1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/BinaryFormat/ELF.h" 21 #include "llvm/MC/MCAsmBackend.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFixupKindInfo.h" 30 #include "llvm/MC/MCFragment.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCValue.h" 38 #include "llvm/MC/StringTableBuilder.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compression.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/Error.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Host.h" 46 #include "llvm/Support/LEB128.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/SMLoc.h" 49 #include "llvm/Support/StringSaver.h" 50 #include "llvm/Support/SwapByteOrder.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <map> 57 #include <memory> 58 #include <string> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #undef DEBUG_TYPE 65 #define DEBUG_TYPE "reloc-info" 66 67 namespace { 68 69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 70 71 class ELFObjectWriter; 72 struct ELFWriter; 73 74 bool isDwoSection(const MCSectionELF &Sec) { 75 return Sec.getSectionName().endswith(".dwo"); 76 } 77 78 class SymbolTableWriter { 79 ELFWriter &EWriter; 80 bool Is64Bit; 81 82 // indexes we are going to write to .symtab_shndx. 83 std::vector<uint32_t> ShndxIndexes; 84 85 // The numbel of symbols written so far. 86 unsigned NumWritten; 87 88 void createSymtabShndx(); 89 90 template <typename T> void write(T Value); 91 92 public: 93 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 94 95 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 96 uint8_t other, uint32_t shndx, bool Reserved); 97 98 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 99 }; 100 101 struct ELFWriter { 102 ELFObjectWriter &OWriter; 103 support::endian::Writer W; 104 105 enum DwoMode { 106 AllSections, 107 NonDwoOnly, 108 DwoOnly, 109 } Mode; 110 111 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 112 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 113 bool Used, bool Renamed); 114 115 /// Helper struct for containing some precomputed information on symbols. 116 struct ELFSymbolData { 117 const MCSymbolELF *Symbol; 118 uint32_t SectionIndex; 119 StringRef Name; 120 121 // Support lexicographic sorting. 122 bool operator<(const ELFSymbolData &RHS) const { 123 unsigned LHSType = Symbol->getType(); 124 unsigned RHSType = RHS.Symbol->getType(); 125 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 126 return false; 127 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 128 return true; 129 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 130 return SectionIndex < RHS.SectionIndex; 131 return Name < RHS.Name; 132 } 133 }; 134 135 /// @} 136 /// @name Symbol Table Data 137 /// @{ 138 139 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 140 141 /// @} 142 143 // This holds the symbol table index of the last local symbol. 144 unsigned LastLocalSymbolIndex; 145 // This holds the .strtab section index. 146 unsigned StringTableIndex; 147 // This holds the .symtab section index. 148 unsigned SymbolTableIndex; 149 150 // Sections in the order they are to be output in the section table. 151 std::vector<const MCSectionELF *> SectionTable; 152 unsigned addToSectionTable(const MCSectionELF *Sec); 153 154 // TargetObjectWriter wrappers. 155 bool is64Bit() const; 156 bool hasRelocationAddend() const; 157 158 void align(unsigned Alignment); 159 160 bool maybeWriteCompression(uint64_t Size, 161 SmallVectorImpl<char> &CompressedContents, 162 bool ZLibStyle, unsigned Alignment); 163 164 public: 165 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 166 bool IsLittleEndian, DwoMode Mode) 167 : OWriter(OWriter), 168 W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} 169 170 void WriteWord(uint64_t Word) { 171 if (is64Bit()) 172 W.write<uint64_t>(Word); 173 else 174 W.write<uint32_t>(Word); 175 } 176 177 template <typename T> void write(T Val) { 178 W.write(Val); 179 } 180 181 void writeHeader(const MCAssembler &Asm); 182 183 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 184 ELFSymbolData &MSD, const MCAsmLayout &Layout); 185 186 // Start and end offset of each section 187 using SectionOffsetsTy = 188 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 189 190 // Map from a signature symbol to the group section index 191 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 192 193 /// Compute the symbol table data 194 /// 195 /// \param Asm - The assembler. 196 /// \param SectionIndexMap - Maps a section to its index. 197 /// \param RevGroupMap - Maps a signature symbol to the group section. 198 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 199 const SectionIndexMapTy &SectionIndexMap, 200 const RevGroupMapTy &RevGroupMap, 201 SectionOffsetsTy &SectionOffsets); 202 203 void writeAddrsigSection(); 204 205 MCSectionELF *createRelocationSection(MCContext &Ctx, 206 const MCSectionELF &Sec); 207 208 const MCSectionELF *createStringTable(MCContext &Ctx); 209 210 void writeSectionHeader(const MCAsmLayout &Layout, 211 const SectionIndexMapTy &SectionIndexMap, 212 const SectionOffsetsTy &SectionOffsets); 213 214 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 215 const MCAsmLayout &Layout); 216 217 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 218 uint64_t Address, uint64_t Offset, uint64_t Size, 219 uint32_t Link, uint32_t Info, uint64_t Alignment, 220 uint64_t EntrySize); 221 222 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 223 224 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); 225 void writeSection(const SectionIndexMapTy &SectionIndexMap, 226 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 227 const MCSectionELF &Section); 228 }; 229 230 class ELFObjectWriter : public MCObjectWriter { 231 /// The target specific ELF writer instance. 