1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ELF object file writer information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/MC/MCELFObjectWriter.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAsmLayout.h" 22 #include "llvm/MC/MCAssembler.h" 23 #include "llvm/MC/MCContext.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCObjectWriter.h" 27 #include "llvm/MC/MCSectionELF.h" 28 #include "llvm/MC/MCSymbolELF.h" 29 #include "llvm/MC/MCValue.h" 30 #include "llvm/MC/StringTableBuilder.h" 31 #include "llvm/Support/Compression.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ELF.h" 34 #include "llvm/Support/Endian.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/StringSaver.h" 37 #include <vector> 38 39 using namespace llvm; 40 41 #undef DEBUG_TYPE 42 #define DEBUG_TYPE "reloc-info" 43 44 namespace { 45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy; 46 47 class ELFObjectWriter; 48 49 class SymbolTableWriter { 50 ELFObjectWriter &EWriter; 51 bool Is64Bit; 52 53 // indexes we are going to write to .symtab_shndx. 54 std::vector<uint32_t> ShndxIndexes; 55 56 // The numbel of symbols written so far. 57 unsigned NumWritten; 58 59 void createSymtabShndx(); 60 61 template <typename T> void write(T Value); 62 63 public: 64 SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit); 65 66 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 67 uint8_t other, uint32_t shndx, bool Reserved); 68 69 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 70 }; 71 72 class ELFObjectWriter : public MCObjectWriter { 73 static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind); 74 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 75 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 76 bool Used, bool Renamed); 77 78 /// Helper struct for containing some precomputed information on symbols. 79 struct ELFSymbolData { 80 const MCSymbolELF *Symbol; 81 uint32_t SectionIndex; 82 StringRef Name; 83 84 // Support lexicographic sorting. 85 bool operator<(const ELFSymbolData &RHS) const { 86 unsigned LHSType = Symbol->getType(); 87 unsigned RHSType = RHS.Symbol->getType(); 88 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 89 return false; 90 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 91 return true; 92 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 93 return SectionIndex < RHS.SectionIndex; 94 return Name < RHS.Name; 95 } 96 }; 97 98 /// The target specific ELF writer instance. 99 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 100 101 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 102 103 llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> 104 Relocations; 105 106 /// @} 107 /// @name Symbol Table Data 108 /// @{ 109 110 BumpPtrAllocator Alloc; 111 StringSaver VersionSymSaver{Alloc}; 112 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 113 114 /// @} 115 116 // This holds the symbol table index of the last local symbol. 117 unsigned LastLocalSymbolIndex; 118 // This holds the .strtab section index. 119 unsigned StringTableIndex; 120 // This holds the .symtab section index. 121 unsigned SymbolTableIndex; 122 123 // Sections in the order they are to be output in the section table. 124 std::vector<const MCSectionELF *> SectionTable; 125 unsigned addToSectionTable(const MCSectionELF *Sec); 126 127 // TargetObjectWriter wrappers. 128 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 129 bool hasRelocationAddend() const { 130 return TargetObjectWriter->hasRelocationAddend(); 131 } 132 unsigned getRelocType(MCContext &Ctx, const MCValue &Target, 133 const MCFixup &Fixup, bool IsPCRel) const { 134 return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 135 } 136 137 void align(unsigned Alignment); 138 139 public: 140 ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS, 141 bool IsLittleEndian) 142 : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {} 143 144 void reset() override { 145 Renames.clear(); 146 Relocations.clear(); 147 StrTabBuilder.clear(); 148 SectionTable.clear(); 149 MCObjectWriter::reset(); 150 } 151 152 ~ELFObjectWriter() override; 153 154 void WriteWord(uint64_t W) { 155 if (is64Bit()) 156 write64(W); 157 else 158 write32(W); 159 } 160 161 template <typename T> void write(T Val) { 162 if (IsLittleEndian) 163 support::endian::Writer<support::little>(getStream()).write(Val); 164 else 165 support::endian::Writer<support::big>(getStream()).write(Val); 166 } 167 168 void writeHeader(const MCAssembler &Asm); 169 170 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 171 ELFSymbolData &MSD, const MCAsmLayout &Layout); 172 173 // Start and end offset of each section 174 typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>> 175 SectionOffsetsTy; 176 177 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 178 const MCSymbolRefExpr *RefA, 179 const MCSymbol *Sym, uint64_t C, 180 unsigned Type) const; 181 182 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 183 const MCFragment *Fragment, const MCFixup &Fixup, 184 MCValue Target, bool &IsPCRel, 185 uint64_t &FixedValue) override; 186 187 // Map from a signature symbol to the group section index 188 typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy; 189 190 /// Compute the symbol table data 191 /// 192 /// \param Asm - The assembler. 193 /// \param SectionIndexMap - Maps a section to its index. 194 /// \param RevGroupMap - Maps a signature symbol to the group section. 