1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/ELF.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCAsmLayout.h"
24 #include "llvm/MC/MCAssembler.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCELFObjectWriter.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixup.h"
29 #include "llvm/MC/MCFragment.h"
30 #include "llvm/MC/MCObjectWriter.h"
31 #include "llvm/MC/MCSection.h"
32 #include "llvm/MC/MCSectionELF.h"
33 #include "llvm/MC/MCSymbol.h"
34 #include "llvm/MC/MCSymbolELF.h"
35 #include "llvm/MC/MCValue.h"
36 #include "llvm/MC/StringTableBuilder.h"
37 #include "llvm/Support/Allocator.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compression.h"
40 #include "llvm/Support/Endian.h"
41 #include "llvm/Support/Error.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/Host.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SMLoc.h"
46 #include "llvm/Support/StringSaver.h"
47 #include "llvm/Support/SwapByteOrder.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstddef>
52 #include <cstdint>
53 #include <map>
54 #include <memory>
55 #include <string>
56 #include <utility>
57 #include <vector>
58 
59 using namespace llvm;
60 
61 #undef  DEBUG_TYPE
62 #define DEBUG_TYPE "reloc-info"
63 
64 namespace {
65 
66 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
67 
68 class ELFObjectWriter;
69 
70 class SymbolTableWriter {
71   ELFObjectWriter &EWriter;
72   bool Is64Bit;
73 
74   // indexes we are going to write to .symtab_shndx.
75   std::vector<uint32_t> ShndxIndexes;
76 
77   // The numbel of symbols written so far.
78   unsigned NumWritten;
79 
80   void createSymtabShndx();
81 
82   template <typename T> void write(T Value);
83 
84 public:
85   SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
86 
87   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
88                    uint8_t other, uint32_t shndx, bool Reserved);
89 
90   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
91 };
92 
93 class ELFObjectWriter : public MCObjectWriter {
94   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
95   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
96                          bool Used, bool Renamed);
97 
98   /// Helper struct for containing some precomputed information on symbols.
99   struct ELFSymbolData {
100     const MCSymbolELF *Symbol;
101     uint32_t SectionIndex;
102     StringRef Name;
103 
104     // Support lexicographic sorting.
105     bool operator<(const ELFSymbolData &RHS) const {
106       unsigned LHSType = Symbol->getType();
107       unsigned RHSType = RHS.Symbol->getType();
108       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
109         return false;
110       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
111         return true;
112       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
113         return SectionIndex < RHS.SectionIndex;
114       return Name < RHS.Name;
115     }
116   };
117 
118   /// The target specific ELF writer instance.
119   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
120 
121   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
122 
123   DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
124 
125   /// @}
126   /// @name Symbol Table Data
127   /// @{
128 
129   BumpPtrAllocator Alloc;
130   StringSaver VersionSymSaver{Alloc};
131   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
132 
133   /// @}
134 
135   // This holds the symbol table index of the last local symbol.
136   unsigned LastLocalSymbolIndex;
137   // This holds the .strtab section index.
138   unsigned StringTableIndex;
139   // This holds the .symtab section index.
140   unsigned SymbolTableIndex;
141 
142   // Sections in the order they are to be output in the section table.
143   std::vector<const MCSectionELF *> SectionTable;
144   unsigned addToSectionTable(const MCSectionELF *Sec);
145 
146   // TargetObjectWriter wrappers.
147   bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
148   bool hasRelocationAddend() const {
149     return TargetObjectWriter->hasRelocationAddend();
150   }
151   unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
152                         const MCFixup &Fixup, bool IsPCRel) const {
153     return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
154   }
155 
156   void align(unsigned Alignment);
157 
158   bool maybeWriteCompression(uint64_t Size,
159                              SmallVectorImpl<char> &CompressedContents,
160                              bool ZLibStyle, unsigned Alignment);
161 
162 public:
163   ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
164                   bool IsLittleEndian)
165       : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
166 
167   ~ELFObjectWriter() override = default;
168 
169   void reset() override {
170     Renames.clear();
171     Relocations.clear();
172     StrTabBuilder.clear();
173     SectionTable.clear();
174     MCObjectWriter::reset();
175   }
176 
177   void WriteWord(uint64_t W) {
178     if (is64Bit())
179       write64(W);
180     else
181       write32(W);
182   }
183 
184   template <typename T> void write(T Val) {
185     if (IsLittleEndian)
186       support::endian::Writer<support::little>(getStream()).write(Val);
187     else
188       support::endian::Writer<support::big>(getStream()).write(Val);
189   }
190 
191   void writeHeader(const MCAssembler &Asm);
192 
193   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
194                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
195 
196   // Start and end offset of each section
197   using SectionOffsetsTy =
198       std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
199 
200   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
201                                 const MCSymbolRefExpr *RefA,
202                                 const MCSymbol *Sym, uint64_t C,
203                                 unsigned Type) const;
204 
205   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
206                         const MCFragment *Fragment, const MCFixup &Fixup,
207                         MCValue Target, bool &IsPCRel,
208                         uint64_t &FixedValue) override;
209 
210   // Map from a signature symbol to the group section index
211   using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
212 
213   /// Compute the symbol table data
214   ///
215   /// \param Asm - The assembler.
216   /// \param SectionIndexMap - Maps a section to its index.
