1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ELF object file writer information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/ELF.h" 22 #include "llvm/MC/MCAsmBackend.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCAsmLayout.h" 25 #include "llvm/MC/MCAssembler.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCELFObjectWriter.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCFixup.h" 30 #include "llvm/MC/MCFixupKindInfo.h" 31 #include "llvm/MC/MCFragment.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compression.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/Error.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Host.h" 46 #include "llvm/Support/LEB128.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/SMLoc.h" 49 #include "llvm/Support/StringSaver.h" 50 #include "llvm/Support/SwapByteOrder.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <map> 57 #include <memory> 58 #include <string> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #undef DEBUG_TYPE 65 #define DEBUG_TYPE "reloc-info" 66 67 namespace { 68 69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 70 71 class ELFObjectWriter; 72 struct ELFWriter; 73 74 bool isDwoSection(const MCSectionELF &Sec) { 75 return Sec.getSectionName().endswith(".dwo"); 76 } 77 78 class SymbolTableWriter { 79 ELFWriter &EWriter; 80 bool Is64Bit; 81 82 // indexes we are going to write to .symtab_shndx. 83 std::vector<uint32_t> ShndxIndexes; 84 85 // The numbel of symbols written so far. 86 unsigned NumWritten; 87 88 void createSymtabShndx(); 89 90 template <typename T> void write(T Value); 91 92 public: 93 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 94 95 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 96 uint8_t other, uint32_t shndx, bool Reserved); 97 98 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 99 }; 100 101 struct ELFWriter { 102 ELFObjectWriter &OWriter; 103 support::endian::Writer W; 104 105 enum DwoMode { 106 AllSections, 107 NonDwoOnly, 108 DwoOnly, 109 } Mode; 110 111 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 112 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 113 bool Used, bool Renamed); 114 115 /// Helper struct for containing some precomputed information on symbols. 116 struct ELFSymbolData { 117 const MCSymbolELF *Symbol; 118 uint32_t SectionIndex; 119 StringRef Name; 120 121 // Support lexicographic sorting. 122 bool operator<(const ELFSymbolData &RHS) const { 123 unsigned LHSType = Symbol->getType(); 124 unsigned RHSType = RHS.Symbol->getType(); 125 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 126 return false; 127 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 128 return true; 129 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 130 return SectionIndex < RHS.SectionIndex; 131 return Name < RHS.Name; 132 } 133 }; 134 135 /// @} 136 /// @name Symbol Table Data 137 /// @{ 138 139 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 140 141 /// @} 142 143 // This holds the symbol table index of the last local symbol. 144 unsigned LastLocalSymbolIndex; 145 // This holds the .strtab section index. 146 unsigned StringTableIndex; 147 // This holds the .symtab section index. 148 unsigned SymbolTableIndex; 149 150 // Sections in the order they are to be output in the section table. 151 std::vector<const MCSectionELF *> SectionTable; 152 unsigned addToSectionTable(const MCSectionELF *Sec); 153 154 // TargetObjectWriter wrappers. 155 bool is64Bit() const; 156 bool hasRelocationAddend() const; 157 158 void align(unsigned Alignment); 159 160 bool maybeWriteCompression(uint64_t Size, 161 SmallVectorImpl<char> &CompressedContents, 162 bool ZLibStyle, unsigned Alignment); 163 164 public: 165 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 166 bool IsLittleEndian, DwoMode Mode) 167 : OWriter(OWriter), 168 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 169 170 void WriteWord(uint64_t Word) { 171 if (is64Bit()) 172 W.write<uint64_t>(Word); 173 else 174 W.write<uint32_t>(Word); 175 } 176 177 template <typename T> void write(T Val) { 178 W.write(Val); 179 } 180 181 void writeHeader(const MCAssembler &Asm); 182 183 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 184 ELFSymbolData &MSD, const MCAsmLayout &Layout); 185 186 // Start and end offset of each section 187 using SectionOffsetsTy = 188 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 189 190 // Map from a signature symbol to the group section index 191 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 192 193 /// Compute the symbol table data 194 /// 195 /// \param Asm - The assembler. 196 /// \param SectionIndexMap - Maps a section to its index. 197 /// \param RevGroupMap - Maps a signature symbol to the group section. 198 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 199 const SectionIndexMapTy &SectionIndexMap, 200 const RevGroupMapTy &RevGroupMap, 201 SectionOffsetsTy &SectionOffsets); 202 203 void writeAddrsigSection(); 204 205 MCSectionELF *createRelocationSection(MCContext &Ctx, 206 const MCSectionELF &Sec); 207 208 const MCSectionELF *createStringTable(MCContext &Ctx); 209 210 void writeSectionHeader(const MCAsmLayout &Layout, 211 const SectionIndexMapTy &SectionIndexMap, 212 const SectionOffsetsTy &SectionOffsets); 213 214 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 215 const MCAsmLayout &Layout); 216 217 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 218 uint64_t Address, uint64_t Offset, uint64_t Size, 219 uint32_t Link, uint32_t Info, uint64_t Alignment, 220 uint64_t EntrySize); 221 222 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 223 224 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 225 void writeSection(const SectionIndexMapTy &SectionIndexMap, 226 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 227 const MCSectionELF &Section); 228 }; 229 230 class ELFObjectWriter : public MCObjectWriter { 231 /// The target specific ELF writer instance. 