1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LLVM module linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Linker.h" 15 #include "llvm/Constants.h" 16 #include "llvm/DerivedTypes.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/Module.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Support/Path.h" 25 #include "llvm/Transforms/Utils/Cloning.h" 26 #include "llvm/Transforms/Utils/ValueMapper.h" 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // TypeMap implementation. 31 //===----------------------------------------------------------------------===// 32 33 namespace { 34 class TypeMapTy : public ValueMapTypeRemapper { 35 /// MappedTypes - This is a mapping from a source type to a destination type 36 /// to use. 37 DenseMap<Type*, Type*> MappedTypes; 38 39 /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic, 40 /// we speculatively add types to MappedTypes, but keep track of them here in 41 /// case we need to roll back. 42 SmallVector<Type*, 16> SpeculativeTypes; 43 44 /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the 45 /// source module that are mapped to an opaque struct in the destination 46 /// module. 47 SmallVector<StructType*, 16> SrcDefinitionsToResolve; 48 49 /// DstResolvedOpaqueTypes - This is the set of opaque types in the 50 /// destination modules who are getting a body from the source module. 51 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes; 52 public: 53 54 /// addTypeMapping - Indicate that the specified type in the destination 55 /// module is conceptually equivalent to the specified type in the source 56 /// module. 57 void addTypeMapping(Type *DstTy, Type *SrcTy); 58 59 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest 60 /// module from a type definition in the source module. 61 void linkDefinedTypeBodies(); 62 63 /// get - Return the mapped type to use for the specified input type from the 64 /// source module. 65 Type *get(Type *SrcTy); 66 67 FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));} 68 69 private: 70 Type *getImpl(Type *T); 71 /// remapType - Implement the ValueMapTypeRemapper interface. 72 Type *remapType(Type *SrcTy) { 73 return get(SrcTy); 74 } 75 76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 77 }; 78 } 79 80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 81 Type *&Entry = MappedTypes[SrcTy]; 82 if (Entry) return; 83 84 if (DstTy == SrcTy) { 85 Entry = DstTy; 86 return; 87 } 88 89 // Check to see if these types are recursively isomorphic and establish a 90 // mapping between them if so. 91 if (!areTypesIsomorphic(DstTy, SrcTy)) { 92 // Oops, they aren't isomorphic. Just discard this request by rolling out 93 // any speculative mappings we've established. 94 for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i) 95 MappedTypes.erase(SpeculativeTypes[i]); 96 } 97 SpeculativeTypes.clear(); 98 } 99 100 /// areTypesIsomorphic - Recursively walk this pair of types, returning true 101 /// if they are isomorphic, false if they are not. 102 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 103 // Two types with differing kinds are clearly not isomorphic. 104 if (DstTy->getTypeID() != SrcTy->getTypeID()) return false; 105 106 // If we have an entry in the MappedTypes table, then we have our answer. 107 Type *&Entry = MappedTypes[SrcTy]; 108 if (Entry) 109 return Entry == DstTy; 110 111 // Two identical types are clearly isomorphic. Remember this 112 // non-speculatively. 113 if (DstTy == SrcTy) { 114 Entry = DstTy; 115 return true; 116 } 117 118 // Okay, we have two types with identical kinds that we haven't seen before. 119 120 // If this is an opaque struct type, special case it. 121 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 122 // Mapping an opaque type to any struct, just keep the dest struct. 123 if (SSTy->isOpaque()) { 124 Entry = DstTy; 125 SpeculativeTypes.push_back(SrcTy); 126 return true; 127 } 128 129 // Mapping a non-opaque source type to an opaque dest. If this is the first 130 // type that we're mapping onto this destination type then we succeed. Keep 131 // the dest, but fill it in later. This doesn't need to be speculative. If 132 // this is the second (different) type that we're trying to map onto the 133 // same opaque type then we fail. 134 if (cast<StructType>(DstTy)->isOpaque()) { 135 // We can only map one source type onto the opaque destination type. 136 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy))) 137 return false; 138 SrcDefinitionsToResolve.push_back(SSTy); 139 Entry = DstTy; 140 return true; 141 } 142 } 143 144 // If the number of subtypes disagree between the two types, then we fail. 145 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 146 return false; 147 148 // Fail if any of the extra properties (e.g. array size) of the type disagree. 149 if (isa<IntegerType>(DstTy)) 150 return false; // bitwidth disagrees. 151 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 152 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 153 return false; 154 155 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 156 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 157 return false; 158 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 159 StructType *SSTy = cast<StructType>(SrcTy); 160 if (DSTy->isLiteral() != SSTy->isLiteral() || 161 DSTy->isPacked() != SSTy->isPacked()) 162 return false; 163 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) { 164 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 165 return false; 166 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) { 167 if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 168 return false; 169 } 170 171 // Otherwise, we speculate that these two types will line up and recursively 172 // check the subelements. 173 Entry = DstTy; 174 SpeculativeTypes.push_back(SrcTy); 175 176 for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i) 177 if (!areTypesIsomorphic(DstTy->getContainedType(i), 178 SrcTy->getContainedType(i))) 179 return false; 180 181 // If everything seems to have lined up, then everything is great. 