217   /// \param RevGroupMap - Maps a signature symbol to the group section.
218   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
219                           const SectionIndexMapTy &SectionIndexMap,
220                           const RevGroupMapTy &RevGroupMap,
221                           SectionOffsetsTy &SectionOffsets);
222 
223   MCSectionELF *createRelocationSection(MCContext &Ctx,
224                                         const MCSectionELF &Sec);
225 
226   const MCSectionELF *createStringTable(MCContext &Ctx);
227 
228   void executePostLayoutBinding(MCAssembler &Asm,
229                                 const MCAsmLayout &Layout) override;
230 
231   void writeSectionHeader(const MCAsmLayout &Layout,
232                           const SectionIndexMapTy &SectionIndexMap,
233                           const SectionOffsetsTy &SectionOffsets);
234 
235   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
236                         const MCAsmLayout &Layout);
237 
238   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
239                         uint64_t Address, uint64_t Offset, uint64_t Size,
240                         uint32_t Link, uint32_t Info, uint64_t Alignment,
241                         uint64_t EntrySize);
242 
243   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
244 
245   using MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl;
246   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
247                                               const MCSymbol &SymA,
248                                               const MCFragment &FB, bool InSet,
249                                               bool IsPCRel) const override;
250 
251   void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
252   void writeSection(const SectionIndexMapTy &SectionIndexMap,
253                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
254                     const MCSectionELF &Section);
255 };
256 
257 } // end anonymous namespace
258 
259 void ELFObjectWriter::align(unsigned Alignment) {
260   uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
261   WriteZeros(Padding);
262 }
263 
264 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
265   SectionTable.push_back(Sec);
266   StrTabBuilder.add(Sec->getSectionName());
267   return SectionTable.size();
268 }
269 
270 void SymbolTableWriter::createSymtabShndx() {
271   if (!ShndxIndexes.empty())
272     return;
273 
274   ShndxIndexes.resize(NumWritten);
275 }
276 
277 template <typename T> void SymbolTableWriter::write(T Value) {
278   EWriter.write(Value);
279 }
280 
281 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
282     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
283 
284 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
285                                     uint64_t size, uint8_t other,
286                                     uint32_t shndx, bool Reserved) {
287   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
288 
289   if (LargeIndex)
290     createSymtabShndx();
291 
292   if (!ShndxIndexes.empty()) {
293     if (LargeIndex)
294       ShndxIndexes.push_back(shndx);
295     else
296       ShndxIndexes.push_back(0);
297   }
298 
299   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
300 
301   if (Is64Bit) {
302     write(name);  // st_name
303     write(info);  // st_info
304     write(other); // st_other
305     write(Index); // st_shndx
306     write(value); // st_value
307     write(size);  // st_size
308   } else {
309     write(name);            // st_name
310     write(uint32_t(value)); // st_value
311     write(uint32_t(size));  // st_size
312     write(info);            // st_info
313     write(other);           // st_other
314     write(Index);           // st_shndx
315   }
316 
317   ++NumWritten;
318 }
319 
320 // Emit the ELF header.
321 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
322   // ELF Header
323   // ----------
324   //
325   // Note
326   // ----
327   // emitWord method behaves differently for ELF32 and ELF64, writing
328   // 4 bytes in the former and 8 in the latter.
329 
330   writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
331 
332   write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
333 
334   // e_ident[EI_DATA]
335   write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
336 
337   write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
338   // e_ident[EI_OSABI]
339   write8(TargetObjectWriter->getOSABI());
340   write8(0);                  // e_ident[EI_ABIVERSION]
341 
342   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
343 
344   write16(ELF::ET_REL);             // e_type
345 
346   write16(TargetObjectWriter->getEMachine()); // e_machine = target
347 
348   write32(ELF::EV_CURRENT);         // e_version
349   WriteWord(0);                    // e_entry, no entry point in .o file
350   WriteWord(0);                    // e_phoff, no program header for .o
351   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
352 
353   // e_flags = whatever the target wants
354   write32(Asm.getELFHeaderEFlags());
355 
356   // e_ehsize = ELF header size
357   write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
358 
359   write16(0);                  // e_phentsize = prog header entry size
360   write16(0);                  // e_phnum = # prog header entries = 0
361 
362   // e_shentsize = Section header entry size
363   write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
364 
365   // e_shnum     = # of section header ents
366   write16(0);
367 
368   // e_shstrndx  = Section # of '.shstrtab'
369   assert(StringTableIndex < ELF::SHN_LORESERVE);
370   write16(StringTableIndex);
371 }
372 
373 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
374                                       const MCAsmLayout &Layout) {
375   if (Sym.isCommon() && Sym.isExternal())
376     return Sym.getCommonAlignment();
377 
378   uint64_t Res;
379   if (!Layout.getSymbolOffset(Sym, Res))
380     return 0;
381 
382   if (Layout.getAssembler().isThumbFunc(&Sym))
383     Res |= 1;
384 
385   return Res;
386 }
387 
388 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
389                                                const MCAsmLayout &Layout) {
390   // The presence of symbol versions causes undefined symbols and
391   // versions declared with @@@ to be renamed.
392   for (const MCSymbol &A : Asm.symbols()) {
393     const auto &Alias = cast<MCSymbolELF>(A);
394     // Not an alias.