232 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 233 234 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 235 236 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 237 238 bool EmitAddrsigSection = false; 239 std::vector<const MCSymbol *> AddrsigSyms; 240 241 bool hasRelocationAddend() const; 242 243 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 244 const MCSymbolRefExpr *RefA, 245 const MCSymbolELF *Sym, uint64_t C, 246 unsigned Type) const; 247 248 public: 249 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 250 : TargetObjectWriter(std::move(MOTW)) {} 251 252 void reset() override { 253 Relocations.clear(); 254 Renames.clear(); 255 MCObjectWriter::reset(); 256 } 257 258 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 259 const MCSymbol &SymA, 260 const MCFragment &FB, bool InSet, 261 bool IsPCRel) const override; 262 263 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 264 const MCSectionELF *From, 265 const MCSectionELF *To) { 266 return true; 267 } 268 269 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 270 const MCFragment *Fragment, const MCFixup &Fixup, 271 MCValue Target, uint64_t &FixedValue) override; 272 273 void executePostLayoutBinding(MCAssembler &Asm, 274 const MCAsmLayout &Layout) override; 275 276 void emitAddrsigSection() override { EmitAddrsigSection = true; } 277 void addAddrsigSymbol(const MCSymbol *Sym) override { 278 AddrsigSyms.push_back(Sym); 279 } 280 281 friend struct ELFWriter; 282 }; 283 284 class ELFSingleObjectWriter : public ELFObjectWriter { 285 raw_pwrite_stream &OS; 286 bool IsLittleEndian; 287 288 public: 289 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 290 raw_pwrite_stream &OS, bool IsLittleEndian) 291 : ELFObjectWriter(std::move(MOTW)), OS(OS), 292 IsLittleEndian(IsLittleEndian) {} 293 294 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 295 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 296 .writeObject(Asm, Layout); 297 } 298 299 friend struct ELFWriter; 300 }; 301 302 class ELFDwoObjectWriter : public ELFObjectWriter { 303 raw_pwrite_stream &OS, &DwoOS; 304 bool IsLittleEndian; 305 306 public: 307 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 308 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 309 bool IsLittleEndian) 310 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 311 IsLittleEndian(IsLittleEndian) {} 312 313 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 314 const MCSectionELF *From, 315 const MCSectionELF *To) override { 316 if (isDwoSection(*From)) { 317 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 318 return false; 319 } 320 if (To && isDwoSection(*To)) { 321 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 322 return false; 323 } 324 return true; 325 } 326 327 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 328 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 329 .writeObject(Asm, Layout); 330 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 331 .writeObject(Asm, Layout); 332 return Size; 333 } 334 }; 335 336 } // end anonymous namespace 337 338 void ELFWriter::align(unsigned Alignment) { 339 uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment); 340 W.OS.write_zeros(Padding); 341 } 342 343 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 344 SectionTable.push_back(Sec); 345 StrTabBuilder.add(Sec->getSectionName()); 346 return SectionTable.size(); 347 } 348 349 void SymbolTableWriter::createSymtabShndx() { 350 if (!ShndxIndexes.empty()) 351 return; 352 353 ShndxIndexes.resize(NumWritten); 354 } 355 356 template <typename T> void SymbolTableWriter::write(T Value) { 357 EWriter.write(Value); 358 } 359 360 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 361 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 362 363 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 364 uint64_t size, uint8_t other, 365 uint32_t shndx, bool Reserved) { 366 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 367 368 if (LargeIndex) 369 createSymtabShndx(); 370 371 if (!ShndxIndexes.empty()) { 372 if (LargeIndex) 373 ShndxIndexes.push_back(shndx); 374 else 375 ShndxIndexes.push_back(0); 376 } 377 378 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 379 380 if (Is64Bit) { 381 write(name); // st_name 382 write(info); // st_info 383 write(other); // st_other 384 write(Index); // st_shndx 385 write(value); // st_value 386 write(size); // st_size 387 } else { 388 write(name); // st_name 389 write(uint32_t(value)); // st_value 390 write(uint32_t(size)); // st_size 391 write(info); // st_info 392 write(other); // st_other 393 write(Index); // st_shndx 394 } 395 396 ++NumWritten; 397 } 398 399 bool ELFWriter::is64Bit() const { 400 return OWriter.TargetObjectWriter->is64Bit(); 401 } 402 403 bool ELFWriter::hasRelocationAddend() const { 404 return OWriter.hasRelocationAddend(); 405 } 406 407 // Emit the ELF header. 408 void ELFWriter::writeHeader(const MCAssembler &Asm) { 409 // ELF Header 410 // ---------- 411 // 412 // Note 413 // ---- 414 // emitWord method behaves differently for ELF32 and ELF64, writing 415 // 4 bytes in the former and 8 in the latter. 416 417 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 418 419 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 420 421 // e_ident[EI_DATA] 422 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 423 : ELF::ELFDATA2MSB); 424 425 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 426 // e_ident[EI_OSABI] 427 W.OS << char(OWriter.TargetObjectWriter->getOSABI()); 428 W.OS << char(0); // e_ident[EI_ABIVERSION] 429 430 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 431 432 W.write<uint16_t>(ELF::ET_REL); // e_type 433 434 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 435 436 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 437 WriteWord(0); // e_entry, no entry point in .o file 438 WriteWord(0); // e_phoff, no program header for .o 439 WriteWord(0); // e_shoff = sec hdr table off in bytes 440 441 // e_flags = whatever the target wants 442 