1 //===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Link Time Optimization library. This library is 11 // intended to be used by linker to optimize code at link time. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/LTO/LTOCodeGenerator.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/Passes.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Bitcode/ReaderWriter.h" 22 #include "llvm/CodeGen/ParallelCG.h" 23 #include "llvm/CodeGen/RuntimeLibcalls.h" 24 #include "llvm/Config/config.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/DiagnosticPrinter.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/LegacyPassManager.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/LTO/LTOModule.h" 37 #include "llvm/Linker/Linker.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/SubtargetFeature.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/Host.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/Signals.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/TargetSelect.h" 48 #include "llvm/Support/ToolOutputFile.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 56 #include "llvm/Transforms/ObjCARC.h" 57 #include <system_error> 58 using namespace llvm; 59 60 const char* LTOCodeGenerator::getVersionString() { 61 #ifdef LLVM_VERSION_INFO 62 return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO; 63 #else 64 return PACKAGE_NAME " version " PACKAGE_VERSION; 65 #endif 66 } 67 68 namespace llvm { 69 cl::opt<bool> LTODiscardValueNames( 70 "lto-discard-value-names", 71 cl::desc("Strip names from Value during LTO (other than GlobalValue)."), 72 #ifdef NDEBUG 73 cl::init(true), 74 #else 75 cl::init(false), 76 #endif 77 cl::Hidden); 78 } 79 80 LTOCodeGenerator::LTOCodeGenerator(LLVMContext &Context) 81 : Context(Context), MergedModule(new Module("ld-temp.o", Context)), 82 TheLinker(new Linker(*MergedModule)) { 83 Context.setDiscardValueNames(LTODiscardValueNames); 84 initializeLTOPasses(); 85 } 86 87 LTOCodeGenerator::~LTOCodeGenerator() {} 88 89 // Initialize LTO passes. Please keep this function in sync with 90 // PassManagerBuilder::populateLTOPassManager(), and make sure all LTO 91 // passes are initialized. 92 void LTOCodeGenerator::initializeLTOPasses() { 93 PassRegistry &R = *PassRegistry::getPassRegistry(); 94 95 initializeInternalizePassPass(R); 96 initializeIPSCCPPass(R); 97 initializeGlobalOptPass(R); 98 initializeConstantMergePass(R); 99 initializeDAHPass(R); 100 initializeInstructionCombiningPassPass(R); 101 initializeSimpleInlinerPass(R); 102 initializePruneEHPass(R); 103 initializeGlobalDCEPass(R); 104 initializeArgPromotionPass(R); 105 initializeJumpThreadingPass(R); 106 initializeSROALegacyPassPass(R); 107 initializeSROA_DTPass(R); 108 initializeSROA_SSAUpPass(R); 109 initializePostOrderFunctionAttrsLegacyPassPass(R); 110 initializeReversePostOrderFunctionAttrsPass(R); 111 initializeGlobalsAAWrapperPassPass(R); 112 initializeLICMPass(R); 113 initializeMergedLoadStoreMotionPass(R); 114 initializeGVNLegacyPassPass(R); 115 initializeMemCpyOptPass(R); 116 initializeDCEPass(R); 117 initializeCFGSimplifyPassPass(R); 118 } 119 120 bool LTOCodeGenerator::addModule(LTOModule *Mod) { 121 assert(&Mod->getModule().getContext() == &Context && 122 "Expected module in same context"); 123 124 bool ret = TheLinker->linkInModule(Mod->takeModule()); 125 126 const std::vector<const char *> &undefs = Mod->getAsmUndefinedRefs(); 127 for (int i = 0, e = undefs.size(); i != e; ++i) 128 AsmUndefinedRefs[undefs[i]] = 1; 129 130 return !ret; 131 } 132 133 void LTOCodeGenerator::setModule(std::unique_ptr<LTOModule> Mod) { 134 assert(&Mod->getModule().getContext() == &Context && 135 "Expected module in same context"); 136 137 AsmUndefinedRefs.clear(); 138 139 MergedModule = Mod->takeModule(); 140 TheLinker = make_unique<Linker>(*MergedModule); 141 142 const std::vector<const char*> &Undefs = Mod->getAsmUndefinedRefs(); 143 for (int I = 0, E = Undefs.size(); I != E; ++I) 144 AsmUndefinedRefs[Undefs[I]] = 1; 145 } 146 147 void LTOCodeGenerator::setTargetOptions(TargetOptions Options) { 148 this->Options = Options; 149 } 150 151 void LTOCodeGenerator::setDebugInfo(lto_debug_model Debug) { 152 switch (Debug) { 153 case LTO_DEBUG_MODEL_NONE: 154 EmitDwarfDebugInfo = false; 155 return; 156 157 case LTO_DEBUG_MODEL_DWARF: 158 EmitDwarfDebugInfo = true; 159 return; 160 } 161 llvm_unreachable("Unknown debug format!"); 162 } 163 164 void LTOCodeGenerator::setOptLevel(unsigned Level) { 165 OptLevel = Level; 166 switch (OptLevel) { 167 case 0: 168 CGOptLevel = CodeGenOpt::None; 169 break; 170 case 1: 171 CGOptLevel = CodeGenOpt::Less; 172 break; 173 case 2: 174 CGOptLevel = CodeGenOpt::Default; 175 break; 176 case 3: 177 CGOptLevel = CodeGenOpt::Aggressive; 178 break; 179 } 180 } 181 182 bool LTOCodeGenerator::writeMergedModules(const char *Path) { 183 if (!determineTarget()) 184 return false; 185 186 // mark which symbols can not be internalized 187 applyScopeRestrictions(); 188 189 // create output file 190 std::error_code EC; 191 tool_output_file Out(Path, EC, sys::fs::F_None); 192 if (EC) { 193 std::string ErrMsg = "could not open bitcode file for writing: "; 194 ErrMsg += Path; 195 emitError(ErrMsg); 196 return false; 197 } 198 199 // write bitcode to it 200 WriteBitcodeToFile(MergedModule.get(), Out.os(), ShouldEmbedUselists); 201 Out.os().close(); 202 203 if (Out.os().has_error()) { 204 std::string ErrMsg = "could not write bitcode file: "; 205 ErrMsg += Path; 206 emitError(ErrMsg); 207 Out.os().clear_error(); 208 return false; 209 } 210 211 Out.keep(); 212 return true; 213 } 214 215 bool LTOCodeGenerator::compileOptimizedToFile(const char **Name) { 216 // make unique temp output file to put generated code 217 SmallString<128> Filename; 218 int FD; 219 220 const char *Extension = 221 (FileType == TargetMachine::CGFT_AssemblyFile ? "s" : "o"); 222 223 std::error_code EC = 224 sys::fs::createTemporaryFile("lto-llvm", Extension, FD, Filename); 225 if (EC) { 226 emitError(EC.message()); 227 return false; 228 } 229 230 // generate object file 231 tool_output_file objFile(Filename.c_str(), FD); 232 233 bool genResult = compileOptimized(&objFile.os()); 234 objFile.os().close(); 235 if (objFile.os().has_error()) { 236 objFile.os().clear_error(); 237 sys::fs::remove(Twine(Filename)); 238 return false; 239 } 240 241 objFile.keep(); 242 if (!genResult) { 243 sys::fs::remove(Twine(Filename)); 244 return false; 245 } 246 247 NativeObjectPath = Filename.c_str(); 248 *Name = NativeObjectPath.c_str(); 249 return true; 250 } 251 252 std::unique_ptr<MemoryBuffer> 253 LTOCodeGenerator::compileOptimized() { 254 const char *name; 255 if (!compileOptimizedToFile(&name)) 256 return nullptr; 257 258 // read .o file into memory buffer 259 ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr = 260 MemoryBuffer::getFile(name, -1, false); 261 if (std::error_code EC = BufferOrErr.getError()) { 