232 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 233 234 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 235 236 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 237 238 bool EmitAddrsigSection = false; 239 std::vector<const MCSymbol *> AddrsigSyms; 240 241 bool hasRelocationAddend() const; 242 243 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 244 const MCSymbolRefExpr *RefA, 245 const MCSymbolELF *Sym, uint64_t C, 246 unsigned Type) const; 247 248 public: 249 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 250 : TargetObjectWriter(std::move(MOTW)) {} 251 252 void reset() override { 253 Relocations.clear(); 254 Renames.clear(); 255 MCObjectWriter::reset(); 256 } 257 258 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 259 const MCSymbol &SymA, 260 const MCFragment &FB, bool InSet, 261 bool IsPCRel) const override; 262 263 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 264 const MCSectionELF *From, 265 const MCSectionELF *To) { 266 return true; 267 } 268 269 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 270 const MCFragment *Fragment, const MCFixup &Fixup, 271 MCValue Target, uint64_t &FixedValue) override; 272 273 void executePostLayoutBinding(MCAssembler &Asm, 274 const MCAsmLayout &Layout) override; 275 276 void emitAddrsigSection() override { EmitAddrsigSection = true; } 277 void addAddrsigSymbol(const MCSymbol *Sym) override { 278 AddrsigSyms.push_back(Sym); 279 } 280 281 friend struct ELFWriter; 282 }; 283 284 class ELFSingleObjectWriter : public ELFObjectWriter { 285 raw_pwrite_stream &OS; 286 bool IsLittleEndian; 287 288 public: 289 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 290 raw_pwrite_stream &OS, bool IsLittleEndian) 291 : ELFObjectWriter(std::move(MOTW)), OS(OS), 292 IsLittleEndian(IsLittleEndian) {} 293 294 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 295 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 296 .writeObject(Asm, Layout); 297 } 298 299 friend struct ELFWriter; 300 }; 301 302 class ELFDwoObjectWriter : public ELFObjectWriter { 303 raw_pwrite_stream &OS, &DwoOS; 304 bool IsLittleEndian; 305 306 public: 307 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 308 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 309 bool IsLittleEndian) 310 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 311 IsLittleEndian(IsLittleEndian) {} 312 313 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 314 const MCSectionELF *From, 315 const MCSectionELF *To) override { 316 if (isDwoSection(*From)) { 317 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 318 return false; 319 } 320 if (To && isDwoSection(*To)) { 321 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 322 return false; 323 } 324 return true; 325 } 326 327 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { 328 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 329 .writeObject(Asm, Layout); 330 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 331 .writeObject(Asm, Layout); 332 return Size; 333 } 334 }; 335 336 } // end anonymous namespace 337 338 void ELFWriter::align(unsigned Alignment) { 339 uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment); 340 W.OS.write_zeros(Padding); 341 } 342 343 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 344 SectionTable.push_back(Sec); 345 StrTabBuilder.add(Sec->getSectionName()); 346 return SectionTable.size(); 347 } 348 349 void SymbolTableWriter::createSymtabShndx() { 350 if (!ShndxIndexes.empty()) 351 return; 352 353 ShndxIndexes.resize(NumWritten); 354 } 355 356 template <typename T> void SymbolTableWriter::write(T Value) { 357 EWriter.write(Value); 358 } 359 360 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 361 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 362 363 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 364 uint64_t size, uint8_t other, 365 uint32_t shndx, bool Reserved) { 366 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 367 368 if (LargeIndex) 369 createSymtabShndx(); 370 371 if (!ShndxIndexes.empty()) { 372 if (LargeIndex) 373 ShndxIndexes.push_back(shndx); 374 else 375 ShndxIndexes.push_back(0); 376 } 377 378 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 379 380 if (Is64Bit) { 381 write(name); // st_name 382 write(info); // st_info 383 write(other); // st_other 384 write(Index); // st_shndx 385 write(value); // st_value 386 write(size); // st_size 387 } else { 388 write(name); // st_name 389 write(uint32_t(value)); // st_value 390 write(uint32_t(size)); // st_size 391 write(info); // st_info 392 write(other); // st_other 393 write(Index); // st_shndx 394 } 395 396 ++NumWritten; 397 } 398 399 bool ELFWriter::is64Bit() const { 400 return OWriter.TargetObjectWriter->is64Bit(); 401 } 402 403 bool ELFWriter::hasRelocationAddend() const { 404 return OWriter.hasRelocationAddend(); 405 } 406 407 // Emit the ELF header. 408 void ELFWriter::writeHeader(const MCAssembler &Asm) { 409 // ELF Header 410 // ---------- 411 // 412 // Note 413 // ---- 414 // emitWord method behaves differently for ELF32 and ELF64, writing 415 // 4 bytes in the former and 8 in the latter. 416 417 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 418 419 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 420 421 // e_ident[EI_DATA] 422 W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB 423 : ELF::ELFDATA2MSB); 424 425 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 426 // e_ident[EI_OSABI] 427 W.OS << char(OWriter.TargetObjectWriter->getOSABI()); 428 W.OS << char(0); // e_ident[EI_ABIVERSION] 429 430 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 431 432 W.write<uint16_t>(ELF::ET_REL); // e_type 433 434 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 435 436 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 437 WriteWord(0); // e_entry, no entry point in .o file 438 WriteWord(0); // e_phoff, no program header for .o 439 WriteWord(0); // e_shoff = sec hdr table off in bytes 440 441 // e_flags = whatever the target wants 442 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 443 444 // e_ehsize = ELF header size 445 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 446 : sizeof(ELF::Elf32_Ehdr)); 447 448 W.write<uint16_t>(0); // e_phentsize = prog header entry size 449 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 450 451 // e_shentsize = Section header entry size 452 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 453 : sizeof(ELF::Elf32_Shdr)); 454 455 // e_shnum = # of section header ents 456 W.write<uint16_t>(0); 457 458 // e_shstrndx = Section # of '.shstrtab' 459 assert(StringTableIndex < ELF::SHN_LORESERVE); 460 W.write<uint16_t>(StringTableIndex); 461 } 462 463 uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, 464 const MCAsmLayout &Layout) { 465 if (Sym.isCommon() && Sym.isExternal()) 466 return Sym.getCommonAlignment(); 467 468 uint64_t Res; 469 if (!Layout.getSymbolOffset(Sym, Res)) 470 return 0; 471 472 if (Layout.getAssembler().isThumbFunc(&Sym)) 473 Res |= 1; 474 475 return Res; 476 } 477 478 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 479 uint8_t Type = newType; 480 481 // Propagation rules: 482 // IFUNC > FUNC > OBJECT > NOTYPE 483 // TLS_OBJECT > OBJECT > NOTYPE 484 // 485 // dont let the new type degrade the old type 486 switch (origType) { 487 default: 488 break; 489 case ELF::STT_GNU_IFUNC: 490 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 491 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 492 Type = ELF::STT_GNU_IFUNC; 493 break; 494 case ELF::STT_FUNC: 495 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 496 Type == ELF::STT_TLS) 497 Type = ELF::STT_FUNC; 498 break; 499 case ELF::STT_OBJECT: 500 if (Type == ELF::STT_NOTYPE) 501 Type = ELF::STT_OBJECT; 502 break; 503 case ELF::STT_TLS: 504 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 505 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 506 Type = ELF::STT_TLS; 507 break; 508 } 509 510 return Type; 511 } 512 513 void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 514 ELFSymbolData &MSD, const MCAsmLayout &Layout) { 515 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 516 const MCSymbolELF *Base = 517 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 518 519 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 520 // SHN_COMMON. 521 bool IsReserved = !Base || Symbol.isCommon(); 522 523 // Binding and Type share the same byte as upper and lower nibbles 524 uint8_t Binding = Symbol.getBinding(); 525 uint8_t Type = Symbol.getType(); 526 if (Base) { 527 Type = mergeTypeForSet(Type, Base->getType()); 528 } 529 uint8_t Info = (Binding << 4) | Type; 530 531 // Other and Visibility share the same byte with Visibility using the lower 532 // 2 bits 533 uint8_t Visibility = Symbol.getVisibility(); 534 uint8_t Other = Symbol.getOther() | Visibility; 535 536 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 537 uint64_t Size = 0; 538 539 const MCExpr *ESize = MSD.Symbol->getSize(); 540 if (!ESize && Base) 541 ESize = Base->getSize(); 542 543 if (ESize) { 544 int64_t Res; 545 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 546 report_fatal_error("Size expression must be absolute."); 547 Size = Res; 548 } 549 550 // Write out the symbol table entry 551 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 552 IsReserved); 553 } 554 555 // True if the assembler knows nothing about the final value of the symbol. 556 // This doesn't cover the comdat issues, since in those cases the assembler 557 // can at least know that all symbols in the section will move together. 558 static bool isWeak(const MCSymbolELF &Sym) { 559 if (Sym.getType() == ELF::STT_GNU_IFUNC) 560 return true; 561 562 switch (Sym.getBinding()) { 563 default: 564 llvm_unreachable("Unknown binding"); 565 case ELF::STB_LOCAL: 566 return false; 567 case ELF::STB_GLOBAL: 568 return false; 569 case ELF::STB_WEAK: 570 case ELF::STB_GNU_UNIQUE: 571 return true; 572 } 573 } 574 575 bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 576 bool Used, bool Renamed) { 577 if (Symbol.isVariable()) { 578 const MCExpr *Expr = Symbol.getVariableValue(); 579 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 580 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 581 return false; 582 } 583 } 584 585 if (Used) 586 return true; 587 588 if (Renamed) 589 return false; 590 591 if (Symbol.isVariable() && Symbol.isUndefined()) { 592 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 593 Layout.getBaseSymbol(Symbol); 594 return false; 595 } 596 597 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 598 return false; 599 600 if (Symbol.isTemporary()) 601 return false; 602 603 if (Symbol.getType() == ELF::STT_SECTION) 604 return false; 605 606 return true; 607 } 608 609 void ELFWriter::computeSymbolTable( 610 MCAssembler &Asm, const MCAsmLayout &Layout, 611 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 612 SectionOffsetsTy &SectionOffsets) { 613 MCContext &Ctx = Asm.getContext(); 614 SymbolTableWriter Writer(*this, is64Bit()); 615 616 // Symbol table 617 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 618 MCSectionELF *SymtabSection = 619 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 620 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 621 SymbolTableIndex = addToSectionTable(SymtabSection); 622 623 align(SymtabSection->getAlignment()); 624 uint64_t SecStart = W.OS.tell(); 625 626 // The first entry is the undefined symbol entry. 627 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 628 629 std::vector<ELFSymbolData> LocalSymbolData; 630 std::vector<ELFSymbolData> ExternalSymbolData; 631 632 // Add the data for the symbols. 633 bool HasLargeSectionIndex = false; 634 for (const MCSymbol &S : Asm.symbols()) { 635 const auto &Symbol = cast<MCSymbolELF>(S); 636 bool Used = Symbol.isUsedInReloc(); 637 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 638 bool isSignature = Symbol.isSignature(); 639 640 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 641 OWriter.Renames.count(&Symbol))) 642 continue; 643 644 if (Symbol.isTemporary() && Symbol.isUndefined()) { 645 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 646 continue; 647 } 648 649 ELFSymbolData MSD; 650 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 651 652 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 653 assert(Local || !Symbol.isTemporary()); 654 655 if (Symbol.isAbsolute()) { 656 MSD.SectionIndex = ELF::SHN_ABS; 657 } else if (Symbol.isCommon()) { 658 assert(!Local); 659 MSD.SectionIndex = ELF::SHN_COMMON; 660 } else if (Symbol.isUndefined()) { 661 if (isSignature && !Used) { 662 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 663 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 664 HasLargeSectionIndex = true; 665 } else { 666 MSD.SectionIndex = ELF::SHN_UNDEF; 667 } 668 } else { 669 const MCSectionELF &Section = 670 static_cast<const MCSectionELF &>(Symbol.getSection()); 671 672 // We may end up with a situation when section symbol is technically 673 // defined, but should not be. That happens because we explicitly 674 // pre-create few .debug_* sections to have accessors. 