1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFixupKindInfo.h" 30 #include "llvm/MC/MCFragment.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compression.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/Error.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Host.h" 46 #include "llvm/Support/LEB128.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/SMLoc.h" 49 #include "llvm/Support/StringSaver.h" 50 #include "llvm/Support/SwapByteOrder.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <map> 57 #include <memory> 58 #include <string> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #undef DEBUG_TYPE 65 #define DEBUG_TYPE "reloc-info" 66 67 namespace { 68 69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 70 71 class ELFObjectWriter; 72 struct ELFWriter; 73 74 bool isDwoSection(const MCSectionELF &Sec) { 75 return Sec.getSectionName().endswith(".dwo"); 76 } 77 78 class SymbolTableWriter { 79 ELFWriter &EWriter; 80 bool Is64Bit; 81 82 // indexes we are going to write to .symtab_shndx. 83 std::vector<uint32_t> ShndxIndexes; 84 85 // The numbel of symbols written so far. 86 unsigned NumWritten; 87 88 void createSymtabShndx(); 89 90 template <typename T> void write(T Value); 91 92 public: 93 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 94 95 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 96 uint8_t other, uint32_t shndx, bool Reserved); 97 98 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 99 }; 100 101 struct ELFWriter { 102 ELFObjectWriter &OWriter; 103 support::endian::Writer W; 104 105 enum DwoMode { 106 AllSections, 107 NonDwoOnly, 108 DwoOnly, 109 } Mode; 110 111 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 112 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 113 bool Used, bool Renamed); 114 115 /// Helper struct for containing some precomputed information on symbols. 116 struct ELFSymbolData { 117 const MCSymbolELF *Symbol; 118 uint32_t SectionIndex; 119 StringRef Name; 120 121 // Support lexicographic sorting. 122 bool operator<(const ELFSymbolData &RHS) const { 123 unsigned LHSType = Symbol->getType(); 124 unsigned RHSType = RHS.Symbol->getType(); 125 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 126 return false; 127 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 128 return true; 129 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 130 return SectionIndex < RHS.SectionIndex; 131 return Name < RHS.Name; 132 } 133 }; 134 135 /// @} 136 /// @name Symbol Table Data 137 /// @{ 138 139 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 140 141 /// @} 142 143 // This holds the symbol table index of the last local symbol. 144 unsigned LastLocalSymbolIndex; 145 // This holds the .strtab section index. 146 unsigned StringTableIndex; 147 // This holds the .symtab section index. 148 unsigned SymbolTableIndex; 149 150 // Sections in the order they are to be output in the section table. 151 std::vector<const MCSectionELF *> SectionTable; 152 unsigned addToSectionTable(const MCSectionELF *Sec); 153 154 // TargetObjectWriter wrappers. 155 bool is64Bit() const; 156 bool hasRelocationAddend() const; 157 158 void align(unsigned Alignment); 159 160 bool maybeWriteCompression(uint64_t Size, 161 SmallVectorImpl<char> &CompressedContents, 162 bool ZLibStyle, unsigned Alignment); 163 164 public: 165 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 166 bool IsLittleEndian, DwoMode Mode) 167 : OWriter(OWriter), 168 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 169 170 void WriteWord(uint64_t Word) { 171 if (is64Bit()) 172 W.write<uint64_t>(Word); 173 else 174 W.write<uint32_t>(Word); 175 } 176 177 template <typename T> void write(T Val) { 178 W.write(Val); 179 } 180 181 void writeHeader(const MCAssembler &Asm); 182 183 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 184 ELFSymbolData &MSD, const MCAsmLayout &Layout); 185 186 // Start and end offset of each section 187 using SectionOffsetsTy = 188 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 189 190 // Map from a signature symbol to the group section index 191 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 192 193 /// Compute the symbol table data 194 /// 195 /// \param Asm - The assembler. 196 /// \param SectionIndexMap - Maps a section to its index. 197 /// \param RevGroupMap - Maps a signature symbol to the group section. 198 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 199 const SectionIndexMapTy &SectionIndexMap, 200 const RevGroupMapTy &RevGroupMap, 201 SectionOffsetsTy &SectionOffsets); 202 203 void writeAddrsigSection(); 204 205 MCSectionELF *createRelocationSection(MCContext &Ctx, 206 const MCSectionELF &Sec); 207 208 const MCSectionELF *createStringTable(MCContext &Ctx); 209 210 void writeSectionHeader(const MCAsmLayout &Layout, 211 const SectionIndexMapTy &SectionIndexMap, 212 const SectionOffsetsTy &SectionOffsets); 213 214 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 215 const MCAsmLayout &Layout); 216 217 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 218 uint64_t Address, uint64_t Offset, uint64_t Size, 219 uint32_t Link, uint32_t Info, uint64_t Alignment, 220 uint64_t EntrySize); 221 222 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 223 224 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 225 void writeSection(const SectionIndexMapTy &SectionIndexMap, 226 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 227 const MCSectionELF &Section); 228 }; 229 230 class ELFObjectWriter : public MCObjectWriter { 231 /// The target specific ELF writer instance. 