1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements ELF object file writer information. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/ELF.h" 22 #include "llvm/MC/MCAsmInfo.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCELFObjectWriter.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/MC/MCFixup.h" 29 #include "llvm/MC/MCFragment.h" 30 #include "llvm/MC/MCObjectWriter.h" 31 #include "llvm/MC/MCSection.h" 32 #include "llvm/MC/MCSectionELF.h" 33 #include "llvm/MC/MCSymbol.h" 34 #include "llvm/MC/MCSymbolELF.h" 35 #include "llvm/MC/MCValue.h" 36 #include "llvm/MC/StringTableBuilder.h" 37 #include "llvm/Support/Allocator.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Compression.h" 40 #include "llvm/Support/Endian.h" 41 #include "llvm/Support/Error.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/Host.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SMLoc.h" 46 #include "llvm/Support/StringSaver.h" 47 #include "llvm/Support/SwapByteOrder.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <map> 54 #include <memory> 55 #include <string> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #undef DEBUG_TYPE 62 #define DEBUG_TYPE "reloc-info" 63 64 namespace { 65 66 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 67 68 class ELFObjectWriter; 69 70 class SymbolTableWriter { 71 ELFObjectWriter &EWriter; 72 bool Is64Bit; 73 74 // indexes we are going to write to .symtab_shndx. 75 std::vector<uint32_t> ShndxIndexes; 76 77 // The numbel of symbols written so far. 78 unsigned NumWritten; 79 80 void createSymtabShndx(); 81 82 template <typename T> void write(T Value); 83 84 public: 85 SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit); 86 87 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 88 uint8_t other, uint32_t shndx, bool Reserved); 89 90 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 91 }; 92 93 class ELFObjectWriter : public MCObjectWriter { 94 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); 95 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, 96 bool Used, bool Renamed); 97 98 /// Helper struct for containing some precomputed information on symbols. 99 struct ELFSymbolData { 100 const MCSymbolELF *Symbol; 101 uint32_t SectionIndex; 102 StringRef Name; 103 104 // Support lexicographic sorting. 105 bool operator<(const ELFSymbolData &RHS) const { 106 unsigned LHSType = Symbol->getType(); 107 unsigned RHSType = RHS.Symbol->getType(); 108 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION) 109 return false; 110 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 111 return true; 112 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION) 113 return SectionIndex < RHS.SectionIndex; 114 return Name < RHS.Name; 115 } 116 }; 117 118 /// The target specific ELF writer instance. 119 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 120 121 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 122 123 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 124 125 /// @} 126 /// @name Symbol Table Data 127 /// @{ 128 129 BumpPtrAllocator Alloc; 130 StringSaver VersionSymSaver{Alloc}; 131 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 132 133 /// @} 134 135 // This holds the symbol table index of the last local symbol. 136 unsigned LastLocalSymbolIndex; 137 // This holds the .strtab section index. 138 unsigned StringTableIndex; 139 // This holds the .symtab section index. 140 unsigned SymbolTableIndex; 141 142 // Sections in the order they are to be output in the section table. 143 std::vector<const MCSectionELF *> SectionTable; 144 unsigned addToSectionTable(const MCSectionELF *Sec); 145 146 // TargetObjectWriter wrappers. 147 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 148 bool hasRelocationAddend() const { 149 return TargetObjectWriter->hasRelocationAddend(); 150 } 151 unsigned getRelocType(MCContext &Ctx, const MCValue &Target, 152 const MCFixup &Fixup, bool IsPCRel) const { 153 return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 154 } 155 156 void align(unsigned Alignment); 157 158 bool maybeWriteCompression(uint64_t Size, 159 SmallVectorImpl<char> &CompressedContents, 160 bool ZLibStyle, unsigned Alignment); 161 162 public: 163 ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS, 164 bool IsLittleEndian) 165 : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {} 166 167 ~ELFObjectWriter() override = default; 168 169 void reset() override { 170 Renames.clear(); 171 Relocations.clear(); 172 StrTabBuilder.clear(); 173 SectionTable.clear(); 174 MCObjectWriter::reset(); 175 } 176 177 void WriteWord(uint64_t W) { 178 if (is64Bit()) 179 write64(W); 180 else 181 write32(W); 182 } 183 184 template <typename T> void write(T Val) { 185 if (IsLittleEndian) 186 support::endian::Writer<support::little>(getStream()).write(Val); 187 else 188 support::endian::Writer<support::big>(getStream()).write(Val); 189 } 190 191 void writeHeader(const MCAssembler &Asm); 192 193 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, 194 ELFSymbolData &MSD, const MCAsmLayout &Layout); 195 196 // Start and end offset of each section 197 using SectionOffsetsTy = 198 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 199 200 bool shouldRelocateWithSymbol(const MCAssembler &Asm, 201 const MCSymbolRefExpr *RefA, 202 const MCSymbol *Sym, uint64_t C, 203 unsigned Type) const; 204 205 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 206 const MCFragment *Fragment, const MCFixup &Fixup, 207 MCValue Target, bool &IsPCRel, 208 uint64_t &FixedValue) override; 209 210 // Map from a signature symbol to the group section index 211 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 212 213 /// Compute the symbol table data 214 /// 215 /// \param Asm - The assembler. 