1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ELF object file writer information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/ELF.h" 22 #include "llvm/MC/MCAsmBackend.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCAsmLayout.h" 25 #include "llvm/MC/MCAssembler.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCELFObjectWriter.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCFixup.h" 30 #include "llvm/MC/MCFixupKindInfo.h" 31 #include "llvm/MC/MCFragment.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compression.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/Error.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Host.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SMLoc.h" 48 #include "llvm/Support/StringSaver.h" 49 #include "llvm/Support/SwapByteOrder.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <map> 56 #include <memory> 57 #include <string> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #undef DEBUG_TYPE 64 #define DEBUG_TYPE "reloc-info" 65 66 namespace { 67 68 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 69 70 class ELFObjectWriter; 71 72 class SymbolTableWriter { 73 ELFObjectWriter &EWriter; 74 bool Is64Bit; 75 76 // indexes we are going to write to .symtab_shndx. 77 std::vector<uint32_t> ShndxIndexes; 78 79 // The numbel of symbols written so far. 80 unsigned NumWritten; 81 82 void createSymtabShndx(); 83 84 template <typename T> void write(T Value); 85 86 public: 87 SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit); 88 89 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 90 uint8_t other, uint32_t shndx, bool Reserved); 91 92 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 93 }; 94 95 class ELFObjectWriter : public MCObjectWriter { 96 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 97 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 98 bool Used, bool Renamed); 99 100 /// Helper struct for containing some precomputed information on symbols. 101 struct ELFSymbolData { 102 const MCSymbolELF *Symbol; 103 uint32_t SectionIndex; 104 StringRef Name; 105 106 // Support lexicographic sorting. 107 bool operator<(const ELFSymbolData &RHS) const { 108 unsigned LHSType = Symbol->getType(); 109 unsigned RHSType = RHS.Symbol->getType(); 110 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 111 return false; 112 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 113 return true; 114 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 115 return SectionIndex < RHS.SectionIndex; 116 return Name < RHS.Name; 117 } 118 }; 119 120 /// The target specific ELF writer instance. 121 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 122 123 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 124 125 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 126 127 /// @} 128 /// @name Symbol Table Data 129 /// @{ 130 131 BumpPtrAllocator Alloc; 132 StringSaver VersionSymSaver{Alloc}; 133 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 134 135 /// @} 136 137 // This holds the symbol table index of the last local symbol. 138 unsigned LastLocalSymbolIndex; 139 // This holds the .strtab section index. 140 unsigned StringTableIndex; 141 // This holds the .symtab section index. 142 unsigned SymbolTableIndex; 143 144 // Sections in the order they are to be output in the section table. 145 std::vector<const MCSectionELF *> SectionTable; 146 unsigned addToSectionTable(const MCSectionELF *Sec); 147 148 // TargetObjectWriter wrappers. 149 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 150 bool hasRelocationAddend() const { 151 return TargetObjectWriter->hasRelocationAddend(); 152 } 153 unsigned getRelocType(MCContext &Ctx, const MCValue &Target, 154 const MCFixup &Fixup, bool IsPCRel) const { 155 return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 156 } 157 158 void align(unsigned Alignment); 159 160 bool maybeWriteCompression(uint64_t Size, 161 SmallVectorImpl<char> &CompressedContents, 162 bool ZLibStyle, unsigned Alignment); 163 164 public: 165 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 166 raw_pwrite_stream &OS, bool IsLittleEndian) 167 : MCObjectWriter(OS, IsLittleEndian), 168 TargetObjectWriter(std::move(MOTW)) {} 169 170 ~ELFObjectWriter() override = default; 171 172 void reset() override { 173 Renames.clear(); 174 Relocations.clear(); 175 StrTabBuilder.clear(); 176 SectionTable.clear(); 177 MCObjectWriter::reset(); 178 } 179 180 void WriteWord(uint64_t W) { 181 if (is64Bit()) 182 write64(W); 183 else 184 write32(W); 185 } 186 187 template <typename T> void write(T Val) { 188 if (IsLittleEndian) 189 support::endian::Writer<support::little>(getStream()).write(Val); 190 else 191 support::endian::Writer<support::big>(getStream()).write(Val); 192 } 193 194 void writeHeader(const MCAssembler &Asm); 195 196 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 197 ELFSymbolData &MSD, const MCAsmLayout &Layout); 198 199 // Start and end offset of each section 200 using SectionOffsetsTy = 201 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 202 203 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 204 const MCSymbolRefExpr *RefA, 205 const MCSymbol *Sym, uint64_t C, 206 unsigned Type) const; 207 208 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 209 const MCFragment *Fragment, const MCFixup &Fixup, 210 MCValue Target, uint64_t &FixedValue) override; 211 212 // Map from a signature symbol to the group section index 213 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 214 215 /// Compute the symbol table data 216 /// 217 /// \param Asm - The assembler. 218 /// \param SectionIndexMap - Maps a section to its index. 