1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/LTO/SummaryBasedOptimizations.h" 35 #include "llvm/Linker/IRMover.h" 36 #include "llvm/Object/IRObjectFile.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Error.h" 39 #include "llvm/Support/FileSystem.h" 40 #include "llvm/Support/ManagedStatic.h" 41 #include "llvm/Support/MemoryBuffer.h" 42 #include "llvm/Support/Path.h" 43 #include "llvm/Support/SHA1.h" 44 #include "llvm/Support/SourceMgr.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Support/ThreadPool.h" 47 #include "llvm/Support/Threading.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/VCSRevision.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 56 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 57 #include "llvm/Transforms/Utils/SplitModule.h" 58 59 #include <set> 60 61 using namespace llvm; 62 using namespace lto; 63 using namespace object; 64 65 #define DEBUG_TYPE "lto" 66 67 static cl::opt<bool> 68 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 69 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 70 71 /// Enable global value internalization in LTO. 72 cl::opt<bool> EnableLTOInternalization( 73 "enable-lto-internalization", cl::init(true), cl::Hidden, 74 cl::desc("Enable global value internalization in LTO")); 75 76 // Computes a unique hash for the Module considering the current list of 77 // export/import and other global analysis results. 78 // The hash is produced in \p Key. 79 void llvm::computeLTOCacheKey( 80 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 81 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 82 const FunctionImporter::ExportSetTy &ExportList, 83 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 84 const GVSummaryMapTy &DefinedGlobals, 85 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 86 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 87 // Compute the unique hash for this entry. 88 // This is based on the current compiler version, the module itself, the 89 // export list, the hash for every single module in the import list, the 90 // list of ResolvedODR for the module, and the list of preserved symbols. 91 SHA1 Hasher; 92 93 // Start with the compiler revision 94 Hasher.update(LLVM_VERSION_STRING); 95 #ifdef LLVM_REVISION 96 Hasher.update(LLVM_REVISION); 97 #endif 98 99 // Include the parts of the LTO configuration that affect code generation. 100 auto AddString = [&](StringRef Str) { 101 Hasher.update(Str); 102 Hasher.update(ArrayRef<uint8_t>{0}); 103 }; 104 auto AddUnsigned = [&](unsigned I) { 105 uint8_t Data[4]; 106 support::endian::write32le(Data, I); 107 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 108 }; 109 auto AddUint64 = [&](uint64_t I) { 110 uint8_t Data[8]; 111 support::endian::write64le(Data, I); 112 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 113 }; 114 AddString(Conf.CPU); 115 // FIXME: Hash more of Options. For now all clients initialize Options from 116 // command-line flags (which is unsupported in production), but may set 117 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 118 // DataSections and DebuggerTuning via command line flags. 119 AddUnsigned(Conf.Options.RelaxELFRelocations); 120 AddUnsigned(Conf.Options.FunctionSections); 121 AddUnsigned(Conf.Options.DataSections); 122 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 123 for (auto &A : Conf.MAttrs) 124 AddString(A); 125 if (Conf.RelocModel) 126 AddUnsigned(*Conf.RelocModel); 127 else 128 AddUnsigned(-1); 129 if (Conf.CodeModel) 130 AddUnsigned(*Conf.CodeModel); 131 else 132 AddUnsigned(-1); 133 AddUnsigned(Conf.CGOptLevel); 134 AddUnsigned(Conf.CGFileType); 135 AddUnsigned(Conf.OptLevel); 136 AddUnsigned(Conf.UseNewPM); 137 AddUnsigned(Conf.Freestanding); 138 AddString(Conf.OptPipeline); 139 AddString(Conf.AAPipeline); 140 AddString(Conf.OverrideTriple); 141 AddString(Conf.DefaultTriple); 142 AddString(Conf.DwoDir); 143 144 // Include the hash for the current module 145 auto ModHash = Index.getModuleHash(ModuleID); 146 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 147 148 std::vector<uint64_t> ExportsGUID; 149 ExportsGUID.reserve(ExportList.size()); 150 for (const auto &VI : ExportList) { 151 auto GUID = VI.getGUID(); 152 ExportsGUID.push_back(GUID); 153 } 154 155 // Sort the export list elements GUIDs. 156 llvm::sort(ExportsGUID); 157 for (uint64_t GUID : ExportsGUID) { 158 // The export list can impact the internalization, be conservative here 159 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 160 } 161 162 // Include the hash for every module we import functions from. The set of 163 // imported symbols for each module may affect code generation and is 164 // sensitive to link order, so include that as well. 165 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 166 std::vector<ImportMapIteratorTy> ImportModulesVector; 167 ImportModulesVector.reserve(ImportList.size()); 168 169 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 170 ++It) { 171 ImportModulesVector.push_back(It); 172 } 173 llvm::sort(ImportModulesVector, 174 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 175 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 176 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 177 auto ModHash = Index.getModuleHash(EntryIt->first()); 178 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 179 180 AddUint64(EntryIt->second.size()); 181 for (auto &Fn : EntryIt->second) 182 AddUint64(Fn); 183 } 184 185 // Include the hash for the resolved ODR. 186 for (auto &Entry : ResolvedODR) { 187 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 188 sizeof(GlobalValue::GUID))); 189 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 190 sizeof(GlobalValue::LinkageTypes))); 191 } 192 193 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 194 // defined in this module. 