !Sym.isDefined()) 1268 return false; 1269 1270 if (Sym.isTemporary()) 1271 return false; 1272 1273 if (Sym.isSection()) 1274 return false; 1275 1276 if (Sym.omitFromLinkingSection()) 1277 return false; 1278 1279 return true; 1280 } 1281 1282 void WasmObjectWriter::prepareImports( 1283 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm, 1284 const MCAsmLayout &Layout) { 1285 // For now, always emit the memory import, since loads and stores are not 1286 // valid without it. In the future, we could perhaps be more clever and omit 1287 // it if there are no loads or stores. 1288 wasm::WasmImport MemImport; 1289 MemImport.Module = "env"; 1290 MemImport.Field = "__linear_memory"; 1291 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; 1292 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 1293 : wasm::WASM_LIMITS_FLAG_NONE; 1294 Imports.push_back(MemImport); 1295 1296 // Populate SignatureIndices, and Imports and WasmIndices for undefined 1297 // symbols. This must be done before populating WasmIndices for defined 1298 // symbols. 1299 for (const MCSymbol &S : Asm.symbols()) { 1300 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1301 1302 // Register types for all functions, including those with private linkage 1303 // (because wasm always needs a type signature). 1304 if (WS.isFunction()) { 1305 const auto *BS = Layout.getBaseSymbol(S); 1306 if (!BS) 1307 report_fatal_error(Twine(S.getName()) + 1308 ": absolute addressing not supported!"); 1309 registerFunctionType(*cast<MCSymbolWasm>(BS)); 1310 } 1311 1312 if (WS.isTag()) 1313 registerTagType(WS); 1314 1315 if (WS.isTemporary()) 1316 continue; 1317 1318 // If the symbol is not defined in this translation unit, import it. 1319 if (!WS.isDefined() && !WS.isComdat()) { 1320 if (WS.isFunction()) { 1321 wasm::WasmImport Import; 1322 Import.Module = WS.getImportModule(); 1323 Import.Field = WS.getImportName(); 1324 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1325 Import.SigIndex = getFunctionType(WS); 1326 Imports.push_back(Import); 1327 assert(WasmIndices.count(&WS) == 0); 1328 WasmIndices[&WS] = NumFunctionImports++; 1329 } else if (WS.isGlobal()) { 1330 if (WS.isWeak()) 1331 report_fatal_error("undefined global symbol cannot be weak"); 1332 1333 wasm::WasmImport Import; 1334 Import.Field = WS.getImportName(); 1335 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1336 Import.Module = WS.getImportModule(); 1337 Import.Global = WS.getGlobalType(); 1338 Imports.push_back(Import); 1339 assert(WasmIndices.count(&WS) == 0); 1340 WasmIndices[&WS] = NumGlobalImports++; 1341 } else if (WS.isTag()) { 1342 if (WS.isWeak()) 1343 report_fatal_error("undefined tag symbol cannot be weak"); 1344 1345 wasm::WasmImport Import; 1346 Import.Module = WS.getImportModule(); 1347 Import.Field = WS.getImportName(); 1348 Import.Kind = wasm::WASM_EXTERNAL_TAG; 1349 Import.Tag.Attribute = wasm::WASM_TAG_ATTRIBUTE_EXCEPTION; 1350 Import.Tag.SigIndex = getTagType(WS); 1351 Imports.push_back(Import); 1352 assert(WasmIndices.count(&WS) == 0); 1353 WasmIndices[&WS] = NumTagImports++; 1354 } else if (WS.isTable()) { 1355 if (WS.isWeak()) 1356 report_fatal_error("undefined table symbol cannot be weak"); 1357 1358 wasm::WasmImport Import; 1359 Import.Module = WS.getImportModule(); 1360 Import.Field = WS.getImportName(); 1361 Import.Kind = wasm::WASM_EXTERNAL_TABLE; 1362 Import.Table = WS.getTableType(); 1363 Imports.push_back(Import); 1364 assert(WasmIndices.count(&WS) == 0); 1365 WasmIndices[&WS] = NumTableImports++; 1366 } 1367 } 1368 } 1369 1370 // Add imports for GOT globals 1371 for (const MCSymbol &S : Asm.symbols()) { 1372 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1373 if (WS.isUsedInGOT()) { 1374 wasm::WasmImport Import; 1375 if (WS.isFunction()) 1376 Import.Module = "GOT.func"; 1377 else 1378 Import.Module = "GOT.mem"; 1379 Import.Field = WS.getName(); 1380 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1381 Import.Global = {wasm::WASM_TYPE_I32, true}; 1382 Imports.push_back(Import); 1383 assert(GOTIndices.count(&WS) == 0); 1384 