219 /// \param RevGroupMap - Maps a signature symbol to the group section. 220 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 221 const SectionIndexMapTy &SectionIndexMap, 222 const RevGroupMapTy &RevGroupMap, 223 SectionOffsetsTy &SectionOffsets); 224 225 MCSectionELF *createRelocationSection(MCContext &Ctx, 226 const MCSectionELF &Sec); 227 228 const MCSectionELF *createStringTable(MCContext &Ctx); 229 230 void executePostLayoutBinding(MCAssembler &Asm, 231 const MCAsmLayout &Layout) override; 232 233 void writeSectionHeader(const MCAsmLayout &Layout, 234 const SectionIndexMapTy &SectionIndexMap, 235 const SectionOffsetsTy &SectionOffsets); 236 237 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 238 const MCAsmLayout &Layout); 239 240 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 241 uint64_t Address, uint64_t Offset, uint64_t Size, 242 uint32_t Link, uint32_t Info, uint64_t Alignment, 243 uint64_t EntrySize); 244 245 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 246 247 using MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl; 248 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 249 const MCSymbol &SymA, 250 const MCFragment &FB, bool InSet, 251 bool IsPCRel) const override; 252 253 void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 254 void writeSection(const SectionIndexMapTy &SectionIndexMap, 255 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 256 const MCSectionELF &Section); 257 }; 258 259 } // end anonymous namespace 260 261 void ELFObjectWriter::align(unsigned Alignment) { 262 uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment); 263 WriteZeros(Padding); 264 } 265 266 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) { 267 SectionTable.push_back(Sec); 268 StrTabBuilder.add(Sec->getSectionName()); 269 return SectionTable.size(); 270 } 271 272 void SymbolTableWriter::createSymtabShndx() { 273 if (!ShndxIndexes.empty()) 274 return; 275 276 ShndxIndexes.resize(NumWritten); 277 } 278 279 template <typename T> void SymbolTableWriter::write(T Value) { 280 EWriter.write(Value); 281 } 282 283 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit) 284 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 285 286 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 287 uint64_t size, uint8_t other, 288 uint32_t shndx, bool Reserved) { 289 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 290 291 if (LargeIndex) 292 createSymtabShndx(); 293 294 if (!ShndxIndexes.empty()) { 295 if (LargeIndex) 296 ShndxIndexes.push_back(shndx); 297 else 298 ShndxIndexes.push_back(0); 299 } 300 301 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 302 303 if (Is64Bit) { 304 write(name); // st_name 305 write(info); // st_info 306 write(other); // st_other 307 write(Index); // st_shndx 308 write(value); // st_value 309 write(size); // st_size 310 } else { 311 write(name); // st_name 312 write(uint32_t(value)); // st_value 313 write(uint32_t(size)); // st_size 314 write(info); // st_info 315 write(other); // st_other 316 write(Index); // st_shndx 317 } 318 319 ++NumWritten; 320 } 321 322 // Emit the ELF header. 323 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) { 324 // ELF Header 325 // ---------- 326 // 327 // Note 328 // ---- 329 // emitWord method behaves differently for ELF32 and ELF64, writing 330 // 4 bytes in the former and 8 in the latter. 331 332 writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3] 333 334 write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 335 336 // e_ident[EI_DATA] 337 write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB); 338 339 write8(ELF::EV_CURRENT); // e_ident[EI_VERSION] 340 // e_ident[EI_OSABI] 341 write8(TargetObjectWriter->getOSABI()); 342 write8(0); // e_ident[EI_ABIVERSION] 343 344 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD); 345 346 write16(ELF::ET_REL); // e_type 347 348 write16(TargetObjectWriter->getEMachine()); // e_machine = target 349 350 write32(ELF::EV_CURRENT); // e_version 351 WriteWord(0); // e_entry, no entry point in .o file 352 WriteWord(0); // e_phoff, no program header for .o 353 WriteWord(0); // e_shoff = sec hdr table off in bytes 354 355 // e_flags = whatever the target wants 356 write32(Asm.getELFHeaderEFlags()); 357 358 // e_ehsize = ELF header size 359 write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr)); 360 361 write16(0); // e_phentsize = prog header entry size 362 write16(0); // e_phnum = # prog header entries = 0 363 364 // e_shentsize = Section header entry size 365 write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr)); 366 367 // e_shnum = # of section header ents 368 write16(0); 369 370 // e_shstrndx = Section # of '.shstrtab' 371 assert(StringTableIndex < ELF::SHN_LORESERVE); 372 write16(StringTableIndex); 373 } 374 375 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym, 376 const MCAsmLayout &Layout) { 377 if (Sym.isCommon() && Sym.isExternal()) 378 return Sym.getCommonAlignment(); 379 380 uint64_t Res; 381 if (!Layout.getSymbolOffset(Sym, Res)) 382 return 0; 383 384 if (Layout.getAssembler().isThumbFunc(&Sym)) 385 Res |= 1; 386 387 return Res; 388 } 389 390 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 391 const MCAsmLayout &Layout) { 392 // The presence of symbol versions causes undefined symbols and 393 // versions declared with @@@ to be renamed. 394 for (const MCSymbol &A : Asm.symbols()) { 395 const auto &Alias = cast<MCSymbolELF>(A); 396 // Not an alias. 