1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCSectionELF.h"
28 #include "llvm/MC/MCSymbolELF.h"
29 #include "llvm/MC/MCValue.h"
30 #include "llvm/MC/StringTableBuilder.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ELF.h"
34 #include "llvm/Support/Endian.h"
35 #include "llvm/Support/Error.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/StringSaver.h"
38 #include <vector>
39 
40 using namespace llvm;
41 
42 #undef  DEBUG_TYPE
43 #define DEBUG_TYPE "reloc-info"
44 
45 namespace {
46 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
47 
48 class ELFObjectWriter;
49 
50 class SymbolTableWriter {
51   ELFObjectWriter &EWriter;
52   bool Is64Bit;
53 
54   // indexes we are going to write to .symtab_shndx.
55   std::vector<uint32_t> ShndxIndexes;
56 
57   // The numbel of symbols written so far.
58   unsigned NumWritten;
59 
60   void createSymtabShndx();
61 
62   template <typename T> void write(T Value);
63 
64 public:
65   SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
66 
67   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
68                    uint8_t other, uint32_t shndx, bool Reserved);
69 
70   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
71 };
72 
73 class ELFObjectWriter : public MCObjectWriter {
74   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
75   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
76                          bool Used, bool Renamed);
77 
78   /// Helper struct for containing some precomputed information on symbols.
79   struct ELFSymbolData {
80     const MCSymbolELF *Symbol;
81     uint32_t SectionIndex;
82     StringRef Name;
83 
84     // Support lexicographic sorting.
85     bool operator<(const ELFSymbolData &RHS) const {
86       unsigned LHSType = Symbol->getType();
87       unsigned RHSType = RHS.Symbol->getType();
88       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
89         return false;
90       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
91         return true;
92       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
93         return SectionIndex < RHS.SectionIndex;
94       return Name < RHS.Name;
95     }
96   };
97 
98   /// The target specific ELF writer instance.
99   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
100 
101   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
102 
103   llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
104       Relocations;
105 
106   /// @}
107   /// @name Symbol Table Data
108   /// @{
109 
110   BumpPtrAllocator Alloc;
111   StringSaver VersionSymSaver{Alloc};
112   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
113 
114   /// @}
115 
116   // This holds the symbol table index of the last local symbol.
117   unsigned LastLocalSymbolIndex;
118   // This holds the .strtab section index.
119   unsigned StringTableIndex;
120   // This holds the .symtab section index.
121   unsigned SymbolTableIndex;
122 
123   // Sections in the order they are to be output in the section table.
124   std::vector<const MCSectionELF *> SectionTable;
125   unsigned addToSectionTable(const MCSectionELF *Sec);
126 
127   // TargetObjectWriter wrappers.
128   bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
129   bool hasRelocationAddend() const {
130     return TargetObjectWriter->hasRelocationAddend();
131   }
132   unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
133                         const MCFixup &Fixup, bool IsPCRel) const {
134     return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
135   }
136 
137   void align(unsigned Alignment);
138 
139   bool maybeWriteCompression(uint64_t Size,
140                              SmallVectorImpl<char> &CompressedContents,
141                              bool ZLibStyle, unsigned Alignment);
142 
143 public:
144   ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
145                   bool IsLittleEndian)
146       : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
147 
148   void reset() override {
149     Renames.clear();
150     Relocations.clear();
151     StrTabBuilder.clear();
152     SectionTable.clear();
153     MCObjectWriter::reset();
154   }
155 
156   ~ELFObjectWriter() override;
157 
158   void WriteWord(uint64_t W) {
159     if (is64Bit())
160       write64(W);
161     else
162       write32(W);
163   }
164 
165   template <typename T> void write(T Val) {
166     if (IsLittleEndian)
167       support::endian::Writer<support::little>(getStream()).write(Val);
168     else
169       support::endian::Writer<support::big>(getStream()).write(Val);
170   }
171 
172   void writeHeader(const MCAssembler &Asm);
173 
174   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
175                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
176 
177   // Start and end offset of each section
178   typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
179       SectionOffsetsTy;
180 
181   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
182                                 const MCSymbolRefExpr *RefA,
183                                 const MCSymbol *Sym, uint64_t C,
184                                 unsigned Type) const;
185 
186   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
187                         const MCFragment *Fragment, const MCFixup &Fixup,
188                         MCValue Target, bool &IsPCRel,
189                         uint64_t &FixedValue) override;
190 
191   // Map from a signature symbol to the group section index
192   typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
193 
194   /// Compute the symbol table data
195   ///
196   /// \param Asm - The assembler.
197   /// \param SectionIndexMap - Maps a section to its index.
198   /// \param RevGroupMap - Maps a signature symbol to the group section.
