1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFixupKindInfo.h" 30 #include "llvm/MC/MCFragment.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Alignment.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compression.h" 43 #include "llvm/Support/EndianStream.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Host.h" 47 #include "llvm/Support/LEB128.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/SMLoc.h" 50 #include "llvm/Support/StringSaver.h" 51 #include "llvm/Support/SwapByteOrder.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstddef> 56 #include <cstdint> 57 #include <map> 58 #include <memory> 59 #include <string> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #undef DEBUG_TYPE 66 #define DEBUG_TYPE "reloc-info" 67 68 namespace { 69 70 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 71 72 class ELFObjectWriter; 73 struct ELFWriter; 74 75 bool isDwoSection(const MCSectionELF &Sec) { 76 return Sec.getName().endswith(".dwo"); 77 } 78 79 class SymbolTableWriter { 80 ELFWriter &EWriter; 81 bool Is64Bit; 82 83 // indexes we are going to write to .symtab_shndx. 84 std::vector<uint32_t> ShndxIndexes; 85 86 // The numbel of symbols written so far. 87 unsigned NumWritten; 88 89 void createSymtabShndx(); 90 91 template <typename T> void write(T Value); 92 93 public: 94 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 95 96 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 97 uint8_t other, uint32_t shndx, bool Reserved); 98 99 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 100 }; 101 102 struct ELFWriter { 103 ELFObjectWriter &OWriter; 104 support::endian::Writer W; 105 106 enum DwoMode { 107 AllSections, 108 NonDwoOnly, 109 DwoOnly, 110 } Mode; 111 112 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 113 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 114 bool Used, bool Renamed); 115 116 /// Helper struct for containing some precomputed information on symbols. 117 struct ELFSymbolData { 118 const MCSymbolELF *Symbol; 119 StringRef Name; 120 uint32_t SectionIndex; 121 uint32_t Order; 122 }; 123 124 /// @} 125 /// @name Symbol Table Data 126 /// @{ 127 128 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 129 130 /// @} 131 132 // This holds the symbol table index of the last local symbol. 133 unsigned LastLocalSymbolIndex; 134 // This holds the .strtab section index. 135 unsigned StringTableIndex; 136 // This holds the .symtab section index. 137 unsigned SymbolTableIndex; 138 139 // Sections in the order they are to be output in the section table. 140 std::vector<const MCSectionELF *> SectionTable; 141 unsigned addToSectionTable(const MCSectionELF *Sec); 142 143 // TargetObjectWriter wrappers. 144 bool is64Bit() const; 145 bool hasRelocationAddend() const; 146 147 uint64_t align(unsigned Alignment); 148 149 bool maybeWriteCompression(uint64_t Size, 150 SmallVectorImpl<char> &CompressedContents, 151 bool ZLibStyle, unsigned Alignment); 152 153 public: 154 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 155 bool IsLittleEndian, DwoMode Mode) 156 : OWriter(OWriter), 157 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 158 159 void WriteWord(uint64_t Word) { 160 if (is64Bit()) 161 W.write<uint64_t>(Word); 162 else 163 W.write<uint32_t>(Word); 164 } 165 166 template <typename T> void write(T Val) { 167 W.write(Val); 168 } 169 170 void writeHeader(const MCAssembler &Asm); 171 172 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 173 ELFSymbolData &MSD, const MCAsmLayout &Layout); 174 175 // Start and end offset of each section 176 using SectionOffsetsTy = 177 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 178 179 // Map from a signature symbol to the group section index 180 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 181 182 /// Compute the symbol table data 183 /// 184 /// \param Asm - The assembler. 185 /// \param SectionIndexMap - Maps a section to its index. 186 /// \param RevGroupMap - Maps a signature symbol to the group section. 187 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 188 const SectionIndexMapTy &SectionIndexMap, 189 const RevGroupMapTy &RevGroupMap, 190 SectionOffsetsTy &SectionOffsets); 191 192 void writeAddrsigSection(); 193 194 MCSectionELF *createRelocationSection(MCContext &Ctx, 195 const MCSectionELF &Sec); 196 197 void writeSectionHeader(const MCAsmLayout &Layout, 198 const SectionIndexMapTy &SectionIndexMap, 199 const SectionOffsetsTy &SectionOffsets); 200 201 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 202 const MCAsmLayout &Layout); 203 204 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 205 uint64_t Address, uint64_t Offset, uint64_t Size, 206 uint32_t Link, uint32_t Info, uint64_t Alignment, 207 uint64_t EntrySize); 208 209 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 210 211 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 212 void writeSection(const SectionIndexMapTy &SectionIndexMap, 213 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 214 const MCSectionELF &Section); 215 }; 216 217 class ELFObjectWriter : public MCObjectWriter { 218 /// The target specific ELF writer instance. 