195 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 196 const SectionIndexMapTy &SectionIndexMap, 197 const RevGroupMapTy &RevGroupMap, 198 SectionOffsetsTy &SectionOffsets); 199 200 MCSectionELF *createRelocationSection(MCContext &Ctx, 201 const MCSectionELF &Sec); 202 203 const MCSectionELF *createStringTable(MCContext &Ctx); 204 205 void executePostLayoutBinding(MCAssembler &Asm, 206 const MCAsmLayout &Layout) override; 207 208 void writeSectionHeader(const MCAsmLayout &Layout, 209 const SectionIndexMapTy &SectionIndexMap, 210 const SectionOffsetsTy &SectionOffsets); 211 212 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 213 const MCAsmLayout &Layout); 214 215 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 216 uint64_t Address, uint64_t Offset, uint64_t Size, 217 uint32_t Link, uint32_t Info, uint64_t Alignment, 218 uint64_t EntrySize); 219 220 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 221 222 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 223 const MCSymbol &SymA, 224 const MCFragment &FB, bool InSet, 225 bool IsPCRel) const override; 226 227 bool isWeak(const MCSymbol &Sym) const override; 228 229 void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 230 void writeSection(const SectionIndexMapTy &SectionIndexMap, 231 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 232 const MCSectionELF &Section); 233 }; 234 } // end anonymous namespace 235 236 void ELFObjectWriter::align(unsigned Alignment) { 237 uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment); 238 WriteZeros(Padding); 239 } 240 241 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) { 242 SectionTable.push_back(Sec); 243 StrTabBuilder.add(Sec->getSectionName()); 244 return SectionTable.size(); 245 } 246 247 void SymbolTableWriter::createSymtabShndx() { 248 if (!ShndxIndexes.empty()) 249 return; 250 251 ShndxIndexes.resize(NumWritten); 252 } 253 254 template <typename T> void SymbolTableWriter::write(T Value) { 255 EWriter.write(Value); 256 } 257 258 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit) 259 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 260 261 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 262 uint64_t size, uint8_t other, 263 uint32_t shndx, bool Reserved) { 264 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 265 266 if (LargeIndex) 267 createSymtabShndx(); 268 269 if (!ShndxIndexes.empty()) { 270 if (LargeIndex) 271 ShndxIndexes.push_back(shndx); 272 else 273 ShndxIndexes.push_back(0); 274 } 275 276 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 277 278 if (Is64Bit) { 279 write(name); // st_name 280 write(info); // st_info 281 write(other); // st_other 282 write(Index); // st_shndx 283 write(value); // st_value 284 write(size); // st_size 285 } else { 286 write(name); // st_name 287 write(uint32_t(value)); // st_value 288 write(uint32_t(size)); // st_size 289 write(info); // st_info 290 write(other); // st_other 291 write(Index); // st_shndx 292 } 293 294 ++NumWritten; 295 } 296 297 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) { 298 const MCFixupKindInfo &FKI = 299 Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind); 300 301 return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel; 302 } 303 304 ELFObjectWriter::~ELFObjectWriter() 305 {} 306 307 // Emit the ELF header. 308 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) { 309 // ELF Header 310 // ---------- 311 // 312 // Note 313 // ---- 314 // emitWord method behaves differently for ELF32 and ELF64, writing 315 // 4 bytes in the former and 8 in the latter. 316 317 writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3] 318 319 write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 320 321 // e_ident[EI_DATA] 322 write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB); 323 324 write8(ELF::EV_CURRENT); // e_ident[EI_VERSION] 325 // e_ident[EI_OSABI] 326 write8(TargetObjectWriter->getOSABI()); 327 write8(0); // e_ident[EI_ABIVERSION] 328 329 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD); 330 331 write16(ELF::ET_REL); // e_type 332 333 write16(TargetObjectWriter->getEMachine()); // e_machine = target 334 335 write32(ELF::EV_CURRENT); // e_version 336 WriteWord(0); // e_entry, no entry point in .o file 337 WriteWord(0); // e_phoff, no program header for .o 338 WriteWord(0); // e_shoff = sec hdr table off in bytes 339 340 // e_flags = whatever the target wants 341 write32(Asm.getELFHeaderEFlags()); 342 343 // e_ehsize = ELF header size 344 write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr)); 345 346 write16(0); // e_phentsize = prog header entry size 347 write16(0); // e_phnum = # prog header entries = 0 348 349 // e_shentsize = Section header entry size 350 write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr)); 351 352 // e_shnum = # of section header ents 353 write16(0); 354 355 // e_shstrndx = Section # of '.shstrtab' 356 assert(StringTableIndex < ELF::SHN_LORESERVE); 357 write16(StringTableIndex); 358 } 359 360 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym, 361 const MCAsmLayout &Layout) { 362 if (Sym.isCommon() && Sym.isExternal()) 363 return Sym.getCommonAlignment(); 364 365 uint64_t Res; 366 if (!Layout.getSymbolOffset(Sym, Res)) 367 return 0; 368 369 if (Layout.getAssembler().isThumbFunc(&Sym)) 370 Res |= 1; 371 372 return Res; 373 } 374 375 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 376 const MCAsmLayout &Layout) { 377 // Section symbols are used as definitions for undefined symbols with matching 378 // names. If there are multiple sections with the same name, the first one is 379 // used. 380 for (const MCSection &Sec : Asm) { 381 const MCSymbol *Begin = Sec.getBeginSymbol(); 382 if (!Begin) 383 continue; 384 385 const MCSymbol *Alias = Asm.getContext().lookupSymbol(Begin->getName()); 386 if (!Alias || !Alias->isUndefined()) 387 continue; 388 389 Renames.insert( 390 std::make_pair(cast<MCSymbolELF>(Alias), cast<MCSymbolELF>(Begin))); 391 } 392 393 // The presence of symbol versions causes undefined symbols and 394 // versions declared with @@@ to be renamed. 