GOTIndices[&WS] = NumGlobalImports++; 1385 } 1386 } 1387 } 1388 1389 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm, 1390 const MCAsmLayout &Layout) { 1391 support::endian::Writer MainWriter(*OS, support::little); 1392 W = &MainWriter; 1393 if (IsSplitDwarf) { 1394 uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly); 1395 assert(DwoOS); 1396 support::endian::Writer DwoWriter(*DwoOS, support::little); 1397 W = &DwoWriter; 1398 return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly); 1399 } else { 1400 return writeOneObject(Asm, Layout, DwoMode::AllSections); 1401 } 1402 } 1403 1404 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, 1405 const MCAsmLayout &Layout, 1406 DwoMode Mode) { 1407 uint64_t StartOffset = W->OS.tell(); 1408 SectionCount = 0; 1409 CustomSections.clear(); 1410 1411 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); 1412 1413 // Collect information from the available symbols. 1414 SmallVector<WasmFunction, 4> Functions; 1415 SmallVector<uint32_t, 4> TableElems; 1416 SmallVector<wasm::WasmImport, 4> Imports; 1417 SmallVector<wasm::WasmExport, 4> Exports; 1418 SmallVector<wasm::WasmTagType, 1> Tags; 1419 SmallVector<wasm::WasmGlobal, 1> Globals; 1420 SmallVector<wasm::WasmTable, 1> Tables; 1421 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; 1422 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; 1423 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; 1424 uint64_t DataSize = 0; 1425 if (Mode != DwoMode::DwoOnly) { 1426 prepareImports(Imports, Asm, Layout); 1427 } 1428 1429 // Populate DataSegments and CustomSections, which must be done before 1430 // populating DataLocations. 1431 for (MCSection &Sec : Asm) { 1432 auto &Section = static_cast<MCSectionWasm &>(Sec); 1433 StringRef SectionName = Section.getName(); 1434 1435 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) 1436 continue; 1437 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) 1438 continue; 1439 1440 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " 1441 << Section.getGroup() << "\n";); 1442 1443 // .init_array sections are handled specially elsewhere. 1444 if (SectionName.startswith(".init_array")) 1445 continue; 1446 1447 // Code is handled separately 1448 if (Section.getKind().isText()) 1449 continue; 1450 1451 if (Section.isWasmData()) { 1452 uint32_t SegmentIndex = DataSegments.size(); 1453 DataSize = alignTo(DataSize, Section.getAlignment()); 1454 DataSegments.emplace_back(); 1455 WasmDataSegment &Segment = DataSegments.back(); 1456 Segment.Name = SectionName; 1457 Segment.InitFlags = Section.getPassive() 1458 ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE 1459 : 0; 1460 Segment.Offset = DataSize; 1461 Segment.Section = &Section; 1462 addData(Segment.Data, Section); 1463 Segment.Alignment = Log2_32(Section.getAlignment()); 1464 Segment.LinkingFlags = Section.getSegmentFlags(); 1465 DataSize += Segment.Data.size(); 1466 Section.setSegmentIndex(SegmentIndex); 1467 1468 if (const MCSymbolWasm *C = Section.getGroup()) { 1469 Comdats[C->getName()].emplace_back( 1470 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); 1471 } 1472 } else { 1473 // Create custom sections 1474 assert(Sec.getKind().isMetadata()); 1475 1476 StringRef Name = SectionName; 1477 1478 // For user-defined custom sections, strip the prefix 1479 if (Name.startswith(".custom_section.")) 1480 Name = Name.substr(strlen(".custom_section.")); 1481 1482 MCSymbol *Begin = Sec.getBeginSymbol(); 1483 if (Begin) { 1484 assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0); 1485 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size(); 1486 } 1487 1488 // Separate out the producers and target features sections 1489 if (Name == "producers") { 1490 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section); 1491 continue; 1492 } 1493 if (Name == "target_features") { 1494 TargetFeaturesSection = 1495 std::make_unique<WasmCustomSection>(Name, &Section); 1496 continue; 1497 } 1498 1499 // Custom sections can also belong to COMDAT groups. In this case the 1500 // decriptor's "index" field is the section index (in the final object 1501 // file), but that is not known until after layout, so it must be fixed up 1502 // later 1503 if (const MCSymbolWasm *C = Section.getGroup()) { 1504 Comdats[C->getName()].emplace_back( 1505 WasmComdatEntry{wasm::WASM_COMDAT_SECTION, 1506 static_cast<uint32_t>(CustomSections.size())}); 1507 } 1508 1509 CustomSections.emplace_back(Name, &Section); 1510 } 1511 } 1512 1513 if (Mode != DwoMode::DwoOnly) { 1514 // Populate WasmIndices and DataLocations for defined symbols. 