395     if (!Alias.isVariable())
396       continue;
397     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
398     if (!Ref)
399       continue;
400     const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
401 
402     StringRef AliasName = Alias.getName();
403     size_t Pos = AliasName.find('@');
404     if (Pos == StringRef::npos)
405       continue;
406 
407     // Aliases defined with .symvar copy the binding from the symbol they alias.
408     // This is the first place we are able to copy this information.
409     Alias.setExternal(Symbol.isExternal());
410     Alias.setBinding(Symbol.getBinding());
411 
412     StringRef Rest = AliasName.substr(Pos);
413     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
414       continue;
415 
416     // FIXME: produce a better error message.
417     if (Symbol.isUndefined() && Rest.startswith("@@") &&
418         !Rest.startswith("@@@"))
419       report_fatal_error("A @@ version cannot be undefined");
420 
421     Renames.insert(std::make_pair(&Symbol, &Alias));
422   }
423 }
424 
425 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
426   uint8_t Type = newType;
427 
428   // Propagation rules:
429   // IFUNC > FUNC > OBJECT > NOTYPE
430   // TLS_OBJECT > OBJECT > NOTYPE
431   //
432   // dont let the new type degrade the old type
433   switch (origType) {
434   default:
435     break;
436   case ELF::STT_GNU_IFUNC:
437     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
438         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
439       Type = ELF::STT_GNU_IFUNC;
440     break;
441   case ELF::STT_FUNC:
442     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
443         Type == ELF::STT_TLS)
444       Type = ELF::STT_FUNC;
445     break;
446   case ELF::STT_OBJECT:
447     if (Type == ELF::STT_NOTYPE)
448       Type = ELF::STT_OBJECT;
449     break;
450   case ELF::STT_TLS:
451     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
452         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
453       Type = ELF::STT_TLS;
454     break;
455   }
456 
457   return Type;
458 }
459 
460 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
461                                   uint32_t StringIndex, ELFSymbolData &MSD,
462                                   const MCAsmLayout &Layout) {
463   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
464   const MCSymbolELF *Base =
465       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
466 
467   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
468   // SHN_COMMON.
469   bool IsReserved = !Base || Symbol.isCommon();
470 
471   // Binding and Type share the same byte as upper and lower nibbles
472   uint8_t Binding = Symbol.getBinding();
473   uint8_t Type = Symbol.getType();
474   if (Base) {
475     Type = mergeTypeForSet(Type, Base->getType());
476   }
477   uint8_t Info = (Binding << 4) | Type;
478 
479   // Other and Visibility share the same byte with Visibility using the lower
480   // 2 bits
481   uint8_t Visibility = Symbol.getVisibility();
482   uint8_t Other = Symbol.getOther() | Visibility;
483 
484   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
485   uint64_t Size = 0;
486 
487   const MCExpr *ESize = MSD.Symbol->getSize();
488   if (!ESize && Base)
489     ESize = Base->getSize();
490 
491   if (ESize) {
492     int64_t Res;
493     if (!ESize->evaluateKnownAbsolute(Res, Layout))
494       report_fatal_error("Size expression must be absolute.");
495     Size = Res;
496   }
497 
498   // Write out the symbol table entry
499   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
500                      IsReserved);
501 }
502 
503 // It is always valid to create a relocation with a symbol. It is preferable
504 // to use a relocation with a section if that is possible. Using the section
505 // allows us to omit some local symbols from the symbol table.
506 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
507                                                const MCSymbolRefExpr *RefA,
508                                                const MCSymbol *S, uint64_t C,
509                                                unsigned Type) const {
510   const auto *Sym = cast_or_null<MCSymbolELF>(S);
511   // A PCRel relocation to an absolute value has no symbol (or section). We
512   // represent that with a relocation to a null section.
513   if (!RefA)
514     return false;
515 
516   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
517   switch (Kind) {
518   default:
519     break;
520   // The .odp creation emits a relocation against the symbol ".TOC." which
521   // create a R_PPC64_TOC relocation. However the relocation symbol name
522   // in final object creation should be NULL, since the symbol does not
523   // really exist, it is just the reference to TOC base for the current
524   // object file. Since the symbol is undefined, returning false results
525   // in a relocation with a null section which is the desired result.
526   case MCSymbolRefExpr::VK_PPC_TOCBASE:
527     return false;
528 
529   // These VariantKind cause the relocation to refer to something other than
530   // the symbol itself, like a linker generated table. Since the address of
531   // symbol is not relevant, we cannot replace the symbol with the
532   // section and patch the difference in the addend.
533   case MCSymbolRefExpr::VK_GOT:
534   case MCSymbolRefExpr::VK_PLT:
535   case MCSymbolRefExpr::VK_GOTPCREL:
536   case MCSymbolRefExpr::VK_PPC_GOT_LO:
537   case MCSymbolRefExpr::VK_PPC_GOT_HI:
538   case MCSymbolRefExpr::VK_PPC_GOT_HA:
539     return true;
540   }
541 
542   // An undefined symbol is not in any section, so the relocation has to point
543   // to the symbol itself.
544   assert(Sym && "Expected a symbol");
545   if (Sym->isUndefined())
546     return true;
547 
548   unsigned Binding = Sym->getBinding();
549   switch(Binding) {
550   default:
551     llvm_unreachable("Invalid Binding");
552   case ELF::STB_LOCAL:
553     break;
554   case ELF::STB_WEAK:
555     // If the symbol is weak, it might be overridden by a symbol in another
556     // file. The relocation has to point to the symbol so that the linker
557     // can update it.
