1 //===-ThinLTOCodeGenerator.cpp - LLVM Link Time Optimizer -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Thin Link Time Optimization library. This library is 11 // intended to be used by linker to optimize code at link time. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/LTO/legacy/ThinLTOCodeGenerator.h" 16 17 #ifdef HAVE_LLVM_REVISION 18 #include "LLVMLTORevision.h" 19 #endif 20 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 24 #include "llvm/Analysis/ProfileSummaryInfo.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/BitcodeWriter.h" 29 #include "llvm/Bitcode/BitcodeWriterPass.h" 30 #include "llvm/ExecutionEngine/ObjectMemoryBuffer.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/LegacyPassManager.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IRReader/IRReader.h" 36 #include "llvm/LTO/LTO.h" 37 #include "llvm/Linker/Linker.h" 38 #include "llvm/MC/SubtargetFeature.h" 39 #include "llvm/Object/IRObjectFile.h" 40 #include "llvm/Object/ModuleSummaryIndexObjectFile.h" 41 #include "llvm/Support/CachePruning.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/Error.h" 44 #include "llvm/Support/Path.h" 45 #include "llvm/Support/SHA1.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/ThreadPool.h" 48 #include "llvm/Support/Threading.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/FunctionImport.h" 53 #include "llvm/Transforms/IPO/Internalize.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/ObjCARC.h" 56 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 57 58 #include <numeric> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "thinlto" 63 64 namespace llvm { 65 // Flags -discard-value-names, defined in LTOCodeGenerator.cpp 66 extern cl::opt<bool> LTODiscardValueNames; 67 extern cl::opt<std::string> LTORemarksFilename; 68 extern cl::opt<bool> LTOPassRemarksWithHotness; 69 } 70 71 namespace { 72 73 static cl::opt<int> 74 ThreadCount("threads", cl::init(llvm::heavyweight_hardware_concurrency())); 75 76 Expected<std::unique_ptr<tool_output_file>> 77 setupOptimizationRemarks(LLVMContext &Ctx, int Count) { 78 if (LTOPassRemarksWithHotness) 79 Ctx.setDiagnosticHotnessRequested(true); 80 81 if (LTORemarksFilename.empty()) 82 return nullptr; 83 84 std::string FileName = 85 LTORemarksFilename + ".thin." + llvm::utostr(Count) + ".yaml"; 86 std::error_code EC; 87 auto DiagnosticOutputFile = 88 llvm::make_unique<tool_output_file>(FileName, EC, sys::fs::F_None); 89 if (EC) 90 return errorCodeToError(EC); 91 Ctx.setDiagnosticsOutputFile( 92 llvm::make_unique<yaml::Output>(DiagnosticOutputFile->os())); 93 DiagnosticOutputFile->keep(); 94 return std::move(DiagnosticOutputFile); 95 } 96 97 // Simple helper to save temporary files for debug. 98 static void saveTempBitcode(const Module &TheModule, StringRef TempDir, 99 unsigned count, StringRef Suffix) { 100 if (TempDir.empty()) 101 return; 102 // User asked to save temps, let dump the bitcode file after import. 103 std::string SaveTempPath = (TempDir + llvm::utostr(count) + Suffix).str(); 104 std::error_code EC; 105 raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None); 106 if (EC) 107 report_fatal_error(Twine("Failed to open ") + SaveTempPath + 108 " to save optimized bitcode\n"); 109 WriteBitcodeToFile(&TheModule, OS, /* ShouldPreserveUseListOrder */ true); 110 } 111 112 static const GlobalValueSummary * 113 getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) { 114 // If there is any strong definition anywhere, get it. 115 auto StrongDefForLinker = llvm::find_if( 116 GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) { 117 auto Linkage = Summary->linkage(); 118 return !GlobalValue::isAvailableExternallyLinkage(Linkage) && 119 !GlobalValue::isWeakForLinker(Linkage); 120 }); 121 if (StrongDefForLinker != GVSummaryList.end()) 122 return StrongDefForLinker->get(); 123 // Get the first *linker visible* definition for this global in the summary 124 // list. 125 auto FirstDefForLinker = llvm::find_if( 126 GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) { 127 auto Linkage = Summary->linkage(); 128 return !GlobalValue::isAvailableExternallyLinkage(Linkage); 129 }); 130 // Extern templates can be emitted as available_externally. 131 if (FirstDefForLinker == GVSummaryList.end()) 132 return nullptr; 133 return FirstDefForLinker->get(); 134 } 135 136 // Populate map of GUID to the prevailing copy for any multiply defined 137 // symbols. Currently assume first copy is prevailing, or any strong 138 // definition. Can be refined with Linker information in the future. 