1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCSectionELF.h"
28 #include "llvm/MC/MCSymbolELF.h"
29 #include "llvm/MC/MCValue.h"
30 #include "llvm/MC/StringTableBuilder.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ELF.h"
34 #include "llvm/Support/Endian.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/StringSaver.h"
37 #include <vector>
38 
39 using namespace llvm;
40 
41 #undef  DEBUG_TYPE
42 #define DEBUG_TYPE "reloc-info"
43 
44 namespace {
45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
46 
47 class ELFObjectWriter;
48 
49 class SymbolTableWriter {
50   ELFObjectWriter &EWriter;
51   bool Is64Bit;
52 
53   // indexes we are going to write to .symtab_shndx.
54   std::vector<uint32_t> ShndxIndexes;
55 
56   // The numbel of symbols written so far.
57   unsigned NumWritten;
58 
59   void createSymtabShndx();
60 
61   template <typename T> void write(T Value);
62 
63 public:
64   SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
65 
66   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
67                    uint8_t other, uint32_t shndx, bool Reserved);
68 
69   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
70 };
71 
72 class ELFObjectWriter : public MCObjectWriter {
73     static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind);
74     static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
75     static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
76                            bool Used, bool Renamed);
77 
78     /// Helper struct for containing some precomputed information on symbols.
79     struct ELFSymbolData {
80       const MCSymbolELF *Symbol;
81       uint32_t SectionIndex;
82       StringRef Name;
83 
84       // Support lexicographic sorting.
85       bool operator<(const ELFSymbolData &RHS) const {
86         unsigned LHSType = Symbol->getType();
87         unsigned RHSType = RHS.Symbol->getType();
88         if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
89           return false;
90         if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
91           return true;
92         if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
93           return SectionIndex < RHS.SectionIndex;
94         return Name < RHS.Name;
95       }
96     };
97 
98     /// The target specific ELF writer instance.
99     std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
100 
101     DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
102 
103     llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
104         Relocations;
105 
106     /// @}
107     /// @name Symbol Table Data
108     /// @{
109 
110     BumpPtrAllocator Alloc;
111     StringSaver VersionSymSaver{Alloc};
112     StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
113 
114     /// @}
115 
116     // This holds the symbol table index of the last local symbol.
117     unsigned LastLocalSymbolIndex;
118     // This holds the .strtab section index.
119     unsigned StringTableIndex;
120     // This holds the .symtab section index.
121     unsigned SymbolTableIndex;
122 
123     // Sections in the order they are to be output in the section table.
124     std::vector<const MCSectionELF *> SectionTable;
125     unsigned addToSectionTable(const MCSectionELF *Sec);
126 
127     // TargetObjectWriter wrappers.
128     bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
129     bool hasRelocationAddend() const {
130       return TargetObjectWriter->hasRelocationAddend();
131     }
132     unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
133                           const MCFixup &Fixup, bool IsPCRel) const {
134       return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
135     }
136 
137     void align(unsigned Alignment);
138 
139   public:
140     ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
141                     bool IsLittleEndian)
142         : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
143 
144     void reset() override {
145       Renames.clear();
146       Relocations.clear();
147       StrTabBuilder.clear();
148       SectionTable.clear();
149       MCObjectWriter::reset();
150     }
151 
152     ~ELFObjectWriter() override;
153 
154     void WriteWord(uint64_t W) {
155       if (is64Bit())
156         write64(W);
157       else
158         write32(W);
159     }
160 
161     template <typename T> void write(T Val) {
162       if (IsLittleEndian)
163         support::endian::Writer<support::little>(getStream()).write(Val);
164       else
165         support::endian::Writer<support::big>(getStream()).write(Val);
166     }
167 
168     void writeHeader(const MCAssembler &Asm);
169 
170     void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
171                      ELFSymbolData &MSD, const MCAsmLayout &Layout);
172 
173     // Start and end offset of each section
174     typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
175         SectionOffsetsTy;
176 
177     bool shouldRelocateWithSymbol(const MCAssembler &Asm,
178                                   const MCSymbolRefExpr *RefA,
179                                   const MCSymbol *Sym, uint64_t C,
180                                   unsigned Type) const;
181 
182     void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
183                           const MCFragment *Fragment, const MCFixup &Fixup,
184                           MCValue Target, bool &IsPCRel,
185                           uint64_t &FixedValue) override;
186 
187     // Map from a signature symbol to the group section index
188     typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
189 
190     /// Compute the symbol table data
191     ///
192     /// \param Asm - The assembler.
193     /// \param SectionIndexMap - Maps a section to its index.
194     /// \param RevGroupMap - Maps a signature symbol to the group section.