395 for (const MCSymbol &A : Asm.symbols()) { 396 const auto &Alias = cast<MCSymbolELF>(A); 397 // Not an alias. 398 if (!Alias.isVariable()) 399 continue; 400 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue()); 401 if (!Ref) 402 continue; 403 const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol()); 404 405 StringRef AliasName = Alias.getName(); 406 size_t Pos = AliasName.find('@'); 407 if (Pos == StringRef::npos) 408 continue; 409 410 // Aliases defined with .symvar copy the binding from the symbol they alias. 411 // This is the first place we are able to copy this information. 412 Alias.setExternal(Symbol.isExternal()); 413 Alias.setBinding(Symbol.getBinding()); 414 415 StringRef Rest = AliasName.substr(Pos); 416 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 417 continue; 418 419 // FIXME: produce a better error message. 420 if (Symbol.isUndefined() && Rest.startswith("@@") && 421 !Rest.startswith("@@@")) 422 report_fatal_error("A @@ version cannot be undefined"); 423 424 Renames.insert(std::make_pair(&Symbol, &Alias)); 425 } 426 } 427 428 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 429 uint8_t Type = newType; 430 431 // Propagation rules: 432 // IFUNC > FUNC > OBJECT > NOTYPE 433 // TLS_OBJECT > OBJECT > NOTYPE 434 // 435 // dont let the new type degrade the old type 436 switch (origType) { 437 default: 438 break; 439 case ELF::STT_GNU_IFUNC: 440 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 441 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 442 Type = ELF::STT_GNU_IFUNC; 443 break; 444 case ELF::STT_FUNC: 445 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 446 Type == ELF::STT_TLS) 447 Type = ELF::STT_FUNC; 448 break; 449 case ELF::STT_OBJECT: 450 if (Type == ELF::STT_NOTYPE) 451 Type = ELF::STT_OBJECT; 452 break; 453 case ELF::STT_TLS: 454 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 455 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 456 Type = ELF::STT_TLS; 457 break; 458 } 459 460 return Type; 461 } 462 463 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer, 464 uint32_t StringIndex, ELFSymbolData &MSD, 465 const MCAsmLayout &Layout) { 466 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 467 const MCSymbolELF *Base = 468 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 469 470 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 471 // SHN_COMMON. 472 bool IsReserved = !Base || Symbol.isCommon(); 473 474 // Binding and Type share the same byte as upper and lower nibbles 475 uint8_t Binding = Symbol.getBinding(); 476 uint8_t Type = Symbol.getType(); 477 if (Base) { 478 Type = mergeTypeForSet(Type, Base->getType()); 479 } 480 uint8_t Info = (Binding << 4) | Type; 481 482 // Other and Visibility share the same byte with Visibility using the lower 483 // 2 bits 484 uint8_t Visibility = Symbol.getVisibility(); 485 uint8_t Other = Symbol.getOther() | Visibility; 486 487 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 488 uint64_t Size = 0; 489 490 const MCExpr *ESize = MSD.Symbol->getSize(); 491 if (!ESize && Base) 492 ESize = Base->getSize(); 493 494 if (ESize) { 495 int64_t Res; 496 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 497 report_fatal_error("Size expression must be absolute."); 498 Size = Res; 499 } 500 501 // Write out the symbol table entry 502 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 503 IsReserved); 504 } 505 506 // It is always valid to create a relocation with a symbol. It is preferable 507 // to use a relocation with a section if that is possible. Using the section 508 // allows us to omit some local symbols from the symbol table. 509 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 510 const MCSymbolRefExpr *RefA, 511 const MCSymbol *S, uint64_t C, 512 unsigned Type) const { 513 const auto *Sym = cast_or_null<MCSymbolELF>(S); 514 // A PCRel relocation to an absolute value has no symbol (or section). We 515 // represent that with a relocation to a null section. 516 if (!RefA) 517 return false; 518 519 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 520 switch (Kind) { 521 default: 522 break; 523 // The .odp creation emits a relocation against the symbol ".TOC." which 524 // create a R_PPC64_TOC relocation. However the relocation symbol name 525 // in final object creation should be NULL, since the symbol does not 526 // really exist, it is just the reference to TOC base for the current 527 // object file. Since the symbol is undefined, returning false results 528 // in a relocation with a null section which is the desired result. 529 case MCSymbolRefExpr::VK_PPC_TOCBASE: 530 return false; 531 532 // These VariantKind cause the relocation to refer to something other than 533 // the symbol itself, like a linker generated table. Since the address of 534 // symbol is not relevant, we cannot replace the symbol with the 535 // section and patch the difference in the addend. 536 case MCSymbolRefExpr::VK_GOT: 537 case MCSymbolRefExpr::VK_PLT: 538 case MCSymbolRefExpr::VK_GOTPCREL: 539 case MCSymbolRefExpr::VK_Mips_GOT: 540 case MCSymbolRefExpr::VK_PPC_GOT_LO: 541 case MCSymbolRefExpr::VK_PPC_GOT_HI: 542 case MCSymbolRefExpr::VK_PPC_GOT_HA: 543 return true; 544 } 545 546 // An undefined symbol is not in any section, so the relocation has to point 547 // to the symbol itself. 