139 static void computePrevailingCopies( 140 const ModuleSummaryIndex &Index, 141 DenseMap<GlobalValue::GUID, const GlobalValueSummary *> &PrevailingCopy) { 142 auto HasMultipleCopies = [&](const GlobalValueSummaryList &GVSummaryList) { 143 return GVSummaryList.size() > 1; 144 }; 145 146 for (auto &I : Index) { 147 if (HasMultipleCopies(I.second)) 148 PrevailingCopy[I.first] = getFirstDefinitionForLinker(I.second); 149 } 150 } 151 152 static StringMap<MemoryBufferRef> 153 generateModuleMap(const std::vector<MemoryBufferRef> &Modules) { 154 StringMap<MemoryBufferRef> ModuleMap; 155 for (auto &ModuleBuffer : Modules) { 156 assert(ModuleMap.find(ModuleBuffer.getBufferIdentifier()) == 157 ModuleMap.end() && 158 "Expect unique Buffer Identifier"); 159 ModuleMap[ModuleBuffer.getBufferIdentifier()] = ModuleBuffer; 160 } 161 return ModuleMap; 162 } 163 164 static void promoteModule(Module &TheModule, const ModuleSummaryIndex &Index) { 165 if (renameModuleForThinLTO(TheModule, Index)) 166 report_fatal_error("renameModuleForThinLTO failed"); 167 } 168 169 static std::unique_ptr<Module> 170 loadModuleFromBuffer(const MemoryBufferRef &Buffer, LLVMContext &Context, 171 bool Lazy, bool IsImporting) { 172 SMDiagnostic Err; 173 Expected<std::unique_ptr<Module>> ModuleOrErr = 174 Lazy 175 ? getLazyBitcodeModule(Buffer, Context, 176 /* ShouldLazyLoadMetadata */ true, IsImporting) 177 : parseBitcodeFile(Buffer, Context); 178 if (!ModuleOrErr) { 179 handleAllErrors(ModuleOrErr.takeError(), [&](ErrorInfoBase &EIB) { 180 SMDiagnostic Err = SMDiagnostic(Buffer.getBufferIdentifier(), 181 SourceMgr::DK_Error, EIB.message()); 182 Err.print("ThinLTO", errs()); 183 }); 184 report_fatal_error("Can't load module, abort."); 185 } 186 return std::move(ModuleOrErr.get()); 187 } 188 189 static void 190 crossImportIntoModule(Module &TheModule, const ModuleSummaryIndex &Index, 191 StringMap<MemoryBufferRef> &ModuleMap, 192 const FunctionImporter::ImportMapTy &ImportList) { 193 auto Loader = [&](StringRef Identifier) { 194 return loadModuleFromBuffer(ModuleMap[Identifier], TheModule.getContext(), 195 /*Lazy=*/true, /*IsImporting*/ true); 196 }; 197 198 FunctionImporter Importer(Index, Loader); 199 Expected<bool> Result = Importer.importFunctions(TheModule, ImportList); 200 if (!Result) { 201 handleAllErrors(Result.takeError(), [&](ErrorInfoBase &EIB) { 202 SMDiagnostic Err = SMDiagnostic(TheModule.getModuleIdentifier(), 203 SourceMgr::DK_Error, EIB.message()); 204 Err.print("ThinLTO", errs()); 205 }); 206 report_fatal_error("importFunctions failed"); 207 } 208 } 209 210 static void optimizeModule(Module &TheModule, TargetMachine &TM, 211 unsigned OptLevel) { 212 // Populate the PassManager 213 PassManagerBuilder PMB; 214 PMB.LibraryInfo = new TargetLibraryInfoImpl(TM.getTargetTriple()); 215 PMB.Inliner = createFunctionInliningPass(); 216 // FIXME: should get it from the bitcode? 217 PMB.OptLevel = OptLevel; 218 PMB.LoopVectorize = true; 219 PMB.SLPVectorize = true; 220 PMB.VerifyInput = true; 221 PMB.VerifyOutput = false; 222 223 legacy::PassManager PM; 224 225 // Add the TTI (required to inform the vectorizer about register size for 226 // instance) 227 PM.add(createTargetTransformInfoWrapperPass(TM.getTargetIRAnalysis())); 228 229 // Add optimizations 230 PMB.populateThinLTOPassManager(PM); 231 232 PM.run(TheModule); 233 } 234 235 // Convert the PreservedSymbols map from "Name" based to "GUID" based. 236 static DenseSet<GlobalValue::GUID> 237 computeGUIDPreservedSymbols(const StringSet<> &PreservedSymbols, 238 const Triple &TheTriple) { 239 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols(PreservedSymbols.size()); 240 for (auto &Entry : PreservedSymbols) { 241 StringRef Name = Entry.first(); 242 if (TheTriple.isOSBinFormatMachO() && Name.size() > 0 && Name[0] == '_') 243 Name = Name.drop_front(); 244 GUIDPreservedSymbols.insert(GlobalValue::getGUID(Name)); 245 } 246 return GUIDPreservedSymbols; 247 } 248 249 std::unique_ptr<MemoryBuffer> codegenModule(Module &TheModule, 250 TargetMachine &TM) { 251 SmallVector<char, 128> OutputBuffer; 252 253 // CodeGen 254 { 255 raw_svector_ostream OS(OutputBuffer); 256 legacy::PassManager PM; 257 258 // If the bitcode files contain ARC code and were compiled with optimization, 259 // the ObjCARCContractPass must be run, so do it unconditionally here. 260 PM.add(createObjCARCContractPass()); 261 262 // Setup the codegen now. 263 if (TM.addPassesToEmitFile(PM, OS, TargetMachine::CGFT_ObjectFile, 264 /* DisableVerify */ true)) 265 report_fatal_error("Failed to setup codegen"); 266 267 // Run codegen now. resulting binary is in OutputBuffer. 268 PM.run(TheModule); 269 } 270 return make_unique<ObjectMemoryBuffer>(std::move(OutputBuffer)); 271 } 272 273 /// Manage caching for a single Module. 274 class ModuleCacheEntry { 275 SmallString<128> EntryPath; 276 277 public: 278 // Create a cache entry. This compute a unique hash for the Module considering 279 // the current list of export/import, and offer an interface to query to 280 // access the content in the cache. 