219 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 220 221 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 222 223 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 224 225 bool SeenGnuAbi = false; 226 bool EmitAddrsigSection = false; 227 std::vector<const MCSymbol *> AddrsigSyms; 228 229 bool hasRelocationAddend() const; 230 231 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 232 const MCSymbolRefExpr *RefA, 233 const MCSymbolELF *Sym, uint64_t C, 234 unsigned Type) const; 235 236 public: 237 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 238 : TargetObjectWriter(std::move(MOTW)) {} 239 240 void reset() override { 241 SeenGnuAbi = false; 242 Relocations.clear(); 243 Renames.clear(); 244 MCObjectWriter::reset(); 245 } 246 247 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 248 const MCSymbol &SymA, 249 const MCFragment &FB, bool InSet, 250 bool IsPCRel) const override; 251 252 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 253 const MCSectionELF *From, 254 const MCSectionELF *To) { 255 return true; 256 } 257 258 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 259 const MCFragment *Fragment, const MCFixup &Fixup, 260 MCValue Target, uint64_t &FixedValue) override; 261 262 void executePostLayoutBinding(MCAssembler &Asm, 263 const MCAsmLayout &Layout) override; 264 265 void markGnuAbi() override { SeenGnuAbi = true; } 266 bool seenGnuAbi() const { return SeenGnuAbi; } 267 void emitAddrsigSection() override { EmitAddrsigSection = true; } 268 void addAddrsigSymbol(const MCSymbol *Sym) override { 269 AddrsigSyms.push_back(Sym); 270 } 271 272 friend struct ELFWriter; 273 }; 274 275 class ELFSingleObjectWriter : public ELFObjectWriter { 276 raw_pwrite_stream &OS; 277 bool IsLittleEndian; 278 279 public: 280 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 281 raw_pwrite_stream &OS, bool IsLittleEndian) 282 : ELFObjectWriter(std::move(MOTW)), OS(OS), 283 IsLittleEndian(IsLittleEndian) {} 284 285 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 286 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 287 .writeObject(Asm, Layout); 288 } 289 290 friend struct ELFWriter; 291 }; 292 293 class ELFDwoObjectWriter : public ELFObjectWriter { 294 raw_pwrite_stream &OS, &DwoOS; 295 bool IsLittleEndian; 296 297 public: 298 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 299 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 300 bool IsLittleEndian) 301 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 302 IsLittleEndian(IsLittleEndian) {} 303 304 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 305 const MCSectionELF *From, 306 const MCSectionELF *To) override { 307 if (isDwoSection(*From)) { 308 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 309 return false; 310 } 311 if (To && isDwoSection(*To)) { 312 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 313 return false; 314 } 315 return true; 316 } 317 318 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 319 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 320 .writeObject(Asm, Layout); 321 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 322 .writeObject(Asm, Layout); 323 return Size; 324 } 325 }; 326 327 } // end anonymous namespace 328 329 uint64_t ELFWriter::align(unsigned Alignment) { 330 uint64_t Offset = W.OS.tell(), NewOffset = alignTo(Offset, Alignment); 331 W.OS.write_zeros(NewOffset - Offset); 332 return NewOffset; 333 } 334 335 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 336 SectionTable.push_back(Sec); 337 StrTabBuilder.add(Sec->getName()); 338 return SectionTable.size(); 339 } 340 341 void SymbolTableWriter::createSymtabShndx() { 342 if (!ShndxIndexes.empty()) 343 return; 344 345 ShndxIndexes.resize(NumWritten); 346 } 347 348 template <typename T> void SymbolTableWriter::write(T Value) { 349 EWriter.write(Value); 350 } 351 352 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 353 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 354 355 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 356 uint64_t size, uint8_t other, 357 uint32_t shndx, bool Reserved) { 358 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 359 360 if (LargeIndex) 361 createSymtabShndx(); 362 363 if (!ShndxIndexes.empty()) { 364 if (LargeIndex) 365 ShndxIndexes.push_back(shndx); 366 else 367 ShndxIndexes.push_back(0); 368 } 369 370 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 371 372 if (Is64Bit) { 373 write(name); // st_name 374 write(info); // st_info 375 write(other); // st_other 376 write(Index); // st_shndx 377 write(value); // st_value 378 write(size); // st_size 379 } else { 380 write(name); // st_name 381 write(uint32_t(value)); // st_value 382 write(uint32_t(size)); // st_size 383 write(info); // st_info 384 write(other); // st_other 385 write(Index); // st_shndx 386 } 387 388 ++NumWritten; 389 } 390 391 bool ELFWriter::is64Bit() const { 392 return OWriter.TargetObjectWriter->is64Bit(); 393 } 394 395 bool ELFWriter::hasRelocationAddend() const { 396 return OWriter.hasRelocationAddend(); 397 } 398 399 // Emit the ELF header. 400 void ELFWriter::writeHeader(const MCAssembler &Asm) { 401 // ELF Header 402 // ---------- 403 // 404 // Note 405 // ---- 406 // emitWord method behaves differently for ELF32 and ELF64, writing 407 // 4 bytes in the former and 8 in the latter. 408 409 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 410 411 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 412 413 // e_ident[EI_DATA] 414 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 415 : ELF::ELFDATA2MSB); 416 417 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 418 // e_ident[EI_OSABI] 419 uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI(); 420 W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi() 421 ? int(ELF::ELFOSABI_GNU) 422 : OSABI); 423 // e_ident[EI_ABIVERSION] 424 W.OS << char(OWriter.TargetObjectWriter->getABIVersion()); 425 426 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 427 428 W.write<uint16_t>(ELF::ET_REL); // e_type 429 430 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 431 432 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 433 WriteWord(0); // e_entry, no entry point in .o file 434 WriteWord(0); // e_phoff, no program header for .o 435 WriteWord(0); // e_shoff = sec hdr table off in bytes 436 437 // e_flags = whatever the target wants 438 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 439 440 // e_ehsize = ELF header size 441 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 442 : sizeof(ELF::Elf32_Ehdr)); 443 444 W.write<uint16_t>(0); // e_phentsize = prog header entry size 445 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 446 447 // e_shentsize = Section header entry size 448 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 449 : sizeof(ELF::Elf32_Shdr)); 450 451 // e_shnum = # of section header ents 452 W.write<uint16_t>(0); 