548 assert(Sym && "Expected a symbol"); 549 if (Sym->isUndefined()) 550 return true; 551 552 unsigned Binding = Sym->getBinding(); 553 switch(Binding) { 554 default: 555 llvm_unreachable("Invalid Binding"); 556 case ELF::STB_LOCAL: 557 break; 558 case ELF::STB_WEAK: 559 // If the symbol is weak, it might be overridden by a symbol in another 560 // file. The relocation has to point to the symbol so that the linker 561 // can update it. 562 return true; 563 case ELF::STB_GLOBAL: 564 // Global ELF symbols can be preempted by the dynamic linker. The relocation 565 // has to point to the symbol for a reason analogous to the STB_WEAK case. 566 return true; 567 } 568 569 // If a relocation points to a mergeable section, we have to be careful. 570 // If the offset is zero, a relocation with the section will encode the 571 // same information. With a non-zero offset, the situation is different. 572 // For example, a relocation can point 42 bytes past the end of a string. 573 // If we change such a relocation to use the section, the linker would think 574 // that it pointed to another string and subtracting 42 at runtime will 575 // produce the wrong value. 576 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 577 unsigned Flags = Sec.getFlags(); 578 if (Flags & ELF::SHF_MERGE) { 579 if (C != 0) 580 return true; 581 582 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 583 // only handle section relocations to mergeable sections if using RELA. 584 if (!hasRelocationAddend()) 585 return true; 586 } 587 588 // Most TLS relocations use a got, so they need the symbol. Even those that 589 // are just an offset (@tpoff), require a symbol in gold versions before 590 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 591 // http://sourceware.org/PR16773. 592 if (Flags & ELF::SHF_TLS) 593 return true; 594 595 // If the symbol is a thumb function the final relocation must set the lowest 596 // bit. With a symbol that is done by just having the symbol have that bit 597 // set, so we would lose the bit if we relocated with the section. 598 // FIXME: We could use the section but add the bit to the relocation value. 599 if (Asm.isThumbFunc(Sym)) 600 return true; 601 602 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 603 return true; 604 return false; 605 } 606 607 // True if the assembler knows nothing about the final value of the symbol. 608 // This doesn't cover the comdat issues, since in those cases the assembler 609 // can at least know that all symbols in the section will move together. 610 static bool isWeak(const MCSymbolELF &Sym) { 611 if (Sym.getType() == ELF::STT_GNU_IFUNC) 612 return true; 613 614 switch (Sym.getBinding()) { 615 default: 616 llvm_unreachable("Unknown binding"); 617 case ELF::STB_LOCAL: 618 return false; 619 case ELF::STB_GLOBAL: 620 return false; 621 case ELF::STB_WEAK: 622 case ELF::STB_GNU_UNIQUE: 623 return true; 624 } 625 } 626 627 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 628 const MCAsmLayout &Layout, 629 const MCFragment *Fragment, 630 const MCFixup &Fixup, MCValue Target, 631 bool &IsPCRel, uint64_t &FixedValue) { 632 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 633 uint64_t C = Target.getConstant(); 634 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 635 MCContext &Ctx = Asm.getContext(); 636 637 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 638 assert(RefB->getKind() == MCSymbolRefExpr::VK_None && 639 "Should not have constructed this"); 640 641 // Let A, B and C being the components of Target and R be the location of 642 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 643 // If it is pcrel, we want to compute (A - B + C - R). 644 645 // In general, ELF has no relocations for -B. It can only represent (A + C) 646 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 647 // replace B to implement it: (A - R - K + C) 648 if (IsPCRel) { 649 Ctx.reportError( 650 Fixup.getLoc(), 651 "No relocation available to represent this relative expression"); 652 return; 653 } 654 655 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 656 657 if (SymB.isUndefined()) { 658 Ctx.reportError(Fixup.getLoc(), 659 Twine("symbol '") + SymB.getName() + 660 "' can not be undefined in a subtraction expression"); 661 return; 662 } 663 664 assert(!SymB.isAbsolute() && "Should have been folded"); 665 const MCSection &SecB = SymB.getSection(); 666 if (&SecB != &FixupSection) { 667 Ctx.reportError(Fixup.getLoc(), 668 "Cannot represent a difference across sections"); 669 return; 670 } 671 672 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 673 uint64_t K = SymBOffset - FixupOffset; 674 IsPCRel = true; 675 C -= K; 676 } 677 678 // We either rejected the fixup or folded B into C at this point. 