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 443 444 // e_ehsize = ELF header size 445 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 446 : sizeof(ELF::Elf32_Ehdr)); 447 448 W.write<uint16_t>(0); // e_phentsize = prog header entry size 449 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 450 451 // e_shentsize = Section header entry size 452 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 453 : sizeof(ELF::Elf32_Shdr)); 454 455 // e_shnum = # of section header ents 456 W.write<uint16_t>(0); 457 458 // e_shstrndx = Section # of '.shstrtab' 459 assert(StringTableIndex < ELF::SHN_LORESERVE); 460 W.write<uint16_t>(StringTableIndex); 461 } 462 463 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 464 const MCAsmLayout &Layout) { 465 if (Sym.isCommon() && Sym.isExternal()) 466 return Sym.getCommonAlignment(); 467 468 uint64_t Res; 469 if (!Layout.getSymbolOffset(Sym, Res)) 470 return 0; 471 472 if (Layout.getAssembler().isThumbFunc(&Sym)) 473 Res |= 1; 474 475 return Res; 476 } 477 478 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 479 uint8_t Type = newType; 480 481 // Propagation rules: 482 // IFUNC > FUNC > OBJECT > NOTYPE 483 // TLS_OBJECT > OBJECT > NOTYPE 484 // 485 // dont let the new type degrade the old type 486 switch (origType) { 487 default: 488 break; 489 case ELF::STT_GNU_IFUNC: 490 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 491 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 492 Type = ELF::STT_GNU_IFUNC; 493 break; 494 case ELF::STT_FUNC: 495 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 496 Type == ELF::STT_TLS) 497 Type = ELF::STT_FUNC; 498 break; 499 case ELF::STT_OBJECT: 500 if (Type == ELF::STT_NOTYPE) 501 Type = ELF::STT_OBJECT; 502 break; 503 case ELF::STT_TLS: 504 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 505 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 506 Type = ELF::STT_TLS; 507 break; 508 } 509 510 return Type; 511 } 512 513 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 514 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 515 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 516 const MCSymbolELF *Base = 517 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 518 519 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 520 // SHN_COMMON. 521 bool IsReserved = !Base || Symbol.isCommon(); 522 523 // Binding and Type share the same byte as upper and lower nibbles 524 uint8_t Binding = Symbol.getBinding(); 525 uint8_t Type = Symbol.getType(); 526 if (Base) { 527 Type = mergeTypeForSet(Type, Base->getType()); 528 } 529 uint8_t Info = (Binding << 4) | Type; 530 531 // Other and Visibility share the same byte with Visibility using the lower 532 // 2 bits 533 uint8_t Visibility = Symbol.getVisibility(); 534 uint8_t Other = Symbol.getOther() | Visibility; 535 536 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 537 uint64_t Size = 0; 538 539 const MCExpr *ESize = MSD.Symbol->getSize(); 540 if (!ESize && Base) 541 ESize = Base->getSize(); 542 543 if (ESize) { 544 int64_t Res; 545 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 546 report_fatal_error("Size expression must be absolute."); 547 Size = Res; 548 } 549 550 // Write out the symbol table entry 551 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 552 IsReserved); 553 } 554 555 // True if the assembler knows nothing about the final value of the symbol. 556 // This doesn't cover the comdat issues, since in those cases the assembler 557 // can at least know that all symbols in the section will move together. 558 static bool isWeak(const MCSymbolELF &Sym) { 559 if (Sym.getType() == ELF::STT_GNU_IFUNC) 560 return true; 561 562 switch (Sym.getBinding()) { 563 default: 564 llvm_unreachable("Unknown binding"); 565 case ELF::STB_LOCAL: 566 return false; 567 case ELF::STB_GLOBAL: 568 return false; 569 case ELF::STB_WEAK: 570 case ELF::STB_GNU_UNIQUE: 571 return true; 572 } 573 } 574 575 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 576 bool Used, bool Renamed) { 577 if (Symbol.isVariable()) { 578 const MCExpr *Expr = Symbol.getVariableValue(); 579 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 580 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 581 return false; 582 } 583 } 584 585 if (Used) 586 return true; 587 588 if (Renamed) 589 return false; 590 591 if (Symbol.isVariable() && Symbol.isUndefined()) { 592 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 593 Layout.getBaseSymbol(Symbol); 594 return false; 595 } 596 597 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 598 return false; 599 600 if (Symbol.isTemporary()) 601 return false; 602 603 if (Symbol.getType() == ELF::STT_SECTION) 604 return false; 605 606 return true; 607 } 608 609 void ELFWriter::computeSymbolTable( 610 MCAssembler &Asm, const MCAsmLayout &Layout, 611 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 612 SectionOffsetsTy &SectionOffsets) { 613 MCContext &Ctx = Asm.getContext(); 614 SymbolTableWriter Writer(*this, is64Bit()); 615 616 // Symbol table 617 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 618 MCSectionELF *SymtabSection = 619 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 620 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 621 SymbolTableIndex = addToSectionTable(SymtabSection); 622 623 align(SymtabSection->getAlignment()); 624 uint64_t SecStart = W.OS.tell(); 625 626 // The first entry is the undefined symbol entry. 627 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 628 629 std::vector<ELFSymbolData> LocalSymbolData; 630 std::vector<ELFSymbolData> ExternalSymbolData; 631 632 // Add the data for the symbols. 