1 //===-- LTOModule.cpp - LLVM Link Time Optimizer --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Link Time Optimization library. This library is
10 // intended to be used by linker to optimize code at link time.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/LTO/legacy/LTOModule.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/Bitcode/BitcodeReader.h"
17 #include "llvm/CodeGen/TargetSubtargetInfo.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/Mangler.h"
21 #include "llvm/IR/Metadata.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCParser/MCAsmParser.h"
26 #include "llvm/MC/MCSection.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/MC/MCSymbol.h"
29 #include "llvm/MC/SubtargetFeature.h"
30 #include "llvm/Object/IRObjectFile.h"
31 #include "llvm/Object/ObjectFile.h"
32 #include "llvm/Support/FileSystem.h"
33 #include "llvm/Support/Host.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/Path.h"
36 #include "llvm/Support/SourceMgr.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/TargetSelect.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Transforms/Utils/GlobalStatus.h"
41 #include <system_error>
42 using namespace llvm;
43 using namespace llvm::object;
44 
45 LTOModule::LTOModule(std::unique_ptr<Module> M, MemoryBufferRef MBRef,
46                      llvm::TargetMachine *TM)
47     : Mod(std::move(M)), MBRef(MBRef), _target(TM) {
48   SymTab.addModule(Mod.get());
49 }
50 
51 LTOModule::~LTOModule() {}
52 
53 /// isBitcodeFile - Returns 'true' if the file (or memory contents) is LLVM
54 /// bitcode.
55 bool LTOModule::isBitcodeFile(const void *Mem, size_t Length) {
56   Expected<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
57       MemoryBufferRef(StringRef((const char *)Mem, Length), "<mem>"));
58   return !errorToBool(BCData.takeError());
59 }
60 
61 bool LTOModule::isBitcodeFile(StringRef Path) {
62   ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
63       MemoryBuffer::getFile(Path);
64   if (!BufferOrErr)
65     return false;
66 
67   Expected<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
68       BufferOrErr.get()->getMemBufferRef());
69   return !errorToBool(BCData.takeError());
70 }
71 
72 bool LTOModule::isThinLTO() {
73   Expected<BitcodeLTOInfo> Result = getBitcodeLTOInfo(MBRef);
74   if (!Result) {
75     logAllUnhandledErrors(Result.takeError(), errs());
76     return false;
77   }
78   return Result->IsThinLTO;
79 }
80 
81 bool LTOModule::isBitcodeForTarget(MemoryBuffer *Buffer,
82                                    StringRef TriplePrefix) {
83   Expected<MemoryBufferRef> BCOrErr =
84       IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
85   if (errorToBool(BCOrErr.takeError()))
86     return false;
87   LLVMContext Context;
88   ErrorOr<std::string> TripleOrErr =
89       expectedToErrorOrAndEmitErrors(Context, getBitcodeTargetTriple(*BCOrErr));
90   if (!TripleOrErr)
91     return false;
92   return StringRef(*TripleOrErr).startswith(TriplePrefix);
93 }
94 
95 std::string LTOModule::getProducerString(MemoryBuffer *Buffer) {
96   Expected<MemoryBufferRef> BCOrErr =
97       IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
98   if (errorToBool(BCOrErr.takeError()))
99     return "";
100   LLVMContext Context;
101   ErrorOr<std::string> ProducerOrErr = expectedToErrorOrAndEmitErrors(
102       Context, getBitcodeProducerString(*BCOrErr));
103   if (!ProducerOrErr)
104     return "";
105   return *ProducerOrErr;
106 }
107 
108 ErrorOr<std::unique_ptr<LTOModule>>
109 LTOModule::createFromFile(LLVMContext &Context, StringRef path,
110                           const TargetOptions &options) {
111   ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
112       MemoryBuffer::getFile(path);
113   if (std::error_code EC = BufferOrErr.getError()) {
114     Context.emitError(EC.message());
115     return EC;
116   }
117   std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
118   return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
119                        /* ShouldBeLazy*/ false);
120 }
121 