1515 for (const MCSymbol &S : Asm.symbols()) { 1516 // Ignore unnamed temporary symbols, which aren't ever exported, imported, 1517 // or used in relocations. 1518 if (S.isTemporary() && S.getName().empty()) 1519 continue; 1520 1521 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1522 LLVM_DEBUG(dbgs() 1523 << "MCSymbol: " 1524 << toString(WS.getType().getValueOr(wasm::WASM_SYMBOL_TYPE_DATA)) 1525 << " '" << S << "'" 1526 << " isDefined=" << S.isDefined() << " isExternal=" 1527 << S.isExternal() << " isTemporary=" << S.isTemporary() 1528 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() 1529 << " isVariable=" << WS.isVariable() << "\n"); 1530 1531 if (WS.isVariable()) 1532 continue; 1533 if (WS.isComdat() && !WS.isDefined()) 1534 continue; 1535 1536 if (WS.isFunction()) { 1537 unsigned Index; 1538 if (WS.isDefined()) { 1539 if (WS.getOffset() != 0) 1540 report_fatal_error( 1541 "function sections must contain one function each"); 1542 1543 if (WS.getSize() == nullptr) 1544 report_fatal_error( 1545 "function symbols must have a size set with .size"); 1546 1547 // A definition. Write out the function body. 1548 Index = NumFunctionImports + Functions.size(); 1549 WasmFunction Func; 1550 Func.SigIndex = getFunctionType(WS); 1551 Func.Sym = &WS; 1552 assert(WasmIndices.count(&WS) == 0); 1553 WasmIndices[&WS] = Index; 1554 Functions.push_back(Func); 1555 1556 auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); 1557 if (const MCSymbolWasm *C = Section.getGroup()) { 1558 Comdats[C->getName()].emplace_back( 1559 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); 1560 } 1561 1562 if (WS.hasExportName()) { 1563 wasm::WasmExport Export; 1564 Export.Name = WS.getExportName(); 1565 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1566 Export.Index = Index; 1567 Exports.push_back(Export); 1568 } 1569 } else { 1570 // An import; the index was assigned above. 1571 Index = WasmIndices.find(&WS)->second; 1572 } 1573 1574 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n"); 1575 1576 } else if (WS.isData()) { 1577 if (!isInSymtab(WS)) 1578 continue; 1579 1580 if (!WS.isDefined()) { 1581 LLVM_DEBUG(dbgs() << " -> segment index: -1" 1582 << "\n"); 1583 continue; 1584 } 1585 1586 if (!WS.getSize()) 1587 report_fatal_error("data symbols must have a size set with .size: " + 1588 WS.getName()); 1589 1590 int64_t Size = 0; 1591 if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) 1592 report_fatal_error(".size expression must be evaluatable"); 1593 1594 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1595 if (!DataSection.isWasmData()) 1596 report_fatal_error("data symbols must live in a data section: " + 1597 WS.getName()); 1598 1599 // For each data symbol, export it in the symtab as a reference to the 1600 // corresponding Wasm data segment. 1601 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1602 DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS), 1603 static_cast<uint64_t>(Size)}; 1604 assert(DataLocations.count(&WS) == 0); 1605 DataLocations[&WS] = Ref; 1606 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n"); 1607 1608 } else if (WS.isGlobal()) { 1609 // A "true" Wasm global (currently just __stack_pointer) 1610 if (WS.isDefined()) { 1611 wasm::WasmGlobal Global; 1612 Global.Type = WS.getGlobalType(); 1613 Global.Index = NumGlobalImports + Globals.size(); 1614 switch (Global.Type.Type) { 1615 case wasm::WASM_TYPE_I32: 1616 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I32_CONST; 1617 break; 1618 case wasm::WASM_TYPE_I64: 