633 bool HasLargeSectionIndex = false; 634 for (const MCSymbol &S : Asm.symbols()) { 635 const auto &Symbol = cast<MCSymbolELF>(S); 636 bool Used = Symbol.isUsedInReloc(); 637 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 638 bool isSignature = Symbol.isSignature(); 639 640 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 641 OWriter.Renames.count(&Symbol))) 642 continue; 643 644 if (Symbol.isTemporary() && Symbol.isUndefined()) { 645 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 646 continue; 647 } 648 649 ELFSymbolData MSD; 650 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 651 652 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 653 assert(Local || !Symbol.isTemporary()); 654 655 if (Symbol.isAbsolute()) { 656 MSD.SectionIndex = ELF::SHN_ABS; 657 } else if (Symbol.isCommon()) { 658 assert(!Local); 659 MSD.SectionIndex = ELF::SHN_COMMON; 660 } else if (Symbol.isUndefined()) { 661 if (isSignature && !Used) { 662 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 663 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 664 HasLargeSectionIndex = true; 665 } else { 666 MSD.SectionIndex = ELF::SHN_UNDEF; 667 } 668 } else { 669 const MCSectionELF &Section = 670 static_cast<const MCSectionELF &>(Symbol.getSection()); 671 if (Mode == NonDwoOnly && isDwoSection(Section)) 672 continue; 673 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 674 assert(MSD.SectionIndex && "Invalid section index!"); 675 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 676 HasLargeSectionIndex = true; 677 } 678 679 StringRef Name = Symbol.getName(); 680 681 // Sections have their own string table 682 if (Symbol.getType() != ELF::STT_SECTION) { 683 MSD.Name = Name; 684 StrTabBuilder.add(Name); 685 } 686 687 if (Local) 688 LocalSymbolData.push_back(MSD); 689 else 690 ExternalSymbolData.push_back(MSD); 691 } 692 693 // This holds the .symtab_shndx section index. 694 unsigned SymtabShndxSectionIndex = 0; 695 696 if (HasLargeSectionIndex) { 697 MCSectionELF *SymtabShndxSection = 698 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 699 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 700 SymtabShndxSection->setAlignment(4); 701 } 702 703 ArrayRef<std::string> FileNames = Asm.getFileNames(); 704 for (const std::string &Name : FileNames) 705 StrTabBuilder.add(Name); 706 707 StrTabBuilder.finalize(); 708 709 // File symbols are emitted first and handled separately from normal symbols, 710 // i.e. a non-STT_FILE symbol with the same name may appear. 711 for (const std::string &Name : FileNames) 712 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 713 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 714 ELF::SHN_ABS, true); 715 716 // Symbols are required to be in lexicographic order. 717 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 718 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 719 720 // Set the symbol indices. Local symbols must come before all other 721 // symbols with non-local bindings. 722 unsigned Index = FileNames.size() + 1; 723 724 for (ELFSymbolData &MSD : LocalSymbolData) { 725 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 726 ? 0 727 : StrTabBuilder.getOffset(MSD.Name); 728 MSD.Symbol->setIndex(Index++); 729 writeSymbol(Writer, StringIndex, MSD, Layout); 730 } 731 732 // Write the symbol table entries. 733 LastLocalSymbolIndex = Index; 734 735 for (ELFSymbolData &MSD : ExternalSymbolData) { 736 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 737 MSD.Symbol->setIndex(Index++); 738 writeSymbol(Writer, StringIndex, MSD, Layout); 739 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 740 } 741 742 uint64_t SecEnd = W.OS.tell(); 743 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 744 745 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 746 if (ShndxIndexes.empty()) { 747 assert(SymtabShndxSectionIndex == 0); 748 return; 749 } 750 assert(SymtabShndxSectionIndex != 0); 751 752 SecStart = W.OS.tell(); 753 const MCSectionELF *SymtabShndxSection = 754 SectionTable[SymtabShndxSectionIndex - 1]; 755 for (uint32_t Index : ShndxIndexes) 756 write(Index); 757 SecEnd = W.OS.tell(); 758 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 759 } 760 761 void ELFWriter::writeAddrsigSection() { 762 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 763 encodeULEB128(Sym->getIndex(), W.OS); 764 } 765 766 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 767 const MCSectionELF &Sec) { 768 if (OWriter.Relocations[&Sec].empty()) 769 return nullptr; 770 771 const StringRef SectionName = Sec.getSectionName(); 772 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 773 RelaSectionName += SectionName; 774 775 unsigned EntrySize; 776 if (hasRelocationAddend()) 777 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 778 else 779 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 780 781 unsigned Flags = 0; 782 if (Sec.getFlags() & ELF::SHF_GROUP) 783 Flags = ELF::SHF_GROUP; 784 785 MCSectionELF *RelaSection = Ctx.createELFRelSection( 786 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 787 Flags, EntrySize, Sec.getGroup(), &Sec); 788 RelaSection->setAlignment(is64Bit() ? 8 : 4); 789 return RelaSection; 790 } 791 792 // Include the debug info compression header. 793 bool ELFWriter::maybeWriteCompression( 794 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 795 unsigned Alignment) { 796 if (ZLibStyle) { 797 uint64_t HdrSize = 798 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 799 if (Size <= HdrSize + CompressedContents.size()) 800 return false; 801 // Platform specific header is followed by compressed data. 802 if (is64Bit()) { 803 // Write Elf64_Chdr header. 804 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 805 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 806 write(static_cast<ELF::Elf64_Xword>(Size)); 807 write(static_cast<ELF::Elf64_Xword>(Alignment)); 808 } else { 809 // Write Elf32_Chdr header otherwise. 