122 ErrorOr<std::unique_ptr<LTOModule>>
123 LTOModule::createFromOpenFile(LLVMContext &Context, int fd, StringRef path,
124                               size_t size, const TargetOptions &options) {
125   return createFromOpenFileSlice(Context, fd, path, size, 0, options);
126 }
127 
128 ErrorOr<std::unique_ptr<LTOModule>>
129 LTOModule::createFromOpenFileSlice(LLVMContext &Context, int fd, StringRef path,
130                                    size_t map_size, off_t offset,
131                                    const TargetOptions &options) {
132   ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
133       MemoryBuffer::getOpenFileSlice(fd, path, map_size, offset);
134   if (std::error_code EC = BufferOrErr.getError()) {
135     Context.emitError(EC.message());
136     return EC;
137   }
138   std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
139   return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
140                        /* ShouldBeLazy */ false);
141 }
142 
143 ErrorOr<std::unique_ptr<LTOModule>>
144 LTOModule::createFromBuffer(LLVMContext &Context, const void *mem,
145                             size_t length, const TargetOptions &options,
146                             StringRef path) {
147   StringRef Data((const char *)mem, length);
148   MemoryBufferRef Buffer(Data, path);
149   return makeLTOModule(Buffer, options, Context, /* ShouldBeLazy */ false);
150 }
151 
152 ErrorOr<std::unique_ptr<LTOModule>>
153 LTOModule::createInLocalContext(std::unique_ptr<LLVMContext> Context,
154                                 const void *mem, size_t length,
155                                 const TargetOptions &options, StringRef path) {
156   StringRef Data((const char *)mem, length);
157   MemoryBufferRef Buffer(Data, path);
158   // If we own a context, we know this is being used only for symbol extraction,
159   // not linking.  Be lazy in that case.
160   ErrorOr<std::unique_ptr<LTOModule>> Ret =
161       makeLTOModule(Buffer, options, *Context, /* ShouldBeLazy */ true);
162   if (Ret)
163     (*Ret)->OwnedContext = std::move(Context);
164   return Ret;
165 }
166 
167 static ErrorOr<std::unique_ptr<Module>>
168 parseBitcodeFileImpl(MemoryBufferRef Buffer, LLVMContext &Context,
169                      bool ShouldBeLazy) {
170   // Find the buffer.
171   Expected<MemoryBufferRef> MBOrErr =
172       IRObjectFile::findBitcodeInMemBuffer(Buffer);
173   if (Error E = MBOrErr.takeError()) {
174     std::error_code EC = errorToErrorCode(std::move(E));
175     Context.emitError(EC.message());
176     return EC;
177   }
178 
179   if (!ShouldBeLazy) {
180     // Parse the full file.
181     return expectedToErrorOrAndEmitErrors(Context,
182                                           parseBitcodeFile(*MBOrErr, Context));
183   }
184 
185   // Parse lazily.
186   return expectedToErrorOrAndEmitErrors(
187       Context,
188       getLazyBitcodeModule(*MBOrErr, Context, true /*ShouldLazyLoadMetadata*/));
189 }
190 
191 ErrorOr<std::unique_ptr<LTOModule>>
192 LTOModule::makeLTOModule(MemoryBufferRef Buffer, const TargetOptions &options,
193                          LLVMContext &Context, bool ShouldBeLazy) {
194   ErrorOr<std::unique_ptr<Module>> MOrErr =
195       parseBitcodeFileImpl(Buffer, Context, ShouldBeLazy);
196   if (std::error_code EC = MOrErr.getError())
197     return EC;
198   std::unique_ptr<Module> &M = *MOrErr;
199 
200   std::string TripleStr = M->getTargetTriple();
201   if (TripleStr.empty())
202     TripleStr = sys::getDefaultTargetTriple();
203   llvm::Triple Triple(TripleStr);
204 
205   // find machine architecture for this module
206   std::string errMsg;
207   const Target *march = TargetRegistry::lookupTarget(TripleStr, errMsg);
208   if (!march)
209     return make_error_code(object::object_error::arch_not_found);
210 
211   // construct LTOModule, hand over ownership of module and target
212   SubtargetFeatures Features;
213   Features.getDefaultSubtargetFeatures(Triple);
214   std::string FeatureStr = Features.getString();
215   // Set a default CPU for Darwin triples.