262 emitError(EC.message()); 263 sys::fs::remove(NativeObjectPath); 264 return nullptr; 265 } 266 267 // remove temp files 268 sys::fs::remove(NativeObjectPath); 269 270 return std::move(*BufferOrErr); 271 } 272 273 bool LTOCodeGenerator::compile_to_file(const char **Name, bool DisableVerify, 274 bool DisableInline, 275 bool DisableGVNLoadPRE, 276 bool DisableVectorization) { 277 if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE, 278 DisableVectorization)) 279 return false; 280 281 return compileOptimizedToFile(Name); 282 } 283 284 std::unique_ptr<MemoryBuffer> 285 LTOCodeGenerator::compile(bool DisableVerify, bool DisableInline, 286 bool DisableGVNLoadPRE, bool DisableVectorization) { 287 if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE, 288 DisableVectorization)) 289 return nullptr; 290 291 return compileOptimized(); 292 } 293 294 bool LTOCodeGenerator::determineTarget() { 295 if (TargetMach) 296 return true; 297 298 std::string TripleStr = MergedModule->getTargetTriple(); 299 if (TripleStr.empty()) { 300 TripleStr = sys::getDefaultTargetTriple(); 301 MergedModule->setTargetTriple(TripleStr); 302 } 303 llvm::Triple Triple(TripleStr); 304 305 // create target machine from info for merged modules 306 std::string ErrMsg; 307 const Target *march = TargetRegistry::lookupTarget(TripleStr, ErrMsg); 308 if (!march) { 309 emitError(ErrMsg); 310 return false; 311 } 312 313 // Construct LTOModule, hand over ownership of module and target. Use MAttr as 314 // the default set of features. 315 SubtargetFeatures Features(MAttr); 316 Features.getDefaultSubtargetFeatures(Triple); 317 FeatureStr = Features.getString(); 318 // Set a default CPU for Darwin triples. 319 if (MCpu.empty() && Triple.isOSDarwin()) { 320 if (Triple.getArch() == llvm::Triple::x86_64) 321 MCpu = "core2"; 322 else if (Triple.getArch() == llvm::Triple::x86) 323 MCpu = "yonah"; 324 else if (Triple.getArch() == llvm::Triple::aarch64) 325 MCpu = "cyclone"; 326 } 327 328 TargetMach.reset(march->createTargetMachine(TripleStr, MCpu, FeatureStr, 329 Options, RelocModel, 330 CodeModel::Default, CGOptLevel)); 331 return true; 332 } 333 334 void LTOCodeGenerator:: 335 applyRestriction(GlobalValue &GV, 336 ArrayRef<StringRef> Libcalls, 337 std::vector<const char*> &MustPreserveList, 338 SmallPtrSetImpl<GlobalValue*> &AsmUsed, 339 Mangler &Mangler) { 340 // There are no restrictions to apply to declarations. 341 if (GV.isDeclaration()) 342 return; 343 344 // There is nothing more restrictive than private linkage. 345 if (GV.hasPrivateLinkage()) 346 return; 347 348 SmallString<64> Buffer; 349 TargetMach->getNameWithPrefix(Buffer, &GV, Mangler); 350 351 if (MustPreserveSymbols.count(Buffer)) 352 MustPreserveList.push_back(GV.getName().data()); 353 if (AsmUndefinedRefs.count(Buffer)) 354 AsmUsed.insert(&GV); 355 356 // Conservatively append user-supplied runtime library functions to 357 // llvm.compiler.used. These could be internalized and deleted by 358 // optimizations like -globalopt, causing problems when later optimizations 359 // add new library calls (e.g., llvm.memset => memset and printf => puts). 360 // Leave it to the linker to remove any dead code (e.g. with -dead_strip). 361 if (isa<Function>(GV) && 362 std::binary_search(Libcalls.begin(), Libcalls.end(), GV.getName())) 363 AsmUsed.insert(&GV); 364 365 // Record the linkage type of non-local symbols so they can be restored prior 366 // to module splitting. 