281 ModuleCacheEntry( 282 StringRef CachePath, const ModuleSummaryIndex &Index, StringRef ModuleID, 283 const FunctionImporter::ImportMapTy &ImportList, 284 const FunctionImporter::ExportSetTy &ExportList, 285 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 286 const GVSummaryMapTy &DefinedFunctions, 287 const DenseSet<GlobalValue::GUID> &PreservedSymbols, unsigned OptLevel, 288 const TargetMachineBuilder &TMBuilder) { 289 if (CachePath.empty()) 290 return; 291 292 if (!Index.modulePaths().count(ModuleID)) 293 // The module does not have an entry, it can't have a hash at all 294 return; 295 296 // Compute the unique hash for this entry 297 // This is based on the current compiler version, the module itself, the 298 // export list, the hash for every single module in the import list, the 299 // list of ResolvedODR for the module, and the list of preserved symbols. 300 301 // Include the hash for the current module 302 auto ModHash = Index.getModuleHash(ModuleID); 303 304 if (all_of(ModHash, [](uint32_t V) { return V == 0; })) 305 // No hash entry, no caching! 306 return; 307 308 SHA1 Hasher; 309 310 // Include the parts of the LTO configuration that affect code generation. 311 auto AddString = [&](StringRef Str) { 312 Hasher.update(Str); 313 Hasher.update(ArrayRef<uint8_t>{0}); 314 }; 315 auto AddUnsigned = [&](unsigned I) { 316 uint8_t Data[4]; 317 Data[0] = I; 318 Data[1] = I >> 8; 319 Data[2] = I >> 16; 320 Data[3] = I >> 24; 321 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 322 }; 323 324 // Start with the compiler revision 325 Hasher.update(LLVM_VERSION_STRING); 326 #ifdef HAVE_LLVM_REVISION 327 Hasher.update(LLVM_REVISION); 328 #endif 329 330 // Hash the optimization level and the target machine settings. 331 AddString(TMBuilder.MCpu); 332 // FIXME: Hash more of Options. For now all clients initialize Options from 333 // command-line flags (which is unsupported in production), but may set 334 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 335 // DataSections and DebuggerTuning via command line flags. 336 AddUnsigned(TMBuilder.Options.RelaxELFRelocations); 337 AddUnsigned(TMBuilder.Options.FunctionSections); 338 AddUnsigned(TMBuilder.Options.DataSections); 339 AddUnsigned((unsigned)TMBuilder.Options.DebuggerTuning); 340 AddString(TMBuilder.MAttr); 341 if (TMBuilder.RelocModel) 342 AddUnsigned(*TMBuilder.RelocModel); 343 AddUnsigned(TMBuilder.CGOptLevel); 344 AddUnsigned(OptLevel); 345 346 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 347 for (auto F : ExportList) 348 // The export list can impact the internalization, be conservative here 349 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F))); 350 351 // Include the hash for every module we import functions from 352 for (auto &Entry : ImportList) { 353 auto ModHash = Index.getModuleHash(Entry.first()); 354 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 355 } 356 357 // Include the hash for the resolved ODR. 358 for (auto &Entry : ResolvedODR) { 359 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 360 sizeof(GlobalValue::GUID))); 361 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 362 sizeof(GlobalValue::LinkageTypes))); 363 } 364 365 // Include the hash for the preserved symbols. 366 for (auto &Entry : PreservedSymbols) { 367 if (DefinedFunctions.count(Entry)) 368 Hasher.update( 369 ArrayRef<uint8_t>((const uint8_t *)&Entry, sizeof(GlobalValue::GUID))); 370 } 371 372 sys::path::append(EntryPath, CachePath, toHex(Hasher.result())); 373 } 374 375 // Access the path to this entry in the cache. 376 StringRef getEntryPath() { return EntryPath; } 377 378 // Try loading the buffer for this cache entry. 379 ErrorOr<std::unique_ptr<MemoryBuffer>> tryLoadingBuffer() { 380 if (EntryPath.empty()) 381 return std::error_code(); 382 return MemoryBuffer::getFile(EntryPath); 383 } 384 385 // Cache the Produced object file 386 void write(const MemoryBuffer &OutputBuffer) { 387 if (EntryPath.empty()) 388 return; 389 390 // Write to a temporary to avoid race condition 391 SmallString<128> TempFilename; 392 int TempFD; 393 std::error_code EC = 394 sys::fs::createTemporaryFile("Thin", "tmp.o", TempFD, TempFilename); 395 if (EC) { 396 errs() << "Error: " << EC.message() << "\n"; 397 report_fatal_error("ThinLTO: Can't get a temporary file"); 398 } 399 { 400 raw_fd_ostream OS(TempFD, /* ShouldClose */ true); 401 OS << OutputBuffer.getBuffer(); 402 } 403 // Rename to final destination (hopefully race condition won't matter here) 404 EC = sys::fs::rename(TempFilename, EntryPath); 405 if (EC) { 406 sys::fs::remove(TempFilename); 407 raw_fd_ostream OS(EntryPath, EC, sys::fs::F_None); 408 if (EC) 409 report_fatal_error(Twine("Failed to open ") + EntryPath + 410 " to save cached entry\n"); 411 OS << OutputBuffer.getBuffer(); 412 } 413 } 414 }; 415 416 static std::unique_ptr<MemoryBuffer> 417 ProcessThinLTOModule(Module &TheModule, ModuleSummaryIndex &Index, 418 StringMap<MemoryBufferRef> &ModuleMap, TargetMachine &TM, 419 const FunctionImporter::ImportMapTy &ImportList, 420 const FunctionImporter::ExportSetTy &ExportList, 421 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, 422 const GVSummaryMapTy &DefinedGlobals, 423 const ThinLTOCodeGenerator::CachingOptions &CacheOptions, 424 bool DisableCodeGen, StringRef SaveTempsDir, 425 unsigned OptLevel, unsigned count) { 426 427 // "Benchmark"-like optimization: single-source case 428 bool SingleModule = (ModuleMap.size() == 1); 429 430 if (!SingleModule) { 431 promoteModule(TheModule, Index); 432 433 // Apply summary-based LinkOnce/Weak resolution decisions. 