199   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
200                           const SectionIndexMapTy &SectionIndexMap,
201                           const RevGroupMapTy &RevGroupMap,
202                           SectionOffsetsTy &SectionOffsets);
203 
204   MCSectionELF *createRelocationSection(MCContext &Ctx,
205                                         const MCSectionELF &Sec);
206 
207   const MCSectionELF *createStringTable(MCContext &Ctx);
208 
209   void executePostLayoutBinding(MCAssembler &Asm,
210                                 const MCAsmLayout &Layout) override;
211 
212   void writeSectionHeader(const MCAsmLayout &Layout,
213                           const SectionIndexMapTy &SectionIndexMap,
214                           const SectionOffsetsTy &SectionOffsets);
215 
216   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
217                         const MCAsmLayout &Layout);
218 
219   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
220                         uint64_t Address, uint64_t Offset, uint64_t Size,
221                         uint32_t Link, uint32_t Info, uint64_t Alignment,
222                         uint64_t EntrySize);
223 
224   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
225 
226   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
227                                               const MCSymbol &SymA,
228                                               const MCFragment &FB, bool InSet,
229                                               bool IsPCRel) const override;
230 
231   bool isWeak(const MCSymbol &Sym) const override;
232 
233   void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
234   void writeSection(const SectionIndexMapTy &SectionIndexMap,
235                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
236                     const MCSectionELF &Section);
237 };
238 } // end anonymous namespace
239 
240 void ELFObjectWriter::align(unsigned Alignment) {
241   uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
242   WriteZeros(Padding);
243 }
244 
245 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
246   SectionTable.push_back(Sec);
247   StrTabBuilder.add(Sec->getSectionName());
248   return SectionTable.size();
249 }
250 
251 void SymbolTableWriter::createSymtabShndx() {
252   if (!ShndxIndexes.empty())
253     return;
254 
255   ShndxIndexes.resize(NumWritten);
256 }
257 
258 template <typename T> void SymbolTableWriter::write(T Value) {
259   EWriter.write(Value);
260 }
261 
262 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
263     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
264 
265 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
266                                     uint64_t size, uint8_t other,
267                                     uint32_t shndx, bool Reserved) {
268   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
269 
270   if (LargeIndex)
271     createSymtabShndx();
272 
273   if (!ShndxIndexes.empty()) {
274     if (LargeIndex)
275       ShndxIndexes.push_back(shndx);
276     else
277       ShndxIndexes.push_back(0);
278   }
279 
280   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
281 
282   if (Is64Bit) {
283     write(name);  // st_name
284     write(info);  // st_info
285     write(other); // st_other
286     write(Index); // st_shndx
287     write(value); // st_value
288     write(size);  // st_size
289   } else {
290     write(name);            // st_name
291     write(uint32_t(value)); // st_value
292     write(uint32_t(size));  // st_size
293     write(info);            // st_info
294     write(other);           // st_other
295     write(Index);           // st_shndx
296   }
297 
298   ++NumWritten;
299 }
300 
301 ELFObjectWriter::~ELFObjectWriter()
302 {}
303 
304 // Emit the ELF header.
305 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
306   // ELF Header
307   // ----------
308   //
309   // Note
310   // ----
311   // emitWord method behaves differently for ELF32 and ELF64, writing
312   // 4 bytes in the former and 8 in the latter.
313 
314   writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
315 
316   write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
317 
318   // e_ident[EI_DATA]
319   write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
320 
321   write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
322   // e_ident[EI_OSABI]
323   write8(TargetObjectWriter->getOSABI());
324   write8(0);                  // e_ident[EI_ABIVERSION]
325 
326   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
327 
328   write16(ELF::ET_REL);             // e_type
329 
330   write16(TargetObjectWriter->getEMachine()); // e_machine = target
331 
332   write32(ELF::EV_CURRENT);         // e_version
333   WriteWord(0);                    // e_entry, no entry point in .o file
334   WriteWord(0);                    // e_phoff, no program header for .o
335   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
336 
337   // e_flags = whatever the target wants
338   write32(Asm.getELFHeaderEFlags());
339 
340   // e_ehsize = ELF header size
341   write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
342 
343   write16(0);                  // e_phentsize = prog header entry size
344   write16(0);                  // e_phnum = # prog header entries = 0
345 
346   // e_shentsize = Section header entry size
347   write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
348 
349   // e_shnum     = # of section header ents
350   write16(0);
351 
352   // e_shstrndx  = Section # of '.shstrtab'
353   assert(StringTableIndex < ELF::SHN_LORESERVE);
354   write16(StringTableIndex);
355 }
356 
357 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
358                                       const MCAsmLayout &Layout) {
359   if (Sym.isCommon() && Sym.isExternal())
360     return Sym.getCommonAlignment();
361 
362   uint64_t Res;
363   if (!Layout.getSymbolOffset(Sym, Res))
364     return 0;
365 
366   if (Layout.getAssembler().isThumbFunc(&Sym))
367     Res |= 1;
368 
369   return Res;
370 }
371 
372 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
373                                                const MCAsmLayout &Layout) {
374   // Section symbols are used as definitions for undefined symbols with matching
375   // names. If there are multiple sections with the same name, the first one is
376   // used.
377   for (const MCSection &Sec : Asm) {
378     const MCSymbol *Begin = Sec.getBeginSymbol();
379     if (!Begin)
380       continue;
381 
382     const MCSymbol *Alias = Asm.getContext().lookupSymbol(Begin->getName());
383     if (!Alias || !Alias->isUndefined())
384       continue;
385 
386     Renames.insert(
387         std::make_pair(cast<MCSymbolELF>(Alias), cast<MCSymbolELF>(Begin)));
388   }
389 
390   // The presence of symbol versions causes undefined symbols and
391   // versions declared with @@@ to be renamed.
392   for (const MCSymbol &A : Asm.symbols()) {
393     const auto &Alias = cast<MCSymbolELF>(A);
394     // Not an alias.