367 if (ShouldRestoreGlobalsLinkage && !GV.hasAvailableExternallyLinkage() && 368 !GV.hasLocalLinkage() && GV.hasName()) 369 ExternalSymbols.insert(std::make_pair(GV.getName(), GV.getLinkage())); 370 } 371 372 static void findUsedValues(GlobalVariable *LLVMUsed, 373 SmallPtrSetImpl<GlobalValue*> &UsedValues) { 374 if (!LLVMUsed) return; 375 376 ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer()); 377 for (unsigned i = 0, e = Inits->getNumOperands(); i != e; ++i) 378 if (GlobalValue *GV = 379 dyn_cast<GlobalValue>(Inits->getOperand(i)->stripPointerCasts())) 380 UsedValues.insert(GV); 381 } 382 383 // Collect names of runtime library functions. User-defined functions with the 384 // same names are added to llvm.compiler.used to prevent them from being 385 // deleted by optimizations. 386 static void accumulateAndSortLibcalls(std::vector<StringRef> &Libcalls, 387 const TargetLibraryInfo& TLI, 388 const Module &Mod, 389 const TargetMachine &TM) { 390 // TargetLibraryInfo has info on C runtime library calls on the current 391 // target. 392 for (unsigned I = 0, E = static_cast<unsigned>(LibFunc::NumLibFuncs); 393 I != E; ++I) { 394 LibFunc::Func F = static_cast<LibFunc::Func>(I); 395 if (TLI.has(F)) 396 Libcalls.push_back(TLI.getName(F)); 397 } 398 399 SmallPtrSet<const TargetLowering *, 1> TLSet; 400 401 for (const Function &F : Mod) { 402 const TargetLowering *Lowering = 403 TM.getSubtargetImpl(F)->getTargetLowering(); 404 405 if (Lowering && TLSet.insert(Lowering).second) 406 // TargetLowering has info on library calls that CodeGen expects to be 407 // available, both from the C runtime and compiler-rt. 408 for (unsigned I = 0, E = static_cast<unsigned>(RTLIB::UNKNOWN_LIBCALL); 409 I != E; ++I) 410 if (const char *Name = 411 Lowering->getLibcallName(static_cast<RTLIB::Libcall>(I))) 412 Libcalls.push_back(Name); 413 } 414 415 array_pod_sort(Libcalls.begin(), Libcalls.end()); 416 Libcalls.erase(std::unique(Libcalls.begin(), Libcalls.end()), 417 Libcalls.end()); 418 } 419 420 void LTOCodeGenerator::applyScopeRestrictions() { 421 if (ScopeRestrictionsDone || !ShouldInternalize) 422 return; 423 424 // Start off with a verification pass. 425 legacy::PassManager passes; 426 passes.add(createVerifierPass()); 427 428 // mark which symbols can not be internalized 429 Mangler Mangler; 430 std::vector<const char*> MustPreserveList; 431 SmallPtrSet<GlobalValue*, 8> AsmUsed; 432 std::vector<StringRef> Libcalls; 433 TargetLibraryInfoImpl TLII(Triple(TargetMach->getTargetTriple())); 434 TargetLibraryInfo TLI(TLII); 435 436 accumulateAndSortLibcalls(Libcalls, TLI, *MergedModule, *TargetMach); 437 438 for (Function &f : *MergedModule) 439 applyRestriction(f, Libcalls, MustPreserveList, AsmUsed, Mangler); 440 for (GlobalVariable &v : MergedModule->globals()) 441 applyRestriction(v, Libcalls, MustPreserveList, AsmUsed, Mangler); 442 for (GlobalAlias &a : MergedModule->aliases()) 443 applyRestriction(a, Libcalls, MustPreserveList, AsmUsed, Mangler); 444 445 GlobalVariable *LLVMCompilerUsed = 446 MergedModule->getGlobalVariable("llvm.compiler.used"); 447 findUsedValues(LLVMCompilerUsed, AsmUsed); 448 if (LLVMCompilerUsed) 449 LLVMCompilerUsed->eraseFromParent(); 450 451 if (!AsmUsed.empty()) { 452 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(Context); 453 std::vector<Constant*> asmUsed2; 454 for (auto *GV : AsmUsed) { 455 Constant *c = ConstantExpr::getBitCast(GV, i8PTy); 456 asmUsed2.push_back(c); 457 } 458 459 