434 thinLTOResolveWeakForLinkerModule(TheModule, DefinedGlobals); 435 436 // Save temps: after promotion. 437 saveTempBitcode(TheModule, SaveTempsDir, count, ".1.promoted.bc"); 438 } 439 440 // Be friendly and don't nuke totally the module when the client didn't 441 // supply anything to preserve. 442 if (!ExportList.empty() || !GUIDPreservedSymbols.empty()) { 443 // Apply summary-based internalization decisions. 444 thinLTOInternalizeModule(TheModule, DefinedGlobals); 445 } 446 447 // Save internalized bitcode 448 saveTempBitcode(TheModule, SaveTempsDir, count, ".2.internalized.bc"); 449 450 if (!SingleModule) { 451 crossImportIntoModule(TheModule, Index, ModuleMap, ImportList); 452 453 // Save temps: after cross-module import. 454 saveTempBitcode(TheModule, SaveTempsDir, count, ".3.imported.bc"); 455 } 456 457 optimizeModule(TheModule, TM, OptLevel); 458 459 saveTempBitcode(TheModule, SaveTempsDir, count, ".4.opt.bc"); 460 461 if (DisableCodeGen) { 462 // Configured to stop before CodeGen, serialize the bitcode and return. 463 SmallVector<char, 128> OutputBuffer; 464 { 465 raw_svector_ostream OS(OutputBuffer); 466 ProfileSummaryInfo PSI(TheModule); 467 auto Index = buildModuleSummaryIndex(TheModule, nullptr, nullptr); 468 WriteBitcodeToFile(&TheModule, OS, true, &Index); 469 } 470 return make_unique<ObjectMemoryBuffer>(std::move(OutputBuffer)); 471 } 472 473 return codegenModule(TheModule, TM); 474 } 475 476 /// Resolve LinkOnce/Weak symbols. Record resolutions in the \p ResolvedODR map 477 /// for caching, and in the \p Index for application during the ThinLTO 478 /// backends. This is needed for correctness for exported symbols (ensure 479 /// at least one copy kept) and a compile-time optimization (to drop duplicate 480 /// copies when possible). 481 static void resolveWeakForLinkerInIndex( 482 ModuleSummaryIndex &Index, 483 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> 484 &ResolvedODR) { 485 486 DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy; 487 computePrevailingCopies(Index, PrevailingCopy); 488 489 auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { 490 const auto &Prevailing = PrevailingCopy.find(GUID); 491 // Not in map means that there was only one copy, which must be prevailing. 492 if (Prevailing == PrevailingCopy.end()) 493 return true; 494 return Prevailing->second == S; 495 }; 496 497 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 498 GlobalValue::GUID GUID, 499 GlobalValue::LinkageTypes NewLinkage) { 500 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 501 }; 502 503 thinLTOResolveWeakForLinkerInIndex(Index, isPrevailing, recordNewLinkage); 504 } 505 506 // Initialize the TargetMachine builder for a given Triple 507 static void initTMBuilder(TargetMachineBuilder &TMBuilder, 508 const Triple &TheTriple) { 509 // Set a default CPU for Darwin triples (copied from LTOCodeGenerator). 510 // FIXME this looks pretty terrible... 511 if (TMBuilder.MCpu.empty() && TheTriple.isOSDarwin()) { 512 if (TheTriple.getArch() == llvm::Triple::x86_64) 513 TMBuilder.MCpu = "core2"; 514 else if (TheTriple.getArch() == llvm::Triple::x86) 515 TMBuilder.MCpu = "yonah"; 516 else if (TheTriple.getArch() == llvm::Triple::aarch64) 517 TMBuilder.MCpu = "cyclone"; 518 } 519 TMBuilder.TheTriple = std::move(TheTriple); 520 } 521 522 } // end anonymous namespace 523 524 void ThinLTOCodeGenerator::addModule(StringRef Identifier, StringRef Data) { 525 MemoryBufferRef Buffer(Data, Identifier); 526 if (Modules.empty()) { 527 // First module added, so initialize the triple and some options 528 LLVMContext Context; 529 StringRef TripleStr; 530 ErrorOr<std::string> TripleOrErr = 531 expectedToErrorOrAndEmitErrors(Context, getBitcodeTargetTriple(Buffer)); 532 if (TripleOrErr) 533 TripleStr = *TripleOrErr; 534 Triple TheTriple(TripleStr); 535 initTMBuilder(TMBuilder, Triple(TheTriple)); 536 } 537 #ifndef NDEBUG 538 else { 539 LLVMContext Context; 540 StringRef TripleStr; 541 ErrorOr<std::string> TripleOrErr = 542 expectedToErrorOrAndEmitErrors(Context, getBitcodeTargetTriple(Buffer)); 543 if (TripleOrErr) 544 TripleStr = *TripleOrErr; 545 assert(TMBuilder.TheTriple.str() == TripleStr && 546 "ThinLTO modules with different triple not supported"); 547 } 548 #endif 549 Modules.push_back(Buffer); 550 } 551 552 void ThinLTOCodeGenerator::preserveSymbol(StringRef Name) { 553 PreservedSymbols.insert(Name); 554 } 555 556 void ThinLTOCodeGenerator::crossReferenceSymbol(StringRef Name) { 557 // FIXME: At the moment, we don't take advantage of this extra information, 558 // we're conservatively considering cross-references as preserved. 