195     void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
196                             const SectionIndexMapTy &SectionIndexMap,
197                             const RevGroupMapTy &RevGroupMap,
198                             SectionOffsetsTy &SectionOffsets);
199 
200     MCSectionELF *createRelocationSection(MCContext &Ctx,
201                                           const MCSectionELF &Sec);
202 
203     const MCSectionELF *createStringTable(MCContext &Ctx);
204 
205     void executePostLayoutBinding(MCAssembler &Asm,
206                                   const MCAsmLayout &Layout) override;
207 
208     void writeSectionHeader(const MCAsmLayout &Layout,
209                             const SectionIndexMapTy &SectionIndexMap,
210                             const SectionOffsetsTy &SectionOffsets);
211 
212     void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
213                           const MCAsmLayout &Layout);
214 
215     void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
216                           uint64_t Address, uint64_t Offset, uint64_t Size,
217                           uint32_t Link, uint32_t Info, uint64_t Alignment,
218                           uint64_t EntrySize);
219 
220     void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
221 
222     bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
223                                                 const MCSymbol &SymA,
224                                                 const MCFragment &FB,
225                                                 bool InSet,
226                                                 bool IsPCRel) const override;
227 
228     bool isWeak(const MCSymbol &Sym) const override;
229 
230     void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
231     void writeSection(const SectionIndexMapTy &SectionIndexMap,
232                       uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
233                       const MCSectionELF &Section);
234   };
235 } // end anonymous namespace
236 
237 void ELFObjectWriter::align(unsigned Alignment) {
238   uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
239   WriteZeros(Padding);
240 }
241 
242 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
243   SectionTable.push_back(Sec);
244   StrTabBuilder.add(Sec->getSectionName());
245   return SectionTable.size();
246 }
247 
248 void SymbolTableWriter::createSymtabShndx() {
249   if (!ShndxIndexes.empty())
250     return;
251 
252   ShndxIndexes.resize(NumWritten);
253 }
254 
255 template <typename T> void SymbolTableWriter::write(T Value) {
256   EWriter.write(Value);
257 }
258 
259 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
260     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
261 
262 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
263                                     uint64_t size, uint8_t other,
264                                     uint32_t shndx, bool Reserved) {
265   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
266 
267   if (LargeIndex)
268     createSymtabShndx();
269 
270   if (!ShndxIndexes.empty()) {
271     if (LargeIndex)
272       ShndxIndexes.push_back(shndx);
273     else
274       ShndxIndexes.push_back(0);
275   }
276 
277   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
278 
279   if (Is64Bit) {
280     write(name);  // st_name
281     write(info);  // st_info
282     write(other); // st_other
283     write(Index); // st_shndx
284     write(value); // st_value
285     write(size);  // st_size
286   } else {
287     write(name);            // st_name
288     write(uint32_t(value)); // st_value
289     write(uint32_t(size));  // st_size
290     write(info);            // st_info
291     write(other);           // st_other
292     write(Index);           // st_shndx
293   }
294 
295   ++NumWritten;
296 }
297 
298 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
299   const MCFixupKindInfo &FKI =
300     Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind);
301 
302   return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
303 }
304 
305 ELFObjectWriter::~ELFObjectWriter()
306 {}
307 
308 // Emit the ELF header.
309 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
310   // ELF Header
311   // ----------
312   //
313   // Note
314   // ----
315   // emitWord method behaves differently for ELF32 and ELF64, writing
316   // 4 bytes in the former and 8 in the latter.
317 
318   writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
319 
320   write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
321 
322   // e_ident[EI_DATA]
323   write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
324 
325   write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
326   // e_ident[EI_OSABI]
327   write8(TargetObjectWriter->getOSABI());
328   write8(0);                  // e_ident[EI_ABIVERSION]
329 
330   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
331 
332   write16(ELF::ET_REL);             // e_type
333 
334   write16(TargetObjectWriter->getEMachine()); // e_machine = target
335 
336   write32(ELF::EV_CURRENT);         // e_version
337   WriteWord(0);                    // e_entry, no entry point in .o file
338   WriteWord(0);                    // e_phoff, no program header for .o
339   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
340 
341   // e_flags = whatever the target wants
342   write32(Asm.getELFHeaderEFlags());
343 
344   // e_ehsize = ELF header size
345   write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
346 
347   write16(0);                  // e_phentsize = prog header entry size
348   write16(0);                  // e_phnum = # prog header entries = 0
349 
350   // e_shentsize = Section header entry size
351   write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
352 
353   // e_shnum     = # of section header ents
354   write16(0);
355 
356   // e_shstrndx  = Section # of '.shstrtab'
357   assert(StringTableIndex < ELF::SHN_LORESERVE);
358   write16(StringTableIndex);
359 }
360 
361 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
362                                       const MCAsmLayout &Layout) {
363   if (Sym.isCommon() && Sym.isExternal())
364     return Sym.getCommonAlignment();
365 
366   uint64_t Res;
367   if (!Layout.getSymbolOffset(Sym, Res))
368     return 0;
369 
370   if (Layout.getAssembler().isThumbFunc(&Sym))
371     Res |= 1;
372 
373   return Res;
374 }
375 
376 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
377                                                const MCAsmLayout &Layout) {
378   // The presence of symbol versions causes undefined symbols and
379   // versions declared with @@@ to be renamed.
380 
381   for (const MCSymbol &A : Asm.symbols()) {
382     const auto &Alias = cast<MCSymbolELF>(A);
383     // Not an alias.
384     if (!Alias.isVariable())
385       continue;
386     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
387     if (!Ref)
388       continue;
389     const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
390 
391     StringRef AliasName = Alias.getName();
392     size_t Pos = AliasName.find('@');
393     if (Pos == StringRef::npos)
394       continue;
395 
396     // Aliases defined with .symvar copy the binding from the symbol they alias.