679 const MCSymbolRefExpr *RefA = Target.getSymA(); 680 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 681 682 bool ViaWeakRef = false; 683 if (SymA && SymA->isVariable()) { 684 const MCExpr *Expr = SymA->getVariableValue(); 685 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 686 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 687 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 688 ViaWeakRef = true; 689 } 690 } 691 } 692 693 unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel); 694 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 695 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 696 C += Layout.getSymbolOffset(*SymA); 697 698 uint64_t Addend = 0; 699 if (hasRelocationAddend()) { 700 Addend = C; 701 C = 0; 702 } 703 704 FixedValue = C; 705 706 if (!RelocateWithSymbol) { 707 const MCSection *SecA = 708 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr; 709 auto *ELFSec = cast_or_null<MCSectionELF>(SecA); 710 const auto *SectionSymbol = 711 ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr; 712 if (SectionSymbol) 713 SectionSymbol->setUsedInReloc(); 714 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend); 715 Relocations[&FixupSection].push_back(Rec); 716 return; 717 } 718 719 if (SymA) { 720 if (const MCSymbolELF *R = Renames.lookup(SymA)) 721 SymA = R; 722 723 if (ViaWeakRef) 724 SymA->setIsWeakrefUsedInReloc(); 725 else 726 SymA->setUsedInReloc(); 727 } 728 ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend); 729 Relocations[&FixupSection].push_back(Rec); 730 } 731 732 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout, 733 const MCSymbolELF &Symbol, bool Used, 734 bool Renamed) { 735 if (Symbol.isVariable()) { 736 const MCExpr *Expr = Symbol.getVariableValue(); 737 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 738 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 739 return false; 740 } 741 } 742 743 if (Used) 744 return true; 745 746 if (Renamed) 747 return false; 748 749 if (Symbol.isVariable() && Symbol.isUndefined()) { 750 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 751 Layout.getBaseSymbol(Symbol); 752 return false; 753 } 754 755 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 756 return false; 757 758 if (Symbol.isTemporary()) 759 return false; 760 761 if (Symbol.getType() == ELF::STT_SECTION) 762 return false; 763 764 return true; 765 } 766 767 void ELFObjectWriter::computeSymbolTable( 768 MCAssembler &Asm, const MCAsmLayout &Layout, 769 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 770 SectionOffsetsTy &SectionOffsets) { 771 MCContext &Ctx = Asm.getContext(); 772 SymbolTableWriter Writer(*this, is64Bit()); 773 774 // Symbol table 775 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 776 MCSectionELF *SymtabSection = 777 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 778 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 779 SymbolTableIndex = addToSectionTable(SymtabSection); 780 781 align(SymtabSection->getAlignment()); 782 uint64_t SecStart = getStream().tell(); 783 784 // The first entry is the undefined symbol entry. 785 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 786 787 std::vector<ELFSymbolData> LocalSymbolData; 788 std::vector<ELFSymbolData> ExternalSymbolData; 789 790 // Add the data for the symbols. 791 bool HasLargeSectionIndex = false; 792 for (const MCSymbol &S : Asm.symbols()) { 793 const auto &Symbol = cast<MCSymbolELF>(S); 794 bool Used = Symbol.isUsedInReloc(); 795 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 796 bool isSignature = Symbol.isSignature(); 797 798 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 799 Renames.count(&Symbol))) 800 continue; 801 802 if (Symbol.isTemporary() && Symbol.isUndefined()) { 803 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 804 continue; 805 } 806 807 ELFSymbolData MSD; 808 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 809 810 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 811 assert(Local || !Symbol.isTemporary()); 812 813 if (Symbol.isAbsolute()) { 814 MSD.SectionIndex = ELF::SHN_ABS; 815 } else if (Symbol.isCommon()) { 816 assert(!Local); 817 MSD.SectionIndex = ELF::SHN_COMMON; 818 } else if (Symbol.isUndefined()) { 819 if (isSignature && !Used) { 820 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 821 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 822 HasLargeSectionIndex = true; 823 } else { 824 MSD.SectionIndex = ELF::SHN_UNDEF; 825 } 826 } else { 827 const MCSectionELF &Section = 828 static_cast<const MCSectionELF &>(Symbol.getSection()); 829 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 830 assert(MSD.SectionIndex && "Invalid section index!"); 831 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 832 HasLargeSectionIndex = true; 833 } 834 835 // The @@@ in symbol version is replaced with @ in undefined symbols and @@ 836 // in defined ones. 837 // 838 // FIXME: All name handling should be done before we get to the writer, 839 // including dealing with GNU-style version suffixes. Fixing this isn't 840 // trivial. 841 // 842 // We thus have to be careful to not perform the symbol version replacement 843 // blindly: 844 // 845 // The ELF format is used on Windows by the MCJIT engine. Thus, on 846 // Windows, the ELFObjectWriter can encounter symbols mangled using the MS 847 // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC 848 // C++ name mangling can legally have "@@@" as a sub-string. In that case, 849 // the EFLObjectWriter should not interpret the "@@@" sub-string as 850 // specifying GNU-style symbol versioning. The ELFObjectWriter therefore 851 // checks for the MSVC C++ name mangling prefix which is either "?", "@?", 852 // "__imp_?" or "__imp_@?". 853 // 854 // It would have been interesting to perform the MS mangling prefix check 855 // only when the target triple is of the form *-pc-windows-elf. But, it 856 // seems that this information is not easily accessible from the 857 // ELFObjectWriter. 858 StringRef Name = Symbol.getName(); 859 SmallString<32> Buf; 860 if (!Name.startswith("?") && !Name.startswith("@?") && 861 !