216 /// \param SectionIndexMap - Maps a section to its index. 217 /// \param RevGroupMap - Maps a signature symbol to the group section. 218 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, 219 const SectionIndexMapTy &SectionIndexMap, 220 const RevGroupMapTy &RevGroupMap, 221 SectionOffsetsTy &SectionOffsets); 222 223 MCSectionELF *createRelocationSection(MCContext &Ctx, 224 const MCSectionELF &Sec); 225 226 const MCSectionELF *createStringTable(MCContext &Ctx); 227 228 void executePostLayoutBinding(MCAssembler &Asm, 229 const MCAsmLayout &Layout) override; 230 231 void writeSectionHeader(const MCAsmLayout &Layout, 232 const SectionIndexMapTy &SectionIndexMap, 233 const SectionOffsetsTy &SectionOffsets); 234 235 void writeSectionData(const MCAssembler &Asm, MCSection &Sec, 236 const MCAsmLayout &Layout); 237 238 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 239 uint64_t Address, uint64_t Offset, uint64_t Size, 240 uint32_t Link, uint32_t Info, uint64_t Alignment, 241 uint64_t EntrySize); 242 243 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 244 245 using MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl; 246 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 247 const MCSymbol &SymA, 248 const MCFragment &FB, bool InSet, 249 bool IsPCRel) const override; 250 251 void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 252 void writeSection(const SectionIndexMapTy &SectionIndexMap, 253 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 254 const MCSectionELF &Section); 255 }; 256 257 } // end anonymous namespace 258 259 void ELFObjectWriter::align(unsigned Alignment) { 260 uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment); 261 WriteZeros(Padding); 262 } 263 264 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) { 265 SectionTable.push_back(Sec); 266 StrTabBuilder.add(Sec->getSectionName()); 267 return SectionTable.size(); 268 } 269 270 void SymbolTableWriter::createSymtabShndx() { 271 if (!ShndxIndexes.empty()) 272 return; 273 274 ShndxIndexes.resize(NumWritten); 275 } 276 277 template <typename T> void SymbolTableWriter::write(T Value) { 278 EWriter.write(Value); 279 } 280 281 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit) 282 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 283 284 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 285 uint64_t size, uint8_t other, 286 uint32_t shndx, bool Reserved) { 287 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 288 289 if (LargeIndex) 290 createSymtabShndx(); 291 292 if (!ShndxIndexes.empty()) { 293 if (LargeIndex) 294 ShndxIndexes.push_back(shndx); 295 else 296 ShndxIndexes.push_back(0); 297 } 298 299 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 300 301 if (Is64Bit) { 302 write(name); // st_name 303 write(info); // st_info 304 write(other); // st_other 305 write(Index); // st_shndx 306 write(value); // st_value 307 write(size); // st_size 308 } else { 309 write(name); // st_name 310 write(uint32_t(value)); // st_value 311 write(uint32_t(size)); // st_size 312 write(info); // st_info 313 write(other); // st_other 314 write(Index); // st_shndx 315 } 316 317 ++NumWritten; 318 } 319 320 // Emit the ELF header. 321 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) { 322 // ELF Header 323 // ---------- 324 // 325 // Note 326 // ---- 327 // emitWord method behaves differently for ELF32 and ELF64, writing 328 // 4 bytes in the former and 8 in the latter. 329 330 writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3] 331 332 write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 333 334 // e_ident[EI_DATA] 335 write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB); 336 337 write8(ELF::EV_CURRENT); // e_ident[EI_VERSION] 338 // e_ident[EI_OSABI] 339 write8(TargetObjectWriter->getOSABI()); 340 write8(0); // e_ident[EI_ABIVERSION] 341 342 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD); 343 344 write16(ELF::ET_REL); // e_type 345 346 write16(TargetObjectWriter->getEMachine()); // e_machine = target 347 348 write32(ELF::EV_CURRENT); // e_version 349 WriteWord(0); // e_entry, no entry point in .o file 350 WriteWord(0); // e_phoff, no program header for .o 351 WriteWord(0); // e_shoff = sec hdr table off in bytes 352 353 // e_flags = whatever the target wants 354 write32(Asm.getELFHeaderEFlags()); 355 356 // e_ehsize = ELF header size 357 write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr)); 358 359 write16(0); // e_phentsize = prog header entry size 360 write16(0); // e_phnum = # prog header entries = 0 361 362 // e_shentsize = Section header entry size 363 write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr)); 364 365 // e_shnum = # of section header ents 366 write16(0); 367 368 // e_shstrndx = Section # of '.shstrtab' 369 assert(StringTableIndex < ELF::SHN_LORESERVE); 370 write16(StringTableIndex); 371 } 372 373 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym, 374 const MCAsmLayout &Layout) { 375 if (Sym.isCommon() && Sym.isExternal()) 376 return Sym.getCommonAlignment(); 377 378 uint64_t Res; 379 if (!Layout.getSymbolOffset(Sym, Res)) 380 return 0; 381 382 if (Layout.getAssembler().isThumbFunc(&Sym)) 383 Res |= 1; 384 385 return Res; 386 } 387 388 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 389 const MCAsmLayout &Layout) { 390 // The presence of symbol versions causes undefined symbols and 391 // versions declared with @@@ to be renamed. 