453 454 // e_shstrndx = Section # of '.strtab' 455 assert(StringTableIndex < ELF::SHN_LORESERVE); 456 W.write<uint16_t>(StringTableIndex); 457 } 458 459 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 460 const MCAsmLayout &Layout) { 461 if (Sym.isCommon()) 462 return Sym.getCommonAlignment(); 463 464 uint64_t Res; 465 if (!Layout.getSymbolOffset(Sym, Res)) 466 return 0; 467 468 if (Layout.getAssembler().isThumbFunc(&Sym)) 469 Res |= 1; 470 471 return Res; 472 } 473 474 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 475 uint8_t Type = newType; 476 477 // Propagation rules: 478 // IFUNC > FUNC > OBJECT > NOTYPE 479 // TLS_OBJECT > OBJECT > NOTYPE 480 // 481 // dont let the new type degrade the old type 482 switch (origType) { 483 default: 484 break; 485 case ELF::STT_GNU_IFUNC: 486 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 487 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 488 Type = ELF::STT_GNU_IFUNC; 489 break; 490 case ELF::STT_FUNC: 491 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 492 Type == ELF::STT_TLS) 493 Type = ELF::STT_FUNC; 494 break; 495 case ELF::STT_OBJECT: 496 if (Type == ELF::STT_NOTYPE) 497 Type = ELF::STT_OBJECT; 498 break; 499 case ELF::STT_TLS: 500 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 501 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 502 Type = ELF::STT_TLS; 503 break; 504 } 505 506 return Type; 507 } 508 509 static bool isIFunc(const MCSymbolELF *Symbol) { 510 while (Symbol->getType() != ELF::STT_GNU_IFUNC) { 511 const MCSymbolRefExpr *Value; 512 if (!Symbol->isVariable() || 513 !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) || 514 Value->getKind() != MCSymbolRefExpr::VK_None || 515 mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC) 516 return false; 517 Symbol = &cast<MCSymbolELF>(Value->getSymbol()); 518 } 519 return true; 520 } 521 522 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 523 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 524 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 525 const MCSymbolELF *Base = 526 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 527 528 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 529 // SHN_COMMON. 530 bool IsReserved = !Base || Symbol.isCommon(); 531 532 // Binding and Type share the same byte as upper and lower nibbles 533 uint8_t Binding = Symbol.getBinding(); 534 uint8_t Type = Symbol.getType(); 535 if (isIFunc(&Symbol)) 536 Type = ELF::STT_GNU_IFUNC; 537 if (Base) { 538 Type = mergeTypeForSet(Type, Base->getType()); 539 } 540 uint8_t Info = (Binding << 4) | Type; 541 542 // Other and Visibility share the same byte with Visibility using the lower 543 // 2 bits 544 uint8_t Visibility = Symbol.getVisibility(); 545 uint8_t Other = Symbol.getOther() | Visibility; 546 547 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 548 uint64_t Size = 0; 549 550 const MCExpr *ESize = MSD.Symbol->getSize(); 551 if (!ESize && Base) 552 ESize = Base->getSize(); 553 554 if (ESize) { 555 int64_t Res; 556 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 557 report_fatal_error("Size expression must be absolute."); 558 Size = Res; 559 } 560 561 // Write out the symbol table entry 562 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 563 IsReserved); 564 } 565 566 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 567 bool Used, bool Renamed) { 568 if (Symbol.isVariable()) { 569 const MCExpr *Expr = Symbol.getVariableValue(); 570 // Target Expressions that are always inlined do not appear in the symtab 571 if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) 572 if (T->inlineAssignedExpr()) 573 return false; 574 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 575 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 576 return false; 577 } 578 } 579 580 if (Used) 581 return true; 582 583 if (Renamed) 584 return false; 585 586 if (Symbol.isVariable() && Symbol.isUndefined()) { 587 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 588 Layout.getBaseSymbol(Symbol); 589 return false; 590 } 591 592 if (Symbol.isTemporary()) 593 return false; 594 595 if (Symbol.getType() == ELF::STT_SECTION) 596 return false; 597 598 return true; 599 } 600 601 void ELFWriter::computeSymbolTable( 602 MCAssembler &Asm, const MCAsmLayout &Layout, 603 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 604 SectionOffsetsTy &SectionOffsets) { 605 MCContext &Ctx = Asm.getContext(); 606 SymbolTableWriter Writer(*this, is64Bit()); 607 608 // Symbol table 609 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 610 MCSectionELF *SymtabSection = 611 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize); 612 SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 613 SymbolTableIndex = addToSectionTable(SymtabSection); 614 615 uint64_t SecStart = align(SymtabSection->getAlignment()); 616 617 // The first entry is the undefined symbol entry. 618 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 619 620 std::vector<ELFSymbolData> LocalSymbolData; 621 std::vector<ELFSymbolData> ExternalSymbolData; 622 MutableArrayRef<std::pair<std::string, size_t>> FileNames = 623 Asm.getFileNames(); 624 for (const std::pair<std::string, size_t> &F : FileNames) 625 StrTabBuilder.add(F.first); 626 627 // Add the data for the symbols. 