558     return true;
559   case ELF::STB_GLOBAL:
560     // Global ELF symbols can be preempted by the dynamic linker. The relocation
561     // has to point to the symbol for a reason analogous to the STB_WEAK case.
562     return true;
563   }
564 
565   // If a relocation points to a mergeable section, we have to be careful.
566   // If the offset is zero, a relocation with the section will encode the
567   // same information. With a non-zero offset, the situation is different.
568   // For example, a relocation can point 42 bytes past the end of a string.
569   // If we change such a relocation to use the section, the linker would think
570   // that it pointed to another string and subtracting 42 at runtime will
571   // produce the wrong value.
572   if (Sym->isInSection()) {
573     auto &Sec = cast<MCSectionELF>(Sym->getSection());
574     unsigned Flags = Sec.getFlags();
575     if (Flags & ELF::SHF_MERGE) {
576       if (C != 0)
577         return true;
578 
579       // It looks like gold has a bug (http://sourceware.org/PR16794) and can
580       // only handle section relocations to mergeable sections if using RELA.
581       if (!hasRelocationAddend())
582         return true;
583     }
584 
585     // Most TLS relocations use a got, so they need the symbol. Even those that
586     // are just an offset (@tpoff), require a symbol in gold versions before
587     // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
588     // http://sourceware.org/PR16773.
589     if (Flags & ELF::SHF_TLS)
590       return true;
591   }
592 
593   // If the symbol is a thumb function the final relocation must set the lowest
594   // bit. With a symbol that is done by just having the symbol have that bit
595   // set, so we would lose the bit if we relocated with the section.
596   // FIXME: We could use the section but add the bit to the relocation value.
597   if (Asm.isThumbFunc(Sym))
598     return true;
599 
600   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
601     return true;
602   return false;
603 }
604 
605 // True if the assembler knows nothing about the final value of the symbol.
606 // This doesn't cover the comdat issues, since in those cases the assembler
607 // can at least know that all symbols in the section will move together.
608 static bool isWeak(const MCSymbolELF &Sym) {
609   if (Sym.getType() == ELF::STT_GNU_IFUNC)
610     return true;
611 
612   switch (Sym.getBinding()) {
613   default:
614     llvm_unreachable("Unknown binding");
615   case ELF::STB_LOCAL:
616     return false;
617   case ELF::STB_GLOBAL:
618     return false;
619   case ELF::STB_WEAK:
620   case ELF::STB_GNU_UNIQUE:
621     return true;
622   }
623 }
624 
625 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
626                                        const MCAsmLayout &Layout,
627                                        const MCFragment *Fragment,
628                                        const MCFixup &Fixup, MCValue Target,
629                                        bool &IsPCRel, uint64_t &FixedValue) {
630   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
631   uint64_t C = Target.getConstant();
632   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
633   MCContext &Ctx = Asm.getContext();
634 
635   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
636     assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
637            "Should not have constructed this");
638 
639     // Let A, B and C being the components of Target and R be the location of
640     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
641     // If it is pcrel, we want to compute (A - B + C - R).
642 
643     // In general, ELF has no relocations for -B. It can only represent (A + C)
644     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
645     // replace B to implement it: (A - R - K + C)
646     if (IsPCRel) {
647       Ctx.reportError(
648           Fixup.getLoc(),
649           "No relocation available to represent this relative expression");
650       return;
651     }
652 
653     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
654 
655     if (SymB.isUndefined()) {
656       Ctx.reportError(Fixup.getLoc(),
657                       Twine("symbol '") + SymB.getName() +
658                           "' can not be undefined in a subtraction expression");
659       return;
660     }
661 
662     assert(!SymB.isAbsolute() && "Should have been folded");
663     const MCSection &SecB = SymB.getSection();
664     if (&SecB != &FixupSection) {
665       Ctx.reportError(Fixup.getLoc(),
666                       "Cannot represent a difference across sections");
667       return;
668     }
669 
670     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
671     uint64_t K = SymBOffset - FixupOffset;
672     IsPCRel = true;
673     C -= K;
674   }
675 
676   // We either rejected the fixup or folded B into C at this point.