392 for (const MCSymbol &A : Asm.symbols()) { 393 const auto &Alias = cast<MCSymbolELF>(A); 394 // Not an alias. 395 if (!Alias.isVariable()) 396 continue; 397 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue()); 398 if (!Ref) 399 continue; 400 const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol()); 401 402 StringRef AliasName = Alias.getName(); 403 size_t Pos = AliasName.find('@'); 404 if (Pos == StringRef::npos) 405 continue; 406 407 // Aliases defined with .symvar copy the binding from the symbol they alias. 408 // This is the first place we are able to copy this information. 409 Alias.setExternal(Symbol.isExternal()); 410 Alias.setBinding(Symbol.getBinding()); 411 412 StringRef Rest = AliasName.substr(Pos); 413 if (!Symbol.isUndefined() && !Rest.startswith("@@@")) 414 continue; 415 416 // FIXME: produce a better error message. 417 if (Symbol.isUndefined() && Rest.startswith("@@") && 418 !Rest.startswith("@@@")) 419 report_fatal_error("A @@ version cannot be undefined"); 420 421 Renames.insert(std::make_pair(&Symbol, &Alias)); 422 } 423 } 424 425 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 426 uint8_t Type = newType; 427 428 // Propagation rules: 429 // IFUNC > FUNC > OBJECT > NOTYPE 430 // TLS_OBJECT > OBJECT > NOTYPE 431 // 432 // dont let the new type degrade the old type 433 switch (origType) { 434 default: 435 break; 436 case ELF::STT_GNU_IFUNC: 437 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 438 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 439 Type = ELF::STT_GNU_IFUNC; 440 break; 441 case ELF::STT_FUNC: 442 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 443 Type == ELF::STT_TLS) 444 Type = ELF::STT_FUNC; 445 break; 446 case ELF::STT_OBJECT: 447 if (Type == ELF::STT_NOTYPE) 448 Type = ELF::STT_OBJECT; 449 break; 450 case ELF::STT_TLS: 451 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 452 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 453 Type = ELF::STT_TLS; 454 break; 455 } 456 457 return Type; 458 } 459 460 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer, 461 uint32_t StringIndex, ELFSymbolData &MSD, 462 const MCAsmLayout &Layout) { 463 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 464 const MCSymbolELF *Base = 465 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); 466 467 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 468 // SHN_COMMON. 469 bool IsReserved = !Base || Symbol.isCommon(); 470 471 // Binding and Type share the same byte as upper and lower nibbles 472 uint8_t Binding = Symbol.getBinding(); 473 uint8_t Type = Symbol.getType(); 474 if (Base) { 475 Type = mergeTypeForSet(Type, Base->getType()); 476 } 477 uint8_t Info = (Binding << 4) | Type; 478 479 // Other and Visibility share the same byte with Visibility using the lower 480 // 2 bits 481 uint8_t Visibility = Symbol.getVisibility(); 482 uint8_t Other = Symbol.getOther() | Visibility; 483 484 uint64_t Value = SymbolValue(*MSD.Symbol, Layout); 485 uint64_t Size = 0; 486 487 const MCExpr *ESize = MSD.Symbol->getSize(); 488 if (!ESize && Base) 489 ESize = Base->getSize(); 490 491 if (ESize) { 492 int64_t Res; 493 if (!ESize->evaluateKnownAbsolute(Res, Layout)) 494 report_fatal_error("Size expression must be absolute."); 495 Size = Res; 496 } 497 498 // Write out the symbol table entry 499 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 500 IsReserved); 501 } 502 503 // It is always valid to create a relocation with a symbol. It is preferable 504 // to use a relocation with a section if that is possible. Using the section 505 // allows us to omit some local symbols from the symbol table. 506 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 507 const MCSymbolRefExpr *RefA, 508 const MCSymbol *S, uint64_t C, 509 unsigned Type) const { 510 const auto *Sym = cast_or_null<MCSymbolELF>(S); 511 // A PCRel relocation to an absolute value has no symbol (or section). We 512 // represent that with a relocation to a null section. 513 if (!RefA) 514 return false; 515 516 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 517 switch (Kind) { 518 default: 519 break; 520 // The .odp creation emits a relocation against the symbol ".TOC." which 521 // create a R_PPC64_TOC relocation. However the relocation symbol name 522 // in final object creation should be NULL, since the symbol does not 523 // really exist, it is just the reference to TOC base for the current 524 // object file. Since the symbol is undefined, returning false results 525 // in a relocation with a null section which is the desired result. 526 case MCSymbolRefExpr::VK_PPC_TOCBASE: 527 return false; 528 529 // These VariantKind cause the relocation to refer to something other than 530 // the symbol itself, like a linker generated table. Since the address of 531 // symbol is not relevant, we cannot replace the symbol with the 532 // section and patch the difference in the addend. 533 case MCSymbolRefExpr::VK_GOT: 534 case MCSymbolRefExpr::VK_PLT: 535 case MCSymbolRefExpr::VK_GOTPCREL: 536 case MCSymbolRefExpr::VK_PPC_GOT_LO: 537 case MCSymbolRefExpr::VK_PPC_GOT_HI: 538 case MCSymbolRefExpr::VK_PPC_GOT_HA: 539 return true; 540 } 541 542 // An undefined symbol is not in any section, so the relocation has to point 543 // to the symbol itself. 