1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFixupKindInfo.h" 30 #include "llvm/MC/MCFragment.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compression.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/Error.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Host.h" 46 #include "llvm/Support/LEB128.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/SMLoc.h" 49 #include "llvm/Support/StringSaver.h" 50 #include "llvm/Support/SwapByteOrder.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <map> 57 #include <memory> 58 #include <string> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #undef DEBUG_TYPE 65 #define DEBUG_TYPE "reloc-info" 66 67 namespace { 68 69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 70 71 class ELFObjectWriter; 72 struct ELFWriter; 73 74 bool isDwoSection(const MCSectionELF &Sec) { 75 return Sec.getSectionName().endswith(".dwo"); 76 } 77 78 class SymbolTableWriter { 79 ELFWriter &EWriter; 80 bool Is64Bit; 81 82 // indexes we are going to write to .symtab_shndx. 83 std::vector<uint32_t> ShndxIndexes; 84 85 // The numbel of symbols written so far. 86 unsigned NumWritten; 87 88 void createSymtabShndx(); 89 90 template <typename T> void write(T Value); 91 92 public: 93 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 94 95 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 96 uint8_t other, uint32_t shndx, bool Reserved); 97 98 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 99 }; 100 101 struct ELFWriter { 102 ELFObjectWriter &OWriter; 103 support::endian::Writer W; 104 105 enum DwoMode { 106 AllSections, 107 NonDwoOnly, 108 DwoOnly, 109 } Mode; 110 111 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 112 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 113 bool Used, bool Renamed); 114 115 /// Helper struct for containing some precomputed information on symbols. 116 struct ELFSymbolData { 117 const MCSymbolELF *Symbol; 118 uint32_t SectionIndex; 119 StringRef Name; 120 121 // Support lexicographic sorting. 122 bool operator<(const ELFSymbolData &RHS) const { 123 unsigned LHSType = Symbol->getType(); 124 unsigned RHSType = RHS.Symbol->getType(); 125 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 126 return false; 127 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 128 return true; 129 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 130 return SectionIndex < RHS.SectionIndex; 131 return Name < RHS.Name; 132 } 133 }; 134 135 /// @} 136 /// @name Symbol Table Data 137 /// @{ 138 139 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 140 141 /// @} 142 143 // This holds the symbol table index of the last local symbol. 144 unsigned LastLocalSymbolIndex; 145 // This holds the .strtab section index. 146 unsigned StringTableIndex; 147 // This holds the .symtab section index. 148 unsigned SymbolTableIndex; 149 150 // Sections in the order they are to be output in the section table. 151 std::vector<const MCSectionELF *> SectionTable; 152 unsigned addToSectionTable(const MCSectionELF *Sec); 153 154 // TargetObjectWriter wrappers. 155 bool is64Bit() const; 156 bool hasRelocationAddend() const; 157 158 void align(unsigned Alignment); 159 160 bool maybeWriteCompression(uint64_t Size, 161 SmallVectorImpl<char> &CompressedContents, 162 bool ZLibStyle, unsigned Alignment); 163 164 public: 165 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 166 bool IsLittleEndian, DwoMode Mode) 167 : OWriter(OWriter), 168 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 169 170 void WriteWord(uint64_t Word) { 171 if (is64Bit()) 172 W.write<uint64_t>(Word); 173 else 174 W.write<uint32_t>(Word); 175 } 176 177 template <typename T> void write(T Val) { 178 W.write(Val); 179 } 180 181 void writeHeader(const MCAssembler &Asm); 182 183 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 184 ELFSymbolData &MSD, const MCAsmLayout &Layout); 185 186 // Start and end offset of each section 187 using SectionOffsetsTy = 188 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 189 190 // Map from a signature symbol to the group section index 191 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 192 193 /// Compute the symbol table data 194 /// 195 /// \param Asm - The assembler. 196 /// \param SectionIndexMap - Maps a section to its index. 197 /// \param RevGroupMap - Maps a signature symbol to the group section. 198 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 199 const SectionIndexMapTy &SectionIndexMap, 200 const RevGroupMapTy &RevGroupMap, 201 SectionOffsetsTy &SectionOffsets); 202 203 void writeAddrsigSection(); 204 205 MCSectionELF *createRelocationSection(MCContext &Ctx, 206 const MCSectionELF &Sec); 207 208 const MCSectionELF *createStringTable(MCContext &Ctx); 209 210 void writeSectionHeader(const MCAsmLayout &Layout, 211 const SectionIndexMapTy &SectionIndexMap, 212 const SectionOffsetsTy &SectionOffsets); 213 214 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 215 const MCAsmLayout &Layout); 216 217 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 218 uint64_t Address, uint64_t Offset, uint64_t Size, 219 uint32_t Link, uint32_t Info, uint64_t Alignment, 220 uint64_t EntrySize); 221 222 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 223 224 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 225 void writeSection(const SectionIndexMapTy &SectionIndexMap, 226 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 227 const MCSectionELF &Section); 228 }; 229 230 class ELFObjectWriter : public MCObjectWriter { 231 /// The target specific ELF writer instance. 