232 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 233 234 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 235 236 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 237 238 bool EmitAddrsigSection = false; 239 std::vector<const MCSymbol *> AddrsigSyms; 240 241 bool hasRelocationAddend() const; 242 243 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 244 const MCSymbolRefExpr *RefA, 245 const MCSymbolELF *Sym, uint64_t C, 246 unsigned Type) const; 247 248 public: 249 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 250 : TargetObjectWriter(std::move(MOTW)) {} 251 252 void reset() override { 253 Relocations.clear(); 254 Renames.clear(); 255 MCObjectWriter::reset(); 256 } 257 258 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 259 const MCSymbol &SymA, 260 const MCFragment &FB, bool InSet, 261 bool IsPCRel) const override; 262 263 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 264 const MCSectionELF *From, 265 const MCSectionELF *To) { 266 return true; 267 } 268 269 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 270 const MCFragment *Fragment, const MCFixup &Fixup, 271 MCValue Target, uint64_t &FixedValue) override; 272 273 void executePostLayoutBinding(MCAssembler &Asm, 274 const MCAsmLayout &Layout) override; 275 276 void emitAddrsigSection() override { EmitAddrsigSection = true; } 277 void addAddrsigSymbol(const MCSymbol *Sym) override { 278 AddrsigSyms.push_back(Sym); 279 } 280 281 friend struct ELFWriter; 282 }; 283 284 class ELFSingleObjectWriter : public ELFObjectWriter { 285 raw_pwrite_stream &OS; 286 bool IsLittleEndian; 287 288 public: 289 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 290 raw_pwrite_stream &OS, bool IsLittleEndian) 291 : ELFObjectWriter(std::move(MOTW)), OS(OS), 292 IsLittleEndian(IsLittleEndian) {} 293 294 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 295 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 296 .writeObject(Asm, Layout); 297 } 298 299 friend struct ELFWriter; 300 }; 301 302 class ELFDwoObjectWriter : public ELFObjectWriter { 303 raw_pwrite_stream &OS, &DwoOS; 304 bool IsLittleEndian; 305 306 public: 307 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 308 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 309 bool IsLittleEndian) 310 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 311 IsLittleEndian(IsLittleEndian) {} 312 313 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 314 const MCSectionELF *From, 315 const MCSectionELF *To) override { 316 if (isDwoSection(*From)) { 317 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 318 return false; 319 } 320 if (To && isDwoSection(*To)) { 321 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 322 return false; 323 } 324 return true; 325 } 326 327 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 328 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 329 .writeObject(Asm, Layout); 330 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 331 .writeObject(Asm, Layout); 332 return Size; 333 } 334 }; 335 336 } // end anonymous namespace 337 338 void ELFWriter::align(unsigned Alignment) { 339 uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment); 340 W.OS.write_zeros(Padding); 341 } 342 343 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 344 SectionTable.push_back(Sec); 345 StrTabBuilder.add(Sec->getSectionName()); 346 return SectionTable.size(); 347 } 348 349 void SymbolTableWriter::createSymtabShndx() { 350 if (!ShndxIndexes.empty()) 351 return; 352 353 ShndxIndexes.resize(NumWritten); 354 } 355 356 template <typename T> void SymbolTableWriter::write(T Value) { 357 EWriter.write(Value); 358 } 359 360 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 361 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 362 363 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 364 uint64_t size, uint8_t other, 365 uint32_t shndx, bool Reserved) { 366 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 367 368 if (LargeIndex) 369 createSymtabShndx(); 370 371 if (!ShndxIndexes.empty()) { 372 if (LargeIndex) 373 ShndxIndexes.push_back(shndx); 374 else 375 ShndxIndexes.push_back(0); 376 } 377 378 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 379 380 if (Is64Bit) { 381 write(name); // st_name 382 write(info); // st_info 383 write(other); // st_other 384 write(Index); // st_shndx 385 write(value); // st_value 386 write(size); // st_size 387 } else { 388 write(name); // st_name 389 write(uint32_t(value)); // st_value 390 write(uint32_t(size)); // st_size 391 write(info); // st_info 392 write(other); // st_other 393 write(Index); // st_shndx 394 } 395 396 ++NumWritten; 397 } 398 399 bool ELFWriter::is64Bit() const { 400 return OWriter.TargetObjectWriter->is64Bit(); 401 } 402 403 bool ELFWriter::hasRelocationAddend() const { 404 return OWriter.hasRelocationAddend(); 405 } 406 407 // Emit the ELF header. 408 void ELFWriter::writeHeader(const MCAssembler &Asm) { 409 // ELF Header 410 // ---------- 411 // 412 // Note 413 // ---- 414 // emitWord method behaves differently for ELF32 and ELF64, writing 415 // 4 bytes in the former and 8 in the latter. 416 417 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 418 419 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 420 421 // e_ident[EI_DATA] 422 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 423 : ELF::ELFDATA2MSB); 424 425 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 426 // e_ident[EI_OSABI] 427 W.OS << char(OWriter.TargetObjectWriter->getOSABI()); 428 // e_ident[EI_ABIVERSION] 429 W.OS << char(OWriter.TargetObjectWriter->getABIVersion()); 430 431 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 432 433 W.write<uint16_t>(ELF::ET_REL); // e_type 434 435 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 436 437 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 438 WriteWord(0); // e_entry, no entry point in .o file 439 WriteWord(0); // e_phoff, no program header for .o 440 WriteWord(0); // e_shoff = sec hdr table off in bytes 441 442 // e_flags = whatever the target wants 443 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 444 445 // e_ehsize = ELF header size 446 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 447 : sizeof(ELF::Elf32_Ehdr)); 448 449 W.write<uint16_t>(0); // e_phentsize = prog header entry size 450 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 451 452 // e_shentsize = Section header entry size 453 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 454 : sizeof(ELF::Elf32_Shdr)); 455 456 // e_shnum = # of section header ents 457 W.write<uint16_t>(0); 458 459 // e_shstrndx = Section # of '.shstrtab' 460 assert(StringTableIndex < ELF::SHN_LORESERVE); 461 