544 assert(Sym && "Expected a symbol"); 545 if (Sym->isUndefined()) 546 return true; 547 548 unsigned Binding = Sym->getBinding(); 549 switch(Binding) { 550 default: 551 llvm_unreachable("Invalid Binding"); 552 case ELF::STB_LOCAL: 553 break; 554 case ELF::STB_WEAK: 555 // If the symbol is weak, it might be overridden by a symbol in another 556 // file. The relocation has to point to the symbol so that the linker 557 // can update it. 558 return true; 559 case ELF::STB_GLOBAL: 560 // Global ELF symbols can be preempted by the dynamic linker. The relocation 561 // has to point to the symbol for a reason analogous to the STB_WEAK case. 562 return true; 563 } 564 565 // If a relocation points to a mergeable section, we have to be careful. 566 // If the offset is zero, a relocation with the section will encode the 567 // same information. With a non-zero offset, the situation is different. 568 // For example, a relocation can point 42 bytes past the end of a string. 569 // If we change such a relocation to use the section, the linker would think 570 // that it pointed to another string and subtracting 42 at runtime will 571 // produce the wrong value. 572 if (Sym->isInSection()) { 573 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 574 unsigned Flags = Sec.getFlags(); 575 if (Flags & ELF::SHF_MERGE) { 576 if (C != 0) 577 return true; 578 579 // It looks like gold has a bug (http://sourceware.org/PR16794) and can 580 // only handle section relocations to mergeable sections if using RELA. 581 if (!hasRelocationAddend()) 582 return true; 583 } 584 585 // Most TLS relocations use a got, so they need the symbol. Even those that 586 // are just an offset (@tpoff), require a symbol in gold versions before 587 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 588 // http://sourceware.org/PR16773. 589 if (Flags & ELF::SHF_TLS) 590 return true; 591 } 592 593 // If the symbol is a thumb function the final relocation must set the lowest 594 // bit. With a symbol that is done by just having the symbol have that bit 595 // set, so we would lose the bit if we relocated with the section. 596 // FIXME: We could use the section but add the bit to the relocation value. 597 if (Asm.isThumbFunc(Sym)) 598 return true; 599 600 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) 601 return true; 602 return false; 603 } 604 605 // True if the assembler knows nothing about the final value of the symbol. 606 // This doesn't cover the comdat issues, since in those cases the assembler 607 // can at least know that all symbols in the section will move together. 608 static bool isWeak(const MCSymbolELF &Sym) { 609 if (Sym.getType() == ELF::STT_GNU_IFUNC) 610 return true; 611 612 switch (Sym.getBinding()) { 613 default: 614 llvm_unreachable("Unknown binding"); 615 case ELF::STB_LOCAL: 616 return false; 617 case ELF::STB_GLOBAL: 618 return false; 619 case ELF::STB_WEAK: 620 case ELF::STB_GNU_UNIQUE: 621 return true; 622 } 623 } 624 625 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 626 const MCAsmLayout &Layout, 627 const MCFragment *Fragment, 628 const MCFixup &Fixup, MCValue Target, 629 bool &IsPCRel, uint64_t &FixedValue) { 630 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 631 uint64_t C = Target.getConstant(); 632 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 633 MCContext &Ctx = Asm.getContext(); 634 635 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 636 assert(RefB->getKind() == MCSymbolRefExpr::VK_None && 637 "Should not have constructed this"); 638 639 // Let A, B and C being the components of Target and R be the location of 640 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C). 641 // If it is pcrel, we want to compute (A - B + C - R). 642 643 // In general, ELF has no relocations for -B. It can only represent (A + C) 644 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can 645 // replace B to implement it: (A - R - K + C) 646 if (IsPCRel) { 647 Ctx.reportError( 648 Fixup.getLoc(), 649 "No relocation available to represent this relative expression"); 650 return; 651 } 652 653 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 654 655 if (SymB.isUndefined()) { 656 Ctx.reportError(Fixup.getLoc(), 657 Twine("symbol '") + SymB.getName() + 658 "' can not be undefined in a subtraction expression"); 659 return; 660 } 661 662 assert(!SymB.isAbsolute() && "Should have been folded"); 663 const MCSection &SecB = SymB.getSection(); 664 if (&SecB != &FixupSection) { 665 Ctx.reportError(Fixup.getLoc(), 666 "Cannot represent a difference across sections"); 667 return; 668 } 669 670 uint64_t SymBOffset = Layout.getSymbolOffset(SymB); 671 uint64_t K = SymBOffset - FixupOffset; 672 IsPCRel = true; 673 C -= K; 674 } 675 676 // We either rejected the fixup or folded B into C at this point. 677 const MCSymbolRefExpr *RefA = Target.getSymA(); 678 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 679 680 bool ViaWeakRef = false; 681 if (SymA && SymA->isVariable()) { 682 const MCExpr *Expr = SymA->getVariableValue(); 683 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 684 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 685 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 686 ViaWeakRef = true; 687 } 688 } 689 } 690 691 unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel); 692 uint64_t OriginalC = C; 693 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type); 694 if (!RelocateWithSymbol && SymA && !SymA->isUndefined()) 695 C += Layout.getSymbolOffset(*SymA); 696 697 uint64_t Addend = 0; 698 if (hasRelocationAddend()) { 699 Addend = C; 700 C = 0; 701 } 702 703 FixedValue = C; 704 705 if (!RelocateWithSymbol) { 706 const MCSection *SecA = 707 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr; 708 auto *ELFSec = cast_or_null<MCSectionELF>(SecA); 709 const auto *SectionSymbol = 710 ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr; 