182 return true; 183 } 184 185 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest 186 /// module from a type definition in the source module. 187 void TypeMapTy::linkDefinedTypeBodies() { 188 SmallVector<Type*, 16> Elements; 189 SmallString<16> TmpName; 190 191 // Note that processing entries in this loop (calling 'get') can add new 192 // entries to the SrcDefinitionsToResolve vector. 193 while (!SrcDefinitionsToResolve.empty()) { 194 StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val(); 195 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 196 197 // TypeMap is a many-to-one mapping, if there were multiple types that 198 // provide a body for DstSTy then previous iterations of this loop may have 199 // already handled it. Just ignore this case. 200 if (!DstSTy->isOpaque()) continue; 201 assert(!SrcSTy->isOpaque() && "Not resolving a definition?"); 202 203 // Map the body of the source type over to a new body for the dest type. 204 Elements.resize(SrcSTy->getNumElements()); 205 for (unsigned i = 0, e = Elements.size(); i != e; ++i) 206 Elements[i] = getImpl(SrcSTy->getElementType(i)); 207 208 DstSTy->setBody(Elements, SrcSTy->isPacked()); 209 210 // If DstSTy has no name or has a longer name than STy, then viciously steal 211 // STy's name. 212 if (!SrcSTy->hasName()) continue; 213 StringRef SrcName = SrcSTy->getName(); 214 215 if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) { 216 TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end()); 217 SrcSTy->setName(""); 218 DstSTy->setName(TmpName.str()); 219 TmpName.clear(); 220 } 221 } 222 223 DstResolvedOpaqueTypes.clear(); 224 } 225 226 227 /// get - Return the mapped type to use for the specified input type from the 228 /// source module. 229 Type *TypeMapTy::get(Type *Ty) { 230 Type *Result = getImpl(Ty); 231 232 // If this caused a reference to any struct type, resolve it before returning. 233 if (!SrcDefinitionsToResolve.empty()) 234 linkDefinedTypeBodies(); 235 return Result; 236 } 237 238 /// getImpl - This is the recursive version of get(). 239 Type *TypeMapTy::getImpl(Type *Ty) { 240 // If we already have an entry for this type, return it. 241 Type **Entry = &MappedTypes[Ty]; 242 if (*Entry) return *Entry; 243 244 // If this is not a named struct type, then just map all of the elements and 245 // then rebuild the type from inside out. 246 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) { 247 // If there are no element types to map, then the type is itself. This is 248 // true for the anonymous {} struct, things like 'float', integers, etc. 249 if (Ty->getNumContainedTypes() == 0) 250 return *Entry = Ty; 251 252 // Remap all of the elements, keeping track of whether any of them change. 253 bool AnyChange = false; 254 SmallVector<Type*, 4> ElementTypes; 255 ElementTypes.resize(Ty->getNumContainedTypes()); 256 for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) { 257 ElementTypes[i] = getImpl(Ty->getContainedType(i)); 258 AnyChange |= ElementTypes[i] != Ty->getContainedType(i); 259 } 260 261 // If we found our type while recursively processing stuff, just use it. 262 Entry = &MappedTypes[Ty]; 263 if (*Entry) return *Entry; 264 265 // If all of the element types mapped directly over, then the type is usable 266 // as-is. 267 if (!AnyChange) 268 return *Entry = Ty; 269 270 // Otherwise, rebuild a modified type. 271 switch (Ty->getTypeID()) { 272 default: llvm_unreachable("unknown derived type to remap"); 273 case Type::ArrayTyID: 274 return *Entry = ArrayType::get(ElementTypes[0], 275 cast<ArrayType>(Ty)->getNumElements()); 276 case Type::VectorTyID: 277 return *Entry = VectorType::get(ElementTypes[0], 278 cast<VectorType>(Ty)->getNumElements()); 279 case Type::PointerTyID: 280 return *Entry = PointerType::get(ElementTypes[0], 281 cast<PointerType>(Ty)->getAddressSpace()); 282 case Type::FunctionTyID: 283 return *Entry = FunctionType::get(ElementTypes[0], 284 makeArrayRef(ElementTypes).slice(1), 285 cast<FunctionType>(Ty)->isVarArg()); 286 case Type::StructTyID: 287 // Note that this is only reached for anonymous structs. 288 return *Entry = StructType::get(Ty->getContext(), ElementTypes, 289 cast<StructType>(Ty)->isPacked()); 290 } 291 } 292 293 // Otherwise, this is an unmapped named struct. If the struct can be directly 294 // mapped over, just use it as-is. This happens in a case when the linked-in 295 // module has something like: 296 // %T = type {%T*, i32} 297 // @GV = global %T* null 298 // where T does not exist at all in the destination module. 299 // 300 // The other case we watch for is when the type is not in the destination 301 // module, but that it has to be rebuilt because it refers to something that 302 // is already mapped. For example, if the destination module has: 303 // %A = type { i32 } 304 // and the source module has something like 305 // %A' = type { i32 } 306 // %B = type { %A'* } 307 // @GV = global %B* null 308 // then we want to create a new type: "%B = type { %A*}" and have it take the 309 // pristine "%B" name from the source module. 310 // 311 // To determine which case this is, we have to recursively walk the type graph 312 // speculating that we'll be able to reuse it unmodified. Only if this is 313 // safe would we map the entire thing over. Because this is an optimization, 314 // and is not required for the prettiness of the linked module, we just skip 315 // it and always rebuild a type here. 316 StructType *STy = cast<StructType>(Ty); 317 318 // If the type is opaque, we can just use it directly. 319 if (STy->isOpaque()) 320 return *Entry = STy; 321 322 // Otherwise we create a new type and resolve its body later. This will be 323 // resolved by the top level of get(). 324 SrcDefinitionsToResolve.push_back(STy); 325 StructType *DTy = StructType::create(STy->getContext()); 326 DstResolvedOpaqueTypes.insert(DTy); 327 return *Entry = DTy; 328 } 329 330 331 332 //===----------------------------------------------------------------------===// 333 // ModuleLinker implementation. 