W.write<uint16_t>(StringTableIndex); 462 } 463 464 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 465 const MCAsmLayout &Layout) { 466 if (Sym.isCommon() && (Sym.isTargetCommon() || Sym.isExternal())) 467 return Sym.getCommonAlignment(); 468 469 uint64_t Res; 470 if (!Layout.getSymbolOffset(Sym, Res)) 471 return 0; 472 473 if (Layout.getAssembler().isThumbFunc(&Sym)) 474 Res |= 1; 475 476 return Res; 477 } 478 479 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 480 uint8_t Type = newType; 481 482 // Propagation rules: 483 // IFUNC > FUNC > OBJECT > NOTYPE 484 // TLS_OBJECT > OBJECT > NOTYPE 485 // 486 // dont let the new type degrade the old type 487 switch (origType) { 488 default: 489 break; 490 case ELF::STT_GNU_IFUNC: 491 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 492 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 493 Type = ELF::STT_GNU_IFUNC; 494 break; 495 case ELF::STT_FUNC: 496 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 497 Type == ELF::STT_TLS) 498 Type = ELF::STT_FUNC; 499 break; 500 case ELF::STT_OBJECT: 501 if (Type == ELF::STT_NOTYPE) 502 Type = ELF::STT_OBJECT; 503 break; 504 case ELF::STT_TLS: 505 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 506 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 507 Type = ELF::STT_TLS; 508 break; 509 } 510 511 return Type; 512 } 513 514 static bool isIFunc(const MCSymbolELF *Symbol) { 515 while (Symbol->getType() != ELF::STT_GNU_IFUNC) { 516 const MCSymbolRefExpr *Value; 517 if (!Symbol->isVariable() || 518 !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) || 519 Value->getKind() != MCSymbolRefExpr::VK_None || 520 mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC) 521 return false; 522 Symbol = &cast<MCSymbolELF>(Value->getSymbol()); 523 } 524 return true; 525 } 526 527 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 528 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 529 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 530 const MCSymbolELF *Base = 531 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 532 533 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 534 // SHN_COMMON. 535 bool IsReserved = !Base || Symbol.isCommon(); 536 537 // Binding and Type share the same byte as upper and lower nibbles 538 uint8_t Binding = Symbol.getBinding(); 539 uint8_t Type = Symbol.getType(); 540 if (isIFunc(&Symbol)) 541 Type = ELF::STT_GNU_IFUNC; 542 if (Base) { 543 Type = mergeTypeForSet(Type, Base->getType()); 544 } 545 uint8_t Info = (Binding << 4) | Type; 546 547 // Other and Visibility share the same byte with Visibility using the lower 548 // 2 bits 549 uint8_t Visibility = Symbol.getVisibility(); 550 uint8_t Other = Symbol.getOther() | Visibility; 551 552 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 553 uint64_t Size = 0; 554 555 const MCExpr *ESize = MSD.Symbol->getSize(); 556 if (!ESize && Base) 557 ESize = Base->getSize(); 558 559 if (ESize) { 560 int64_t Res; 561 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 562 report_fatal_error("Size expression must be absolute."); 563 Size = Res; 564 } 565 566 // Write out the symbol table entry 567 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 568 IsReserved); 569 } 570 571 // True if the assembler knows nothing about the final value of the symbol. 572 // This doesn't cover the comdat issues, since in those cases the assembler 573 // can at least know that all symbols in the section will move together. 574 static bool isWeak(const MCSymbolELF &Sym) { 575 if (Sym.getType() == ELF::STT_GNU_IFUNC) 576 return true; 577 578 switch (Sym.getBinding()) { 579 default: 580 llvm_unreachable("Unknown binding"); 581 case ELF::STB_LOCAL: 582 return false; 583 case ELF::STB_GLOBAL: 584 return false; 585 case ELF::STB_WEAK: 586 case ELF::STB_GNU_UNIQUE: 587 return true; 588 } 589 } 590 591 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 592 bool Used, bool Renamed) { 593 if (Symbol.isVariable()) { 594 const MCExpr *Expr = Symbol.getVariableValue(); 595 // Target Expressions that are always inlined do not appear in the symtab 596 if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) 597 if (T->inlineAssignedExpr()) 598 return false; 599 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 600 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 601 return false; 602 } 603 } 604 605 if (Used) 606 return true; 607 608 if (Renamed) 609 return false; 610 611 if (Symbol.isVariable() && Symbol.isUndefined()) { 612 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 613 Layout.getBaseSymbol(Symbol); 614 return false; 615 } 616 617 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 618 return false; 619 620 if (Symbol.isTemporary()) 621 return false; 622 623 if (Symbol.getType() == ELF::STT_SECTION) 624 return false; 625 626 return true; 627 } 628 629 void ELFWriter::computeSymbolTable( 630 MCAssembler &Asm, const MCAsmLayout &Layout, 631 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 632 SectionOffsetsTy &SectionOffsets) { 633 MCContext &Ctx = Asm.getContext(); 634 SymbolTableWriter Writer(*this, is64Bit()); 635 636 // Symbol table 637 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 638 MCSectionELF *SymtabSection = 639 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 640 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 641 SymbolTableIndex = addToSectionTable(SymtabSection); 642 643 align(SymtabSection->getAlignment()); 644 uint64_t SecStart = W.OS.tell(); 645 646 // The first entry is the undefined symbol entry. 647 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 648 649 std::vector<ELFSymbolData> LocalSymbolData; 650 std::vector<ELFSymbolData> ExternalSymbolData; 651 652 // Add the data for the symbols. 