1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements ELF object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFixupKindInfo.h"
30 #include "llvm/MC/MCFragment.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCObjectWriter.h"
33 #include "llvm/MC/MCSection.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCSymbolELF.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/MC/StringTableBuilder.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compression.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/Error.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Host.h"
46 #include "llvm/Support/LEB128.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/SMLoc.h"
49 #include "llvm/Support/StringSaver.h"
50 #include "llvm/Support/SwapByteOrder.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstddef>
55 #include <cstdint>
56 #include <map>
57 #include <memory>
58 #include <string>
59 #include <utility>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 #undef  DEBUG_TYPE
65 #define DEBUG_TYPE "reloc-info"
66 
67 namespace {
68 
69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
70 
71 class ELFObjectWriter;
72 struct ELFWriter;
73 
74 bool isDwoSection(const MCSectionELF &Sec) {
75   return Sec.getSectionName().endswith(".dwo");
76 }
77 
78 class SymbolTableWriter {
79   ELFWriter &EWriter;
80   bool Is64Bit;
81 
82   // indexes we are going to write to .symtab_shndx.
83   std::vector<uint32_t> ShndxIndexes;
84 
85   // The numbel of symbols written so far.
86   unsigned NumWritten;
87 
88   void createSymtabShndx();
89 
90   template <typename T> void write(T Value);
91 
92 public:
93   SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
94 
95   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
96                    uint8_t other, uint32_t shndx, bool Reserved);
97 
98   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
99 };
100 
101 struct ELFWriter {
102   ELFObjectWriter &OWriter;
103   support::endian::Writer W;
104 
105   enum DwoMode {
106     AllSections,
107     NonDwoOnly,
108     DwoOnly,
109   } Mode;
110 
111   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
112   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
113                          bool Used, bool Renamed);
114 
115   /// Helper struct for containing some precomputed information on symbols.
116   struct ELFSymbolData {
117     const MCSymbolELF *Symbol;
118     uint32_t SectionIndex;
119     StringRef Name;
120 
121     // Support lexicographic sorting.
122     bool operator<(const ELFSymbolData &RHS) const {
123       unsigned LHSType = Symbol->getType();
124       unsigned RHSType = RHS.Symbol->getType();
125       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
126         return false;
127       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
128         return true;
129       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
130         return SectionIndex < RHS.SectionIndex;
131       return Name < RHS.Name;
132     }
133   };
134 
135   /// @}
136   /// @name Symbol Table Data
137   /// @{
138 
139   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
140 
141   /// @}
142 
143   // This holds the symbol table index of the last local symbol.
144   unsigned LastLocalSymbolIndex;
145   // This holds the .strtab section index.
146   unsigned StringTableIndex;
147   // This holds the .symtab section index.
148   unsigned SymbolTableIndex;
149 
150   // Sections in the order they are to be output in the section table.
151   std::vector<const MCSectionELF *> SectionTable;
152   unsigned addToSectionTable(const MCSectionELF *Sec);
153 
154   // TargetObjectWriter wrappers.
155   bool is64Bit() const;
156   bool hasRelocationAddend() const;
157 
158   void align(unsigned Alignment);
159 
160   bool maybeWriteCompression(uint64_t Size,
161                              SmallVectorImpl<char> &CompressedContents,
162                              bool ZLibStyle, unsigned Alignment);
163 
164 public:
165   ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
166             bool IsLittleEndian, DwoMode Mode)
167       : OWriter(OWriter),
168         W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
169 
170   void WriteWord(uint64_t Word) {
171     if (is64Bit())
172       W.write<uint64_t>(Word);
173     else
174       W.write<uint32_t>(Word);
175   }
176 
177   template <typename T> void write(T Val) {
178     W.write(Val);
179   }
180 
181   void writeHeader(const MCAssembler &Asm);
182 
183   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
184                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
185 
186   // Start and end offset of each section
187   using SectionOffsetsTy =
188       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
189 
190   // Map from a signature symbol to the group section index
191   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
192 
193   /// Compute the symbol table data
194   ///
195   /// \param Asm - The assembler.
196   /// \param SectionIndexMap - Maps a section to its index.
197   /// \param RevGroupMap - Maps a signature symbol to the group section.
198   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
199                           const SectionIndexMapTy &SectionIndexMap,
200                           const RevGroupMapTy &RevGroupMap,
201                           SectionOffsetsTy &SectionOffsets);
202 
203   void writeAddrsigSection();
204 
205   MCSectionELF *createRelocationSection(MCContext &Ctx,
206                                         const MCSectionELF &Sec);
207 
208   const MCSectionELF *createStringTable(MCContext &Ctx);
209 
210   void writeSectionHeader(const MCAsmLayout &Layout,
211                           const SectionIndexMapTy &SectionIndexMap,
212                           const SectionOffsetsTy &SectionOffsets);
213 
214   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
215                         const MCAsmLayout &Layout);
216 
217   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
218                         uint64_t Address, uint64_t Offset, uint64_t Size,
219                         uint32_t Link, uint32_t Info, uint64_t Alignment,
220                         uint64_t EntrySize);
221 
222   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
223 
224   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
225   void writeSection(const SectionIndexMapTy &SectionIndexMap,
226                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
227                     const MCSectionELF &Section);
228 };
229 
230 class ELFObjectWriter : public MCObjectWriter {
231   /// The target specific ELF writer instance.