675 // And if these sections were not really defined in the code, but were 676 // referenced, we simply error out. 677 if (!Section.isRegistered()) { 678 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 679 ELF::STT_SECTION); 680 Ctx.reportError(SMLoc(), 681 "Undefined section reference: " + Symbol.getName()); 682 continue; 683 } 684 685 if (Mode == NonDwoOnly && isDwoSection(Section)) 686 continue; 687 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 688 assert(MSD.SectionIndex && "Invalid section index!"); 689 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 690 HasLargeSectionIndex = true; 691 } 692 693 StringRef Name = Symbol.getName(); 694 695 // Sections have their own string table 696 if (Symbol.getType() != ELF::STT_SECTION) { 697 MSD.Name = Name; 698 StrTabBuilder.add(Name); 699 } 700 701 if (Local) 702 LocalSymbolData.push_back(MSD); 703 else 704 ExternalSymbolData.push_back(MSD); 705 } 706 707 // This holds the .symtab_shndx section index. 708 unsigned SymtabShndxSectionIndex = 0; 709 710 if (HasLargeSectionIndex) { 711 MCSectionELF *SymtabShndxSection = 712 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 713 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 714 SymtabShndxSection->setAlignment(4); 715 } 716 717 ArrayRef<std::string> FileNames = Asm.getFileNames(); 718 for (const std::string &Name : FileNames) 719 StrTabBuilder.add(Name); 720 721 StrTabBuilder.finalize(); 722 723 // File symbols are emitted first and handled separately from normal symbols, 724 // i.e. a non-STT_FILE symbol with the same name may appear. 725 for (const std::string &Name : FileNames) 726 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 727 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 728 ELF::SHN_ABS, true); 729 730 // Symbols are required to be in lexicographic order. 731 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 732 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 733 734 // Set the symbol indices. Local symbols must come before all other 735 // symbols with non-local bindings. 736 unsigned Index = FileNames.size() + 1; 737 738 for (ELFSymbolData &MSD : LocalSymbolData) { 739 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 740 ? 0 741 : StrTabBuilder.getOffset(MSD.Name); 742 MSD.Symbol->setIndex(Index++); 743 writeSymbol(Writer, StringIndex, MSD, Layout); 744 } 745 746 // Write the symbol table entries. 747 LastLocalSymbolIndex = Index; 748 749 for (ELFSymbolData &MSD : ExternalSymbolData) { 750 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 751 MSD.Symbol->setIndex(Index++); 752 writeSymbol(Writer, StringIndex, MSD, Layout); 753 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 754 } 755 756 uint64_t SecEnd = W.OS.tell(); 757 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 758 759 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 760 if (ShndxIndexes.empty()) { 761 assert(SymtabShndxSectionIndex == 0); 762 return; 763 } 764 assert(SymtabShndxSectionIndex != 0); 765 766 SecStart = W.OS.tell(); 767 const MCSectionELF *SymtabShndxSection = 768 SectionTable[SymtabShndxSectionIndex - 1]; 769 for (uint32_t Index : ShndxIndexes) 770 write(Index); 771 SecEnd = W.OS.tell(); 772 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 773 } 774 775 void ELFWriter::writeAddrsigSection() { 776 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 777 encodeULEB128(Sym->getIndex(), W.OS); 778 } 779 780 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 781 const MCSectionELF &Sec) { 782 if (OWriter.Relocations[&Sec].empty()) 783 return nullptr; 784 785 const StringRef SectionName = Sec.getSectionName(); 786 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 787 RelaSectionName += SectionName; 788 789 unsigned EntrySize; 790 if (hasRelocationAddend()) 791 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 792 else 793 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 794 795 unsigned Flags = 0; 796 if (Sec.getFlags() & ELF::SHF_GROUP) 797 Flags = ELF::SHF_GROUP; 798 799 MCSectionELF *RelaSection = Ctx.createELFRelSection( 800 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 801 Flags, EntrySize, Sec.getGroup(), &Sec); 802 RelaSection->setAlignment(is64Bit() ? 8 : 4); 803 return RelaSection; 804 } 805 806 // Include the debug info compression header. 807 bool ELFWriter::maybeWriteCompression( 808 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 809 unsigned Alignment) { 810 if (ZLibStyle) { 811 uint64_t HdrSize = 812 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 813 if (Size <= HdrSize + CompressedContents.size()) 814 return false; 815 // Platform specific header is followed by compressed data. 816 if (is64Bit()) { 817 // Write Elf64_Chdr header. 818 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 819 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 820 write(static_cast<ELF::Elf64_Xword>(Size)); 821 write(static_cast<ELF::Elf64_Xword>(Alignment)); 822 } else { 823 // Write Elf32_Chdr header otherwise. 