653 bool HasLargeSectionIndex = false; 654 for (const MCSymbol &S : Asm.symbols()) { 655 const auto &Symbol = cast<MCSymbolELF>(S); 656 bool Used = Symbol.isUsedInReloc(); 657 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 658 bool isSignature = Symbol.isSignature(); 659 660 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 661 OWriter.Renames.count(&Symbol))) 662 continue; 663 664 if (Symbol.isTemporary() && Symbol.isUndefined()) { 665 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 666 continue; 667 } 668 669 ELFSymbolData MSD; 670 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 671 672 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 673 assert(Local || !Symbol.isTemporary()); 674 675 if (Symbol.isAbsolute()) { 676 MSD.SectionIndex = ELF::SHN_ABS; 677 } else if (Symbol.isCommon()) { 678 if (Symbol.isTargetCommon()) { 679 MSD.SectionIndex = Symbol.getIndex(); 680 } else { 681 assert(!Local); 682 MSD.SectionIndex = ELF::SHN_COMMON; 683 } 684 } else if (Symbol.isUndefined()) { 685 if (isSignature && !Used) { 686 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 687 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 688 HasLargeSectionIndex = true; 689 } else { 690 MSD.SectionIndex = ELF::SHN_UNDEF; 691 } 692 } else { 693 const MCSectionELF &Section = 694 static_cast<const MCSectionELF &>(Symbol.getSection()); 695 696 // We may end up with a situation when section symbol is technically 697 // defined, but should not be. That happens because we explicitly 698 // pre-create few .debug_* sections to have accessors. 699 // And if these sections were not really defined in the code, but were 700 // referenced, we simply error out. 701 if (!Section.isRegistered()) { 702 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 703 ELF::STT_SECTION); 704 Ctx.reportError(SMLoc(), 705 "Undefined section reference: " + Symbol.getName()); 706 continue; 707 } 708 709 if (Mode == NonDwoOnly && isDwoSection(Section)) 710 continue; 711 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 712 assert(MSD.SectionIndex && "Invalid section index!"); 713 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 714 HasLargeSectionIndex = true; 715 } 716 717 StringRef Name = Symbol.getName(); 718 719 // Sections have their own string table 720 if (Symbol.getType() != ELF::STT_SECTION) { 721 MSD.Name = Name; 722 StrTabBuilder.add(Name); 723 } 724 725 if (Local) 726 LocalSymbolData.push_back(MSD); 727 else 728 ExternalSymbolData.push_back(MSD); 729 } 730 731 // This holds the .symtab_shndx section index. 732 unsigned SymtabShndxSectionIndex = 0; 733 734 if (HasLargeSectionIndex) { 735 MCSectionELF *SymtabShndxSection = 736 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 737 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 738 SymtabShndxSection->setAlignment(4); 739 } 740 741 ArrayRef<std::string> FileNames = Asm.getFileNames(); 742 for (const std::string &Name : FileNames) 743 StrTabBuilder.add(Name); 744 745 StrTabBuilder.finalize(); 746 747 // File symbols are emitted first and handled separately from normal symbols, 748 // i.e. a non-STT_FILE symbol with the same name may appear. 749 for (const std::string &Name : FileNames) 750 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 751 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 752 ELF::SHN_ABS, true); 753 754 // Symbols are required to be in lexicographic order. 755 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 756 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 757 758 // Set the symbol indices. Local symbols must come before all other 759 // symbols with non-local bindings. 760 unsigned Index = FileNames.size() + 1; 761 762 for (ELFSymbolData &MSD : LocalSymbolData) { 763 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 764 ? 0 765 : StrTabBuilder.getOffset(MSD.Name); 766 MSD.Symbol->setIndex(Index++); 767 writeSymbol(Writer, StringIndex, MSD, Layout); 768 } 769 770 // Write the symbol table entries. 771 LastLocalSymbolIndex = Index; 772 773 for (ELFSymbolData &MSD : ExternalSymbolData) { 774 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 775 MSD.Symbol->setIndex(Index++); 776 writeSymbol(Writer, StringIndex, MSD, Layout); 777 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 778 } 779 780 uint64_t SecEnd = W.OS.tell(); 781 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 782 783 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 784 if (ShndxIndexes.empty()) { 785 assert(SymtabShndxSectionIndex == 0); 786 return; 787 } 788 assert(SymtabShndxSectionIndex != 0); 789 790 SecStart = W.OS.tell(); 791 const MCSectionELF *SymtabShndxSection = 792 SectionTable[SymtabShndxSectionIndex - 1]; 793 for (uint32_t Index : ShndxIndexes) 794 write(Index); 795 SecEnd = W.OS.tell(); 796 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 797 } 798 799 void ELFWriter::writeAddrsigSection() { 800 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 801 encodeULEB128(Sym->getIndex(), W.OS); 802 } 803 804 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 805 const MCSectionELF &Sec) { 806 if (OWriter.Relocations[&Sec].empty()) 807 return nullptr; 808 809 const StringRef SectionName = Sec.getSectionName(); 810 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 811 RelaSectionName += SectionName; 812 813 unsigned EntrySize; 814 if (hasRelocationAddend()) 815 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 816 else 817 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 818 819 unsigned Flags = 0; 820 if (Sec.getFlags() & ELF::SHF_GROUP) 821 Flags = ELF::SHF_GROUP; 822 823 MCSectionELF *RelaSection = Ctx.createELFRelSection( 824 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 825 Flags, EntrySize, Sec.getGroup(), &Sec); 826 RelaSection->setAlignment(is64Bit() ? 8 : 4); 827 return RelaSection; 828 } 829 830 // Include the debug info compression header. 831 bool ELFWriter::maybeWriteCompression( 832 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 833 unsigned Alignment) { 834 if (ZLibStyle) { 835 uint64_t HdrSize = 836 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 837 if (Size <= HdrSize + CompressedContents.size()) 838 return false; 839 // Platform specific header is followed by compressed data. 840 if (is64Bit()) { 841 // Write Elf64_Chdr header. 842 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 843 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 844 write(static_cast<ELF::Elf64_Xword>(Size)); 845 write(static_cast<ELF::Elf64_Xword>(Alignment)); 846 } else { 847 // Write Elf32_Chdr header otherwise. 