1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ELF object file writer information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/MC/MCELFObjectWriter.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAsmLayout.h" 22 #include "llvm/MC/MCAssembler.h" 23 #include "llvm/MC/MCContext.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCObjectWriter.h" 27 #include "llvm/MC/MCSectionELF.h" 28 #include "llvm/MC/MCSymbolELF.h" 29 #include "llvm/MC/MCValue.h" 30 #include "llvm/MC/StringTableBuilder.h" 31 #include "llvm/Support/Compression.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ELF.h" 34 #include "llvm/Support/Endian.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/StringSaver.h" 37 #include <vector> 38 39 using namespace llvm; 40 41 #undef DEBUG_TYPE 42 #define DEBUG_TYPE "reloc-info" 43 44 namespace { 45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy; 46 47 class ELFObjectWriter; 48 49 class SymbolTableWriter { 50 ELFObjectWriter &EWriter; 51 bool Is64Bit; 52 53 // indexes we are going to write to .symtab_shndx. 54 std::vector<uint32_t> ShndxIndexes; 55 56 // The numbel of symbols written so far. 57 unsigned NumWritten; 58 59 void createSymtabShndx(); 60 61 template <typename T> void write(T Value); 62 63 public: 64 SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit); 65 66 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 67 uint8_t other, uint32_t shndx, bool Reserved); 68 69 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 70 }; 71 72 class ELFObjectWriter : public MCObjectWriter { 73 static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind); 74 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 75 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 76 bool Used, bool Renamed); 77 78 /// Helper struct for containing some precomputed information on symbols. 79 struct ELFSymbolData { 80 const MCSymbolELF *Symbol; 81 uint32_t SectionIndex; 82 StringRef Name; 83 84 // Support lexicographic sorting. 85 bool operator<(const ELFSymbolData &RHS) const { 86 unsigned LHSType = Symbol->getType(); 87 unsigned RHSType = RHS.Symbol->getType(); 88 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 89 return false; 90 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 91 return true; 92 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 93 return SectionIndex < RHS.SectionIndex; 94 return Name < RHS.Name; 95 } 96 }; 97 98 /// The target specific ELF writer instance. 99 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 100 101 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 102 103 llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> 104 Relocations; 105 106 /// @} 107 /// @name Symbol Table Data 108 /// @{ 109 110 BumpPtrAllocator Alloc; 111 StringSaver VersionSymSaver{Alloc}; 112 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 113 114 /// @} 115 116 // This holds the symbol table index of the last local symbol. 117 unsigned LastLocalSymbolIndex; 118 // This holds the .strtab section index. 119 unsigned StringTableIndex; 120 // This holds the .symtab section index. 121 unsigned SymbolTableIndex; 122 123 // Sections in the order they are to be output in the section table. 124 std::vector<const MCSectionELF *> SectionTable; 125 unsigned addToSectionTable(const MCSectionELF *Sec); 126 127 // TargetObjectWriter wrappers. 128 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 129 bool hasRelocationAddend() const { 130 return TargetObjectWriter->hasRelocationAddend(); 131 } 132 unsigned getRelocType(MCContext &Ctx, const MCValue &Target, 133 const MCFixup &Fixup, bool IsPCRel) const { 134 return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 135 } 136 137 void align(unsigned Alignment); 138 139 public: 140 ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS, 141 bool IsLittleEndian) 142 : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {} 143 144 void reset() override { 145 Renames.clear(); 146 Relocations.clear(); 147 StrTabBuilder.clear(); 148 SectionTable.clear(); 149 MCObjectWriter::reset(); 150 } 151 152 ~ELFObjectWriter() override; 153 154 void WriteWord(uint64_t W) { 155 if (is64Bit()) 156 write64(W); 157 else 158 write32(W); 159 } 160 161 template <typename T> void write(T Val) { 162 if (IsLittleEndian) 163 support::endian::Writer<support::little>(getStream()).write(Val); 164 else 165 support::endian::Writer<support::big>(getStream()).write(Val); 166 } 167 168 void writeHeader(const MCAssembler &Asm); 169 170 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 171 ELFSymbolData &MSD, const MCAsmLayout &Layout); 172 173 // Start and end offset of each section 174 typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>> 175 SectionOffsetsTy; 176 177 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 178 const MCSymbolRefExpr *RefA, 179 const MCSymbol *Sym, uint64_t C, 180 unsigned Type) const; 181 182 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 183 const MCFragment *Fragment, const MCFixup &Fixup, 184 MCValue Target, bool &IsPCRel, 185 uint64_t &FixedValue) override; 186 187 // Map from a signature symbol to the group section index 188 typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy; 189 190 /// Compute the symbol table data 191 /// 192 /// \param Asm - The assembler. 193 /// \param SectionIndexMap - Maps a section to its index. 194 /// \param RevGroupMap - Maps a signature symbol to the group section. 