334 //===----------------------------------------------------------------------===// 335 336 namespace { 337 /// ModuleLinker - This is an implementation class for the LinkModules 338 /// function, which is the entrypoint for this file. 339 class ModuleLinker { 340 Module *DstM, *SrcM; 341 342 TypeMapTy TypeMap; 343 344 /// ValueMap - Mapping of values from what they used to be in Src, to what 345 /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves 346 /// some overhead due to the use of Value handles which the Linker doesn't 347 /// actually need, but this allows us to reuse the ValueMapper code. 348 ValueToValueMapTy ValueMap; 349 350 struct AppendingVarInfo { 351 GlobalVariable *NewGV; // New aggregate global in dest module. 352 Constant *DstInit; // Old initializer from dest module. 353 Constant *SrcInit; // Old initializer from src module. 354 }; 355 356 std::vector<AppendingVarInfo> AppendingVars; 357 358 unsigned Mode; // Mode to treat source module. 359 360 // Set of items not to link in from source. 361 SmallPtrSet<const Value*, 16> DoNotLinkFromSource; 362 363 // Vector of functions to lazily link in. 364 std::vector<Function*> LazilyLinkFunctions; 365 366 public: 367 std::string ErrorMsg; 368 369 ModuleLinker(Module *dstM, Module *srcM, unsigned mode) 370 : DstM(dstM), SrcM(srcM), Mode(mode) { } 371 372 bool run(); 373 374 private: 375 /// emitError - Helper method for setting a message and returning an error 376 /// code. 377 bool emitError(const Twine &Message) { 378 ErrorMsg = Message.str(); 379 return true; 380 } 381 382 /// getLinkageResult - This analyzes the two global values and determines 383 /// what the result will look like in the destination module. 384 bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src, 385 GlobalValue::LinkageTypes <, 386 GlobalValue::VisibilityTypes &Vis, 387 bool &LinkFromSrc); 388 389 /// getLinkedToGlobal - Given a global in the source module, return the 390 /// global in the destination module that is being linked to, if any. 391 GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) { 392 // If the source has no name it can't link. If it has local linkage, 393 // there is no name match-up going on. 394 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 395 return 0; 396 397 // Otherwise see if we have a match in the destination module's symtab. 398 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName()); 399 if (DGV == 0) return 0; 400 401 // If we found a global with the same name in the dest module, but it has 402 // internal linkage, we are really not doing any linkage here. 403 if (DGV->hasLocalLinkage()) 404 return 0; 405 406 // Otherwise, we do in fact link to the destination global. 407 return DGV; 408 } 409 410 void computeTypeMapping(); 411 bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags, 412 DenseMap<MDString*, MDNode*> &ErrorNode, 413 DenseMap<MDString*, MDNode*> &WarningNode, 414 DenseMap<MDString*, MDNode*> &OverrideNode, 415 DenseMap<MDString*, 416 SmallSetVector<MDNode*, 8> > &RequireNodes, 417 SmallSetVector<MDString*, 16> &SeenIDs); 418 419 bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV); 420 bool linkGlobalProto(GlobalVariable *SrcGV); 421 bool linkFunctionProto(Function *SrcF); 422 bool linkAliasProto(GlobalAlias *SrcA); 423 bool linkModuleFlagsMetadata(); 424 425 void linkAppendingVarInit(const AppendingVarInfo &AVI); 426 void linkGlobalInits(); 427 void linkFunctionBody(Function *Dst, Function *Src); 428 void linkAliasBodies(); 429 void linkNamedMDNodes(); 430 }; 431 } 432 433 434 435 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict 436 /// in the symbol table. This is good for all clients except for us. Go 437 /// through the trouble to force this back. 438 static void forceRenaming(GlobalValue *GV, StringRef Name) { 439 // If the global doesn't force its name or if it already has the right name, 440 // there is nothing for us to do. 441 if (GV->hasLocalLinkage() || GV->getName() == Name) 442 return; 443 444 Module *M = GV->getParent(); 445 446 // If there is a conflict, rename the conflict. 447 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 448 GV->takeName(ConflictGV); 449 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 450 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 451 } else { 452 GV->setName(Name); // Force the name back 453 } 454 } 455 456 /// CopyGVAttributes - copy additional attributes (those not needed to construct 457 /// a GlobalValue) from the SrcGV to the DestGV. 458 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) { 459 // Use the maximum alignment, rather than just copying the alignment of SrcGV. 460 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment()); 461 DestGV->copyAttributesFrom(SrcGV); 462 DestGV->setAlignment(Alignment); 463 464 forceRenaming(DestGV, SrcGV->getName()); 465 } 466 467 static bool isLessConstraining(GlobalValue::VisibilityTypes a, 468 GlobalValue::VisibilityTypes b) { 469 if (a == GlobalValue::HiddenVisibility) 470 return false; 471 if (b == GlobalValue::HiddenVisibility) 472 return true; 473 if (a == GlobalValue::ProtectedVisibility) 474 return false; 475 if (b == GlobalValue::ProtectedVisibility) 476 return true; 477 return false; 478 } 479 480 /// getLinkageResult - This analyzes the two global values and determines what 481 /// the result will look like in the destination module. In particular, it 482 /// computes the resultant linkage type and visibility, computes whether the 483 /// global in the source should be copied over to the destination (replacing 484 /// the existing one), and computes whether this linkage is an error or not. 485 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src, 486 GlobalValue::LinkageTypes <, 487 GlobalValue::VisibilityTypes &Vis, 488 bool &LinkFromSrc) { 489 assert(Dest && "Must have two globals being queried"); 490 assert(!Src->hasLocalLinkage() && 491 "If Src has internal linkage, Dest shouldn't be set!"); 492 493 bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable(); 494 bool DestIsDeclaration = Dest->isDeclaration(); 495 496 if (SrcIsDeclaration) { 497 // If Src is external or if both Src & Dest are external.. Just link the 498 // external globals, we aren't adding anything. 