677   const MCSymbolRefExpr *RefA = Target.getSymA();
678   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
679 
680   bool ViaWeakRef = false;
681   if (SymA && SymA->isVariable()) {
682     const MCExpr *Expr = SymA->getVariableValue();
683     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
684       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
685         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
686         ViaWeakRef = true;
687       }
688     }
689   }
690 
691   unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
692   uint64_t OriginalC = C;
693   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
694   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
695     C += Layout.getSymbolOffset(*SymA);
696 
697   uint64_t Addend = 0;
698   if (hasRelocationAddend()) {
699     Addend = C;
700     C = 0;
701   }
702 
703   FixedValue = C;
704 
705   if (!RelocateWithSymbol) {
706     const MCSection *SecA =
707         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
708     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
709     const auto *SectionSymbol =
710         ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
711     if (SectionSymbol)
712       SectionSymbol->setUsedInReloc();
713     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
714                            OriginalC);
715     Relocations[&FixupSection].push_back(Rec);
716     return;
717   }
718 
719   const auto *RenamedSymA = SymA;
720   if (SymA) {
721     if (const MCSymbolELF *R = Renames.lookup(SymA))
722       RenamedSymA = R;
723 
724     if (ViaWeakRef)
725       RenamedSymA->setIsWeakrefUsedInReloc();
726     else
727       RenamedSymA->setUsedInReloc();
728   }
729   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
730                          OriginalC);
731   Relocations[&FixupSection].push_back(Rec);
732 }
733 
734 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
735                                  const MCSymbolELF &Symbol, bool Used,
736                                  bool Renamed) {
737   if (Symbol.isVariable()) {
738     const MCExpr *Expr = Symbol.getVariableValue();
739     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
740       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
741         return false;
742     }
743   }
744 
745   if (Used)
746     return true;
747 
748   if (Renamed)
749     return false;
750 
751   if (Symbol.isVariable() && Symbol.isUndefined()) {
752     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
753     Layout.getBaseSymbol(Symbol);
754     return false;
755   }
756 
757   if (Symbol.isUndefined() && !Symbol.isBindingSet())
758     return false;
759 
760   if (Symbol.isTemporary())
761     return false;
762 
763   if (Symbol.getType() == ELF::STT_SECTION)
764     return false;
765 
766   return true;
767 }
768 
769 void ELFObjectWriter::computeSymbolTable(
770     MCAssembler &Asm, const MCAsmLayout &Layout,
771     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
772     SectionOffsetsTy &SectionOffsets) {
773   MCContext &Ctx = Asm.getContext();
774   SymbolTableWriter Writer(*this, is64Bit());
775 
776   // Symbol table
777   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
778   MCSectionELF *SymtabSection =
779       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
780   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
781   SymbolTableIndex = addToSectionTable(SymtabSection);
782 
783   align(SymtabSection->getAlignment());
784   uint64_t SecStart = getStream().tell();
785 
786   // The first entry is the undefined symbol entry.
787   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
788 
789   std::vector<ELFSymbolData> LocalSymbolData;
790   std::vector<ELFSymbolData> ExternalSymbolData;
791 
792   // Add the data for the symbols.
793   bool HasLargeSectionIndex = false;
794   for (const MCSymbol &S : Asm.symbols()) {
795     const auto &Symbol = cast<MCSymbolELF>(S);
796     bool Used = Symbol.isUsedInReloc();
797     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
798     bool isSignature = Symbol.isSignature();
799 
800     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
801                     Renames.count(&Symbol)))
802       continue;
803 
804     if (Symbol.isTemporary() && Symbol.isUndefined()) {
805       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
806       continue;
807     }
808 
809     ELFSymbolData MSD;
810     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
811 
812     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
813     assert(Local || !Symbol.isTemporary());
814 
815     if (Symbol.isAbsolute()) {
816       MSD.SectionIndex = ELF::SHN_ABS;
817     } else if (Symbol.isCommon()) {
818       assert(!Local);
819       MSD.SectionIndex = ELF::SHN_COMMON;
820     } else if (Symbol.isUndefined()) {
821       if (isSignature && !Used) {
822         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
823         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
824           HasLargeSectionIndex = true;
825       } else {
826         MSD.SectionIndex = ELF::SHN_UNDEF;
827       }
828     } else {
829       const MCSectionELF &Section =
830           static_cast<const MCSectionELF &>(Symbol.getSection());
831       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
832       assert(MSD.SectionIndex && "Invalid section index!");
833       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
834         HasLargeSectionIndex = true;
835     }
836 
837     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
838     // in defined ones.
839     //
840     // FIXME: All name handling should be done before we get to the writer,
841     // including dealing with GNU-style version suffixes.  Fixing this isn't
842     // trivial.
843     //
844     // We thus have to be careful to not perform the symbol version replacement
845     // blindly:
846     //
847     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
848     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
849     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
850     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
851     // the EFLObjectWriter should not interpret the "@@@" sub-string as
852     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
853     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
854     // "__imp_?" or "__imp_@?".
855     //
856     // It would have been interesting to perform the MS mangling prefix check
857     // only when the target triple is of the form *-pc-windows-elf. But, it
858     // seems that this information is not easily accessible from the
859     // ELFObjectWriter.
860     StringRef Name = Symbol.getName();
861     SmallString<32> Buf;
862     if (!Name.startswith("?") && !Name.startswith("@?") &&
863         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
864       // This symbol isn't following the MSVC C++ name mangling convention. We
865       // can thus safely interpret the @@@ in symbol names as specifying symbol
866       // versioning.
867       size_t Pos = Name.find("@@@");
868       if (Pos != StringRef::npos) {
869         Buf += Name.substr(0, Pos);
870         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
871         Buf += Name.substr(Pos + Skip);
872         Name = VersionSymSaver.save(Buf.c_str());
873       }
874     }
875 
876     // Sections have their own string table
877     if (Symbol.getType() != ELF::STT_SECTION) {
878       MSD.Name = Name;
879       StrTabBuilder.add(Name);
880     }
881 
882     if (Local)
883       LocalSymbolData.push_back(MSD);
884     else
885       ExternalSymbolData.push_back(MSD);
886   }
887 
888   // This holds the .symtab_shndx section index.