216   std::string CPU;
217   if (Triple.isOSDarwin()) {
218     if (Triple.getArch() == llvm::Triple::x86_64)
219       CPU = "core2";
220     else if (Triple.getArch() == llvm::Triple::x86)
221       CPU = "yonah";
222     else if (Triple.getArch() == llvm::Triple::aarch64)
223       CPU = "cyclone";
224   }
225 
226   TargetMachine *target =
227       march->createTargetMachine(TripleStr, CPU, FeatureStr, options, None);
228 
229   std::unique_ptr<LTOModule> Ret(new LTOModule(std::move(M), Buffer, target));
230   Ret->parseSymbols();
231   Ret->parseMetadata();
232 
233   return std::move(Ret);
234 }
235 
236 /// Create a MemoryBuffer from a memory range with an optional name.
237 std::unique_ptr<MemoryBuffer>
238 LTOModule::makeBuffer(const void *mem, size_t length, StringRef name) {
239   const char *startPtr = (const char*)mem;
240   return MemoryBuffer::getMemBuffer(StringRef(startPtr, length), name, false);
241 }
242 
243 /// objcClassNameFromExpression - Get string that the data pointer points to.
244 bool
245 LTOModule::objcClassNameFromExpression(const Constant *c, std::string &name) {
246   if (const ConstantExpr *ce = dyn_cast<ConstantExpr>(c)) {
247     Constant *op = ce->getOperand(0);
248     if (GlobalVariable *gvn = dyn_cast<GlobalVariable>(op)) {
249       Constant *cn = gvn->getInitializer();
250       if (ConstantDataArray *ca = dyn_cast<ConstantDataArray>(cn)) {
251         if (ca->isCString()) {
252           name = (".objc_class_name_" + ca->getAsCString()).str();
253           return true;
254         }
255       }
256     }
257   }
258   return false;
259 }
260 
261 /// addObjCClass - Parse i386/ppc ObjC class data structure.
262 void LTOModule::addObjCClass(const GlobalVariable *clgv) {
263   const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
264   if (!c) return;
265 
266   // second slot in __OBJC,__class is pointer to superclass name
267   std::string superclassName;
268   if (objcClassNameFromExpression(c->getOperand(1), superclassName)) {
269     auto IterBool =
270         _undefines.insert(std::make_pair(superclassName, NameAndAttributes()));
271     if (IterBool.second) {
272       NameAndAttributes &info = IterBool.first->second;
273       info.name = IterBool.first->first();
274       info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
275       info.isFunction = false;
276       info.symbol = clgv;
277     }
278   }
279 
280   // third slot in __OBJC,__class is pointer to class name
281   std::string className;
282   if (objcClassNameFromExpression(c->getOperand(2), className)) {
283     auto Iter = _defines.insert(className).first;
284 
285     NameAndAttributes info;
286     info.name = Iter->first();
287     info.attributes = LTO_SYMBOL_PERMISSIONS_DATA |
288       LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT;
289     info.isFunction = false;
290     info.symbol = clgv;
291     _symbols.push_back(info);
292   }
293 }
294 
295 /// addObjCCategory - Parse i386/ppc ObjC category data structure.
296 void LTOModule::addObjCCategory(const GlobalVariable *clgv) {
297   const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
298   if (!c) return;
299 
300   // second slot in __OBJC,__category is pointer to target class name
301   std::string targetclassName;
302   if (!objcClassNameFromExpression(c->getOperand(1), targetclassName))
303     return;
304 
305   auto IterBool =
306       _undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
307 
308   if (!IterBool.second)
309     return;
310 
311   NameAndAttributes &info = IterBool.first->second;
312   info.name = IterBool.first->first();
313   info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
314   info.isFunction = false;
315   info.symbol = clgv;
316 }
317 
318 /// addObjCClassRef - Parse i386/ppc ObjC class list data structure.