628 bool HasLargeSectionIndex = false; 629 for (auto It : llvm::enumerate(Asm.symbols())) { 630 const auto &Symbol = cast<MCSymbolELF>(It.value()); 631 bool Used = Symbol.isUsedInReloc(); 632 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 633 bool isSignature = Symbol.isSignature(); 634 635 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 636 OWriter.Renames.count(&Symbol))) 637 continue; 638 639 if (Symbol.isTemporary() && Symbol.isUndefined()) { 640 Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName()); 641 continue; 642 } 643 644 ELFSymbolData MSD; 645 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 646 MSD.Order = It.index(); 647 648 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 649 assert(Local || !Symbol.isTemporary()); 650 651 if (Symbol.isAbsolute()) { 652 MSD.SectionIndex = ELF::SHN_ABS; 653 } else if (Symbol.isCommon()) { 654 if (Symbol.isTargetCommon()) { 655 MSD.SectionIndex = Symbol.getIndex(); 656 } else { 657 assert(!Local); 658 MSD.SectionIndex = ELF::SHN_COMMON; 659 } 660 } else if (Symbol.isUndefined()) { 661 if (isSignature && !Used) { 662 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 663 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 664 HasLargeSectionIndex = true; 665 } else { 666 MSD.SectionIndex = ELF::SHN_UNDEF; 667 } 668 } else { 669 const MCSectionELF &Section = 670 static_cast<const MCSectionELF &>(Symbol.getSection()); 671 672 // We may end up with a situation when section symbol is technically 673 // defined, but should not be. That happens because we explicitly 674 // pre-create few .debug_* sections to have accessors. 675 // And if these sections were not really defined in the code, but were 676 // referenced, we simply error out. 677 if (!Section.isRegistered()) { 678 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 679 ELF::STT_SECTION); 680 Ctx.reportError(SMLoc(), 681 "Undefined section reference: " + Symbol.getName()); 682 continue; 683 } 684 685 if (Mode == NonDwoOnly && isDwoSection(Section)) 686 continue; 687 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 688 assert(MSD.SectionIndex && "Invalid section index!"); 689 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 690 HasLargeSectionIndex = true; 691 } 692 693 StringRef Name = Symbol.getName(); 694 695 // Sections have their own string table 696 if (Symbol.getType() != ELF::STT_SECTION) { 697 MSD.Name = Name; 698 StrTabBuilder.add(Name); 699 } 700 701 if (Local) 702 LocalSymbolData.push_back(MSD); 703 else 704 ExternalSymbolData.push_back(MSD); 705 } 706 707 // This holds the .symtab_shndx section index. 708 unsigned SymtabShndxSectionIndex = 0; 709 710 if (HasLargeSectionIndex) { 711 MCSectionELF *SymtabShndxSection = 712 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4); 713 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 714 SymtabShndxSection->setAlignment(Align(4)); 715 } 716 717 StrTabBuilder.finalize(); 718 719 // Make the first STT_FILE precede previous local symbols. 720 unsigned Index = 1; 721 auto FileNameIt = FileNames.begin(); 722 if (!FileNames.empty()) 723 FileNames[0].second = 0; 724 725 for (ELFSymbolData &MSD : LocalSymbolData) { 726 // Emit STT_FILE symbols before their associated local symbols. 727 for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order; 728 ++FileNameIt) { 729 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 730 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 731 ELF::SHN_ABS, true); 732 ++Index; 733 } 734 735 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 736 ? 0 737 : StrTabBuilder.getOffset(MSD.Name); 738 MSD.Symbol->setIndex(Index++); 739 writeSymbol(Writer, StringIndex, MSD, Layout); 740 } 741 for (; FileNameIt != FileNames.end(); ++FileNameIt) { 742 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 743 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 744 ELF::SHN_ABS, true); 745 ++Index; 746 } 747 748 // Write the symbol table entries. 749 LastLocalSymbolIndex = Index; 750 751 for (ELFSymbolData &MSD : ExternalSymbolData) { 752 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 753 MSD.Symbol->setIndex(Index++); 754 writeSymbol(Writer, StringIndex, MSD, Layout); 755 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 756 } 757 758 uint64_t SecEnd = W.OS.tell(); 759 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 760 761 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 762 if (ShndxIndexes.empty()) { 763 assert(SymtabShndxSectionIndex == 0); 764 return; 765 } 766 assert(SymtabShndxSectionIndex != 0); 767 768 SecStart = W.OS.tell(); 769 const MCSectionELF *SymtabShndxSection = 770 SectionTable[SymtabShndxSectionIndex - 1]; 771 for (uint32_t Index : ShndxIndexes) 772 write(Index); 773 SecEnd = W.OS.tell(); 774 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 775 } 776 777 void ELFWriter::writeAddrsigSection() { 778 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 779 encodeULEB128(Sym->getIndex(), W.OS); 780 } 781 782 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 783 const MCSectionELF &Sec) { 784 if (OWriter.Relocations[&Sec].empty()) 785 return nullptr; 786 787 const StringRef SectionName = Sec.getName(); 788 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 789 RelaSectionName += SectionName; 790 791 unsigned EntrySize; 792 if (hasRelocationAddend()) 793 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 794 else 795 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 796 797 unsigned Flags = 0; 798 if (Sec.getFlags() & ELF::SHF_GROUP) 799 Flags = ELF::SHF_GROUP; 800 801 MCSectionELF *RelaSection = Ctx.createELFRelSection( 802 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 803 Flags, EntrySize, Sec.getGroup(), &Sec); 804 RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 805 return RelaSection; 806 } 807 808 // Include the debug info compression header. 809 bool ELFWriter::maybeWriteCompression( 810 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 811 unsigned Alignment) { 812 if (ZLibStyle) { 813 uint64_t HdrSize = 814 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 815 if (Size <= HdrSize + CompressedContents.size()) 816 return false; 817 // Platform specific header is followed by compressed data. 818 if (is64Bit()) { 819 // Write Elf64_Chdr header. 820 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 821 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 822 write(static_cast<ELF::Elf64_Xword>(Size)); 823 write(static_cast<ELF::Elf64_Xword>(Alignment)); 824 } else { 825 // Write Elf32_Chdr header otherwise. 