232   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
233 
234   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
235 
236   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
237 
238   bool EmitAddrsigSection = false;
239   std::vector<const MCSymbol *> AddrsigSyms;
240 
241   bool hasRelocationAddend() const;
242 
243   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
244                                 const MCSymbolRefExpr *RefA,
245                                 const MCSymbolELF *Sym, uint64_t C,
246                                 unsigned Type) const;
247 
248 public:
249   ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
250       : TargetObjectWriter(std::move(MOTW)) {}
251 
252   void reset() override {
253     Relocations.clear();
254     Renames.clear();
255     MCObjectWriter::reset();
256   }
257 
258   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
259                                               const MCSymbol &SymA,
260                                               const MCFragment &FB, bool InSet,
261                                               bool IsPCRel) const override;
262 
263   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
264                                const MCSectionELF *From,
265                                const MCSectionELF *To) {
266     return true;
267   }
268 
269   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
270                         const MCFragment *Fragment, const MCFixup &Fixup,
271                         MCValue Target, uint64_t &FixedValue) override;
272 
273   void executePostLayoutBinding(MCAssembler &Asm,
274                                 const MCAsmLayout &Layout) override;
275 
276   void emitAddrsigSection() override { EmitAddrsigSection = true; }
277   void addAddrsigSymbol(const MCSymbol *Sym) override {
278     AddrsigSyms.push_back(Sym);
279   }
280 
281   friend struct ELFWriter;
282 };
283 
284 class ELFSingleObjectWriter : public ELFObjectWriter {
285   raw_pwrite_stream &OS;
286   bool IsLittleEndian;
287 
288 public:
289   ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
290                         raw_pwrite_stream &OS, bool IsLittleEndian)
291       : ELFObjectWriter(std::move(MOTW)), OS(OS),
292         IsLittleEndian(IsLittleEndian) {}
293 
294   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
295     return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
296         .writeObject(Asm, Layout);
297   }
298 
299   friend struct ELFWriter;
300 };
301 
302 class ELFDwoObjectWriter : public ELFObjectWriter {
303   raw_pwrite_stream &OS, &DwoOS;
304   bool IsLittleEndian;
305 
306 public:
307   ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
308                      raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
309                      bool IsLittleEndian)
310       : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
311         IsLittleEndian(IsLittleEndian) {}
312 
313   virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
314                                const MCSectionELF *From,
315                                const MCSectionELF *To) override {
316     if (isDwoSection(*From)) {
317       Ctx.reportError(Loc, "A dwo section may not contain relocations");
318       return false;
319     }
320     if (To && isDwoSection(*To)) {
321       Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
322       return false;
323     }
324     return true;
325   }
326 
327   uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
328     uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
329                         .writeObject(Asm, Layout);
330     Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
331                 .writeObject(Asm, Layout);
332     return Size;
333   }
334 };
335 
336 } // end anonymous namespace
337 
338 void ELFWriter::align(unsigned Alignment) {
339   uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment);
340   W.OS.write_zeros(Padding);
341 }
342 
343 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
344   SectionTable.push_back(Sec);
345   StrTabBuilder.add(Sec->getSectionName());
346   return SectionTable.size();
347 }
348 
349 void SymbolTableWriter::createSymtabShndx() {
350   if (!ShndxIndexes.empty())
351     return;
352 
353   ShndxIndexes.resize(NumWritten);
354 }
355 
356 template <typename T> void SymbolTableWriter::write(T Value) {
357   EWriter.write(Value);
358 }
359 
360 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
361     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
362 
363 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
364                                     uint64_t size, uint8_t other,
365                                     uint32_t shndx, bool Reserved) {
366   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
367 
368   if (LargeIndex)
369     createSymtabShndx();
370 
371   if (!ShndxIndexes.empty()) {
372     if (LargeIndex)
373       ShndxIndexes.push_back(shndx);
374     else
375       ShndxIndexes.push_back(0);
376   }
377 
378   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
379 
380   if (Is64Bit) {
381     write(name);  // st_name
382     write(info);  // st_info
383     write(other); // st_other
384     write(Index); // st_shndx
385     write(value); // st_value
386     write(size);  // st_size
387   } else {
388     write(name);            // st_name
389     write(uint32_t(value)); // st_value
390     write(uint32_t(size));  // st_size
391     write(info);            // st_info
392     write(other);           // st_other
393     write(Index);           // st_shndx
394   }
395 
396   ++NumWritten;
397 }
398 
399 bool ELFWriter::is64Bit() const {
400   return OWriter.TargetObjectWriter->is64Bit();
401 }
402 
403 bool ELFWriter::hasRelocationAddend() const {
404   return OWriter.hasRelocationAddend();
405 }
406 
407 // Emit the ELF header.
408 void ELFWriter::writeHeader(const MCAssembler &Asm) {
409   // ELF Header
410   // ----------
411   //
412   // Note
413   // ----
414   // emitWord method behaves differently for ELF32 and ELF64, writing
415   // 4 bytes in the former and 8 in the latter.