232 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 233 234 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 235 236 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 237 238 bool EmitAddrsigSection = false; 239 std::vector<const MCSymbol *> AddrsigSyms; 240 241 bool hasRelocationAddend() const; 242 243 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 244 const MCSymbolRefExpr *RefA, 245 const MCSymbolELF *Sym, uint64_t C, 246 unsigned Type) const; 247 248 public: 249 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 250 : TargetObjectWriter(std::move(MOTW)) {} 251 252 void reset() override { 253 Relocations.clear(); 254 Renames.clear(); 255 MCObjectWriter::reset(); 256 } 257 258 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 259 const MCSymbol &SymA, 260 const MCFragment &FB, bool InSet, 261 bool IsPCRel) const override; 262 263 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 264 const MCSectionELF *From, 265 const MCSectionELF *To) { 266 return true; 267 } 268 269 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 270 const MCFragment *Fragment, const MCFixup &Fixup, 271 MCValue Target, uint64_t &FixedValue) override; 272 273 void executePostLayoutBinding(MCAssembler &Asm, 274 const MCAsmLayout &Layout) override; 275 276 void emitAddrsigSection() override { EmitAddrsigSection = true; } 277 void addAddrsigSymbol(const MCSymbol *Sym) override { 278 AddrsigSyms.push_back(Sym); 279 } 280 281 friend struct ELFWriter; 282 }; 283 284 class ELFSingleObjectWriter : public ELFObjectWriter { 285 raw_pwrite_stream &OS; 286 bool IsLittleEndian; 287 288 public: 289 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 290 raw_pwrite_stream &OS, bool IsLittleEndian) 291 : ELFObjectWriter(std::move(MOTW)), OS(OS), 292 IsLittleEndian(IsLittleEndian) {} 293 294 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 295 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 296 .writeObject(Asm, Layout); 297 } 298 299 friend struct ELFWriter; 300 }; 301 302 class ELFDwoObjectWriter : public ELFObjectWriter { 303 raw_pwrite_stream &OS, &DwoOS; 304 bool IsLittleEndian; 305 306 public: 307 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 308 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 309 bool IsLittleEndian) 310 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 311 IsLittleEndian(IsLittleEndian) {} 312 313 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 314 const MCSectionELF *From, 315 const MCSectionELF *To) override { 316 if (isDwoSection(*From)) { 317 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 318 return false; 319 } 320 if (To && isDwoSection(*To)) { 321 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 322 return false; 323 } 324 return true; 325 } 326 327 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 328 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 329 .writeObject(Asm, Layout); 330 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 331 .writeObject(Asm, Layout); 332 return Size; 333 } 334 }; 335 336 } // end anonymous namespace 337 338 void ELFWriter::align(unsigned Alignment) { 339 uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment); 340 W.OS.write_zeros(Padding); 341 } 342 343 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 344 SectionTable.push_back(Sec); 345 StrTabBuilder.add(Sec->getSectionName()); 346 return SectionTable.size(); 347 } 348 349 void SymbolTableWriter::createSymtabShndx() { 350 if (!ShndxIndexes.empty()) 351 return; 352 353 ShndxIndexes.resize(NumWritten); 354 } 355 356 template <typename T> void SymbolTableWriter::write(T Value) { 357 EWriter.write(Value); 358 } 359 360 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 361 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 362 363 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 364 uint64_t size, uint8_t other, 365 uint32_t shndx, bool Reserved) { 366 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 367 368 if (LargeIndex) 369 createSymtabShndx(); 370 371 if (!ShndxIndexes.empty()) { 372 if (LargeIndex) 373 ShndxIndexes.push_back(shndx); 374 else 375 ShndxIndexes.push_back(0); 376 } 377 378 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 379 380 if (Is64Bit) { 381 write(name); // st_name 382 write(info); // st_info 383 write(other); // st_other 384 write(Index); // st_shndx 385 write(value); // st_value 386 write(size); // st_size 387 } else { 388 write(name); // st_name 389 write(uint32_t(value)); // st_value 390 write(uint32_t(size)); // st_size 391 write(info); // st_info 392 write(other); // st_other 393 write(Index); // st_shndx 394 } 395 396 ++NumWritten; 397 } 398 399 bool ELFWriter::is64Bit() const { 400 return OWriter.TargetObjectWriter->is64Bit(); 401 } 402 403 bool ELFWriter::hasRelocationAddend() const { 404 return OWriter.hasRelocationAddend(); 405 } 406 407 // Emit the ELF header. 408 void ELFWriter::writeHeader(const MCAssembler &Asm) { 409 // ELF Header 410 // ---------- 411 // 412 // Note 413 // ---- 414 // emitWord method behaves differently for ELF32 and ELF64, writing 415 // 4 bytes in the former and 8 in the latter. 416 417 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 418 419 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 420 421 // e_ident[EI_DATA] 422 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 423 : ELF::ELFDATA2MSB); 424 425 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 426 // e_ident[EI_OSABI] 427 W.OS << char(OWriter.TargetObjectWriter->getOSABI()); 428 // e_ident[EI_ABIVERSION] 429 W.OS << char(OWriter.TargetObjectWriter->getABIVersion()); 430 431 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 432 433 W.write<uint16_t>(ELF::ET_REL); // e_type 434 435 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 436 437 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 438 WriteWord(0); // e_entry, no entry point in .o file 439 WriteWord(0); // e_phoff, no program header for .o 440 WriteWord(0); // e_shoff = sec hdr table off in bytes 441 442 // e_flags = whatever the target wants 443 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 444 445 // e_ehsize = ELF header size 446 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 447 : sizeof(ELF::Elf32_Ehdr)); 448 449 W.write<uint16_t>(0); // e_phentsize = prog header entry size 450 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 451 452 // e_shentsize = Section header entry size 453 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 454 : sizeof(ELF::Elf32_Shdr)); 455 456 // e_shnum = # of section header ents 457 W.write<uint16_t>(0); 458 459 // e_shstrndx = Section # of '.shstrtab' 460 assert(StringTableIndex < ELF::SHN_LORESERVE); 461 