1619 Global.InitExpr.Opcode = wasm::WASM_OPCODE_I64_CONST; 1620 break; 1621 case wasm::WASM_TYPE_F32: 1622 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F32_CONST; 1623 break; 1624 case wasm::WASM_TYPE_F64: 1625 Global.InitExpr.Opcode = wasm::WASM_OPCODE_F64_CONST; 1626 break; 1627 case wasm::WASM_TYPE_EXTERNREF: 1628 Global.InitExpr.Opcode = wasm::WASM_OPCODE_REF_NULL; 1629 break; 1630 default: 1631 llvm_unreachable("unexpected type"); 1632 } 1633 assert(WasmIndices.count(&WS) == 0); 1634 WasmIndices[&WS] = Global.Index; 1635 Globals.push_back(Global); 1636 } else { 1637 // An import; the index was assigned above 1638 LLVM_DEBUG(dbgs() << " -> global index: " 1639 << WasmIndices.find(&WS)->second << "\n"); 1640 } 1641 } else if (WS.isTable()) { 1642 if (WS.isDefined()) { 1643 wasm::WasmTable Table; 1644 Table.Index = NumTableImports + Tables.size(); 1645 Table.Type = WS.getTableType(); 1646 assert(WasmIndices.count(&WS) == 0); 1647 WasmIndices[&WS] = Table.Index; 1648 Tables.push_back(Table); 1649 } 1650 LLVM_DEBUG(dbgs() << " -> table index: " 1651 << WasmIndices.find(&WS)->second << "\n"); 1652 } else if (WS.isTag()) { 1653 // C++ exception symbol (__cpp_exception) or longjmp symbol 1654 // (__c_longjmp) 1655 unsigned Index; 1656 if (WS.isDefined()) { 1657 Index = NumTagImports + Tags.size(); 1658 wasm::WasmTagType Tag; 1659 Tag.SigIndex = getTagType(WS); 1660 Tag.Attribute = wasm::WASM_TAG_ATTRIBUTE_EXCEPTION; 1661 assert(WasmIndices.count(&WS) == 0); 1662 WasmIndices[&WS] = Index; 1663 Tags.push_back(Tag); 1664 } else { 1665 // An import; the index was assigned above. 1666 assert(WasmIndices.count(&WS) > 0); 1667 } 1668 LLVM_DEBUG(dbgs() << " -> tag index: " << WasmIndices.find(&WS)->second 1669 << "\n"); 1670 1671 } else { 1672 assert(WS.isSection()); 1673 } 1674 } 1675 1676 // Populate WasmIndices and DataLocations for aliased symbols. We need to 1677 // process these in a separate pass because we need to have processed the 1678 // target of the alias before the alias itself and the symbols are not 1679 // necessarily ordered in this way. 1680 for (const MCSymbol &S : Asm.symbols()) { 1681 if (!S.isVariable()) 1682 continue; 1683 1684 assert(S.isDefined()); 1685 1686 const auto *BS = Layout.getBaseSymbol(S); 1687 if (!BS) 1688 report_fatal_error(Twine(S.getName()) + 1689 ": absolute addressing not supported!"); 1690 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS); 1691 1692 // Find the target symbol of this weak alias and export that index 1693 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1694 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base 1695 << "'\n"); 1696 1697 if (Base->isFunction()) { 1698 assert(WasmIndices.count(Base) > 0); 1699 uint32_t WasmIndex = WasmIndices.find(Base)->second; 1700 assert(WasmIndices.count(&WS) == 0); 1701 WasmIndices[&WS] = WasmIndex; 1702 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); 1703 } else if (Base->isData()) { 1704 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1705 uint64_t Offset = Layout.getSymbolOffset(S); 1706 int64_t Size = 0; 1707 // For data symbol alias we use the size of the base symbol as the 1708 // size of the alias. When an offset from the base is involved this 1709 // can result in a offset + size goes past the end of the data section 1710 // which out object format doesn't support. So we must clamp it. 1711 if (!Base->getSize()->evaluateAsAbsolute(Size, Layout)) 1712 report_fatal_error(".size expression must be evaluatable"); 1713 const WasmDataSegment &Segment = 1714 DataSegments[DataSection.getSegmentIndex()]; 1715 Size = 1716 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset); 1717 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1718 DataSection.getSegmentIndex(), 1719 static_cast<uint32_t>(Layout.getSymbolOffset(S)), 1720 static_cast<uint32_t>(Size)}; 1721 DataLocations[&WS] = Ref; 1722 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); 1723 } else { 1724 report_fatal_error("don't yet support global/tag aliases"); 1725 } 1726 } 1727 } 1728 1729 // Finally, populate the symbol table itself, in its "natural" order. 