416 
417   W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
418 
419   W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
420 
421   // e_ident[EI_DATA]
422   W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
423                                            : ELF::ELFDATA2MSB);
424 
425   W.OS << char(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
426   // e_ident[EI_OSABI]
427   W.OS << char(OWriter.TargetObjectWriter->getOSABI());
428   // e_ident[EI_ABIVERSION]
429   W.OS << char(OWriter.TargetObjectWriter->getABIVersion());
430 
431   W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
432 
433   W.write<uint16_t>(ELF::ET_REL);             // e_type
434 
435   W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
436 
437   W.write<uint32_t>(ELF::EV_CURRENT);         // e_version
438   WriteWord(0);                    // e_entry, no entry point in .o file
439   WriteWord(0);                    // e_phoff, no program header for .o
440   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
441 
442   // e_flags = whatever the target wants
443   W.write<uint32_t>(Asm.getELFHeaderEFlags());
444 
445   // e_ehsize = ELF header size
446   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
447                               : sizeof(ELF::Elf32_Ehdr));
448 
449   W.write<uint16_t>(0);                  // e_phentsize = prog header entry size
450   W.write<uint16_t>(0);                  // e_phnum = # prog header entries = 0
451 
452   // e_shentsize = Section header entry size
453   W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
454                               : sizeof(ELF::Elf32_Shdr));
455 
456   // e_shnum     = # of section header ents
457   W.write<uint16_t>(0);
458 
459   // e_shstrndx  = Section # of '.shstrtab'
460   assert(StringTableIndex < ELF::SHN_LORESERVE);
461   W.write<uint16_t>(StringTableIndex);
462 }
463 
464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
465                                 const MCAsmLayout &Layout) {
466   if (Sym.isCommon() && Sym.isExternal())
467     return Sym.getCommonAlignment();
468 
469   uint64_t Res;
470   if (!Layout.getSymbolOffset(Sym, Res))
471     return 0;
472 
473   if (Layout.getAssembler().isThumbFunc(&Sym))
474     Res |= 1;
475 
476   return Res;
477 }
478 
479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
480   uint8_t Type = newType;
481 
482   // Propagation rules:
483   // IFUNC > FUNC > OBJECT > NOTYPE
484   // TLS_OBJECT > OBJECT > NOTYPE
485   //
486   // dont let the new type degrade the old type
487   switch (origType) {
488   default:
489     break;
490   case ELF::STT_GNU_IFUNC:
491     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
492         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
493       Type = ELF::STT_GNU_IFUNC;
494     break;
495   case ELF::STT_FUNC:
496     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
497         Type == ELF::STT_TLS)
498       Type = ELF::STT_FUNC;
499     break;
500   case ELF::STT_OBJECT:
501     if (Type == ELF::STT_NOTYPE)
502       Type = ELF::STT_OBJECT;
503     break;
504   case ELF::STT_TLS:
505     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
506         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
507       Type = ELF::STT_TLS;
508     break;
509   }
510 
511   return Type;
512 }
513 
514 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
515                             ELFSymbolData &MSD, const MCAsmLayout &Layout) {
516   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
517   const MCSymbolELF *Base =
518       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
519 
520   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
521   // SHN_COMMON.
522   bool IsReserved = !Base || Symbol.isCommon();
523 
524   // Binding and Type share the same byte as upper and lower nibbles
525   uint8_t Binding = Symbol.getBinding();
526   uint8_t Type = Symbol.getType();
527   if (Base) {
528     Type = mergeTypeForSet(Type, Base->getType());
529   }
530   uint8_t Info = (Binding << 4) | Type;
531 
532   // Other and Visibility share the same byte with Visibility using the lower
533   // 2 bits
534   uint8_t Visibility = Symbol.getVisibility();
535   uint8_t Other = Symbol.getOther() | Visibility;
536 
537   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
538   uint64_t Size = 0;
539 
540   const MCExpr *ESize = MSD.Symbol->getSize();
541   if (!ESize && Base)
542     ESize = Base->getSize();
543 
544   if (ESize) {
545     int64_t Res;
546     if (!ESize->evaluateKnownAbsolute(Res, Layout))
547       report_fatal_error("Size expression must be absolute.");
548     Size = Res;
549   }
550 
551   // Write out the symbol table entry
552   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
553                      IsReserved);
554 }
555 
556 // True if the assembler knows nothing about the final value of the symbol.
557 // This doesn't cover the comdat issues, since in those cases the assembler
558 // can at least know that all symbols in the section will move together.
559 static bool isWeak(const MCSymbolELF &Sym) {
560   if (Sym.getType() == ELF::STT_GNU_IFUNC)
561     return true;
562 
563   switch (Sym.getBinding()) {
564   default:
565     llvm_unreachable("Unknown binding");
566   case ELF::STB_LOCAL:
567     return false;
568   case ELF::STB_GLOBAL:
569     return false;
570   case ELF::STB_WEAK:
571   case ELF::STB_GNU_UNIQUE:
572     return true;
573   }
574 }
575 
576 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
577                            bool Used, bool Renamed) {
578   if (Symbol.isVariable()) {
579     const MCExpr *Expr = Symbol.getVariableValue();
580     // Target Expressions that are always inlined do not appear in the symtab
581     if (const auto *T = dyn_cast<MCTargetExpr>(Expr))
582       if (T->inlineAssignedExpr())
583         return false;
584     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
585       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
586         return false;
587     }
588   }
589 
590   if (Used)
591     return true;
592 
593   if (Renamed)
594     return false;
595 
596   if (Symbol.isVariable() && Symbol.isUndefined()) {
597     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
598     Layout.getBaseSymbol(Symbol);
599     return false;
600   }
601 
602   if (Symbol.isUndefined() && !Symbol.isBindingSet())
603     return false;
604 
605   if (Symbol.isTemporary())
606     return false;
607 
608   if (Symbol.getType() == ELF::STT_SECTION)
609     return false;
610 
611   return true;
612 }
613 
614 void ELFWriter::computeSymbolTable(
615     MCAssembler &Asm, const MCAsmLayout &Layout,
616     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
617     SectionOffsetsTy &SectionOffsets) {
618   MCContext &Ctx = Asm.getContext();
619   SymbolTableWriter Writer(*this, is64Bit());
620 
621   // Symbol table
622   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
623   MCSectionELF *SymtabSection =
624       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
625   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
626   SymbolTableIndex = addToSectionTable(SymtabSection);
627 
628   align(SymtabSection->getAlignment());
629   uint64_t SecStart = W.OS.tell();
630 
631   // The first entry is the undefined symbol entry.
632   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
633 
634   std::vector<ELFSymbolData> LocalSymbolData;
635   std::vector<ELFSymbolData> ExternalSymbolData;
636 
637   // Add the data for the symbols.