W.write<uint16_t>(StringTableIndex); 462 } 463 464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 465 const MCAsmLayout &Layout) { 466 if (Sym.isCommon() && Sym.isExternal()) 467 return Sym.getCommonAlignment(); 468 469 uint64_t Res; 470 if (!Layout.getSymbolOffset(Sym, Res)) 471 return 0; 472 473 if (Layout.getAssembler().isThumbFunc(&Sym)) 474 Res |= 1; 475 476 return Res; 477 } 478 479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 480 uint8_t Type = newType; 481 482 // Propagation rules: 483 // IFUNC > FUNC > OBJECT > NOTYPE 484 // TLS_OBJECT > OBJECT > NOTYPE 485 // 486 // dont let the new type degrade the old type 487 switch (origType) { 488 default: 489 break; 490 case ELF::STT_GNU_IFUNC: 491 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 492 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 493 Type = ELF::STT_GNU_IFUNC; 494 break; 495 case ELF::STT_FUNC: 496 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 497 Type == ELF::STT_TLS) 498 Type = ELF::STT_FUNC; 499 break; 500 case ELF::STT_OBJECT: 501 if (Type == ELF::STT_NOTYPE) 502 Type = ELF::STT_OBJECT; 503 break; 504 case ELF::STT_TLS: 505 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 506 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 507 Type = ELF::STT_TLS; 508 break; 509 } 510 511 return Type; 512 } 513 514 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 515 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 516 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 517 const MCSymbolELF *Base = 518 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 519 520 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 521 // SHN_COMMON. 522 bool IsReserved = !Base || Symbol.isCommon(); 523 524 // Binding and Type share the same byte as upper and lower nibbles 525 uint8_t Binding = Symbol.getBinding(); 526 uint8_t Type = Symbol.getType(); 527 if (Base) { 528 Type = mergeTypeForSet(Type, Base->getType()); 529 } 530 uint8_t Info = (Binding << 4) | Type; 531 532 // Other and Visibility share the same byte with Visibility using the lower 533 // 2 bits 534 uint8_t Visibility = Symbol.getVisibility(); 535 uint8_t Other = Symbol.getOther() | Visibility; 536 537 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 538 uint64_t Size = 0; 539 540 const MCExpr *ESize = MSD.Symbol->getSize(); 541 if (!ESize && Base) 542 ESize = Base->getSize(); 543 544 if (ESize) { 545 int64_t Res; 546 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 547 report_fatal_error("Size expression must be absolute."); 548 Size = Res; 549 } 550 551 // Write out the symbol table entry 552 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 553 IsReserved); 554 } 555 556 // True if the assembler knows nothing about the final value of the symbol. 557 // This doesn't cover the comdat issues, since in those cases the assembler 558 // can at least know that all symbols in the section will move together. 559 static bool isWeak(const MCSymbolELF &Sym) { 560 if (Sym.getType() == ELF::STT_GNU_IFUNC) 561 return true; 562 563 switch (Sym.getBinding()) { 564 default: 565 llvm_unreachable("Unknown binding"); 566 case ELF::STB_LOCAL: 567 return false; 568 case ELF::STB_GLOBAL: 569 return false; 570 case ELF::STB_WEAK: 571 case ELF::STB_GNU_UNIQUE: 572 return true; 573 } 574 } 575 576 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 577 bool Used, bool Renamed) { 578 if (Symbol.isVariable()) { 579 const MCExpr *Expr = Symbol.getVariableValue(); 580 // Target Expressions that are always inlined do not appear in the symtab 581 if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) 582 if (T->inlineAssignedExpr()) 583 return false; 584 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 585 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 586 return false; 587 } 588 } 589 590 if (Used) 591 return true; 592 593 if (Renamed) 594 return false; 595 596 if (Symbol.isVariable() && Symbol.isUndefined()) { 597 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 598 Layout.getBaseSymbol(Symbol); 599 return false; 600 } 601 602 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 603 return false; 604 605 if (Symbol.isTemporary()) 606 return false; 607 608 if (Symbol.getType() == ELF::STT_SECTION) 609 return false; 610 611 return true; 612 } 613 614 void ELFWriter::computeSymbolTable( 615 MCAssembler &Asm, const MCAsmLayout &Layout, 616 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 617 SectionOffsetsTy &SectionOffsets) { 618 MCContext &Ctx = Asm.getContext(); 619 SymbolTableWriter Writer(*this, is64Bit()); 620 621 // Symbol table 622 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 623 MCSectionELF *SymtabSection = 624 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 625 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 626 SymbolTableIndex = addToSectionTable(SymtabSection); 627 628 align(SymtabSection->getAlignment()); 629 uint64_t SecStart = W.OS.tell(); 630 631 // The first entry is the undefined symbol entry. 632 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 633 634 std::vector<ELFSymbolData> LocalSymbolData; 635 std::vector<ELFSymbolData> ExternalSymbolData; 636 637 // Add the data for the symbols. 638 bool HasLargeSectionIndex = false; 639 for (const MCSymbol &S : Asm.symbols()) { 640 const auto &Symbol = cast<MCSymbolELF>(S); 641 bool Used = Symbol.isUsedInReloc(); 642 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 643 bool isSignature = Symbol.isSignature(); 644 645 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 646 OWriter.Renames.count(&Symbol))) 647 continue; 648 649 if (Symbol.isTemporary() && Symbol.isUndefined()) { 650 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 651 continue; 652 } 653 654 ELFSymbolData MSD; 655 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 656 657 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 658 assert(Local || !Symbol.isTemporary()); 659 660 if (Symbol.isAbsolute()) { 661 MSD.SectionIndex = ELF::SHN_ABS; 662 } else if (Symbol.isCommon()) { 663 assert(!Local); 664 MSD.SectionIndex = ELF::SHN_COMMON; 665 } else if (Symbol.isUndefined()) { 666 if (isSignature && !Used) { 667 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 668 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 669 HasLargeSectionIndex = true; 670 } else { 671 MSD.SectionIndex = ELF::SHN_UNDEF; 672 } 673 } else { 674 const MCSectionELF &Section = 675 static_cast<const MCSectionELF &>(Symbol.getSection()); 676 677 // We may end up with a situation when section symbol is technically 678 // defined, but should not be. That happens because we explicitly 679 // pre-create few .debug_* sections to have accessors. 