711 if (SectionSymbol) 712 SectionSymbol->setUsedInReloc(); 713 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, 714 OriginalC); 715 Relocations[&FixupSection].push_back(Rec); 716 return; 717 } 718 719 const auto *RenamedSymA = SymA; 720 if (SymA) { 721 if (const MCSymbolELF *R = Renames.lookup(SymA)) 722 RenamedSymA = R; 723 724 if (ViaWeakRef) 725 RenamedSymA->setIsWeakrefUsedInReloc(); 726 else 727 RenamedSymA->setUsedInReloc(); 728 } 729 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, 730 OriginalC); 731 Relocations[&FixupSection].push_back(Rec); 732 } 733 734 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout, 735 const MCSymbolELF &Symbol, bool Used, 736 bool Renamed) { 737 if (Symbol.isVariable()) { 738 const MCExpr *Expr = Symbol.getVariableValue(); 739 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 740 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 741 return false; 742 } 743 } 744 745 if (Used) 746 return true; 747 748 if (Renamed) 749 return false; 750 751 if (Symbol.isVariable() && Symbol.isUndefined()) { 752 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 753 Layout.getBaseSymbol(Symbol); 754 return false; 755 } 756 757 if (Symbol.isUndefined() && !Symbol.isBindingSet()) 758 return false; 759 760 if (Symbol.isTemporary()) 761 return false; 762 763 if (Symbol.getType() == ELF::STT_SECTION) 764 return false; 765 766 return true; 767 } 768 769 void ELFObjectWriter::computeSymbolTable( 770 MCAssembler &Asm, const MCAsmLayout &Layout, 771 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, 772 SectionOffsetsTy &SectionOffsets) { 773 MCContext &Ctx = Asm.getContext(); 774 SymbolTableWriter Writer(*this, is64Bit()); 775 776 // Symbol table 777 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 778 MCSectionELF *SymtabSection = 779 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, ""); 780 SymtabSection->setAlignment(is64Bit() ? 8 : 4); 781 SymbolTableIndex = addToSectionTable(SymtabSection); 782 783 align(SymtabSection->getAlignment()); 784 uint64_t SecStart = getStream().tell(); 785 786 // The first entry is the undefined symbol entry. 787 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 788 789 std::vector<ELFSymbolData> LocalSymbolData; 790 std::vector<ELFSymbolData> ExternalSymbolData; 791 792 // Add the data for the symbols. 793 bool HasLargeSectionIndex = false; 794 for (const MCSymbol &S : Asm.symbols()) { 795 const auto &Symbol = cast<MCSymbolELF>(S); 796 bool Used = Symbol.isUsedInReloc(); 797 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 798 bool isSignature = Symbol.isSignature(); 799 800 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, 801 Renames.count(&Symbol))) 802 continue; 803 804 if (Symbol.isTemporary() && Symbol.isUndefined()) { 805 Ctx.reportError(SMLoc(), "Undefined temporary symbol"); 806 continue; 807 } 808 809 ELFSymbolData MSD; 810 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 811 812 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 813 assert(Local || !Symbol.isTemporary()); 814 815 if (Symbol.isAbsolute()) { 816 MSD.SectionIndex = ELF::SHN_ABS; 817 } else if (Symbol.isCommon()) { 818 assert(!Local); 819 MSD.SectionIndex = ELF::SHN_COMMON; 820 } else if (Symbol.isUndefined()) { 821 if (isSignature && !Used) { 822 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 823 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 824 HasLargeSectionIndex = true; 825 } else { 826 MSD.SectionIndex = ELF::SHN_UNDEF; 827 } 828 } else { 829 const MCSectionELF &Section = 830 static_cast<const MCSectionELF &>(Symbol.getSection()); 831 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 832 assert(MSD.SectionIndex && "Invalid section index!"); 833 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 834 HasLargeSectionIndex = true; 835 } 836 837 // The @@@ in symbol version is replaced with @ in undefined symbols and @@ 838 // in defined ones. 839 // 840 // FIXME: All name handling should be done before we get to the writer, 841 // including dealing with GNU-style version suffixes. Fixing this isn't 842 // trivial. 843 // 844 // We thus have to be careful to not perform the symbol version replacement 845 // blindly: 846 // 847 // The ELF format is used on Windows by the MCJIT engine. Thus, on 848 // Windows, the ELFObjectWriter can encounter symbols mangled using the MS 849 // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC 850 // C++ name mangling can legally have "@@@" as a sub-string. In that case, 851 // the EFLObjectWriter should not interpret the "@@@" sub-string as 852 // specifying GNU-style symbol versioning. The ELFObjectWriter therefore 853 // checks for the MSVC C++ name mangling prefix which is either "?", "@?", 854 // "__imp_?" or "__imp_@?". 855 // 856 // It would have been interesting to perform the MS mangling prefix check 857 // only when the target triple is of the form *-pc-windows-elf. But, it 858 // seems that this information is not easily accessible from the 859 // ELFObjectWriter. 860 StringRef Name = Symbol.getName(); 861 SmallString<32> Buf; 862 if (!Name.startswith("?") && !Name.startswith("@?") && 863 !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) { 864 // This symbol isn't following the MSVC C++ name mangling convention. We 865 // can thus safely interpret the @@@ in symbol names as specifying symbol 866 // versioning. 