638   bool HasLargeSectionIndex = false;
639   for (const MCSymbol &S : Asm.symbols()) {
640     const auto &Symbol = cast<MCSymbolELF>(S);
641     bool Used = Symbol.isUsedInReloc();
642     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
643     bool isSignature = Symbol.isSignature();
644 
645     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
646                     OWriter.Renames.count(&Symbol)))
647       continue;
648 
649     if (Symbol.isTemporary() && Symbol.isUndefined()) {
650       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
651       continue;
652     }
653 
654     ELFSymbolData MSD;
655     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
656 
657     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
658     assert(Local || !Symbol.isTemporary());
659 
660     if (Symbol.isAbsolute()) {
661       MSD.SectionIndex = ELF::SHN_ABS;
662     } else if (Symbol.isCommon()) {
663       assert(!Local);
664       MSD.SectionIndex = ELF::SHN_COMMON;
665     } else if (Symbol.isUndefined()) {
666       if (isSignature && !Used) {
667         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
668         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
669           HasLargeSectionIndex = true;
670       } else {
671         MSD.SectionIndex = ELF::SHN_UNDEF;
672       }
673     } else {
674       const MCSectionELF &Section =
675           static_cast<const MCSectionELF &>(Symbol.getSection());
676 
677       // We may end up with a situation when section symbol is technically
678       // defined, but should not be. That happens because we explicitly
679       // pre-create few .debug_* sections to have accessors.
680       // And if these sections were not really defined in the code, but were
681       // referenced, we simply error out.
682       if (!Section.isRegistered()) {
683         assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
684                ELF::STT_SECTION);
685         Ctx.reportError(SMLoc(),
686                         "Undefined section reference: " + Symbol.getName());
687         continue;
688       }
689 
690       if (Mode == NonDwoOnly && isDwoSection(Section))
691         continue;
692       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
693       assert(MSD.SectionIndex && "Invalid section index!");
694       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
695         HasLargeSectionIndex = true;
696     }
697 
698     StringRef Name = Symbol.getName();
699 
700     // Sections have their own string table
701     if (Symbol.getType() != ELF::STT_SECTION) {
702       MSD.Name = Name;
703       StrTabBuilder.add(Name);
704     }
705 
706     if (Local)
707       LocalSymbolData.push_back(MSD);
708     else
709       ExternalSymbolData.push_back(MSD);
710   }
711 
712   // This holds the .symtab_shndx section index.
713   unsigned SymtabShndxSectionIndex = 0;
714 
715   if (HasLargeSectionIndex) {
716     MCSectionELF *SymtabShndxSection =
717         Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
718     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
719     SymtabShndxSection->setAlignment(4);
720   }
721 
722   ArrayRef<std::string> FileNames = Asm.getFileNames();
723   for (const std::string &Name : FileNames)
724     StrTabBuilder.add(Name);
725 
726   StrTabBuilder.finalize();
727 
728   // File symbols are emitted first and handled separately from normal symbols,
729   // i.e. a non-STT_FILE symbol with the same name may appear.
730   for (const std::string &Name : FileNames)
731     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
732                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
733                        ELF::SHN_ABS, true);
734 
735   // Symbols are required to be in lexicographic order.
736   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
737   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
738 
739   // Set the symbol indices. Local symbols must come before all other
740   // symbols with non-local bindings.
741   unsigned Index = FileNames.size() + 1;
742 
743   for (ELFSymbolData &MSD : LocalSymbolData) {
744     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
745                                ? 0
746                                : StrTabBuilder.getOffset(MSD.Name);
747     MSD.Symbol->setIndex(Index++);
748     writeSymbol(Writer, StringIndex, MSD, Layout);
749   }
750 
751   // Write the symbol table entries.
752   LastLocalSymbolIndex = Index;
753 
754   for (ELFSymbolData &MSD : ExternalSymbolData) {
755     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
756     MSD.Symbol->setIndex(Index++);
757     writeSymbol(Writer, StringIndex, MSD, Layout);
758     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
759   }
760 
761   uint64_t SecEnd = W.OS.tell();
762   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
763 
764   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
765   if (ShndxIndexes.empty()) {
766     assert(SymtabShndxSectionIndex == 0);
767     return;
768   }
769   assert(SymtabShndxSectionIndex != 0);
770 
771   SecStart = W.OS.tell();
772   const MCSectionELF *SymtabShndxSection =
773       SectionTable[SymtabShndxSectionIndex - 1];
774   for (uint32_t Index : ShndxIndexes)
775     write(Index);
776   SecEnd = W.OS.tell();
777   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
778 }
779 
780 void ELFWriter::writeAddrsigSection() {
781   for (const MCSymbol *Sym : OWriter.AddrsigSyms)
782     encodeULEB128(Sym->getIndex(), W.OS);
783 }
784 
785 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
786                                                  const MCSectionELF &Sec) {
787   if (OWriter.Relocations[&Sec].empty())
788     return nullptr;
789 
790   const StringRef SectionName = Sec.getSectionName();
791   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
792   RelaSectionName += SectionName;
793 
794   unsigned EntrySize;
795   if (hasRelocationAddend())
796     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
797   else
798     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
799 
800   unsigned Flags = 0;
801   if (Sec.getFlags() & ELF::SHF_GROUP)
802     Flags = ELF::SHF_GROUP;
803 
804   MCSectionELF *RelaSection = Ctx.createELFRelSection(
805       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
806       Flags, EntrySize, Sec.getGroup(), &Sec);
807   RelaSection->setAlignment(is64Bit() ? 8 : 4);
808   return RelaSection;
809 }
810 
811 // Include the debug info compression header.
812 bool ELFWriter::maybeWriteCompression(
813     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
814     unsigned Alignment) {
815   if (ZLibStyle) {
816     uint64_t HdrSize =
817         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
818     if (Size <= HdrSize + CompressedContents.size())
819       return false;
820     // Platform specific header is followed by compressed data.
821     if (is64Bit()) {
822       // Write Elf64_Chdr header.
823       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
824       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
825       write(static_cast<ELF::Elf64_Xword>(Size));
826       write(static_cast<ELF::Elf64_Xword>(Alignment));
827     } else {
828       // Write Elf32_Chdr header otherwise.
829       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
830       write(static_cast<ELF::Elf32_Word>(Size));
831       write(static_cast<ELF::Elf32_Word>(Alignment));
832     }
833     return true;
834   }
835 
836   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
837   // useful for consumers to preallocate a buffer to decompress into.