195 std::set<GlobalValue::GUID> UsedCfiDefs; 196 std::set<GlobalValue::GUID> UsedCfiDecls; 197 198 // Typeids used in this module. 199 std::set<GlobalValue::GUID> UsedTypeIds; 200 201 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 202 if (CfiFunctionDefs.count(ValueGUID)) 203 UsedCfiDefs.insert(ValueGUID); 204 if (CfiFunctionDecls.count(ValueGUID)) 205 UsedCfiDecls.insert(ValueGUID); 206 }; 207 208 auto AddUsedThings = [&](GlobalValueSummary *GS) { 209 if (!GS) return; 210 AddUnsigned(GS->getVisibility()); 211 AddUnsigned(GS->isLive()); 212 AddUnsigned(GS->canAutoHide()); 213 for (const ValueInfo &VI : GS->refs()) { 214 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 215 AddUsedCfiGlobal(VI.getGUID()); 216 } 217 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 218 AddUnsigned(GVS->maybeReadOnly()); 219 AddUnsigned(GVS->maybeWriteOnly()); 220 } 221 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 222 for (auto &TT : FS->type_tests()) 223 UsedTypeIds.insert(TT); 224 for (auto &TT : FS->type_test_assume_vcalls()) 225 UsedTypeIds.insert(TT.GUID); 226 for (auto &TT : FS->type_checked_load_vcalls()) 227 UsedTypeIds.insert(TT.GUID); 228 for (auto &TT : FS->type_test_assume_const_vcalls()) 229 UsedTypeIds.insert(TT.VFunc.GUID); 230 for (auto &TT : FS->type_checked_load_const_vcalls()) 231 UsedTypeIds.insert(TT.VFunc.GUID); 232 for (auto &ET : FS->calls()) { 233 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 234 AddUsedCfiGlobal(ET.first.getGUID()); 235 } 236 } 237 }; 238 239 // Include the hash for the linkage type to reflect internalization and weak 240 // resolution, and collect any used type identifier resolutions. 241 for (auto &GS : DefinedGlobals) { 242 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 243 Hasher.update( 244 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 245 AddUsedCfiGlobal(GS.first); 246 AddUsedThings(GS.second); 247 } 248 249 // Imported functions may introduce new uses of type identifier resolutions, 250 // so we need to collect their used resolutions as well. 251 for (auto &ImpM : ImportList) 252 for (auto &ImpF : ImpM.second) { 253 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 254 AddUsedThings(S); 255 // If this is an alias, we also care about any types/etc. that the aliasee 256 // may reference. 257 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 258 AddUsedThings(AS->getBaseObject()); 259 } 260 261 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 262 AddString(TId); 263 264 AddUnsigned(S.TTRes.TheKind); 265 AddUnsigned(S.TTRes.SizeM1BitWidth); 266 267 AddUint64(S.TTRes.AlignLog2); 268 AddUint64(S.TTRes.SizeM1); 269 AddUint64(S.TTRes.BitMask); 270 AddUint64(S.TTRes.InlineBits); 271 272 AddUint64(S.WPDRes.size()); 273 for (auto &WPD : S.WPDRes) { 274 AddUnsigned(WPD.first); 275 AddUnsigned(WPD.second.TheKind); 276 AddString(WPD.second.SingleImplName); 277 278 AddUint64(WPD.second.ResByArg.size()); 279 for (auto &ByArg : WPD.second.ResByArg) { 280 AddUint64(ByArg.first.size()); 281 for (uint64_t Arg : ByArg.first) 282 AddUint64(Arg); 283 AddUnsigned(ByArg.second.TheKind); 284 AddUint64(ByArg.second.Info); 285 AddUnsigned(ByArg.second.Byte); 286 AddUnsigned(ByArg.second.Bit); 287 } 288 } 289 }; 290 291 // Include the hash for all type identifiers used by this module. 292 for (GlobalValue::GUID TId : UsedTypeIds) { 293 auto TidIter = Index.typeIds().equal_range(TId); 294 for (auto It = TidIter.first; It != TidIter.second; ++It) 295 AddTypeIdSummary(It->second.first, It->second.second); 296 } 297 298 AddUnsigned(UsedCfiDefs.size()); 299 for (auto &V : UsedCfiDefs) 300 AddUint64(V); 301 302 AddUnsigned(UsedCfiDecls.size()); 303 for (auto &V : UsedCfiDecls) 304 AddUint64(V); 305 306 if (!Conf.SampleProfile.empty()) { 307 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 308 if (FileOrErr) { 309 Hasher.update(FileOrErr.get()->getBuffer()); 310 311 if (!Conf.ProfileRemapping.empty()) { 312 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 313 if (FileOrErr) 314 Hasher.update(FileOrErr.get()->getBuffer()); 315 } 316 } 317 } 318 319 Key = toHex(Hasher.result()); 320 } 321 322 static void thinLTOResolvePrevailingGUID( 323 const Config &C, ValueInfo VI, 324 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 325 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 326 isPrevailing, 327 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 328 recordNewLinkage, 329 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 330 GlobalValue::VisibilityTypes Visibility = 331 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 332 : GlobalValue::DefaultVisibility; 333 for (auto &S : VI.getSummaryList()) { 334 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 335 // Ignore local and appending linkage values since the linker 336 // doesn't resolve them. 337 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 338 GlobalValue::isAppendingLinkage(S->linkage())) 339 continue; 340 // We need to emit only one of these. The prevailing module will keep it, 341 // but turned into a weak, while the others will drop it when possible. 342 // This is both a compile-time optimization and a correctness 343 // transformation. This is necessary for correctness when we have exported 344 // a reference - we need to convert the linkonce to weak to 345 // ensure a copy is kept to satisfy the exported reference. 346 // FIXME: We may want to split the compile time and correctness 347 // aspects into separate routines. 