397     // This is the first place we are able to copy this information.
398     Alias.setExternal(Symbol.isExternal());
399     Alias.setBinding(Symbol.getBinding());
400 
401     StringRef Rest = AliasName.substr(Pos);
402     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
403       continue;
404 
405     // FIXME: produce a better error message.
406     if (Symbol.isUndefined() && Rest.startswith("@@") &&
407         !Rest.startswith("@@@"))
408       report_fatal_error("A @@ version cannot be undefined");
409 
410     Renames.insert(std::make_pair(&Symbol, &Alias));
411   }
412 }
413 
414 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
415   uint8_t Type = newType;
416 
417   // Propagation rules:
418   // IFUNC > FUNC > OBJECT > NOTYPE
419   // TLS_OBJECT > OBJECT > NOTYPE
420   //
421   // dont let the new type degrade the old type
422   switch (origType) {
423   default:
424     break;
425   case ELF::STT_GNU_IFUNC:
426     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
427         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
428       Type = ELF::STT_GNU_IFUNC;
429     break;
430   case ELF::STT_FUNC:
431     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
432         Type == ELF::STT_TLS)
433       Type = ELF::STT_FUNC;
434     break;
435   case ELF::STT_OBJECT:
436     if (Type == ELF::STT_NOTYPE)
437       Type = ELF::STT_OBJECT;
438     break;
439   case ELF::STT_TLS:
440     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
441         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
442       Type = ELF::STT_TLS;
443     break;
444   }
445 
446   return Type;
447 }
448 
449 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
450                                   uint32_t StringIndex, ELFSymbolData &MSD,
451                                   const MCAsmLayout &Layout) {
452   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
453   const MCSymbolELF *Base =
454       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
455 
456   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
457   // SHN_COMMON.
458   bool IsReserved = !Base || Symbol.isCommon();
459 
460   // Binding and Type share the same byte as upper and lower nibbles
461   uint8_t Binding = Symbol.getBinding();
462   uint8_t Type = Symbol.getType();
463   if (Base) {
464     Type = mergeTypeForSet(Type, Base->getType());
465   }
466   uint8_t Info = (Binding << 4) | Type;
467 
468   // Other and Visibility share the same byte with Visibility using the lower
469   // 2 bits
470   uint8_t Visibility = Symbol.getVisibility();
471   uint8_t Other = Symbol.getOther() | Visibility;
472 
473   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
474   uint64_t Size = 0;
475 
476   const MCExpr *ESize = MSD.Symbol->getSize();
477   if (!ESize && Base)
478     ESize = Base->getSize();
479 
480   if (ESize) {
481     int64_t Res;
482     if (!ESize->evaluateKnownAbsolute(Res, Layout))
483       report_fatal_error("Size expression must be absolute.");
484     Size = Res;
485   }
486 
487   // Write out the symbol table entry
488   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
489                      IsReserved);
490 }
491 
492 // It is always valid to create a relocation with a symbol. It is preferable
493 // to use a relocation with a section if that is possible. Using the section
494 // allows us to omit some local symbols from the symbol table.
495 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
496                                                const MCSymbolRefExpr *RefA,
497                                                const MCSymbol *S, uint64_t C,
498                                                unsigned Type) const {
499   const auto *Sym = cast_or_null<MCSymbolELF>(S);
500   // A PCRel relocation to an absolute value has no symbol (or section). We
501   // represent that with a relocation to a null section.
502   if (!RefA)
503     return false;
504 
505   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
506   switch (Kind) {
507   default:
508     break;
509   // The .odp creation emits a relocation against the symbol ".TOC." which
510   // create a R_PPC64_TOC relocation. However the relocation symbol name
511   // in final object creation should be NULL, since the symbol does not
512   // really exist, it is just the reference to TOC base for the current
513   // object file. Since the symbol is undefined, returning false results
514   // in a relocation with a null section which is the desired result.
515   case MCSymbolRefExpr::VK_PPC_TOCBASE:
516     return false;
517 
518   // These VariantKind cause the relocation to refer to something other than
519   // the symbol itself, like a linker generated table. Since the address of
520   // symbol is not relevant, we cannot replace the symbol with the
521   // section and patch the difference in the addend.
522   case MCSymbolRefExpr::VK_GOT:
523   case MCSymbolRefExpr::VK_PLT:
524   case MCSymbolRefExpr::VK_GOTPCREL:
525   case MCSymbolRefExpr::VK_Mips_GOT:
526   case MCSymbolRefExpr::VK_PPC_GOT_LO:
527   case MCSymbolRefExpr::VK_PPC_GOT_HI:
528   case MCSymbolRefExpr::VK_PPC_GOT_HA:
529     return true;
530   }
531 
532   // An undefined symbol is not in any section, so the relocation has to point
533   // to the symbol itself.
534   assert(Sym && "Expected a symbol");
535   if (Sym->isUndefined())
536     return true;
537 
538   unsigned Binding = Sym->getBinding();
539   switch(Binding) {
540   default:
541     llvm_unreachable("Invalid Binding");
542   case ELF::STB_LOCAL:
543     break;
544   case ELF::STB_WEAK:
545     // If the symbol is weak, it might be overridden by a symbol in another
546     // file. The relocation has to point to the symbol so that the linker
547     // can update it.