195 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 196 const SectionIndexMapTy &SectionIndexMap, 197 const RevGroupMapTy &RevGroupMap, 198 SectionOffsetsTy &SectionOffsets); 199 200 MCSectionELF *createRelocationSection(MCContext &Ctx, 201 const MCSectionELF &Sec); 202 203 const MCSectionELF *createStringTable(MCContext &Ctx); 204 205 void executePostLayoutBinding(MCAssembler &Asm, 206 const MCAsmLayout &Layout) override; 207 208 void writeSectionHeader(const MCAsmLayout &Layout, 209 const SectionIndexMapTy &SectionIndexMap, 210 const SectionOffsetsTy &SectionOffsets); 211 212 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 213 const MCAsmLayout &Layout); 214 215 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 216 uint64_t Address, uint64_t Offset, uint64_t Size, 217 uint32_t Link, uint32_t Info, uint64_t Alignment, 218 uint64_t EntrySize); 219 220 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 221 222 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 223 const MCSymbol &SymA, 224 const MCFragment &FB, 225 bool InSet, 226 bool IsPCRel) const override; 227 228 bool isWeak(const MCSymbol &Sym) const override; 229 230 void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 231 void writeSection(const SectionIndexMapTy &SectionIndexMap, 232 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 233 const MCSectionELF &Section); 234 }; 235 } // end anonymous namespace 236 237 void ELFObjectWriter::align(unsigned Alignment) { 238 uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment); 239 WriteZeros(Padding); 240 } 241 242 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) { 243 SectionTable.push_back(Sec); 244 StrTabBuilder.add(Sec->getSectionName()); 245 return SectionTable.size(); 246 } 247 248 void SymbolTableWriter::createSymtabShndx() { 249 if (!ShndxIndexes.empty()) 250 return; 251 252 ShndxIndexes.resize(NumWritten); 253 } 254 255 template <typename T> void SymbolTableWriter::write(T Value) { 256 EWriter.write(Value); 257 } 258 259 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit) 260 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 261 262 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 263 uint64_t size, uint8_t other, 264 uint32_t shndx, bool Reserved) { 265 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 266 267 if (LargeIndex) 268 createSymtabShndx(); 269 270 if (!ShndxIndexes.empty()) { 271 if (LargeIndex) 272 ShndxIndexes.push_back(shndx); 273 else 274 ShndxIndexes.push_back(0); 275 } 276 277 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 278 279 if (Is64Bit) { 280 write(name); // st_name 281 write(info); // st_info 282 write(other); // st_other 283 write(Index); // st_shndx 284 write(value); // st_value 285 write(size); // st_size 286 } else { 287 write(name); // st_name 288 write(uint32_t(value)); // st_value 289 write(uint32_t(size)); // st_size 290 write(info); // st_info 291 write(other); // st_other 292 write(Index); // st_shndx 293 } 294 295 ++NumWritten; 296 } 297 298 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) { 299 const MCFixupKindInfo &FKI = 300 Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind); 301 302 return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel; 303 } 304 305 ELFObjectWriter::~ELFObjectWriter() 306 {} 307 308 // Emit the ELF header. 309 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) { 310 // ELF Header 311 // ---------- 312 // 313 // Note 314 // ---- 315 // emitWord method behaves differently for ELF32 and ELF64, writing 316 // 4 bytes in the former and 8 in the latter. 317 318 writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3] 319 320 write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 321 322 // e_ident[EI_DATA] 323 write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB); 324 325 write8(ELF::EV_CURRENT); // e_ident[EI_VERSION] 326 // e_ident[EI_OSABI] 327 write8(TargetObjectWriter->getOSABI()); 328 write8(0); // e_ident[EI_ABIVERSION] 329 330 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD); 331 332 write16(ELF::ET_REL); // e_type 333 334 write16(TargetObjectWriter->getEMachine()); // e_machine = target 335 336 write32(ELF::EV_CURRENT); // e_version 337 WriteWord(0); // e_entry, no entry point in .o file 338 WriteWord(0); // e_phoff, no program header for .o 339 WriteWord(0); // e_shoff = sec hdr table off in bytes 340 341 // e_flags = whatever the target wants 342 write32(Asm.getELFHeaderEFlags()); 343 344 // e_ehsize = ELF header size 345 write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr)); 346 347 write16(0); // e_phentsize = prog header entry size 348 write16(0); // e_phnum = # prog header entries = 0 349 350 // e_shentsize = Section header entry size 351 write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr)); 352 353 // e_shnum = # of section header ents 354 write16(0); 355 356 // e_shstrndx = Section # of '.shstrtab' 357 assert(StringTableIndex < ELF::SHN_LORESERVE); 358 write16(StringTableIndex); 359 } 360 361 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym, 362 const MCAsmLayout &Layout) { 363 if (Sym.isCommon() && Sym.isExternal()) 364 return Sym.getCommonAlignment(); 365 366 uint64_t Res; 367 if (!Layout.getSymbolOffset(Sym, Res)) 368 return 0; 369 370 if (Layout.getAssembler().isThumbFunc(&Sym)) 371 Res |= 1; 372 373 return Res; 374 } 375 376 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 377 const MCAsmLayout &Layout) { 378 // The presence of symbol versions causes undefined symbols and 379 // versions declared with @@@ to be renamed. 