1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/ELF.h"
22 #include "llvm/MC/MCAsmBackend.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCAsmLayout.h"
25 #include "llvm/MC/MCAssembler.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCELFObjectWriter.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCFixup.h"
30 #include "llvm/MC/MCFixupKindInfo.h"
31 #include "llvm/MC/MCFragment.h"
32 #include "llvm/MC/MCObjectFileInfo.h"
33 #include "llvm/MC/MCObjectWriter.h"
34 #include "llvm/MC/MCSection.h"
35 #include "llvm/MC/MCSectionELF.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/MC/MCSymbolELF.h"
38 #include "llvm/MC/MCValue.h"
39 #include "llvm/MC/StringTableBuilder.h"
40 #include "llvm/Support/Allocator.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compression.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/Error.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Host.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/StringSaver.h"
51 #include "llvm/Support/SwapByteOrder.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstddef>
56 #include <cstdint>
57 #include <map>
58 #include <memory>
59 #include <string>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #undef  DEBUG_TYPE
66 #define DEBUG_TYPE "reloc-info"
67 
68 namespace {
69 
70 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
71 
72 class ELFObjectWriter;
73 struct ELFWriter;
74 
75 bool isDwoSection(const MCSectionELF &Sec) {
76   return Sec.getSectionName().endswith(".dwo");
77 }
78 
79 class SymbolTableWriter {
80   ELFWriter &EWriter;
81   bool Is64Bit;
82 
83   // indexes we are going to write to .symtab_shndx.
84   std::vector<uint32_t> ShndxIndexes;
85 
86   // The numbel of symbols written so far.
87   unsigned NumWritten;
88 
89   void createSymtabShndx();
90 
91   template <typename T> void write(T Value);
92 
93 public:
94   SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
95 
96   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
97                    uint8_t other, uint32_t shndx, bool Reserved);
98 
99   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
100 };
101 
102 struct ELFWriter {
103   ELFObjectWriter &OWriter;
104   support::endian::Writer W;
105 
106   enum DwoMode {
107     AllSections,
108     NonDwoOnly,
109     DwoOnly,
110   } Mode;
111 
112   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
113   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
114                          bool Used, bool Renamed);
115 
116   /// Helper struct for containing some precomputed information on symbols.
117   struct ELFSymbolData {
118     const MCSymbolELF *Symbol;
119     uint32_t SectionIndex;
120     StringRef Name;
121 
122     // Support lexicographic sorting.
123     bool operator<(const ELFSymbolData &RHS) const {
124       unsigned LHSType = Symbol->getType();
125       unsigned RHSType = RHS.Symbol->getType();
126       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
127         return false;
128       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
129         return true;
130       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
131         return SectionIndex < RHS.SectionIndex;
132       return Name < RHS.Name;
133     }
134   };
135 
136   /// @}
137   /// @name Symbol Table Data
138   /// @{
139 
140   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
141 
142   /// @}
143 
144   // This holds the symbol table index of the last local symbol.
145   unsigned LastLocalSymbolIndex;
146   // This holds the .strtab section index.
147   unsigned StringTableIndex;
148   // This holds the .symtab section index.
149   unsigned SymbolTableIndex;
150 
151   // Sections in the order they are to be output in the section table.
152   std::vector<const MCSectionELF *> SectionTable;
153   unsigned addToSectionTable(const MCSectionELF *Sec);
154 
155   // TargetObjectWriter wrappers.
156   bool is64Bit() const;
157   bool hasRelocationAddend() const;
158 
159   void align(unsigned Alignment);
160 
161   bool maybeWriteCompression(uint64_t Size,
162                              SmallVectorImpl<char> &CompressedContents,
163                              bool ZLibStyle, unsigned Alignment);
164 
165 public:
166   ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
167             bool IsLittleEndian, DwoMode Mode)
168       : OWriter(OWriter),
169         W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
170 
171   void WriteWord(uint64_t Word) {
172     if (is64Bit())
173       W.write<uint64_t>(Word);
174     else
175       W.write<uint32_t>(Word);
176   }
177 
178   template <typename T> void write(T Val) {
179     W.write(Val);
180   }
181 
182   void writeHeader(const MCAssembler &Asm);
183 
184   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
185                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
186 
187   // Start and end offset of each section
188   using SectionOffsetsTy =
189       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
190 
191   // Map from a signature symbol to the group section index
192   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
193 
194   /// Compute the symbol table data
195   ///
196   /// \param Asm - The assembler.
197   /// \param SectionIndexMap - Maps a section to its index.
198   /// \param RevGroupMap - Maps a signature symbol to the group section.
199   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
200                           const SectionIndexMapTy &SectionIndexMap,
201                           const RevGroupMapTy &RevGroupMap,
202                           SectionOffsetsTy &SectionOffsets);
203 
204   void writeAddrsigSection();
205 
206   MCSectionELF *createRelocationSection(MCContext &Ctx,
207                                         const MCSectionELF &Sec);
208 
209   const MCSectionELF *createStringTable(MCContext &Ctx);
210 
211   void writeSectionHeader(const MCAsmLayout &Layout,
212                           const SectionIndexMapTy &SectionIndexMap,
213                           const SectionOffsetsTy &SectionOffsets);
214 
215   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
216                         const MCAsmLayout &Layout);
217 
218   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
219                         uint64_t Address, uint64_t Offset, uint64_t Size,
220                         uint32_t Link, uint32_t Info, uint64_t Alignment,
221                         uint64_t EntrySize);
222 
223   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
224 
225   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
226   void writeSection(const SectionIndexMapTy &SectionIndexMap,
227                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
228                     const MCSectionELF &Section);
229 };
230 
231 class ELFObjectWriter : public MCObjectWriter {
232   /// The target specific ELF writer instance.