548     return true;
549   case ELF::STB_GLOBAL:
550     // Global ELF symbols can be preempted by the dynamic linker. The relocation
551     // has to point to the symbol for a reason analogous to the STB_WEAK case.
552     return true;
553   }
554 
555   // If a relocation points to a mergeable section, we have to be careful.
556   // If the offset is zero, a relocation with the section will encode the
557   // same information. With a non-zero offset, the situation is different.
558   // For example, a relocation can point 42 bytes past the end of a string.
559   // If we change such a relocation to use the section, the linker would think
560   // that it pointed to another string and subtracting 42 at runtime will
561   // produce the wrong value.
562   auto &Sec = cast<MCSectionELF>(Sym->getSection());
563   unsigned Flags = Sec.getFlags();
564   if (Flags & ELF::SHF_MERGE) {
565     if (C != 0)
566       return true;
567 
568     // It looks like gold has a bug (http://sourceware.org/PR16794) and can
569     // only handle section relocations to mergeable sections if using RELA.
570     if (!hasRelocationAddend())
571       return true;
572   }
573 
574   // Most TLS relocations use a got, so they need the symbol. Even those that
575   // are just an offset (@tpoff), require a symbol in gold versions before
576   // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
577   // http://sourceware.org/PR16773.
578   if (Flags & ELF::SHF_TLS)
579     return true;
580 
581   // If the symbol is a thumb function the final relocation must set the lowest
582   // bit. With a symbol that is done by just having the symbol have that bit
583   // set, so we would lose the bit if we relocated with the section.
584   // FIXME: We could use the section but add the bit to the relocation value.
585   if (Asm.isThumbFunc(Sym))
586     return true;
587 
588   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
589     return true;
590   return false;
591 }
592 
593 // True if the assembler knows nothing about the final value of the symbol.
594 // This doesn't cover the comdat issues, since in those cases the assembler
595 // can at least know that all symbols in the section will move together.
596 static bool isWeak(const MCSymbolELF &Sym) {
597   if (Sym.getType() == ELF::STT_GNU_IFUNC)
598     return true;
599 
600   switch (Sym.getBinding()) {
601   default:
602     llvm_unreachable("Unknown binding");
603   case ELF::STB_LOCAL:
604     return false;
605   case ELF::STB_GLOBAL:
606     return false;
607   case ELF::STB_WEAK:
608   case ELF::STB_GNU_UNIQUE:
609     return true;
610   }
611 }
612 
613 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
614                                        const MCAsmLayout &Layout,
615                                        const MCFragment *Fragment,
616                                        const MCFixup &Fixup, MCValue Target,
617                                        bool &IsPCRel, uint64_t &FixedValue) {
618   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
619   uint64_t C = Target.getConstant();
620   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
621   MCContext &Ctx = Asm.getContext();
622 
623   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
624     assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
625            "Should not have constructed this");
626 
627     // Let A, B and C being the components of Target and R be the location of
628     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
629     // If it is pcrel, we want to compute (A - B + C - R).
630 
631     // In general, ELF has no relocations for -B. It can only represent (A + C)
632     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
633     // replace B to implement it: (A - R - K + C)
634     if (IsPCRel) {
635       Ctx.reportError(
636           Fixup.getLoc(),
637           "No relocation available to represent this relative expression");
638       return;
639     }
640 
641     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
642 
643     if (SymB.isUndefined()) {
644       Ctx.reportError(Fixup.getLoc(),
645                       Twine("symbol '") + SymB.getName() +
646                           "' can not be undefined in a subtraction expression");
647       return;
648     }
649 
650     assert(!SymB.isAbsolute() && "Should have been folded");
651     const MCSection &SecB = SymB.getSection();
652     if (&SecB != &FixupSection) {
653       Ctx.reportError(Fixup.getLoc(),
654                       "Cannot represent a difference across sections");
655       return;
656     }
657 
658     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
659     uint64_t K = SymBOffset - FixupOffset;
660     IsPCRel = true;
661     C -= K;
662   }
663 
664   // We either rejected the fixup or folded B into C at this point.