848 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 849 write(static_cast<ELF::Elf32_Word>(Size)); 850 write(static_cast<ELF::Elf32_Word>(Alignment)); 851 } 852 return true; 853 } 854 855 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 856 // useful for consumers to preallocate a buffer to decompress into. 857 const StringRef Magic = "ZLIB"; 858 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 859 return false; 860 W.OS << Magic; 861 support::endian::write(W.OS, Size, support::big); 862 return true; 863 } 864 865 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 866 const MCAsmLayout &Layout) { 867 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 868 StringRef SectionName = Section.getSectionName(); 869 870 auto &MC = Asm.getContext(); 871 const auto &MAI = MC.getAsmInfo(); 872 873 // Compressing debug_frame requires handling alignment fragments which is 874 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 875 // for writing to arbitrary buffers) for little benefit. 876 bool CompressionEnabled = 877 MAI->compressDebugSections() != DebugCompressionType::None; 878 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 879 SectionName == ".debug_frame") { 880 Asm.writeSectionData(W.OS, &Section, Layout); 881 return; 882 } 883 884 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 885 MAI->compressDebugSections() == DebugCompressionType::GNU) && 886 "expected zlib or zlib-gnu style compression"); 887 888 SmallVector<char, 128> UncompressedData; 889 raw_svector_ostream VecOS(UncompressedData); 890 Asm.writeSectionData(VecOS, &Section, Layout); 891 892 SmallVector<char, 128> CompressedContents; 893 if (Error E = zlib::compress( 894 StringRef(UncompressedData.data(), UncompressedData.size()), 895 CompressedContents)) { 896 consumeError(std::move(E)); 897 W.OS << UncompressedData; 898 return; 899 } 900 901 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 902 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 903 ZlibStyle, Sec.getAlignment())) { 904 W.OS << UncompressedData; 905 return; 906 } 907 908 if (ZlibStyle) { 909 // Set the compressed flag. That is zlib style. 910 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 911 // Alignment field should reflect the requirements of 912 // the compressed section header. 913 Section.setAlignment(is64Bit() ? 8 : 4); 914 } else { 915 // Add "z" prefix to section name. This is zlib-gnu style. 916 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 917 } 918 W.OS << CompressedContents; 919 } 920 921 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 922 uint64_t Address, uint64_t Offset, 923 uint64_t Size, uint32_t Link, uint32_t Info, 924 uint64_t Alignment, uint64_t EntrySize) { 925 W.write<uint32_t>(Name); // sh_name: index into string table 926 W.write<uint32_t>(Type); // sh_type 927 WriteWord(Flags); // sh_flags 928 WriteWord(Address); // sh_addr 929 WriteWord(Offset); // sh_offset 930 WriteWord(Size); // sh_size 931 W.write<uint32_t>(Link); // sh_link 932 W.write<uint32_t>(Info); // sh_info 933 WriteWord(Alignment); // sh_addralign 934 WriteWord(EntrySize); // sh_entsize 935 } 936 937 void ELFWriter::writeRelocations(const MCAssembler &Asm, 938 const MCSectionELF &Sec) { 939 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 940 941 // We record relocations by pushing to the end of a vector. Reverse the vector 942 // to get the relocations in the order they were created. 943 // In most cases that is not important, but it can be for special sections 944 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 945 std::reverse(Relocs.begin(), Relocs.end()); 946 947 // Sort the relocation entries. MIPS needs this. 948 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 949 950 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 951 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 952 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 953 954 if (is64Bit()) { 955 write(Entry.Offset); 956 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 957 write(uint32_t(Index)); 958 959 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 960 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 961 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 962 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 963 } else { 964 struct ELF::Elf64_Rela ERE64; 965 ERE64.setSymbolAndType(Index, Entry.Type); 966 write(ERE64.r_info); 967 } 968 if (hasRelocationAddend()) 969 write(Entry.Addend); 970 } else { 971 write(uint32_t(Entry.Offset)); 972 973 struct ELF::Elf32_Rela ERE32; 974 ERE32.setSymbolAndType(Index, Entry.Type); 975 write(ERE32.r_info); 976 977 if (hasRelocationAddend()) 978 write(uint32_t(Entry.Addend)); 979 980 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 981 if (uint32_t RType = 982 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 983 write(uint32_t(Entry.Offset)); 984 985 ERE32.setSymbolAndType(0, RType); 986 write(ERE32.r_info); 987 write(uint32_t(0)); 988 } 989 if (uint32_t RType = 990 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 991 write(uint32_t(Entry.Offset)); 992 993 ERE32.setSymbolAndType(0, RType); 994 write(ERE32.r_info); 995 write(uint32_t(0)); 996 } 997 } 998 } 999 } 1000 } 1001 1002 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) { 1003 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 1004 StrTabBuilder.write(W.OS); 1005 return StrtabSection; 1006 } 1007 1008 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 1009 uint32_t GroupSymbolIndex, uint64_t Offset, 1010 uint64_t Size, const MCSectionELF &Section) { 1011 uint64_t sh_link = 0; 1012 uint64_t sh_info = 0; 1013 1014 switch(Section.getType()) { 1015 default: 1016 // Nothing to do. 1017 break; 1018 1019 case ELF::SHT_DYNAMIC: 1020 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 1021 1022 case ELF::SHT_REL: 1023 case ELF::SHT_RELA: { 1024 sh_link = SymbolTableIndex; 1025 assert(sh_link && ".symtab not found"); 1026 const MCSection *InfoSection = Section.getAssociatedSection(); 1027 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1028 break; 1029 } 1030 1031 case