499 if (Src->hasDLLImportLinkage()) { 500 // If one of GVs has DLLImport linkage, result should be dllimport'ed. 501 if (DestIsDeclaration) { 502 LinkFromSrc = true; 503 LT = Src->getLinkage(); 504 } 505 } else if (Dest->hasExternalWeakLinkage()) { 506 // If the Dest is weak, use the source linkage. 507 LinkFromSrc = true; 508 LT = Src->getLinkage(); 509 } else { 510 LinkFromSrc = false; 511 LT = Dest->getLinkage(); 512 } 513 } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) { 514 // If Dest is external but Src is not: 515 LinkFromSrc = true; 516 LT = Src->getLinkage(); 517 } else if (Src->isWeakForLinker()) { 518 // At this point we know that Dest has LinkOnce, External*, Weak, Common, 519 // or DLL* linkage. 520 if (Dest->hasExternalWeakLinkage() || 521 Dest->hasAvailableExternallyLinkage() || 522 (Dest->hasLinkOnceLinkage() && 523 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) { 524 LinkFromSrc = true; 525 LT = Src->getLinkage(); 526 } else { 527 LinkFromSrc = false; 528 LT = Dest->getLinkage(); 529 } 530 } else if (Dest->isWeakForLinker()) { 531 // At this point we know that Src has External* or DLL* linkage. 532 if (Src->hasExternalWeakLinkage()) { 533 LinkFromSrc = false; 534 LT = Dest->getLinkage(); 535 } else { 536 LinkFromSrc = true; 537 LT = GlobalValue::ExternalLinkage; 538 } 539 } else { 540 assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() || 541 Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) && 542 (Src->hasExternalLinkage() || Src->hasDLLImportLinkage() || 543 Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) && 544 "Unexpected linkage type!"); 545 return emitError("Linking globals named '" + Src->getName() + 546 "': symbol multiply defined!"); 547 } 548 549 // Compute the visibility. We follow the rules in the System V Application 550 // Binary Interface. 551 Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ? 552 Dest->getVisibility() : Src->getVisibility(); 553 return false; 554 } 555 556 /// computeTypeMapping - Loop over all of the linked values to compute type 557 /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then 558 /// we have two struct types 'Foo' but one got renamed when the module was 559 /// loaded into the same LLVMContext. 560 void ModuleLinker::computeTypeMapping() { 561 // Incorporate globals. 562 for (Module::global_iterator I = SrcM->global_begin(), 563 E = SrcM->global_end(); I != E; ++I) { 564 GlobalValue *DGV = getLinkedToGlobal(I); 565 if (DGV == 0) continue; 566 567 if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) { 568 TypeMap.addTypeMapping(DGV->getType(), I->getType()); 569 continue; 570 } 571 572 // Unify the element type of appending arrays. 573 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType()); 574 ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType()); 575 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 576 } 577 578 // Incorporate functions. 579 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) { 580 if (GlobalValue *DGV = getLinkedToGlobal(I)) 581 TypeMap.addTypeMapping(DGV->getType(), I->getType()); 582 } 583 584 // Incorporate types by name, scanning all the types in the source module. 585 // At this point, the destination module may have a type "%foo = { i32 }" for 586 // example. When the source module got loaded into the same LLVMContext, if 587 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 588 // Though it isn't required for correctness, attempt to link these up to clean 589 // up the IR. 590 std::vector<StructType*> SrcStructTypes; 591 SrcM->findUsedStructTypes(SrcStructTypes); 592 593 SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(), 594 SrcStructTypes.end()); 595 596 for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) { 597 StructType *ST = SrcStructTypes[i]; 598 if (!ST->hasName()) continue; 599 600 // Check to see if there is a dot in the name followed by a digit. 601 size_t DotPos = ST->getName().rfind('.'); 602 if (DotPos == 0 || DotPos == StringRef::npos || 603 ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1])) 604 continue; 605 606 // Check to see if the destination module has a struct with the prefix name. 607 if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos))) 608 // Don't use it if this actually came from the source module. They're in 609 // the same LLVMContext after all. 610 if (!SrcStructTypesSet.count(DST)) 611 TypeMap.addTypeMapping(DST, ST); 612 } 613 614 615 // Don't bother incorporating aliases, they aren't generally typed well. 616 617 // Now that we have discovered all of the type equivalences, get a body for 618 // any 'opaque' types in the dest module that are now resolved. 619 TypeMap.linkDefinedTypeBodies(); 620 } 621 622 /// linkAppendingVarProto - If there were any appending global variables, link 623 /// them together now. Return true on error. 624 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV, 625 GlobalVariable *SrcGV) { 626 627 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 628 return emitError("Linking globals named '" + SrcGV->getName() + 629 "': can only link appending global with another appending global!"); 630 631 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType()); 632 ArrayType *SrcTy = 633 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType())); 634 Type *EltTy = DstTy->getElementType(); 635 636 // Check to see that they two arrays agree on type. 637 if (EltTy != SrcTy->getElementType()) 638 return emitError("Appending variables with different element types!"); 639 if (DstGV->isConstant() != SrcGV->isConstant()) 640 return emitError("Appending variables linked with different const'ness!"); 641 642 if (DstGV->getAlignment() != SrcGV->getAlignment()) 643 return emitError( 644 "Appending variables with different alignment need to be linked!"); 645 646 if (DstGV->getVisibility() != SrcGV->getVisibility()) 647 return emitError( 648 "Appending variables with different visibility need to be linked!"); 649 650 if (DstGV->getSection() != SrcGV->getSection()) 651 return emitError( 652 "Appending variables with different section name need to be linked!"); 653 654 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements(); 655 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 656 657 // Create the new global variable. 