380 381 for (const MCSymbol &A : Asm.symbols()) { 382 const auto &Alias = cast<MCSymbolELF>(A); 383 // Not an alias. 384 if (!Alias.isVariable()) 385 continue; 386 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue()); 387 if (!Ref) 388 continue; 389 const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol()); 390 391 StringRef AliasName = Alias.getName(); 392 size_t Pos = AliasName.find('@'); 393 if (Pos == StringRef::npos) 394 continue; 395 396 // Aliases defined with .symvar copy the binding from the symbol they alias. 397 // This is the first place we are able to copy this information. 398 Alias.setExternal(Symbol.isExternal()); 399 Alias.setBinding(Symbol.getBinding()); 400 401 StringRef Rest = AliasName.substr(Pos); 402 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 403 continue; 404 405 // FIXME: produce a better error message. 406 if (Symbol.isUndefined() && Rest.startswith("@@") && 407 !Rest.startswith("@@@")) 408 report_fatal_error("A @@ version cannot be undefined"); 409 410 Renames.insert(std::make_pair(&Symbol, &Alias)); 411 } 412 } 413 414 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 415 uint8_t Type = newType; 416 417 // Propagation rules: 418 // IFUNC > FUNC > OBJECT > NOTYPE 419 // TLS_OBJECT > OBJECT > NOTYPE 420 // 421 // dont let the new type degrade the old type 422 switch (origType) { 423 default: 424 break; 425 case ELF::STT_GNU_IFUNC: 426 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 427 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 428 Type = ELF::STT_GNU_IFUNC; 429 break; 430 case ELF::STT_FUNC: 431 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 432 Type == ELF::STT_TLS) 433 Type = ELF::STT_FUNC; 434 break; 435 case ELF::STT_OBJECT: 436 if (Type == ELF::STT_NOTYPE) 437 Type = ELF::STT_OBJECT; 438 break; 439 case ELF::STT_TLS: 440 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 441 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 442 Type = ELF::STT_TLS; 443 break; 444 } 445 446 return Type; 447 } 448 449 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer, 450 uint32_t StringIndex, ELFSymbolData &MSD, 451 const MCAsmLayout &Layout) { 452 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 453 const MCSymbolELF *Base = 454 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 455 456 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 457 // SHN_COMMON. 458 bool IsReserved = !Base || Symbol.isCommon(); 459 460 // Binding and Type share the same byte as upper and lower nibbles 461 uint8_t Binding = Symbol.getBinding(); 462 uint8_t Type = Symbol.getType(); 463 if (Base) { 464 Type = mergeTypeForSet(Type, Base->getType()); 465 } 466 uint8_t Info = (Binding << 4) | Type; 467 468 // Other and Visibility share the same byte with Visibility using the lower 469 // 2 bits 470 uint8_t Visibility = Symbol.getVisibility(); 471 uint8_t Other = Symbol.getOther() | Visibility; 472 473 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 474 uint64_t Size = 0; 475 476 const MCExpr *ESize = MSD.Symbol->getSize(); 477 if (!ESize && Base) 478 ESize = Base->getSize(); 479 480 if (ESize) { 481 int64_t Res; 482 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 483 report_fatal_error("Size expression must be absolute."); 484 Size = Res; 485 } 486 487 // Write out the symbol table entry 488 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 489 IsReserved); 490 } 491 492 // It is always valid to create a relocation with a symbol. It is preferable 493 // to use a relocation with a section if that is possible. Using the section 494 // allows us to omit some local symbols from the symbol table. 495 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 496 const MCSymbolRefExpr *RefA, 497 const MCSymbol *S, uint64_t C, 498 unsigned Type) const { 499 const auto *Sym = cast_or_null<MCSymbolELF>(S); 500 // A PCRel relocation to an absolute value has no symbol (or section). We 501 // represent that with a relocation to a null section. 502 if (!RefA) 503 return false; 504 505 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 506 switch (Kind) { 507 default: 508 break; 509 // The .odp creation emits a relocation against the symbol ".TOC." which 510 // create a R_PPC64_TOC relocation. However the relocation symbol name 511 // in final object creation should be NULL, since the symbol does not 512 // really exist, it is just the reference to TOC base for the current 513 // object file. Since the symbol is undefined, returning false results 514 // in a relocation with a null section which is the desired result. 515 case MCSymbolRefExpr::VK_PPC_TOCBASE: 516 return false; 517 518 // These VariantKind cause the relocation to refer to something other than 519 // the symbol itself, like a linker generated table. Since the address of 520 // symbol is not relevant, we cannot replace the symbol with the 521 // section and patch the difference in the addend. 522 case MCSymbolRefExpr::VK_GOT: 523 case MCSymbolRefExpr::VK_PLT: 524 case MCSymbolRefExpr::VK_GOTPCREL: 525 case MCSymbolRefExpr::VK_Mips_GOT: 526 case MCSymbolRefExpr::VK_PPC_GOT_LO: 527 case MCSymbolRefExpr::VK_PPC_GOT_HI: 528 case MCSymbolRefExpr::VK_PPC_GOT_HA: 529 return true; 530 } 531 532 // An undefined symbol is not in any section, so the relocation has to point 533 // to the symbol itself. 