233   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
234 
235   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
236 
237   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
238 
239   bool EmitAddrsigSection = false;
240   std::vector<const MCSymbol *> AddrsigSyms;
241 
242   bool hasRelocationAddend() const;
243 
244   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
245                                 const MCSymbolRefExpr *RefA,
246                                 const MCSymbolELF *Sym, uint64_t C,
247                                 unsigned Type) const;
248 
249 public:
250   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
251       : TargetObjectWriter(std::move(MOTW)) {}
252 
253   void reset() override {
254     Relocations.clear();
255     Renames.clear();
256     MCObjectWriter::reset();
257   }
258 
259   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
260                                               const MCSymbol &SymA,
261                                               const MCFragment &FB, bool InSet,
262                                               bool IsPCRel) const override;
263 
264   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
265                                const MCSectionELF *From,
266                                const MCSectionELF *To) {
267     return true;
268   }
269 
270   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
271                         const MCFragment *Fragment, const MCFixup &Fixup,
272                         MCValue Target, uint64_t &FixedValue) override;
273 
274   void executePostLayoutBinding(MCAssembler &Asm,
275                                 const MCAsmLayout &Layout) override;
276 
277   void emitAddrsigSection() override { EmitAddrsigSection = true; }
278   void addAddrsigSymbol(const MCSymbol *Sym) override {
279     AddrsigSyms.push_back(Sym);
280   }
281 
282   friend struct ELFWriter;
283 };
284 
285 class ELFSingleObjectWriter : public ELFObjectWriter {
286   raw_pwrite_stream &OS;
287   bool IsLittleEndian;
288 
289 public:
290   ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
291                         raw_pwrite_stream &OS, bool IsLittleEndian)
292       : ELFObjectWriter(std::move(MOTW)), OS(OS),
293         IsLittleEndian(IsLittleEndian) {}
294 
295   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
296     return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
297         .writeObject(Asm, Layout);
298   }
299 
300   friend struct ELFWriter;
301 };
302 
303 class ELFDwoObjectWriter : public ELFObjectWriter {
304   raw_pwrite_stream &OS, &DwoOS;
305   bool IsLittleEndian;
306 
307 public:
308   ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
309                      raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
310                      bool IsLittleEndian)
311       : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
312         IsLittleEndian(IsLittleEndian) {}
313 
314   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
315                                const MCSectionELF *From,
316                                const MCSectionELF *To) override {
317     if (isDwoSection(*From)) {
318       Ctx.reportError(Loc, "A dwo section may not contain relocations");
319       return false;
320     }
321     if (To && isDwoSection(*To)) {
322       Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
323       return false;
324     }
325     return true;
326   }
327 
328   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
329     uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
330                         .writeObject(Asm, Layout);
331     Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
332                 .writeObject(Asm, Layout);
333     return Size;
334   }
335 };
336 
337 } // end anonymous namespace
338 
339 void ELFWriter::align(unsigned Alignment) {
340   uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment);
341   W.OS.write_zeros(Padding);
342 }
343 
344 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
345   SectionTable.push_back(Sec);
346   StrTabBuilder.add(Sec->getSectionName());
347   return SectionTable.size();
348 }
349 
350 void SymbolTableWriter::createSymtabShndx() {
351   if (!ShndxIndexes.empty())
352     return;
353 
354   ShndxIndexes.resize(NumWritten);
355 }
356 
357 template <typename T> void SymbolTableWriter::write(T Value) {
358   EWriter.write(Value);
359 }
360 
361 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
362     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
363 
364 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
365                                     uint64_t size, uint8_t other,
366                                     uint32_t shndx, bool Reserved) {
367   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
368 
369   if (LargeIndex)
370     createSymtabShndx();
371 
372   if (!ShndxIndexes.empty()) {
373     if (LargeIndex)
374       ShndxIndexes.push_back(shndx);
375     else
376       ShndxIndexes.push_back(0);
377   }
378 
379   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
380 
381   if (Is64Bit) {
382     write(name);  // st_name
383     write(info);  // st_info
384     write(other); // st_other
385     write(Index); // st_shndx
386     write(value); // st_value
387     write(size);  // st_size
388   } else {
389     write(name);            // st_name
390     write(uint32_t(value)); // st_value
391     write(uint32_t(size));  // st_size
392     write(info);            // st_info
393     write(other);           // st_other
394     write(Index);           // st_shndx
395   }
396 
397   ++NumWritten;
398 }
399 
400 bool ELFWriter::is64Bit() const {
401   return OWriter.TargetObjectWriter->is64Bit();
402 }
403 
404 bool ELFWriter::hasRelocationAddend() const {
405   return OWriter.hasRelocationAddend();
406 }
407 
408 // Emit the ELF header.
409 void ELFWriter::writeHeader(const MCAssembler &Asm) {
410   // ELF Header
411   // ----------
412   //
413   // Note
414   // ----
415   // emitWord method behaves differently for ELF32 and ELF64, writing
416   // 4 bytes in the former and 8 in the latter.