810 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 811 write(static_cast<ELF::Elf32_Word>(Size)); 812 write(static_cast<ELF::Elf32_Word>(Alignment)); 813 } 814 return true; 815 } 816 817 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 818 // useful for consumers to preallocate a buffer to decompress into. 819 const StringRef Magic = "ZLIB"; 820 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 821 return false; 822 W.OS << Magic; 823 support::endian::write(W.OS, Size, support::big); 824 return true; 825 } 826 827 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 828 const MCAsmLayout &Layout) { 829 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 830 StringRef SectionName = Section.getSectionName(); 831 832 auto &MC = Asm.getContext(); 833 const auto &MAI = MC.getAsmInfo(); 834 835 // Compressing debug_frame requires handling alignment fragments which is 836 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 837 // for writing to arbitrary buffers) for little benefit. 838 bool CompressionEnabled = 839 MAI->compressDebugSections() != DebugCompressionType::None; 840 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 841 SectionName == ".debug_frame") { 842 Asm.writeSectionData(W.OS, &Section, Layout); 843 return; 844 } 845 846 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 847 MAI->compressDebugSections() == DebugCompressionType::GNU) && 848 "expected zlib or zlib-gnu style compression"); 849 850 SmallVector<char, 128> UncompressedData; 851 raw_svector_ostream VecOS(UncompressedData); 852 Asm.writeSectionData(VecOS, &Section, Layout); 853 854 SmallVector<char, 128> CompressedContents; 855 if (Error E = zlib::compress( 856 StringRef(UncompressedData.data(), UncompressedData.size()), 857 CompressedContents)) { 858 consumeError(std::move(E)); 859 W.OS << UncompressedData; 860 return; 861 } 862 863 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 864 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 865 ZlibStyle, Sec.getAlignment())) { 866 W.OS << UncompressedData; 867 return; 868 } 869 870 if (ZlibStyle) 871 // Set the compressed flag. That is zlib style. 872 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 873 else 874 // Add "z" prefix to section name. This is zlib-gnu style. 875 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 876 W.OS << CompressedContents; 877 } 878 879 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 880 uint64_t Address, uint64_t Offset, 881 uint64_t Size, uint32_t Link, uint32_t Info, 882 uint64_t Alignment, uint64_t EntrySize) { 883 W.write<uint32_t>(Name); // sh_name: index into string table 884 W.write<uint32_t>(Type); // sh_type 885 WriteWord(Flags); // sh_flags 886 WriteWord(Address); // sh_addr 887 WriteWord(Offset); // sh_offset 888 WriteWord(Size); // sh_size 889 W.write<uint32_t>(Link); // sh_link 890 W.write<uint32_t>(Info); // sh_info 891 WriteWord(Alignment); // sh_addralign 892 WriteWord(EntrySize); // sh_entsize 893 } 894 895 void ELFWriter::writeRelocations(const MCAssembler &Asm, 896 const MCSectionELF &Sec) { 897 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 898 899 // We record relocations by pushing to the end of a vector. Reverse the vector 900 // to get the relocations in the order they were created. 901 // In most cases that is not important, but it can be for special sections 902 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 903 std::reverse(Relocs.begin(), Relocs.end()); 904 905 // Sort the relocation entries. MIPS needs this. 906 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 907 908 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 909 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 910 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 911 912 if (is64Bit()) { 913 write(Entry.Offset); 914 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 915 write(uint32_t(Index)); 916 917 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 918 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 919 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 920 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 921 } else { 922 struct ELF::Elf64_Rela ERE64; 923 ERE64.setSymbolAndType(Index, Entry.Type); 924 write(ERE64.r_info); 925 } 926 if (hasRelocationAddend()) 927 write(Entry.Addend); 928 } else { 929 write(uint32_t(Entry.Offset)); 930 931 struct ELF::Elf32_Rela ERE32; 932 ERE32.setSymbolAndType(Index, Entry.Type); 933 write(ERE32.r_info); 934 935 if (hasRelocationAddend()) 936 write(uint32_t(Entry.Addend)); 937 938 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 939 if (uint32_t RType = 940 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 941 write(uint32_t(Entry.Offset)); 942 943 ERE32.setSymbolAndType(0, RType); 944 write(ERE32.r_info); 945 write(uint32_t(0)); 946 } 947 if (uint32_t RType = 948 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 949 write(uint32_t(Entry.Offset)); 950 951 ERE32.setSymbolAndType(0, RType); 952 write(ERE32.r_info); 953 write(uint32_t(0)); 954 } 955 } 956 } 957 } 958 } 959 960 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) { 961 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 962 StrTabBuilder.write(W.OS); 963 return StrtabSection; 964 } 965 966 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 967 uint32_t GroupSymbolIndex, uint64_t Offset, 968 uint64_t Size, const MCSectionELF &Section) { 969 uint64_t sh_link = 0; 970 uint64_t sh_info = 0; 971 972 switch(Section.getType()) { 973 default: 974 // Nothing to do. 975 break; 976 977 case ELF::SHT_DYNAMIC: 978 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 979 980 case ELF::SHT_REL: 981 case ELF::SHT_RELA: { 982 sh_link = SymbolTableIndex; 983 assert(sh_link && ".symtab not found"); 984 const MCSection *InfoSection = Section.getAssociatedSection(); 985 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 986 break; 987 } 988 989 case ELF::SHT_SYMTAB: 990 sh_link = StringTableIndex; 991 sh_info = LastLocalSymbolIndex; 992 break; 993 994 case ELF::SHT_SYMTAB_SHNDX: 995 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 996 case ELF::SHT_LLVM_ADDRSIG: 997 sh_link = SymbolTableIndex; 998 break; 999 1000 case ELF::SHT_GROUP: 1001 sh_link = SymbolTableIndex; 1002 sh_info = GroupSymbolIndex; 1003 break; 1004 } 1005 1006 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1007 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1008 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1009 sh_link = SectionIndexMap.lookup(Sec); 1010 } 1011 1012 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1013 Section.getType(), Section.getFlags(), 0, Offset, Size, 1014 sh_link, sh_info, Section.getAlignment(), 1015 Section.getEntrySize()); 1016 } 1017 1018 void ELFWriter::writeSectionHeader( 1019 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1020 const SectionOffsetsTy &SectionOffsets) { 1021 const unsigned NumSections = SectionTable.size(); 1022 1023 // Null section first. 