838   const StringRef Magic = "ZLIB";
839   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
840     return false;
841   W.OS << Magic;
842   support::endian::write(W.OS, Size, support::big);
843   return true;
844 }
845 
846 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
847                                  const MCAsmLayout &Layout) {
848   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
849   StringRef SectionName = Section.getSectionName();
850 
851   auto &MC = Asm.getContext();
852   const auto &MAI = MC.getAsmInfo();
853 
854   // Compressing debug_frame requires handling alignment fragments which is
855   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
856   // for writing to arbitrary buffers) for little benefit.
857   bool CompressionEnabled =
858       MAI->compressDebugSections() != DebugCompressionType::None;
859   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
860       SectionName == ".debug_frame") {
861     Asm.writeSectionData(W.OS, &Section, Layout);
862     return;
863   }
864 
865   assert((MAI->compressDebugSections() == DebugCompressionType::Z ||
866           MAI->compressDebugSections() == DebugCompressionType::GNU) &&
867          "expected zlib or zlib-gnu style compression");
868 
869   SmallVector<char, 128> UncompressedData;
870   raw_svector_ostream VecOS(UncompressedData);
871   Asm.writeSectionData(VecOS, &Section, Layout);
872 
873   SmallVector<char, 128> CompressedContents;
874   if (Error E = zlib::compress(
875           StringRef(UncompressedData.data(), UncompressedData.size()),
876           CompressedContents)) {
877     consumeError(std::move(E));
878     W.OS << UncompressedData;
879     return;
880   }
881 
882   bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z;
883   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
884                              ZlibStyle, Sec.getAlignment())) {
885     W.OS << UncompressedData;
886     return;
887   }
888 
889   if (ZlibStyle)
890     // Set the compressed flag. That is zlib style.
891     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
892   else
893     // Add "z" prefix to section name. This is zlib-gnu style.
894     MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str());
895   W.OS << CompressedContents;
896 }
897 
898 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
899                                  uint64_t Address, uint64_t Offset,
900                                  uint64_t Size, uint32_t Link, uint32_t Info,
901                                  uint64_t Alignment, uint64_t EntrySize) {
902   W.write<uint32_t>(Name);        // sh_name: index into string table
903   W.write<uint32_t>(Type);        // sh_type
904   WriteWord(Flags);     // sh_flags
905   WriteWord(Address);   // sh_addr
906   WriteWord(Offset);    // sh_offset
907   WriteWord(Size);      // sh_size
908   W.write<uint32_t>(Link);        // sh_link
909   W.write<uint32_t>(Info);        // sh_info
910   WriteWord(Alignment); // sh_addralign
911   WriteWord(EntrySize); // sh_entsize
912 }
913 
914 void ELFWriter::writeRelocations(const MCAssembler &Asm,
915                                        const MCSectionELF &Sec) {
916   std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
917 
918   // We record relocations by pushing to the end of a vector. Reverse the vector
919   // to get the relocations in the order they were created.
920   // In most cases that is not important, but it can be for special sections
921   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
922   std::reverse(Relocs.begin(), Relocs.end());
923 
924   // Sort the relocation entries. MIPS needs this.
925   OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
926 
927   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
928     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
929     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
930 
931     if (is64Bit()) {
932       write(Entry.Offset);
933       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
934         write(uint32_t(Index));
935 
936         write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
937         write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
938         write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
939         write(OWriter.TargetObjectWriter->getRType(Entry.Type));
940       } else {
941         struct ELF::Elf64_Rela ERE64;
942         ERE64.setSymbolAndType(Index, Entry.Type);
943         write(ERE64.r_info);
944       }
945       if (hasRelocationAddend())
946         write(Entry.Addend);
947     } else {
948       write(uint32_t(Entry.Offset));
949 
950       struct ELF::Elf32_Rela ERE32;
951       ERE32.setSymbolAndType(Index, Entry.Type);
952       write(ERE32.r_info);
953 
954       if (hasRelocationAddend())
955         write(uint32_t(Entry.Addend));
956 
957       if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
958         if (uint32_t RType =
959                 OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
960           write(uint32_t(Entry.Offset));
961 
962           ERE32.setSymbolAndType(0, RType);
963           write(ERE32.r_info);
964           write(uint32_t(0));
965         }
966         if (uint32_t RType =
967                 OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
968           write(uint32_t(Entry.Offset));
969 
970           ERE32.setSymbolAndType(0, RType);
971           write(ERE32.r_info);
972           write(uint32_t(0));
973         }
974       }
975     }
976   }
977 }
978 
979 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) {
980   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
981   StrTabBuilder.write(W.OS);
982   return StrtabSection;
983 }
984 
985 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
986                              uint32_t GroupSymbolIndex, uint64_t Offset,
987                              uint64_t Size, const MCSectionELF &Section) {
988   uint64_t sh_link = 0;
989   uint64_t sh_info = 0;
990 
991   switch(Section.getType()) {
992   default:
993     // Nothing to do.
994     break;
995 
996   case ELF::SHT_DYNAMIC:
997     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
998 
999   case ELF::SHT_REL:
1000   case ELF::SHT_RELA: {
1001     sh_link = SymbolTableIndex;
1002     assert(sh_link && ".symtab not found");
1003     const MCSection *InfoSection = Section.getAssociatedSection();
1004     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
1005     break;
1006   }
1007 
1008   case ELF::SHT_SYMTAB:
1009     sh_link = StringTableIndex;
1010     sh_info = LastLocalSymbolIndex;
1011     break;
1012 
1013   case ELF::SHT_SYMTAB_SHNDX:
1014   case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1015   case ELF::SHT_LLVM_ADDRSIG:
1016     sh_link = SymbolTableIndex;
1017     break;
1018 
1019   case ELF::SHT_GROUP:
1020     sh_link = SymbolTableIndex;
1021     sh_info = GroupSymbolIndex;
1022     break;
1023   }
1024 
1025   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1026     const MCSymbol *Sym = Section.getAssociatedSymbol();
1027     const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1028     sh_link = SectionIndexMap.lookup(Sec);
1029   }
1030 
1031   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1032                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1033                    sh_link, sh_info, Section.getAlignment(),
1034                    Section.getEntrySize());
1035 }
1036 
1037 void ELFWriter::writeSectionHeader(
1038     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1039     const SectionOffsetsTy &SectionOffsets) {
1040   const unsigned NumSections = SectionTable.size();
1041 
1042   // Null section first.