319 void LTOModule::addObjCClassRef(const GlobalVariable *clgv) {
320   std::string targetclassName;
321   if (!objcClassNameFromExpression(clgv->getInitializer(), targetclassName))
322     return;
323 
324   auto IterBool =
325       _undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
326 
327   if (!IterBool.second)
328     return;
329 
330   NameAndAttributes &info = IterBool.first->second;
331   info.name = IterBool.first->first();
332   info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
333   info.isFunction = false;
334   info.symbol = clgv;
335 }
336 
337 void LTOModule::addDefinedDataSymbol(ModuleSymbolTable::Symbol Sym) {
338   SmallString<64> Buffer;
339   {
340     raw_svector_ostream OS(Buffer);
341     SymTab.printSymbolName(OS, Sym);
342     Buffer.c_str();
343   }
344 
345   const GlobalValue *V = Sym.get<GlobalValue *>();
346   addDefinedDataSymbol(Buffer, V);
347 }
348 
349 void LTOModule::addDefinedDataSymbol(StringRef Name, const GlobalValue *v) {
350   // Add to list of defined symbols.
351   addDefinedSymbol(Name, v, false);
352 
353   if (!v->hasSection() /* || !isTargetDarwin */)
354     return;
355 
356   // Special case i386/ppc ObjC data structures in magic sections:
357   // The issue is that the old ObjC object format did some strange
358   // contortions to avoid real linker symbols.  For instance, the
359   // ObjC class data structure is allocated statically in the executable
360   // that defines that class.  That data structures contains a pointer to
361   // its superclass.  But instead of just initializing that part of the
362   // struct to the address of its superclass, and letting the static and
363   // dynamic linkers do the rest, the runtime works by having that field
364   // instead point to a C-string that is the name of the superclass.
365   // At runtime the objc initialization updates that pointer and sets
366   // it to point to the actual super class.  As far as the linker
367   // knows it is just a pointer to a string.  But then someone wanted the
368   // linker to issue errors at build time if the superclass was not found.
369   // So they figured out a way in mach-o object format to use an absolute
370   // symbols (.objc_class_name_Foo = 0) and a floating reference
371   // (.reference .objc_class_name_Bar) to cause the linker into erroring when
372   // a class was missing.
373   // The following synthesizes the implicit .objc_* symbols for the linker
374   // from the ObjC data structures generated by the front end.
375 
376   // special case if this data blob is an ObjC class definition
377   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(v)) {
378     StringRef Section = GV->getSection();
379     if (Section.startswith("__OBJC,__class,")) {
380       addObjCClass(GV);
381     }
382 
383     // special case if this data blob is an ObjC category definition
384     else if (Section.startswith("__OBJC,__category,")) {
385       addObjCCategory(GV);
386     }
387 
388     // special case if this data blob is the list of referenced classes
389     else if (Section.startswith("__OBJC,__cls_refs,")) {
390       addObjCClassRef(GV);
391     }
392   }
393 }
394 
395 void LTOModule::addDefinedFunctionSymbol(ModuleSymbolTable::Symbol Sym) {
396   SmallString<64> Buffer;
397   {
398     raw_svector_ostream OS(Buffer);
399     SymTab.printSymbolName(OS, Sym);
400     Buffer.c_str();
401   }
402 
403   const Function *F = cast<Function>(Sym.get<GlobalValue *>());
404   addDefinedFunctionSymbol(Buffer, F);
405 }
406 
407 void LTOModule::addDefinedFunctionSymbol(StringRef Name, const Function *F) {
408   // add to list of defined symbols
409   addDefinedSymbol(Name, F, true);
410 }
411 
412 void LTOModule::addDefinedSymbol(StringRef Name, const GlobalValue *def,
413                                  bool isFunction) {
414   // set alignment part log2() can have rounding errors
415   uint32_t align = def->getAlignment();
416   uint32_t attr = align ? countTrailingZeros(align) : 0;
417 
418   // set permissions part
419   if (isFunction) {
420     attr |= LTO_SYMBOL_PERMISSIONS_CODE;
421   } else {
422     const GlobalVariable *gv = dyn_cast<GlobalVariable>(def);
423     if (gv && gv->isConstant())
424       attr |= LTO_SYMBOL_PERMISSIONS_RODATA;
425     else
426       attr |= LTO_SYMBOL_PERMISSIONS_DATA;
427   }
428 
429   // set definition part
430   if (def->hasWeakLinkage() || def->hasLinkOnceLinkage())
431     attr |= LTO_SYMBOL_DEFINITION_WEAK;
432   else if (def->hasCommonLinkage())
433     attr |= LTO_SYMBOL_DEFINITION_TENTATIVE;
434   else
435     attr |= LTO_SYMBOL_DEFINITION_REGULAR;
436 
437   // set scope part
438   if (def->hasLocalLinkage())
439     // Ignore visibility if linkage is local.