1024 uint64_t FirstSectionSize = 1025 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1026 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1027 1028 for (const MCSectionELF *Section : SectionTable) { 1029 uint32_t GroupSymbolIndex; 1030 unsigned Type = Section->getType(); 1031 if (Type != ELF::SHT_GROUP) 1032 GroupSymbolIndex = 0; 1033 else 1034 GroupSymbolIndex = Section->getGroup()->getIndex(); 1035 1036 const std::pair<uint64_t, uint64_t> &Offsets = 1037 SectionOffsets.find(Section)->second; 1038 uint64_t Size; 1039 if (Type == ELF::SHT_NOBITS) 1040 Size = Layout.getSectionAddressSize(Section); 1041 else 1042 Size = Offsets.second - Offsets.first; 1043 1044 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1045 *Section); 1046 } 1047 } 1048 1049 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1050 uint64_t StartOffset = W.OS.tell(); 1051 1052 MCContext &Ctx = Asm.getContext(); 1053 MCSectionELF *StrtabSection = 1054 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1055 StringTableIndex = addToSectionTable(StrtabSection); 1056 1057 RevGroupMapTy RevGroupMap; 1058 SectionIndexMapTy SectionIndexMap; 1059 1060 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1061 1062 // Write out the ELF header ... 1063 writeHeader(Asm); 1064 1065 // ... then the sections ... 1066 SectionOffsetsTy SectionOffsets; 1067 std::vector<MCSectionELF *> Groups; 1068 std::vector<MCSectionELF *> Relocations; 1069 for (MCSection &Sec : Asm) { 1070 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1071 if (Mode == NonDwoOnly && isDwoSection(Section)) 1072 continue; 1073 if (Mode == DwoOnly && !isDwoSection(Section)) 1074 continue; 1075 1076 align(Section.getAlignment()); 1077 1078 // Remember the offset into the file for this section. 1079 uint64_t SecStart = W.OS.tell(); 1080 1081 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1082 writeSectionData(Asm, Section, Layout); 1083 1084 uint64_t SecEnd = W.OS.tell(); 1085 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1086 1087 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1088 1089 if (SignatureSymbol) { 1090 Asm.registerSymbol(*SignatureSymbol); 1091 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1092 if (!GroupIdx) { 1093 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1094 GroupIdx = addToSectionTable(Group); 1095 Group->setAlignment(4); 1096 Groups.push_back(Group); 1097 } 1098 std::vector<const MCSectionELF *> &Members = 1099 GroupMembers[SignatureSymbol]; 1100 Members.push_back(&Section); 1101 if (RelSection) 1102 Members.push_back(RelSection); 1103 } 1104 1105 SectionIndexMap[&Section] = addToSectionTable(&Section); 1106 if (RelSection) { 1107 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1108 Relocations.push_back(RelSection); 1109 } 1110 } 1111 1112 MCSectionELF *CGProfileSection = nullptr; 1113 if (!Asm.CGProfile.empty()) { 1114 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile", 1115 ELF::SHT_LLVM_CALL_GRAPH_PROFILE, 1116 ELF::SHF_EXCLUDE, 16, ""); 1117 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection); 1118 } 1119 1120 for (MCSectionELF *Group : Groups) { 1121 align(Group->getAlignment()); 1122 1123 // Remember the offset into the file for this section. 1124 uint64_t SecStart = W.OS.tell(); 1125 1126 const MCSymbol *SignatureSymbol = Group->getGroup(); 1127 assert(SignatureSymbol); 1128 write(uint32_t(ELF::GRP_COMDAT)); 1129 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1130 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1131 write(SecIndex); 1132 } 1133 1134 uint64_t SecEnd = W.OS.tell(); 1135 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1136 } 1137 1138 if (Mode == DwoOnly) { 1139 // dwo files don't have symbol tables or relocations, but they do have 1140 // string tables. 1141 StrTabBuilder.finalize(); 1142 } else { 1143 MCSectionELF *AddrsigSection; 1144 if (OWriter.EmitAddrsigSection) { 1145 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1146 ELF::SHF_EXCLUDE); 1147 addToSectionTable(AddrsigSection); 1148 } 1149 1150 // Compute symbol table information. 1151 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1152 SectionOffsets); 1153 1154 for (MCSectionELF *RelSection : Relocations) { 1155 align(RelSection->getAlignment()); 1156 1157 // Remember the offset into the file for this section. 1158 uint64_t SecStart = W.OS.tell(); 1159 1160 writeRelocations(Asm, 1161 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1162 1163 uint64_t SecEnd = W.OS.tell(); 1164 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1165 } 1166 1167 if (OWriter.EmitAddrsigSection) { 1168 uint64_t SecStart = W.OS.tell(); 1169 writeAddrsigSection(); 1170 uint64_t SecEnd = W.OS.tell(); 1171 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1172 } 1173 } 1174 1175 if (CGProfileSection) { 1176 uint64_t SecStart = W.OS.tell(); 1177 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1178 W.write<uint32_t>(CGPE.From->getSymbol().getIndex()); 1179 W.write<uint32_t>(CGPE.To->getSymbol().getIndex()); 1180 W.write<uint64_t>(CGPE.Count); 1181 } 1182 uint64_t SecEnd = W.OS.tell(); 1183 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd); 1184 } 1185 1186 { 1187 uint64_t SecStart = W.OS.tell(); 1188 const MCSectionELF *Sec = createStringTable(Ctx); 1189 uint64_t SecEnd = W.OS.tell(); 1190 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1191 } 1192 1193 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1194 align(NaturalAlignment); 1195 1196 const uint64_t SectionHeaderOffset = W.OS.tell(); 1197 1198 // ... then the section header table ... 