658 GlobalVariable *NG = 659 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(), 660 DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV, 661 DstGV->isThreadLocal(), 662 DstGV->getType()->getAddressSpace()); 663 664 // Propagate alignment, visibility and section info. 665 CopyGVAttributes(NG, DstGV); 666 667 AppendingVarInfo AVI; 668 AVI.NewGV = NG; 669 AVI.DstInit = DstGV->getInitializer(); 670 AVI.SrcInit = SrcGV->getInitializer(); 671 AppendingVars.push_back(AVI); 672 673 // Replace any uses of the two global variables with uses of the new 674 // global. 675 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 676 677 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType())); 678 DstGV->eraseFromParent(); 679 680 // Track the source variable so we don't try to link it. 681 DoNotLinkFromSource.insert(SrcGV); 682 683 return false; 684 } 685 686 /// linkGlobalProto - Loop through the global variables in the src module and 687 /// merge them into the dest module. 688 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) { 689 GlobalValue *DGV = getLinkedToGlobal(SGV); 690 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility; 691 692 if (DGV) { 693 // Concatenation of appending linkage variables is magic and handled later. 694 if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage()) 695 return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV); 696 697 // Determine whether linkage of these two globals follows the source 698 // module's definition or the destination module's definition. 699 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; 700 GlobalValue::VisibilityTypes NV; 701 bool LinkFromSrc = false; 702 if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc)) 703 return true; 704 NewVisibility = NV; 705 706 // If we're not linking from the source, then keep the definition that we 707 // have. 708 if (!LinkFromSrc) { 709 // Special case for const propagation. 710 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) 711 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant()) 712 DGVar->setConstant(true); 713 714 // Set calculated linkage and visibility. 715 DGV->setLinkage(NewLinkage); 716 DGV->setVisibility(*NewVisibility); 717 718 // Make sure to remember this mapping. 719 ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType())); 720 721 // Track the source global so that we don't attempt to copy it over when 722 // processing global initializers. 723 DoNotLinkFromSource.insert(SGV); 724 725 return false; 726 } 727 } 728 729 // No linking to be performed or linking from the source: simply create an 730 // identical version of the symbol over in the dest module... the 731 // initializer will be filled in later by LinkGlobalInits. 732 GlobalVariable *NewDGV = 733 new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()), 734 SGV->isConstant(), SGV->getLinkage(), /*init*/0, 735 SGV->getName(), /*insertbefore*/0, 736 SGV->isThreadLocal(), 737 SGV->getType()->getAddressSpace()); 738 // Propagate alignment, visibility and section info. 739 CopyGVAttributes(NewDGV, SGV); 740 if (NewVisibility) 741 NewDGV->setVisibility(*NewVisibility); 742 743 if (DGV) { 744 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType())); 745 DGV->eraseFromParent(); 746 } 747 748 // Make sure to remember this mapping. 749 ValueMap[SGV] = NewDGV; 750 return false; 751 } 752 753 /// linkFunctionProto - Link the function in the source module into the 754 /// destination module if needed, setting up mapping information. 755 bool ModuleLinker::linkFunctionProto(Function *SF) { 756 GlobalValue *DGV = getLinkedToGlobal(SF); 757 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility; 758 759 if (DGV) { 760 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; 761 bool LinkFromSrc = false; 762 GlobalValue::VisibilityTypes NV; 763 if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc)) 764 return true; 765 NewVisibility = NV; 766 767 if (!LinkFromSrc) { 768 // Set calculated linkage 769 DGV->setLinkage(NewLinkage); 770 DGV->setVisibility(*NewVisibility); 771 772 // Make sure to remember this mapping. 773 ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType())); 774 775 // Track the function from the source module so we don't attempt to remap 776 // it. 777 DoNotLinkFromSource.insert(SF); 778 779 return false; 780 } 781 } 782 783 // If there is no linkage to be performed or we are linking from the source, 784 // bring SF over. 785 Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()), 786 SF->getLinkage(), SF->getName(), DstM); 787 CopyGVAttributes(NewDF, SF); 788 if (NewVisibility) 789 NewDF->setVisibility(*NewVisibility); 790 791 if (DGV) { 792 // Any uses of DF need to change to NewDF, with cast. 793 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType())); 794 DGV->eraseFromParent(); 795 } else { 796 // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link. 797 if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() || 798 SF->hasAvailableExternallyLinkage()) { 799 DoNotLinkFromSource.insert(SF); 800 LazilyLinkFunctions.push_back(SF); 801 } 802 } 803 804 ValueMap[SF] = NewDF; 805 return false; 806 } 807 808 /// LinkAliasProto - Set up prototypes for any aliases that come over from the 809 /// source module. 