824 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 825 write(static_cast<ELF::Elf32_Word>(Size)); 826 write(static_cast<ELF::Elf32_Word>(Alignment)); 827 } 828 return true; 829 } 830 831 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 832 // useful for consumers to preallocate a buffer to decompress into. 833 const StringRef Magic = "ZLIB"; 834 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 835 return false; 836 W.OS << Magic; 837 support::endian::write(W.OS, Size, support::big); 838 return true; 839 } 840 841 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 842 const MCAsmLayout &Layout) { 843 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 844 StringRef SectionName = Section.getSectionName(); 845 846 auto &MC = Asm.getContext(); 847 const auto &MAI = MC.getAsmInfo(); 848 849 // Compressing debug_frame requires handling alignment fragments which is 850 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 851 // for writing to arbitrary buffers) for little benefit. 852 bool CompressionEnabled = 853 MAI->compressDebugSections() != DebugCompressionType::None; 854 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 855 SectionName == ".debug_frame") { 856 Asm.writeSectionData(W.OS, &Section, Layout); 857 return; 858 } 859 860 assert((MAI->compressDebugSections() == DebugCompressionType::Z || 861 MAI->compressDebugSections() == DebugCompressionType::GNU) && 862 "expected zlib or zlib-gnu style compression"); 863 864 SmallVector<char, 128> UncompressedData; 865 raw_svector_ostream VecOS(UncompressedData); 866 Asm.writeSectionData(VecOS, &Section, Layout); 867 868 SmallVector<char, 128> CompressedContents; 869 if (Error E = zlib::compress( 870 StringRef(UncompressedData.data(), UncompressedData.size()), 871 CompressedContents)) { 872 consumeError(std::move(E)); 873 W.OS << UncompressedData; 874 return; 875 } 876 877 bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z; 878 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 879 ZlibStyle, Sec.getAlignment())) { 880 W.OS << UncompressedData; 881 return; 882 } 883 884 if (ZlibStyle) 885 // Set the compressed flag. That is zlib style. 886 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 887 else 888 // Add "z" prefix to section name. This is zlib-gnu style. 889 MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str()); 890 W.OS << CompressedContents; 891 } 892 893 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 894 uint64_t Address, uint64_t Offset, 895 uint64_t Size, uint32_t Link, uint32_t Info, 896 uint64_t Alignment, uint64_t EntrySize) { 897 W.write<uint32_t>(Name); // sh_name: index into string table 898 W.write<uint32_t>(Type); // sh_type 899 WriteWord(Flags); // sh_flags 900 WriteWord(Address); // sh_addr 901 WriteWord(Offset); // sh_offset 902 WriteWord(Size); // sh_size 903 W.write<uint32_t>(Link); // sh_link 904 W.write<uint32_t>(Info); // sh_info 905 WriteWord(Alignment); // sh_addralign 906 WriteWord(EntrySize); // sh_entsize 907 } 908 909 void ELFWriter::writeRelocations(const MCAssembler &Asm, 910 const MCSectionELF &Sec) { 911 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 912 913 // We record relocations by pushing to the end of a vector. Reverse the vector 914 // to get the relocations in the order they were created. 915 // In most cases that is not important, but it can be for special sections 916 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 917 std::reverse(Relocs.begin(), Relocs.end()); 918 919 // Sort the relocation entries. MIPS needs this. 920 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 921 922 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 923 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 924 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 925 926 if (is64Bit()) { 927 write(Entry.Offset); 928 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 929 write(uint32_t(Index)); 930 931 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 932 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 933 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 934 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 935 } else { 936 struct ELF::Elf64_Rela ERE64; 937 ERE64.setSymbolAndType(Index, Entry.Type); 938 write(ERE64.r_info); 939 } 940 if (hasRelocationAddend()) 941 write(Entry.Addend); 942 } else { 943 write(uint32_t(Entry.Offset)); 944 945 struct ELF::Elf32_Rela ERE32; 946 ERE32.setSymbolAndType(Index, Entry.Type); 947 write(ERE32.r_info); 948 949 if (hasRelocationAddend()) 950 write(uint32_t(Entry.Addend)); 951 952 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 953 if (uint32_t RType = 954 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 955 write(uint32_t(Entry.Offset)); 956 957 ERE32.setSymbolAndType(0, RType); 958 write(ERE32.r_info); 959 write(uint32_t(0)); 960 } 961 if (uint32_t RType = 962 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 963 write(uint32_t(Entry.Offset)); 964 965 ERE32.setSymbolAndType(0, RType); 966 write(ERE32.r_info); 967 write(uint32_t(0)); 968 } 969 } 970 } 971 } 972 } 973 974 const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) { 975 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 976 StrTabBuilder.write(W.OS); 977 return StrtabSection; 978 } 979 980 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 981 uint32_t GroupSymbolIndex, uint64_t Offset, 982 uint64_t Size, const MCSectionELF &Section) { 983 uint64_t sh_link = 0; 984 uint64_t sh_info = 0; 985 986 switch(Section.getType()) { 987 default: 988 // Nothing to do. 989 break; 990 991 case ELF::SHT_DYNAMIC: 992 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 993 994 case ELF::SHT_REL: 995 case ELF::SHT_RELA: { 996 sh_link = SymbolTableIndex; 997 assert(sh_link && ".symtab not found"); 998 const MCSection *InfoSection = Section.getAssociatedSection(); 999 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1000 break; 1001 } 1002 1003 case ELF::SHT_SYMTAB: 1004 sh_link = StringTableIndex; 1005 sh_info = LastLocalSymbolIndex; 1006 break; 1007 1008 case ELF::SHT_SYMTAB_SHNDX: 1009 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1010 case ELF::SHT_LLVM_ADDRSIG: 1011 sh_link = SymbolTableIndex; 1012 break; 1013 1014 case ELF::SHT_GROUP: 1015 sh_link = SymbolTableIndex; 1016 sh_info = GroupSymbolIndex; 1017 break; 1018 } 1019 1020 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1021 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1022 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1023 sh_link = SectionIndexMap.lookup(Sec); 1024 } 1025 1026 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1027 Section.getType(), Section.getFlags(), 0, Offset, Size, 1028 sh_link, sh_info, Section.getAlignment(), 1029 Section.getEntrySize()); 1030 } 1031 1032 void ELFWriter::writeSectionHeader( 1033 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1034 const SectionOffsetsTy &SectionOffsets) { 1035 const unsigned NumSections = SectionTable.size(); 1036 1037 // Null section first. 