348 if (isPrevailing(VI.getGUID(), S.get())) { 349 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 350 S->setLinkage(GlobalValue::getWeakLinkage( 351 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 352 // The kept copy is eligible for auto-hiding (hidden visibility) if all 353 // copies were (i.e. they were all linkonce_odr global unnamed addr). 354 // If any copy is not (e.g. it was originally weak_odr), then the symbol 355 // must remain externally available (e.g. a weak_odr from an explicitly 356 // instantiated template). Additionally, if it is in the 357 // GUIDPreservedSymbols set, that means that it is visibile outside 358 // the summary (e.g. in a native object or a bitcode file without 359 // summary), and in that case we cannot hide it as it isn't possible to 360 // check all copies. 361 S->setCanAutoHide(VI.canAutoHide() && 362 !GUIDPreservedSymbols.count(VI.getGUID())); 363 } 364 if (C.VisibilityScheme == Config::FromPrevailing) 365 Visibility = S->getVisibility(); 366 } 367 // Alias and aliasee can't be turned into available_externally. 368 else if (!isa<AliasSummary>(S.get()) && 369 !GlobalInvolvedWithAlias.count(S.get())) 370 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 371 372 // For ELF, set visibility to the computed visibility from summaries. We 373 // don't track visibility from declarations so this may be more relaxed than 374 // the most constraining one. 375 if (C.VisibilityScheme == Config::ELF) 376 S->setVisibility(Visibility); 377 378 if (S->linkage() != OriginalLinkage) 379 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 380 } 381 382 if (C.VisibilityScheme == Config::FromPrevailing) { 383 for (auto &S : VI.getSummaryList()) { 384 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 385 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 386 GlobalValue::isAppendingLinkage(S->linkage())) 387 continue; 388 S->setVisibility(Visibility); 389 } 390 } 391 } 392 393 /// Resolve linkage for prevailing symbols in the \p Index. 394 // 395 // We'd like to drop these functions if they are no longer referenced in the 396 // current module. However there is a chance that another module is still 397 // referencing them because of the import. We make sure we always emit at least 398 // one copy. 399 void llvm::thinLTOResolvePrevailingInIndex( 400 const Config &C, ModuleSummaryIndex &Index, 401 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 402 isPrevailing, 403 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 404 recordNewLinkage, 405 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 406 // We won't optimize the globals that are referenced by an alias for now 407 // Ideally we should turn the alias into a global and duplicate the definition 408 // when needed. 409 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 410 for (auto &I : Index) 411 for (auto &S : I.second.SummaryList) 412 if (auto AS = dyn_cast<AliasSummary>(S.get())) 413 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 414 415 for (auto &I : Index) 416 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 417 GlobalInvolvedWithAlias, isPrevailing, 418 recordNewLinkage, GUIDPreservedSymbols); 419 } 420 421 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 422 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 423 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 424 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 425 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 426 return false; 427 } 428 429 static void thinLTOInternalizeAndPromoteGUID( 430 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 431 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 432 isPrevailing) { 433 for (auto &S : VI.getSummaryList()) { 434 if (isExported(S->modulePath(), VI)) { 435 if (GlobalValue::isLocalLinkage(S->linkage())) 436 S->setLinkage(GlobalValue::ExternalLinkage); 437 } else if (EnableLTOInternalization && 438 // Ignore local and appending linkage values since the linker 439 // doesn't resolve them. 440 !GlobalValue::isLocalLinkage(S->linkage()) && 441 (!GlobalValue::isInterposableLinkage(S->linkage()) || 442 isPrevailing(VI.getGUID(), S.get())) && 443 S->linkage() != GlobalValue::AppendingLinkage && 444 // We can't internalize available_externally globals because this 445 // can break function pointer equality. 446 S->linkage() != GlobalValue::AvailableExternallyLinkage && 447 // Functions and read-only variables with linkonce_odr and 448 // weak_odr linkage can be internalized. We can't internalize 449 // linkonce_odr and weak_odr variables which are both modified 450 // and read somewhere in the program because reads and writes 451 // will become inconsistent. 452 !isWeakObjectWithRWAccess(S.get())) 453 S->setLinkage(GlobalValue::InternalLinkage); 454 } 455 } 456 457 // Update the linkages in the given \p Index to mark exported values 458 // as external and non-exported values as internal. 459 void llvm::thinLTOInternalizeAndPromoteInIndex( 460 ModuleSummaryIndex &Index, 461 function_ref<bool(StringRef, ValueInfo)> isExported, 462 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 463 isPrevailing) { 464 for (auto &I : Index) 465 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 466 isPrevailing); 467 } 468 469 // Requires a destructor for std::vector<InputModule>. 470 InputFile::~InputFile() = default; 471 472 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 473 std::unique_ptr<InputFile> File(new InputFile); 474 475 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 476 if (!FOrErr) 477 return FOrErr.takeError(); 478 479 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 480 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 481 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 482 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 483 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 484 485 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 486 size_t Begin = File->Symbols.size(); 487 for (const irsymtab::Reader::SymbolRef &Sym : 488 FOrErr->TheReader.module_symbols(I)) 489 // Skip symbols that are irrelevant to LTO. Note that this condition needs 490 // to match the one in Skip() in LTO::addRegularLTO(). 