1043   uint64_t FirstSectionSize =
1044       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1045   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1046 
1047   for (const MCSectionELF *Section : SectionTable) {
1048     uint32_t GroupSymbolIndex;
1049     unsigned Type = Section->getType();
1050     if (Type != ELF::SHT_GROUP)
1051       GroupSymbolIndex = 0;
1052     else
1053       GroupSymbolIndex = Section->getGroup()->getIndex();
1054 
1055     const std::pair<uint64_t, uint64_t> &Offsets =
1056         SectionOffsets.find(Section)->second;
1057     uint64_t Size;
1058     if (Type == ELF::SHT_NOBITS)
1059       Size = Layout.getSectionAddressSize(Section);
1060     else
1061       Size = Offsets.second - Offsets.first;
1062 
1063     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1064                  *Section);
1065   }
1066 }
1067 
1068 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1069   uint64_t StartOffset = W.OS.tell();
1070 
1071   MCContext &Ctx = Asm.getContext();
1072   MCSectionELF *StrtabSection =
1073       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1074   StringTableIndex = addToSectionTable(StrtabSection);
1075 
1076   RevGroupMapTy RevGroupMap;
1077   SectionIndexMapTy SectionIndexMap;
1078 
1079   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1080 
1081   // Write out the ELF header ...
1082   writeHeader(Asm);
1083 
1084   // ... then the sections ...
1085   SectionOffsetsTy SectionOffsets;
1086   std::vector<MCSectionELF *> Groups;
1087   std::vector<MCSectionELF *> Relocations;
1088   for (MCSection &Sec : Asm) {
1089     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1090     if (Mode == NonDwoOnly && isDwoSection(Section))
1091       continue;
1092     if (Mode == DwoOnly && !isDwoSection(Section))
1093       continue;
1094 
1095     align(Section.getAlignment());
1096 
1097     // Remember the offset into the file for this section.
1098     uint64_t SecStart = W.OS.tell();
1099 
1100     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1101     writeSectionData(Asm, Section, Layout);
1102 
1103     uint64_t SecEnd = W.OS.tell();
1104     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1105 
1106     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1107 
1108     if (SignatureSymbol) {
1109       Asm.registerSymbol(*SignatureSymbol);
1110       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1111       if (!GroupIdx) {
1112         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1113         GroupIdx = addToSectionTable(Group);
1114         Group->setAlignment(4);
1115         Groups.push_back(Group);
1116       }
1117       std::vector<const MCSectionELF *> &Members =
1118           GroupMembers[SignatureSymbol];
1119       Members.push_back(&Section);
1120       if (RelSection)
1121         Members.push_back(RelSection);
1122     }
1123 
1124     SectionIndexMap[&Section] = addToSectionTable(&Section);
1125     if (RelSection) {
1126       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1127       Relocations.push_back(RelSection);
1128     }
1129 
1130     OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
1131   }
1132 
1133   MCSectionELF *CGProfileSection = nullptr;
1134   if (!Asm.CGProfile.empty()) {
1135     CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile",
1136                                          ELF::SHT_LLVM_CALL_GRAPH_PROFILE,
1137                                          ELF::SHF_EXCLUDE, 16, "");
1138     SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection);
1139   }
1140 
1141   for (MCSectionELF *Group : Groups) {
1142     align(Group->getAlignment());
1143 
1144     // Remember the offset into the file for this section.
1145     uint64_t SecStart = W.OS.tell();
1146 
1147     const MCSymbol *SignatureSymbol = Group->getGroup();
1148     assert(SignatureSymbol);
1149     write(uint32_t(ELF::GRP_COMDAT));
1150     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1151       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1152       write(SecIndex);
1153     }
1154 
1155     uint64_t SecEnd = W.OS.tell();
1156     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1157   }
1158 
1159   if (Mode == DwoOnly) {
1160     // dwo files don't have symbol tables or relocations, but they do have
1161     // string tables.
1162     StrTabBuilder.finalize();
1163   } else {
1164     MCSectionELF *AddrsigSection;
1165     if (OWriter.EmitAddrsigSection) {
1166       AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
1167                                          ELF::SHF_EXCLUDE);
1168       addToSectionTable(AddrsigSection);
1169     }
1170 
1171     // Compute symbol table information.
1172     computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
1173                        SectionOffsets);
1174 
1175     for (MCSectionELF *RelSection : Relocations) {
1176       align(RelSection->getAlignment());
1177 
1178       // Remember the offset into the file for this section.
1179       uint64_t SecStart = W.OS.tell();
1180 
1181       writeRelocations(Asm,
1182                        cast<MCSectionELF>(*RelSection->getAssociatedSection()));
1183 
1184       uint64_t SecEnd = W.OS.tell();
1185       SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1186     }
1187 
1188     if (OWriter.EmitAddrsigSection) {
1189       uint64_t SecStart = W.OS.tell();
1190       writeAddrsigSection();
1191       uint64_t SecEnd = W.OS.tell();
1192       SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
1193     }
1194   }
1195 
1196   if (CGProfileSection) {
1197     uint64_t SecStart = W.OS.tell();
1198     for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) {
1199       W.write<uint32_t>(CGPE.From->getSymbol().getIndex());
1200       W.write<uint32_t>(CGPE.To->getSymbol().getIndex());
1201       W.write<uint64_t>(CGPE.Count);
1202     }
1203     uint64_t SecEnd = W.OS.tell();
1204     SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd);
1205   }
1206 
1207   {
1208     uint64_t SecStart = W.OS.tell();
1209     const MCSectionELF *Sec = createStringTable(Ctx);
1210     uint64_t SecEnd = W.OS.tell();
1211     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1212   }
1213 
1214   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1215   align(NaturalAlignment);
1216 
1217   const uint64_t SectionHeaderOffset = W.OS.tell();
1218 
1219   // ... then the section header table ...