1038 uint64_t FirstSectionSize = 1039 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1040 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1041 1042 for (const MCSectionELF *Section : SectionTable) { 1043 uint32_t GroupSymbolIndex; 1044 unsigned Type = Section->getType(); 1045 if (Type != ELF::SHT_GROUP) 1046 GroupSymbolIndex = 0; 1047 else 1048 GroupSymbolIndex = Section->getGroup()->getIndex(); 1049 1050 const std::pair<uint64_t, uint64_t> &Offsets = 1051 SectionOffsets.find(Section)->second; 1052 uint64_t Size; 1053 if (Type == ELF::SHT_NOBITS) 1054 Size = Layout.getSectionAddressSize(Section); 1055 else 1056 Size = Offsets.second - Offsets.first; 1057 1058 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1059 *Section); 1060 } 1061 } 1062 1063 uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { 1064 uint64_t StartOffset = W.OS.tell(); 1065 1066 MCContext &Ctx = Asm.getContext(); 1067 MCSectionELF *StrtabSection = 1068 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1069 StringTableIndex = addToSectionTable(StrtabSection); 1070 1071 RevGroupMapTy RevGroupMap; 1072 SectionIndexMapTy SectionIndexMap; 1073 1074 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1075 1076 // Write out the ELF header ... 1077 writeHeader(Asm); 1078 1079 // ... then the sections ... 1080 SectionOffsetsTy SectionOffsets; 1081 std::vector<MCSectionELF *> Groups; 1082 std::vector<MCSectionELF *> Relocations; 1083 for (MCSection &Sec : Asm) { 1084 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1085 if (Mode == NonDwoOnly && isDwoSection(Section)) 1086 continue; 1087 if (Mode == DwoOnly && !isDwoSection(Section)) 1088 continue; 1089 1090 align(Section.getAlignment()); 1091 1092 // Remember the offset into the file for this section. 1093 uint64_t SecStart = W.OS.tell(); 1094 1095 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1096 writeSectionData(Asm, Section, Layout); 1097 1098 uint64_t SecEnd = W.OS.tell(); 1099 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1100 1101 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1102 1103 if (SignatureSymbol) { 1104 Asm.registerSymbol(*SignatureSymbol); 1105 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1106 if (!GroupIdx) { 1107 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1108 GroupIdx = addToSectionTable(Group); 1109 Group->setAlignment(4); 1110 Groups.push_back(Group); 1111 } 1112 std::vector<const MCSectionELF *> &Members = 1113 GroupMembers[SignatureSymbol]; 1114 Members.push_back(&Section); 1115 if (RelSection) 1116 Members.push_back(RelSection); 1117 } 1118 1119 SectionIndexMap[&Section] = addToSectionTable(&Section); 1120 if (RelSection) { 1121 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1122 Relocations.push_back(RelSection); 1123 } 1124 1125 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1126 } 1127 1128 MCSectionELF *CGProfileSection = nullptr; 1129 if (!Asm.CGProfile.empty()) { 1130 CGProfileSection = Ctx.getELFSection(".llvm.call-graph-profile", 1131 ELF::SHT_LLVM_CALL_GRAPH_PROFILE, 1132 ELF::SHF_EXCLUDE, 16, ""); 1133 SectionIndexMap[CGProfileSection] = addToSectionTable(CGProfileSection); 1134 } 1135 1136 for (MCSectionELF *Group : Groups) { 1137 align(Group->getAlignment()); 1138 1139 // Remember the offset into the file for this section. 1140 uint64_t SecStart = W.OS.tell(); 1141 1142 const MCSymbol *SignatureSymbol = Group->getGroup(); 1143 assert(SignatureSymbol); 1144 write(uint32_t(ELF::GRP_COMDAT)); 1145 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1146 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1147 write(SecIndex); 1148 } 1149 1150 uint64_t SecEnd = W.OS.tell(); 1151 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1152 } 1153 1154 if (Mode == DwoOnly) { 1155 // dwo files don't have symbol tables or relocations, but they do have 1156 // string tables. 1157 StrTabBuilder.finalize(); 1158 } else { 1159 MCSectionELF *AddrsigSection; 1160 if (OWriter.EmitAddrsigSection) { 1161 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1162 ELF::SHF_EXCLUDE); 1163 addToSectionTable(AddrsigSection); 1164 } 1165 1166 // Compute symbol table information. 1167 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, 1168 SectionOffsets); 1169 1170 for (MCSectionELF *RelSection : Relocations) { 1171 align(RelSection->getAlignment()); 1172 1173 // Remember the offset into the file for this section. 1174 uint64_t SecStart = W.OS.tell(); 1175 1176 writeRelocations(Asm, 1177 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1178 1179 uint64_t SecEnd = W.OS.tell(); 1180 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1181 } 1182 1183 if (OWriter.EmitAddrsigSection) { 1184 uint64_t SecStart = W.OS.tell(); 1185 writeAddrsigSection(); 1186 uint64_t SecEnd = W.OS.tell(); 1187 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1188 } 1189 } 1190 1191 if (CGProfileSection) { 1192 uint64_t SecStart = W.OS.tell(); 1193 for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { 1194 W.write<uint32_t>(CGPE.From->getSymbol().getIndex()); 1195 W.write<uint32_t>(CGPE.To->getSymbol().getIndex()); 1196 W.write<uint64_t>(CGPE.Count); 1197 } 1198 uint64_t SecEnd = W.OS.tell(); 1199 SectionOffsets[CGProfileSection] = std::make_pair(SecStart, SecEnd); 1200 } 1201 1202 { 1203 uint64_t SecStart = W.OS.tell(); 1204 const MCSectionELF *Sec = createStringTable(Ctx); 1205 uint64_t SecEnd = W.OS.tell(); 1206 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1207 } 1208 1209 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1210 align(NaturalAlignment); 1211 1212 const uint64_t SectionHeaderOffset = W.OS.tell(); 1213 1214 // ... then the section header table ... 