491 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 492 File->Symbols.push_back(Sym); 493 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 494 } 495 496 File->Mods = FOrErr->Mods; 497 File->Strtab = std::move(FOrErr->Strtab); 498 return std::move(File); 499 } 500 501 StringRef InputFile::getName() const { 502 return Mods[0].getModuleIdentifier(); 503 } 504 505 BitcodeModule &InputFile::getSingleBitcodeModule() { 506 assert(Mods.size() == 1 && "Expect only one bitcode module"); 507 return Mods[0]; 508 } 509 510 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 511 const Config &Conf) 512 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 513 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 514 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 515 516 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 517 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 518 if (!Backend) 519 this->Backend = 520 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 521 } 522 523 LTO::LTO(Config Conf, ThinBackend Backend, 524 unsigned ParallelCodeGenParallelismLevel) 525 : Conf(std::move(Conf)), 526 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 527 ThinLTO(std::move(Backend)) {} 528 529 // Requires a destructor for MapVector<BitcodeModule>. 530 LTO::~LTO() = default; 531 532 // Add the symbols in the given module to the GlobalResolutions map, and resolve 533 // their partitions. 534 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 535 ArrayRef<SymbolResolution> Res, 536 unsigned Partition, bool InSummary) { 537 auto *ResI = Res.begin(); 538 auto *ResE = Res.end(); 539 (void)ResE; 540 for (const InputFile::Symbol &Sym : Syms) { 541 assert(ResI != ResE); 542 SymbolResolution Res = *ResI++; 543 544 StringRef Name = Sym.getName(); 545 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 546 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 547 // way they are handled by lld), otherwise we can end up with two 548 // global resolutions (one with and one for a copy of the symbol without). 549 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 550 Name = Name.substr(strlen("__imp_")); 551 auto &GlobalRes = GlobalResolutions[Name]; 552 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 553 if (Res.Prevailing) { 554 assert(!GlobalRes.Prevailing && 555 "Multiple prevailing defs are not allowed"); 556 GlobalRes.Prevailing = true; 557 GlobalRes.IRName = std::string(Sym.getIRName()); 558 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 559 // Sometimes it can be two copies of symbol in a module and prevailing 560 // symbol can have no IR name. That might happen if symbol is defined in 561 // module level inline asm block. In case we have multiple modules with 562 // the same symbol we want to use IR name of the prevailing symbol. 563 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 564 // we can later use it to check if there is any prevailing copy in IR. 565 GlobalRes.IRName = std::string(Sym.getIRName()); 566 } 567 568 // Set the partition to external if we know it is re-defined by the linker 569 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 570 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 571 // already recorded as being referenced from a different partition. 572 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 573 (GlobalRes.Partition != GlobalResolution::Unknown && 574 GlobalRes.Partition != Partition)) { 575 GlobalRes.Partition = GlobalResolution::External; 576 } else 577 // First recorded reference, save the current partition. 578 GlobalRes.Partition = Partition; 579 580 // Flag as visible outside of summary if visible from a regular object or 581 // from a module that does not have a summary. 582 GlobalRes.VisibleOutsideSummary |= 583 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 584 585 GlobalRes.ExportDynamic |= Res.ExportDynamic; 586 } 587 } 588 589 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 590 ArrayRef<SymbolResolution> Res) { 591 StringRef Path = Input->getName(); 592 OS << Path << '\n'; 593 auto ResI = Res.begin(); 594 for (const InputFile::Symbol &Sym : Input->symbols()) { 595 assert(ResI != Res.end()); 596 SymbolResolution Res = *ResI++; 597 598 OS << "-r=" << Path << ',' << Sym.getName() << ','; 599 if (Res.Prevailing) 600 OS << 'p'; 601 if (Res.FinalDefinitionInLinkageUnit) 602 OS << 'l'; 603 if (Res.VisibleToRegularObj) 604 OS << 'x'; 605 if (Res.LinkerRedefined) 606 OS << 'r'; 607 OS << '\n'; 608 } 609 OS.flush(); 610 assert(ResI == Res.end()); 611 } 612 613 Error LTO::add(std::unique_ptr<InputFile> Input, 614 ArrayRef<SymbolResolution> Res) { 615 assert(!CalledGetMaxTasks); 616 617 if (Conf.ResolutionFile) 618 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 619 620 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 621 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 622 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 623 Conf.VisibilityScheme = Config::ELF; 624 } 625 626 const SymbolResolution *ResI = Res.begin(); 627 for (unsigned I = 0; I != Input->Mods.size(); ++I) 628 if (Error Err = addModule(*Input, I, ResI, Res.end())) 629 return Err; 630 631 assert(ResI == Res.end()); 632 return Error::success(); 633 } 634 635 Error LTO::addModule(InputFile &Input, unsigned ModI, 636 const SymbolResolution *&ResI, 637 const SymbolResolution *ResE) { 638 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 639 if (!LTOInfo) 640 return LTOInfo.takeError(); 641 642 if (EnableSplitLTOUnit.hasValue()) { 643 // If only some modules were split, flag this in the index so that 644 // we can skip or error on optimizations that need consistently split 645 // modules (whole program devirt and lower type tests). 