867 size_t Pos = Name.find("@@@"); 868 if (Pos != StringRef::npos) { 869 Buf += Name.substr(0, Pos); 870 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1; 871 Buf += Name.substr(Pos + Skip); 872 Name = VersionSymSaver.save(Buf.c_str()); 873 } 874 } 875 876 // Sections have their own string table 877 if (Symbol.getType() != ELF::STT_SECTION) { 878 MSD.Name = Name; 879 StrTabBuilder.add(Name); 880 } 881 882 if (Local) 883 LocalSymbolData.push_back(MSD); 884 else 885 ExternalSymbolData.push_back(MSD); 886 } 887 888 // This holds the .symtab_shndx section index. 889 unsigned SymtabShndxSectionIndex = 0; 890 891 if (HasLargeSectionIndex) { 892 MCSectionELF *SymtabShndxSection = 893 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, ""); 894 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 895 SymtabShndxSection->setAlignment(4); 896 } 897 898 ArrayRef<std::string> FileNames = Asm.getFileNames(); 899 for (const std::string &Name : FileNames) 900 StrTabBuilder.add(Name); 901 902 StrTabBuilder.finalize(); 903 904 // File symbols are emitted first and handled separately from normal symbols, 905 // i.e. a non-STT_FILE symbol with the same name may appear. 906 for (const std::string &Name : FileNames) 907 Writer.writeSymbol(StrTabBuilder.getOffset(Name), 908 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 909 ELF::SHN_ABS, true); 910 911 // Symbols are required to be in lexicographic order. 912 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end()); 913 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); 914 915 // Set the symbol indices. Local symbols must come before all other 916 // symbols with non-local bindings. 917 unsigned Index = FileNames.size() + 1; 918 919 for (ELFSymbolData &MSD : LocalSymbolData) { 920 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 921 ? 0 922 : StrTabBuilder.getOffset(MSD.Name); 923 MSD.Symbol->setIndex(Index++); 924 writeSymbol(Writer, StringIndex, MSD, Layout); 925 } 926 927 // Write the symbol table entries. 928 LastLocalSymbolIndex = Index; 929 930 for (ELFSymbolData &MSD : ExternalSymbolData) { 931 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 932 MSD.Symbol->setIndex(Index++); 933 writeSymbol(Writer, StringIndex, MSD, Layout); 934 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 935 } 936 937 uint64_t SecEnd = getStream().tell(); 938 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 939 940 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 941 if (ShndxIndexes.empty()) { 942 assert(SymtabShndxSectionIndex == 0); 943 return; 944 } 945 assert(SymtabShndxSectionIndex != 0); 946 947 SecStart = getStream().tell(); 948 const MCSectionELF *SymtabShndxSection = 949 SectionTable[SymtabShndxSectionIndex - 1]; 950 for (uint32_t Index : ShndxIndexes) 951 write(Index); 952 SecEnd = getStream().tell(); 953 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 954 } 955 956 MCSectionELF * 957 ELFObjectWriter::createRelocationSection(MCContext &Ctx, 958 const MCSectionELF &Sec) { 959 if (Relocations[&Sec].empty()) 960 return nullptr; 961 962 const StringRef SectionName = Sec.getSectionName(); 963 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel"; 964 RelaSectionName += SectionName; 965 966 unsigned EntrySize; 967 if (hasRelocationAddend()) 968 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 969 else 970 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 971 972 unsigned Flags = 0; 973 if (Sec.getFlags() & ELF::SHF_GROUP) 974 Flags = ELF::SHF_GROUP; 975 976 MCSectionELF *RelaSection = Ctx.createELFRelSection( 977 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL, 978 Flags, EntrySize, Sec.getGroup(), &Sec); 979 RelaSection->setAlignment(is64Bit() ? 8 : 4); 980 return RelaSection; 981 } 982 983 // Include the debug info compression header. 984 bool ELFObjectWriter::maybeWriteCompression( 985 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, 986 unsigned Alignment) { 987 if (ZLibStyle) { 988 uint64_t HdrSize = 989 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); 990 if (Size <= HdrSize + CompressedContents.size()) 991 return false; 992 // Platform specific header is followed by compressed data. 993 if (is64Bit()) { 994 // Write Elf64_Chdr header. 995 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB)); 996 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 997 write(static_cast<ELF::Elf64_Xword>(Size)); 998 write(static_cast<ELF::Elf64_Xword>(Alignment)); 999 } else { 1000 // Write Elf32_Chdr header otherwise. 1001 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB)); 1002 write(static_cast<ELF::Elf32_Word>(Size)); 1003 write(static_cast<ELF::Elf32_Word>(Alignment)); 1004 } 1005 return true; 1006 } 1007 1008 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section, 1009 // useful for consumers to preallocate a buffer to decompress into. 1010 const StringRef Magic = "ZLIB"; 1011 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size()) 1012 return false; 1013 write(ArrayRef<char>(Magic.begin(), Magic.size())); 1014 writeBE64(Size); 1015 return true; 1016 } 1017 1018 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, 1019 const MCAsmLayout &Layout) { 1020 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1021 StringRef SectionName = Section.getSectionName(); 1022 1023 // Compressing debug_frame requires handling alignment fragments which is 1024 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow 1025 // for writing to arbitrary buffers) for little benefit. 