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, asmUsed2.size()); 460 LLVMCompilerUsed = 461 new llvm::GlobalVariable(*MergedModule, ATy, false, 462 llvm::GlobalValue::AppendingLinkage, 463 llvm::ConstantArray::get(ATy, asmUsed2), 464 "llvm.compiler.used"); 465 466 LLVMCompilerUsed->setSection("llvm.metadata"); 467 } 468 469 passes.add(createInternalizePass(MustPreserveList)); 470 471 // apply scope restrictions 472 passes.run(*MergedModule); 473 474 ScopeRestrictionsDone = true; 475 } 476 477 /// Restore original linkage for symbols that may have been internalized 478 void LTOCodeGenerator::restoreLinkageForExternals() { 479 if (!ShouldInternalize || !ShouldRestoreGlobalsLinkage) 480 return; 481 482 assert(ScopeRestrictionsDone && 483 "Cannot externalize without internalization!"); 484 485 if (ExternalSymbols.empty()) 486 return; 487 488 auto externalize = [this](GlobalValue &GV) { 489 if (!GV.hasLocalLinkage() || !GV.hasName()) 490 return; 491 492 auto I = ExternalSymbols.find(GV.getName()); 493 if (I == ExternalSymbols.end()) 494 return; 495 496 GV.setLinkage(I->second); 497 }; 498 499 std::for_each(MergedModule->begin(), MergedModule->end(), externalize); 500 std::for_each(MergedModule->global_begin(), MergedModule->global_end(), 501 externalize); 502 std::for_each(MergedModule->alias_begin(), MergedModule->alias_end(), 503 externalize); 504 } 505 506 /// Optimize merged modules using various IPO passes 507 bool LTOCodeGenerator::optimize(bool DisableVerify, bool DisableInline, 508 bool DisableGVNLoadPRE, 509 bool DisableVectorization) { 510 if (!this->determineTarget()) 511 return false; 512 513 // Mark which symbols can not be internalized 514 this->applyScopeRestrictions(); 515 516 // Instantiate the pass manager to organize the passes. 517 legacy::PassManager passes; 518 519 // Add an appropriate DataLayout instance for this module... 520 MergedModule->setDataLayout(TargetMach->createDataLayout()); 521 522 passes.add( 523 createTargetTransformInfoWrapperPass(TargetMach->getTargetIRAnalysis())); 524 525 Triple TargetTriple(TargetMach->getTargetTriple()); 526 PassManagerBuilder PMB; 527 PMB.DisableGVNLoadPRE = DisableGVNLoadPRE; 528 PMB.LoopVectorize = !DisableVectorization; 529 PMB.SLPVectorize = !DisableVectorization; 530 if (!DisableInline) 531 PMB.Inliner = createFunctionInliningPass(); 532 PMB.LibraryInfo = new TargetLibraryInfoImpl(TargetTriple); 533 PMB.OptLevel = OptLevel; 534 PMB.VerifyInput = !DisableVerify; 535 PMB.VerifyOutput = !DisableVerify; 536 537 PMB.populateLTOPassManager(passes); 538 539 // Run our queue of passes all at once now, efficiently. 540 passes.run(*MergedModule); 541 542 return true; 543 } 544 545 bool LTOCodeGenerator::compileOptimized(ArrayRef<raw_pwrite_stream *> Out) { 546 if (!this->determineTarget()) 547 return false; 548 549 legacy::PassManager preCodeGenPasses; 550 551 // If the bitcode files contain ARC code and were compiled with optimization, 552 // the ObjCARCContractPass must be run, so do it unconditionally here. 553 preCodeGenPasses.add(createObjCARCContractPass()); 554 preCodeGenPasses.run(*MergedModule); 555 556 // Re-externalize globals that may have been internalized to increase scope 557 // for splitting 558 restoreLinkageForExternals(); 559 560 // Do code generation. We need to preserve the module in case the client calls 561 // writeMergedModules() after compilation, but we only need to allow this at 562 // parallelism level 1. This is achieved by having splitCodeGen return the 563 // original module at parallelism level 1 which we then assign back to 564 // MergedModule. 