680 // And if these sections were not really defined in the code, but were 681 // referenced, we simply error out. 682 if (!Section.isRegistered()) { 683 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 684 ELF::STT_SECTION); 685 Ctx.reportError(SMLoc(), 686 "Undefined section reference: " + Symbol.getName()); 687 continue; 688 } 689 690 if (Mode == NonDwoOnly && isDwoSection(Section)) 691 continue; 692 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 693 assert(MSD.SectionIndex && "Invalid section index!"); 694 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 695 HasLargeSectionIndex = true; 696 } 697 698 StringRef Name = Symbol.getName(); 699 700 // Sections have their own string table 701 if (Symbol.getType() != ELF::STT_SECTION) { 702 MSD.Name = Name; 703 StrTabBuilder.add(Name); 704 } 705 706 if (Local) 707 LocalSymbolData.push_back(MSD); 708 else 709 ExternalSymbolData.push_back(MSD); 710 } 711 712 // This holds the .symtab_shndx section index. 713 unsigned SymtabShndxSectionIndex = 0; 714 715 if (HasLargeSectionIndex) { 716 MCSectionELF *SymtabShndxSection = 717 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 718 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 719 SymtabShndxSection->setAlignment(4); 720 } 721 722 ArrayRef<std::string> FileNames = Asm.getFileNames(); 723 for (const std::string &Name : FileNames) 724 StrTabBuilder.add(Name); 725 726 StrTabBuilder.finalize(); 727 728 // File symbols are emitted first and handled separately from normal symbols, 729 // i.e. a non-STT_FILE symbol with the same name may appear. 730 for (const std::string &Name : FileNames) 731 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 732 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 733 ELF::SHN_ABS, true); 734 735 // Symbols are required to be in lexicographic order. 736 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 737 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 738 739 // Set the symbol indices. Local symbols must come before all other 740 // symbols with non-local bindings. 741 unsigned Index = FileNames.size() + 1; 742 743 for (ELFSymbolData &MSD : LocalSymbolData) { 744 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 745 ? 0 746 : StrTabBuilder.getOffset(MSD.Name); 747 MSD.Symbol->setIndex(Index++); 748 writeSymbol(Writer, StringIndex, MSD, Layout); 749 } 750 751 // Write the symbol table entries. 752 LastLocalSymbolIndex = Index; 753 754 for (ELFSymbolData &MSD : ExternalSymbolData) { 755 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 756 MSD.Symbol->setIndex(Index++); 757 writeSymbol(Writer, StringIndex, MSD, Layout); 758 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 759 } 760 761 uint64_t SecEnd = W.OS.tell(); 762 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 763 764 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 765 if (ShndxIndexes.empty()) { 766 assert(SymtabShndxSectionIndex == 0); 767 return; 768 } 769 assert(SymtabShndxSectionIndex != 0); 770 771 SecStart = W.OS.tell(); 772 const MCSectionELF *SymtabShndxSection = 773 SectionTable[SymtabShndxSectionIndex - 1]; 774 for (uint32_t Index : ShndxIndexes) 775 write(Index); 776 SecEnd = W.OS.tell(); 777 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 778 } 779 780 void ELFWriter::writeAddrsigSection() { 781 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 782 encodeULEB128(Sym->getIndex(), W.OS); 783 } 784 785 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 786 const MCSectionELF &Sec) { 787 if (OWriter.Relocations[&Sec].empty()) 788 return nullptr; 789 790 const StringRef SectionName = Sec.getSectionName(); 791 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 792 RelaSectionName += SectionName; 793 794 unsigned EntrySize; 795 if (hasRelocationAddend()) 796 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 797 else 798 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 799 800 unsigned Flags = 0; 801 if (Sec.getFlags() & ELF::SHF_GROUP) 802 Flags = ELF::SHF_GROUP; 803 804 MCSectionELF *RelaSection = Ctx.createELFRelSection( 805 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 806 Flags, EntrySize, Sec.getGroup(), &Sec); 807 RelaSection->setAlignment(is64Bit() ? 8 : 4); 808 return RelaSection; 809 } 810 811 // Include the debug info compression header. 812 bool ELFWriter::maybeWriteCompression( 813 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 814 unsigned Alignment) { 815 if (ZLibStyle) { 816 uint64_t HdrSize = 817 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 818 if (Size <= HdrSize + CompressedContents.size()) 819 return false; 820 // Platform specific header is followed by compressed data. 821 if (is64Bit()) { 822 // Write Elf64_Chdr header. 823 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 824 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 825 write(static_cast<ELF::Elf64_Xword>(Size)); 826 write(static_cast<ELF::Elf64_Xword>(Alignment)); 827 } else { 828 // Write Elf32_Chdr header otherwise. 829 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 830 write(static_cast<ELF::Elf32_Word>(Size)); 831 write(static_cast<ELF::Elf32_Word>(Alignment)); 832 } 833 return true; 834 } 835 836 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 837 // useful for consumers to preallocate a buffer to decompress into. 838 const StringRef Magic = "ZLIB"; 839 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 840 return false; 841 W.OS << Magic; 842 support::endian::write(W.OS, Size, support::big); 843 return true; 844 } 845 846 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 847 const MCAsmLayout &Layout) { 848 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 849 StringRef SectionName = Section.getSectionName(); 850 851 auto &MC = Asm.getContext(); 852 const auto &MAI = MC.getAsmInfo(); 853 854 // Compressing debug_frame requires handling alignment fragments which is 855 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 856 // for writing to arbitrary buffers) for little benefit. 