440     attr |= LTO_SYMBOL_SCOPE_INTERNAL;
441   else if (def->hasHiddenVisibility())
442     attr |= LTO_SYMBOL_SCOPE_HIDDEN;
443   else if (def->hasProtectedVisibility())
444     attr |= LTO_SYMBOL_SCOPE_PROTECTED;
445   else if (def->canBeOmittedFromSymbolTable())
446     attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN;
447   else
448     attr |= LTO_SYMBOL_SCOPE_DEFAULT;
449 
450   if (def->hasComdat())
451     attr |= LTO_SYMBOL_COMDAT;
452 
453   if (isa<GlobalAlias>(def))
454     attr |= LTO_SYMBOL_ALIAS;
455 
456   auto Iter = _defines.insert(Name).first;
457 
458   // fill information structure
459   NameAndAttributes info;
460   StringRef NameRef = Iter->first();
461   info.name = NameRef;
462   assert(NameRef.data()[NameRef.size()] == '\0');
463   info.attributes = attr;
464   info.isFunction = isFunction;
465   info.symbol = def;
466 
467   // add to table of symbols
468   _symbols.push_back(info);
469 }
470 
471 /// addAsmGlobalSymbol - Add a global symbol from module-level ASM to the
472 /// defined list.
473 void LTOModule::addAsmGlobalSymbol(StringRef name,
474                                    lto_symbol_attributes scope) {
475   auto IterBool = _defines.insert(name);
476 
477   // only add new define if not already defined
478   if (!IterBool.second)
479     return;
480 
481   NameAndAttributes &info = _undefines[IterBool.first->first()];
482 
483   if (info.symbol == nullptr) {
484     // FIXME: This is trying to take care of module ASM like this:
485     //
486     //   module asm ".zerofill __FOO, __foo, _bar_baz_qux, 0"
487     //
488     // but is gross and its mother dresses it funny. Have the ASM parser give us
489     // more details for this type of situation so that we're not guessing so
490     // much.
491 
492     // fill information structure
493     info.name = IterBool.first->first();
494     info.attributes =
495       LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | scope;
496     info.isFunction = false;
497     info.symbol = nullptr;
498 
499     // add to table of symbols
500     _symbols.push_back(info);
501     return;
502   }
503 
504   if (info.isFunction)
505     addDefinedFunctionSymbol(info.name, cast<Function>(info.symbol));
506   else
507     addDefinedDataSymbol(info.name, info.symbol);
508 
509   _symbols.back().attributes &= ~LTO_SYMBOL_SCOPE_MASK;
510   _symbols.back().attributes |= scope;
511 }
512 
513 /// addAsmGlobalSymbolUndef - Add a global symbol from module-level ASM to the
514 /// undefined list.
515 void LTOModule::addAsmGlobalSymbolUndef(StringRef name) {
516   auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
517 
518   _asm_undefines.push_back(IterBool.first->first());
519 
520   // we already have the symbol
521   if (!IterBool.second)
522     return;
523 
524   uint32_t attr = LTO_SYMBOL_DEFINITION_UNDEFINED;
525   attr |= LTO_SYMBOL_SCOPE_DEFAULT;
526   NameAndAttributes &info = IterBool.first->second;
527   info.name = IterBool.first->first();
528   info.attributes = attr;
529   info.isFunction = false;
530   info.symbol = nullptr;
531 }
532 
533 /// Add a symbol which isn't defined just yet to a list to be resolved later.