397 if (!Alias.isVariable()) 398 continue; 399 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue()); 400 if (!Ref) 401 continue; 402 const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol()); 403 404 StringRef AliasName = Alias.getName(); 405 size_t Pos = AliasName.find('@'); 406 if (Pos == StringRef::npos) 407 continue; 408 409 // Aliases defined with .symvar copy the binding from the symbol they alias. 410 // This is the first place we are able to copy this information. 411 Alias.setExternal(Symbol.isExternal()); 412 Alias.setBinding(Symbol.getBinding()); 413 414 StringRef Rest = AliasName.substr(Pos); 415 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 416 continue; 417 418 // FIXME: produce a better error message. 419 if (Symbol.isUndefined() && Rest.startswith("@@") && 420 !Rest.startswith("@@@")) 421 report_fatal_error("A @@ version cannot be undefined"); 422 423 Renames.insert(std::make_pair(&Symbol, &Alias)); 424 } 425 } 426 427 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 428 uint8_t Type = newType; 429 430 // Propagation rules: 431 // IFUNC > FUNC > OBJECT > NOTYPE 432 // TLS_OBJECT > OBJECT > NOTYPE 433 // 434 // dont let the new type degrade the old type 435 switch (origType) { 436 default: 437 break; 438 case ELF::STT_GNU_IFUNC: 439 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 440 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 441 Type = ELF::STT_GNU_IFUNC; 442 break; 443 case ELF::STT_FUNC: 444 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 445 Type == ELF::STT_TLS) 446 Type = ELF::STT_FUNC; 447 break; 448 case ELF::STT_OBJECT: 449 if (Type == ELF::STT_NOTYPE) 450 Type = ELF::STT_OBJECT; 451 break; 452 case ELF::STT_TLS: 453 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 454 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 455 Type = ELF::STT_TLS; 456 break; 457 } 458 459 return Type; 460 } 461 462 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer, 463 uint32_t StringIndex, ELFSymbolData &MSD, 464 const MCAsmLayout &Layout) { 465 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 466 const MCSymbolELF *Base = 467 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 468 469 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 470 // SHN_COMMON. 471 bool IsReserved = !Base || Symbol.isCommon(); 472 473 // Binding and Type share the same byte as upper and lower nibbles 474 uint8_t Binding = Symbol.getBinding(); 475 uint8_t Type = Symbol.getType(); 476 if (Base) { 477 Type = mergeTypeForSet(Type, Base->getType()); 478 } 479 uint8_t Info = (Binding << 4) | Type; 480 481 // Other and Visibility share the same byte with Visibility using the lower 482 // 2 bits 483 uint8_t Visibility = Symbol.getVisibility(); 484 uint8_t Other = Symbol.getOther() | Visibility; 485 486 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 487 uint64_t Size = 0; 488 489 const MCExpr *ESize = MSD.Symbol->getSize(); 490 if (!ESize && Base) 491 ESize = Base->getSize(); 492 493 if (ESize) { 494 int64_t Res; 495 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 496 report_fatal_error("Size expression must be absolute."); 497 Size = Res; 498 } 499 500 // Write out the symbol table entry 501 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 502 IsReserved); 503 } 504 505 // It is always valid to create a relocation with a symbol. It is preferable 506 // to use a relocation with a section if that is possible. Using the section 507 // allows us to omit some local symbols from the symbol table. 508 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 509 const MCSymbolRefExpr *RefA, 510 const MCSymbol *S, uint64_t C, 511 unsigned Type) const { 512 const auto *Sym = cast_or_null<MCSymbolELF>(S); 513 // A PCRel relocation to an absolute value has no symbol (or section). We 514 // represent that with a relocation to a null section. 515 if (!RefA) 516 return false; 517 518 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 519 switch (Kind) { 520 default: 521 break; 522 // The .odp creation emits a relocation against the symbol ".TOC." which 523 // create a R_PPC64_TOC relocation. However the relocation symbol name 524 // in final object creation should be NULL, since the symbol does not 525 // really exist, it is just the reference to TOC base for the current 526 // object file. Since the symbol is undefined, returning false results 527 // in a relocation with a null section which is the desired result. 528 case MCSymbolRefExpr::VK_PPC_TOCBASE: 529 return false; 530 531 // These VariantKind cause the relocation to refer to something other than 532 // the symbol itself, like a linker generated table. Since the address of 533 // symbol is not relevant, we cannot replace the symbol with the 534 // section and patch the difference in the addend. 535 case MCSymbolRefExpr::VK_GOT: 536 case MCSymbolRefExpr::VK_PLT: 537 case MCSymbolRefExpr::VK_GOTPCREL: 538 case MCSymbolRefExpr::VK_PPC_GOT_LO: 539 case MCSymbolRefExpr::VK_PPC_GOT_HI: 540 case MCSymbolRefExpr::VK_PPC_GOT_HA: 541 return true; 542 } 543 544 // An undefined symbol is not in any section, so the relocation has to point 545 // to the symbol itself. 546 assert(Sym && "Expected a symbol"); 547 if (Sym->isUndefined()) 548 return true; 549 550 unsigned Binding = Sym->getBinding(); 551 switch(Binding) { 552 default: 553 llvm_unreachable("Invalid Binding"); 554 case ELF::STB_LOCAL: 555 break; 556 case ELF::STB_WEAK: 557 // If the symbol is weak, it might be overridden by a symbol in another 558 // file. The relocation has to point to the symbol so that the linker 559 // can update it. 560 return true; 561 case ELF::STB_GLOBAL: 562 // Global ELF symbols can be preempted by the dynamic linker. The relocation 563 // has to point to the symbol for a reason analogous to the STB_WEAK case. 564 return true; 565 } 566 567 // If a relocation points to a mergeable section, we have to be careful. 