646 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 647 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 648 } else 649 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 650 651 BitcodeModule BM = Input.Mods[ModI]; 652 auto ModSyms = Input.module_symbols(ModI); 653 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 654 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 655 LTOInfo->HasSummary); 656 657 if (LTOInfo->IsThinLTO) 658 return addThinLTO(BM, ModSyms, ResI, ResE); 659 660 RegularLTO.EmptyCombinedModule = false; 661 Expected<RegularLTOState::AddedModule> ModOrErr = 662 addRegularLTO(BM, ModSyms, ResI, ResE); 663 if (!ModOrErr) 664 return ModOrErr.takeError(); 665 666 if (!LTOInfo->HasSummary) 667 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 668 669 // Regular LTO module summaries are added to a dummy module that represents 670 // the combined regular LTO module. 671 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 672 return Err; 673 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 674 return Error::success(); 675 } 676 677 // Checks whether the given global value is in a non-prevailing comdat 678 // (comdat containing values the linker indicated were not prevailing, 679 // which we then dropped to available_externally), and if so, removes 680 // it from the comdat. This is called for all global values to ensure the 681 // comdat is empty rather than leaving an incomplete comdat. It is needed for 682 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 683 // and thin LTO modules) compilation. Since the regular LTO module will be 684 // linked first in the final native link, we want to make sure the linker 685 // doesn't select any of these incomplete comdats that would be left 686 // in the regular LTO module without this cleanup. 687 static void 688 handleNonPrevailingComdat(GlobalValue &GV, 689 std::set<const Comdat *> &NonPrevailingComdats) { 690 Comdat *C = GV.getComdat(); 691 if (!C) 692 return; 693 694 if (!NonPrevailingComdats.count(C)) 695 return; 696 697 // Additionally need to drop externally visible global values from the comdat 698 // to available_externally, so that there aren't multiply defined linker 699 // errors. 700 if (!GV.hasLocalLinkage()) 701 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 702 703 if (auto GO = dyn_cast<GlobalObject>(&GV)) 704 GO->setComdat(nullptr); 705 } 706 707 // Add a regular LTO object to the link. 708 // The resulting module needs to be linked into the combined LTO module with 709 // linkRegularLTO. 710 Expected<LTO::RegularLTOState::AddedModule> 711 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 712 const SymbolResolution *&ResI, 713 const SymbolResolution *ResE) { 714 RegularLTOState::AddedModule Mod; 715 Expected<std::unique_ptr<Module>> MOrErr = 716 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 717 /*IsImporting*/ false); 718 if (!MOrErr) 719 return MOrErr.takeError(); 720 Module &M = **MOrErr; 721 Mod.M = std::move(*MOrErr); 722 723 if (Error Err = M.materializeMetadata()) 724 return std::move(Err); 725 UpgradeDebugInfo(M); 726 727 ModuleSymbolTable SymTab; 728 SymTab.addModule(&M); 729 730 for (GlobalVariable &GV : M.globals()) 731 if (GV.hasAppendingLinkage()) 732 Mod.Keep.push_back(&GV); 733 734 DenseSet<GlobalObject *> AliasedGlobals; 735 for (auto &GA : M.aliases()) 736 if (GlobalObject *GO = GA.getBaseObject()) 737 AliasedGlobals.insert(GO); 738 739 // In this function we need IR GlobalValues matching the symbols in Syms 740 // (which is not backed by a module), so we need to enumerate them in the same 741 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 742 // matches the order of an irsymtab, but when we read the irsymtab in 743 // InputFile::create we omit some symbols that are irrelevant to LTO. The 744 // Skip() function skips the same symbols from the module as InputFile does 745 // from the symbol table. 746 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 747 auto Skip = [&]() { 748 while (MsymI != MsymE) { 749 auto Flags = SymTab.getSymbolFlags(*MsymI); 750 if ((Flags & object::BasicSymbolRef::SF_Global) && 751 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 752 return; 753 ++MsymI; 754 } 755 }; 756 Skip(); 757 758 std::set<const Comdat *> NonPrevailingComdats; 759 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 760 for (const InputFile::Symbol &Sym : Syms) { 761 assert(ResI != ResE); 762 SymbolResolution Res = *ResI++; 763 764 assert(MsymI != MsymE); 765 ModuleSymbolTable::Symbol Msym = *MsymI++; 766 Skip(); 767 768 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 769 if (Res.Prevailing) { 770 if (Sym.isUndefined()) 771 continue; 772 Mod.Keep.push_back(GV); 773 // For symbols re-defined with linker -wrap and -defsym options, 774 // set the linkage to weak to inhibit IPO. The linkage will be 775 // restored by the linker. 776 if (Res.LinkerRedefined) 777 GV->setLinkage(GlobalValue::WeakAnyLinkage); 778 779 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 780 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 781 GV->setLinkage(GlobalValue::getWeakLinkage( 782 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 783 } else if (isa<GlobalObject>(GV) && 784 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 785 GV->hasAvailableExternallyLinkage()) && 786 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 787 // Any of the above three types of linkage indicates that the 788 // chosen prevailing symbol will have the same semantics as this copy of 789 // the symbol, so we may be able to link it with available_externally 790 // linkage. We will decide later whether to do that when we link this 791 // module (in linkRegularLTO), based on whether it is undefined. 