1220   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1221 
1222   uint16_t NumSections = support::endian::byte_swap<uint16_t>(
1223       (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
1224                                                       : SectionTable.size() + 1,
1225       W.Endian);
1226   unsigned NumSectionsOffset;
1227 
1228   auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
1229   if (is64Bit()) {
1230     uint64_t Val =
1231         support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
1232     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1233                   offsetof(ELF::Elf64_Ehdr, e_shoff));
1234     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1235   } else {
1236     uint32_t Val =
1237         support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
1238     Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1239                   offsetof(ELF::Elf32_Ehdr, e_shoff));
1240     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1241   }
1242   Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
1243                 NumSectionsOffset);
1244 
1245   return W.OS.tell() - StartOffset;
1246 }
1247 
1248 bool ELFObjectWriter::hasRelocationAddend() const {
1249   return TargetObjectWriter->hasRelocationAddend();
1250 }
1251 
1252 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
1253                                                const MCAsmLayout &Layout) {
1254   // The presence of symbol versions causes undefined symbols and
1255   // versions declared with @@@ to be renamed.
1256   for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) {
1257     StringRef AliasName = P.first;
1258     const auto &Symbol = cast<MCSymbolELF>(*P.second);
1259     size_t Pos = AliasName.find('@');
1260     assert(Pos != StringRef::npos);
1261 
1262     StringRef Prefix = AliasName.substr(0, Pos);
1263     StringRef Rest = AliasName.substr(Pos);
1264     StringRef Tail = Rest;
1265     if (Rest.startswith("@@@"))
1266       Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
1267 
1268     auto *Alias =
1269         cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
1270     Asm.registerSymbol(*Alias);
1271     const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
1272     Alias->setVariableValue(Value);
1273 
1274     // Aliases defined with .symvar copy the binding from the symbol they alias.
1275     // This is the first place we are able to copy this information.
1276     Alias->setExternal(Symbol.isExternal());
1277     Alias->setBinding(Symbol.getBinding());
1278 
1279     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
1280       continue;
1281 
1282     // FIXME: Get source locations for these errors or diagnose them earlier.
1283     if (Symbol.isUndefined() && Rest.startswith("@@") &&
1284         !Rest.startswith("@@@")) {
1285       Asm.getContext().reportError(SMLoc(), "versioned symbol " + AliasName +
1286                                                 " must be defined");
1287       continue;
1288     }
1289 
1290     if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
1291       Asm.getContext().reportError(
1292           SMLoc(), llvm::Twine("multiple symbol versions defined for ") +
1293                        Symbol.getName());
1294       continue;
1295     }
1296 
1297     Renames.insert(std::make_pair(&Symbol, Alias));
1298   }
1299 
1300   for (const MCSymbol *&Sym : AddrsigSyms) {
1301     if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
1302       Sym = R;
1303     if (Sym->isInSection() && Sym->getName().startswith(".L"))
1304       Sym = Sym->getSection().getBeginSymbol();
1305     Sym->setUsedInReloc();
1306   }
1307 }
1308 
1309 // It is always valid to create a relocation with a symbol. It is preferable
1310 // to use a relocation with a section if that is possible. Using the section
1311 // allows us to omit some local symbols from the symbol table.
1312 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
1313                                                const MCSymbolRefExpr *RefA,
1314                                                const MCSymbolELF *Sym,
1315                                                uint64_t C,
1316                                                unsigned Type) const {
1317   // A PCRel relocation to an absolute value has no symbol (or section). We
1318   // represent that with a relocation to a null section.
1319   if (!RefA)
1320     return false;
1321 
1322   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
1323   switch (Kind) {
1324   default:
1325     break;
1326   // The .odp creation emits a relocation against the symbol ".TOC." which
1327   // create a R_PPC64_TOC relocation. However the relocation symbol name
1328   // in final object creation should be NULL, since the symbol does not
1329   // really exist, it is just the reference to TOC base for the current
1330   // object file. Since the symbol is undefined, returning false results
1331   // in a relocation with a null section which is the desired result.
1332   case MCSymbolRefExpr::VK_PPC_TOCBASE:
1333     return false;
1334 
1335   // These VariantKind cause the relocation to refer to something other than
1336   // the symbol itself, like a linker generated table. Since the address of
1337   // symbol is not relevant, we cannot replace the symbol with the
1338   // section and patch the difference in the addend.
1339   case MCSymbolRefExpr::VK_GOT:
1340   case MCSymbolRefExpr::VK_PLT:
1341   case MCSymbolRefExpr::VK_GOTPCREL:
1342   case MCSymbolRefExpr::VK_PPC_GOT_LO:
1343   case MCSymbolRefExpr::VK_PPC_GOT_HI:
1344   case MCSymbolRefExpr::VK_PPC_GOT_HA:
1345     return true;
1346   }
1347 
1348   // An undefined symbol is not in any section, so the relocation has to point
1349   // to the symbol itself.
1350   assert(Sym && "Expected a symbol");
1351   if (Sym->isUndefined())
1352     return true;
1353 
1354   unsigned Binding = Sym->getBinding();
1355   switch(Binding) {
1356   default:
1357     llvm_unreachable("Invalid Binding");
1358   case ELF::STB_LOCAL:
1359     break;
1360   case ELF::STB_WEAK:
1361     // If the symbol is weak, it might be overridden by a symbol in another
1362     // file. The relocation has to point to the symbol so that the linker
1363     // can update it.
1364     return true;
1365   case ELF::STB_GLOBAL:
1366     // Global ELF symbols can be preempted by the dynamic linker. The relocation
1367     // has to point to the symbol for a reason analogous to the STB_WEAK case.
1368     return true;
1369   }
1370 
1371   // If a relocation points to a mergeable section, we have to be careful.