417 
418   W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
419 
420   W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
421 
422   // e_ident[EI_DATA]
423   W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
424                                            : ELF::ELFDATA2MSB);
425 
426   W.OS << char(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
427   // e_ident[EI_OSABI]
428   W.OS << char(OWriter.TargetObjectWriter->getOSABI());
429   W.OS << char(0);                  // e_ident[EI_ABIVERSION]
430 
431   W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
432 
433   W.write<uint16_t>(ELF::ET_REL);             // e_type
434 
435   W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
436 
437   W.write<uint32_t>(ELF::EV_CURRENT);         // e_version
438   WriteWord(0);                    // e_entry, no entry point in .o file
439   WriteWord(0);                    // e_phoff, no program header for .o
440   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
441 
442   // e_flags = whatever the target wants
443   W.write<uint32_t>(Asm.getELFHeaderEFlags());
444 
445   // e_ehsize = ELF header size
446   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
447                               : sizeof(ELF::Elf32_Ehdr));
448 
449   W.write<uint16_t>(0);                  // e_phentsize = prog header entry size
450   W.write<uint16_t>(0);                  // e_phnum = # prog header entries = 0
451 
452   // e_shentsize = Section header entry size
453   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
454                               : sizeof(ELF::Elf32_Shdr));
455 
456   // e_shnum     = # of section header ents
457   W.write<uint16_t>(0);
458 
459   // e_shstrndx  = Section # of '.shstrtab'
460   assert(StringTableIndex < ELF::SHN_LORESERVE);
461   W.write<uint16_t>(StringTableIndex);
462 }
463 
464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
465                                 const MCAsmLayout &Layout) {
466   if (Sym.isCommon() && Sym.isExternal())
467     return Sym.getCommonAlignment();
468 
469   uint64_t Res;
470   if (!Layout.getSymbolOffset(Sym, Res))
471     return 0;
472 
473   if (Layout.getAssembler().isThumbFunc(&Sym))
474     Res |= 1;
475 
476   return Res;
477 }
478 
479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
480   uint8_t Type = newType;
481 
482   // Propagation rules:
483   // IFUNC > FUNC > OBJECT > NOTYPE
484   // TLS_OBJECT > OBJECT > NOTYPE
485   //
486   // dont let the new type degrade the old type
487   switch (origType) {
488   default:
489     break;
490   case ELF::STT_GNU_IFUNC:
491     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
492         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
493       Type = ELF::STT_GNU_IFUNC;
494     break;
495   case ELF::STT_FUNC:
496     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
497         Type == ELF::STT_TLS)
498       Type = ELF::STT_FUNC;
499     break;
500   case ELF::STT_OBJECT:
501     if (Type == ELF::STT_NOTYPE)
502       Type = ELF::STT_OBJECT;
503     break;
504   case ELF::STT_TLS:
505     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
506         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
507       Type = ELF::STT_TLS;
508     break;
509   }
510 
511   return Type;
512 }
513 
514 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
515                             ELFSymbolData &MSD, const MCAsmLayout &Layout) {
516   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
517   const MCSymbolELF *Base =
518       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
519 
520   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
521   // SHN_COMMON.
522   bool IsReserved = !Base || Symbol.isCommon();
523 
524   // Binding and Type share the same byte as upper and lower nibbles
525   uint8_t Binding = Symbol.getBinding();
526   uint8_t Type = Symbol.getType();
527   if (Base) {
528     Type = mergeTypeForSet(Type, Base->getType());
529   }
530   uint8_t Info = (Binding << 4) | Type;
531 
532   // Other and Visibility share the same byte with Visibility using the lower
533   // 2 bits
534   uint8_t Visibility = Symbol.getVisibility();
535   uint8_t Other = Symbol.getOther() | Visibility;
536 
537   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
538   uint64_t Size = 0;
539 
540   const MCExpr *ESize = MSD.Symbol->getSize();
541   if (!ESize && Base)
542     ESize = Base->getSize();
543 
544   if (ESize) {
545     int64_t Res;
546     if (!ESize->evaluateKnownAbsolute(Res, Layout))
547       report_fatal_error("Size expression must be absolute.");
548     Size = Res;
549   }
550 
551   // Write out the symbol table entry
552   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
553                      IsReserved);
554 }
555 
556 // True if the assembler knows nothing about the final value of the symbol.
557 // This doesn't cover the comdat issues, since in those cases the assembler
558 // can at least know that all symbols in the section will move together.
559 static bool isWeak(const MCSymbolELF &Sym) {
560   if (Sym.getType() == ELF::STT_GNU_IFUNC)
561     return true;
562 
563   switch (Sym.getBinding()) {
564   default:
565     llvm_unreachable("Unknown binding");
566   case ELF::STB_LOCAL:
567     return false;
568   case ELF::STB_GLOBAL:
569     return false;
570   case ELF::STB_WEAK:
571   case ELF::STB_GNU_UNIQUE:
572     return true;
573   }
574 }
575 
576 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
577                            bool Used, bool Renamed) {
578   if (Symbol.isVariable()) {
579     const MCExpr *Expr = Symbol.getVariableValue();
580     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
581       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
582         return false;
583     }
584   }
585 
586   if (Used)
587     return true;
588 
589   if (Renamed)
590     return false;
591 
592   if (Symbol.isVariable() && Symbol.isUndefined()) {
593     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
594     Layout.getBaseSymbol(Symbol);
595     return false;
596   }
597 
598   if (Symbol.isUndefined() && !Symbol.isBindingSet())
599     return false;
600 
601   if (Symbol.isTemporary())
602     return false;
603 
604   if (Symbol.getType() == ELF::STT_SECTION)
605     return false;
606 
607   return true;
608 }
609 
610 void ELFWriter::computeSymbolTable(
611     MCAssembler &Asm, const MCAsmLayout &Layout,
612     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
613     SectionOffsetsTy &SectionOffsets) {
614   MCContext &Ctx = Asm.getContext();
615   SymbolTableWriter Writer(*this, is64Bit());
616 
617   // Symbol table
618   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
619   MCSectionELF *SymtabSection =
620       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
621   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
622   SymbolTableIndex = addToSectionTable(SymtabSection);
623 
624   align(SymtabSection->getAlignment());
625   uint64_t SecStart = W.OS.tell();
626 
627   // The first entry is the undefined symbol entry.
628   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
629 
630   std::vector<ELFSymbolData> LocalSymbolData;
631   std::vector<ELFSymbolData> ExternalSymbolData;
632 
633   // Add the data for the symbols.