395     if (!Alias.isVariable())
396       continue;
397     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
398     if (!Ref)
399       continue;
400     const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
401 
402     StringRef AliasName = Alias.getName();
403     size_t Pos = AliasName.find('@');
404     if (Pos == StringRef::npos)
405       continue;
406 
407     // Aliases defined with .symvar copy the binding from the symbol they alias.
408     // This is the first place we are able to copy this information.
409     Alias.setExternal(Symbol.isExternal());
410     Alias.setBinding(Symbol.getBinding());
411 
412     StringRef Rest = AliasName.substr(Pos);
413     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
414       continue;
415 
416     // FIXME: produce a better error message.
417     if (Symbol.isUndefined() && Rest.startswith("@@") &&
418         !Rest.startswith("@@@"))
419       report_fatal_error("A @@ version cannot be undefined");
420 
421     Renames.insert(std::make_pair(&Symbol, &Alias));
422   }
423 }
424 
425 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
426   uint8_t Type = newType;
427 
428   // Propagation rules:
429   // IFUNC > FUNC > OBJECT > NOTYPE
430   // TLS_OBJECT > OBJECT > NOTYPE
431   //
432   // dont let the new type degrade the old type
433   switch (origType) {
434   default:
435     break;
436   case ELF::STT_GNU_IFUNC:
437     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
438         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
439       Type = ELF::STT_GNU_IFUNC;
440     break;
441   case ELF::STT_FUNC:
442     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
443         Type == ELF::STT_TLS)
444       Type = ELF::STT_FUNC;
445     break;
446   case ELF::STT_OBJECT:
447     if (Type == ELF::STT_NOTYPE)
448       Type = ELF::STT_OBJECT;
449     break;
450   case ELF::STT_TLS:
451     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
452         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
453       Type = ELF::STT_TLS;
454     break;
455   }
456 
457   return Type;
458 }
459 
460 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
461                                   uint32_t StringIndex, ELFSymbolData &MSD,
462                                   const MCAsmLayout &Layout) {
463   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
464   const MCSymbolELF *Base =
465       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
466 
467   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
468   // SHN_COMMON.
469   bool IsReserved = !Base || Symbol.isCommon();
470 
471   // Binding and Type share the same byte as upper and lower nibbles
472   uint8_t Binding = Symbol.getBinding();
473   uint8_t Type = Symbol.getType();
474   if (Base) {
475     Type = mergeTypeForSet(Type, Base->getType());
476   }
477   uint8_t Info = (Binding << 4) | Type;
478 
479   // Other and Visibility share the same byte with Visibility using the lower
480   // 2 bits
481   uint8_t Visibility = Symbol.getVisibility();
482   uint8_t Other = Symbol.getOther() | Visibility;
483 
484   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
485   uint64_t Size = 0;
486 
487   const MCExpr *ESize = MSD.Symbol->getSize();
488   if (!ESize && Base)
489     ESize = Base->getSize();
490 
491   if (ESize) {
492     int64_t Res;
493     if (!ESize->evaluateKnownAbsolute(Res, Layout))
494       report_fatal_error("Size expression must be absolute.");
495     Size = Res;
496   }
497 
498   // Write out the symbol table entry
499   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
500                      IsReserved);
501 }
502 
503 // It is always valid to create a relocation with a symbol. It is preferable
504 // to use a relocation with a section if that is possible. Using the section
505 // allows us to omit some local symbols from the symbol table.
506 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
507                                                const MCSymbolRefExpr *RefA,
508                                                const MCSymbol *S, uint64_t C,
509                                                unsigned Type) const {
510   const auto *Sym = cast_or_null<MCSymbolELF>(S);
511   // A PCRel relocation to an absolute value has no symbol (or section). We
512   // represent that with a relocation to a null section.
513   if (!RefA)
514     return false;
515 
516   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
517   switch (Kind) {
518   default:
519     break;
520   // The .odp creation emits a relocation against the symbol ".TOC." which
521   // create a R_PPC64_TOC relocation. However the relocation symbol name
522   // in final object creation should be NULL, since the symbol does not
523   // really exist, it is just the reference to TOC base for the current
524   // object file. Since the symbol is undefined, returning false results
525   // in a relocation with a null section which is the desired result.
526   case MCSymbolRefExpr::VK_PPC_TOCBASE:
527     return false;
528 
529   // These VariantKind cause the relocation to refer to something other than
530   // the symbol itself, like a linker generated table. Since the address of
531   // symbol is not relevant, we cannot replace the symbol with the
532   // section and patch the difference in the addend.
533   case MCSymbolRefExpr::VK_GOT:
534   case MCSymbolRefExpr::VK_PLT:
535   case MCSymbolRefExpr::VK_GOTPCREL:
536   case MCSymbolRefExpr::VK_PPC_GOT_LO:
537   case MCSymbolRefExpr::VK_PPC_GOT_HI:
538   case MCSymbolRefExpr::VK_PPC_GOT_HA:
539     return true;
540   }
541 
542   // An undefined symbol is not in any section, so the relocation has to point
543   // to the symbol itself.
544   assert(Sym && "Expected a symbol");
545   if (Sym->isUndefined())
546     return true;
547 
548   unsigned Binding = Sym->getBinding();
549   switch(Binding) {
550   default:
551     llvm_unreachable("Invalid Binding");
552   case ELF::STB_LOCAL:
553     break;
554   case ELF::STB_WEAK:
555     // If the symbol is weak, it might be overridden by a symbol in another
556     // file. The relocation has to point to the symbol so that the linker
557     // can update it.