1215 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1216 1217 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1218 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1219 : SectionTable.size() + 1, 1220 W.Endian); 1221 unsigned NumSectionsOffset; 1222 1223 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1224 if (is64Bit()) { 1225 uint64_t Val = 1226 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1227 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1228 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1229 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1230 } else { 1231 uint32_t Val = 1232 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1233 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1234 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1235 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1236 } 1237 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1238 NumSectionsOffset); 1239 1240 return W.OS.tell() - StartOffset; 1241 } 1242 1243 bool ELFObjectWriter::hasRelocationAddend() const { 1244 return TargetObjectWriter->hasRelocationAddend(); 1245 } 1246 1247 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1248 const MCAsmLayout &Layout) { 1249 // The presence of symbol versions causes undefined symbols and 1250 // versions declared with @@@ to be renamed. 1251 for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) { 1252 StringRef AliasName = P.first; 1253 const auto &Symbol = cast<MCSymbolELF>(*P.second); 1254 size_t Pos = AliasName.find('@'); 1255 assert(Pos != StringRef::npos); 1256 1257 StringRef Prefix = AliasName.substr(0, Pos); 1258 StringRef Rest = AliasName.substr(Pos); 1259 StringRef Tail = Rest; 1260 if (Rest.startswith("@@@")) 1261 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1262 1263 auto *Alias = 1264 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1265 Asm.registerSymbol(*Alias); 1266 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1267 Alias->setVariableValue(Value); 1268 1269 // Aliases defined with .symvar copy the binding from the symbol they alias. 1270 // This is the first place we are able to copy this information. 1271 Alias->setExternal(Symbol.isExternal()); 1272 Alias->setBinding(Symbol.getBinding()); 1273 1274 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 1275 continue; 1276 1277 // FIXME: produce a better error message. 1278 if (Symbol.isUndefined() && Rest.startswith("@@") && 1279 !Rest.startswith("@@@")) 1280 report_fatal_error("A @@ version cannot be undefined"); 1281 1282 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) 1283 report_fatal_error(llvm::Twine("Multiple symbol versions defined for ") + 1284 Symbol.getName()); 1285 1286 Renames.insert(std::make_pair(&Symbol, Alias)); 1287 } 1288 1289 for (const MCSymbol *&Sym : AddrsigSyms) { 1290 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1291 Sym = R; 1292 if (Sym->isInSection() && Sym->getName().startswith(".L")) 1293 Sym = Sym->getSection().getBeginSymbol(); 1294 Sym->setUsedInReloc(); 1295 } 1296 } 1297 1298 // It is always valid to create a relocation with a symbol. It is preferable 1299 // to use a relocation with a section if that is possible. Using the section 1300 // allows us to omit some local symbols from the symbol table. 1301 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1302 const MCSymbolRefExpr *RefA, 1303 const MCSymbolELF *Sym, 1304 uint64_t C, 1305 unsigned Type) const { 1306 // A PCRel relocation to an absolute value has no symbol (or section). We 1307 // represent that with a relocation to a null section. 1308 if (!RefA) 1309 return false; 1310 1311 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1312 switch (Kind) { 1313 default: 1314 break; 1315 // The .odp creation emits a relocation against the symbol ".TOC." which 1316 // create a R_PPC64_TOC relocation. However the relocation symbol name 1317 // in final object creation should be NULL, since the symbol does not 1318 // really exist, it is just the reference to TOC base for the current 1319 // object file. Since the symbol is undefined, returning false results 1320 // in a relocation with a null section which is the desired result. 1321 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1322 return false; 1323 1324 // These VariantKind cause the relocation to refer to something other than 1325 // the symbol itself, like a linker generated table. Since the address of 1326 // symbol is not relevant, we cannot replace the symbol with the 1327 // section and patch the difference in the addend. 1328 case MCSymbolRefExpr::VK_GOT: 1329 case MCSymbolRefExpr::VK_PLT: 1330 case MCSymbolRefExpr::VK_GOTPCREL: 1331 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1332 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1333 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1334 return true; 1335 } 1336 1337 // An undefined symbol is not in any section, so the relocation has to point 1338 // to the symbol itself. 1339 assert(Sym && "Expected a symbol"); 1340 if (Sym->isUndefined()) 1341 return true; 1342 1343 unsigned Binding = Sym->getBinding(); 1344 switch(Binding) { 1345 default: 1346 llvm_unreachable("Invalid Binding"); 1347 case ELF::STB_LOCAL: 1348 break; 1349 case ELF::STB_WEAK: 1350 // If the symbol is weak, it might be overridden by a symbol in another 1351 // file. The relocation has to point to the symbol so that the linker 1352 // can update it. 1353 return true; 1354 case ELF::STB_GLOBAL: 1355 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1356 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1357 return true; 1358 } 1359 1360 // If a relocation points to a mergeable section, we have to be careful. 1361 // If the offset is zero, a relocation with the section will encode the 1362 // same information. With a non-zero offset, the situation is different. 