634   bool HasLargeSectionIndex = false;
635   for (const MCSymbol &S : Asm.symbols()) {
636     const auto &Symbol = cast<MCSymbolELF>(S);
637     bool Used = Symbol.isUsedInReloc();
638     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
639     bool isSignature = Symbol.isSignature();
640 
641     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
642                     OWriter.Renames.count(&Symbol)))
643       continue;
644 
645     if (Symbol.isTemporary() && Symbol.isUndefined()) {
646       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
647       continue;
648     }
649 
650     ELFSymbolData MSD;
651     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
652 
653     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
654     assert(Local || !Symbol.isTemporary());
655 
656     if (Symbol.isAbsolute()) {
657       MSD.SectionIndex = ELF::SHN_ABS;
658     } else if (Symbol.isCommon()) {
659       assert(!Local);
660       MSD.SectionIndex = ELF::SHN_COMMON;
661     } else if (Symbol.isUndefined()) {
662       if (isSignature && !Used) {
663         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
664         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
665           HasLargeSectionIndex = true;
666       } else {
667         MSD.SectionIndex = ELF::SHN_UNDEF;
668       }
669     } else {
670       const MCSectionELF &Section =
671           static_cast<const MCSectionELF &>(Symbol.getSection());
672       if (Mode == NonDwoOnly && isDwoSection(Section))
673         continue;
674       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
675       assert(MSD.SectionIndex && "Invalid section index!");
676       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
677         HasLargeSectionIndex = true;
678     }
679 
680     StringRef Name = Symbol.getName();
681 
682     // Sections have their own string table
683     if (Symbol.getType() != ELF::STT_SECTION) {
684       MSD.Name = Name;
685       StrTabBuilder.add(Name);
686     }
687 
688     if (Local)
689       LocalSymbolData.push_back(MSD);
690     else
691       ExternalSymbolData.push_back(MSD);
692   }
693 
694   // This holds the .symtab_shndx section index.
695   unsigned SymtabShndxSectionIndex = 0;
696 
697   if (HasLargeSectionIndex) {
698     MCSectionELF *SymtabShndxSection =
699         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
700     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
701     SymtabShndxSection->setAlignment(4);
702   }
703 
704   ArrayRef<std::string> FileNames = Asm.getFileNames();
705   for (const std::string &Name : FileNames)
706     StrTabBuilder.add(Name);
707 
708   StrTabBuilder.finalize();
709 
710   // File symbols are emitted first and handled separately from normal symbols,
711   // i.e. a non-STT_FILE symbol with the same name may appear.
712   for (const std::string &Name : FileNames)
713     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
714                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
715                        ELF::SHN_ABS, true);
716 
717   // Symbols are required to be in lexicographic order.
718   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
719   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
720 
721   // Set the symbol indices. Local symbols must come before all other
722   // symbols with non-local bindings.
723   unsigned Index = FileNames.size() + 1;
724 
725   for (ELFSymbolData &MSD : LocalSymbolData) {
726     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
727                                ? 0
728                                : StrTabBuilder.getOffset(MSD.Name);
729     MSD.Symbol->setIndex(Index++);
730     writeSymbol(Writer, StringIndex, MSD, Layout);
731   }
732 
733   // Write the symbol table entries.
734   LastLocalSymbolIndex = Index;
735 
736   for (ELFSymbolData &MSD : ExternalSymbolData) {
737     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
738     MSD.Symbol->setIndex(Index++);
739     writeSymbol(Writer, StringIndex, MSD, Layout);
740     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
741   }
742 
743   uint64_t SecEnd = W.OS.tell();
744   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
745 
746   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
747   if (ShndxIndexes.empty()) {
748     assert(SymtabShndxSectionIndex == 0);
749     return;
750   }
751   assert(SymtabShndxSectionIndex != 0);
752 
753   SecStart = W.OS.tell();
754   const MCSectionELF *SymtabShndxSection =
755       SectionTable[SymtabShndxSectionIndex - 1];
756   for (uint32_t Index : ShndxIndexes)
757     write(Index);
758   SecEnd = W.OS.tell();
759   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
760 }
761 
762 void ELFWriter::writeAddrsigSection() {
763   for (const MCSymbol *Sym : OWriter.AddrsigSyms)
764     encodeULEB128(Sym->getIndex(), W.OS);
765 }
766 
767 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
768                                                  const MCSectionELF &Sec) {
769   if (OWriter.Relocations[&Sec].empty())
770     return nullptr;
771 
772   const StringRef SectionName = Sec.getSectionName();
773   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
774   RelaSectionName += SectionName;
775 
776   unsigned EntrySize;
777   if (hasRelocationAddend())
778     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
779   else
780     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
781 
782   unsigned Flags = 0;
783   if (Sec.getFlags() & ELF::SHF_GROUP)
784     Flags = ELF::SHF_GROUP;
785 
786   MCSectionELF *RelaSection = Ctx.createELFRelSection(
787       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
788       Flags, EntrySize, Sec.getGroup(), &Sec);
789   RelaSection->setAlignment(is64Bit() ? 8 : 4);
790   return RelaSection;
791 }
792 
793 // Include the debug info compression header.
794 bool ELFWriter::maybeWriteCompression(
795     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
796     unsigned Alignment) {
797   if (ZLibStyle) {
798     uint64_t HdrSize =
799         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
800     if (Size <= HdrSize + CompressedContents.size())
801       return false;
802     // Platform specific header is followed by compressed data.
803     if (is64Bit()) {
804       // Write Elf64_Chdr header.
805       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
806       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
807       write(static_cast<ELF::Elf64_Xword>(Size));
808       write(static_cast<ELF::Elf64_Xword>(Alignment));
809     } else {
810       // Write Elf32_Chdr header otherwise.
811       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
812       write(static_cast<ELF::Elf32_Word>(Size));
813       write(static_cast<ELF::Elf32_Word>(Alignment));
814     }
815     return true;
816   }
817 
818   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
819   // useful for consumers to preallocate a buffer to decompress into.