826 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 827 write(static_cast<ELF::Elf32_Word>(Size)); 828 write(static_cast<ELF::Elf32_Word>(Alignment)); 829 } 830 return true; 831 } 832 833 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 834 // useful for consumers to preallocate a buffer to decompress into. 835 const StringRef Magic = "ZLIB"; 836 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 837 return false; 838 W.OS << Magic; 839 support::endian::write(W.OS, Size, support::big); 840 return true; 841 } 842 843 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 844 const MCAsmLayout &Layout) { 845 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 846 StringRef SectionName = Section.getName(); 847 848 auto &MC = Asm.getContext(); 849 const auto &MAI = MC.getAsmInfo(); 850 851 // Compressing debug_frame requires handling alignment fragments which is 852 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 853 // for writing to arbitrary buffers) for little benefit. 854 bool CompressionEnabled = 855 MAI->compressDebugSections() != DebugCompressionType::None; 856 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 857 SectionName == ".debug_frame") { 858 Asm.writeSectionData(W.OS, &Section, Layout); 859 return; 860 } 861 862 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 863 MAI->compressDebugSections() == DebugCompressionType::GNU) && 864 "expected zlib or zlib-gnu style compression"); 865 866 SmallVector<char, 128> UncompressedData; 867 raw_svector_ostream VecOS(UncompressedData); 868 Asm.writeSectionData(VecOS, &Section, Layout); 869 870 SmallVector<char, 128> CompressedContents; 871 if (Error E = zlib::compress( 872 StringRef(UncompressedData.data(), UncompressedData.size()), 873 CompressedContents)) { 874 consumeError(std::move(E)); 875 W.OS << UncompressedData; 876 return; 877 } 878 879 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 880 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 881 ZlibStyle, Sec.getAlignment())) { 882 W.OS << UncompressedData; 883 return; 884 } 885 886 if (ZlibStyle) { 887 // Set the compressed flag. That is zlib style. 888 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 889 // Alignment field should reflect the requirements of 890 // the compressed section header. 891 Section.setAlignment(is64Bit() ? Align(8) : Align(4)); 892 } else { 893 // Add "z" prefix to section name. This is zlib-gnu style. 894 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 895 } 896 W.OS << CompressedContents; 897 } 898 899 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 900 uint64_t Address, uint64_t Offset, 901 uint64_t Size, uint32_t Link, uint32_t Info, 902 uint64_t Alignment, uint64_t EntrySize) { 903 W.write<uint32_t>(Name); // sh_name: index into string table 904 W.write<uint32_t>(Type); // sh_type 905 WriteWord(Flags); // sh_flags 906 WriteWord(Address); // sh_addr 907 WriteWord(Offset); // sh_offset 908 WriteWord(Size); // sh_size 909 W.write<uint32_t>(Link); // sh_link 910 W.write<uint32_t>(Info); // sh_info 911 WriteWord(Alignment); // sh_addralign 912 WriteWord(EntrySize); // sh_entsize 913 } 914 915 void ELFWriter::writeRelocations(const MCAssembler &Asm, 916 const MCSectionELF &Sec) { 917 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 918 919 // We record relocations by pushing to the end of a vector. Reverse the vector 920 // to get the relocations in the order they were created. 921 // In most cases that is not important, but it can be for special sections 922 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 923 std::reverse(Relocs.begin(), Relocs.end()); 924 925 // Sort the relocation entries. MIPS needs this. 926 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 927 928 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 929 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 930 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 931 932 if (is64Bit()) { 933 write(Entry.Offset); 934 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 935 write(uint32_t(Index)); 936 937 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 938 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 939 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 940 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 941 } else { 942 struct ELF::Elf64_Rela ERE64; 943 ERE64.setSymbolAndType(Index, Entry.Type); 944 write(ERE64.r_info); 945 } 946 if (hasRelocationAddend()) 947 write(Entry.Addend); 948 } else { 949 write(uint32_t(Entry.Offset)); 950 951 struct ELF::Elf32_Rela ERE32; 952 ERE32.setSymbolAndType(Index, Entry.Type); 953 write(ERE32.r_info); 954 955 if (hasRelocationAddend()) 956 write(uint32_t(Entry.Addend)); 957 958 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 959 if (uint32_t RType = 960 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 961 write(uint32_t(Entry.Offset)); 962 963 ERE32.setSymbolAndType(0, RType); 964 write(ERE32.r_info); 965 write(uint32_t(0)); 966 } 967 if (uint32_t RType = 968 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 969 write(uint32_t(Entry.Offset)); 970 971 ERE32.setSymbolAndType(0, RType); 972 write(ERE32.r_info); 973 write(uint32_t(0)); 974 } 975 } 976 } 977 } 978 } 979 980 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 981 uint32_t GroupSymbolIndex, uint64_t Offset, 982 uint64_t Size, const MCSectionELF &Section) { 983 uint64_t sh_link = 0; 984 uint64_t sh_info = 0; 985 986 switch(Section.getType()) { 987 default: 988 // Nothing to do. 989 break; 990 991 case ELF::SHT_DYNAMIC: 992 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 993 994 case ELF::SHT_REL: 995 case ELF::SHT_RELA: { 996 sh_link = SymbolTableIndex; 997 assert(sh_link && ".symtab not found"); 998 const MCSection *InfoSection = Section.getLinkedToSection(); 999 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1000 break; 1001 } 1002 1003 case ELF::SHT_SYMTAB: 1004 sh_link = StringTableIndex; 1005 sh_info = LastLocalSymbolIndex; 1006 break; 1007 1008 case ELF::SHT_SYMTAB_SHNDX: 1009 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1010 case ELF::SHT_LLVM_ADDRSIG: 1011 sh_link = SymbolTableIndex; 1012 break; 1013 1014 case ELF::SHT_GROUP: 1015 sh_link = SymbolTableIndex; 1016 sh_info = GroupSymbolIndex; 1017 break; 1018 } 1019 1020 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1021 // If the value in the associated metadata is not a definition, Sym will be 1022 // undefined. Represent this with sh_link=0. 