534 assert(Sym && "Expected a symbol"); 535 if (Sym->isUndefined()) 536 return true; 537 538 unsigned Binding = Sym->getBinding(); 539 switch(Binding) { 540 default: 541 llvm_unreachable("Invalid Binding"); 542 case ELF::STB_LOCAL: 543 break; 544 case ELF::STB_WEAK: 545 // If the symbol is weak, it might be overridden by a symbol in another 546 // file. The relocation has to point to the symbol so that the linker 547 // can update it. 548 return true; 549 case ELF::STB_GLOBAL: 550 // Global ELF symbols can be preempted by the dynamic linker. The relocation 551 // has to point to the symbol for a reason analogous to the STB_WEAK case. 552 return true; 553 } 554 555 // If a relocation points to a mergeable section, we have to be careful. 556 // If the offset is zero, a relocation with the section will encode the 557 // same information. With a non-zero offset, the situation is different. 558 // For example, a relocation can point 42 bytes past the end of a string. 559 // If we change such a relocation to use the section, the linker would think 560 // that it pointed to another string and subtracting 42 at runtime will 561 // produce the wrong value. 562 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 563 unsigned Flags = Sec.getFlags(); 564 if (Flags & ELF::SHF_MERGE) { 565 if (C != 0) 566 return true; 567 568 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 569 // only handle section relocations to mergeable sections if using RELA. 570 if (!hasRelocationAddend()) 571 return true; 572 } 573 574 // Most TLS relocations use a got, so they need the symbol. Even those that 575 // are just an offset (@tpoff), require a symbol in gold versions before 576 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 577 // http://sourceware.org/PR16773. 578 if (Flags & ELF::SHF_TLS) 579 return true; 580 581 // If the symbol is a thumb function the final relocation must set the lowest 582 // bit. With a symbol that is done by just having the symbol have that bit 583 // set, so we would lose the bit if we relocated with the section. 584 // FIXME: We could use the section but add the bit to the relocation value. 585 if (Asm.isThumbFunc(Sym)) 586 return true; 587 588 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 589 return true; 590 return false; 591 } 592 593 // True if the assembler knows nothing about the final value of the symbol. 594 // This doesn't cover the comdat issues, since in those cases the assembler 595 // can at least know that all symbols in the section will move together. 596 static bool isWeak(const MCSymbolELF &Sym) { 597 if (Sym.getType() == ELF::STT_GNU_IFUNC) 598 return true; 599 600 switch (Sym.getBinding()) { 601 default: 602 llvm_unreachable("Unknown binding"); 603 case ELF::STB_LOCAL: 604 return false; 605 case ELF::STB_GLOBAL: 606 return false; 607 case ELF::STB_WEAK: 608 case ELF::STB_GNU_UNIQUE: 609 return true; 610 } 611 } 612 613 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 614 const MCAsmLayout &Layout, 615 const MCFragment *Fragment, 616 const MCFixup &Fixup, MCValue Target, 617 bool &IsPCRel, uint64_t &FixedValue) { 618 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 619 uint64_t C = Target.getConstant(); 620 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 621 MCContext &Ctx = Asm.getContext(); 622 623 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 624 assert(RefB->getKind() == MCSymbolRefExpr::VK_None && 625 "Should not have constructed this"); 626 627 // Let A, B and C being the components of Target and R be the location of 628 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 629 // If it is pcrel, we want to compute (A - B + C - R). 630 631 // In general, ELF has no relocations for -B. It can only represent (A + C) 632 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 633 // replace B to implement it: (A - R - K + C) 634 if (IsPCRel) { 635 Ctx.reportError( 636 Fixup.getLoc(), 637 "No relocation available to represent this relative expression"); 638 return; 639 } 640 641 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 642 643 if (SymB.isUndefined()) { 644 Ctx.reportError(Fixup.getLoc(), 645 Twine("symbol '") + SymB.getName() + 646 "' can not be undefined in a subtraction expression"); 647 return; 648 } 649 650 assert(!SymB.isAbsolute() && "Should have been folded"); 651 const MCSection &SecB = SymB.getSection(); 652 if (&SecB != &FixupSection) { 653 Ctx.reportError(Fixup.getLoc(), 654 "Cannot represent a difference across sections"); 655 return; 656 } 657 658 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 659 uint64_t K = SymBOffset - FixupOffset; 660 IsPCRel = true; 661 C -= K; 662 } 663 664 // We either rejected the fixup or folded B into C at this point. 665 const MCSymbolRefExpr *RefA = Target.getSymA(); 666 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 667 668 bool ViaWeakRef = false; 669 if (SymA && SymA->isVariable()) { 670 const MCExpr *Expr = SymA->getVariableValue(); 671 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 672 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 673 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 674 ViaWeakRef = true; 675 } 676 } 677 } 678 679 unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel); 680 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 681 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 682 C += Layout.getSymbolOffset(*SymA); 683 684 uint64_t Addend = 0; 685 if (hasRelocationAddend()) { 686 Addend = C; 687 C = 0; 688 } 689 690 FixedValue = C; 691 692 if (!RelocateWithSymbol) { 693 const MCSection *SecA = 694 