820   const StringRef Magic = "ZLIB";
821   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
822     return false;
823   W.OS << Magic;
824   support::endian::write(W.OS, Size, support::big);
825   return true;
826 }
827 
828 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
829                                  const MCAsmLayout &Layout) {
830   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
831   StringRef SectionName = Section.getSectionName();
832 
833   auto &MC = Asm.getContext();
834   const auto &MAI = MC.getAsmInfo();
835 
836   // Compressing debug_frame requires handling alignment fragments which is
837   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
838   // for writing to arbitrary buffers) for little benefit.
839   bool CompressionEnabled =
840       MAI->compressDebugSections() != DebugCompressionType::None;
841   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
842       SectionName == ".debug_frame") {
843     Asm.writeSectionData(W.OS, &Section, Layout);
844     return;
845   }
846 
847   assert((MAI->compressDebugSections() == DebugCompressionType::Z ||
848           MAI->compressDebugSections() == DebugCompressionType::GNU) &&
849          "expected zlib or zlib-gnu style compression");
850 
851   SmallVector<char, 128> UncompressedData;
852   raw_svector_ostream VecOS(UncompressedData);
853   Asm.writeSectionData(VecOS, &Section, Layout);
854 
855   SmallVector<char, 128> CompressedContents;
856   if (Error E = zlib::compress(
857           StringRef(UncompressedData.data(), UncompressedData.size()),
858           CompressedContents)) {
859     consumeError(std::move(E));
860     W.OS << UncompressedData;
861     return;
862   }
863 
864   bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z;
865   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
866                              ZlibStyle, Sec.getAlignment())) {
867     W.OS << UncompressedData;
868     return;
869   }
870 
871   if (ZlibStyle)
872     // Set the compressed flag. That is zlib style.
873     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
874   else
875     // Add "z" prefix to section name. This is zlib-gnu style.
876     MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str());
877   W.OS << CompressedContents;
878 }
879 
880 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
881                                  uint64_t Address, uint64_t Offset,
882                                  uint64_t Size, uint32_t Link, uint32_t Info,
883                                  uint64_t Alignment, uint64_t EntrySize) {
884   W.write<uint32_t>(Name);        // sh_name: index into string table
885   W.write<uint32_t>(Type);        // sh_type
886   WriteWord(Flags);     // sh_flags
887   WriteWord(Address);   // sh_addr
888   WriteWord(Offset);    // sh_offset
889   WriteWord(Size);      // sh_size
890   W.write<uint32_t>(Link);        // sh_link
891   W.write<uint32_t>(Info);        // sh_info
892   WriteWord(Alignment); // sh_addralign
893   WriteWord(EntrySize); // sh_entsize
894 }
895 
896 void ELFWriter::writeRelocations(const MCAssembler &Asm,
897                                        const MCSectionELF &Sec) {
898   std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
899 
900   // We record relocations by pushing to the end of a vector. Reverse the vector
901   // to get the relocations in the order they were created.
902   // In most cases that is not important, but it can be for special sections
903   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
904   std::reverse(Relocs.begin(), Relocs.end());
905 
906   // Sort the relocation entries. MIPS needs this.
907   OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
908 
909   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
910     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
911     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
912 
913     if (is64Bit()) {
914       write(Entry.Offset);
915       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
916         write(uint32_t(Index));
917 
918         write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
919         write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
920         write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
921         write(OWriter.TargetObjectWriter->getRType(Entry.Type));
922       } else {
923         struct ELF::Elf64_Rela ERE64;
924         ERE64.setSymbolAndType(Index, Entry.Type);
925         write(ERE64.r_info);
926       }
927       if (hasRelocationAddend())
928         write(Entry.Addend);
929     } else {
930       write(uint32_t(Entry.Offset));
931 
932       struct ELF::Elf32_Rela ERE32;
933       ERE32.setSymbolAndType(Index, Entry.Type);
934       write(ERE32.r_info);
935 
936       if (hasRelocationAddend())
937         write(uint32_t(Entry.Addend));
938 
939       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
940         if (uint32_t RType =
941                 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
942           write(uint32_t(Entry.Offset));
943 
944           ERE32.setSymbolAndType(0, RType);
945           write(ERE32.r_info);
946           write(uint32_t(0));
947         }
948         if (uint32_t RType =
949                 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
950           write(uint32_t(Entry.Offset));
951 
952           ERE32.setSymbolAndType(0, RType);
953           write(ERE32.r_info);
954           write(uint32_t(0));
955         }
956       }
957     }
958   }
959 }
960 
961 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) {
962   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
963   StrTabBuilder.write(W.OS);
964   return StrtabSection;
965 }
966 
967 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
968                              uint32_t GroupSymbolIndex, uint64_t Offset,
969                              uint64_t Size, const MCSectionELF &Section) {
970   uint64_t sh_link = 0;
971   uint64_t sh_info = 0;
972 
973   switch(Section.getType()) {
974   default:
975     // Nothing to do.
976     break;
977 
978   case ELF::SHT_DYNAMIC:
979     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
980 
981   case ELF::SHT_REL:
982   case ELF::SHT_RELA: {
983     sh_link = SymbolTableIndex;
984     assert(sh_link && ".symtab not found");
985     const MCSection *InfoSection = Section.getAssociatedSection();
986     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
987     break;
988   }
989 
990   case ELF::SHT_SYMTAB:
991     sh_link = StringTableIndex;
992     sh_info = LastLocalSymbolIndex;
993     break;
994 
995   case ELF::SHT_SYMTAB_SHNDX:
996   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
997   case ELF::SHT_LLVM_ADDRSIG:
998     sh_link = SymbolTableIndex;
999     break;
1000 
1001   case ELF::SHT_GROUP:
1002     sh_link = SymbolTableIndex;
1003     sh_info = GroupSymbolIndex;
1004     break;
1005   }
1006 
1007   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1008     const MCSymbol *Sym = Section.getAssociatedSymbol();
1009     const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1010     sh_link = SectionIndexMap.lookup(Sec);
1011   }
1012 
1013   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1014                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1015                    sh_link, sh_info, Section.getAlignment(),
1016                    Section.getEntrySize());
1017 }
1018 
1019 void ELFWriter::writeSectionHeader(
1020     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1021     const SectionOffsetsTy &SectionOffsets) {
1022   const unsigned NumSections = SectionTable.size();
1023 
1024   // Null section first.