1199 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1200 1201 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1202 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1203 : SectionTable.size() + 1, 1204 W.Endian); 1205 unsigned NumSectionsOffset; 1206 1207 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1208 if (is64Bit()) { 1209 uint64_t Val = 1210 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1211 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1212 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1213 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1214 } else { 1215 uint32_t Val = 1216 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1217 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1218 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1219 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1220 } 1221 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1222 NumSectionsOffset); 1223 1224 return W.OS.tell() - StartOffset; 1225 } 1226 1227 bool ELFObjectWriter::hasRelocationAddend() const { 1228 return TargetObjectWriter->hasRelocationAddend(); 1229 } 1230 1231 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1232 const MCAsmLayout &Layout) { 1233 // The presence of symbol versions causes undefined symbols and 1234 // versions declared with @@@ to be renamed. 1235 for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) { 1236 StringRef AliasName = P.first; 1237 const auto &Symbol = cast<MCSymbolELF>(*P.second); 1238 size_t Pos = AliasName.find('@'); 1239 assert(Pos != StringRef::npos); 1240 1241 StringRef Prefix = AliasName.substr(0, Pos); 1242 StringRef Rest = AliasName.substr(Pos); 1243 StringRef Tail = Rest; 1244 if (Rest.startswith("@@@")) 1245 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1246 1247 auto *Alias = 1248 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1249 Asm.registerSymbol(*Alias); 1250 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1251 Alias->setVariableValue(Value); 1252 1253 // Aliases defined with .symvar copy the binding from the symbol they alias. 1254 // This is the first place we are able to copy this information. 1255 Alias->setExternal(Symbol.isExternal()); 1256 Alias->setBinding(Symbol.getBinding()); 1257 1258 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 1259 continue; 1260 1261 // FIXME: produce a better error message. 1262 if (Symbol.isUndefined() && Rest.startswith("@@") && 1263 !Rest.startswith("@@@")) 1264 report_fatal_error("A @@ version cannot be undefined"); 1265 1266 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) 1267 report_fatal_error(llvm::Twine("Multiple symbol versions defined for ") + 1268 Symbol.getName()); 1269 1270 Renames.insert(std::make_pair(&Symbol, Alias)); 1271 } 1272 1273 for (const MCSymbol *&Sym : AddrsigSyms) { 1274 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1275 Sym = R; 1276 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1277 Sym = Sym->getSection().getBeginSymbol(); 1278 Sym->setUsedInReloc(); 1279 } 1280 } 1281 1282 // It is always valid to create a relocation with a symbol. It is preferable 1283 // to use a relocation with a section if that is possible. Using the section 1284 // allows us to omit some local symbols from the symbol table. 1285 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1286 const MCSymbolRefExpr *RefA, 1287 const MCSymbolELF *Sym, 1288 uint64_t C, 1289 unsigned Type) const { 1290 // A PCRel relocation to an absolute value has no symbol (or section). We 1291 // represent that with a relocation to a null section. 1292 if (!RefA) 1293 return false; 1294 1295 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1296 switch (Kind) { 1297 default: 1298 break; 1299 // The .odp creation emits a relocation against the symbol ".TOC." which 1300 // create a R_PPC64_TOC relocation. However the relocation symbol name 1301 // in final object creation should be NULL, since the symbol does not 1302 // really exist, it is just the reference to TOC base for the current 1303 // object file. Since the symbol is undefined, returning false results 1304 // in a relocation with a null section which is the desired result. 1305 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1306 return false; 1307 1308 // These VariantKind cause the relocation to refer to something other than 1309 // the symbol itself, like a linker generated table. Since the address of 1310 // symbol is not relevant, we cannot replace the symbol with the 1311 // section and patch the difference in the addend. 1312 case MCSymbolRefExpr::VK_GOT: 1313 case MCSymbolRefExpr::VK_PLT: 1314 case MCSymbolRefExpr::VK_GOTPCREL: 1315 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1316 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1317 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1318 return true; 1319 } 1320 1321 // An undefined symbol is not in any section, so the relocation has to point 1322 // to the symbol itself. 1323 assert(Sym && "Expected a symbol"); 1324 if (Sym->isUndefined()) 1325 return true; 1326 1327 unsigned Binding = Sym->getBinding(); 1328 switch(Binding) { 1329 default: 1330 llvm_unreachable("Invalid Binding"); 1331 case ELF::STB_LOCAL: 1332 break; 1333 case ELF::STB_WEAK: 1334 // If the symbol is weak, it might be overridden by a symbol in another 1335 // file. The relocation has to point to the symbol so that the linker 1336 // can update it. 1337 return true; 1338 case ELF::STB_GLOBAL: 1339 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1340 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1341 return true; 1342 } 1343 1344 // If a relocation points to a mergeable section, we have to be careful. 1345 // If the offset is zero, a relocation with the section will encode the 1346 // same information. With a non-zero offset, the situation is different. 