558     return true;
559   case ELF::STB_GLOBAL:
560     // Global ELF symbols can be preempted by the dynamic linker. The relocation
561     // has to point to the symbol for a reason analogous to the STB_WEAK case.
562     return true;
563   }
564 
565   // If a relocation points to a mergeable section, we have to be careful.
566   // If the offset is zero, a relocation with the section will encode the
567   // same information. With a non-zero offset, the situation is different.
568   // For example, a relocation can point 42 bytes past the end of a string.
569   // If we change such a relocation to use the section, the linker would think
570   // that it pointed to another string and subtracting 42 at runtime will
571   // produce the wrong value.
572   if (Sym->isInSection()) {
573     auto &Sec = cast<MCSectionELF>(Sym->getSection());
574     unsigned Flags = Sec.getFlags();
575     if (Flags & ELF::SHF_MERGE) {
576       if (C != 0)
577         return true;
578 
579       // It looks like gold has a bug (http://sourceware.org/PR16794) and can
580       // only handle section relocations to mergeable sections if using RELA.
581       if (!hasRelocationAddend())
582         return true;
583     }
584 
585     // Most TLS relocations use a got, so they need the symbol. Even those that
586     // are just an offset (@tpoff), require a symbol in gold versions before
587     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
588     // http://sourceware.org/PR16773.
589     if (Flags & ELF::SHF_TLS)
590       return true;
591   }
592 
593   // If the symbol is a thumb function the final relocation must set the lowest
594   // bit. With a symbol that is done by just having the symbol have that bit
595   // set, so we would lose the bit if we relocated with the section.
596   // FIXME: We could use the section but add the bit to the relocation value.
597   if (Asm.isThumbFunc(Sym))
598     return true;
599 
600   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
601     return true;
602   return false;
603 }
604 
605 // True if the assembler knows nothing about the final value of the symbol.
606 // This doesn't cover the comdat issues, since in those cases the assembler
607 // can at least know that all symbols in the section will move together.
608 static bool isWeak(const MCSymbolELF &Sym) {
609   if (Sym.getType() == ELF::STT_GNU_IFUNC)
610     return true;
611 
612   switch (Sym.getBinding()) {
613   default:
614     llvm_unreachable("Unknown binding");
615   case ELF::STB_LOCAL:
616     return false;
617   case ELF::STB_GLOBAL:
618     return false;
619   case ELF::STB_WEAK:
620   case ELF::STB_GNU_UNIQUE:
621     return true;
622   }
623 }
624 
625 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
626                                        const MCAsmLayout &Layout,
627                                        const MCFragment *Fragment,
628                                        const MCFixup &Fixup, MCValue Target,
629                                        bool &IsPCRel, uint64_t &FixedValue) {
630   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
631   uint64_t C = Target.getConstant();
632   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
633   MCContext &Ctx = Asm.getContext();
634 
635   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
636     assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
637            "Should not have constructed this");
638 
639     // Let A, B and C being the components of Target and R be the location of
640     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
641     // If it is pcrel, we want to compute (A - B + C - R).
642 
643     // In general, ELF has no relocations for -B. It can only represent (A + C)
644     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
645     // replace B to implement it: (A - R - K + C)
646     if (IsPCRel) {
647       Ctx.reportError(
648           Fixup.getLoc(),
649           "No relocation available to represent this relative expression");
650       return;
651     }
652 
653     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
654 
655     if (SymB.isUndefined()) {
656       Ctx.reportError(Fixup.getLoc(),
657                       Twine("symbol '") + SymB.getName() +
658                           "' can not be undefined in a subtraction expression");
659       return;
660     }
661 
662     assert(!SymB.isAbsolute() && "Should have been folded");
663     const MCSection &SecB = SymB.getSection();
664     if (&SecB != &FixupSection) {
665       Ctx.reportError(Fixup.getLoc(),
666                       "Cannot represent a difference across sections");
667       return;
668     }
669 
670     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
671     uint64_t K = SymBOffset - FixupOffset;
672     IsPCRel = true;
673     C -= K;
674   }
675 
676   // We either rejected the fixup or folded B into C at this point.