857 bool CompressionEnabled = 858 MAI->compressDebugSections() != DebugCompressionType::None; 859 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 860 SectionName == ".debug_frame") { 861 Asm.writeSectionData(W.OS, &Section, Layout); 862 return; 863 } 864 865 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 866 MAI->compressDebugSections() == DebugCompressionType::GNU) && 867 "expected zlib or zlib-gnu style compression"); 868 869 SmallVector<char, 128> UncompressedData; 870 raw_svector_ostream VecOS(UncompressedData); 871 Asm.writeSectionData(VecOS, &Section, Layout); 872 873 SmallVector<char, 128> CompressedContents; 874 if (Error E = zlib::compress( 875 StringRef(UncompressedData.data(), UncompressedData.size()), 876 CompressedContents)) { 877 consumeError(std::move(E)); 878 W.OS << UncompressedData; 879 return; 880 } 881 882 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 883 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 884 ZlibStyle, Sec.getAlignment())) { 885 W.OS << UncompressedData; 886 return; 887 } 888 889 if (ZlibStyle) { 890 // Set the compressed flag. That is zlib style. 891 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 892 // Alignment field should reflect the requirements of 893 // the compressed section header. 894 Section.setAlignment(is64Bit() ? 8 : 4); 895 } else { 896 // Add "z" prefix to section name. This is zlib-gnu style. 897 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 898 } 899 W.OS << CompressedContents; 900 } 901 902 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 903 uint64_t Address, uint64_t Offset, 904 uint64_t Size, uint32_t Link, uint32_t Info, 905 uint64_t Alignment, uint64_t EntrySize) { 906 W.write<uint32_t>(Name); // sh_name: index into string table 907 W.write<uint32_t>(Type); // sh_type 908 WriteWord(Flags); // sh_flags 909 WriteWord(Address); // sh_addr 910 WriteWord(Offset); // sh_offset 911 WriteWord(Size); // sh_size 912 W.write<uint32_t>(Link); // sh_link 913 W.write<uint32_t>(Info); // sh_info 914 WriteWord(Alignment); // sh_addralign 915 WriteWord(EntrySize); // sh_entsize 916 } 917 918 void ELFWriter::writeRelocations(const MCAssembler &Asm, 919 const MCSectionELF &Sec) { 920 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 921 922 // We record relocations by pushing to the end of a vector. Reverse the vector 923 // to get the relocations in the order they were created. 924 // In most cases that is not important, but it can be for special sections 925 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 926 std::reverse(Relocs.begin(), Relocs.end()); 927 928 // Sort the relocation entries. MIPS needs this. 929 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 930 931 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 932 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 933 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 934 935 if (is64Bit()) { 936 write(Entry.Offset); 937 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 938 write(uint32_t(Index)); 939 940 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 941 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 942 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 943 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 944 } else { 945 struct ELF::Elf64_Rela ERE64; 946 ERE64.setSymbolAndType(Index, Entry.Type); 947 write(ERE64.r_info); 948 } 949 if (hasRelocationAddend()) 950 write(Entry.Addend); 951 } else { 952 write(uint32_t(Entry.Offset)); 953 954 struct ELF::Elf32_Rela ERE32; 955 ERE32.setSymbolAndType(Index, Entry.Type); 956 write(ERE32.r_info); 957 958 if (hasRelocationAddend()) 959 write(uint32_t(Entry.Addend)); 960 961 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 962 if (uint32_t RType = 963 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 964 write(uint32_t(Entry.Offset)); 965 966 ERE32.setSymbolAndType(0, RType); 967 write(ERE32.r_info); 968 write(uint32_t(0)); 969 } 970 if (uint32_t RType = 971 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 972 write(uint32_t(Entry.Offset)); 973 974 ERE32.setSymbolAndType(0, RType); 975 write(ERE32.r_info); 976 write(uint32_t(0)); 977 } 978 } 979 } 980 } 981 } 982 983 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) { 984 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 985 StrTabBuilder.write(W.OS); 986 return StrtabSection; 987 } 988 989 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 990 uint32_t GroupSymbolIndex, uint64_t Offset, 991 uint64_t Size, const MCSectionELF &Section) { 992 uint64_t sh_link = 0; 993 uint64_t sh_info = 0; 994 995 switch(Section.getType()) { 996 default: 997 // Nothing to do. 998 break; 999 1000 case ELF::SHT_DYNAMIC: 1001 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 1002 1003 case ELF::SHT_REL: 1004 case ELF::SHT_RELA: { 1005 sh_link = SymbolTableIndex; 1006 assert(sh_link && ".symtab not found"); 1007 const MCSection *InfoSection = Section.getAssociatedSection(); 1008 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1009 break; 1010 } 1011 1012 case ELF::SHT_SYMTAB: 1013 sh_link = StringTableIndex; 1014 sh_info = LastLocalSymbolIndex; 1015 break; 1016 1017 case ELF::SHT_SYMTAB_SHNDX: 1018 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1019 case ELF::SHT_LLVM_ADDRSIG: 1020 sh_link = SymbolTableIndex; 1021 break; 1022 1023 case ELF::SHT_GROUP: 1024 sh_link = SymbolTableIndex; 1025 sh_info = GroupSymbolIndex; 1026 break; 1027 } 1028 1029 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1030 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1031 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1032 sh_link = SectionIndexMap.lookup(Sec); 1033 } 1034 1035 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1036 Section.getType(), Section.getFlags(), 0, Offset, Size, 1037 sh_link, sh_info, Section.getAlignment(), 1038 Section.getEntrySize()); 1039 } 1040 1041 void ELFWriter::writeSectionHeader( 1042 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1043 const SectionOffsetsTy &SectionOffsets) { 1044 const unsigned NumSections = SectionTable.size(); 1045 1046 // Null section first. 