1023 const MCSymbol *Sym = Section.getLinkedToSymbol(); 1024 if (Sym && Sym->isInSection()) { 1025 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1026 sh_link = SectionIndexMap.lookup(Sec); 1027 } 1028 } 1029 1030 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()), 1031 Section.getType(), Section.getFlags(), 0, Offset, Size, 1032 sh_link, sh_info, Section.getAlignment(), 1033 Section.getEntrySize()); 1034 } 1035 1036 void ELFWriter::writeSectionHeader( 1037 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1038 const SectionOffsetsTy &SectionOffsets) { 1039 const unsigned NumSections = SectionTable.size(); 1040 1041 // Null section first. 1042 uint64_t FirstSectionSize = 1043 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1044 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1045 1046 for (const MCSectionELF *Section : SectionTable) { 1047 uint32_t GroupSymbolIndex; 1048 unsigned Type = Section->getType(); 1049 if (Type != ELF::SHT_GROUP) 1050 GroupSymbolIndex = 0; 1051 else 1052 GroupSymbolIndex = Section->getGroup()->getIndex(); 1053 1054 const std::pair<uint64_t, uint64_t> &Offsets = 1055 SectionOffsets.find(Section)->second; 1056 uint64_t Size; 1057 if (Type == ELF::SHT_NOBITS) 1058 Size = Layout.getSectionAddressSize(Section); 1059 else 1060 Size = Offsets.second - Offsets.first; 1061 1062 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1063 *Section); 1064 } 1065 } 1066 1067 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1068 uint64_t StartOffset = W.OS.tell(); 1069 1070 MCContext &Ctx = Asm.getContext(); 1071 MCSectionELF *StrtabSection = 1072 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1073 StringTableIndex = addToSectionTable(StrtabSection); 1074 1075 RevGroupMapTy RevGroupMap; 1076 SectionIndexMapTy SectionIndexMap; 1077 1078 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1079 1080 // Write out the ELF header ... 1081 writeHeader(Asm); 1082 1083 // ... then the sections ... 1084 SectionOffsetsTy SectionOffsets; 1085 std::vector<MCSectionELF *> Groups; 1086 std::vector<MCSectionELF *> Relocations; 1087 for (MCSection &Sec : Asm) { 1088 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1089 if (Mode == NonDwoOnly && isDwoSection(Section)) 1090 continue; 1091 if (Mode == DwoOnly && !isDwoSection(Section)) 1092 continue; 1093 1094 // Remember the offset into the file for this section. 1095 const uint64_t SecStart = align(Section.getAlignment()); 1096 1097 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1098 writeSectionData(Asm, Section, Layout); 1099 1100 uint64_t SecEnd = W.OS.tell(); 1101 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1102 1103 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1104 1105 if (SignatureSymbol) { 1106 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1107 if (!GroupIdx) { 1108 MCSectionELF *Group = 1109 Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat()); 1110 GroupIdx = addToSectionTable(Group); 1111 Group->setAlignment(Align(4)); 1112 Groups.push_back(Group); 1113 } 1114 std::vector<const MCSectionELF *> &Members = 1115 GroupMembers[SignatureSymbol]; 1116 Members.push_back(&Section); 1117 if (RelSection) 1118 Members.push_back(RelSection); 1119 } 1120 1121 SectionIndexMap[&Section] = addToSectionTable(&Section); 1122 if (RelSection) { 1123 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1124 Relocations.push_back(RelSection); 1125 } 1126 1127 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1128 } 1129 1130 MCSectionELF *CGProfileSection = nullptr; 1131 if (!Asm.CGProfile.empty()) { 1132 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile", 1133 ELF::SHT_LLVM_CALL_GRAPH_PROFILE, 1134 ELF::SHF_EXCLUDE, 16); 1135 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection); 1136 } 1137 1138 for (MCSectionELF *Group : Groups) { 1139 // Remember the offset into the file for this section. 1140 const uint64_t SecStart = align(Group->getAlignment()); 1141 1142 const MCSymbol *SignatureSymbol = Group->getGroup(); 1143 assert(SignatureSymbol); 1144 write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0)); 1145 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1146 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1147 write(SecIndex); 1148 } 1149 1150 uint64_t SecEnd = W.OS.tell(); 1151 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1152 } 1153 1154 if (Mode == DwoOnly) { 1155 // dwo files don't have symbol tables or relocations, but they do have 1156 // string tables. 1157 StrTabBuilder.finalize(); 1158 } else { 1159 MCSectionELF *AddrsigSection; 1160 if (OWriter.EmitAddrsigSection) { 1161 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1162 ELF::SHF_EXCLUDE); 1163 addToSectionTable(AddrsigSection); 1164 } 1165 1166 // Compute symbol table information. 1167 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1168 SectionOffsets); 1169 1170 for (MCSectionELF *RelSection : Relocations) { 1171 // Remember the offset into the file for this section. 1172 const uint64_t SecStart = align(RelSection->getAlignment()); 1173 1174 writeRelocations(Asm, 1175 cast<MCSectionELF>(*RelSection->getLinkedToSection())); 1176 1177 uint64_t SecEnd = W.OS.tell(); 1178 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1179 } 1180 1181 if (OWriter.EmitAddrsigSection) { 1182 uint64_t SecStart = W.OS.tell(); 1183 writeAddrsigSection(); 1184 uint64_t SecEnd = W.OS.tell(); 1185 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1186 } 1187 } 1188 1189 if (CGProfileSection) { 1190 uint64_t SecStart = W.OS.tell(); 1191 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1192 W.write<uint32_t>(CGPE.From->getSymbol().getIndex()); 1193 W.write<uint32_t>(CGPE.To->getSymbol().getIndex()); 1194 W.write<uint64_t>(CGPE.Count); 1195 } 1196 uint64_t SecEnd = W.OS.tell(); 1197 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd); 1198 } 1199 1200 { 1201 uint64_t SecStart = W.OS.tell(); 1202 StrTabBuilder.write(W.OS); 1203 SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell()); 1204 } 1205 1206 const uint64_t SectionHeaderOffset = align(is64Bit() ? 