1026 bool CompressionEnabled = 1027 Asm.getContext().getAsmInfo()->compressDebugSections() != 1028 DebugCompressionType::DCT_None; 1029 if (!CompressionEnabled || !SectionName.startswith(".debug_") || 1030 SectionName == ".debug_frame") { 1031 Asm.writeSectionData(&Section, Layout); 1032 return; 1033 } 1034 1035 SmallVector<char, 128> UncompressedData; 1036 raw_svector_ostream VecOS(UncompressedData); 1037 raw_pwrite_stream &OldStream = getStream(); 1038 setStream(VecOS); 1039 Asm.writeSectionData(&Section, Layout); 1040 setStream(OldStream); 1041 1042 SmallVector<char, 128> CompressedContents; 1043 if (Error E = zlib::compress( 1044 StringRef(UncompressedData.data(), UncompressedData.size()), 1045 CompressedContents)) { 1046 consumeError(std::move(E)); 1047 getStream() << UncompressedData; 1048 return; 1049 } 1050 1051 bool ZlibStyle = Asm.getContext().getAsmInfo()->compressDebugSections() == 1052 DebugCompressionType::DCT_Zlib; 1053 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents, 1054 ZlibStyle, Sec.getAlignment())) { 1055 getStream() << UncompressedData; 1056 return; 1057 } 1058 1059 if (ZlibStyle) 1060 // Set the compressed flag. That is zlib style. 1061 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 1062 else 1063 // Add "z" prefix to section name. This is zlib-gnu style. 1064 Asm.getContext().renameELFSection(&Section, 1065 (".z" + SectionName.drop_front(1)).str()); 1066 getStream() << CompressedContents; 1067 } 1068 1069 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, 1070 uint64_t Flags, uint64_t Address, 1071 uint64_t Offset, uint64_t Size, 1072 uint32_t Link, uint32_t Info, 1073 uint64_t Alignment, 1074 uint64_t EntrySize) { 1075 write32(Name); // sh_name: index into string table 1076 write32(Type); // sh_type 1077 WriteWord(Flags); // sh_flags 1078 WriteWord(Address); // sh_addr 1079 WriteWord(Offset); // sh_offset 1080 WriteWord(Size); // sh_size 1081 write32(Link); // sh_link 1082 write32(Info); // sh_info 1083 WriteWord(Alignment); // sh_addralign 1084 WriteWord(EntrySize); // sh_entsize 1085 } 1086 1087 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm, 1088 const MCSectionELF &Sec) { 1089 std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec]; 1090 1091 // We record relocations by pushing to the end of a vector. Reverse the vector 1092 // to get the relocations in the order they were created. 1093 // In most cases that is not important, but it can be for special sections 1094 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). 1095 std::reverse(Relocs.begin(), Relocs.end()); 1096 1097 // Sort the relocation entries. MIPS needs this. 1098 TargetObjectWriter->sortRelocs(Asm, Relocs); 1099 1100 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 1101 const ELFRelocationEntry &Entry = Relocs[e - i - 1]; 1102 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 1103 1104 if (is64Bit()) { 1105 write(Entry.Offset); 1106 if (TargetObjectWriter->isN64()) { 1107 write(uint32_t(Index)); 1108 1109 write(TargetObjectWriter->getRSsym(Entry.Type)); 1110 write(TargetObjectWriter->getRType3(Entry.Type)); 1111 write(TargetObjectWriter->getRType2(Entry.Type)); 1112 write(TargetObjectWriter->getRType(Entry.Type)); 1113 } else { 1114 struct ELF::Elf64_Rela ERE64; 1115 ERE64.setSymbolAndType(Index, Entry.Type); 1116 write(ERE64.r_info); 1117 } 1118 if (hasRelocationAddend()) 1119 write(Entry.Addend); 1120 } else { 1121 write(uint32_t(Entry.Offset)); 1122 1123 struct ELF::Elf32_Rela ERE32; 1124 ERE32.setSymbolAndType(Index, Entry.Type); 1125 write(ERE32.r_info); 1126 1127 if (hasRelocationAddend()) 1128 write(uint32_t(Entry.Addend)); 1129 } 1130 } 1131 } 1132 1133 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) { 1134 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; 1135 StrTabBuilder.write(getStream()); 1136 return StrtabSection; 1137 } 1138 1139 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 1140 uint32_t GroupSymbolIndex, uint64_t Offset, 1141 uint64_t Size, const MCSectionELF &Section) { 1142 uint64_t sh_link = 0; 1143 uint64_t sh_info = 0; 1144 1145 switch(Section.getType()) { 1146 default: 1147 // Nothing to do. 1148 break; 1149 1150 case ELF::SHT_DYNAMIC: 1151 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 1152 1153 case ELF::SHT_REL: 1154 case ELF::SHT_RELA: { 1155 sh_link = SymbolTableIndex; 1156 assert(sh_link && ".symtab not found"); 1157 const MCSection *InfoSection = Section.getAssociatedSection(); 1158 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1159 break; 1160 } 1161 1162 case ELF::SHT_SYMTAB: 1163 case ELF::SHT_DYNSYM: 1164 sh_link = StringTableIndex; 1165 sh_info = LastLocalSymbolIndex; 1166 break; 1167 1168 case ELF::SHT_SYMTAB_SHNDX: 1169 sh_link = SymbolTableIndex; 1170 break; 1171 1172 case ELF::SHT_GROUP: 1173 sh_link = SymbolTableIndex; 1174 sh_info = GroupSymbolIndex; 1175 break; 1176 } 1177 1178 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1179 const MCSymbol *Sym = Section.getAssociatedSymbol(); 1180 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1181 sh_link = SectionIndexMap.lookup(Sec); 1182 } 1183 1184 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()), 1185 Section.getType(), Section.getFlags(), 0, Offset, Size, 1186 sh_link, sh_info, Section.getAlignment(), 1187 Section.getEntrySize()); 1188 } 1189 1190 void ELFObjectWriter::writeSectionHeader( 1191 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, 1192 const SectionOffsetsTy &SectionOffsets) { 1193 const unsigned NumSections = SectionTable.size(); 1194 1195 // Null section first. 