568 // If the offset is zero, a relocation with the section will encode the 569 // same information. With a non-zero offset, the situation is different. 570 // For example, a relocation can point 42 bytes past the end of a string. 571 // If we change such a relocation to use the section, the linker would think 572 // that it pointed to another string and subtracting 42 at runtime will 573 // produce the wrong value. 574 if (Sym->isInSection()) { 575 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 576 unsigned Flags = Sec.getFlags(); 577 if (Flags & ELF::SHF_MERGE) { 578 if (C != 0) 579 return true; 580 581 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 582 // only handle section relocations to mergeable sections if using RELA. 583 if (!hasRelocationAddend()) 584 return true; 585 } 586 587 // Most TLS relocations use a got, so they need the symbol. Even those that 588 // are just an offset (@tpoff), require a symbol in gold versions before 589 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 590 // http://sourceware.org/PR16773. 591 if (Flags & ELF::SHF_TLS) 592 return true; 593 } 594 595 // If the symbol is a thumb function the final relocation must set the lowest 596 // bit. With a symbol that is done by just having the symbol have that bit 597 // set, so we would lose the bit if we relocated with the section. 598 // FIXME: We could use the section but add the bit to the relocation value. 599 if (Asm.isThumbFunc(Sym)) 600 return true; 601 602 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 603 return true; 604 return false; 605 } 606 607 // True if the assembler knows nothing about the final value of the symbol. 608 // This doesn't cover the comdat issues, since in those cases the assembler 609 // can at least know that all symbols in the section will move together. 610 static bool isWeak(const MCSymbolELF &Sym) { 611 if (Sym.getType() == ELF::STT_GNU_IFUNC) 612 return true; 613 614 switch (Sym.getBinding()) { 615 default: 616 llvm_unreachable("Unknown binding"); 617 case ELF::STB_LOCAL: 618 return false; 619 case ELF::STB_GLOBAL: 620 return false; 621 case ELF::STB_WEAK: 622 case ELF::STB_GNU_UNIQUE: 623 return true; 624 } 625 } 626 627 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 628 const MCAsmLayout &Layout, 629 const MCFragment *Fragment, 630 const MCFixup &Fixup, MCValue Target, 631 uint64_t &FixedValue) { 632 MCAsmBackend &Backend = Asm.getBackend(); 633 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 634 MCFixupKindInfo::FKF_IsPCRel; 635 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 636 uint64_t C = Target.getConstant(); 637 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 638 MCContext &Ctx = Asm.getContext(); 639 640 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 641 // Let A, B and C being the components of Target and R be the location of 642 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 643 // If it is pcrel, we want to compute (A - B + C - R). 644 645 // In general, ELF has no relocations for -B. It can only represent (A + C) 646 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 647 // replace B to implement it: (A - R - K + C) 648 if (IsPCRel) { 649 Ctx.reportError( 650 Fixup.getLoc(), 651 "No relocation available to represent this relative expression"); 652 return; 653 } 654 655 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 656 657 if (SymB.isUndefined()) { 658 Ctx.reportError(Fixup.getLoc(), 659 Twine("symbol '") + SymB.getName() + 660 "' can not be undefined in a subtraction expression"); 661 return; 662 } 663 664 assert(!SymB.isAbsolute() && "Should have been folded"); 665 const MCSection &SecB = SymB.getSection(); 666 if (&SecB != &FixupSection) { 667 Ctx.reportError(Fixup.getLoc(), 668 "Cannot represent a difference across sections"); 669 return; 670 } 671 672 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 673 uint64_t K = SymBOffset - FixupOffset; 674 IsPCRel = true; 675 C -= K; 676 } 677 678 // We either rejected the fixup or folded B into C at this point. 679 const MCSymbolRefExpr *RefA = Target.getSymA(); 680 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 681 682 bool ViaWeakRef = false; 683 if (SymA && SymA->isVariable()) { 684 const MCExpr *Expr = SymA->getVariableValue(); 685 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 686 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 687 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 688 ViaWeakRef = true; 689 } 690 } 691 } 692 693 unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel); 694 uint64_t OriginalC = C; 695 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 696 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 697 C += Layout.getSymbolOffset(*SymA); 698 699 uint64_t Addend = 0; 700 if (hasRelocationAddend()) { 701 Addend = C; 702 C = 0; 703 } 704 705 FixedValue = C; 706 707 if (!RelocateWithSymbol) { 708 const MCSection *SecA = 709 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr; 710 auto *ELFSec = cast_or_null<MCSectionELF>(SecA); 711 const auto *SectionSymbol = 712 ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr; 713 if (SectionSymbol) 714 SectionSymbol->setUsedInReloc(); 715 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, 716 OriginalC); 717 Relocations[&FixupSection].push_back(Rec); 718 return; 719 } 720 721 const auto *RenamedSymA = SymA; 722 if (SymA) { 723 if (const MCSymbolELF *R = Renames.lookup(SymA)) 724 RenamedSymA = R; 725 726 if (ViaWeakRef) 727 