559 // CrossReferencedSymbols.insert(Name); 560 PreservedSymbols.insert(Name); 561 } 562 563 // TargetMachine factory 564 std::unique_ptr<TargetMachine> TargetMachineBuilder::create() const { 565 std::string ErrMsg; 566 const Target *TheTarget = 567 TargetRegistry::lookupTarget(TheTriple.str(), ErrMsg); 568 if (!TheTarget) { 569 report_fatal_error("Can't load target for this Triple: " + ErrMsg); 570 } 571 572 // Use MAttr as the default set of features. 573 SubtargetFeatures Features(MAttr); 574 Features.getDefaultSubtargetFeatures(TheTriple); 575 std::string FeatureStr = Features.getString(); 576 577 return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine( 578 TheTriple.str(), MCpu, FeatureStr, Options, RelocModel, 579 CodeModel::Default, CGOptLevel)); 580 } 581 582 /** 583 * Produce the combined summary index from all the bitcode files: 584 * "thin-link". 585 */ 586 std::unique_ptr<ModuleSummaryIndex> ThinLTOCodeGenerator::linkCombinedIndex() { 587 std::unique_ptr<ModuleSummaryIndex> CombinedIndex; 588 uint64_t NextModuleId = 0; 589 for (auto &ModuleBuffer : Modules) { 590 Expected<std::unique_ptr<object::ModuleSummaryIndexObjectFile>> ObjOrErr = 591 object::ModuleSummaryIndexObjectFile::create(ModuleBuffer); 592 if (!ObjOrErr) { 593 // FIXME diagnose 594 logAllUnhandledErrors( 595 ObjOrErr.takeError(), errs(), 596 "error: can't create ModuleSummaryIndexObjectFile for buffer: "); 597 return nullptr; 598 } 599 auto Index = (*ObjOrErr)->takeIndex(); 600 if (CombinedIndex) { 601 CombinedIndex->mergeFrom(std::move(Index), ++NextModuleId); 602 } else { 603 CombinedIndex = std::move(Index); 604 } 605 } 606 return CombinedIndex; 607 } 608 609 /** 610 * Perform promotion and renaming of exported internal functions. 611 * Index is updated to reflect linkage changes from weak resolution. 612 */ 613 void ThinLTOCodeGenerator::promote(Module &TheModule, 614 ModuleSummaryIndex &Index) { 615 auto ModuleCount = Index.modulePaths().size(); 616 auto ModuleIdentifier = TheModule.getModuleIdentifier(); 617 618 // Collect for each module the list of function it defines (GUID -> Summary). 619 StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries; 620 Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 621 622 // Convert the preserved symbols set from string to GUID 623 auto GUIDPreservedSymbols = computeGUIDPreservedSymbols( 624 PreservedSymbols, Triple(TheModule.getTargetTriple())); 625 626 // Compute "dead" symbols, we don't want to import/export these! 627 auto DeadSymbols = computeDeadSymbols(Index, GUIDPreservedSymbols); 628 629 // Generate import/export list 630 StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); 631 StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); 632 ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, 633 ExportLists, &DeadSymbols); 634 635 // Resolve LinkOnce/Weak symbols. 636 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 637 resolveWeakForLinkerInIndex(Index, ResolvedODR); 638 639 thinLTOResolveWeakForLinkerModule( 640 TheModule, ModuleToDefinedGVSummaries[ModuleIdentifier]); 641 642 // Promote the exported values in the index, so that they are promoted 643 // in the module. 644 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { 645 const auto &ExportList = ExportLists.find(ModuleIdentifier); 646 return (ExportList != ExportLists.end() && 647 ExportList->second.count(GUID)) || 648 GUIDPreservedSymbols.count(GUID); 649 }; 650 thinLTOInternalizeAndPromoteInIndex(Index, isExported); 651 652 promoteModule(TheModule, Index); 653 } 654 655 /** 656 * Perform cross-module importing for the module identified by ModuleIdentifier. 657 */ 658 void ThinLTOCodeGenerator::crossModuleImport(Module &TheModule, 659 ModuleSummaryIndex &Index) { 660 auto ModuleMap = generateModuleMap(Modules); 661 auto ModuleCount = Index.modulePaths().size(); 662 663 // Collect for each module the list of function it defines (GUID -> Summary). 664 StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); 665 Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 666 667 // Convert the preserved symbols set from string to GUID 668 auto GUIDPreservedSymbols = computeGUIDPreservedSymbols( 669 PreservedSymbols, Triple(TheModule.getTargetTriple())); 670 671 // Compute "dead" symbols, we don't want to import/export these! 672 auto DeadSymbols = computeDeadSymbols(Index, GUIDPreservedSymbols); 673 674 // Generate import/export list 675 StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); 676 StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); 677 ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, 678 ExportLists, &DeadSymbols); 679 auto &ImportList = ImportLists[TheModule.getModuleIdentifier()]; 680 681 crossImportIntoModule(TheModule, Index, ModuleMap, ImportList); 682 } 683 684 /** 685 * Compute the list of summaries needed for importing into module. 