1347 // For example, a relocation can point 42 bytes past the end of a string. 1348 // If we change such a relocation to use the section, the linker would think 1349 // that it pointed to another string and subtracting 42 at runtime will 1350 // produce the wrong value. 1351 if (Sym->isInSection()) { 1352 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1353 unsigned Flags = Sec.getFlags(); 1354 if (Flags & ELF::SHF_MERGE) { 1355 if (C != 0) 1356 return true; 1357 1358 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 1359 // only handle section relocations to mergeable sections if using RELA. 1360 if (!hasRelocationAddend()) 1361 return true; 1362 } 1363 1364 // Most TLS relocations use a got, so they need the symbol. Even those that 1365 // are just an offset (@tpoff), require a symbol in gold versions before 1366 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1367 // http://sourceware.org/PR16773. 1368 if (Flags & ELF::SHF_TLS) 1369 return true; 1370 } 1371 1372 // If the symbol is a thumb function the final relocation must set the lowest 1373 // bit. With a symbol that is done by just having the symbol have that bit 1374 // set, so we would lose the bit if we relocated with the section. 1375 // FIXME: We could use the section but add the bit to the relocation value. 1376 if (Asm.isThumbFunc(Sym)) 1377 return true; 1378 1379 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1380 return true; 1381 return false; 1382 } 1383 1384 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1385 const MCAsmLayout &Layout, 1386 const MCFragment *Fragment, 1387 const MCFixup &Fixup, MCValue Target, 1388 uint64_t &FixedValue) { 1389 MCAsmBackend &Backend = Asm.getBackend(); 1390 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1391 MCFixupKindInfo::FKF_IsPCRel; 1392 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1393 uint64_t C = Target.getConstant(); 1394 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1395 MCContext &Ctx = Asm.getContext(); 1396 1397 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1398 // Let A, B and C being the components of Target and R be the location of 1399 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 1400 // If it is pcrel, we want to compute (A - B + C - R). 1401 1402 // In general, ELF has no relocations for -B. It can only represent (A + C) 1403 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 1404 // replace B to implement it: (A - R - K + C) 1405 if (IsPCRel) { 1406 Ctx.reportError( 1407 Fixup.getLoc(), 1408 "No relocation available to represent this relative expression"); 1409 return; 1410 } 1411 1412 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1413 1414 if (SymB.isUndefined()) { 1415 Ctx.reportError(Fixup.getLoc(), 1416 Twine("symbol '") + SymB.getName() + 1417 "' can not be undefined in a subtraction expression"); 1418 return; 1419 } 1420 1421 assert(!SymB.isAbsolute() && "Should have been folded"); 1422 const MCSection &SecB = SymB.getSection(); 1423 if (&SecB != &FixupSection) { 1424 Ctx.reportError(Fixup.getLoc(), 1425 "Cannot represent a difference across sections"); 1426 return; 1427 } 1428 1429 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 1430 uint64_t K = SymBOffset - FixupOffset; 1431 IsPCRel = true; 1432 C -= K; 1433 } 1434 1435 // We either rejected the fixup or folded B into C at this point. 1436 const MCSymbolRefExpr *RefA = Target.getSymA(); 1437 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1438 1439 bool ViaWeakRef = false; 1440 if (SymA && SymA->isVariable()) { 1441 const MCExpr *Expr = SymA->getVariableValue(); 1442 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1443 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1444 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1445 ViaWeakRef = true; 1446 } 1447 } 1448 } 1449 1450 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1451 uint64_t OriginalC = C; 1452 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 1453 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 1454 C += Layout.getSymbolOffset(*SymA); 1455 1456 uint64_t Addend = 0; 1457 if (hasRelocationAddend()) { 1458 Addend = C; 1459 C = 0; 1460 } 1461 1462 FixedValue = C; 1463 1464 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1465 ? cast<MCSectionELF>(&SymA->getSection()) 1466 : nullptr; 1467 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1468 return; 1469 1470 if (!RelocateWithSymbol) { 1471 const auto *SectionSymbol = 1472 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1473 if (SectionSymbol) 1474 SectionSymbol->setUsedInReloc(); 1475 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, 1476 OriginalC); 1477 Relocations[&FixupSection].push_back(Rec); 1478 return; 1479 } 1480 1481 const auto *RenamedSymA = SymA; 1482 if (SymA) { 1483 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1484 RenamedSymA = R; 1485 1486 if (ViaWeakRef) 1487 RenamedSymA->setIsWeakrefUsedInReloc(); 1488 else 1489 RenamedSymA->setUsedInReloc(); 1490 } 1491 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, 1492 OriginalC); 1493 Relocations[&FixupSection].push_back(Rec); 1494 } 1495 1496 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1497 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1498 bool InSet, bool IsPCRel) const { 1499 const auto &SymA = cast<MCSymbolELF>(SA); 1500 if (IsPCRel) { 1501 assert(!InSet); 1502 if (isWeak(SymA)) 1503 return false; 1504 } 1505 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1506 InSet, IsPCRel); 1507 } 1508 1509 std::unique_ptr<MCObjectWriter> 1510 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1511 raw_pwrite_stream &OS, bool IsLittleEndian) { 1512 return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1513 IsLittleEndian); 1514 } 1515 1516 std::unique_ptr<MCObjectWriter> 1517 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1518 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1519 bool IsLittleEndian) { 1520 return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1521 IsLittleEndian); 1522 } 1523