ELF::SHT_SYMTAB: 1032 sh_link = StringTableIndex; 1033 sh_info = LastLocalSymbolIndex; 1034 break; 1035 1036 case ELF::SHT_SYMTAB_SHNDX: 1037 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1038 case ELF::SHT_LLVM_ADDRSIG: 1039 sh_link = SymbolTableIndex; 1040 break; 1041 1042 case ELF::SHT_GROUP: 1043 sh_link = SymbolTableIndex; 1044 sh_info = GroupSymbolIndex; 1045 break; 1046 } 1047 1048 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1049 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1050 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1051 sh_link = SectionIndexMap.lookup(Sec); 1052 } 1053 1054 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1055 Section.getType(), Section.getFlags(), 0, Offset, Size, 1056 sh_link, sh_info, Section.getAlignment(), 1057 Section.getEntrySize()); 1058 } 1059 1060 void ELFWriter::writeSectionHeader( 1061 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1062 const SectionOffsetsTy &SectionOffsets) { 1063 const unsigned NumSections = SectionTable.size(); 1064 1065 // Null section first. 1066 uint64_t FirstSectionSize = 1067 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1068 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1069 1070 for (const MCSectionELF *Section : SectionTable) { 1071 uint32_t GroupSymbolIndex; 1072 unsigned Type = Section->getType(); 1073 if (Type != ELF::SHT_GROUP) 1074 GroupSymbolIndex = 0; 1075 else 1076 GroupSymbolIndex = Section->getGroup()->getIndex(); 1077 1078 const std::pair<uint64_t, uint64_t> &Offsets = 1079 SectionOffsets.find(Section)->second; 1080 uint64_t Size; 1081 if (Type == ELF::SHT_NOBITS) 1082 Size = Layout.getSectionAddressSize(Section); 1083 else 1084 Size = Offsets.second - Offsets.first; 1085 1086 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1087 *Section); 1088 } 1089 } 1090 1091 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1092 uint64_t StartOffset = W.OS.tell(); 1093 1094 MCContext &Ctx = Asm.getContext(); 1095 MCSectionELF *StrtabSection = 1096 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1097 StringTableIndex = addToSectionTable(StrtabSection); 1098 1099 RevGroupMapTy RevGroupMap; 1100 SectionIndexMapTy SectionIndexMap; 1101 1102 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1103 1104 // Write out the ELF header ... 1105 writeHeader(Asm); 1106 1107 // ... then the sections ... 1108 SectionOffsetsTy SectionOffsets; 1109 std::vector<MCSectionELF *> Groups; 1110 std::vector<MCSectionELF *> Relocations; 1111 for (MCSection &Sec : Asm) { 1112 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1113 if (Mode == NonDwoOnly && isDwoSection(Section)) 1114 continue; 1115 if (Mode == DwoOnly && !isDwoSection(Section)) 1116 continue; 1117 1118 align(Section.getAlignment()); 1119 1120 // Remember the offset into the file for this section. 1121 uint64_t SecStart = W.OS.tell(); 1122 1123 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1124 writeSectionData(Asm, Section, Layout); 1125 1126 uint64_t SecEnd = W.OS.tell(); 1127 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1128 1129 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1130 1131 if (SignatureSymbol) { 1132 Asm.registerSymbol(*SignatureSymbol); 1133 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1134 if (!GroupIdx) { 1135 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1136 GroupIdx = addToSectionTable(Group); 1137 Group->setAlignment(4); 1138 Groups.push_back(Group); 1139 } 1140 std::vector<const MCSectionELF *> &Members = 1141 GroupMembers[SignatureSymbol]; 1142 Members.push_back(&Section); 1143 if (RelSection) 1144 Members.push_back(RelSection); 1145 } 1146 1147 SectionIndexMap[&Section] = addToSectionTable(&Section); 1148 if (RelSection) { 1149 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1150 Relocations.push_back(RelSection); 1151 } 1152 1153 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1154 } 1155 1156 MCSectionELF *CGProfileSection = nullptr; 1157 if (!Asm.CGProfile.empty()) { 1158 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile", 1159 ELF::SHT_LLVM_CALL_GRAPH_PROFILE, 1160 ELF::SHF_EXCLUDE, 16, ""); 1161 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection); 1162 } 1163 1164 for (MCSectionELF *Group : Groups) { 1165 align(Group->getAlignment()); 1166 1167 // Remember the offset into the file for this section. 1168 uint64_t SecStart = W.OS.tell(); 1169 1170 const MCSymbol *SignatureSymbol = Group->getGroup(); 1171 assert(SignatureSymbol); 1172 write(uint32_t(ELF::GRP_COMDAT)); 1173 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1174 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1175 write(SecIndex); 1176 } 1177 1178 uint64_t SecEnd = W.OS.tell(); 1179 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1180 } 1181 1182 if (Mode == DwoOnly) { 1183 // dwo files don't have symbol tables or relocations, but they do have 1184 // string tables. 1185 StrTabBuilder.finalize(); 1186 } else { 1187 MCSectionELF *AddrsigSection; 1188 if (OWriter.EmitAddrsigSection) { 1189 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1190 ELF::SHF_EXCLUDE); 1191 addToSectionTable(AddrsigSection); 1192 } 1193 1194 // Compute symbol table information. 1195 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1196 SectionOffsets); 1197 1198 for (MCSectionELF *RelSection : Relocations) { 1199 align(RelSection->getAlignment()); 1200 1201 // Remember the offset into the file for this section. 1202 uint64_t SecStart = W.OS.tell(); 1203 1204 writeRelocations(Asm, 1205 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1206 1207 uint64_t SecEnd = W.OS.tell(); 1208 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1209 } 1210 1211 if (OWriter.EmitAddrsigSection) { 1212 uint64_t SecStart = W.OS.tell(); 1213 writeAddrsigSection(); 1214 uint64_t SecEnd = W.OS.tell(); 1215 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1216 } 1217 } 1218 1219 if (CGProfileSection) { 1220 uint64_t SecStart = W.OS.tell(); 1221 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1222 W.write<uint32_t>(CGPE.From->getSymbol().getIndex()); 1223 W.write<uint32_t>(CGPE.To->getSymbol().getIndex()); 1224 W.write<uint64_t>(CGPE.Count); 1225 } 1226 uint64_t SecEnd = W.OS.tell(); 1227 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd); 1228 } 1229 1230 { 1231 uint64_t SecStart = W.OS.tell(); 1232 const MCSectionELF *Sec = createStringTable(Ctx); 1233 uint64_t SecEnd = W.OS.tell(); 1234 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1235 } 1236 1237 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1238 align(NaturalAlignment); 1239 1240 const uint64_t SectionHeaderOffset = W.OS.tell(); 1241 1242 // ... then the section header table ... 