686 */ 687 void ThinLTOCodeGenerator::gatherImportedSummariesForModule( 688 StringRef ModulePath, ModuleSummaryIndex &Index, 689 std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { 690 auto ModuleCount = Index.modulePaths().size(); 691 692 // Collect for each module the list of function it defines (GUID -> Summary). 693 StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); 694 Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 695 696 // Generate import/export list 697 StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); 698 StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); 699 ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, 700 ExportLists); 701 702 llvm::gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 703 ImportLists[ModulePath], 704 ModuleToSummariesForIndex); 705 } 706 707 /** 708 * Emit the list of files needed for importing into module. 709 */ 710 void ThinLTOCodeGenerator::emitImports(StringRef ModulePath, 711 StringRef OutputName, 712 ModuleSummaryIndex &Index) { 713 auto ModuleCount = Index.modulePaths().size(); 714 715 // Collect for each module the list of function it defines (GUID -> Summary). 716 StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); 717 Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 718 719 // Generate import/export list 720 StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); 721 StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); 722 ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, 723 ExportLists); 724 725 std::error_code EC; 726 if ((EC = EmitImportsFiles(ModulePath, OutputName, ImportLists[ModulePath]))) 727 report_fatal_error(Twine("Failed to open ") + OutputName + 728 " to save imports lists\n"); 729 } 730 731 /** 732 * Perform internalization. Index is updated to reflect linkage changes. 733 */ 734 void ThinLTOCodeGenerator::internalize(Module &TheModule, 735 ModuleSummaryIndex &Index) { 736 initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple())); 737 auto ModuleCount = Index.modulePaths().size(); 738 auto ModuleIdentifier = TheModule.getModuleIdentifier(); 739 740 // Convert the preserved symbols set from string to GUID 741 auto GUIDPreservedSymbols = 742 computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple); 743 744 // Collect for each module the list of function it defines (GUID -> Summary). 745 StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); 746 Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 747 748 // Compute "dead" symbols, we don't want to import/export these! 749 auto DeadSymbols = computeDeadSymbols(Index, GUIDPreservedSymbols); 750 751 // Generate import/export list 752 StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); 753 StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); 754 ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, 755 ExportLists, &DeadSymbols); 756 auto &ExportList = ExportLists[ModuleIdentifier]; 757 758 // Be friendly and don't nuke totally the module when the client didn't 759 // supply anything to preserve. 760 if (ExportList.empty() && GUIDPreservedSymbols.empty()) 761 return; 762 763 // Internalization 764 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { 765 const auto &ExportList = ExportLists.find(ModuleIdentifier); 766 return (ExportList != ExportLists.end() && 767 ExportList->second.count(GUID)) || 768 GUIDPreservedSymbols.count(GUID); 769 }; 770 thinLTOInternalizeAndPromoteInIndex(Index, isExported); 771 thinLTOInternalizeModule(TheModule, 772 ModuleToDefinedGVSummaries[ModuleIdentifier]); 773 } 774 775 /** 776 * Perform post-importing ThinLTO optimizations. 777 */ 778 void ThinLTOCodeGenerator::optimize(Module &TheModule) { 779 initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple())); 780 781 // Optimize now 782 optimizeModule(TheModule, *TMBuilder.create(), OptLevel); 783 } 784 785 /** 786 * Perform ThinLTO CodeGen. 787 */ 788 std::unique_ptr<MemoryBuffer> ThinLTOCodeGenerator::codegen(Module &TheModule) { 789 initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple())); 790 return codegenModule(TheModule, *TMBuilder.create()); 791 } 792 793 /// Write out the generated object file, either from CacheEntryPath or from 794 /// OutputBuffer, preferring hard-link when possible. 795 /// Returns the path to the generated file in SavedObjectsDirectoryPath. 796 static std::string writeGeneratedObject(int count, StringRef CacheEntryPath, 797 StringRef SavedObjectsDirectoryPath, 798 const MemoryBuffer &OutputBuffer) { 799 SmallString<128> OutputPath(SavedObjectsDirectoryPath); 800 llvm::sys::path::append(OutputPath, Twine(count) + ".thinlto.o"); 801 OutputPath.c_str(); // Ensure the string is null terminated. 