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr; 695 auto *ELFSec = cast_or_null<MCSectionELF>(SecA); 696 const auto *SectionSymbol = 697 ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr; 698 if (SectionSymbol) 699 SectionSymbol->setUsedInReloc(); 700 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend); 701 Relocations[&FixupSection].push_back(Rec); 702 return; 703 } 704 705 if (SymA) { 706 if (const MCSymbolELF *R = Renames.lookup(SymA)) 707 SymA = R; 708 709 if (ViaWeakRef) 710 SymA->setIsWeakrefUsedInReloc(); 711 else 712 SymA->setUsedInReloc(); 713 } 714 ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend); 715 Relocations[&FixupSection].push_back(Rec); 716 } 717 718 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout, 719 const MCSymbolELF &Symbol, bool Used, 720 bool Renamed) { 721 if (Symbol.isVariable()) { 722 const MCExpr *Expr = Symbol.getVariableValue(); 723 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 724 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 725 return false; 726 } 727 } 728 729 if (Used) 730 return true; 731 732 if (Renamed) 733 return false; 734 735 if (Symbol.isVariable() && Symbol.isUndefined()) { 736 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 737 Layout.getBaseSymbol(Symbol); 738 return false; 739 } 740 741 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 742 return false; 743 744 if (Symbol.isTemporary()) 745 return false; 746 747 if (Symbol.getType() == ELF::STT_SECTION) 748 return false; 749 750 return true; 751 } 752 753 void ELFObjectWriter::computeSymbolTable( 754 MCAssembler &Asm, const MCAsmLayout &Layout, 755 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 756 SectionOffsetsTy &SectionOffsets) { 757 MCContext &Ctx = Asm.getContext(); 758 SymbolTableWriter Writer(*this, is64Bit()); 759 760 // Symbol table 761 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 762 MCSectionELF *SymtabSection = 763 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 764 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 765 SymbolTableIndex = addToSectionTable(SymtabSection); 766 767 align(SymtabSection->getAlignment()); 768 uint64_t SecStart = getStream().tell(); 769 770 // The first entry is the undefined symbol entry. 771 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 772 773 std::vector<ELFSymbolData> LocalSymbolData; 774 std::vector<ELFSymbolData> ExternalSymbolData; 775 776 // Add the data for the symbols. 777 bool HasLargeSectionIndex = false; 778 for (const MCSymbol &S : Asm.symbols()) { 779 const auto &Symbol = cast<MCSymbolELF>(S); 780 bool Used = Symbol.isUsedInReloc(); 781 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 782 bool isSignature = Symbol.isSignature(); 783 784 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 785 Renames.count(&Symbol))) 786 continue; 787 788 if (Symbol.isTemporary() && Symbol.isUndefined()) { 789 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 790 continue; 791 } 792 793 ELFSymbolData MSD; 794 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 795 796 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 797 assert(Local || !Symbol.isTemporary()); 798 799 if (Symbol.isAbsolute()) { 800 MSD.SectionIndex = ELF::SHN_ABS; 801 } else if (Symbol.isCommon()) { 802 assert(!Local); 803 MSD.SectionIndex = ELF::SHN_COMMON; 804 } else if (Symbol.isUndefined()) { 805 if (isSignature && !Used) { 806 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 807 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 808 HasLargeSectionIndex = true; 809 } else { 810 MSD.SectionIndex = ELF::SHN_UNDEF; 811 } 812 } else { 813 const MCSectionELF &Section = 814 static_cast<const MCSectionELF &>(Symbol.getSection()); 815 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 816 assert(MSD.SectionIndex && "Invalid section index!"); 817 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 818 HasLargeSectionIndex = true; 819 } 820 821 // The @@@ in symbol version is replaced with @ in undefined symbols and @@ 822 // in defined ones. 823 // 824 // FIXME: All name handling should be done before we get to the writer, 825 // including dealing with GNU-style version suffixes. Fixing this isn't 826 // trivial. 827 // 828 // We thus have to be careful to not perform the symbol version replacement 829 // blindly: 830 // 831 // The ELF format is used on Windows by the MCJIT engine. Thus, on 832 // Windows, the ELFObjectWriter can encounter symbols mangled using the MS 833 // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC 834 // C++ name mangling can legally have "@@@" as a sub-string. In that case, 835 // the EFLObjectWriter should not interpret the "@@@" sub-string as 836 // specifying GNU-style symbol versioning. The ELFObjectWriter therefore 837 // checks for the MSVC C++ name mangling prefix which is either "?", "@?", 838 // "__imp_?" or "__imp_@?". 839 // 840 // It would have been interesting to perform the MS mangling prefix check 841 // only when the target triple is of the form *-pc-windows-elf. But, it 842 // seems that this information is not easily accessible from the 843 // ELFObjectWriter. 844 StringRef Name = Symbol.getName(); 845 SmallString<32> Buf; 846 if (!Name.startswith("?") && !Name.startswith("@?") && 847 !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) { 848 // This symbol isn't following the MSVC C++ name mangling convention. We 849 // can thus safely interpret the @@@ in symbol names as specifying symbol 850 // versioning. 