889   unsigned SymtabShndxSectionIndex = 0;
890 
891   if (HasLargeSectionIndex) {
892     MCSectionELF *SymtabShndxSection =
893         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
894     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
895     SymtabShndxSection->setAlignment(4);
896   }
897 
898   ArrayRef<std::string> FileNames = Asm.getFileNames();
899   for (const std::string &Name : FileNames)
900     StrTabBuilder.add(Name);
901 
902   StrTabBuilder.finalize();
903 
904   // File symbols are emitted first and handled separately from normal symbols,
905   // i.e. a non-STT_FILE symbol with the same name may appear.
906   for (const std::string &Name : FileNames)
907     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
908                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
909                        ELF::SHN_ABS, true);
910 
911   // Symbols are required to be in lexicographic order.
912   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
913   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
914 
915   // Set the symbol indices. Local symbols must come before all other
916   // symbols with non-local bindings.
917   unsigned Index = FileNames.size() + 1;
918 
919   for (ELFSymbolData &MSD : LocalSymbolData) {
920     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
921                                ? 0
922                                : StrTabBuilder.getOffset(MSD.Name);
923     MSD.Symbol->setIndex(Index++);
924     writeSymbol(Writer, StringIndex, MSD, Layout);
925   }
926 
927   // Write the symbol table entries.
928   LastLocalSymbolIndex = Index;
929 
930   for (ELFSymbolData &MSD : ExternalSymbolData) {
931     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
932     MSD.Symbol->setIndex(Index++);
933     writeSymbol(Writer, StringIndex, MSD, Layout);
934     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
935   }
936 
937   uint64_t SecEnd = getStream().tell();
938   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
939 
940   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
941   if (ShndxIndexes.empty()) {
942     assert(SymtabShndxSectionIndex == 0);
943     return;
944   }
945   assert(SymtabShndxSectionIndex != 0);
946 
947   SecStart = getStream().tell();
948   const MCSectionELF *SymtabShndxSection =
949       SectionTable[SymtabShndxSectionIndex - 1];
950   for (uint32_t Index : ShndxIndexes)
951     write(Index);
952   SecEnd = getStream().tell();
953   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
954 }
955 
956 MCSectionELF *
957 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
958                                          const MCSectionELF &Sec) {
959   if (Relocations[&Sec].empty())
960     return nullptr;
961 
962   const StringRef SectionName = Sec.getSectionName();
963   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
964   RelaSectionName += SectionName;
965 
966   unsigned EntrySize;
967   if (hasRelocationAddend())
968     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
969   else
970     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
971 
972   unsigned Flags = 0;
973   if (Sec.getFlags() & ELF::SHF_GROUP)
974     Flags = ELF::SHF_GROUP;
975 
976   MCSectionELF *RelaSection = Ctx.createELFRelSection(
977       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
978       Flags, EntrySize, Sec.getGroup(), &Sec);
979   RelaSection->setAlignment(is64Bit() ? 8 : 4);
980   return RelaSection;
981 }
982 
983 // Include the debug info compression header.
984 bool ELFObjectWriter::maybeWriteCompression(
985     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
986     unsigned Alignment) {
987   if (ZLibStyle) {
988     uint64_t HdrSize =
989         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
990     if (Size <= HdrSize + CompressedContents.size())
991       return false;
992     // Platform specific header is followed by compressed data.
993     if (is64Bit()) {
994       // Write Elf64_Chdr header.
995       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
996       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
997       write(static_cast<ELF::Elf64_Xword>(Size));
998       write(static_cast<ELF::Elf64_Xword>(Alignment));
999     } else {
1000       // Write Elf32_Chdr header otherwise.
1001       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
1002       write(static_cast<ELF::Elf32_Word>(Size));
1003       write(static_cast<ELF::Elf32_Word>(Alignment));
1004     }
1005     return true;
1006   }
1007 
1008   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1009   // useful for consumers to preallocate a buffer to decompress into.
1010   const StringRef Magic = "ZLIB";
1011   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1012     return false;
1013   write(ArrayRef<char>(Magic.begin(), Magic.size()));
1014   writeBE64(Size);
1015   return true;
1016 }
1017 
1018 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
1019                                        const MCAsmLayout &Layout) {
1020   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1021   StringRef SectionName = Section.getSectionName();
1022 
1023   // Compressing debug_frame requires handling alignment fragments which is
1024   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1025   // for writing to arbitrary buffers) for little benefit.
1026   bool CompressionEnabled =
1027       Asm.getContext().getAsmInfo()->compressDebugSections() !=
1028       DebugCompressionType::DCT_None;
1029   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
1030       SectionName == ".debug_frame") {
1031     Asm.writeSectionData(&Section, Layout);
1032     return;
1033   }
1034 
1035   SmallVector<char, 128> UncompressedData;
1036   raw_svector_ostream VecOS(UncompressedData);
1037   raw_pwrite_stream &OldStream = getStream();
1038   setStream(VecOS);
1039   Asm.writeSectionData(&Section, Layout);
1040   setStream(OldStream);
1041 
1042   SmallVector<char, 128> CompressedContents;
1043   if (Error E = zlib::compress(
1044           StringRef(UncompressedData.data(), UncompressedData.size()),
1045           CompressedContents)) {
1046     consumeError(std::move(E));
1047     getStream() << UncompressedData;
1048     return;
1049   }
1050 
1051   bool ZlibStyle = Asm.getContext().getAsmInfo()->compressDebugSections() ==
1052                    DebugCompressionType::DCT_Zlib;
1053   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
1054                              ZlibStyle, Sec.getAlignment())) {
1055     getStream() << UncompressedData;
1056     return;
1057   }
1058 
1059   if (ZlibStyle)
1060     // Set the compressed flag. That is zlib style.