1025   uint64_t FirstSectionSize =
1026       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1027   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1028 
1029   for (const MCSectionELF *Section : SectionTable) {
1030     uint32_t GroupSymbolIndex;
1031     unsigned Type = Section->getType();
1032     if (Type != ELF::SHT_GROUP)
1033       GroupSymbolIndex = 0;
1034     else
1035       GroupSymbolIndex = Section->getGroup()->getIndex();
1036 
1037     const std::pair<uint64_t, uint64_t> &Offsets =
1038         SectionOffsets.find(Section)->second;
1039     uint64_t Size;
1040     if (Type == ELF::SHT_NOBITS)
1041       Size = Layout.getSectionAddressSize(Section);
1042     else
1043       Size = Offsets.second - Offsets.first;
1044 
1045     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1046                  *Section);
1047   }
1048 }
1049 
1050 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1051   uint64_t StartOffset = W.OS.tell();
1052 
1053   MCContext &Ctx = Asm.getContext();
1054   MCSectionELF *StrtabSection =
1055       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1056   StringTableIndex = addToSectionTable(StrtabSection);
1057 
1058   RevGroupMapTy RevGroupMap;
1059   SectionIndexMapTy SectionIndexMap;
1060 
1061   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1062 
1063   // Write out the ELF header ...
1064   writeHeader(Asm);
1065 
1066   // ... then the sections ...
1067   SectionOffsetsTy SectionOffsets;
1068   std::vector<MCSectionELF *> Groups;
1069   std::vector<MCSectionELF *> Relocations;
1070   for (MCSection &Sec : Asm) {
1071     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1072     if (Mode == NonDwoOnly && isDwoSection(Section))
1073       continue;
1074     if (Mode == DwoOnly && !isDwoSection(Section))
1075       continue;
1076 
1077     align(Section.getAlignment());
1078 
1079     // Remember the offset into the file for this section.
1080     uint64_t SecStart = W.OS.tell();
1081 
1082     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1083     writeSectionData(Asm, Section, Layout);
1084 
1085     uint64_t SecEnd = W.OS.tell();
1086     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1087 
1088     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1089 
1090     if (SignatureSymbol) {
1091       Asm.registerSymbol(*SignatureSymbol);
1092       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1093       if (!GroupIdx) {
1094         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1095         GroupIdx = addToSectionTable(Group);
1096         Group->setAlignment(4);
1097         Groups.push_back(Group);
1098       }
1099       std::vector<const MCSectionELF *> &Members =
1100           GroupMembers[SignatureSymbol];
1101       Members.push_back(&Section);
1102       if (RelSection)
1103         Members.push_back(RelSection);
1104     }
1105 
1106     SectionIndexMap[&Section] = addToSectionTable(&Section);
1107     if (RelSection) {
1108       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1109       Relocations.push_back(RelSection);
1110     }
1111 
1112     OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1113   }
1114 
1115   MCSectionELF *CGProfileSection = nullptr;
1116   if (!Asm.CGProfile.empty()) {
1117     CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile",
1118                                          ELF::SHT_LLVM_CALL_GRAPH_PROFILE,
1119                                          ELF::SHF_EXCLUDE, 16, "");
1120     SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection);
1121   }
1122 
1123   for (MCSectionELF *Group : Groups) {
1124     align(Group->getAlignment());
1125 
1126     // Remember the offset into the file for this section.
1127     uint64_t SecStart = W.OS.tell();
1128 
1129     const MCSymbol *SignatureSymbol = Group->getGroup();
1130     assert(SignatureSymbol);
1131     write(uint32_t(ELF::GRP_COMDAT));
1132     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1133       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1134       write(SecIndex);
1135     }
1136 
1137     uint64_t SecEnd = W.OS.tell();
1138     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1139   }
1140 
1141   if (Mode == DwoOnly) {
1142     // dwo files don't have symbol tables or relocations, but they do have
1143     // string tables.
1144     StrTabBuilder.finalize();
1145   } else {
1146     MCSectionELF *AddrsigSection;
1147     if (OWriter.EmitAddrsigSection) {
1148       AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1149                                          ELF::SHF_EXCLUDE);
1150       addToSectionTable(AddrsigSection);
1151     }
1152 
1153     // Compute symbol table information.
1154     computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1155                        SectionOffsets);
1156 
1157     for (MCSectionELF *RelSection : Relocations) {
1158       align(RelSection->getAlignment());
1159 
1160       // Remember the offset into the file for this section.
1161       uint64_t SecStart = W.OS.tell();
1162 
1163       writeRelocations(Asm,
1164                        cast<MCSectionELF>(*RelSection->getAssociatedSection()));
1165 
1166       uint64_t SecEnd = W.OS.tell();
1167       SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1168     }
1169 
1170     if (OWriter.EmitAddrsigSection) {
1171       uint64_t SecStart = W.OS.tell();
1172       writeAddrsigSection();
1173       uint64_t SecEnd = W.OS.tell();
1174       SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1175     }
1176   }
1177 
1178   if (CGProfileSection) {
1179     uint64_t SecStart = W.OS.tell();
1180     for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) {
1181       W.write<uint32_t>(CGPE.From->getSymbol().getIndex());
1182       W.write<uint32_t>(CGPE.To->getSymbol().getIndex());
1183       W.write<uint64_t>(CGPE.Count);
1184     }
1185     uint64_t SecEnd = W.OS.tell();
1186     SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd);
1187   }
1188 
1189   {
1190     uint64_t SecStart = W.OS.tell();
1191     const MCSectionELF *Sec = createStringTable(Ctx);
1192     uint64_t SecEnd = W.OS.tell();
1193     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1194   }
1195 
1196   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1197   align(NaturalAlignment);
1198 
1199   const uint64_t SectionHeaderOffset = W.OS.tell();
1200 
1201   // ... then the section header table ...