677   const MCSymbolRefExpr *RefA = Target.getSymA();
678   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
679 
680   bool ViaWeakRef = false;
681   if (SymA && SymA->isVariable()) {
682     const MCExpr *Expr = SymA->getVariableValue();
683     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
684       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
685         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
686         ViaWeakRef = true;
687       }
688     }
689   }
690 
691   unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
692   uint64_t OriginalC = C;
693   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
694   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
695     C += Layout.getSymbolOffset(*SymA);
696 
697   uint64_t Addend = 0;
698   if (hasRelocationAddend()) {
699     Addend = C;
700     C = 0;
701   }
702 
703   FixedValue = C;
704 
705   if (!RelocateWithSymbol) {
706     const MCSection *SecA =
707         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
708     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
709     const auto *SectionSymbol =
710         ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
711     if (SectionSymbol)
712       SectionSymbol->setUsedInReloc();
713     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
714                            OriginalC);
715     Relocations[&FixupSection].push_back(Rec);
716     return;
717   }
718 
719   const auto *RenamedSymA = SymA;
720   if (SymA) {
721     if (const MCSymbolELF *R = Renames.lookup(SymA))
722       RenamedSymA = R;
723 
724     if (ViaWeakRef)
725       RenamedSymA->setIsWeakrefUsedInReloc();
726     else
727       RenamedSymA->setUsedInReloc();
728   }
729   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
730                          OriginalC);
731   Relocations[&FixupSection].push_back(Rec);
732 }
733 
734 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
735                                  const MCSymbolELF &Symbol, bool Used,
736                                  bool Renamed) {
737   if (Symbol.isVariable()) {
738     const MCExpr *Expr = Symbol.getVariableValue();
739     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
740       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
741         return false;
742     }
743   }
744 
745   if (Used)
746     return true;
747 
748   if (Renamed)
749     return false;
750 
751   if (Symbol.isVariable() && Symbol.isUndefined()) {
752     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
753     Layout.getBaseSymbol(Symbol);
754     return false;
755   }
756 
757   if (Symbol.isUndefined() && !Symbol.isBindingSet())
758     return false;
759 
760   if (Symbol.isTemporary())
761     return false;
762 
763   if (Symbol.getType() == ELF::STT_SECTION)
764     return false;
765 
766   return true;
767 }
768 
769 void ELFObjectWriter::computeSymbolTable(
770     MCAssembler &Asm, const MCAsmLayout &Layout,
771     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
772     SectionOffsetsTy &SectionOffsets) {
773   MCContext &Ctx = Asm.getContext();
774   SymbolTableWriter Writer(*this, is64Bit());
775 
776   // Symbol table
777   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
778   MCSectionELF *SymtabSection =
779       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
780   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
781   SymbolTableIndex = addToSectionTable(SymtabSection);
782 
783   align(SymtabSection->getAlignment());
784   uint64_t SecStart = getStream().tell();
785 
786   // The first entry is the undefined symbol entry.
787   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
788 
789   std::vector<ELFSymbolData> LocalSymbolData;
790   std::vector<ELFSymbolData> ExternalSymbolData;
791 
792   // Add the data for the symbols.
793   bool HasLargeSectionIndex = false;
794   for (const MCSymbol &S : Asm.symbols()) {
795     const auto &Symbol = cast<MCSymbolELF>(S);
796     bool Used = Symbol.isUsedInReloc();
797     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
798     bool isSignature = Symbol.isSignature();
799 
800     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
801                     Renames.count(&Symbol)))
802       continue;
803 
804     if (Symbol.isTemporary() && Symbol.isUndefined()) {
805       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
806       continue;
807     }
808 
809     ELFSymbolData MSD;
810     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
811 
812     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
813     assert(Local || !Symbol.isTemporary());
814 
815     if (Symbol.isAbsolute()) {
816       MSD.SectionIndex = ELF::SHN_ABS;
817     } else if (Symbol.isCommon()) {
818       assert(!Local);
819       MSD.SectionIndex = ELF::SHN_COMMON;
820     } else if (Symbol.isUndefined()) {
821       if (isSignature && !Used) {
822         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
823         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
824           HasLargeSectionIndex = true;
825       } else {
826         MSD.SectionIndex = ELF::SHN_UNDEF;
827       }
828     } else {
829       const MCSectionELF &Section =
830           static_cast<const MCSectionELF &>(Symbol.getSection());
831       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
832       assert(MSD.SectionIndex && "Invalid section index!");
833       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
834         HasLargeSectionIndex = true;
835     }
836 
837     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
838     // in defined ones.
839     //
840     // FIXME: All name handling should be done before we get to the writer,
841     // including dealing with GNU-style version suffixes.  Fixing this isn't
842     // trivial.
843     //
844     // We thus have to be careful to not perform the symbol version replacement
845     // blindly:
846     //
847     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
848     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
849     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
850     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
851     // the EFLObjectWriter should not interpret the "@@@" sub-string as
852     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
853     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
854     // "__imp_?" or "__imp_@?".
855     //
856     // It would have been interesting to perform the MS mangling prefix check
857     // only when the target triple is of the form *-pc-windows-elf. But, it
858     // seems that this information is not easily accessible from the
859     // ELFObjectWriter.
860     StringRef Name = Symbol.getName();
861     SmallString<32> Buf;
862     if (!Name.startswith("?") && !Name.startswith("@?") &&
863         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
864       // This symbol isn't following the MSVC C++ name mangling convention. We
865       // can thus safely interpret the @@@ in symbol names as specifying symbol
866       // versioning.
867       size_t Pos = Name.find("@@@");
868       if (Pos != StringRef::npos) {
869         Buf += Name.substr(0, Pos);
870         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
871         Buf += Name.substr(Pos + Skip);
872         Name = VersionSymSaver.save(Buf.c_str());
873       }
874     }
875 
876     // Sections have their own string table
877     if (Symbol.getType() != ELF::STT_SECTION) {
878       MSD.Name = Name;
879       StrTabBuilder.add(Name);
880     }
881 
882     if (Local)
883       LocalSymbolData.push_back(MSD);
884     else
885       ExternalSymbolData.push_back(MSD);
886   }
887 
888   // This holds the .symtab_shndx section index.
889   unsigned SymtabShndxSectionIndex = 0;
890 
891   if (HasLargeSectionIndex) {
892     MCSectionELF *SymtabShndxSection =
893         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
894     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
895     SymtabShndxSection->setAlignment(4);
896   }
897 
898   ArrayRef<std::string> FileNames = Asm.getFileNames();
899   for (const std::string &Name : FileNames)
900     StrTabBuilder.add(Name);
901 
902   StrTabBuilder.finalize();
903 
904   for (const std::string &Name : FileNames)
905     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
906                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
907                        ELF::SHN_ABS, true);
908 
909   // Symbols are required to be in lexicographic order.