RenamedSymA->setIsWeakrefUsedInReloc(); 728 else 729 RenamedSymA->setUsedInReloc(); 730 } 731 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, 732 OriginalC); 733 Relocations[&FixupSection].push_back(Rec); 734 } 735 736 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout, 737 const MCSymbolELF &Symbol, bool Used, 738 bool Renamed) { 739 if (Symbol.isVariable()) { 740 const MCExpr *Expr = Symbol.getVariableValue(); 741 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 742 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 743 return false; 744 } 745 } 746 747 if (Used) 748 return true; 749 750 if (Renamed) 751 return false; 752 753 if (Symbol.isVariable() && Symbol.isUndefined()) { 754 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 755 Layout.getBaseSymbol(Symbol); 756 return false; 757 } 758 759 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 760 return false; 761 762 if (Symbol.isTemporary()) 763 return false; 764 765 if (Symbol.getType() == ELF::STT_SECTION) 766 return false; 767 768 return true; 769 } 770 771 void ELFObjectWriter::computeSymbolTable( 772 MCAssembler &Asm, const MCAsmLayout &Layout, 773 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 774 SectionOffsetsTy &SectionOffsets) { 775 MCContext &Ctx = Asm.getContext(); 776 SymbolTableWriter Writer(*this, is64Bit()); 777 778 // Symbol table 779 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 780 MCSectionELF *SymtabSection = 781 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 782 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 783 SymbolTableIndex = addToSectionTable(SymtabSection); 784 785 align(SymtabSection->getAlignment()); 786 uint64_t SecStart = getStream().tell(); 787 788 // The first entry is the undefined symbol entry. 789 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 790 791 std::vector<ELFSymbolData> LocalSymbolData; 792 std::vector<ELFSymbolData> ExternalSymbolData; 793 794 // Add the data for the symbols. 795 bool HasLargeSectionIndex = false; 796 for (const MCSymbol &S : Asm.symbols()) { 797 const auto &Symbol = cast<MCSymbolELF>(S); 798 bool Used = Symbol.isUsedInReloc(); 799 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 800 bool isSignature = Symbol.isSignature(); 801 802 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 803 Renames.count(&Symbol))) 804 continue; 805 806 if (Symbol.isTemporary() && Symbol.isUndefined()) { 807 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 808 continue; 809 } 810 811 ELFSymbolData MSD; 812 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 813 814 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 815 assert(Local || !Symbol.isTemporary()); 816 817 if (Symbol.isAbsolute()) { 818 MSD.SectionIndex = ELF::SHN_ABS; 819 } else if (Symbol.isCommon()) { 820 assert(!Local); 821 MSD.SectionIndex = ELF::SHN_COMMON; 822 } else if (Symbol.isUndefined()) { 823 if (isSignature && !Used) { 824 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 825 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 826 HasLargeSectionIndex = true; 827 } else { 828 MSD.SectionIndex = ELF::SHN_UNDEF; 829 } 830 } else { 831 const MCSectionELF &Section = 832 static_cast<const MCSectionELF &>(Symbol.getSection()); 833 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 834 assert(MSD.SectionIndex && "Invalid section index!"); 835 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 836 HasLargeSectionIndex = true; 837 } 838 839 // The @@@ in symbol version is replaced with @ in undefined symbols and @@ 840 // in defined ones. 841 // 842 // FIXME: All name handling should be done before we get to the writer, 843 // including dealing with GNU-style version suffixes. Fixing this isn't 844 // trivial. 845 // 846 // We thus have to be careful to not perform the symbol version replacement 847 // blindly: 848 // 849 // The ELF format is used on Windows by the MCJIT engine. Thus, on 850 // Windows, the ELFObjectWriter can encounter symbols mangled using the MS 851 // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC 852 // C++ name mangling can legally have "@@@" as a sub-string. In that case, 853 // the EFLObjectWriter should not interpret the "@@@" sub-string as 854 // specifying GNU-style symbol versioning. The ELFObjectWriter therefore 855 // checks for the MSVC C++ name mangling prefix which is either "?", "@?", 856 // "__imp_?" or "__imp_@?". 857 // 858 // It would have been interesting to perform the MS mangling prefix check 859 // only when the target triple is of the form *-pc-windows-elf. But, it 860 // seems that this information is not easily accessible from the 861 // ELFObjectWriter. 862 StringRef Name = Symbol.getName(); 863 SmallString<32> Buf; 864 if (!Name.startswith("?") && !Name.startswith("@?") && 865 !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) { 866 // This symbol isn't following the MSVC C++ name mangling convention. We 867 // can thus safely interpret the @@@ in symbol names as specifying symbol 868 // versioning. 869 size_t Pos = Name.find("@@@"); 870 if (Pos != StringRef::npos) { 871 Buf += Name.substr(0, Pos); 872 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1; 873 Buf += Name.substr(Pos + Skip); 874 Name = VersionSymSaver.save(Buf.c_str()); 875 } 876 } 877 878 // Sections have their own string table 879 if (Symbol.getType() != ELF::STT_SECTION) { 880 MSD.Name = Name; 881 StrTabBuilder.add(Name); 882 } 883 884 if (Local) 885 LocalSymbolData.push_back(MSD); 886 else 887 ExternalSymbolData.push_back(MSD); 888 } 889 890 // This holds the .symtab_shndx section index. 