1047 uint64_t FirstSectionSize = 1048 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1049 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1050 1051 for (const MCSectionELF *Section : SectionTable) { 1052 uint32_t GroupSymbolIndex; 1053 unsigned Type = Section->getType(); 1054 if (Type != ELF::SHT_GROUP) 1055 GroupSymbolIndex = 0; 1056 else 1057 GroupSymbolIndex = Section->getGroup()->getIndex(); 1058 1059 const std::pair<uint64_t, uint64_t> &Offsets = 1060 SectionOffsets.find(Section)->second; 1061 uint64_t Size; 1062 if (Type == ELF::SHT_NOBITS) 1063 Size = Layout.getSectionAddressSize(Section); 1064 else 1065 Size = Offsets.second - Offsets.first; 1066 1067 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1068 *Section); 1069 } 1070 } 1071 1072 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1073 uint64_t StartOffset = W.OS.tell(); 1074 1075 MCContext &Ctx = Asm.getContext(); 1076 MCSectionELF *StrtabSection = 1077 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1078 StringTableIndex = addToSectionTable(StrtabSection); 1079 1080 RevGroupMapTy RevGroupMap; 1081 SectionIndexMapTy SectionIndexMap; 1082 1083 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1084 1085 // Write out the ELF header ... 1086 writeHeader(Asm); 1087 1088 // ... then the sections ... 1089 SectionOffsetsTy SectionOffsets; 1090 std::vector<MCSectionELF *> Groups; 1091 std::vector<MCSectionELF *> Relocations; 1092 for (MCSection &Sec : Asm) { 1093 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1094 if (Mode == NonDwoOnly && isDwoSection(Section)) 1095 continue; 1096 if (Mode == DwoOnly && !isDwoSection(Section)) 1097 continue; 1098 1099 align(Section.getAlignment()); 1100 1101 // Remember the offset into the file for this section. 1102 uint64_t SecStart = W.OS.tell(); 1103 1104 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1105 writeSectionData(Asm, Section, Layout); 1106 1107 uint64_t SecEnd = W.OS.tell(); 1108 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1109 1110 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1111 1112 if (SignatureSymbol) { 1113 Asm.registerSymbol(*SignatureSymbol); 1114 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1115 if (!GroupIdx) { 1116 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1117 GroupIdx = addToSectionTable(Group); 1118 Group->setAlignment(4); 1119 Groups.push_back(Group); 1120 } 1121 std::vector<const MCSectionELF *> &Members = 1122 GroupMembers[SignatureSymbol]; 1123 Members.push_back(&Section); 1124 if (RelSection) 1125 Members.push_back(RelSection); 1126 } 1127 1128 SectionIndexMap[&Section] = addToSectionTable(&Section); 1129 if (RelSection) { 1130 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1131 Relocations.push_back(RelSection); 1132 } 1133 1134 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1135 } 1136 1137 MCSectionELF *CGProfileSection = nullptr; 1138 if (!Asm.CGProfile.empty()) { 1139 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile", 1140 ELF::SHT_LLVM_CALL_GRAPH_PROFILE, 1141 ELF::SHF_EXCLUDE, 16, ""); 1142 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection); 1143 } 1144 1145 for (MCSectionELF *Group : Groups) { 1146 align(Group->getAlignment()); 1147 1148 // Remember the offset into the file for this section. 1149 uint64_t SecStart = W.OS.tell(); 1150 1151 const MCSymbol *SignatureSymbol = Group->getGroup(); 1152 assert(SignatureSymbol); 1153 write(uint32_t(ELF::GRP_COMDAT)); 1154 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1155 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1156 write(SecIndex); 1157 } 1158 1159 uint64_t SecEnd = W.OS.tell(); 1160 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1161 } 1162 1163 if (Mode == DwoOnly) { 1164 // dwo files don't have symbol tables or relocations, but they do have 1165 // string tables. 1166 StrTabBuilder.finalize(); 1167 } else { 1168 MCSectionELF *AddrsigSection; 1169 if (OWriter.EmitAddrsigSection) { 1170 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1171 ELF::SHF_EXCLUDE); 1172 addToSectionTable(AddrsigSection); 1173 } 1174 1175 // Compute symbol table information. 1176 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1177 SectionOffsets); 1178 1179 for (MCSectionELF *RelSection : Relocations) { 1180 align(RelSection->getAlignment()); 1181 1182 // Remember the offset into the file for this section. 1183 uint64_t SecStart = W.OS.tell(); 1184 1185 writeRelocations(Asm, 1186 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1187 1188 uint64_t SecEnd = W.OS.tell(); 1189 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1190 } 1191 1192 if (OWriter.EmitAddrsigSection) { 1193 uint64_t SecStart = W.OS.tell(); 1194 writeAddrsigSection(); 1195 uint64_t SecEnd = W.OS.tell(); 1196 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1197 } 1198 } 1199 1200 if (CGProfileSection) { 1201 uint64_t SecStart = W.OS.tell(); 1202 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1203 W.write<uint32_t>(CGPE.From->getSymbol().getIndex()); 1204 W.write<uint32_t>(CGPE.To->getSymbol().getIndex()); 1205 W.write<uint64_t>(CGPE.Count); 1206 } 1207 uint64_t SecEnd = W.OS.tell(); 1208 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd); 1209 } 1210 1211 { 1212 uint64_t SecStart = W.OS.tell(); 1213 const MCSectionELF *Sec = createStringTable(Ctx); 1214 uint64_t SecEnd = W.OS.tell(); 1215 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1216 } 1217 1218 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1219 align(NaturalAlignment); 1220 1221 const uint64_t SectionHeaderOffset = W.OS.tell(); 1222 1223 // ... then the section header table ... 