910   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
911   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
912 
913   // Set the symbol indices. Local symbols must come before all other
914   // symbols with non-local bindings.
915   unsigned Index = FileNames.size() + 1;
916 
917   for (ELFSymbolData &MSD : LocalSymbolData) {
918     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
919                                ? 0
920                                : StrTabBuilder.getOffset(MSD.Name);
921     MSD.Symbol->setIndex(Index++);
922     writeSymbol(Writer, StringIndex, MSD, Layout);
923   }
924 
925   // Write the symbol table entries.
926   LastLocalSymbolIndex = Index;
927 
928   for (ELFSymbolData &MSD : ExternalSymbolData) {
929     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
930     MSD.Symbol->setIndex(Index++);
931     writeSymbol(Writer, StringIndex, MSD, Layout);
932     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
933   }
934 
935   uint64_t SecEnd = getStream().tell();
936   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
937 
938   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
939   if (ShndxIndexes.empty()) {
940     assert(SymtabShndxSectionIndex == 0);
941     return;
942   }
943   assert(SymtabShndxSectionIndex != 0);
944 
945   SecStart = getStream().tell();
946   const MCSectionELF *SymtabShndxSection =
947       SectionTable[SymtabShndxSectionIndex - 1];
948   for (uint32_t Index : ShndxIndexes)
949     write(Index);
950   SecEnd = getStream().tell();
951   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
952 }
953 
954 MCSectionELF *
955 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
956                                          const MCSectionELF &Sec) {
957   if (Relocations[&Sec].empty())
958     return nullptr;
959 
960   const StringRef SectionName = Sec.getSectionName();
961   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
962   RelaSectionName += SectionName;
963 
964   unsigned EntrySize;
965   if (hasRelocationAddend())
966     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
967   else
968     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
969 
970   unsigned Flags = 0;
971   if (Sec.getFlags() & ELF::SHF_GROUP)
972     Flags = ELF::SHF_GROUP;
973 
974   MCSectionELF *RelaSection = Ctx.createELFRelSection(
975       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
976       Flags, EntrySize, Sec.getGroup(), &Sec);
977   RelaSection->setAlignment(is64Bit() ? 8 : 4);
978   return RelaSection;
979 }
980 
981 // Include the debug info compression header.
982 bool ELFObjectWriter::maybeWriteCompression(
983     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
984     unsigned Alignment) {
985   if (ZLibStyle) {
986     uint64_t HdrSize =
987         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
988     if (Size <= HdrSize + CompressedContents.size())
989       return false;
990     // Platform specific header is followed by compressed data.
991     if (is64Bit()) {
992       // Write Elf64_Chdr header.
993       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
994       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
995       write(static_cast<ELF::Elf64_Xword>(Size));
996       write(static_cast<ELF::Elf64_Xword>(Alignment));
997     } else {
998       // Write Elf32_Chdr header otherwise.
999       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
1000       write(static_cast<ELF::Elf32_Word>(Size));
1001       write(static_cast<ELF::Elf32_Word>(Alignment));
1002     }
1003     return true;
1004   }
1005 
1006   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1007   // useful for consumers to preallocate a buffer to decompress into.
1008   const StringRef Magic = "ZLIB";
1009   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1010     return false;
1011   write(ArrayRef<char>(Magic.begin(), Magic.size()));
1012   writeBE64(Size);
1013   return true;
1014 }
1015 
1016 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
1017                                        const MCAsmLayout &Layout) {
1018   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1019   StringRef SectionName = Section.getSectionName();
1020 
1021   // Compressing debug_frame requires handling alignment fragments which is
1022   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1023   // for writing to arbitrary buffers) for little benefit.
1024   bool CompressionEnabled =
1025       Asm.getContext().getAsmInfo()->compressDebugSections() !=
1026       DebugCompressionType::DCT_None;
1027   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
1028       SectionName == ".debug_frame") {
1029     Asm.writeSectionData(&Section, Layout);
1030     return;
1031   }
1032 
1033   SmallVector<char, 128> UncompressedData;
1034   raw_svector_ostream VecOS(UncompressedData);
1035   raw_pwrite_stream &OldStream = getStream();
1036   setStream(VecOS);
1037   Asm.writeSectionData(&Section, Layout);
1038   setStream(OldStream);
1039 
1040   SmallVector<char, 128> CompressedContents;
1041   if (Error E = zlib::compress(
1042           StringRef(UncompressedData.data(), UncompressedData.size()),
1043           CompressedContents)) {
1044     consumeError(std::move(E));
1045     getStream() << UncompressedData;
1046     return;
1047   }
1048 
1049   bool ZlibStyle = Asm.getContext().getAsmInfo()->compressDebugSections() ==
1050                    DebugCompressionType::DCT_Zlib;
1051   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
1052                              ZlibStyle, Sec.getAlignment())) {
1053     getStream() << UncompressedData;
1054     return;
1055   }
1056 
1057   if (ZlibStyle)
1058     // Set the compressed flag. That is zlib style.
1059     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
1060   else
1061     // Add "z" prefix to section name. This is zlib-gnu style.