792 Mod.Keep.push_back(GV); 793 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 794 if (GV->hasComdat()) 795 NonPrevailingComdats.insert(GV->getComdat()); 796 cast<GlobalObject>(GV)->setComdat(nullptr); 797 } 798 799 // Set the 'local' flag based on the linker resolution for this symbol. 800 if (Res.FinalDefinitionInLinkageUnit) { 801 GV->setDSOLocal(true); 802 if (GV->hasDLLImportStorageClass()) 803 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 804 DefaultStorageClass); 805 } 806 } else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) { 807 // Collect non-prevailing symbols. 808 if (!Res.Prevailing) 809 NonPrevailingAsmSymbols.insert(AS->first); 810 } else { 811 llvm_unreachable("unknown symbol type"); 812 } 813 814 // Common resolution: collect the maximum size/alignment over all commons. 815 // We also record if we see an instance of a common as prevailing, so that 816 // if none is prevailing we can ignore it later. 817 if (Sym.isCommon()) { 818 // FIXME: We should figure out what to do about commons defined by asm. 819 // For now they aren't reported correctly by ModuleSymbolTable. 820 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 821 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 822 MaybeAlign SymAlign(Sym.getCommonAlignment()); 823 if (SymAlign) 824 CommonRes.Align = max(*SymAlign, CommonRes.Align); 825 CommonRes.Prevailing |= Res.Prevailing; 826 } 827 } 828 829 if (!M.getComdatSymbolTable().empty()) 830 for (GlobalValue &GV : M.global_values()) 831 handleNonPrevailingComdat(GV, NonPrevailingComdats); 832 833 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 834 // block. 835 if (!M.getModuleInlineAsm().empty()) { 836 std::string NewIA = ".lto_discard"; 837 if (!NonPrevailingAsmSymbols.empty()) { 838 // Don't dicard a symbol if there is a live .symver for it. 839 ModuleSymbolTable::CollectAsmSymvers( 840 M, [&](StringRef Name, StringRef Alias) { 841 if (!NonPrevailingAsmSymbols.count(Alias)) 842 NonPrevailingAsmSymbols.erase(Name); 843 }); 844 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 845 } 846 NewIA += "\n"; 847 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 848 } 849 850 assert(MsymI == MsymE); 851 return std::move(Mod); 852 } 853 854 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 855 bool LivenessFromIndex) { 856 std::vector<GlobalValue *> Keep; 857 for (GlobalValue *GV : Mod.Keep) { 858 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 859 if (Function *F = dyn_cast<Function>(GV)) { 860 OptimizationRemarkEmitter ORE(F, nullptr); 861 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 862 << ore::NV("Function", F) 863 << " not added to the combined module "); 864 } 865 continue; 866 } 867 868 if (!GV->hasAvailableExternallyLinkage()) { 869 Keep.push_back(GV); 870 continue; 871 } 872 873 // Only link available_externally definitions if we don't already have a 874 // definition. 875 GlobalValue *CombinedGV = 876 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 877 if (CombinedGV && !CombinedGV->isDeclaration()) 878 continue; 879 880 Keep.push_back(GV); 881 } 882 883 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 884 [](GlobalValue &, IRMover::ValueAdder) {}, 885 /* IsPerformingImport */ false); 886 } 887 888 // Add a ThinLTO module to the link. 889 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 890 const SymbolResolution *&ResI, 891 const SymbolResolution *ResE) { 892 if (Error Err = 893 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 894 ThinLTO.ModuleMap.size())) 895 return Err; 896 897 for (const InputFile::Symbol &Sym : Syms) { 898 assert(ResI != ResE); 899 SymbolResolution Res = *ResI++; 900 901 if (!Sym.getIRName().empty()) { 902 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 903 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 904 if (Res.Prevailing) { 905 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 906 907 // For linker redefined symbols (via --wrap or --defsym) we want to 908 // switch the linkage to `weak` to prevent IPOs from happening. 909 // Find the summary in the module for this very GV and record the new 910 // linkage so that we can switch it when we import the GV. 911 if (Res.LinkerRedefined) 912 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 913 GUID, BM.getModuleIdentifier())) 914 S->setLinkage(GlobalValue::WeakAnyLinkage); 915 } 916 917 // If the linker resolved the symbol to a local definition then mark it 918 // as local in the summary for the module we are adding. 919 if (Res.FinalDefinitionInLinkageUnit) { 920 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 921 GUID, BM.getModuleIdentifier())) { 922 S->setDSOLocal(true); 923 } 924 } 925 } 926 } 927 928 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 929 return make_error<StringError>( 930 "Expected at most one ThinLTO module per bitcode file", 931 inconvertibleErrorCode()); 932 933 if (!Conf.ThinLTOModulesToCompile.empty()) { 934 if (!ThinLTO.ModulesToCompile) 935 ThinLTO.ModulesToCompile = ModuleMapType(); 936 // This is a fuzzy name matching where only modules with name containing the 937 // specified switch values are going to be compiled. 