8 : 4); 1207 1208 // ... then the section header table ... 1209 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1210 1211 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1212 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1213 : SectionTable.size() + 1, 1214 W.Endian); 1215 unsigned NumSectionsOffset; 1216 1217 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1218 if (is64Bit()) { 1219 uint64_t Val = 1220 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1221 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1222 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1223 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1224 } else { 1225 uint32_t Val = 1226 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1227 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1228 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1229 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1230 } 1231 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1232 NumSectionsOffset); 1233 1234 return W.OS.tell() - StartOffset; 1235 } 1236 1237 bool ELFObjectWriter::hasRelocationAddend() const { 1238 return TargetObjectWriter->hasRelocationAddend(); 1239 } 1240 1241 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1242 const MCAsmLayout &Layout) { 1243 // The presence of symbol versions causes undefined symbols and 1244 // versions declared with @@@ to be renamed. 1245 for (const MCAssembler::Symver &S : Asm.Symvers) { 1246 StringRef AliasName = S.Name; 1247 const auto &Symbol = cast<MCSymbolELF>(*S.Sym); 1248 size_t Pos = AliasName.find('@'); 1249 assert(Pos != StringRef::npos); 1250 1251 StringRef Prefix = AliasName.substr(0, Pos); 1252 StringRef Rest = AliasName.substr(Pos); 1253 StringRef Tail = Rest; 1254 if (Rest.startswith("@@@")) 1255 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1256 1257 auto *Alias = 1258 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1259 Asm.registerSymbol(*Alias); 1260 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1261 Alias->setVariableValue(Value); 1262 1263 // Aliases defined with .symvar copy the binding from the symbol they alias. 1264 // This is the first place we are able to copy this information. 1265 Alias->setBinding(Symbol.getBinding()); 1266 Alias->setVisibility(Symbol.getVisibility()); 1267 Alias->setOther(Symbol.getOther()); 1268 1269 if (!Symbol.isUndefined() && S.KeepOriginalSym) 1270 continue; 1271 1272 if (Symbol.isUndefined() && Rest.startswith("@@") && 1273 !Rest.startswith("@@@")) { 1274 Asm.getContext().reportError(S.Loc, "default version symbol " + 1275 AliasName + " must be defined"); 1276 continue; 1277 } 1278 1279 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1280 Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") + 1281 Symbol.getName()); 1282 continue; 1283 } 1284 1285 Renames.insert(std::make_pair(&Symbol, Alias)); 1286 } 1287 1288 for (const MCSymbol *&Sym : AddrsigSyms) { 1289 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1290 Sym = R; 1291 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1292 Sym = Sym->getSection().getBeginSymbol(); 1293 Sym->setUsedInReloc(); 1294 } 1295 } 1296 1297 // It is always valid to create a relocation with a symbol. It is preferable 1298 // to use a relocation with a section if that is possible. Using the section 1299 // allows us to omit some local symbols from the symbol table. 1300 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1301 const MCSymbolRefExpr *RefA, 1302 const MCSymbolELF *Sym, 1303 uint64_t C, 1304 unsigned Type) const { 1305 // A PCRel relocation to an absolute value has no symbol (or section). We 1306 // represent that with a relocation to a null section. 1307 if (!RefA) 1308 return false; 1309 1310 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1311 switch (Kind) { 1312 default: 1313 break; 1314 // The .odp creation emits a relocation against the symbol ".TOC." which 1315 // create a R_PPC64_TOC relocation. However the relocation symbol name 1316 // in final object creation should be NULL, since the symbol does not 1317 // really exist, it is just the reference to TOC base for the current 1318 // object file. Since the symbol is undefined, returning false results 1319 // in a relocation with a null section which is the desired result. 1320 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1321 return false; 1322 1323 // These VariantKind cause the relocation to refer to something other than 1324 // the symbol itself, like a linker generated table. Since the address of 1325 // symbol is not relevant, we cannot replace the symbol with the 1326 // section and patch the difference in the addend. 1327 case MCSymbolRefExpr::VK_GOT: 1328 case MCSymbolRefExpr::VK_PLT: 1329 case MCSymbolRefExpr::VK_GOTPCREL: 1330 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1331 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1332 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1333 return true; 1334 } 1335 1336 // An undefined symbol is not in any section, so the relocation has to point 1337 // to the symbol itself. 1338 assert(Sym && "Expected a symbol"); 1339 if (Sym->isUndefined()) 1340 return true; 1341 1342 unsigned Binding = Sym->getBinding(); 1343 switch(Binding) { 1344 default: 1345 llvm_unreachable("Invalid Binding"); 1346 case ELF::STB_LOCAL: 1347 break; 1348 case ELF::STB_WEAK: 1349 // If the symbol is weak, it might be overridden by a symbol in another 1350 // file. The relocation has to point to the symbol so that the linker 1351 // can update it. 1352 return true; 1353 case ELF::STB_GLOBAL: 1354 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1355 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1356 return true; 1357 } 1358 1359 // Keep symbol type for a local ifunc because it may result in an IRELATIVE 1360 // reloc that the dynamic loader will use to resolve the address at startup 1361 // time. 1362 if (Sym->getType() == ELF::STT_GNU_IFUNC) 1363 return true; 1364 1365 // If a relocation points to a mergeable section, we have to be careful. 