1062     Asm.getContext().renameELFSection(&Section,
1063                                       (".z" + SectionName.drop_front(1)).str());
1064   getStream() << CompressedContents;
1065 }
1066 
1067 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1068                                        uint64_t Flags, uint64_t Address,
1069                                        uint64_t Offset, uint64_t Size,
1070                                        uint32_t Link, uint32_t Info,
1071                                        uint64_t Alignment,
1072                                        uint64_t EntrySize) {
1073   write32(Name);        // sh_name: index into string table
1074   write32(Type);        // sh_type
1075   WriteWord(Flags);     // sh_flags
1076   WriteWord(Address);   // sh_addr
1077   WriteWord(Offset);    // sh_offset
1078   WriteWord(Size);      // sh_size
1079   write32(Link);        // sh_link
1080   write32(Info);        // sh_info
1081   WriteWord(Alignment); // sh_addralign
1082   WriteWord(EntrySize); // sh_entsize
1083 }
1084 
1085 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1086                                        const MCSectionELF &Sec) {
1087   std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1088 
1089   // We record relocations by pushing to the end of a vector. Reverse the vector
1090   // to get the relocations in the order they were created.
1091   // In most cases that is not important, but it can be for special sections
1092   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1093   std::reverse(Relocs.begin(), Relocs.end());
1094 
1095   // Sort the relocation entries. MIPS needs this.
1096   TargetObjectWriter->sortRelocs(Asm, Relocs);
1097 
1098   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1099     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1100     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1101 
1102     if (is64Bit()) {
1103       write(Entry.Offset);
1104       if (TargetObjectWriter->isN64()) {
1105         write(uint32_t(Index));
1106 
1107         write(TargetObjectWriter->getRSsym(Entry.Type));
1108         write(TargetObjectWriter->getRType3(Entry.Type));
1109         write(TargetObjectWriter->getRType2(Entry.Type));
1110         write(TargetObjectWriter->getRType(Entry.Type));
1111       } else {
1112         struct ELF::Elf64_Rela ERE64;
1113         ERE64.setSymbolAndType(Index, Entry.Type);
1114         write(ERE64.r_info);
1115       }
1116       if (hasRelocationAddend())
1117         write(Entry.Addend);
1118     } else {
1119       write(uint32_t(Entry.Offset));
1120 
1121       struct ELF::Elf32_Rela ERE32;
1122       ERE32.setSymbolAndType(Index, Entry.Type);
1123       write(ERE32.r_info);
1124 
1125       if (hasRelocationAddend())
1126         write(uint32_t(Entry.Addend));
1127     }
1128   }
1129 }
1130 
1131 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1132   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1133   StrTabBuilder.write(getStream());
1134   return StrtabSection;
1135 }
1136 
1137 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1138                                    uint32_t GroupSymbolIndex, uint64_t Offset,
1139                                    uint64_t Size, const MCSectionELF &Section) {
1140   uint64_t sh_link = 0;
1141   uint64_t sh_info = 0;
1142 
1143   switch(Section.getType()) {
1144   default:
1145     // Nothing to do.
1146     break;
1147 
1148   case ELF::SHT_DYNAMIC:
1149     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1150 
1151   case ELF::SHT_REL:
1152   case ELF::SHT_RELA: {
1153     sh_link = SymbolTableIndex;
1154     assert(sh_link && ".symtab not found");
1155     const MCSectionELF *InfoSection = Section.getAssociatedSection();
1156     sh_info = SectionIndexMap.lookup(InfoSection);
1157     break;
1158   }
1159 
1160   case ELF::SHT_SYMTAB:
1161   case ELF::SHT_DYNSYM:
1162     sh_link = StringTableIndex;
1163     sh_info = LastLocalSymbolIndex;
1164     break;
1165 
1166   case ELF::SHT_SYMTAB_SHNDX:
1167     sh_link = SymbolTableIndex;
1168     break;
1169 
1170   case ELF::SHT_GROUP:
1171     sh_link = SymbolTableIndex;
1172     sh_info = GroupSymbolIndex;
1173     break;
1174   }
1175 
1176   if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1177       Section.getType() == ELF::SHT_ARM_EXIDX)
1178     sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1179 
1180   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1181                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1182                    sh_link, sh_info, Section.getAlignment(),
1183                    Section.getEntrySize());
1184 }
1185 
1186 void ELFObjectWriter::writeSectionHeader(
1187     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1188     const SectionOffsetsTy &SectionOffsets) {
1189   const unsigned NumSections = SectionTable.size();
1190 
1191   // Null section first.
1192   uint64_t FirstSectionSize =
1193       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1194   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1195 
1196   for (const MCSectionELF *Section : SectionTable) {
1197     uint32_t GroupSymbolIndex;
1198     unsigned Type = Section->getType();
1199     if (Type != ELF::SHT_GROUP)
1200       GroupSymbolIndex = 0;
1201     else
1202       GroupSymbolIndex = Section->getGroup()->getIndex();
1203 
1204     const std::pair<uint64_t, uint64_t> &Offsets =
1205         SectionOffsets.find(Section)->second;
1206     uint64_t Size;
1207     if (Type == ELF::SHT_NOBITS)
1208       Size = Layout.getSectionAddressSize(Section);
1209     else
1210       Size = Offsets.second - Offsets.first;
1211 
1212     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1213                  *Section);
1214   }
1215 }
1216 
1217 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1218                                   const MCAsmLayout &Layout) {
1219   MCContext &Ctx = Asm.getContext();
1220   MCSectionELF *StrtabSection =
1221       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1222   StringTableIndex = addToSectionTable(StrtabSection);
1223 
1224   RevGroupMapTy RevGroupMap;
1225   SectionIndexMapTy SectionIndexMap;
1226 
1227   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1228 
1229   // Write out the ELF header ...