938 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 939 if (BM.getModuleIdentifier().contains(Name)) { 940 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 941 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 942 << " to compile\n"; 943 } 944 } 945 } 946 947 return Error::success(); 948 } 949 950 unsigned LTO::getMaxTasks() const { 951 CalledGetMaxTasks = true; 952 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 953 : ThinLTO.ModuleMap.size(); 954 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 955 } 956 957 // If only some of the modules were split, we cannot correctly handle 958 // code that contains type tests or type checked loads. 959 Error LTO::checkPartiallySplit() { 960 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 961 return Error::success(); 962 963 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 964 Intrinsic::getName(Intrinsic::type_test)); 965 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 966 Intrinsic::getName(Intrinsic::type_checked_load)); 967 968 // First check if there are type tests / type checked loads in the 969 // merged regular LTO module IR. 970 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 971 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 972 return make_error<StringError>( 973 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 974 inconvertibleErrorCode()); 975 976 // Otherwise check if there are any recorded in the combined summary from the 977 // ThinLTO modules. 978 for (auto &P : ThinLTO.CombinedIndex) { 979 for (auto &S : P.second.SummaryList) { 980 auto *FS = dyn_cast<FunctionSummary>(S.get()); 981 if (!FS) 982 continue; 983 if (!FS->type_test_assume_vcalls().empty() || 984 !FS->type_checked_load_vcalls().empty() || 985 !FS->type_test_assume_const_vcalls().empty() || 986 !FS->type_checked_load_const_vcalls().empty() || 987 !FS->type_tests().empty()) 988 return make_error<StringError>( 989 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 990 inconvertibleErrorCode()); 991 } 992 } 993 return Error::success(); 994 } 995 996 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 997 // Compute "dead" symbols, we don't want to import/export these! 998 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 999 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1000 for (auto &Res : GlobalResolutions) { 1001 // Normally resolution have IR name of symbol. We can do nothing here 1002 // otherwise. See comments in GlobalResolution struct for more details. 1003 if (Res.second.IRName.empty()) 1004 continue; 1005 1006 GlobalValue::GUID GUID = GlobalValue::getGUID( 1007 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1008 1009 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1010 GUIDPreservedSymbols.insert(GUID); 1011 1012 if (Res.second.ExportDynamic) 1013 DynamicExportSymbols.insert(GUID); 1014 1015 GUIDPrevailingResolutions[GUID] = 1016 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1017 } 1018 1019 auto isPrevailing = [&](GlobalValue::GUID G) { 1020 auto It = GUIDPrevailingResolutions.find(G); 1021 if (It == GUIDPrevailingResolutions.end()) 1022 return PrevailingType::Unknown; 1023 return It->second; 1024 }; 1025 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1026 isPrevailing, Conf.OptLevel > 0); 1027 1028 // Setup output file to emit statistics. 1029 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1030 if (!StatsFileOrErr) 1031 return StatsFileOrErr.takeError(); 1032 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1033 1034 Error Result = runRegularLTO(AddStream); 1035 if (!Result) 1036 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1037 1038 if (StatsFile) 1039 PrintStatisticsJSON(StatsFile->os()); 1040 1041 return Result; 1042 } 1043 1044 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1045 // Setup optimization remarks. 1046 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1047 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1048 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1049 Conf.RemarksHotnessThreshold); 1050 if (!DiagFileOrErr) 1051 return DiagFileOrErr.takeError(); 1052 1053 // Finalize linking of regular LTO modules containing summaries now that 1054 // we have computed liveness information. 1055 for (auto &M : RegularLTO.ModsWithSummaries) 1056 if (Error Err = linkRegularLTO(std::move(M), 1057 /*LivenessFromIndex=*/true)) 1058 return Err; 1059 1060 // Ensure we don't have inconsistently split LTO units with type tests. 1061 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1062 // this path both cases but eventually this should be split into two and 1063 // do the ThinLTO checks in `runThinLTO`. 1064 if (Error Err = checkPartiallySplit()) 1065 return Err; 1066 1067 // Make sure commons have the right size/alignment: we kept the largest from 1068 // all the prevailing when adding the inputs, and we apply it here. 1069 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1070 for (auto &I : RegularLTO.Commons) { 1071 if (!I.second.Prevailing) 1072 // Don't do anything if no instance of this common was prevailing. 1073 continue; 1074 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1075 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1076 // Don't create a new global if the type is already correct, just make 1077 // sure the alignment is correct. 1078 OldGV->setAlignment(I.second.Align); 1079 continue; 1080 } 1081 ArrayType *Ty = 1082 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1083 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1084 GlobalValue::CommonLinkage, 1085 ConstantAggregateZero::get(Ty), ""); 1086 GV->setAlignment(I.second.Align); 1087 if (OldGV) { 1088 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1089 GV->takeName(OldGV); 1090 OldGV->eraseFromParent(); 1091 } else { 1092 GV->setName(I.first); 1093 } 1094 } 1095 1096 // If allowed, upgrade public vcall visibility metadata to linkage unit 1097 // visibility before whole program devirtualization in the optimizer. 