1202   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1203 
1204   uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1205       (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1206                                                       : SectionTable.size() + 1,
1207       W.Endian);
1208   unsigned NumSectionsOffset;
1209 
1210   auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1211   if (is64Bit()) {
1212     uint64_t Val =
1213         support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1214     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1215                   offsetof(ELF::Elf64_Ehdr, e_shoff));
1216     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1217   } else {
1218     uint32_t Val =
1219         support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1220     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1221                   offsetof(ELF::Elf32_Ehdr, e_shoff));
1222     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1223   }
1224   Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1225                 NumSectionsOffset);
1226 
1227   return W.OS.tell() - StartOffset;
1228 }
1229 
1230 bool ELFObjectWriter::hasRelocationAddend() const {
1231   return TargetObjectWriter->hasRelocationAddend();
1232 }
1233 
1234 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1235                                                const MCAsmLayout &Layout) {
1236   // The presence of symbol versions causes undefined symbols and
1237   // versions declared with @@@ to be renamed.
1238   for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) {
1239     StringRef AliasName = P.first;
1240     const auto &Symbol = cast<MCSymbolELF>(*P.second);
1241     size_t Pos = AliasName.find('@');
1242     assert(Pos != StringRef::npos);
1243 
1244     StringRef Prefix = AliasName.substr(0, Pos);
1245     StringRef Rest = AliasName.substr(Pos);
1246     StringRef Tail = Rest;
1247     if (Rest.startswith("@@@"))
1248       Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1249 
1250     auto *Alias =
1251         cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1252     Asm.registerSymbol(*Alias);
1253     const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1254     Alias->setVariableValue(Value);
1255 
1256     // Aliases defined with .symvar copy the binding from the symbol they alias.
1257     // This is the first place we are able to copy this information.
1258     Alias->setExternal(Symbol.isExternal());
1259     Alias->setBinding(Symbol.getBinding());
1260 
1261     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
1262       continue;
1263 
1264     // FIXME: produce a better error message.
1265     if (Symbol.isUndefined() && Rest.startswith("@@") &&
1266         !Rest.startswith("@@@"))
1267       report_fatal_error("A @@ version cannot be undefined");
1268 
1269     if (Renames.count(&Symbol) && Renames[&Symbol] != Alias)
1270       report_fatal_error(llvm::Twine("Multiple symbol versions defined for ") +
1271                          Symbol.getName());
1272 
1273     Renames.insert(std::make_pair(&Symbol, Alias));
1274   }
1275 
1276   for (const MCSymbol *&Sym : AddrsigSyms) {
1277     if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1278       Sym = R;
1279     if (Sym->isInSection() && Sym->getName().startswith(".L"))
1280       Sym = Sym->getSection().getBeginSymbol();
1281     Sym->setUsedInReloc();
1282   }
1283 }
1284 
1285 // It is always valid to create a relocation with a symbol. It is preferable
1286 // to use a relocation with a section if that is possible. Using the section
1287 // allows us to omit some local symbols from the symbol table.
1288 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1289                                                const MCSymbolRefExpr *RefA,
1290                                                const MCSymbolELF *Sym,
1291                                                uint64_t C,
1292                                                unsigned Type) const {
1293   // A PCRel relocation to an absolute value has no symbol (or section). We
1294   // represent that with a relocation to a null section.
1295   if (!RefA)
1296     return false;
1297 
1298   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1299   switch (Kind) {
1300   default:
1301     break;
1302   // The .odp creation emits a relocation against the symbol ".TOC." which
1303   // create a R_PPC64_TOC relocation. However the relocation symbol name
1304   // in final object creation should be NULL, since the symbol does not
1305   // really exist, it is just the reference to TOC base for the current
1306   // object file. Since the symbol is undefined, returning false results
1307   // in a relocation with a null section which is the desired result.
1308   case MCSymbolRefExpr::VK_PPC_TOCBASE:
1309     return false;
1310 
1311   // These VariantKind cause the relocation to refer to something other than
1312   // the symbol itself, like a linker generated table. Since the address of
1313   // symbol is not relevant, we cannot replace the symbol with the
1314   // section and patch the difference in the addend.
1315   case MCSymbolRefExpr::VK_GOT:
1316   case MCSymbolRefExpr::VK_PLT:
1317   case MCSymbolRefExpr::VK_GOTPCREL:
1318   case MCSymbolRefExpr::VK_PPC_GOT_LO:
1319   case MCSymbolRefExpr::VK_PPC_GOT_HI:
1320   case MCSymbolRefExpr::VK_PPC_GOT_HA:
1321     return true;
1322   }
1323 
1324   // An undefined symbol is not in any section, so the relocation has to point
1325   // to the symbol itself.
1326   assert(Sym && "Expected a symbol");
1327   if (Sym->isUndefined())
1328     return true;
1329 
1330   unsigned Binding = Sym->getBinding();
1331   switch(Binding) {
1332   default:
1333     llvm_unreachable("Invalid Binding");
1334   case ELF::STB_LOCAL:
1335     break;
1336   case ELF::STB_WEAK:
1337     // If the symbol is weak, it might be overridden by a symbol in another
1338     // file. The relocation has to point to the symbol so that the linker
1339     // can update it.
1340     return true;
1341   case ELF::STB_GLOBAL:
1342     // Global ELF symbols can be preempted by the dynamic linker. The relocation
1343     // has to point to the symbol for a reason analogous to the STB_WEAK case.
1344     return true;
1345   }
1346 
1347   // If a relocation points to a mergeable section, we have to be careful.