891 unsigned SymtabShndxSectionIndex = 0; 892 893 if (HasLargeSectionIndex) { 894 MCSectionELF *SymtabShndxSection = 895 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 896 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 897 SymtabShndxSection->setAlignment(4); 898 } 899 900 ArrayRef<std::string> FileNames = Asm.getFileNames(); 901 for (const std::string &Name : FileNames) 902 StrTabBuilder.add(Name); 903 904 StrTabBuilder.finalize(); 905 906 // File symbols are emitted first and handled separately from normal symbols, 907 // i.e. a non-STT_FILE symbol with the same name may appear. 908 for (const std::string &Name : FileNames) 909 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 910 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 911 ELF::SHN_ABS, true); 912 913 // Symbols are required to be in lexicographic order. 914 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 915 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 916 917 // Set the symbol indices. Local symbols must come before all other 918 // symbols with non-local bindings. 919 unsigned Index = FileNames.size() + 1; 920 921 for (ELFSymbolData &MSD : LocalSymbolData) { 922 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 923 ? 0 924 : StrTabBuilder.getOffset(MSD.Name); 925 MSD.Symbol->setIndex(Index++); 926 writeSymbol(Writer, StringIndex, MSD, Layout); 927 } 928 929 // Write the symbol table entries. 930 LastLocalSymbolIndex = Index; 931 932 for (ELFSymbolData &MSD : ExternalSymbolData) { 933 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 934 MSD.Symbol->setIndex(Index++); 935 writeSymbol(Writer, StringIndex, MSD, Layout); 936 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 937 } 938 939 uint64_t SecEnd = getStream().tell(); 940 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 941 942 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 943 if (ShndxIndexes.empty()) { 944 assert(SymtabShndxSectionIndex == 0); 945 return; 946 } 947 assert(SymtabShndxSectionIndex != 0); 948 949 SecStart = getStream().tell(); 950 const MCSectionELF *SymtabShndxSection = 951 SectionTable[SymtabShndxSectionIndex - 1]; 952 for (uint32_t Index : ShndxIndexes) 953 write(Index); 954 SecEnd = getStream().tell(); 955 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 956 } 957 958 MCSectionELF * 959 ELFObjectWriter::createRelocationSection(MCContext &Ctx, 960 const MCSectionELF &Sec) { 961 if (Relocations[&Sec].empty()) 962 return nullptr; 963 964 const StringRef SectionName = Sec.getSectionName(); 965 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 966 RelaSectionName += SectionName; 967 968 unsigned EntrySize; 969 if (hasRelocationAddend()) 970 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 971 else 972 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 973 974 unsigned Flags = 0; 975 if (Sec.getFlags() & ELF::SHF_GROUP) 976 Flags = ELF::SHF_GROUP; 977 978 MCSectionELF *RelaSection = Ctx.createELFRelSection( 979 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 980 Flags, EntrySize, Sec.getGroup(), &Sec); 981 RelaSection->setAlignment(is64Bit() ? 8 : 4); 982 return RelaSection; 983 } 984 985 // Include the debug info compression header. 986 bool ELFObjectWriter::maybeWriteCompression( 987 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 988 unsigned Alignment) { 989 if (ZLibStyle) { 990 uint64_t HdrSize = 991 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 992 if (Size <= HdrSize + CompressedContents.size()) 993 return false; 994 // Platform specific header is followed by compressed data. 995 if (is64Bit()) { 996 // Write Elf64_Chdr header. 997 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 998 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 999 write(static_cast<ELF::Elf64_Xword>(Size)); 1000 write(static_cast<ELF::Elf64_Xword>(Alignment)); 1001 } else { 1002 // Write Elf32_Chdr header otherwise. 1003 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 1004 write(static_cast<ELF::Elf32_Word>(Size)); 1005 write(static_cast<ELF::Elf32_Word>(Alignment)); 1006 } 1007 return true; 1008 } 1009 1010 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 1011 // useful for consumers to preallocate a buffer to decompress into. 1012 const StringRef Magic = "ZLIB"; 1013 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 1014 return false; 1015 write(ArrayRef<char>(Magic.begin(), Magic.size())); 1016 writeBE64(Size); 1017 return true; 1018 } 1019 1020 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 1021 const MCAsmLayout &Layout) { 1022 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1023 StringRef SectionName = Section.getSectionName(); 1024 1025 auto &MC = Asm.getContext(); 1026 const auto &MAI = MC.getAsmInfo(); 1027 1028 // Compressing debug_frame requires handling alignment fragments which is 1029 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 1030 // for writing to arbitrary buffers) for little benefit. 1031 bool CompressionEnabled = 1032 MAI->compressDebugSections() != DebugCompressionType::None; 1033 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 1034 SectionName == ".debug_frame") { 1035 Asm.writeSectionData(&Section, Layout); 1036 return; 1037 } 1038 1039 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 1040 MAI->compressDebugSections() == DebugCompressionType::GNU) && 1041 "expected zlib or zlib-gnu style compression"); 1042 1043 SmallVector<char, 128> UncompressedData; 1044 raw_svector_ostream VecOS(UncompressedData); 1045 raw_pwrite_stream &OldStream = getStream(); 1046 setStream(VecOS); 1047 Asm.writeSectionData(&Section, Layout); 1048 setStream(OldStream); 1049 1050 SmallVector<char, 128> CompressedContents; 1051 if (Error E = zlib::compress( 1052 StringRef(UncompressedData.data(), UncompressedData.size()), 1053 CompressedContents)) { 1054 consumeError(std::move(E)); 1055 getStream() << UncompressedData; 1056 return; 1057 } 1058 1059 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 1060 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 1061 ZlibStyle, Sec.getAlignment())) { 1062 getStream() << UncompressedData; 1063 return; 1064 } 1065 1066 if (ZlibStyle) 1067 // Set the compressed flag. That is zlib style. 