802 if (sys::fs::exists(OutputPath)) 803 sys::fs::remove(OutputPath); 804 805 // We don't return a memory buffer to the linker, just a list of files. 806 if (!CacheEntryPath.empty()) { 807 // Cache is enabled, hard-link the entry (or copy if hard-link fails). 808 auto Err = sys::fs::create_hard_link(CacheEntryPath, OutputPath); 809 if (!Err) 810 return OutputPath.str(); 811 // Hard linking failed, try to copy. 812 Err = sys::fs::copy_file(CacheEntryPath, OutputPath); 813 if (!Err) 814 return OutputPath.str(); 815 // Copy failed (could be because the CacheEntry was removed from the cache 816 // in the meantime by another process), fall back and try to write down the 817 // buffer to the output. 818 errs() << "error: can't link or copy from cached entry '" << CacheEntryPath 819 << "' to '" << OutputPath << "'\n"; 820 } 821 // No cache entry, just write out the buffer. 822 std::error_code Err; 823 raw_fd_ostream OS(OutputPath, Err, sys::fs::F_None); 824 if (Err) 825 report_fatal_error("Can't open output '" + OutputPath + "'\n"); 826 OS << OutputBuffer.getBuffer(); 827 return OutputPath.str(); 828 } 829 830 // Main entry point for the ThinLTO processing 831 void ThinLTOCodeGenerator::run() { 832 // Prepare the resulting object vector 833 assert(ProducedBinaries.empty() && "The generator should not be reused"); 834 if (SavedObjectsDirectoryPath.empty()) 835 ProducedBinaries.resize(Modules.size()); 836 else { 837 sys::fs::create_directories(SavedObjectsDirectoryPath); 838 bool IsDir; 839 sys::fs::is_directory(SavedObjectsDirectoryPath, IsDir); 840 if (!IsDir) 841 report_fatal_error("Unexistent dir: '" + SavedObjectsDirectoryPath + "'"); 842 ProducedBinaryFiles.resize(Modules.size()); 843 } 844 845 if (CodeGenOnly) { 846 // Perform only parallel codegen and return. 847 ThreadPool Pool; 848 int count = 0; 849 for (auto &ModuleBuffer : Modules) { 850 Pool.async([&](int count) { 851 LLVMContext Context; 852 Context.setDiscardValueNames(LTODiscardValueNames); 853 854 // Parse module now 855 auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false, 856 /*IsImporting*/ false); 857 858 // CodeGen 859 auto OutputBuffer = codegen(*TheModule); 860 if (SavedObjectsDirectoryPath.empty()) 861 ProducedBinaries[count] = std::move(OutputBuffer); 862 else 863 ProducedBinaryFiles[count] = writeGeneratedObject( 864 count, "", SavedObjectsDirectoryPath, *OutputBuffer); 865 }, count++); 866 } 867 868 return; 869 } 870 871 // Sequential linking phase 872 auto Index = linkCombinedIndex(); 873 874 // Save temps: index. 875 if (!SaveTempsDir.empty()) { 876 auto SaveTempPath = SaveTempsDir + "index.bc"; 877 std::error_code EC; 878 raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None); 879 if (EC) 880 report_fatal_error(Twine("Failed to open ") + SaveTempPath + 881 " to save optimized bitcode\n"); 882 WriteIndexToFile(*Index, OS); 883 } 884 885 886 // Prepare the module map. 887 auto ModuleMap = generateModuleMap(Modules); 888 auto ModuleCount = Modules.size(); 889 890 // Collect for each module the list of function it defines (GUID -> Summary). 891 StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); 892 Index->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 893 894 // Convert the preserved symbols set from string to GUID, this is needed for 895 // computing the caching hash and the internalization. 896 auto GUIDPreservedSymbols = 897 computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple); 898 899 // Compute "dead" symbols, we don't want to import/export these! 900 auto DeadSymbols = computeDeadSymbols(*Index, GUIDPreservedSymbols); 901 902 // Collect the import/export lists for all modules from the call-graph in the 903 // combined index. 904 StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); 905 StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); 906 ComputeCrossModuleImport(*Index, ModuleToDefinedGVSummaries, ImportLists, 907 ExportLists, &DeadSymbols); 908 909 // We use a std::map here to be able to have a defined ordering when 910 // producing a hash for the cache entry. 911 // FIXME: we should be able to compute the caching hash for the entry based 912 // on the index, and nuke this map. 913 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 914 915 // Resolve LinkOnce/Weak symbols, this has to be computed early because it 916 // impacts the caching. 917 resolveWeakForLinkerInIndex(*Index, ResolvedODR); 918 919 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { 920 const auto &ExportList = ExportLists.find(ModuleIdentifier); 921 return (ExportList != ExportLists.end() && 922 ExportList->second.count(GUID)) || 923 GUIDPreservedSymbols.count(GUID); 924 }; 925 926 // Use global summary-based analysis to identify symbols that can be 927 // internalized (because they aren't exported or preserved as per callback). 928 // Changes are made in the index, consumed in the ThinLTO backends. 