1243 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1244 1245 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1246 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1247 : SectionTable.size() + 1, 1248 W.Endian); 1249 unsigned NumSectionsOffset; 1250 1251 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1252 if (is64Bit()) { 1253 uint64_t Val = 1254 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1255 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1256 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1257 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1258 } else { 1259 uint32_t Val = 1260 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1261 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1262 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1263 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1264 } 1265 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1266 NumSectionsOffset); 1267 1268 return W.OS.tell() - StartOffset; 1269 } 1270 1271 bool ELFObjectWriter::hasRelocationAddend() const { 1272 return TargetObjectWriter->hasRelocationAddend(); 1273 } 1274 1275 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1276 const MCAsmLayout &Layout) { 1277 // The presence of symbol versions causes undefined symbols and 1278 // versions declared with @@@ to be renamed. 1279 for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) { 1280 StringRef AliasName = P.first; 1281 const auto &Symbol = cast<MCSymbolELF>(*P.second); 1282 size_t Pos = AliasName.find('@'); 1283 assert(Pos != StringRef::npos); 1284 1285 StringRef Prefix = AliasName.substr(0, Pos); 1286 StringRef Rest = AliasName.substr(Pos); 1287 StringRef Tail = Rest; 1288 if (Rest.startswith("@@@")) 1289 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1290 1291 auto *Alias = 1292 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1293 Asm.registerSymbol(*Alias); 1294 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1295 Alias->setVariableValue(Value); 1296 1297 // Aliases defined with .symvar copy the binding from the symbol they alias. 1298 // This is the first place we are able to copy this information. 1299 Alias->setExternal(Symbol.isExternal()); 1300 Alias->setBinding(Symbol.getBinding()); 1301 Alias->setOther(Symbol.getOther()); 1302 1303 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 1304 continue; 1305 1306 // FIXME: Get source locations for these errors or diagnose them earlier. 1307 if (Symbol.isUndefined() && Rest.startswith("@@") && 1308 !Rest.startswith("@@@")) { 1309 Asm.getContext().reportError(SMLoc(), "versioned symbol " + AliasName + 1310 " must be defined"); 1311 continue; 1312 } 1313 1314 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1315 Asm.getContext().reportError( 1316 SMLoc(), llvm::Twine("multiple symbol versions defined for ") + 1317 Symbol.getName()); 1318 continue; 1319 } 1320 1321 Renames.insert(std::make_pair(&Symbol, Alias)); 1322 } 1323 1324 for (const MCSymbol *&Sym : AddrsigSyms) { 1325 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1326 Sym = R; 1327 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1328 Sym = Sym->getSection().getBeginSymbol(); 1329 Sym->setUsedInReloc(); 1330 } 1331 } 1332 1333 // It is always valid to create a relocation with a symbol. It is preferable 1334 // to use a relocation with a section if that is possible. Using the section 1335 // allows us to omit some local symbols from the symbol table. 1336 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1337 const MCSymbolRefExpr *RefA, 1338 const MCSymbolELF *Sym, 1339 uint64_t C, 1340 unsigned Type) const { 1341 // A PCRel relocation to an absolute value has no symbol (or section). We 1342 // represent that with a relocation to a null section. 1343 if (!RefA) 1344 return false; 1345 1346 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1347 switch (Kind) { 1348 default: 1349 break; 1350 // The .odp creation emits a relocation against the symbol ".TOC." which 1351 // create a R_PPC64_TOC relocation. However the relocation symbol name 1352 // in final object creation should be NULL, since the symbol does not 1353 // really exist, it is just the reference to TOC base for the current 1354 // object file. Since the symbol is undefined, returning false results 1355 // in a relocation with a null section which is the desired result. 1356 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1357 return false; 1358 1359 // These VariantKind cause the relocation to refer to something other than 1360 // the symbol itself, like a linker generated table. Since the address of 1361 // symbol is not relevant, we cannot replace the symbol with the 1362 // section and patch the difference in the addend. 1363 case MCSymbolRefExpr::VK_GOT: 1364 case MCSymbolRefExpr::VK_PLT: 1365 case MCSymbolRefExpr::VK_GOTPCREL: 1366 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1367 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1368 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1369 return true; 1370 } 1371 1372 // An undefined symbol is not in any section, so the relocation has to point 1373 // to the symbol itself. 