1068 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 1069 else 1070 // Add "z" prefix to section name. This is zlib-gnu style. 1071 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 1072 getStream() << CompressedContents; 1073 } 1074 1075 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, 1076 uint64_t Flags, uint64_t Address, 1077 uint64_t Offset, uint64_t Size, 1078 uint32_t Link, uint32_t Info, 1079 uint64_t Alignment, 1080 uint64_t EntrySize) { 1081 write32(Name); // sh_name: index into string table 1082 write32(Type); // sh_type 1083 WriteWord(Flags); // sh_flags 1084 WriteWord(Address); // sh_addr 1085 WriteWord(Offset); // sh_offset 1086 WriteWord(Size); // sh_size 1087 write32(Link); // sh_link 1088 write32(Info); // sh_info 1089 WriteWord(Alignment); // sh_addralign 1090 WriteWord(EntrySize); // sh_entsize 1091 } 1092 1093 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm, 1094 const MCSectionELF &Sec) { 1095 std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec]; 1096 1097 // We record relocations by pushing to the end of a vector. Reverse the vector 1098 // to get the relocations in the order they were created. 1099 // In most cases that is not important, but it can be for special sections 1100 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 1101 std::reverse(Relocs.begin(), Relocs.end()); 1102 1103 // Sort the relocation entries. MIPS needs this. 1104 TargetObjectWriter->sortRelocs(Asm, Relocs); 1105 1106 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1107 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 1108 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 1109 1110 if (is64Bit()) { 1111 write(Entry.Offset); 1112 if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 1113 write(uint32_t(Index)); 1114 1115 write(TargetObjectWriter->getRSsym(Entry.Type)); 1116 write(TargetObjectWriter->getRType3(Entry.Type)); 1117 write(TargetObjectWriter->getRType2(Entry.Type)); 1118 write(TargetObjectWriter->getRType(Entry.Type)); 1119 } else { 1120 struct ELF::Elf64_Rela ERE64; 1121 ERE64.setSymbolAndType(Index, Entry.Type); 1122 write(ERE64.r_info); 1123 } 1124 if (hasRelocationAddend()) 1125 write(Entry.Addend); 1126 } else { 1127 write(uint32_t(Entry.Offset)); 1128 1129 struct ELF::Elf32_Rela ERE32; 1130 ERE32.setSymbolAndType(Index, Entry.Type); 1131 write(ERE32.r_info); 1132 1133 if (hasRelocationAddend()) 1134 write(uint32_t(Entry.Addend)); 1135 1136 if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 1137 if (uint32_t RType = TargetObjectWriter->getRType2(Entry.Type)) { 1138 write(uint32_t(Entry.Offset)); 1139 1140 ERE32.setSymbolAndType(0, RType); 1141 write(ERE32.r_info); 1142 write(uint32_t(0)); 1143 } 1144 if (uint32_t RType = TargetObjectWriter->getRType3(Entry.Type)) { 1145 write(uint32_t(Entry.Offset)); 1146 1147 ERE32.setSymbolAndType(0, RType); 1148 write(ERE32.r_info); 1149 write(uint32_t(0)); 1150 } 1151 } 1152 } 1153 } 1154 } 1155 1156 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) { 1157 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 1158 StrTabBuilder.write(getStream()); 1159 return StrtabSection; 1160 } 1161 1162 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 1163 uint32_t GroupSymbolIndex, uint64_t Offset, 1164 uint64_t Size, const MCSectionELF &Section) { 1165 uint64_t sh_link = 0; 1166 uint64_t sh_info = 0; 1167 1168 switch(Section.getType()) { 1169 default: 1170 // Nothing to do. 1171 break; 1172 1173 case ELF::SHT_DYNAMIC: 1174 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 1175 1176 case ELF::SHT_REL: 1177 case ELF::SHT_RELA: { 1178 sh_link = SymbolTableIndex; 1179 assert(sh_link && ".symtab not found"); 1180 const MCSection *InfoSection = Section.getAssociatedSection(); 1181 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1182 break; 1183 } 1184 1185 case ELF::SHT_SYMTAB: 1186 case ELF::SHT_DYNSYM: 1187 sh_link = StringTableIndex; 1188 sh_info = LastLocalSymbolIndex; 1189 break; 1190 1191 case ELF::SHT_SYMTAB_SHNDX: 1192 sh_link = SymbolTableIndex; 1193 break; 1194 1195 case ELF::SHT_GROUP: 1196 sh_link = SymbolTableIndex; 1197 sh_info = GroupSymbolIndex; 1198 break; 1199 } 1200 1201 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1202 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1203 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1204 sh_link = SectionIndexMap.lookup(Sec); 1205 } 1206 1207 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1208 Section.getType(), Section.getFlags(), 0, Offset, Size, 1209 sh_link, sh_info, Section.getAlignment(), 1210 Section.getEntrySize()); 1211 } 1212 1213 void ELFObjectWriter::writeSectionHeader( 1214 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1215 const SectionOffsetsTy &SectionOffsets) { 1216 const unsigned NumSections = SectionTable.size(); 1217 1218 // Null section first. 