1224 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1225 1226 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1227 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1228 : SectionTable.size() + 1, 1229 W.Endian); 1230 unsigned NumSectionsOffset; 1231 1232 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1233 if (is64Bit()) { 1234 uint64_t Val = 1235 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1236 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1237 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1238 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1239 } else { 1240 uint32_t Val = 1241 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1242 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1243 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1244 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1245 } 1246 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1247 NumSectionsOffset); 1248 1249 return W.OS.tell() - StartOffset; 1250 } 1251 1252 bool ELFObjectWriter::hasRelocationAddend() const { 1253 return TargetObjectWriter->hasRelocationAddend(); 1254 } 1255 1256 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1257 const MCAsmLayout &Layout) { 1258 // The presence of symbol versions causes undefined symbols and 1259 // versions declared with @@@ to be renamed. 1260 for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) { 1261 StringRef AliasName = P.first; 1262 const auto &Symbol = cast<MCSymbolELF>(*P.second); 1263 size_t Pos = AliasName.find('@'); 1264 assert(Pos != StringRef::npos); 1265 1266 StringRef Prefix = AliasName.substr(0, Pos); 1267 StringRef Rest = AliasName.substr(Pos); 1268 StringRef Tail = Rest; 1269 if (Rest.startswith("@@@")) 1270 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1271 1272 auto *Alias = 1273 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1274 Asm.registerSymbol(*Alias); 1275 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1276 Alias->setVariableValue(Value); 1277 1278 // Aliases defined with .symvar copy the binding from the symbol they alias. 1279 // This is the first place we are able to copy this information. 1280 Alias->setExternal(Symbol.isExternal()); 1281 Alias->setBinding(Symbol.getBinding()); 1282 Alias->setOther(Symbol.getOther()); 1283 1284 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 1285 continue; 1286 1287 // FIXME: Get source locations for these errors or diagnose them earlier. 1288 if (Symbol.isUndefined() && Rest.startswith("@@") && 1289 !Rest.startswith("@@@")) { 1290 Asm.getContext().reportError(SMLoc(), "versioned symbol " + AliasName + 1291 " must be defined"); 1292 continue; 1293 } 1294 1295 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1296 Asm.getContext().reportError( 1297 SMLoc(), llvm::Twine("multiple symbol versions defined for ") + 1298 Symbol.getName()); 1299 continue; 1300 } 1301 1302 Renames.insert(std::make_pair(&Symbol, Alias)); 1303 } 1304 1305 for (const MCSymbol *&Sym : AddrsigSyms) { 1306 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1307 Sym = R; 1308 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1309 Sym = Sym->getSection().getBeginSymbol(); 1310 Sym->setUsedInReloc(); 1311 } 1312 } 1313 1314 // It is always valid to create a relocation with a symbol. It is preferable 1315 // to use a relocation with a section if that is possible. Using the section 1316 // allows us to omit some local symbols from the symbol table. 1317 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1318 const MCSymbolRefExpr *RefA, 1319 const MCSymbolELF *Sym, 1320 uint64_t C, 1321 unsigned Type) const { 1322 // A PCRel relocation to an absolute value has no symbol (or section). We 1323 // represent that with a relocation to a null section. 1324 if (!RefA) 1325 return false; 1326 1327 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1328 switch (Kind) { 1329 default: 1330 break; 1331 // The .odp creation emits a relocation against the symbol ".TOC." which 1332 // create a R_PPC64_TOC relocation. However the relocation symbol name 1333 // in final object creation should be NULL, since the symbol does not 1334 // really exist, it is just the reference to TOC base for the current 1335 // object file. Since the symbol is undefined, returning false results 1336 // in a relocation with a null section which is the desired result. 1337 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1338 return false; 1339 1340 // These VariantKind cause the relocation to refer to something other than 1341 // the symbol itself, like a linker generated table. Since the address of 1342 // symbol is not relevant, we cannot replace the symbol with the 1343 // section and patch the difference in the addend. 1344 case MCSymbolRefExpr::VK_GOT: 1345 case MCSymbolRefExpr::VK_PLT: 1346 case MCSymbolRefExpr::VK_GOTPCREL: 1347 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1348 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1349 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1350 return true; 1351 } 1352 1353 // An undefined symbol is not in any section, so the relocation has to point 1354 // to the symbol itself. 1355 assert(Sym && "Expected a symbol"); 1356 if (Sym->isUndefined()) 1357 return true; 1358 1359 unsigned Binding = Sym->getBinding(); 1360 switch(Binding) { 1361 default: 1362 llvm_unreachable("Invalid Binding"); 1363 case ELF::STB_LOCAL: 1364 break; 1365 case ELF::STB_WEAK: 1366 // If the symbol is weak, it might be overridden by a symbol in another 1367 // file. The relocation has to point to the symbol so that the linker 1368 // can update it. 1369 return true; 1370 case ELF::STB_GLOBAL: 1371 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1372 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1373 return true; 1374 } 1375 1376 // Keep symbol type for a local ifunc because it may result in an IRELATIVE 1377 // reloc that the dynamic loader will use to resolve the address at startup 1378 // time. 1379 if (Sym->getType() == ELF::STT_GNU_IFUNC) 1380 return true; 1381 1382 // If a relocation points to a mergeable section, we have to be careful. 