665   const MCSymbolRefExpr *RefA = Target.getSymA();
666   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
667 
668   bool ViaWeakRef = false;
669   if (SymA && SymA->isVariable()) {
670     const MCExpr *Expr = SymA->getVariableValue();
671     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
672       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
673         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
674         ViaWeakRef = true;
675       }
676     }
677   }
678 
679   unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
680   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
681   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
682     C += Layout.getSymbolOffset(*SymA);
683 
684   uint64_t Addend = 0;
685   if (hasRelocationAddend()) {
686     Addend = C;
687     C = 0;
688   }
689 
690   FixedValue = C;
691 
692   if (!RelocateWithSymbol) {
693     const MCSection *SecA =
694         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
695     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
696     const auto *SectionSymbol =
697         ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
698     if (SectionSymbol)
699       SectionSymbol->setUsedInReloc();
700     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
701     Relocations[&FixupSection].push_back(Rec);
702     return;
703   }
704 
705   if (SymA) {
706     if (const MCSymbolELF *R = Renames.lookup(SymA))
707       SymA = R;
708 
709     if (ViaWeakRef)
710       SymA->setIsWeakrefUsedInReloc();
711     else
712       SymA->setUsedInReloc();
713   }
714   ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
715   Relocations[&FixupSection].push_back(Rec);
716 }
717 
718 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
719                                  const MCSymbolELF &Symbol, bool Used,
720                                  bool Renamed) {
721   if (Symbol.isVariable()) {
722     const MCExpr *Expr = Symbol.getVariableValue();
723     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
724       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
725         return false;
726     }
727   }
728 
729   if (Used)
730     return true;
731 
732   if (Renamed)
733     return false;
734 
735   if (Symbol.isVariable() && Symbol.isUndefined()) {
736     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
737     Layout.getBaseSymbol(Symbol);
738     return false;
739   }
740 
741   if (Symbol.isUndefined() && !Symbol.isBindingSet())
742     return false;
743 
744   if (Symbol.isTemporary())
745     return false;
746 
747   if (Symbol.getType() == ELF::STT_SECTION)
748     return false;
749 
750   return true;
751 }
752 
753 void ELFObjectWriter::computeSymbolTable(
754     MCAssembler &Asm, const MCAsmLayout &Layout,
755     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
756     SectionOffsetsTy &SectionOffsets) {
757   MCContext &Ctx = Asm.getContext();
758   SymbolTableWriter Writer(*this, is64Bit());
759 
760   // Symbol table
761   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
762   MCSectionELF *SymtabSection =
763       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
764   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
765   SymbolTableIndex = addToSectionTable(SymtabSection);
766 
767   align(SymtabSection->getAlignment());
768   uint64_t SecStart = getStream().tell();
769 
770   // The first entry is the undefined symbol entry.
771   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
772 
773   std::vector<ELFSymbolData> LocalSymbolData;
774   std::vector<ELFSymbolData> ExternalSymbolData;
775 
776   // Add the data for the symbols.
777   bool HasLargeSectionIndex = false;
778   for (const MCSymbol &S : Asm.symbols()) {
779     const auto &Symbol = cast<MCSymbolELF>(S);
780     bool Used = Symbol.isUsedInReloc();
781     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
782     bool isSignature = Symbol.isSignature();
783 
784     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
785                     Renames.count(&Symbol)))
786       continue;
787 
788     if (Symbol.isTemporary() && Symbol.isUndefined()) {
789       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
790       continue;
791     }
792 
793     ELFSymbolData MSD;
794     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
795 
796     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
797     assert(Local || !Symbol.isTemporary());
798 
799     if (Symbol.isAbsolute()) {
800       MSD.SectionIndex = ELF::SHN_ABS;
801     } else if (Symbol.isCommon()) {
802       assert(!Local);
803       MSD.SectionIndex = ELF::SHN_COMMON;
804     } else if (Symbol.isUndefined()) {
805       if (isSignature && !Used) {
806         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
807         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
808           HasLargeSectionIndex = true;
809       } else {
810         MSD.SectionIndex = ELF::SHN_UNDEF;
811       }
812     } else {
813       const MCSectionELF &Section =
814           static_cast<const MCSectionELF &>(Symbol.getSection());
815       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
816       assert(MSD.SectionIndex && "Invalid section index!");
817       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
818         HasLargeSectionIndex = true;
819     }
820 
821     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
822     // in defined ones.
823     //
824     // FIXME: All name handling should be done before we get to the writer,
825     // including dealing with GNU-style version suffixes.  Fixing this isn't
826     // trivial.
827     //
828     // We thus have to be careful to not perform the symbol version replacement
829     // blindly:
830     //
831     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
832     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
833     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
834     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
835     // the EFLObjectWriter should not interpret the "@@@" sub-string as
836     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
837     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
838     // "__imp_?" or "__imp_@?".
839     //
840     // It would have been interesting to perform the MS mangling prefix check
841     // only when the target triple is of the form *-pc-windows-elf. But, it
842     // seems that this information is not easily accessible from the
843     // ELFObjectWriter.
844     StringRef Name = Symbol.getName();
845     SmallString<32> Buf;
846     if (!Name.startswith("?") && !Name.startswith("@?") &&
847         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
848       // This symbol isn't following the MSVC C++ name mangling convention. We
849       // can thus safely interpret the @@@ in symbol names as specifying symbol
850       // versioning.
851       size_t Pos = Name.find("@@@");
852       if (Pos != StringRef::npos) {
853         Buf += Name.substr(0, Pos);
854         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
855         Buf += Name.substr(Pos + Skip);
856         Name = VersionSymSaver.save(Buf.c_str());
857       }
858     }
859 
860     // Sections have their own string table
861     if (Symbol.getType() != ELF::STT_SECTION) {
862       MSD.Name = Name;
863       StrTabBuilder.add(Name);
864     }
865 
866     if (Local)
867       LocalSymbolData.push_back(MSD);
868     else
869       ExternalSymbolData.push_back(MSD);
870   }
871 
872   // This holds the .symtab_shndx section index.