565 MergedModule = splitCodeGen( 566 std::move(MergedModule), Out, {}, MCpu, FeatureStr, Options, RelocModel, 567 CodeModel::Default, CGOptLevel, FileType, ShouldRestoreGlobalsLinkage); 568 569 // If statistics were requested, print them out after codegen. 570 if (llvm::AreStatisticsEnabled()) 571 llvm::PrintStatistics(); 572 573 return true; 574 } 575 576 /// setCodeGenDebugOptions - Set codegen debugging options to aid in debugging 577 /// LTO problems. 578 void LTOCodeGenerator::setCodeGenDebugOptions(const char *Options) { 579 for (std::pair<StringRef, StringRef> o = getToken(Options); !o.first.empty(); 580 o = getToken(o.second)) 581 CodegenOptions.push_back(o.first); 582 } 583 584 void LTOCodeGenerator::parseCodeGenDebugOptions() { 585 // if options were requested, set them 586 if (!CodegenOptions.empty()) { 587 // ParseCommandLineOptions() expects argv[0] to be program name. 588 std::vector<const char *> CodegenArgv(1, "libLLVMLTO"); 589 for (std::string &Arg : CodegenOptions) 590 CodegenArgv.push_back(Arg.c_str()); 591 cl::ParseCommandLineOptions(CodegenArgv.size(), CodegenArgv.data()); 592 } 593 } 594 595 void LTOCodeGenerator::DiagnosticHandler(const DiagnosticInfo &DI, 596 void *Context) { 597 ((LTOCodeGenerator *)Context)->DiagnosticHandler2(DI); 598 } 599 600 void LTOCodeGenerator::DiagnosticHandler2(const DiagnosticInfo &DI) { 601 // Map the LLVM internal diagnostic severity to the LTO diagnostic severity. 602 lto_codegen_diagnostic_severity_t Severity; 603 switch (DI.getSeverity()) { 604 case DS_Error: 605 Severity = LTO_DS_ERROR; 606 break; 607 case DS_Warning: 608 Severity = LTO_DS_WARNING; 609 break; 610 case DS_Remark: 611 Severity = LTO_DS_REMARK; 612 break; 613 case DS_Note: 614 Severity = LTO_DS_NOTE; 615 break; 616 } 617 // Create the string that will be reported to the external diagnostic handler. 618 std::string MsgStorage; 619 raw_string_ostream Stream(MsgStorage); 620 DiagnosticPrinterRawOStream DP(Stream); 621 DI.print(DP); 622 Stream.flush(); 623 624 // If this method has been called it means someone has set up an external 625 // diagnostic handler. Assert on that. 626 assert(DiagHandler && "Invalid diagnostic handler"); 627 (*DiagHandler)(Severity, MsgStorage.c_str(), DiagContext); 628 } 629 630 void 631 LTOCodeGenerator::setDiagnosticHandler(lto_diagnostic_handler_t DiagHandler, 632 void *Ctxt) { 633 this->DiagHandler = DiagHandler; 634 this->DiagContext = Ctxt; 635 if (!DiagHandler) 636 return Context.setDiagnosticHandler(nullptr, nullptr); 637 // Register the LTOCodeGenerator stub in the LLVMContext to forward the 638 // diagnostic to the external DiagHandler. 639 Context.setDiagnosticHandler(LTOCodeGenerator::DiagnosticHandler, this, 640 /* RespectFilters */ true); 641 } 642 643 namespace { 644 class LTODiagnosticInfo : public DiagnosticInfo { 645 const Twine &Msg; 646 public: 647 LTODiagnosticInfo(const Twine &DiagMsg, DiagnosticSeverity Severity=DS_Error) 648 : DiagnosticInfo(DK_Linker, Severity), Msg(DiagMsg) {} 649 void print(DiagnosticPrinter &DP) const override { DP << Msg; } 650 }; 651 } 652 653 void LTOCodeGenerator::emitError(const std::string &ErrMsg) { 654 if (DiagHandler) 655 (*DiagHandler)(LTO_DS_ERROR, ErrMsg.c_str(), DiagContext); 656 else 657 Context.diagnose(LTODiagnosticInfo(ErrMsg)); 658 } 659