1374 assert(Sym && "Expected a symbol"); 1375 if (Sym->isUndefined()) 1376 return true; 1377 1378 unsigned Binding = Sym->getBinding(); 1379 switch(Binding) { 1380 default: 1381 llvm_unreachable("Invalid Binding"); 1382 case ELF::STB_LOCAL: 1383 break; 1384 case ELF::STB_WEAK: 1385 // If the symbol is weak, it might be overridden by a symbol in another 1386 // file. The relocation has to point to the symbol so that the linker 1387 // can update it. 1388 return true; 1389 case ELF::STB_GLOBAL: 1390 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1391 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1392 return true; 1393 } 1394 1395 // Keep symbol type for a local ifunc because it may result in an IRELATIVE 1396 // reloc that the dynamic loader will use to resolve the address at startup 1397 // time. 1398 if (Sym->getType() == ELF::STT_GNU_IFUNC) 1399 return true; 1400 1401 // If a relocation points to a mergeable section, we have to be careful. 1402 // If the offset is zero, a relocation with the section will encode the 1403 // same information. With a non-zero offset, the situation is different. 1404 // For example, a relocation can point 42 bytes past the end of a string. 1405 // If we change such a relocation to use the section, the linker would think 1406 // that it pointed to another string and subtracting 42 at runtime will 1407 // produce the wrong value. 1408 if (Sym->isInSection()) { 1409 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1410 unsigned Flags = Sec.getFlags(); 1411 if (Flags & ELF::SHF_MERGE) { 1412 if (C != 0) 1413 return true; 1414 1415 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 1416 // only handle section relocations to mergeable sections if using RELA. 1417 if (!hasRelocationAddend()) 1418 return true; 1419 } 1420 1421 // Most TLS relocations use a got, so they need the symbol. Even those that 1422 // are just an offset (@tpoff), require a symbol in gold versions before 1423 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1424 // http://sourceware.org/PR16773. 1425 if (Flags & ELF::SHF_TLS) 1426 return true; 1427 } 1428 1429 // If the symbol is a thumb function the final relocation must set the lowest 1430 // bit. With a symbol that is done by just having the symbol have that bit 1431 // set, so we would lose the bit if we relocated with the section. 1432 // FIXME: We could use the section but add the bit to the relocation value. 1433 if (Asm.isThumbFunc(Sym)) 1434 return true; 1435 1436 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1437 return true; 1438 return false; 1439 } 1440 1441 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1442 const MCAsmLayout &Layout, 1443 const MCFragment *Fragment, 1444 const MCFixup &Fixup, MCValue Target, 1445 uint64_t &FixedValue) { 1446 MCAsmBackend &Backend = Asm.getBackend(); 1447 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1448 MCFixupKindInfo::FKF_IsPCRel; 1449 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1450 uint64_t C = Target.getConstant(); 1451 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1452 MCContext &Ctx = Asm.getContext(); 1453 1454 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1455 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1456 if (SymB.isUndefined()) { 1457 Ctx.reportError(Fixup.getLoc(), 1458 Twine("symbol '") + SymB.getName() + 1459 "' can not be undefined in a subtraction expression"); 1460 return; 1461 } 1462 1463 assert(!SymB.isAbsolute() && "Should have been folded"); 1464 const MCSection &SecB = SymB.getSection(); 1465 if (&SecB != &FixupSection) { 1466 Ctx.reportError(Fixup.getLoc(), 1467 "Cannot represent a difference across sections"); 1468 return; 1469 } 1470 1471 assert(!IsPCRel && "should have been folded"); 1472 IsPCRel = true; 1473 C += FixupOffset - Layout.getSymbolOffset(SymB); 1474 } 1475 1476 // We either rejected the fixup or folded B into C at this point. 1477 const MCSymbolRefExpr *RefA = Target.getSymA(); 1478 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1479 1480 bool ViaWeakRef = false; 1481 if (SymA && SymA->isVariable()) { 1482 const MCExpr *Expr = SymA->getVariableValue(); 1483 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1484 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1485 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1486 ViaWeakRef = true; 1487 } 1488 } 1489 } 1490 1491 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1492 ? cast<MCSectionELF>(&SymA->getSection()) 1493 : nullptr; 1494 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1495 return; 1496 1497 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1498 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 1499 uint64_t Addend = 0; 1500 1501 FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined() 1502 ? C + Layout.getSymbolOffset(*SymA) 1503 : C; 1504 if (hasRelocationAddend()) { 1505 Addend = FixedValue; 1506 FixedValue = 0; 1507 } 1508 1509 if (!RelocateWithSymbol) { 1510 const auto *SectionSymbol = 1511 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1512 if (SectionSymbol) 1513 SectionSymbol->setUsedInReloc(); 1514 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C); 1515 Relocations[&FixupSection].push_back(Rec); 1516 return; 1517 } 1518 1519 const MCSymbolELF *RenamedSymA = SymA; 1520 if (SymA) { 1521 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1522 RenamedSymA = R; 1523 1524 if (ViaWeakRef) 1525 RenamedSymA->setIsWeakrefUsedInReloc(); 1526 else 1527 RenamedSymA->setUsedInReloc(); 1528 } 1529 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C); 1530 Relocations[&FixupSection].push_back(Rec); 1531 } 1532 1533 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1534 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1535 bool InSet, bool IsPCRel) const { 1536 const auto &SymA = cast<MCSymbolELF>(SA); 1537 if (IsPCRel) { 1538 assert(!InSet); 1539 if (isWeak(SymA)) 1540 return false; 1541 } 1542 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1543 InSet, IsPCRel); 1544 } 1545 1546 std::unique_ptr<MCObjectWriter> 1547 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1548 raw_pwrite_stream &OS, bool IsLittleEndian) { 1549 return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1550 IsLittleEndian); 1551 } 1552 1553 std::unique_ptr<MCObjectWriter> 1554 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1555 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1556 bool IsLittleEndian) { 1557 return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1558 IsLittleEndian); 1559 } 1560