851 size_t Pos = Name.find("@@@"); 852 if (Pos != StringRef::npos) { 853 Buf += Name.substr(0, Pos); 854 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1; 855 Buf += Name.substr(Pos + Skip); 856 Name = VersionSymSaver.save(Buf.c_str()); 857 } 858 } 859 860 // Sections have their own string table 861 if (Symbol.getType() != ELF::STT_SECTION) { 862 MSD.Name = Name; 863 StrTabBuilder.add(Name); 864 } 865 866 if (Local) 867 LocalSymbolData.push_back(MSD); 868 else 869 ExternalSymbolData.push_back(MSD); 870 } 871 872 // This holds the .symtab_shndx section index. 873 unsigned SymtabShndxSectionIndex = 0; 874 875 if (HasLargeSectionIndex) { 876 MCSectionELF *SymtabShndxSection = 877 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 878 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 879 SymtabShndxSection->setAlignment(4); 880 } 881 882 ArrayRef<std::string> FileNames = Asm.getFileNames(); 883 for (const std::string &Name : FileNames) 884 StrTabBuilder.add(Name); 885 886 StrTabBuilder.finalize(); 887 888 for (const std::string &Name : FileNames) 889 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 890 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 891 ELF::SHN_ABS, true); 892 893 // Symbols are required to be in lexicographic order. 894 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 895 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 896 897 // Set the symbol indices. Local symbols must come before all other 898 // symbols with non-local bindings. 899 unsigned Index = FileNames.size() + 1; 900 901 for (ELFSymbolData &MSD : LocalSymbolData) { 902 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 903 ? 0 904 : StrTabBuilder.getOffset(MSD.Name); 905 MSD.Symbol->setIndex(Index++); 906 writeSymbol(Writer, StringIndex, MSD, Layout); 907 } 908 909 // Write the symbol table entries. 910 LastLocalSymbolIndex = Index; 911 912 for (ELFSymbolData &MSD : ExternalSymbolData) { 913 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 914 MSD.Symbol->setIndex(Index++); 915 writeSymbol(Writer, StringIndex, MSD, Layout); 916 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 917 } 918 919 uint64_t SecEnd = getStream().tell(); 920 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 921 922 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 923 if (ShndxIndexes.empty()) { 924 assert(SymtabShndxSectionIndex == 0); 925 return; 926 } 927 assert(SymtabShndxSectionIndex != 0); 928 929 SecStart = getStream().tell(); 930 const MCSectionELF *SymtabShndxSection = 931 SectionTable[SymtabShndxSectionIndex - 1]; 932 for (uint32_t Index : ShndxIndexes) 933 write(Index); 934 SecEnd = getStream().tell(); 935 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 936 } 937 938 MCSectionELF * 939 ELFObjectWriter::createRelocationSection(MCContext &Ctx, 940 const MCSectionELF &Sec) { 941 if (Relocations[&Sec].empty()) 942 return nullptr; 943 944 const StringRef SectionName = Sec.getSectionName(); 945 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 946 RelaSectionName += SectionName; 947 948 unsigned EntrySize; 949 if (hasRelocationAddend()) 950 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 951 else 952 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 953 954 unsigned Flags = 0; 955 if (Sec.getFlags() & ELF::SHF_GROUP) 956 Flags = ELF::SHF_GROUP; 957 958 MCSectionELF *RelaSection = Ctx.createELFRelSection( 959 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 960 Flags, EntrySize, Sec.getGroup(), &Sec); 961 RelaSection->setAlignment(is64Bit() ? 8 : 4); 962 return RelaSection; 963 } 964 965 // Include the debug info compression header: 966 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 967 // useful for consumers to preallocate a buffer to decompress into. 968 static bool 969 prependCompressionHeader(uint64_t Size, 970 SmallVectorImpl<char> &CompressedContents) { 971 const StringRef Magic = "ZLIB"; 972 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 973 return false; 974 if (sys::IsLittleEndianHost) 975 sys::swapByteOrder(Size); 976 CompressedContents.insert(CompressedContents.begin(), 977 Magic.size() + sizeof(Size), 0); 978 std::copy(Magic.begin(), Magic.end(), CompressedContents.begin()); 979 std::copy(reinterpret_cast<char *>(&Size), 980 reinterpret_cast<char *>(&Size + 1), 981 CompressedContents.begin() + Magic.size()); 982 return true; 983 } 984 985 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 986 const MCAsmLayout &Layout) { 987 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 988 StringRef SectionName = Section.getSectionName(); 989 990 // Compressing debug_frame requires handling alignment fragments which is 991 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 992 // for writing to arbitrary buffers) for little benefit. 