1730 for (const MCSymbol &S : Asm.symbols()) { 1731 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1732 if (!isInSymtab(WS)) { 1733 WS.setIndex(InvalidIndex); 1734 continue; 1735 } 1736 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n"); 1737 1738 uint32_t Flags = 0; 1739 if (WS.isWeak()) 1740 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; 1741 if (WS.isHidden()) 1742 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; 1743 if (!WS.isExternal() && WS.isDefined()) 1744 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; 1745 if (WS.isUndefined()) 1746 Flags |= wasm::WASM_SYMBOL_UNDEFINED; 1747 if (WS.isNoStrip()) { 1748 Flags |= wasm::WASM_SYMBOL_NO_STRIP; 1749 if (isEmscripten()) { 1750 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1751 } 1752 } 1753 if (WS.hasImportName()) 1754 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; 1755 if (WS.hasExportName()) 1756 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1757 if (WS.isTLS()) 1758 Flags |= wasm::WASM_SYMBOL_TLS; 1759 1760 wasm::WasmSymbolInfo Info; 1761 Info.Name = WS.getName(); 1762 Info.Kind = WS.getType().getValueOr(wasm::WASM_SYMBOL_TYPE_DATA); 1763 Info.Flags = Flags; 1764 if (!WS.isData()) { 1765 assert(WasmIndices.count(&WS) > 0); 1766 Info.ElementIndex = WasmIndices.find(&WS)->second; 1767 } else if (WS.isDefined()) { 1768 assert(DataLocations.count(&WS) > 0); 1769 Info.DataRef = DataLocations.find(&WS)->second; 1770 } 1771 WS.setIndex(SymbolInfos.size()); 1772 SymbolInfos.emplace_back(Info); 1773 } 1774 1775 { 1776 auto HandleReloc = [&](const WasmRelocationEntry &Rel) { 1777 // Functions referenced by a relocation need to put in the table. This is 1778 // purely to make the object file's provisional values readable, and is 1779 // ignored by the linker, which re-calculates the relocations itself. 1780 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && 1781 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && 1782 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && 1783 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && 1784 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB && 1785 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 1786 return; 1787 assert(Rel.Symbol->isFunction()); 1788 const MCSymbolWasm *Base = 1789 cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol)); 1790 uint32_t FunctionIndex = WasmIndices.find(Base)->second; 1791 uint32_t TableIndex = TableElems.size() + InitialTableOffset; 1792 if (TableIndices.try_emplace(Base, TableIndex).second) { 1793 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() 1794 << " to table: " << TableIndex << "\n"); 1795 TableElems.push_back(FunctionIndex); 1796 registerFunctionType(*Base); 1797 } 1798 }; 1799 1800 for (const WasmRelocationEntry &RelEntry : CodeRelocations) 1801 HandleReloc(RelEntry); 1802 for (const WasmRelocationEntry &RelEntry : DataRelocations) 1803 HandleReloc(RelEntry); 1804 } 1805 1806 // Translate .init_array section contents into start functions. 1807 for (const MCSection &S : Asm) { 1808 const auto &WS = static_cast<const MCSectionWasm &>(S); 1809 if (WS.getName().startswith(".fini_array")) 1810 report_fatal_error(".fini_array sections are unsupported"); 1811 if (!WS.getName().startswith(".init_array")) 1812 continue; 1813 if (WS.getFragmentList().empty()) 1814 continue; 1815 1816 // init_array is expected to contain a single non-empty data fragment 1817 if (WS.getFragmentList().size() != 3) 1818 report_fatal_error("only one .init_array section fragment supported"); 1819 1820 auto IT = WS.begin(); 1821 const MCFragment &EmptyFrag = *IT; 1822 if (EmptyFrag.getKind() != MCFragment::FT_Data) 1823 report_fatal_error(".init_array section should be aligned"); 1824 1825 IT = std::next(IT); 1826 const MCFragment &AlignFrag = *IT; 1827 if (AlignFrag.getKind() != MCFragment::FT_Align) 1828 report_fatal_error(".init_array section should be aligned"); 1829 if (cast<MCAlignFragment>(AlignFrag).getAlignment() != (is64Bit() ? 