810 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) { 811 GlobalValue *DGV = getLinkedToGlobal(SGA); 812 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility; 813 814 if (DGV) { 815 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; 816 GlobalValue::VisibilityTypes NV; 817 bool LinkFromSrc = false; 818 if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc)) 819 return true; 820 NewVisibility = NV; 821 822 if (!LinkFromSrc) { 823 // Set calculated linkage. 824 DGV->setLinkage(NewLinkage); 825 DGV->setVisibility(*NewVisibility); 826 827 // Make sure to remember this mapping. 828 ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType())); 829 830 // Track the alias from the source module so we don't attempt to remap it. 831 DoNotLinkFromSource.insert(SGA); 832 833 return false; 834 } 835 } 836 837 // If there is no linkage to be performed or we're linking from the source, 838 // bring over SGA. 839 GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()), 840 SGA->getLinkage(), SGA->getName(), 841 /*aliasee*/0, DstM); 842 CopyGVAttributes(NewDA, SGA); 843 if (NewVisibility) 844 NewDA->setVisibility(*NewVisibility); 845 846 if (DGV) { 847 // Any uses of DGV need to change to NewDA, with cast. 848 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType())); 849 DGV->eraseFromParent(); 850 } 851 852 ValueMap[SGA] = NewDA; 853 return false; 854 } 855 856 static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) { 857 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 858 859 for (unsigned i = 0; i != NumElements; ++i) 860 Dest.push_back(C->getAggregateElement(i)); 861 } 862 863 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) { 864 // Merge the initializer. 865 SmallVector<Constant*, 16> Elements; 866 getArrayElements(AVI.DstInit, Elements); 867 868 Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap); 869 getArrayElements(SrcInit, Elements); 870 871 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType()); 872 AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements)); 873 } 874 875 876 // linkGlobalInits - Update the initializers in the Dest module now that all 877 // globals that may be referenced are in Dest. 878 void ModuleLinker::linkGlobalInits() { 879 // Loop over all of the globals in the src module, mapping them over as we go 880 for (Module::const_global_iterator I = SrcM->global_begin(), 881 E = SrcM->global_end(); I != E; ++I) { 882 883 // Only process initialized GV's or ones not already in dest. 884 if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue; 885 886 // Grab destination global variable. 887 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]); 888 // Figure out what the initializer looks like in the dest module. 889 DGV->setInitializer(MapValue(I->getInitializer(), ValueMap, 890 RF_None, &TypeMap)); 891 } 892 } 893 894 // linkFunctionBody - Copy the source function over into the dest function and 895 // fix up references to values. At this point we know that Dest is an external 896 // function, and that Src is not. 897 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) { 898 assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration()); 899 900 // Go through and convert function arguments over, remembering the mapping. 901 Function::arg_iterator DI = Dst->arg_begin(); 902 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); 903 I != E; ++I, ++DI) { 904 DI->setName(I->getName()); // Copy the name over. 905 906 // Add a mapping to our mapping. 907 ValueMap[I] = DI; 908 } 909 910 if (Mode == Linker::DestroySource) { 911 // Splice the body of the source function into the dest function. 912 Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList()); 913 914 // At this point, all of the instructions and values of the function are now 915 // copied over. The only problem is that they are still referencing values in 916 // the Source function as operands. Loop through all of the operands of the 917 // functions and patch them up to point to the local versions. 918 for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB) 919 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 920 RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap); 921 922 } else { 923 // Clone the body of the function into the dest function. 924 SmallVector<ReturnInst*, 8> Returns; // Ignore returns. 925 CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap); 926 } 927 928 // There is no need to map the arguments anymore. 929 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); 930 I != E; ++I) 931 ValueMap.erase(I); 932 933 } 934 935 936 void ModuleLinker::linkAliasBodies() { 937 for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end(); 938 I != E; ++I) { 939 if (DoNotLinkFromSource.count(I)) 940 continue; 941 if (Constant *Aliasee = I->getAliasee()) { 942 GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]); 943 DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap)); 944 } 945 } 946 } 947 948 /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest 949 /// module. 950 void ModuleLinker::linkNamedMDNodes() { 951 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 952 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(), 953 E = SrcM->named_metadata_end(); I != E; ++I) { 954 // Don't link module flags here. Do them separately. 955 if (&*I == SrcModFlags) continue; 956 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName()); 957 // Add Src elements into Dest node. 958 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 959 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap, 960 RF_None, &TypeMap)); 961 } 962 } 963 964 /// categorizeModuleFlagNodes - 965 bool ModuleLinker:: 966 categorizeModuleFlagNodes(const NamedMDNode *ModFlags, 967 DenseMap<MDString*, MDNode*> &ErrorNode, 968 DenseMap<MDString*, MDNode*> &WarningNode, 969 DenseMap<MDString*, MDNode*> &OverrideNode, 970 DenseMap<MDString*, 971 SmallSetVector<MDNode*, 8> > &RequireNodes, 972 SmallSetVector<MDString*, 16> &SeenIDs) { 973 bool HasErr = false; 974 975 for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) { 976 MDNode *Op = ModFlags->getOperand(I); 977 assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!"); 978 assert(isa<ConstantInt>(Op->getOperand(0)) && 979 "Module flag's first operand must be an integer!"); 980 assert(isa<MDString>(Op->getOperand(1)) && 981 "Module flag's second operand must be an MDString!"); 982 983 ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0)); 984 MDString *ID = cast<MDString>(Op->getOperand(1)); 985 Value *Val = Op->getOperand(2); 986 switch (Behavior->getZExtValue()) { 987 default: 988 assert(false && "Invalid behavior in module flag metadata!"); 989 break; 990 case Module::Error: { 991 MDNode *&ErrNode = ErrorNode[ID]; 992 if (!ErrNode) ErrNode = Op; 993 if (ErrNode->getOperand(2) != Val) 994 HasErr = emitError("linking module flags '" + ID->getString() + 995 "': IDs have conflicting values"); 996 break; 997 } 998 case Module::Warning: { 999 MDNode *&WarnNode = WarningNode[ID]; 1000 if (!WarnNode) WarnNode = Op; 1001 if (WarnNode->getOperand(2) != Val) 1002 errs() << "WARNING: linking module flags '" << ID->getString() 1003 << "': IDs have conflicting values"; 1004 break; 1005 } 1006 case Module::Require: RequireNodes[ID].insert(Op); break; 1007 case Module::Override: { 1008 MDNode *&OvrNode = OverrideNode[ID]; 1009 if (!OvrNode) OvrNode = Op; 1010 if (OvrNode->getOperand(2) != Val) 1011 HasErr = emitError("linking module flags '" + ID->getString() + 1012 "': IDs have conflicting override values"); 1013 break; 1014 } 1015 } 1016 1017 SeenIDs.insert(ID); 1018 } 1019 1020 return HasErr; 1021 } 1022 1023 /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest 1024 /// module. 1025 bool ModuleLinker::linkModuleFlagsMetadata() { 1026 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1027 if (!SrcModFlags) return false; 1028 1029 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata(); 1030 1031 // If the destination module doesn't have module flags yet, then just copy 1032 // over the source module's flags. 1033 if (DstModFlags->getNumOperands() == 0) { 1034 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1035 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1036 1037 return false; 1038 } 1039 1040 bool HasErr = false; 1041 1042 // Otherwise, we have to merge them based on their behaviors. First, 1043 // categorize all of the nodes in the modules' module flags. If an error or 1044 // warning occurs, then emit the appropriate message(s). 1045 DenseMap<MDString*, MDNode*> ErrorNode; 1046 DenseMap<MDString*, MDNode*> WarningNode; 1047 DenseMap<MDString*, MDNode*> OverrideNode; 1048 DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes; 1049 SmallSetVector<MDString*, 16> SeenIDs; 1050 1051 HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode, 1052 OverrideNode, RequireNodes, SeenIDs); 1053 HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode, 1054 OverrideNode, RequireNodes, SeenIDs); 1055 1056 // Check that there isn't both an error and warning node for a flag. 1057 for (SmallSetVector<MDString*, 16>::iterator 1058 I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) { 1059 MDString *ID = *I; 1060 if (ErrorNode[ID] && WarningNode[ID]) 1061 HasErr = emitError("linking module flags '" + ID->getString() + 1062 "': IDs have conflicting behaviors"); 1063 } 1064 1065 // Early exit if we had an error. 1066 if (HasErr) return true; 1067 1068 // Get the destination's module flags ready for new operands. 1069 DstModFlags->dropAllReferences(); 1070 1071 // Add all of the module flags to the destination module. 1072 DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes; 1073 for (SmallSetVector<MDString*, 16>::iterator 1074 I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) { 1075 MDString *ID = *I; 1076 if (OverrideNode[ID]) { 1077 DstModFlags->addOperand(OverrideNode[ID]); 1078 AddedNodes[ID].push_back(OverrideNode[ID]); 1079 } else if (ErrorNode[ID]) { 1080 DstModFlags->addOperand(ErrorNode[ID]); 1081 AddedNodes[ID].push_back(ErrorNode[ID]); 1082 } else if (WarningNode[ID]) { 1083 DstModFlags->addOperand(WarningNode[ID]); 1084 AddedNodes[ID].push_back(WarningNode[ID]); 1085 } 1086 1087 for (SmallSetVector<MDNode*, 8>::iterator 1088 II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end(); 1089 II != IE; ++II) 1090 DstModFlags->addOperand(*II); 1091 } 1092 1093 // Now check that all of the requirements have been satisfied. 1094 for (SmallSetVector<MDString*, 16>::iterator 1095 I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) { 1096 MDString *ID = *I; 1097 SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID]; 1098 1099 for (SmallSetVector<MDNode*, 8>::iterator 1100 II = Set.begin(), IE = Set.end(); II != IE; ++II) { 1101 MDNode *Node = *II; 1102 assert(isa<MDNode>(Node->getOperand(2)) && 1103 "Module flag's third operand must be an MDNode!"); 1104 MDNode *Val = cast<MDNode>(Node->getOperand(2)); 1105 1106 MDString *ReqID = cast<MDString>(Val->getOperand(0)); 1107 Value *ReqVal = Val->getOperand(1); 1108 1109 bool HasValue = false; 1110 for (SmallVectorImpl<MDNode*>::iterator 1111 RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end(); 1112 RI != RE; ++RI) { 1113 MDNode *ReqNode = *RI; 1114 if (ReqNode->getOperand(2) == ReqVal) { 1115 HasValue = true; 1116 break; 1117 } 1118 } 1119 1120 if (!HasValue) 1121 HasErr = emitError("linking module flags '" + ReqID->getString() + 1122 "': does not have the required value"); 1123 } 1124 } 1125 1126 return HasErr; 1127 } 1128 1129 bool ModuleLinker::run() { 1130 assert(DstM && "Null destination module"); 1131 assert(SrcM && "Null source module"); 1132 1133 // Inherit the target data from the source module if the destination module 1134 // doesn't have one already. 1135 if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty()) 1136 DstM->setDataLayout(SrcM->getDataLayout()); 1137 1138 // Copy the target triple from the source to dest if the dest's is empty. 1139 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1140 DstM->setTargetTriple(SrcM->getTargetTriple()); 1141 1142 if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() && 1143 SrcM->getDataLayout() != DstM->getDataLayout()) 1144 errs() << "WARNING: Linking two modules of different data layouts!