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) { 862 // This symbol isn't following the MSVC C++ name mangling convention. We 863 // can thus safely interpret the @@@ in symbol names as specifying symbol 864 // versioning. 865 size_t Pos = Name.find("@@@"); 866 if (Pos != StringRef::npos) { 867 Buf += Name.substr(0, Pos); 868 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1; 869 Buf += Name.substr(Pos + Skip); 870 Name = VersionSymSaver.save(Buf.c_str()); 871 } 872 } 873 874 // Sections have their own string table 875 if (Symbol.getType() != ELF::STT_SECTION) { 876 MSD.Name = Name; 877 StrTabBuilder.add(Name); 878 } 879 880 if (Local) 881 LocalSymbolData.push_back(MSD); 882 else 883 ExternalSymbolData.push_back(MSD); 884 } 885 886 // This holds the .symtab_shndx section index. 887 unsigned SymtabShndxSectionIndex = 0; 888 889 if (HasLargeSectionIndex) { 890 MCSectionELF *SymtabShndxSection = 891 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 892 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 893 SymtabShndxSection->setAlignment(4); 894 } 895 896 ArrayRef<std::string> FileNames = Asm.getFileNames(); 897 for (const std::string &Name : FileNames) 898 StrTabBuilder.add(Name); 899 900 StrTabBuilder.finalize(); 901 902 for (const std::string &Name : FileNames) 903 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 904 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 905 ELF::SHN_ABS, true); 906 907 // Symbols are required to be in lexicographic order. 908 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 909 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 910 911 // Set the symbol indices. Local symbols must come before all other 912 // symbols with non-local bindings. 913 unsigned Index = FileNames.size() + 1; 914 915 for (ELFSymbolData &MSD : LocalSymbolData) { 916 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 917 ? 0 918 : StrTabBuilder.getOffset(MSD.Name); 919 MSD.Symbol->setIndex(Index++); 920 writeSymbol(Writer, StringIndex, MSD, Layout); 921 } 922 923 // Write the symbol table entries. 924 LastLocalSymbolIndex = Index; 925 926 for (ELFSymbolData &MSD : ExternalSymbolData) { 927 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 928 MSD.Symbol->setIndex(Index++); 929 writeSymbol(Writer, StringIndex, MSD, Layout); 930 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 931 } 932 933 uint64_t SecEnd = getStream().tell(); 934 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 935 936 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 937 if (ShndxIndexes.empty()) { 938 assert(SymtabShndxSectionIndex == 0); 939 return; 940 } 941 assert(SymtabShndxSectionIndex != 0); 942 943 SecStart = getStream().tell(); 944 const MCSectionELF *SymtabShndxSection = 945 SectionTable[SymtabShndxSectionIndex - 1]; 946 for (uint32_t Index : ShndxIndexes) 947 write(Index); 948 SecEnd = getStream().tell(); 949 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 950 } 951 952 MCSectionELF * 953 ELFObjectWriter::createRelocationSection(MCContext &Ctx, 954 const MCSectionELF &Sec) { 955 if (Relocations[&Sec].empty()) 956 return nullptr; 957 958 const StringRef SectionName = Sec.getSectionName(); 959 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 960 RelaSectionName += SectionName; 961 962 unsigned EntrySize; 963 if (hasRelocationAddend()) 964 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 965 else 966 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 967 968 unsigned Flags = 0; 969 if (Sec.getFlags() & ELF::SHF_GROUP) 970 Flags = ELF::SHF_GROUP; 971 972 MCSectionELF *RelaSection = Ctx.createELFRelSection( 973 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 974 Flags, EntrySize, Sec.getGroup(), &Sec); 975 RelaSection->setAlignment(is64Bit() ? 8 : 4); 976 return RelaSection; 977 } 978 979 // Include the debug info compression header: 980 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 981 // useful for consumers to preallocate a buffer to decompress into. 982 static bool 983 prependCompressionHeader(uint64_t Size, 984 SmallVectorImpl<char> &CompressedContents) { 985 const StringRef Magic = "ZLIB"; 986 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 987 return false; 988 if (sys::IsLittleEndianHost) 989 sys::swapByteOrder(Size); 990 CompressedContents.insert(CompressedContents.begin(), 991 Magic.size() + sizeof(Size), 0); 992 std::copy(Magic.begin(), Magic.end(), CompressedContents.begin()); 993 std::copy(reinterpret_cast<char *>(&Size), 994 reinterpret_cast<char *>(&Size + 1), 995 CompressedContents.begin() + Magic.size()); 996 return true; 997 } 998 999 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 1000 const MCAsmLayout &Layout) { 1001 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1002 StringRef SectionName = Section.getSectionName(); 1003 1004 // Compressing debug_frame requires handling alignment fragments which is 1005 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 1006 // for writing to arbitrary buffers) for little benefit. 