1230   writeHeader(Asm);
1231 
1232   // ... then the sections ...
1233   SectionOffsetsTy SectionOffsets;
1234   std::vector<MCSectionELF *> Groups;
1235   std::vector<MCSectionELF *> Relocations;
1236   for (MCSection &Sec : Asm) {
1237     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1238 
1239     align(Section.getAlignment());
1240 
1241     // Remember the offset into the file for this section.
1242     uint64_t SecStart = getStream().tell();
1243 
1244     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1245     writeSectionData(Asm, Section, Layout);
1246 
1247     uint64_t SecEnd = getStream().tell();
1248     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1249 
1250     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1251 
1252     if (SignatureSymbol) {
1253       Asm.registerSymbol(*SignatureSymbol);
1254       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1255       if (!GroupIdx) {
1256         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1257         GroupIdx = addToSectionTable(Group);
1258         Group->setAlignment(4);
1259         Groups.push_back(Group);
1260       }
1261       std::vector<const MCSectionELF *> &Members =
1262           GroupMembers[SignatureSymbol];
1263       Members.push_back(&Section);
1264       if (RelSection)
1265         Members.push_back(RelSection);
1266     }
1267 
1268     SectionIndexMap[&Section] = addToSectionTable(&Section);
1269     if (RelSection) {
1270       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1271       Relocations.push_back(RelSection);
1272     }
1273   }
1274 
1275   for (MCSectionELF *Group : Groups) {
1276     align(Group->getAlignment());
1277 
1278     // Remember the offset into the file for this section.
1279     uint64_t SecStart = getStream().tell();
1280 
1281     const MCSymbol *SignatureSymbol = Group->getGroup();
1282     assert(SignatureSymbol);
1283     write(uint32_t(ELF::GRP_COMDAT));
1284     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1285       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1286       write(SecIndex);
1287     }
1288 
1289     uint64_t SecEnd = getStream().tell();
1290     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1291   }
1292 
1293   // Compute symbol table information.
1294   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1295 
1296   for (MCSectionELF *RelSection : Relocations) {
1297     align(RelSection->getAlignment());
1298 
1299     // Remember the offset into the file for this section.
1300     uint64_t SecStart = getStream().tell();
1301 
1302     writeRelocations(Asm, *RelSection->getAssociatedSection());
1303 
1304     uint64_t SecEnd = getStream().tell();
1305     SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1306   }
1307 
1308   {
1309     uint64_t SecStart = getStream().tell();
1310     const MCSectionELF *Sec = createStringTable(Ctx);
1311     uint64_t SecEnd = getStream().tell();
1312     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1313   }
1314 
1315   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1316   align(NaturalAlignment);
1317 
1318   const uint64_t SectionHeaderOffset = getStream().tell();
1319 
1320   // ... then the section header table ...
1321   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1322 
1323   uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1324                              ? (uint16_t)ELF::SHN_UNDEF
1325                              : SectionTable.size() + 1;
1326   if (sys::IsLittleEndianHost != IsLittleEndian)
1327     sys::swapByteOrder(NumSections);
1328   unsigned NumSectionsOffset;
1329 
1330   if (is64Bit()) {
1331     uint64_t Val = SectionHeaderOffset;
1332     if (sys::IsLittleEndianHost != IsLittleEndian)
1333       sys::swapByteOrder(Val);
1334     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1335                        offsetof(ELF::Elf64_Ehdr, e_shoff));
1336     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1337   } else {
1338     uint32_t Val = SectionHeaderOffset;
1339     if (sys::IsLittleEndianHost != IsLittleEndian)
1340       sys::swapByteOrder(Val);
1341     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1342                        offsetof(ELF::Elf32_Ehdr, e_shoff));
1343     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1344   }
1345   getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1346                      sizeof(NumSections), NumSectionsOffset);
1347 }
1348 
1349 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1350     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1351     bool InSet, bool IsPCRel) const {
1352   const auto &SymA = cast<MCSymbolELF>(SA);
1353   if (IsPCRel) {
1354     assert(!InSet);
1355     if (::isWeak(SymA))
1356       return false;
1357   }
1358   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1359                                                                 InSet, IsPCRel);
1360 }
1361 
1362 bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
1363   const auto &Sym = cast<MCSymbolELF>(S);
1364   if (::isWeak(Sym))
1365     return true;
1366 
1367   // It is invalid to replace a reference to a global in a comdat
1368   // with a reference to a local since out of comdat references
1369   // to a local are forbidden.
1370   // We could try to return false for more cases, like the reference
1371   // being in the same comdat or Sym being an alias to another global,
1372   // but it is not clear if it is worth the effort.
1373   if (Sym.getBinding() != ELF::STB_GLOBAL)
1374     return false;
1375 
1376   if (!Sym.isInSection())
1377     return false;
1378 
1379   const auto &Sec = cast<MCSectionELF>(Sym.getSection());
1380   return Sec.getGroup();
1381 }
1382 
1383 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1384                                             raw_pwrite_stream &OS,
1385                                             bool IsLittleEndian) {
1386   return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1387 }
1388