993 if (!Asm.getContext().getAsmInfo()->compressDebugSections() || 994 !SectionName.startswith(".debug_") || SectionName == ".debug_frame") { 995 Asm.writeSectionData(&Section, Layout); 996 return; 997 } 998 999 SmallVector<char, 128> UncompressedData; 1000 raw_svector_ostream VecOS(UncompressedData); 1001 raw_pwrite_stream &OldStream = getStream(); 1002 setStream(VecOS); 1003 Asm.writeSectionData(&Section, Layout); 1004 setStream(OldStream); 1005 1006 SmallVector<char, 128> CompressedContents; 1007 zlib::Status Success = zlib::compress( 1008 StringRef(UncompressedData.data(), UncompressedData.size()), 1009 CompressedContents); 1010 if (Success != zlib::StatusOK) { 1011 getStream() << UncompressedData; 1012 return; 1013 } 1014 1015 if (!prependCompressionHeader(UncompressedData.size(), CompressedContents)) { 1016 getStream() << UncompressedData; 1017 return; 1018 } 1019 Asm.getContext().renameELFSection(&Section, 1020 (".z" + SectionName.drop_front(1)).str()); 1021 getStream() << CompressedContents; 1022 } 1023 1024 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, 1025 uint64_t Flags, uint64_t Address, 1026 uint64_t Offset, uint64_t Size, 1027 uint32_t Link, uint32_t Info, 1028 uint64_t Alignment, 1029 uint64_t EntrySize) { 1030 write32(Name); // sh_name: index into string table 1031 write32(Type); // sh_type 1032 WriteWord(Flags); // sh_flags 1033 WriteWord(Address); // sh_addr 1034 WriteWord(Offset); // sh_offset 1035 WriteWord(Size); // sh_size 1036 write32(Link); // sh_link 1037 write32(Info); // sh_info 1038 WriteWord(Alignment); // sh_addralign 1039 WriteWord(EntrySize); // sh_entsize 1040 } 1041 1042 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm, 1043 const MCSectionELF &Sec) { 1044 std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec]; 1045 1046 // We record relocations by pushing to the end of a vector. Reverse the vector 1047 // to get the relocations in the order they were created. 1048 // In most cases that is not important, but it can be for special sections 1049 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 1050 std::reverse(Relocs.begin(), Relocs.end()); 1051 1052 // Sort the relocation entries. MIPS needs this. 1053 TargetObjectWriter->sortRelocs(Asm, Relocs); 1054 1055 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1056 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 1057 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 1058 1059 if (is64Bit()) { 1060 write(Entry.Offset); 1061 if (TargetObjectWriter->isN64()) { 1062 write(uint32_t(Index)); 1063 1064 write(TargetObjectWriter->getRSsym(Entry.Type)); 1065 write(TargetObjectWriter->getRType3(Entry.Type)); 1066 write(TargetObjectWriter->getRType2(Entry.Type)); 1067 write(TargetObjectWriter->getRType(Entry.Type)); 1068 } else { 1069 struct ELF::Elf64_Rela ERE64; 1070 ERE64.setSymbolAndType(Index, Entry.Type); 1071 write(ERE64.r_info); 1072 } 1073 if (hasRelocationAddend()) 1074 write(Entry.Addend); 1075 } else { 1076 write(uint32_t(Entry.Offset)); 1077 1078 struct ELF::Elf32_Rela ERE32; 1079 ERE32.setSymbolAndType(Index, Entry.Type); 1080 write(ERE32.r_info); 1081 1082 if (hasRelocationAddend()) 1083 write(uint32_t(Entry.Addend)); 1084 } 1085 } 1086 } 1087 1088 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) { 1089 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 1090 getStream() << StrTabBuilder.data(); 1091 return StrtabSection; 1092 } 1093 1094 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 1095 uint32_t GroupSymbolIndex, uint64_t Offset, 1096 uint64_t Size, const MCSectionELF &Section) { 1097 uint64_t sh_link = 0; 1098 uint64_t sh_info = 0; 1099 1100 switch(Section.getType()) { 1101 default: 1102 // Nothing to do. 1103 break; 1104 1105 case ELF::SHT_DYNAMIC: 1106 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 1107 1108 case ELF::SHT_REL: 1109 case ELF::SHT_RELA: { 1110 sh_link = SymbolTableIndex; 1111 assert(sh_link && ".symtab not found"); 1112 const MCSectionELF *InfoSection = Section.getAssociatedSection(); 1113 sh_info = SectionIndexMap.lookup(InfoSection); 1114 break; 1115 } 1116 1117 case ELF::SHT_SYMTAB: 1118 case ELF::SHT_DYNSYM: 1119 sh_link = StringTableIndex; 1120 sh_info = LastLocalSymbolIndex; 1121 break; 1122 1123 case ELF::SHT_SYMTAB_SHNDX: 1124 sh_link = SymbolTableIndex; 1125 break; 1126 1127 case ELF::SHT_GROUP: 1128 sh_link = SymbolTableIndex; 1129 sh_info = GroupSymbolIndex; 1130 break; 1131 } 1132 1133 if (TargetObjectWriter->getEMachine() == ELF::EM_ARM && 1134 Section.getType() == ELF::SHT_ARM_EXIDX) 1135 sh_link = SectionIndexMap.lookup(Section.getAssociatedSection()); 1136 1137 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1138 Section.getType(), Section.getFlags(), 0, Offset, Size, 1139 sh_link, sh_info, Section.getAlignment(), 1140 Section.getEntrySize()); 1141 } 1142 1143 void ELFObjectWriter::writeSectionHeader( 1144 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1145 const SectionOffsetsTy &SectionOffsets) { 1146 const unsigned NumSections = SectionTable.size(); 1147 1148 // Null section first. 1149 uint64_t FirstSectionSize = 1150 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1151 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1152 1153 for (const MCSectionELF *Section : SectionTable) { 1154 uint32_t GroupSymbolIndex; 1155 unsigned Type = Section->getType(); 1156 if (Type != ELF::SHT_GROUP) 1157 GroupSymbolIndex = 0; 1158 else 1159 GroupSymbolIndex = Section->getGroup()->getIndex(); 1160 1161 const std::pair<uint64_t, uint64_t> &Offsets = 1162 SectionOffsets.find(Section)->second; 1163 uint64_t Size; 1164 if (Type == ELF::SHT_NOBITS) 1165 Size = Layout.getSectionAddressSize(Section); 1166 else 1167 Size = Offsets.second - Offsets.first; 1168 1169 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1170 *Section); 1171 } 1172 } 1173 1174 void ELFObjectWriter::writeObject(MCAssembler &Asm, 1175 const MCAsmLayout &Layout) { 1176 MCContext &Ctx = Asm.getContext(); 1177 MCSectionELF *StrtabSection = 1178 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1179 StringTableIndex = addToSectionTable(StrtabSection); 1180 1181 RevGroupMapTy RevGroupMap; 1182 SectionIndexMapTy SectionIndexMap; 1183 1184 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1185 1186 // Write out the ELF header ... 