1061     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
1062   else
1063     // Add "z" prefix to section name. This is zlib-gnu style.
1064     Asm.getContext().renameELFSection(&Section,
1065                                       (".z" + SectionName.drop_front(1)).str());
1066   getStream() << CompressedContents;
1067 }
1068 
1069 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1070                                        uint64_t Flags, uint64_t Address,
1071                                        uint64_t Offset, uint64_t Size,
1072                                        uint32_t Link, uint32_t Info,
1073                                        uint64_t Alignment,
1074                                        uint64_t EntrySize) {
1075   write32(Name);        // sh_name: index into string table
1076   write32(Type);        // sh_type
1077   WriteWord(Flags);     // sh_flags
1078   WriteWord(Address);   // sh_addr
1079   WriteWord(Offset);    // sh_offset
1080   WriteWord(Size);      // sh_size
1081   write32(Link);        // sh_link
1082   write32(Info);        // sh_info
1083   WriteWord(Alignment); // sh_addralign
1084   WriteWord(EntrySize); // sh_entsize
1085 }
1086 
1087 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1088                                        const MCSectionELF &Sec) {
1089   std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1090 
1091   // We record relocations by pushing to the end of a vector. Reverse the vector
1092   // to get the relocations in the order they were created.
1093   // In most cases that is not important, but it can be for special sections
1094   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1095   std::reverse(Relocs.begin(), Relocs.end());
1096 
1097   // Sort the relocation entries. MIPS needs this.
1098   TargetObjectWriter->sortRelocs(Asm, Relocs);
1099 
1100   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1101     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1102     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1103 
1104     if (is64Bit()) {
1105       write(Entry.Offset);
1106       if (TargetObjectWriter->isN64()) {
1107         write(uint32_t(Index));
1108 
1109         write(TargetObjectWriter->getRSsym(Entry.Type));
1110         write(TargetObjectWriter->getRType3(Entry.Type));
1111         write(TargetObjectWriter->getRType2(Entry.Type));
1112         write(TargetObjectWriter->getRType(Entry.Type));
1113       } else {
1114         struct ELF::Elf64_Rela ERE64;
1115         ERE64.setSymbolAndType(Index, Entry.Type);
1116         write(ERE64.r_info);
1117       }
1118       if (hasRelocationAddend())
1119         write(Entry.Addend);
1120     } else {
1121       write(uint32_t(Entry.Offset));
1122 
1123       struct ELF::Elf32_Rela ERE32;
1124       ERE32.setSymbolAndType(Index, Entry.Type);
1125       write(ERE32.r_info);
1126 
1127       if (hasRelocationAddend())
1128         write(uint32_t(Entry.Addend));
1129     }
1130   }
1131 }
1132 
1133 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1134   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1135   StrTabBuilder.write(getStream());
1136   return StrtabSection;
1137 }
1138 
1139 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1140                                    uint32_t GroupSymbolIndex, uint64_t Offset,
1141                                    uint64_t Size, const MCSectionELF &Section) {
1142   uint64_t sh_link = 0;
1143   uint64_t sh_info = 0;
1144 
1145   switch(Section.getType()) {
1146   default:
1147     // Nothing to do.
1148     break;
1149 
1150   case ELF::SHT_DYNAMIC:
1151     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1152 
1153   case ELF::SHT_REL:
1154   case ELF::SHT_RELA: {
1155     sh_link = SymbolTableIndex;
1156     assert(sh_link && ".symtab not found");
1157     const MCSection *InfoSection = Section.getAssociatedSection();
1158     sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
1159     break;
1160   }
1161 
1162   case ELF::SHT_SYMTAB:
1163   case ELF::SHT_DYNSYM:
1164     sh_link = StringTableIndex;
1165     sh_info = LastLocalSymbolIndex;
1166     break;
1167 
1168   case ELF::SHT_SYMTAB_SHNDX:
1169     sh_link = SymbolTableIndex;
1170     break;
1171 
1172   case ELF::SHT_GROUP:
1173     sh_link = SymbolTableIndex;
1174     sh_info = GroupSymbolIndex;
1175     break;
1176   }
1177 
1178   if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
1179     const MCSymbol *Sym = Section.getAssociatedSymbol();
1180     const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
1181     sh_link = SectionIndexMap.lookup(Sec);
1182   }
1183 
1184   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1185                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1186                    sh_link, sh_info, Section.getAlignment(),
1187                    Section.getEntrySize());
1188 }
1189 
1190 void ELFObjectWriter::writeSectionHeader(
1191     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1192     const SectionOffsetsTy &SectionOffsets) {
1193   const unsigned NumSections = SectionTable.size();
1194 
1195   // Null section first.