8 : 4)) 1830 report_fatal_error(".init_array section should be aligned for pointers"); 1831 1832 const MCFragment &Frag = *std::next(IT); 1833 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) 1834 report_fatal_error("only data supported in .init_array section"); 1835 1836 uint16_t Priority = UINT16_MAX; 1837 unsigned PrefixLength = strlen(".init_array"); 1838 if (WS.getName().size() > PrefixLength) { 1839 if (WS.getName()[PrefixLength] != '.') 1840 report_fatal_error( 1841 ".init_array section priority should start with '.'"); 1842 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority)) 1843 report_fatal_error("invalid .init_array section priority"); 1844 } 1845 const auto &DataFrag = cast<MCDataFragment>(Frag); 1846 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 1847 for (const uint8_t * 1848 P = (const uint8_t *)Contents.data(), 1849 *End = (const uint8_t *)Contents.data() + Contents.size(); 1850 P != End; ++P) { 1851 if (*P != 0) 1852 report_fatal_error("non-symbolic data in .init_array section"); 1853 } 1854 for (const MCFixup &Fixup : DataFrag.getFixups()) { 1855 assert(Fixup.getKind() == 1856 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); 1857 const MCExpr *Expr = Fixup.getValue(); 1858 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr); 1859 if (!SymRef) 1860 report_fatal_error("fixups in .init_array should be symbol references"); 1861 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol()); 1862 if (TargetSym.getIndex() == InvalidIndex) 1863 report_fatal_error("symbols in .init_array should exist in symtab"); 1864 if (!TargetSym.isFunction()) 1865 report_fatal_error("symbols in .init_array should be for functions"); 1866 InitFuncs.push_back( 1867 std::make_pair(Priority, TargetSym.getIndex())); 1868 } 1869 } 1870 1871 // Write out the Wasm header. 1872 writeHeader(Asm); 1873 1874 uint32_t CodeSectionIndex, DataSectionIndex; 1875 if (Mode != DwoMode::DwoOnly) { 1876 writeTypeSection(Signatures); 1877 writeImportSection(Imports, DataSize, TableElems.size()); 1878 writeFunctionSection(Functions); 1879 writeTableSection(Tables); 1880 // Skip the "memory" section; we import the memory instead. 1881 writeTagSection(Tags); 1882 writeGlobalSection(Globals); 1883 writeExportSection(Exports); 1884 const MCSymbol *IndirectFunctionTable = 1885 Asm.getContext().lookupSymbol("__indirect_function_table"); 1886 writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable), 1887 TableElems); 1888 writeDataCountSection(); 1889 1890 CodeSectionIndex = writeCodeSection(Asm, Layout, Functions); 1891 DataSectionIndex = writeDataSection(Layout); 1892 } 1893 1894 // The Sections in the COMDAT list have placeholder indices (their index among 1895 // custom sections, rather than among all sections). Fix them up here. 1896 for (auto &Group : Comdats) { 1897 for (auto &Entry : Group.second) { 1898 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { 1899 Entry.Index += SectionCount; 1900 } 1901 } 1902 } 1903 for (auto &CustomSection : CustomSections) 1904 writeCustomSection(CustomSection, Asm, Layout); 1905 1906 if (Mode != DwoMode::DwoOnly) { 1907 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); 1908 1909 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations); 1910 writeRelocSection(DataSectionIndex, "DATA", DataRelocations); 1911 } 1912 writeCustomRelocSections(); 1913 if (ProducersSection) 1914 writeCustomSection(*ProducersSection, Asm, Layout); 1915 if (TargetFeaturesSection) 1916 writeCustomSection(*TargetFeaturesSection, Asm, Layout); 1917 1918 // TODO: Translate the .comment section to the output. 1919 return W->OS.tell() - StartOffset; 1920 } 1921 1922 std::unique_ptr<MCObjectWriter> 1923 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1924 raw_pwrite_stream &OS) { 1925 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS); 1926 } 1927 1928 std::unique_ptr<MCObjectWriter> 1929 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1930 raw_pwrite_stream &OS, 1931 raw_pwrite_stream &DwoOS) { 1932 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS); 1933 } 1934