1007 if (!Asm.getContext().getAsmInfo()->compressDebugSections() || 1008 !SectionName.startswith(".debug_") || SectionName == ".debug_frame") { 1009 Asm.writeSectionData(&Section, Layout); 1010 return; 1011 } 1012 1013 SmallVector<char, 128> UncompressedData; 1014 raw_svector_ostream VecOS(UncompressedData); 1015 raw_pwrite_stream &OldStream = getStream(); 1016 setStream(VecOS); 1017 Asm.writeSectionData(&Section, Layout); 1018 setStream(OldStream); 1019 1020 SmallVector<char, 128> CompressedContents; 1021 zlib::Status Success = zlib::compress( 1022 StringRef(UncompressedData.data(), UncompressedData.size()), 1023 CompressedContents); 1024 if (Success != zlib::StatusOK) { 1025 getStream() << UncompressedData; 1026 return; 1027 } 1028 1029 if (!prependCompressionHeader(UncompressedData.size(), CompressedContents)) { 1030 getStream() << UncompressedData; 1031 return; 1032 } 1033 Asm.getContext().renameELFSection(&Section, 1034 (".z" + SectionName.drop_front(1)).str()); 1035 getStream() << CompressedContents; 1036 } 1037 1038 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, 1039 uint64_t Flags, uint64_t Address, 1040 uint64_t Offset, uint64_t Size, 1041 uint32_t Link, uint32_t Info, 1042 uint64_t Alignment, 1043 uint64_t EntrySize) { 1044 write32(Name); // sh_name: index into string table 1045 write32(Type); // sh_type 1046 WriteWord(Flags); // sh_flags 1047 WriteWord(Address); // sh_addr 1048 WriteWord(Offset); // sh_offset 1049 WriteWord(Size); // sh_size 1050 write32(Link); // sh_link 1051 write32(Info); // sh_info 1052 WriteWord(Alignment); // sh_addralign 1053 WriteWord(EntrySize); // sh_entsize 1054 } 1055 1056 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm, 1057 const MCSectionELF &Sec) { 1058 std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec]; 1059 1060 // We record relocations by pushing to the end of a vector. Reverse the vector 1061 // to get the relocations in the order they were created. 1062 // In most cases that is not important, but it can be for special sections 1063 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 1064 std::reverse(Relocs.begin(), Relocs.end()); 1065 1066 // Sort the relocation entries. MIPS needs this. 1067 TargetObjectWriter->sortRelocs(Asm, Relocs); 1068 1069 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1070 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 1071 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 1072 1073 if (is64Bit()) { 1074 write(Entry.Offset); 1075 if (TargetObjectWriter->isN64()) { 1076 write(uint32_t(Index)); 1077 1078 write(TargetObjectWriter->getRSsym(Entry.Type)); 1079 write(TargetObjectWriter->getRType3(Entry.Type)); 1080 write(TargetObjectWriter->getRType2(Entry.Type)); 1081 write(TargetObjectWriter->getRType(Entry.Type)); 1082 } else { 1083 struct ELF::Elf64_Rela ERE64; 1084 ERE64.setSymbolAndType(Index, Entry.Type); 1085 write(ERE64.r_info); 1086 } 1087 if (hasRelocationAddend()) 1088 write(Entry.Addend); 1089 } else { 1090 write(uint32_t(Entry.Offset)); 1091 1092 struct ELF::Elf32_Rela ERE32; 1093 ERE32.setSymbolAndType(Index, Entry.Type); 1094 write(ERE32.r_info); 1095 1096 if (hasRelocationAddend()) 1097 write(uint32_t(Entry.Addend)); 1098 } 1099 } 1100 } 1101 1102 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) { 1103 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 1104 getStream() << StrTabBuilder.data(); 1105 return StrtabSection; 1106 } 1107 1108 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 1109 uint32_t GroupSymbolIndex, uint64_t Offset, 1110 uint64_t Size, const MCSectionELF &Section) { 1111 uint64_t sh_link = 0; 1112 uint64_t sh_info = 0; 1113 1114 switch(Section.getType()) { 1115 default: 1116 // Nothing to do. 1117 break; 1118 1119 case ELF::SHT_DYNAMIC: 1120 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 1121 1122 case ELF::SHT_REL: 1123 case ELF::SHT_RELA: { 1124 sh_link = SymbolTableIndex; 1125 assert(sh_link && ".symtab not found"); 1126 const MCSectionELF *InfoSection = Section.getAssociatedSection(); 1127 sh_info = SectionIndexMap.lookup(InfoSection); 1128 break; 1129 } 1130 1131 case ELF::SHT_SYMTAB: 1132 case ELF::SHT_DYNSYM: 1133 sh_link = StringTableIndex; 1134 sh_info = LastLocalSymbolIndex; 1135 break; 1136 1137 case ELF::SHT_SYMTAB_SHNDX: 1138 sh_link = SymbolTableIndex; 1139 break; 1140 1141 case ELF::SHT_GROUP: 1142 sh_link = SymbolTableIndex; 1143 sh_info = GroupSymbolIndex; 1144 break; 1145 } 1146 1147 if (TargetObjectWriter->getEMachine() == ELF::EM_ARM && 1148 Section.getType() == ELF::SHT_ARM_EXIDX) 1149 sh_link = SectionIndexMap.lookup(Section.getAssociatedSection()); 1150 1151 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1152 Section.getType(), Section.getFlags(), 0, Offset, Size, 1153 sh_link, sh_info, Section.getAlignment(), 1154 Section.getEntrySize()); 1155 } 1156 1157 void ELFObjectWriter::writeSectionHeader( 1158 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1159 const SectionOffsetsTy &SectionOffsets) { 1160 const unsigned NumSections = SectionTable.size(); 1161 1162 // Null section first. 1163 uint64_t FirstSectionSize = 1164 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1165 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1166 1167 for (const MCSectionELF *Section : SectionTable) { 1168 uint32_t GroupSymbolIndex; 1169 unsigned Type = Section->getType(); 1170 if (Type != ELF::SHT_GROUP) 1171 GroupSymbolIndex = 0; 1172 else 1173 GroupSymbolIndex = Section->getGroup()->getIndex(); 1174 1175 const std::pair<uint64_t, uint64_t> &Offsets = 1176 SectionOffsets.find(Section)->second; 1177 uint64_t Size; 1178 if (Type == ELF::SHT_NOBITS) 1179 Size = Layout.getSectionAddressSize(Section); 1180 else 1181 Size = Offsets.second - Offsets.first; 1182 1183 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1184 *Section); 1185 } 1186 } 1187 1188 void ELFObjectWriter::writeObject(MCAssembler &Asm, 1189 const MCAsmLayout &Layout) { 1190 MCContext &Ctx = Asm.getContext(); 1191 MCSectionELF *StrtabSection = 1192 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1193 StringTableIndex = addToSectionTable(StrtabSection); 1194 1195 RevGroupMapTy RevGroupMap; 1196 SectionIndexMapTy SectionIndexMap; 1197 1198 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1199 1200 // Write out the ELF header ... 