1366 // If the offset is zero, a relocation with the section will encode the 1367 // same information. With a non-zero offset, the situation is different. 1368 // For example, a relocation can point 42 bytes past the end of a string. 1369 // If we change such a relocation to use the section, the linker would think 1370 // that it pointed to another string and subtracting 42 at runtime will 1371 // produce the wrong value. 1372 if (Sym->isInSection()) { 1373 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1374 unsigned Flags = Sec.getFlags(); 1375 if (Flags & ELF::SHF_MERGE) { 1376 if (C != 0) 1377 return true; 1378 1379 // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9) 1380 // (http://sourceware.org/PR16794). 1381 if (TargetObjectWriter->getEMachine() == ELF::EM_386 && 1382 Type == ELF::R_386_GOTOFF) 1383 return true; 1384 } 1385 1386 // Most TLS relocations use a got, so they need the symbol. Even those that 1387 // are just an offset (@tpoff), require a symbol in gold versions before 1388 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1389 // http://sourceware.org/PR16773. 1390 if (Flags & ELF::SHF_TLS) 1391 return true; 1392 } 1393 1394 // If the symbol is a thumb function the final relocation must set the lowest 1395 // bit. With a symbol that is done by just having the symbol have that bit 1396 // set, so we would lose the bit if we relocated with the section. 1397 // FIXME: We could use the section but add the bit to the relocation value. 1398 if (Asm.isThumbFunc(Sym)) 1399 return true; 1400 1401 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1402 return true; 1403 return false; 1404 } 1405 1406 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1407 const MCAsmLayout &Layout, 1408 const MCFragment *Fragment, 1409 const MCFixup &Fixup, MCValue Target, 1410 uint64_t &FixedValue) { 1411 MCAsmBackend &Backend = Asm.getBackend(); 1412 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1413 MCFixupKindInfo::FKF_IsPCRel; 1414 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1415 uint64_t C = Target.getConstant(); 1416 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1417 MCContext &Ctx = Asm.getContext(); 1418 1419 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1420 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1421 if (SymB.isUndefined()) { 1422 Ctx.reportError(Fixup.getLoc(), 1423 Twine("symbol '") + SymB.getName() + 1424 "' can not be undefined in a subtraction expression"); 1425 return; 1426 } 1427 1428 assert(!SymB.isAbsolute() && "Should have been folded"); 1429 const MCSection &SecB = SymB.getSection(); 1430 if (&SecB != &FixupSection) { 1431 Ctx.reportError(Fixup.getLoc(), 1432 "Cannot represent a difference across sections"); 1433 return; 1434 } 1435 1436 assert(!IsPCRel && "should have been folded"); 1437 IsPCRel = true; 1438 C += FixupOffset - Layout.getSymbolOffset(SymB); 1439 } 1440 1441 // We either rejected the fixup or folded B into C at this point. 1442 const MCSymbolRefExpr *RefA = Target.getSymA(); 1443 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1444 1445 bool ViaWeakRef = false; 1446 if (SymA && SymA->isVariable()) { 1447 const MCExpr *Expr = SymA->getVariableValue(); 1448 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1449 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1450 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1451 ViaWeakRef = true; 1452 } 1453 } 1454 } 1455 1456 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1457 ? cast<MCSectionELF>(&SymA->getSection()) 1458 : nullptr; 1459 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1460 return; 1461 1462 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1463 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 1464 uint64_t Addend = 0; 1465 1466 FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined() 1467 ? C + Layout.getSymbolOffset(*SymA) 1468 : C; 1469 if (hasRelocationAddend()) { 1470 Addend = FixedValue; 1471 FixedValue = 0; 1472 } 1473 1474 if (!RelocateWithSymbol) { 1475 const auto *SectionSymbol = 1476 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1477 if (SectionSymbol) 1478 SectionSymbol->setUsedInReloc(); 1479 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C); 1480 Relocations[&FixupSection].push_back(Rec); 1481 return; 1482 } 1483 1484 const MCSymbolELF *RenamedSymA = SymA; 1485 if (SymA) { 1486 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1487 RenamedSymA = R; 1488 1489 if (ViaWeakRef) 1490 RenamedSymA->setIsWeakrefUsedInReloc(); 1491 else 1492 RenamedSymA->setUsedInReloc(); 1493 } 1494 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C); 1495 Relocations[&FixupSection].push_back(Rec); 1496 } 1497 1498 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1499 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1500 bool InSet, bool IsPCRel) const { 1501 const auto &SymA = cast<MCSymbolELF>(SA); 1502 if (IsPCRel) { 1503 assert(!InSet); 1504 if (SymA.getBinding() != ELF::STB_LOCAL || 1505 SymA.getType() == ELF::STT_GNU_IFUNC) 1506 return false; 1507 } 1508 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1509 InSet, IsPCRel); 1510 } 1511 1512 std::unique_ptr<MCObjectWriter> 1513 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1514 raw_pwrite_stream &OS, bool IsLittleEndian) { 1515 return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1516 IsLittleEndian); 1517 } 1518 1519 std::unique_ptr<MCObjectWriter> 1520 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1521 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1522 bool IsLittleEndian) { 1523 return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1524 IsLittleEndian); 1525 } 1526