534 void LTOModule::addPotentialUndefinedSymbol(ModuleSymbolTable::Symbol Sym,
535                                             bool isFunc) {
536   SmallString<64> name;
537   {
538     raw_svector_ostream OS(name);
539     SymTab.printSymbolName(OS, Sym);
540     name.c_str();
541   }
542 
543   auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
544 
545   // we already have the symbol
546   if (!IterBool.second)
547     return;
548 
549   NameAndAttributes &info = IterBool.first->second;
550 
551   info.name = IterBool.first->first();
552 
553   const GlobalValue *decl = Sym.dyn_cast<GlobalValue *>();
554 
555   if (decl->hasExternalWeakLinkage())
556     info.attributes = LTO_SYMBOL_DEFINITION_WEAKUNDEF;
557   else
558     info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
559 
560   info.isFunction = isFunc;
561   info.symbol = decl;
562 }
563 
564 void LTOModule::parseSymbols() {
565   for (auto Sym : SymTab.symbols()) {
566     auto *GV = Sym.dyn_cast<GlobalValue *>();
567     uint32_t Flags = SymTab.getSymbolFlags(Sym);
568     if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
569       continue;
570 
571     bool IsUndefined = Flags & object::BasicSymbolRef::SF_Undefined;
572 
573     if (!GV) {
574       SmallString<64> Buffer;
575       {
576         raw_svector_ostream OS(Buffer);
577         SymTab.printSymbolName(OS, Sym);
578         Buffer.c_str();
579       }
580       StringRef Name(Buffer);
581 
582       if (IsUndefined)
583         addAsmGlobalSymbolUndef(Name);
584       else if (Flags & object::BasicSymbolRef::SF_Global)
585         addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_DEFAULT);
586       else
587         addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_INTERNAL);
588       continue;
589     }
590 
591     auto *F = dyn_cast<Function>(GV);
592     if (IsUndefined) {
593       addPotentialUndefinedSymbol(Sym, F != nullptr);
594       continue;
595     }
596 
597     if (F) {
598       addDefinedFunctionSymbol(Sym);
599       continue;
600     }
601 
602     if (isa<GlobalVariable>(GV)) {
603       addDefinedDataSymbol(Sym);
604       continue;
605     }
606 
607     assert(isa<GlobalAlias>(GV));
608     addDefinedDataSymbol(Sym);
609   }
610 
611   // make symbols for all undefines
612   for (StringMap<NameAndAttributes>::iterator u =_undefines.begin(),
613          e = _undefines.end(); u != e; ++u) {
614     // If this symbol also has a definition, then don't make an undefine because
615     // it is a tentative definition.
616     if (_defines.count(u->getKey())) continue;
617     NameAndAttributes info = u->getValue();
618     _symbols.push_back(info);
619   }
620 }
621 
622 /// parseMetadata - Parse metadata from the module
623 void LTOModule::parseMetadata() {
624   raw_string_ostream OS(LinkerOpts);
625 
626   // Linker Options
627   if (NamedMDNode *LinkerOptions =
628           getModule().getNamedMetadata("llvm.linker.options")) {
629     for (unsigned i = 0, e = LinkerOptions->getNumOperands(); i != e; ++i) {
630       MDNode *MDOptions = LinkerOptions->getOperand(i);
631       for (unsigned ii = 0, ie = MDOptions->getNumOperands(); ii != ie; ++ii) {
632         MDString *MDOption = cast<MDString>(MDOptions->getOperand(ii));
633         OS << " " << MDOption->getString();
634       }
635     }
636   }
637 
638   // Globals - we only need to do this for COFF.
639   const Triple TT(_target->getTargetTriple());
640   if (!TT.isOSBinFormatCOFF())
641     return;
642   Mangler M;
643   for (const NameAndAttributes &Sym : _symbols) {
644     if (!Sym.symbol)
645       continue;
646     emitLinkerFlagsForGlobalCOFF(OS, Sym.symbol, TT, M);
647   }
648 
649   // Dependent Libraries
650   raw_string_ostream OSD(DependentLibraries);
651   if (NamedMDNode *DependentLibraries = getModule().getNamedMetadata("llvm.dependent-libraries"))
652     for (MDNode *N : DependentLibraries->operands())
653       OSD << " " << cast<MDString>(N->getOperand(0))->getString();
654 }
655