1187 writeHeader(Asm); 1188 1189 // ... then the sections ... 1190 SectionOffsetsTy SectionOffsets; 1191 std::vector<MCSectionELF *> Groups; 1192 std::vector<MCSectionELF *> Relocations; 1193 for (MCSection &Sec : Asm) { 1194 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1195 1196 align(Section.getAlignment()); 1197 1198 // Remember the offset into the file for this section. 1199 uint64_t SecStart = getStream().tell(); 1200 1201 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1202 writeSectionData(Asm, Section, Layout); 1203 1204 uint64_t SecEnd = getStream().tell(); 1205 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1206 1207 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1208 1209 if (SignatureSymbol) { 1210 Asm.registerSymbol(*SignatureSymbol); 1211 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1212 if (!GroupIdx) { 1213 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1214 GroupIdx = addToSectionTable(Group); 1215 Group->setAlignment(4); 1216 Groups.push_back(Group); 1217 } 1218 std::vector<const MCSectionELF *> &Members = 1219 GroupMembers[SignatureSymbol]; 1220 Members.push_back(&Section); 1221 if (RelSection) 1222 Members.push_back(RelSection); 1223 } 1224 1225 SectionIndexMap[&Section] = addToSectionTable(&Section); 1226 if (RelSection) { 1227 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1228 Relocations.push_back(RelSection); 1229 } 1230 } 1231 1232 for (MCSectionELF *Group : Groups) { 1233 align(Group->getAlignment()); 1234 1235 // Remember the offset into the file for this section. 1236 uint64_t SecStart = getStream().tell(); 1237 1238 const MCSymbol *SignatureSymbol = Group->getGroup(); 1239 assert(SignatureSymbol); 1240 write(uint32_t(ELF::GRP_COMDAT)); 1241 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1242 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1243 write(SecIndex); 1244 } 1245 1246 uint64_t SecEnd = getStream().tell(); 1247 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1248 } 1249 1250 // Compute symbol table information. 1251 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets); 1252 1253 for (MCSectionELF *RelSection : Relocations) { 1254 align(RelSection->getAlignment()); 1255 1256 // Remember the offset into the file for this section. 1257 uint64_t SecStart = getStream().tell(); 1258 1259 writeRelocations(Asm, *RelSection->getAssociatedSection()); 1260 1261 uint64_t SecEnd = getStream().tell(); 1262 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1263 } 1264 1265 { 1266 uint64_t SecStart = getStream().tell(); 1267 const MCSectionELF *Sec = createStringTable(Ctx); 1268 uint64_t SecEnd = getStream().tell(); 1269 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1270 } 1271 1272 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1273 align(NaturalAlignment); 1274 1275 const uint64_t SectionHeaderOffset = getStream().tell(); 1276 1277 // ... then the section header table ... 1278 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1279 1280 uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) 1281 ? (uint16_t)ELF::SHN_UNDEF 1282 : SectionTable.size() + 1; 1283 if (sys::IsLittleEndianHost != IsLittleEndian) 1284 sys::swapByteOrder(NumSections); 1285 unsigned NumSectionsOffset; 1286 1287 if (is64Bit()) { 1288 uint64_t Val = SectionHeaderOffset; 1289 if (sys::IsLittleEndianHost != IsLittleEndian) 1290 sys::swapByteOrder(Val); 1291 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1292 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1293 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1294 } else { 1295 uint32_t Val = SectionHeaderOffset; 1296 if (sys::IsLittleEndianHost != IsLittleEndian) 1297 sys::swapByteOrder(Val); 1298 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1299 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1300 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1301 } 1302 getStream().pwrite(reinterpret_cast<char *>(&NumSections), 1303 sizeof(NumSections), NumSectionsOffset); 1304 } 1305 1306 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1307 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1308 bool InSet, bool IsPCRel) const { 1309 const auto &SymA = cast<MCSymbolELF>(SA); 1310 if (IsPCRel) { 1311 assert(!InSet); 1312 if (::isWeak(SymA)) 1313 return false; 1314 } 1315 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1316 InSet, IsPCRel); 1317 } 1318 1319 bool ELFObjectWriter::isWeak(const MCSymbol &S) const { 1320 const auto &Sym = cast<MCSymbolELF>(S); 1321 if (::isWeak(Sym)) 1322 return true; 1323 1324 // It is invalid to replace a reference to a global in a comdat 1325 // with a reference to a local since out of comdat references 1326 // to a local are forbidden. 1327 // We could try to return false for more cases, like the reference 1328 // being in the same comdat or Sym being an alias to another global, 1329 // but it is not clear if it is worth the effort. 1330 if (Sym.getBinding() != ELF::STB_GLOBAL) 1331 return false; 1332 1333 if (!Sym.isInSection()) 1334 return false; 1335 1336 const auto &Sec = cast<MCSectionELF>(Sym.getSection()); 1337 return Sec.getGroup(); 1338 } 1339 1340 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW, 1341 raw_pwrite_stream &OS, 1342 bool IsLittleEndian) { 1343 return new ELFObjectWriter(MOTW, OS, IsLittleEndian); 1344 } 1345