1348   // If the offset is zero, a relocation with the section will encode the
1349   // same information. With a non-zero offset, the situation is different.
1350   // For example, a relocation can point 42 bytes past the end of a string.
1351   // If we change such a relocation to use the section, the linker would think
1352   // that it pointed to another string and subtracting 42 at runtime will
1353   // produce the wrong value.
1354   if (Sym->isInSection()) {
1355     auto &Sec = cast<MCSectionELF>(Sym->getSection());
1356     unsigned Flags = Sec.getFlags();
1357     if (Flags & ELF::SHF_MERGE) {
1358       if (C != 0)
1359         return true;
1360 
1361       // It looks like gold has a bug (http://sourceware.org/PR16794) and can
1362       // only handle section relocations to mergeable sections if using RELA.
1363       if (!hasRelocationAddend())
1364         return true;
1365     }
1366 
1367     // Most TLS relocations use a got, so they need the symbol. Even those that
1368     // are just an offset (@tpoff), require a symbol in gold versions before
1369     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1370     // http://sourceware.org/PR16773.
1371     if (Flags & ELF::SHF_TLS)
1372       return true;
1373   }
1374 
1375   // If the symbol is a thumb function the final relocation must set the lowest
1376   // bit. With a symbol that is done by just having the symbol have that bit
1377   // set, so we would lose the bit if we relocated with the section.
1378   // FIXME: We could use the section but add the bit to the relocation value.
1379   if (Asm.isThumbFunc(Sym))
1380     return true;
1381 
1382   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
1383     return true;
1384   return false;
1385 }
1386 
1387 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1388                                        const MCAsmLayout &Layout,
1389                                        const MCFragment *Fragment,
1390                                        const MCFixup &Fixup, MCValue Target,
1391                                        uint64_t &FixedValue) {
1392   MCAsmBackend &Backend = Asm.getBackend();
1393   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1394                  MCFixupKindInfo::FKF_IsPCRel;
1395   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1396   uint64_t C = Target.getConstant();
1397   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1398   MCContext &Ctx = Asm.getContext();
1399 
1400   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1401     // Let A, B and C being the components of Target and R be the location of
1402     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
1403     // If it is pcrel, we want to compute (A - B + C - R).
1404 
1405     // In general, ELF has no relocations for -B. It can only represent (A + C)
1406     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
1407     // replace B to implement it: (A - R - K + C)
1408     if (IsPCRel) {
1409       Ctx.reportError(
1410           Fixup.getLoc(),
1411           "No relocation available to represent this relative expression");
1412       return;
1413     }
1414 
1415     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1416 
1417     if (SymB.isUndefined()) {
1418       Ctx.reportError(Fixup.getLoc(),
1419                       Twine("symbol '") + SymB.getName() +
1420                           "' can not be undefined in a subtraction expression");
1421       return;
1422     }
1423 
1424     assert(!SymB.isAbsolute() && "Should have been folded");
1425     const MCSection &SecB = SymB.getSection();
1426     if (&SecB != &FixupSection) {
1427       Ctx.reportError(Fixup.getLoc(),
1428                       "Cannot represent a difference across sections");
1429       return;
1430     }
1431 
1432     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
1433     uint64_t K = SymBOffset - FixupOffset;
1434     IsPCRel = true;
1435     C -= K;
1436   }
1437 
1438   // We either rejected the fixup or folded B into C at this point.
1439   const MCSymbolRefExpr *RefA = Target.getSymA();
1440   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1441 
1442   bool ViaWeakRef = false;
1443   if (SymA && SymA->isVariable()) {
1444     const MCExpr *Expr = SymA->getVariableValue();
1445     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1446       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1447         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1448         ViaWeakRef = true;
1449       }
1450     }
1451   }
1452 
1453   unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1454   uint64_t OriginalC = C;
1455   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
1456   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
1457     C += Layout.getSymbolOffset(*SymA);
1458 
1459   uint64_t Addend = 0;
1460   if (hasRelocationAddend()) {
1461     Addend = C;
1462     C = 0;
1463   }
1464 
1465   FixedValue = C;
1466 
1467   const MCSectionELF *SecA = (SymA && SymA->isInSection())
1468                                  ? cast<MCSectionELF>(&SymA->getSection())
1469                                  : nullptr;
1470   if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1471     return;
1472 
1473   if (!RelocateWithSymbol) {
1474     const auto *SectionSymbol =
1475         SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1476     if (SectionSymbol)
1477       SectionSymbol->setUsedInReloc();
1478     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
1479                            OriginalC);
1480     Relocations[&FixupSection].push_back(Rec);
1481     return;
1482   }
1483 
1484   const auto *RenamedSymA = SymA;
1485   if (SymA) {
1486     if (const MCSymbolELF *R = Renames.lookup(SymA))
1487       RenamedSymA = R;
1488 
1489     if (ViaWeakRef)
1490       RenamedSymA->setIsWeakrefUsedInReloc();
1491     else
1492       RenamedSymA->setUsedInReloc();
1493   }
1494   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
1495                          OriginalC);
1496   Relocations[&FixupSection].push_back(Rec);
1497 }
1498 
1499 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1500     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1501     bool InSet, bool IsPCRel) const {
1502   const auto &SymA = cast<MCSymbolELF>(SA);
1503   if (IsPCRel) {
1504     assert(!InSet);
1505     if (isWeak(SymA))
1506       return false;
1507   }
1508   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1509                                                                 InSet, IsPCRel);
1510 }
1511 
1512 std::unique_ptr<MCObjectWriter>
1513 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1514                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1515   return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1516                                                   IsLittleEndian);
1517 }
1518 
1519 std::unique_ptr<MCObjectWriter>
1520 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1521                                raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1522                                bool IsLittleEndian) {
1523   return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1524                                                IsLittleEndian);
1525 }
1526