\n"; 1145 if (!SrcM->getTargetTriple().empty() && 1146 DstM->getTargetTriple() != SrcM->getTargetTriple()) { 1147 errs() << "WARNING: Linking two modules of different target triples: "; 1148 if (!SrcM->getModuleIdentifier().empty()) 1149 errs() << SrcM->getModuleIdentifier() << ": "; 1150 errs() << "'" << SrcM->getTargetTriple() << "' and '" 1151 << DstM->getTargetTriple() << "'\n"; 1152 } 1153 1154 // Append the module inline asm string. 1155 if (!SrcM->getModuleInlineAsm().empty()) { 1156 if (DstM->getModuleInlineAsm().empty()) 1157 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm()); 1158 else 1159 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+ 1160 SrcM->getModuleInlineAsm()); 1161 } 1162 1163 // Update the destination module's dependent libraries list with the libraries 1164 // from the source module. There's no opportunity for duplicates here as the 1165 // Module ensures that duplicate insertions are discarded. 1166 for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end(); 1167 SI != SE; ++SI) 1168 DstM->addLibrary(*SI); 1169 1170 // If the source library's module id is in the dependent library list of the 1171 // destination library, remove it since that module is now linked in. 1172 StringRef ModuleId = SrcM->getModuleIdentifier(); 1173 if (!ModuleId.empty()) 1174 DstM->removeLibrary(sys::path::stem(ModuleId)); 1175 1176 // Loop over all of the linked values to compute type mappings. 1177 computeTypeMapping(); 1178 1179 // Insert all of the globals in src into the DstM module... without linking 1180 // initializers (which could refer to functions not yet mapped over). 1181 for (Module::global_iterator I = SrcM->global_begin(), 1182 E = SrcM->global_end(); I != E; ++I) 1183 if (linkGlobalProto(I)) 1184 return true; 1185 1186 // Link the functions together between the two modules, without doing function 1187 // bodies... this just adds external function prototypes to the DstM 1188 // function... We do this so that when we begin processing function bodies, 1189 // all of the global values that may be referenced are available in our 1190 // ValueMap. 1191 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) 1192 if (linkFunctionProto(I)) 1193 return true; 1194 1195 // If there were any aliases, link them now. 1196 for (Module::alias_iterator I = SrcM->alias_begin(), 1197 E = SrcM->alias_end(); I != E; ++I) 1198 if (linkAliasProto(I)) 1199 return true; 1200 1201 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i) 1202 linkAppendingVarInit(AppendingVars[i]); 1203 1204 // Update the initializers in the DstM module now that all globals that may 1205 // be referenced are in DstM. 1206 linkGlobalInits(); 1207 1208 // Link in the function bodies that are defined in the source module into 1209 // DstM. 1210 for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) { 1211 // Skip if not linking from source. 1212 if (DoNotLinkFromSource.count(SF)) continue; 1213 1214 // Skip if no body (function is external) or materialize. 1215 if (SF->isDeclaration()) { 1216 if (!SF->isMaterializable()) 1217 continue; 1218 if (SF->Materialize(&ErrorMsg)) 1219 return true; 1220 } 1221 1222 linkFunctionBody(cast<Function>(ValueMap[SF]), SF); 1223 } 1224 1225 // Resolve all uses of aliases with aliasees. 1226 linkAliasBodies(); 1227 1228 // Remap all of the named MDNodes in Src into the DstM module. We do this 1229 // after linking GlobalValues so that MDNodes that reference GlobalValues 1230 // are properly remapped. 1231 linkNamedMDNodes(); 1232 1233 // Merge the module flags into the DstM module. 1234 if (linkModuleFlagsMetadata()) 1235 return true; 1236 1237 // Process vector of lazily linked in functions. 1238 bool LinkedInAnyFunctions; 1239 do { 1240 LinkedInAnyFunctions = false; 1241 1242 for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(), 1243 E = LazilyLinkFunctions.end(); I != E; ++I) { 1244 if (!*I) 1245 continue; 1246 1247 Function *SF = *I; 1248 Function *DF = cast<Function>(ValueMap[SF]); 1249 1250 if (!DF->use_empty()) { 1251 1252 // Materialize if necessary. 1253 if (SF->isDeclaration()) { 1254 if (!SF->isMaterializable()) 1255 continue; 1256 if (SF->Materialize(&ErrorMsg)) 1257 return true; 1258 } 1259 1260 // Link in function body. 1261 linkFunctionBody(DF, SF); 1262 1263 // "Remove" from vector by setting the element to 0. 1264 *I = 0; 1265 1266 // Set flag to indicate we may have more functions to lazily link in 1267 // since we linked in a function. 1268 LinkedInAnyFunctions = true; 1269 } 1270 } 1271 } while (LinkedInAnyFunctions); 1272 1273 // Remove any prototypes of functions that were not actually linked in. 1274 for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(), 1275 E = LazilyLinkFunctions.end(); I != E; ++I) { 1276 if (!*I) 1277 continue; 1278 1279 Function *SF = *I; 1280 Function *DF = cast<Function>(ValueMap[SF]); 1281 if (DF->use_empty()) 1282 DF->eraseFromParent(); 1283 } 1284 1285 // Now that all of the types from the source are used, resolve any structs 1286 // copied over to the dest that didn't exist there. 1287 TypeMap.linkDefinedTypeBodies(); 1288 1289 return false; 1290 } 1291 1292 //===----------------------------------------------------------------------===// 1293 // LinkModules entrypoint. 1294 //===----------------------------------------------------------------------===// 1295 1296 // LinkModules - This function links two modules together, with the resulting 1297 // left module modified to be the composite of the two input modules. If an 1298 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate 1299 // the problem. Upon failure, the Dest module could be in a modified state, and 1300 // shouldn't be relied on to be consistent. 1301 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode, 1302 std::string *ErrorMsg) { 1303 ModuleLinker TheLinker(Dest, Src, Mode); 1304 if (TheLinker.run()) { 1305 if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg; 1306 return true; 1307 } 1308 1309 return false; 1310 } 1311