929 thinLTOInternalizeAndPromoteInIndex(*Index, isExported); 930 931 // Make sure that every module has an entry in the ExportLists and 932 // ResolvedODR maps to enable threaded access to these maps below. 933 for (auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { 934 ExportLists[DefinedGVSummaries.first()]; 935 ResolvedODR[DefinedGVSummaries.first()]; 936 } 937 938 // Compute the ordering we will process the inputs: the rough heuristic here 939 // is to sort them per size so that the largest module get schedule as soon as 940 // possible. This is purely a compile-time optimization. 941 std::vector<int> ModulesOrdering; 942 ModulesOrdering.resize(Modules.size()); 943 std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); 944 std::sort(ModulesOrdering.begin(), ModulesOrdering.end(), 945 [&](int LeftIndex, int RightIndex) { 946 auto LSize = Modules[LeftIndex].getBufferSize(); 947 auto RSize = Modules[RightIndex].getBufferSize(); 948 return LSize > RSize; 949 }); 950 951 // Parallel optimizer + codegen 952 { 953 ThreadPool Pool(ThreadCount); 954 for (auto IndexCount : ModulesOrdering) { 955 auto &ModuleBuffer = Modules[IndexCount]; 956 Pool.async([&](int count) { 957 auto ModuleIdentifier = ModuleBuffer.getBufferIdentifier(); 958 auto &ExportList = ExportLists[ModuleIdentifier]; 959 960 auto &DefinedFunctions = ModuleToDefinedGVSummaries[ModuleIdentifier]; 961 962 // The module may be cached, this helps handling it. 963 ModuleCacheEntry CacheEntry(CacheOptions.Path, *Index, ModuleIdentifier, 964 ImportLists[ModuleIdentifier], ExportList, 965 ResolvedODR[ModuleIdentifier], 966 DefinedFunctions, GUIDPreservedSymbols, 967 OptLevel, TMBuilder); 968 auto CacheEntryPath = CacheEntry.getEntryPath(); 969 970 { 971 auto ErrOrBuffer = CacheEntry.tryLoadingBuffer(); 972 DEBUG(dbgs() << "Cache " << (ErrOrBuffer ? "hit" : "miss") << " '" 973 << CacheEntryPath << "' for buffer " << count << " " 974 << ModuleIdentifier << "\n"); 975 976 if (ErrOrBuffer) { 977 // Cache Hit! 978 if (SavedObjectsDirectoryPath.empty()) 979 ProducedBinaries[count] = std::move(ErrOrBuffer.get()); 980 else 981 ProducedBinaryFiles[count] = writeGeneratedObject( 982 count, CacheEntryPath, SavedObjectsDirectoryPath, 983 *ErrOrBuffer.get()); 984 return; 985 } 986 } 987 988 LLVMContext Context; 989 Context.setDiscardValueNames(LTODiscardValueNames); 990 Context.enableDebugTypeODRUniquing(); 991 auto DiagFileOrErr = setupOptimizationRemarks(Context, count); 992 if (!DiagFileOrErr) { 993 errs() << "Error: " << toString(DiagFileOrErr.takeError()) << "\n"; 994 report_fatal_error("ThinLTO: Can't get an output file for the " 995 "remarks"); 996 } 997 998 // Parse module now 999 auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false, 1000 /*IsImporting*/ false); 1001 1002 // Save temps: original file. 1003 saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc"); 1004 1005 auto &ImportList = ImportLists[ModuleIdentifier]; 1006 // Run the main process now, and generates a binary 1007 auto OutputBuffer = ProcessThinLTOModule( 1008 *TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList, 1009 ExportList, GUIDPreservedSymbols, 1010 ModuleToDefinedGVSummaries[ModuleIdentifier], CacheOptions, 1011 DisableCodeGen, SaveTempsDir, OptLevel, count); 1012 1013 // Commit to the cache (if enabled) 1014 CacheEntry.write(*OutputBuffer); 1015 1016 if (SavedObjectsDirectoryPath.empty()) { 1017 // We need to generated a memory buffer for the linker. 1018 if (!CacheEntryPath.empty()) { 1019 // Cache is enabled, reload from the cache 1020 // We do this to lower memory pressuree: the buffer is on the heap 1021 // and releasing it frees memory that can be used for the next input 1022 // file. The final binary link will read from the VFS cache 1023 // (hopefully!) or from disk if the memory pressure wasn't too high. 1024 auto ReloadedBufferOrErr = CacheEntry.tryLoadingBuffer(); 1025 if (auto EC = ReloadedBufferOrErr.getError()) { 1026 // On error, keeping the preexisting buffer and printing a 1027 // diagnostic is more friendly than just crashing. 1028 errs() << "error: can't reload cached file '" << CacheEntryPath 1029 << "': " << EC.message() << "\n"; 1030 } else { 1031 OutputBuffer = std::move(*ReloadedBufferOrErr); 1032 } 1033 } 1034 ProducedBinaries[count] = std::move(OutputBuffer); 1035 return; 1036 } 1037 ProducedBinaryFiles[count] = writeGeneratedObject( 1038 count, CacheEntryPath, SavedObjectsDirectoryPath, *OutputBuffer); 1039 }, IndexCount); 1040 } 1041 } 1042 1043 CachePruning(CacheOptions.Path) 1044 .setPruningInterval(std::chrono::seconds(CacheOptions.PruningInterval)) 1045 .setEntryExpiration(std::chrono::seconds(CacheOptions.Expiration)) 1046 .setMaxSize(CacheOptions.MaxPercentageOfAvailableSpace) 1047 .prune(); 1048 1049 // If statistics were requested, print them out now. 1050 if (llvm::AreStatisticsEnabled()) 1051 llvm::PrintStatistics(); 1052 } 1053