873   unsigned SymtabShndxSectionIndex = 0;
874 
875   if (HasLargeSectionIndex) {
876     MCSectionELF *SymtabShndxSection =
877         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
878     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
879     SymtabShndxSection->setAlignment(4);
880   }
881 
882   ArrayRef<std::string> FileNames = Asm.getFileNames();
883   for (const std::string &Name : FileNames)
884     StrTabBuilder.add(Name);
885 
886   StrTabBuilder.finalize();
887 
888   for (const std::string &Name : FileNames)
889     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
890                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
891                        ELF::SHN_ABS, true);
892 
893   // Symbols are required to be in lexicographic order.
894   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
895   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
896 
897   // Set the symbol indices. Local symbols must come before all other
898   // symbols with non-local bindings.
899   unsigned Index = FileNames.size() + 1;
900 
901   for (ELFSymbolData &MSD : LocalSymbolData) {
902     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
903                                ? 0
904                                : StrTabBuilder.getOffset(MSD.Name);
905     MSD.Symbol->setIndex(Index++);
906     writeSymbol(Writer, StringIndex, MSD, Layout);
907   }
908 
909   // Write the symbol table entries.
910   LastLocalSymbolIndex = Index;
911 
912   for (ELFSymbolData &MSD : ExternalSymbolData) {
913     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
914     MSD.Symbol->setIndex(Index++);
915     writeSymbol(Writer, StringIndex, MSD, Layout);
916     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
917   }
918 
919   uint64_t SecEnd = getStream().tell();
920   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
921 
922   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
923   if (ShndxIndexes.empty()) {
924     assert(SymtabShndxSectionIndex == 0);
925     return;
926   }
927   assert(SymtabShndxSectionIndex != 0);
928 
929   SecStart = getStream().tell();
930   const MCSectionELF *SymtabShndxSection =
931       SectionTable[SymtabShndxSectionIndex - 1];
932   for (uint32_t Index : ShndxIndexes)
933     write(Index);
934   SecEnd = getStream().tell();
935   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
936 }
937 
938 MCSectionELF *
939 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
940                                          const MCSectionELF &Sec) {
941   if (Relocations[&Sec].empty())
942     return nullptr;
943 
944   const StringRef SectionName = Sec.getSectionName();
945   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
946   RelaSectionName += SectionName;
947 
948   unsigned EntrySize;
949   if (hasRelocationAddend())
950     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
951   else
952     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
953 
954   unsigned Flags = 0;
955   if (Sec.getFlags() & ELF::SHF_GROUP)
956     Flags = ELF::SHF_GROUP;
957 
958   MCSectionELF *RelaSection = Ctx.createELFRelSection(
959       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
960       Flags, EntrySize, Sec.getGroup(), &Sec);
961   RelaSection->setAlignment(is64Bit() ? 8 : 4);
962   return RelaSection;
963 }
964 
965 // Include the debug info compression header:
966 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
967 // useful for consumers to preallocate a buffer to decompress into.
968 static bool
969 prependCompressionHeader(uint64_t Size,
970                          SmallVectorImpl<char> &CompressedContents) {
971   const StringRef Magic = "ZLIB";
972   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
973     return false;
974   if (sys::IsLittleEndianHost)
975     sys::swapByteOrder(Size);
976   CompressedContents.insert(CompressedContents.begin(),
977                             Magic.size() + sizeof(Size), 0);
978   std::copy(Magic.begin(), Magic.end(), CompressedContents.begin());
979   std::copy(reinterpret_cast<char *>(&Size),
980             reinterpret_cast<char *>(&Size + 1),
981             CompressedContents.begin() + Magic.size());
982   return true;
983 }
984 
985 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
986                                        const MCAsmLayout &Layout) {
987   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
988   StringRef SectionName = Section.getSectionName();
989 
990   // Compressing debug_frame requires handling alignment fragments which is
991   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
992   // for writing to arbitrary buffers) for little benefit.
993   if (!Asm.getContext().getAsmInfo()->compressDebugSections() ||
994       !SectionName.startswith(".debug_") || SectionName == ".debug_frame") {
995     Asm.writeSectionData(&Section, Layout);
996     return;
997   }
998 
999   SmallVector<char, 128> UncompressedData;
1000   raw_svector_ostream VecOS(UncompressedData);
1001   raw_pwrite_stream &OldStream = getStream();
1002   setStream(VecOS);
1003   Asm.writeSectionData(&Section, Layout);
1004   setStream(OldStream);
1005 
1006   SmallVector<char, 128> CompressedContents;
1007   zlib::Status Success = zlib::compress(
1008       StringRef(UncompressedData.data(), UncompressedData.size()),
1009       CompressedContents);
1010   if (Success != zlib::StatusOK) {
1011     getStream() << UncompressedData;
1012     return;
1013   }
1014 
1015   if (!prependCompressionHeader(UncompressedData.size(), CompressedContents)) {
1016     getStream() << UncompressedData;
1017     return;
1018   }
1019   Asm.getContext().renameELFSection(&Section,
1020                                     (".z" + SectionName.drop_front(1)).str());
1021   getStream() << CompressedContents;
1022 }
1023 
1024 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1025                                        uint64_t Flags, uint64_t Address,
1026                                        uint64_t Offset, uint64_t Size,
1027                                        uint32_t Link, uint32_t Info,
1028                                        uint64_t Alignment,
1029                                        uint64_t EntrySize) {
1030   write32(Name);        // sh_name: index into string table
1031   write32(Type);        // sh_type
1032   WriteWord(Flags);     // sh_flags
1033   WriteWord(Address);   // sh_addr
1034   WriteWord(Offset);    // sh_offset
1035   WriteWord(Size);      // sh_size
1036   write32(Link);        // sh_link
1037   write32(Info);        // sh_info
1038   WriteWord(Alignment); // sh_addralign
1039   WriteWord(EntrySize); // sh_entsize
1040 }
1041 
1042 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1043                                        const MCSectionELF &Sec) {
1044   std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1045 
1046   // We record relocations by pushing to the end of a vector. Reverse the vector
1047   // to get the relocations in the order they were created.