1219 uint64_t FirstSectionSize = 1220 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1221 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1222 1223 for (const MCSectionELF *Section : SectionTable) { 1224 uint32_t GroupSymbolIndex; 1225 unsigned Type = Section->getType(); 1226 if (Type != ELF::SHT_GROUP) 1227 GroupSymbolIndex = 0; 1228 else 1229 GroupSymbolIndex = Section->getGroup()->getIndex(); 1230 1231 const std::pair<uint64_t, uint64_t> &Offsets = 1232 SectionOffsets.find(Section)->second; 1233 uint64_t Size; 1234 if (Type == ELF::SHT_NOBITS) 1235 Size = Layout.getSectionAddressSize(Section); 1236 else 1237 Size = Offsets.second - Offsets.first; 1238 1239 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1240 *Section); 1241 } 1242 } 1243 1244 void ELFObjectWriter::writeObject(MCAssembler &Asm, 1245 const MCAsmLayout &Layout) { 1246 MCContext &Ctx = Asm.getContext(); 1247 MCSectionELF *StrtabSection = 1248 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1249 StringTableIndex = addToSectionTable(StrtabSection); 1250 1251 RevGroupMapTy RevGroupMap; 1252 SectionIndexMapTy SectionIndexMap; 1253 1254 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1255 1256 // Write out the ELF header ... 1257 writeHeader(Asm); 1258 1259 // ... then the sections ... 1260 SectionOffsetsTy SectionOffsets; 1261 std::vector<MCSectionELF *> Groups; 1262 std::vector<MCSectionELF *> Relocations; 1263 for (MCSection &Sec : Asm) { 1264 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1265 1266 align(Section.getAlignment()); 1267 1268 // Remember the offset into the file for this section. 1269 uint64_t SecStart = getStream().tell(); 1270 1271 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1272 writeSectionData(Asm, Section, Layout); 1273 1274 uint64_t SecEnd = getStream().tell(); 1275 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1276 1277 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1278 1279 if (SignatureSymbol) { 1280 Asm.registerSymbol(*SignatureSymbol); 1281 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1282 if (!GroupIdx) { 1283 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1284 GroupIdx = addToSectionTable(Group); 1285 Group->setAlignment(4); 1286 Groups.push_back(Group); 1287 } 1288 std::vector<const MCSectionELF *> &Members = 1289 GroupMembers[SignatureSymbol]; 1290 Members.push_back(&Section); 1291 if (RelSection) 1292 Members.push_back(RelSection); 1293 } 1294 1295 SectionIndexMap[&Section] = addToSectionTable(&Section); 1296 if (RelSection) { 1297 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1298 Relocations.push_back(RelSection); 1299 } 1300 } 1301 1302 for (MCSectionELF *Group : Groups) { 1303 align(Group->getAlignment()); 1304 1305 // Remember the offset into the file for this section. 1306 uint64_t SecStart = getStream().tell(); 1307 1308 const MCSymbol *SignatureSymbol = Group->getGroup(); 1309 assert(SignatureSymbol); 1310 write(uint32_t(ELF::GRP_COMDAT)); 1311 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1312 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1313 write(SecIndex); 1314 } 1315 1316 uint64_t SecEnd = getStream().tell(); 1317 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1318 } 1319 1320 // Compute symbol table information. 1321 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets); 1322 1323 for (MCSectionELF *RelSection : Relocations) { 1324 align(RelSection->getAlignment()); 1325 1326 // Remember the offset into the file for this section. 1327 uint64_t SecStart = getStream().tell(); 1328 1329 writeRelocations(Asm, 1330 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1331 1332 uint64_t SecEnd = getStream().tell(); 1333 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1334 } 1335 1336 { 1337 uint64_t SecStart = getStream().tell(); 1338 const MCSectionELF *Sec = createStringTable(Ctx); 1339 uint64_t SecEnd = getStream().tell(); 1340 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1341 } 1342 1343 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1344 align(NaturalAlignment); 1345 1346 const uint64_t SectionHeaderOffset = getStream().tell(); 1347 1348 // ... then the section header table ... 1349 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1350 1351 uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) 1352 ? (uint16_t)ELF::SHN_UNDEF 1353 : SectionTable.size() + 1; 1354 if (sys::IsLittleEndianHost != IsLittleEndian) 1355 sys::swapByteOrder(NumSections); 1356 unsigned NumSectionsOffset; 1357 1358 if (is64Bit()) { 1359 uint64_t Val = SectionHeaderOffset; 1360 if (sys::IsLittleEndianHost != IsLittleEndian) 1361 sys::swapByteOrder(Val); 1362 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1363 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1364 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1365 } else { 1366 uint32_t Val = SectionHeaderOffset; 1367 if (sys::IsLittleEndianHost != IsLittleEndian) 1368 sys::swapByteOrder(Val); 1369 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1370 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1371 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1372 } 1373 getStream().pwrite(reinterpret_cast<char *>(&NumSections), 1374 sizeof(NumSections), NumSectionsOffset); 1375 } 1376 1377 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1378 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1379 bool InSet, bool IsPCRel) const { 1380 const auto &SymA = cast<MCSymbolELF>(SA); 1381 if (IsPCRel) { 1382 assert(!InSet); 1383 if (isWeak(SymA)) 1384 return false; 1385 } 1386 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1387 InSet, IsPCRel); 1388 } 1389 1390 std::unique_ptr<MCObjectWriter> 1391 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1392 raw_pwrite_stream &OS, bool IsLittleEndian) { 1393 return llvm::make_unique<ELFObjectWriter>(std::move(MOTW), OS, 1394 IsLittleEndian); 1395 } 1396