1363 // For example, a relocation can point 42 bytes past the end of a string. 1364 // If we change such a relocation to use the section, the linker would think 1365 // that it pointed to another string and subtracting 42 at runtime will 1366 // produce the wrong value. 1367 if (Sym->isInSection()) { 1368 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1369 unsigned Flags = Sec.getFlags(); 1370 if (Flags & ELF::SHF_MERGE) { 1371 if (C != 0) 1372 return true; 1373 1374 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 1375 // only handle section relocations to mergeable sections if using RELA. 1376 if (!hasRelocationAddend()) 1377 return true; 1378 } 1379 1380 // Most TLS relocations use a got, so they need the symbol. Even those that 1381 // are just an offset (@tpoff), require a symbol in gold versions before 1382 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1383 // http://sourceware.org/PR16773. 1384 if (Flags & ELF::SHF_TLS) 1385 return true; 1386 } 1387 1388 // If the symbol is a thumb function the final relocation must set the lowest 1389 // bit. With a symbol that is done by just having the symbol have that bit 1390 // set, so we would lose the bit if we relocated with the section. 1391 // FIXME: We could use the section but add the bit to the relocation value. 1392 if (Asm.isThumbFunc(Sym)) 1393 return true; 1394 1395 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 1396 return true; 1397 return false; 1398 } 1399 1400 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1401 const MCAsmLayout &Layout, 1402 const MCFragment *Fragment, 1403 const MCFixup &Fixup, MCValue Target, 1404 uint64_t &FixedValue) { 1405 MCAsmBackend &Backend = Asm.getBackend(); 1406 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1407 MCFixupKindInfo::FKF_IsPCRel; 1408 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1409 uint64_t C = Target.getConstant(); 1410 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 1411 MCContext &Ctx = Asm.getContext(); 1412 1413 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1414 // Let A, B and C being the components of Target and R be the location of 1415 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 1416 // If it is pcrel, we want to compute (A - B + C - R). 1417 1418 // In general, ELF has no relocations for -B. It can only represent (A + C) 1419 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 1420 // replace B to implement it: (A - R - K + C) 1421 if (IsPCRel) { 1422 Ctx.reportError( 1423 Fixup.getLoc(), 1424 "No relocation available to represent this relative expression"); 1425 return; 1426 } 1427 1428 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1429 1430 if (SymB.isUndefined()) { 1431 Ctx.reportError(Fixup.getLoc(), 1432 Twine("symbol '") + SymB.getName() + 1433 "' can not be undefined in a subtraction expression"); 1434 return; 1435 } 1436 1437 assert(!SymB.isAbsolute() && "Should have been folded"); 1438 const MCSection &SecB = SymB.getSection(); 1439 if (&SecB != &FixupSection) { 1440 Ctx.reportError(Fixup.getLoc(), 1441 "Cannot represent a difference across sections"); 1442 return; 1443 } 1444 1445 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 1446 uint64_t K = SymBOffset - FixupOffset; 1447 IsPCRel = true; 1448 C -= K; 1449 } 1450 1451 // We either rejected the fixup or folded B into C at this point. 1452 const MCSymbolRefExpr *RefA = Target.getSymA(); 1453 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1454 1455 bool ViaWeakRef = false; 1456 if (SymA && SymA->isVariable()) { 1457 const MCExpr *Expr = SymA->getVariableValue(); 1458 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1459 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1460 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1461 ViaWeakRef = true; 1462 } 1463 } 1464 } 1465 1466 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1467 uint64_t OriginalC = C; 1468 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 1469 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 1470 C += Layout.getSymbolOffset(*SymA); 1471 1472 uint64_t Addend = 0; 1473 if (hasRelocationAddend()) { 1474 Addend = C; 1475 C = 0; 1476 } 1477 1478 FixedValue = C; 1479 1480 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1481 ? cast<MCSectionELF>(&SymA->getSection()) 1482 : nullptr; 1483 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1484 return; 1485 1486 if (!RelocateWithSymbol) { 1487 const auto *SectionSymbol = 1488 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1489 if (SectionSymbol) 1490 SectionSymbol->setUsedInReloc(); 1491 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, 1492 OriginalC); 1493 Relocations[&FixupSection].push_back(Rec); 1494 return; 1495 } 1496 1497 const auto *RenamedSymA = SymA; 1498 if (SymA) { 1499 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1500 RenamedSymA = R; 1501 1502 if (ViaWeakRef) 1503 RenamedSymA->setIsWeakrefUsedInReloc(); 1504 else 1505 RenamedSymA->setUsedInReloc(); 1506 } 1507 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, 1508 OriginalC); 1509 Relocations[&FixupSection].push_back(Rec); 1510 } 1511 1512 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1513 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1514 bool InSet, bool IsPCRel) const { 1515 const auto &SymA = cast<MCSymbolELF>(SA); 1516 if (IsPCRel) { 1517 assert(!InSet); 1518 if (isWeak(SymA)) 1519 return false; 1520 } 1521 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1522 InSet, IsPCRel); 1523 } 1524 1525 std::unique_ptr<MCObjectWriter> 1526 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1527 raw_pwrite_stream &OS, bool IsLittleEndian) { 1528 return llvm::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1529 IsLittleEndian); 1530 } 1531 1532 std::unique_ptr<MCObjectWriter> 1533 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1534 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1535 bool IsLittleEndian) { 1536 return llvm::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1537 IsLittleEndian); 1538 } 1539