1201 writeHeader(Asm); 1202 1203 // ... then the sections ... 1204 SectionOffsetsTy SectionOffsets; 1205 std::vector<MCSectionELF *> Groups; 1206 std::vector<MCSectionELF *> Relocations; 1207 for (MCSection &Sec : Asm) { 1208 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1209 1210 align(Section.getAlignment()); 1211 1212 // Remember the offset into the file for this section. 1213 uint64_t SecStart = getStream().tell(); 1214 1215 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1216 writeSectionData(Asm, Section, Layout); 1217 1218 uint64_t SecEnd = getStream().tell(); 1219 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1220 1221 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1222 1223 if (SignatureSymbol) { 1224 Asm.registerSymbol(*SignatureSymbol); 1225 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1226 if (!GroupIdx) { 1227 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1228 GroupIdx = addToSectionTable(Group); 1229 Group->setAlignment(4); 1230 Groups.push_back(Group); 1231 } 1232 std::vector<const MCSectionELF *> &Members = 1233 GroupMembers[SignatureSymbol]; 1234 Members.push_back(&Section); 1235 if (RelSection) 1236 Members.push_back(RelSection); 1237 } 1238 1239 SectionIndexMap[&Section] = addToSectionTable(&Section); 1240 if (RelSection) { 1241 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1242 Relocations.push_back(RelSection); 1243 } 1244 } 1245 1246 for (MCSectionELF *Group : Groups) { 1247 align(Group->getAlignment()); 1248 1249 // Remember the offset into the file for this section. 1250 uint64_t SecStart = getStream().tell(); 1251 1252 const MCSymbol *SignatureSymbol = Group->getGroup(); 1253 assert(SignatureSymbol); 1254 write(uint32_t(ELF::GRP_COMDAT)); 1255 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1256 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1257 write(SecIndex); 1258 } 1259 1260 uint64_t SecEnd = getStream().tell(); 1261 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1262 } 1263 1264 // Compute symbol table information. 1265 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets); 1266 1267 for (MCSectionELF *RelSection : Relocations) { 1268 align(RelSection->getAlignment()); 1269 1270 // Remember the offset into the file for this section. 1271 uint64_t SecStart = getStream().tell(); 1272 1273 writeRelocations(Asm, *RelSection->getAssociatedSection()); 1274 1275 uint64_t SecEnd = getStream().tell(); 1276 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1277 } 1278 1279 { 1280 uint64_t SecStart = getStream().tell(); 1281 const MCSectionELF *Sec = createStringTable(Ctx); 1282 uint64_t SecEnd = getStream().tell(); 1283 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1284 } 1285 1286 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1287 align(NaturalAlignment); 1288 1289 const uint64_t SectionHeaderOffset = getStream().tell(); 1290 1291 // ... then the section header table ... 1292 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1293 1294 uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) 1295 ? (uint16_t)ELF::SHN_UNDEF 1296 : SectionTable.size() + 1; 1297 if (sys::IsLittleEndianHost != IsLittleEndian) 1298 sys::swapByteOrder(NumSections); 1299 unsigned NumSectionsOffset; 1300 1301 if (is64Bit()) { 1302 uint64_t Val = SectionHeaderOffset; 1303 if (sys::IsLittleEndianHost != IsLittleEndian) 1304 sys::swapByteOrder(Val); 1305 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1306 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1307 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1308 } else { 1309 uint32_t Val = SectionHeaderOffset; 1310 if (sys::IsLittleEndianHost != IsLittleEndian) 1311 sys::swapByteOrder(Val); 1312 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1313 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1314 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1315 } 1316 getStream().pwrite(reinterpret_cast<char *>(&NumSections), 1317 sizeof(NumSections), NumSectionsOffset); 1318 } 1319 1320 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1321 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1322 bool InSet, bool IsPCRel) const { 1323 const auto &SymA = cast<MCSymbolELF>(SA); 1324 if (IsPCRel) { 1325 assert(!InSet); 1326 if (::isWeak(SymA)) 1327 return false; 1328 } 1329 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1330 InSet, IsPCRel); 1331 } 1332 1333 bool ELFObjectWriter::isWeak(const MCSymbol &S) const { 1334 const auto &Sym = cast<MCSymbolELF>(S); 1335 if (::isWeak(Sym)) 1336 return true; 1337 1338 // It is invalid to replace a reference to a global in a comdat 1339 // with a reference to a local since out of comdat references 1340 // to a local are forbidden. 1341 // We could try to return false for more cases, like the reference 1342 // being in the same comdat or Sym being an alias to another global, 1343 // but it is not clear if it is worth the effort. 1344 if (Sym.getBinding() != ELF::STB_GLOBAL) 1345 return false; 1346 1347 if (!Sym.isInSection()) 1348 return false; 1349 1350 const auto &Sec = cast<MCSectionELF>(Sym.getSection()); 1351 return Sec.getGroup(); 1352 } 1353 1354 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW, 1355 raw_pwrite_stream &OS, 1356 bool IsLittleEndian) { 1357 return new ELFObjectWriter(MOTW, OS, IsLittleEndian); 1358 } 1359