1383 // If the offset is zero, a relocation with the section will encode the 1384 // same information. With a non-zero offset, the situation is different. 1385 // For example, a relocation can point 42 bytes past the end of a string. 1386 // If we change such a relocation to use the section, the linker would think 1387 // that it pointed to another string and subtracting 42 at runtime will 1388 // produce the wrong value. 1389 if (Sym->isInSection()) { 1390 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1391 unsigned Flags = Sec.getFlags(); 1392 if (Flags & ELF::SHF_MERGE) { 1393 if (C != 0) 1394 return true; 1395 1396 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 1397 // only handle section relocations to mergeable sections if using RELA. 1398 if (!hasRelocationAddend()) 1399 return true; 1400 } 1401 1402 // Most TLS relocations use a got, so they need the symbol. Even those that 1403 // are just an offset (@tpoff), require a symbol in gold versions before 1404 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1405 // http://sourceware.org/PR16773. 1406 if (Flags & ELF::SHF_TLS) 1407 return true; 1408 } 1409 1410 // If the symbol is a thumb function the final relocation must set the lowest 1411 // bit. With a symbol that is done by just having the symbol have that bit 1412 // set, so we would lose the bit if we relocated with the section. 1413 // FIXME: We could use the section but add the bit to the relocation value. 1414 if (Asm.isThumbFunc(Sym)) 1415 return true; 1416 1417 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1418 return true; 1419 return false; 1420 } 1421 1422 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1423 const MCAsmLayout &Layout, 1424 const MCFragment *Fragment, 1425 const MCFixup &Fixup, MCValue Target, 1426 uint64_t &FixedValue) { 1427 MCAsmBackend &Backend = Asm.getBackend(); 1428 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1429 MCFixupKindInfo::FKF_IsPCRel; 1430 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1431 uint64_t C = Target.getConstant(); 1432 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1433 MCContext &Ctx = Asm.getContext(); 1434 1435 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1436 // Let A, B and C being the components of Target and R be the location of 1437 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 1438 // If it is pcrel, we want to compute (A - B + C - R). 1439 1440 // In general, ELF has no relocations for -B. It can only represent (A + C) 1441 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 1442 // replace B to implement it: (A - R - K + C) 1443 if (IsPCRel) { 1444 Ctx.reportError( 1445 Fixup.getLoc(), 1446 "No relocation available to represent this relative expression"); 1447 return; 1448 } 1449 1450 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1451 1452 if (SymB.isUndefined()) { 1453 Ctx.reportError(Fixup.getLoc(), 1454 Twine("symbol '") + SymB.getName() + 1455 "' can not be undefined in a subtraction expression"); 1456 return; 1457 } 1458 1459 assert(!SymB.isAbsolute() && "Should have been folded"); 1460 const MCSection &SecB = SymB.getSection(); 1461 if (&SecB != &FixupSection) { 1462 Ctx.reportError(Fixup.getLoc(), 1463 "Cannot represent a difference across sections"); 1464 return; 1465 } 1466 1467 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 1468 uint64_t K = SymBOffset - FixupOffset; 1469 IsPCRel = true; 1470 C -= K; 1471 } 1472 1473 // We either rejected the fixup or folded B into C at this point. 1474 const MCSymbolRefExpr *RefA = Target.getSymA(); 1475 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1476 1477 bool ViaWeakRef = false; 1478 if (SymA && SymA->isVariable()) { 1479 const MCExpr *Expr = SymA->getVariableValue(); 1480 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1481 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1482 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1483 ViaWeakRef = true; 1484 } 1485 } 1486 } 1487 1488 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1489 uint64_t OriginalC = C; 1490 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 1491 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 1492 C += Layout.getSymbolOffset(*SymA); 1493 1494 uint64_t Addend = 0; 1495 if (hasRelocationAddend()) { 1496 Addend = C; 1497 C = 0; 1498 } 1499 1500 FixedValue = C; 1501 1502 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1503 ? cast<MCSectionELF>(&SymA->getSection()) 1504 : nullptr; 1505 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1506 return; 1507 1508 if (!RelocateWithSymbol) { 1509 const auto *SectionSymbol = 1510 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1511 if (SectionSymbol) 1512 SectionSymbol->setUsedInReloc(); 1513 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, 1514 OriginalC); 1515 Relocations[&FixupSection].push_back(Rec); 1516 return; 1517 } 1518 1519 const auto *RenamedSymA = SymA; 1520 if (SymA) { 1521 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1522 RenamedSymA = R; 1523 1524 if (ViaWeakRef) 1525 RenamedSymA->setIsWeakrefUsedInReloc(); 1526 else 1527 RenamedSymA->setUsedInReloc(); 1528 } 1529 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, 1530 OriginalC); 1531 Relocations[&FixupSection].push_back(Rec); 1532 } 1533 1534 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1535 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1536 bool InSet, bool IsPCRel) const { 1537 const auto &SymA = cast<MCSymbolELF>(SA); 1538 if (IsPCRel) { 1539 assert(!InSet); 1540 if (isWeak(SymA)) 1541 return false; 1542 } 1543 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1544 InSet, IsPCRel); 1545 } 1546 1547 std::unique_ptr<MCObjectWriter> 1548 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1549 raw_pwrite_stream &OS, bool IsLittleEndian) { 1550 return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1551 IsLittleEndian); 1552 } 1553 1554 std::unique_ptr<MCObjectWriter> 1555 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1556 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1557 bool IsLittleEndian) { 1558 return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1559 IsLittleEndian); 1560 } 1561