1196   uint64_t FirstSectionSize =
1197       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1198   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1199 
1200   for (const MCSectionELF *Section : SectionTable) {
1201     uint32_t GroupSymbolIndex;
1202     unsigned Type = Section->getType();
1203     if (Type != ELF::SHT_GROUP)
1204       GroupSymbolIndex = 0;
1205     else
1206       GroupSymbolIndex = Section->getGroup()->getIndex();
1207 
1208     const std::pair<uint64_t, uint64_t> &Offsets =
1209         SectionOffsets.find(Section)->second;
1210     uint64_t Size;
1211     if (Type == ELF::SHT_NOBITS)
1212       Size = Layout.getSectionAddressSize(Section);
1213     else
1214       Size = Offsets.second - Offsets.first;
1215 
1216     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1217                  *Section);
1218   }
1219 }
1220 
1221 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1222                                   const MCAsmLayout &Layout) {
1223   MCContext &Ctx = Asm.getContext();
1224   MCSectionELF *StrtabSection =
1225       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1226   StringTableIndex = addToSectionTable(StrtabSection);
1227 
1228   RevGroupMapTy RevGroupMap;
1229   SectionIndexMapTy SectionIndexMap;
1230 
1231   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1232 
1233   // Write out the ELF header ...
1234   writeHeader(Asm);
1235 
1236   // ... then the sections ...
1237   SectionOffsetsTy SectionOffsets;
1238   std::vector<MCSectionELF *> Groups;
1239   std::vector<MCSectionELF *> Relocations;
1240   for (MCSection &Sec : Asm) {
1241     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1242 
1243     align(Section.getAlignment());
1244 
1245     // Remember the offset into the file for this section.
1246     uint64_t SecStart = getStream().tell();
1247 
1248     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1249     writeSectionData(Asm, Section, Layout);
1250 
1251     uint64_t SecEnd = getStream().tell();
1252     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1253 
1254     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1255 
1256     if (SignatureSymbol) {
1257       Asm.registerSymbol(*SignatureSymbol);
1258       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1259       if (!GroupIdx) {
1260         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1261         GroupIdx = addToSectionTable(Group);
1262         Group->setAlignment(4);
1263         Groups.push_back(Group);
1264       }
1265       std::vector<const MCSectionELF *> &Members =
1266           GroupMembers[SignatureSymbol];
1267       Members.push_back(&Section);
1268       if (RelSection)
1269         Members.push_back(RelSection);
1270     }
1271 
1272     SectionIndexMap[&Section] = addToSectionTable(&Section);
1273     if (RelSection) {
1274       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1275       Relocations.push_back(RelSection);
1276     }
1277   }
1278 
1279   for (MCSectionELF *Group : Groups) {
1280     align(Group->getAlignment());
1281 
1282     // Remember the offset into the file for this section.
1283     uint64_t SecStart = getStream().tell();
1284 
1285     const MCSymbol *SignatureSymbol = Group->getGroup();
1286     assert(SignatureSymbol);
1287     write(uint32_t(ELF::GRP_COMDAT));
1288     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1289       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1290       write(SecIndex);
1291     }
1292 
1293     uint64_t SecEnd = getStream().tell();
1294     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1295   }
1296 
1297   // Compute symbol table information.
1298   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1299 
1300   for (MCSectionELF *RelSection : Relocations) {
1301     align(RelSection->getAlignment());
1302 
1303     // Remember the offset into the file for this section.
1304     uint64_t SecStart = getStream().tell();
1305 
1306     writeRelocations(Asm,
1307                      cast<MCSectionELF>(*RelSection->getAssociatedSection()));
1308 
1309     uint64_t SecEnd = getStream().tell();
1310     SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1311   }
1312 
1313   {
1314     uint64_t SecStart = getStream().tell();
1315     const MCSectionELF *Sec = createStringTable(Ctx);
1316     uint64_t SecEnd = getStream().tell();
1317     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1318   }
1319 
1320   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1321   align(NaturalAlignment);
1322 
1323   const uint64_t SectionHeaderOffset = getStream().tell();
1324 
1325   // ... then the section header table ...
1326   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1327 
1328   uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1329                              ? (uint16_t)ELF::SHN_UNDEF
1330                              : SectionTable.size() + 1;
1331   if (sys::IsLittleEndianHost != IsLittleEndian)
1332     sys::swapByteOrder(NumSections);
1333   unsigned NumSectionsOffset;
1334 
1335   if (is64Bit()) {
1336     uint64_t Val = SectionHeaderOffset;
1337     if (sys::IsLittleEndianHost != IsLittleEndian)
1338       sys::swapByteOrder(Val);
1339     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1340                        offsetof(ELF::Elf64_Ehdr, e_shoff));
1341     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1342   } else {
1343     uint32_t Val = SectionHeaderOffset;
1344     if (sys::IsLittleEndianHost != IsLittleEndian)
1345       sys::swapByteOrder(Val);
1346     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1347                        offsetof(ELF::Elf32_Ehdr, e_shoff));
1348     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1349   }
1350   getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1351                      sizeof(NumSections), NumSectionsOffset);
1352 }
1353 
1354 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1355     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1356     bool InSet, bool IsPCRel) const {
1357   const auto &SymA = cast<MCSymbolELF>(SA);
1358   if (IsPCRel) {
1359     assert(!InSet);
1360     if (isWeak(SymA))
1361       return false;
1362   }
1363   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1364                                                                 InSet, IsPCRel);
1365 }
1366 
1367 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1368                                             raw_pwrite_stream &OS,
1369                                             bool IsLittleEndian) {
1370   return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1371 }
1372