1048   // In most cases that is not important, but it can be for special sections
1049   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1050   std::reverse(Relocs.begin(), Relocs.end());
1051 
1052   // Sort the relocation entries. MIPS needs this.
1053   TargetObjectWriter->sortRelocs(Asm, Relocs);
1054 
1055   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1056     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1057     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1058 
1059     if (is64Bit()) {
1060       write(Entry.Offset);
1061       if (TargetObjectWriter->isN64()) {
1062         write(uint32_t(Index));
1063 
1064         write(TargetObjectWriter->getRSsym(Entry.Type));
1065         write(TargetObjectWriter->getRType3(Entry.Type));
1066         write(TargetObjectWriter->getRType2(Entry.Type));
1067         write(TargetObjectWriter->getRType(Entry.Type));
1068       } else {
1069         struct ELF::Elf64_Rela ERE64;
1070         ERE64.setSymbolAndType(Index, Entry.Type);
1071         write(ERE64.r_info);
1072       }
1073       if (hasRelocationAddend())
1074         write(Entry.Addend);
1075     } else {
1076       write(uint32_t(Entry.Offset));
1077 
1078       struct ELF::Elf32_Rela ERE32;
1079       ERE32.setSymbolAndType(Index, Entry.Type);
1080       write(ERE32.r_info);
1081 
1082       if (hasRelocationAddend())
1083         write(uint32_t(Entry.Addend));
1084     }
1085   }
1086 }
1087 
1088 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1089   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1090   getStream() << StrTabBuilder.data();
1091   return StrtabSection;
1092 }
1093 
1094 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1095                                    uint32_t GroupSymbolIndex, uint64_t Offset,
1096                                    uint64_t Size, const MCSectionELF &Section) {
1097   uint64_t sh_link = 0;
1098   uint64_t sh_info = 0;
1099 
1100   switch(Section.getType()) {
1101   default:
1102     // Nothing to do.
1103     break;
1104 
1105   case ELF::SHT_DYNAMIC:
1106     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1107 
1108   case ELF::SHT_REL:
1109   case ELF::SHT_RELA: {
1110     sh_link = SymbolTableIndex;
1111     assert(sh_link && ".symtab not found");
1112     const MCSectionELF *InfoSection = Section.getAssociatedSection();
1113     sh_info = SectionIndexMap.lookup(InfoSection);
1114     break;
1115   }
1116 
1117   case ELF::SHT_SYMTAB:
1118   case ELF::SHT_DYNSYM:
1119     sh_link = StringTableIndex;
1120     sh_info = LastLocalSymbolIndex;
1121     break;
1122 
1123   case ELF::SHT_SYMTAB_SHNDX:
1124     sh_link = SymbolTableIndex;
1125     break;
1126 
1127   case ELF::SHT_GROUP:
1128     sh_link = SymbolTableIndex;
1129     sh_info = GroupSymbolIndex;
1130     break;
1131   }
1132 
1133   if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1134       Section.getType() == ELF::SHT_ARM_EXIDX)
1135     sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1136 
1137   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1138                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1139                    sh_link, sh_info, Section.getAlignment(),
1140                    Section.getEntrySize());
1141 }
1142 
1143 void ELFObjectWriter::writeSectionHeader(
1144     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1145     const SectionOffsetsTy &SectionOffsets) {
1146   const unsigned NumSections = SectionTable.size();
1147 
1148   // Null section first.
1149   uint64_t FirstSectionSize =
1150       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1151   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1152 
1153   for (const MCSectionELF *Section : SectionTable) {
1154     uint32_t GroupSymbolIndex;
1155     unsigned Type = Section->getType();
1156     if (Type != ELF::SHT_GROUP)
1157       GroupSymbolIndex = 0;
1158     else
1159       GroupSymbolIndex = Section->getGroup()->getIndex();
1160 
1161     const std::pair<uint64_t, uint64_t> &Offsets =
1162         SectionOffsets.find(Section)->second;
1163     uint64_t Size;
1164     if (Type == ELF::SHT_NOBITS)
1165       Size = Layout.getSectionAddressSize(Section);
1166     else
1167       Size = Offsets.second - Offsets.first;
1168 
1169     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1170                  *Section);
1171   }
1172 }
1173 
1174 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1175                                   const MCAsmLayout &Layout) {
1176   MCContext &Ctx = Asm.getContext();
1177   MCSectionELF *StrtabSection =
1178       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1179   StringTableIndex = addToSectionTable(StrtabSection);
1180 
1181   RevGroupMapTy RevGroupMap;
1182   SectionIndexMapTy SectionIndexMap;
1183 
1184   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1185 
1186   // Write out the ELF header ...