1196 uint64_t FirstSectionSize = 1197 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1198 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0); 1199 1200 for (const MCSectionELF *Section : SectionTable) { 1201 uint32_t GroupSymbolIndex; 1202 unsigned Type = Section->getType(); 1203 if (Type != ELF::SHT_GROUP) 1204 GroupSymbolIndex = 0; 1205 else 1206 GroupSymbolIndex = Section->getGroup()->getIndex(); 1207 1208 const std::pair<uint64_t, uint64_t> &Offsets = 1209 SectionOffsets.find(Section)->second; 1210 uint64_t Size; 1211 if (Type == ELF::SHT_NOBITS) 1212 Size = Layout.getSectionAddressSize(Section); 1213 else 1214 Size = Offsets.second - Offsets.first; 1215 1216 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1217 *Section); 1218 } 1219 } 1220 1221 void ELFObjectWriter::writeObject(MCAssembler &Asm, 1222 const MCAsmLayout &Layout) { 1223 MCContext &Ctx = Asm.getContext(); 1224 MCSectionELF *StrtabSection = 1225 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1226 StringTableIndex = addToSectionTable(StrtabSection); 1227 1228 RevGroupMapTy RevGroupMap; 1229 SectionIndexMapTy SectionIndexMap; 1230 1231 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; 1232 1233 // Write out the ELF header ... 1234 writeHeader(Asm); 1235 1236 // ... then the sections ... 1237 SectionOffsetsTy SectionOffsets; 1238 std::vector<MCSectionELF *> Groups; 1239 std::vector<MCSectionELF *> Relocations; 1240 for (MCSection &Sec : Asm) { 1241 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1242 1243 align(Section.getAlignment()); 1244 1245 // Remember the offset into the file for this section. 1246 uint64_t SecStart = getStream().tell(); 1247 1248 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1249 writeSectionData(Asm, Section, Layout); 1250 1251 uint64_t SecEnd = getStream().tell(); 1252 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1253 1254 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1255 1256 if (SignatureSymbol) { 1257 Asm.registerSymbol(*SignatureSymbol); 1258 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1259 if (!GroupIdx) { 1260 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol); 1261 GroupIdx = addToSectionTable(Group); 1262 Group->setAlignment(4); 1263 Groups.push_back(Group); 1264 } 1265 std::vector<const MCSectionELF *> &Members = 1266 GroupMembers[SignatureSymbol]; 1267 Members.push_back(&Section); 1268 if (RelSection) 1269 Members.push_back(RelSection); 1270 } 1271 1272 SectionIndexMap[&Section] = addToSectionTable(&Section); 1273 if (RelSection) { 1274 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1275 Relocations.push_back(RelSection); 1276 } 1277 } 1278 1279 for (MCSectionELF *Group : Groups) { 1280 align(Group->getAlignment()); 1281 1282 // Remember the offset into the file for this section. 1283 uint64_t SecStart = getStream().tell(); 1284 1285 const MCSymbol *SignatureSymbol = Group->getGroup(); 1286 assert(SignatureSymbol); 1287 write(uint32_t(ELF::GRP_COMDAT)); 1288 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1289 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1290 write(SecIndex); 1291 } 1292 1293 uint64_t SecEnd = getStream().tell(); 1294 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1295 } 1296 1297 // Compute symbol table information. 1298 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets); 1299 1300 for (MCSectionELF *RelSection : Relocations) { 1301 align(RelSection->getAlignment()); 1302 1303 // Remember the offset into the file for this section. 1304 uint64_t SecStart = getStream().tell(); 1305 1306 writeRelocations(Asm, 1307 cast<MCSectionELF>(*RelSection->getAssociatedSection())); 1308 1309 uint64_t SecEnd = getStream().tell(); 1310 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1311 } 1312 1313 { 1314 uint64_t SecStart = getStream().tell(); 1315 const MCSectionELF *Sec = createStringTable(Ctx); 1316 uint64_t SecEnd = getStream().tell(); 1317 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd); 1318 } 1319 1320 uint64_t NaturalAlignment = is64Bit() ? 8 : 4; 1321 align(NaturalAlignment); 1322 1323 const uint64_t SectionHeaderOffset = getStream().tell(); 1324 1325 // ... then the section header table ... 1326 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); 1327 1328 uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) 1329 ? (uint16_t)ELF::SHN_UNDEF 1330 : SectionTable.size() + 1; 1331 if (sys::IsLittleEndianHost != IsLittleEndian) 1332 sys::swapByteOrder(NumSections); 1333 unsigned NumSectionsOffset; 1334 1335 if (is64Bit()) { 1336 uint64_t Val = SectionHeaderOffset; 1337 if (sys::IsLittleEndianHost != IsLittleEndian) 1338 sys::swapByteOrder(Val); 1339 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1340 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1341 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1342 } else { 1343 uint32_t Val = SectionHeaderOffset; 1344 if (sys::IsLittleEndianHost != IsLittleEndian) 1345 sys::swapByteOrder(Val); 1346 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1347 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1348 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1349 } 1350 getStream().pwrite(reinterpret_cast<char *>(&NumSections), 1351 sizeof(NumSections), NumSectionsOffset); 1352 } 1353 1354 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1355 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1356 bool InSet, bool IsPCRel) const { 1357 const auto &SymA = cast<MCSymbolELF>(SA); 1358 if (IsPCRel) { 1359 assert(!InSet); 1360 if (isWeak(SymA)) 1361 return false; 1362 } 1363 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, 1364 InSet, IsPCRel); 1365 } 1366 1367 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW, 1368 raw_pwrite_stream &OS, 1369 bool IsLittleEndian) { 1370 return new ELFObjectWriter(MOTW, OS, IsLittleEndian); 1371 } 1372