1372   // If the offset is zero, a relocation with the section will encode the
1373   // same information. With a non-zero offset, the situation is different.
1374   // For example, a relocation can point 42 bytes past the end of a string.
1375   // If we change such a relocation to use the section, the linker would think
1376   // that it pointed to another string and subtracting 42 at runtime will
1377   // produce the wrong value.
1378   if (Sym->isInSection()) {
1379     auto &Sec = cast<MCSectionELF>(Sym->getSection());
1380     unsigned Flags = Sec.getFlags();
1381     if (Flags & ELF::SHF_MERGE) {
1382       if (C != 0)
1383         return true;
1384 
1385       // It looks like gold has a bug (http://sourceware.org/PR16794) and can
1386       // only handle section relocations to mergeable sections if using RELA.
1387       if (!hasRelocationAddend())
1388         return true;
1389     }
1390 
1391     // Most TLS relocations use a got, so they need the symbol. Even those that
1392     // are just an offset (@tpoff), require a symbol in gold versions before
1393     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1394     // http://sourceware.org/PR16773.
1395     if (Flags & ELF::SHF_TLS)
1396       return true;
1397   }
1398 
1399   // If the symbol is a thumb function the final relocation must set the lowest
1400   // bit. With a symbol that is done by just having the symbol have that bit
1401   // set, so we would lose the bit if we relocated with the section.
1402   // FIXME: We could use the section but add the bit to the relocation value.
1403   if (Asm.isThumbFunc(Sym))
1404     return true;
1405 
1406   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
1407     return true;
1408   return false;
1409 }
1410 
1411 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
1412                                        const MCAsmLayout &Layout,
1413                                        const MCFragment *Fragment,
1414                                        const MCFixup &Fixup, MCValue Target,
1415                                        uint64_t &FixedValue) {
1416   MCAsmBackend &Backend = Asm.getBackend();
1417   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
1418                  MCFixupKindInfo::FKF_IsPCRel;
1419   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
1420   uint64_t C = Target.getConstant();
1421   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
1422   MCContext &Ctx = Asm.getContext();
1423 
1424   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
1425     // Let A, B and C being the components of Target and R be the location of
1426     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
1427     // If it is pcrel, we want to compute (A - B + C - R).
1428 
1429     // In general, ELF has no relocations for -B. It can only represent (A + C)
1430     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
1431     // replace B to implement it: (A - R - K + C)
1432     if (IsPCRel) {
1433       Ctx.reportError(
1434           Fixup.getLoc(),
1435           "No relocation available to represent this relative expression");
1436       return;
1437     }
1438 
1439     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
1440 
1441     if (SymB.isUndefined()) {
1442       Ctx.reportError(Fixup.getLoc(),
1443                       Twine("symbol '") + SymB.getName() +
1444                           "' can not be undefined in a subtraction expression");
1445       return;
1446     }
1447 
1448     assert(!SymB.isAbsolute() && "Should have been folded");
1449     const MCSection &SecB = SymB.getSection();
1450     if (&SecB != &FixupSection) {
1451       Ctx.reportError(Fixup.getLoc(),
1452                       "Cannot represent a difference across sections");
1453       return;
1454     }
1455 
1456     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
1457     uint64_t K = SymBOffset - FixupOffset;
1458     IsPCRel = true;
1459     C -= K;
1460   }
1461 
1462   // We either rejected the fixup or folded B into C at this point.
1463   const MCSymbolRefExpr *RefA = Target.getSymA();
1464   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
1465 
1466   bool ViaWeakRef = false;
1467   if (SymA && SymA->isVariable()) {
1468     const MCExpr *Expr = SymA->getVariableValue();
1469     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
1470       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
1471         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
1472         ViaWeakRef = true;
1473       }
1474     }
1475   }
1476 
1477   unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
1478   uint64_t OriginalC = C;
1479   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
1480   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
1481     C += Layout.getSymbolOffset(*SymA);
1482 
1483   uint64_t Addend = 0;
1484   if (hasRelocationAddend()) {
1485     Addend = C;
1486     C = 0;
1487   }
1488 
1489   FixedValue = C;
1490 
1491   const MCSectionELF *SecA = (SymA && SymA->isInSection())
1492                                  ? cast<MCSectionELF>(&SymA->getSection())
1493                                  : nullptr;
1494   if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
1495     return;
1496 
1497   if (!RelocateWithSymbol) {
1498     const auto *SectionSymbol =
1499         SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
1500     if (SectionSymbol)
1501       SectionSymbol->setUsedInReloc();
1502     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
1503                            OriginalC);
1504     Relocations[&FixupSection].push_back(Rec);
1505     return;
1506   }
1507 
1508   const auto *RenamedSymA = SymA;
1509   if (SymA) {
1510     if (const MCSymbolELF *R = Renames.lookup(SymA))
1511       RenamedSymA = R;
1512 
1513     if (ViaWeakRef)
1514       RenamedSymA->setIsWeakrefUsedInReloc();
1515     else
1516       RenamedSymA->setUsedInReloc();
1517   }
1518   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
1519                          OriginalC);
1520   Relocations[&FixupSection].push_back(Rec);
1521 }
1522 
1523 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1524     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1525     bool InSet, bool IsPCRel) const {
1526   const auto &SymA = cast<MCSymbolELF>(SA);
1527   if (IsPCRel) {
1528     assert(!InSet);
1529     if (isWeak(SymA))
1530       return false;
1531   }
1532   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1533                                                                 InSet, IsPCRel);
1534 }
1535 
1536 std::unique_ptr<MCObjectWriter>
1537 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1538                             raw_pwrite_stream &OS, bool IsLittleEndian) {
1539   return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
1540                                                   IsLittleEndian);
1541 }
1542 
1543 std::unique_ptr<MCObjectWriter>
1544 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
1545                                raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
1546                                bool IsLittleEndian) {
1547   return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
1548                                                IsLittleEndian);
1549 }
1550