1187   writeHeader(Asm);
1188 
1189   // ... then the sections ...
1190   SectionOffsetsTy SectionOffsets;
1191   std::vector<MCSectionELF *> Groups;
1192   std::vector<MCSectionELF *> Relocations;
1193   for (MCSection &Sec : Asm) {
1194     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1195 
1196     align(Section.getAlignment());
1197 
1198     // Remember the offset into the file for this section.
1199     uint64_t SecStart = getStream().tell();
1200 
1201     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1202     writeSectionData(Asm, Section, Layout);
1203 
1204     uint64_t SecEnd = getStream().tell();
1205     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1206 
1207     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1208 
1209     if (SignatureSymbol) {
1210       Asm.registerSymbol(*SignatureSymbol);
1211       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1212       if (!GroupIdx) {
1213         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1214         GroupIdx = addToSectionTable(Group);
1215         Group->setAlignment(4);
1216         Groups.push_back(Group);
1217       }
1218       std::vector<const MCSectionELF *> &Members =
1219           GroupMembers[SignatureSymbol];
1220       Members.push_back(&Section);
1221       if (RelSection)
1222         Members.push_back(RelSection);
1223     }
1224 
1225     SectionIndexMap[&Section] = addToSectionTable(&Section);
1226     if (RelSection) {
1227       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1228       Relocations.push_back(RelSection);
1229     }
1230   }
1231 
1232   for (MCSectionELF *Group : Groups) {
1233     align(Group->getAlignment());
1234 
1235     // Remember the offset into the file for this section.
1236     uint64_t SecStart = getStream().tell();
1237 
1238     const MCSymbol *SignatureSymbol = Group->getGroup();
1239     assert(SignatureSymbol);
1240     write(uint32_t(ELF::GRP_COMDAT));
1241     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1242       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1243       write(SecIndex);
1244     }
1245 
1246     uint64_t SecEnd = getStream().tell();
1247     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1248   }
1249 
1250   // Compute symbol table information.
1251   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1252 
1253   for (MCSectionELF *RelSection : Relocations) {
1254     align(RelSection->getAlignment());
1255 
1256     // Remember the offset into the file for this section.
1257     uint64_t SecStart = getStream().tell();
1258 
1259     writeRelocations(Asm, *RelSection->getAssociatedSection());
1260 
1261     uint64_t SecEnd = getStream().tell();
1262     SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1263   }
1264 
1265   {
1266     uint64_t SecStart = getStream().tell();
1267     const MCSectionELF *Sec = createStringTable(Ctx);
1268     uint64_t SecEnd = getStream().tell();
1269     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1270   }
1271 
1272   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1273   align(NaturalAlignment);
1274 
1275   const uint64_t SectionHeaderOffset = getStream().tell();
1276 
1277   // ... then the section header table ...
1278   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1279 
1280   uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1281                              ? (uint16_t)ELF::SHN_UNDEF
1282                              : SectionTable.size() + 1;
1283   if (sys::IsLittleEndianHost != IsLittleEndian)
1284     sys::swapByteOrder(NumSections);
1285   unsigned NumSectionsOffset;
1286 
1287   if (is64Bit()) {
1288     uint64_t Val = SectionHeaderOffset;
1289     if (sys::IsLittleEndianHost != IsLittleEndian)
1290       sys::swapByteOrder(Val);
1291     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1292                        offsetof(ELF::Elf64_Ehdr, e_shoff));
1293     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1294   } else {
1295     uint32_t Val = SectionHeaderOffset;
1296     if (sys::IsLittleEndianHost != IsLittleEndian)
1297       sys::swapByteOrder(Val);
1298     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1299                        offsetof(ELF::Elf32_Ehdr, e_shoff));
1300     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1301   }
1302   getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1303                      sizeof(NumSections), NumSectionsOffset);
1304 }
1305 
1306 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1307     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1308     bool InSet, bool IsPCRel) const {
1309   const auto &SymA = cast<MCSymbolELF>(SA);
1310   if (IsPCRel) {
1311     assert(!InSet);
1312     if (::isWeak(SymA))
1313       return false;
1314   }
1315   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1316                                                                 InSet, IsPCRel);
1317 }
1318 
1319 bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
1320   const auto &Sym = cast<MCSymbolELF>(S);
1321   if (::isWeak(Sym))
1322     return true;
1323 
1324   // It is invalid to replace a reference to a global in a comdat
1325   // with a reference to a local since out of comdat references
1326   // to a local are forbidden.
1327   // We could try to return false for more cases, like the reference
1328   // being in the same comdat or Sym being an alias to another global,
1329   // but it is not clear if it is worth the effort.
1330   if (Sym.getBinding() != ELF::STB_GLOBAL)
1331     return false;
1332 
1333   if (!Sym.isInSection())
1334     return false;
1335 
1336   const auto &Sec = cast<MCSectionELF>(Sym.getSection());
1337   return Sec.getGroup();
1338 }
1339 
1340 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1341                                             raw_pwrite_stream &OS,
1342                                             bool IsLittleEndian) {
1343   return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1344 }
1345