1098 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1099 Conf.HasWholeProgramVisibility, 1100 DynamicExportSymbols); 1101 1102 if (Conf.PreOptModuleHook && 1103 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1104 return Error::success(); 1105 1106 if (!Conf.CodeGenOnly) { 1107 for (const auto &R : GlobalResolutions) { 1108 if (!R.second.isPrevailingIRSymbol()) 1109 continue; 1110 if (R.second.Partition != 0 && 1111 R.second.Partition != GlobalResolution::External) 1112 continue; 1113 1114 GlobalValue *GV = 1115 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1116 // Ignore symbols defined in other partitions. 1117 // Also skip declarations, which are not allowed to have internal linkage. 1118 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1119 continue; 1120 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1121 : GlobalValue::UnnamedAddr::None); 1122 if (EnableLTOInternalization && R.second.Partition == 0) 1123 GV->setLinkage(GlobalValue::InternalLinkage); 1124 } 1125 1126 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1127 1128 if (Conf.PostInternalizeModuleHook && 1129 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1130 return Error::success(); 1131 } 1132 1133 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1134 if (Error Err = 1135 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1136 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1137 return Err; 1138 } 1139 1140 return finalizeOptimizationRemarks(std::move(*DiagFileOrErr)); 1141 } 1142 1143 static const char *libcallRoutineNames[] = { 1144 #define HANDLE_LIBCALL(code, name) name, 1145 #include "llvm/IR/RuntimeLibcalls.def" 1146 #undef HANDLE_LIBCALL 1147 }; 1148 1149 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1150 return makeArrayRef(libcallRoutineNames); 1151 } 1152 1153 /// This class defines the interface to the ThinLTO backend. 1154 class lto::ThinBackendProc { 1155 protected: 1156 const Config &Conf; 1157 ModuleSummaryIndex &CombinedIndex; 1158 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1159 1160 public: 1161 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1162 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1163 : Conf(Conf), CombinedIndex(CombinedIndex), 1164 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1165 1166 virtual ~ThinBackendProc() {} 1167 virtual Error start( 1168 unsigned Task, BitcodeModule BM, 1169 const FunctionImporter::ImportMapTy &ImportList, 1170 const FunctionImporter::ExportSetTy &ExportList, 1171 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1172 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1173 virtual Error wait() = 0; 1174 virtual unsigned getThreadCount() = 0; 1175 }; 1176 1177 namespace { 1178 class InProcessThinBackend : public ThinBackendProc { 1179 ThreadPool BackendThreadPool; 1180 AddStreamFn AddStream; 1181 NativeObjectCache Cache; 1182 std::set<GlobalValue::GUID> CfiFunctionDefs; 1183 std::set<GlobalValue::GUID> CfiFunctionDecls; 1184 1185 Optional<Error> Err; 1186 std::mutex ErrMu; 1187 1188 public: 1189 InProcessThinBackend( 1190 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1191 ThreadPoolStrategy ThinLTOParallelism, 1192 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1193 AddStreamFn AddStream, NativeObjectCache Cache) 1194 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1195 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1196 Cache(std::move(Cache)) { 1197 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1198 CfiFunctionDefs.insert( 1199 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1200 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1201 CfiFunctionDecls.insert( 1202 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1203 } 1204 1205 Error runThinLTOBackendThread( 1206 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1207 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1208 const FunctionImporter::ImportMapTy &ImportList, 1209 const FunctionImporter::ExportSetTy &ExportList, 1210 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1211 const GVSummaryMapTy &DefinedGlobals, 1212 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1213 auto RunThinBackend = [&](AddStreamFn AddStream) { 1214 LTOLLVMContext BackendContext(Conf); 1215 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1216 if (!MOrErr) 1217 return MOrErr.takeError(); 1218 1219 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1220 ImportList, DefinedGlobals, &ModuleMap); 1221 }; 1222 1223 auto ModuleID = BM.getModuleIdentifier(); 1224 1225 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1226 all_of(CombinedIndex.getModuleHash(ModuleID), 1227 [](uint32_t V) { return V == 0; })) 1228 // Cache disabled or no entry for this module in the combined index or 1229 // no module hash. 1230 return RunThinBackend(AddStream); 1231 1232 SmallString<40> Key; 1233 // The module may be cached, this helps handling it. 1234 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1235 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1236 CfiFunctionDecls); 1237 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1238 return RunThinBackend(CacheAddStream); 1239 1240 return Error::success(); 1241 } 1242 1243 Error start( 1244 unsigned Task, BitcodeModule BM, 1245 const FunctionImporter::ImportMapTy &ImportList, 1246 const FunctionImporter::ExportSetTy &ExportList, 1247 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1248 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1249 StringRef ModulePath = BM.getModuleIdentifier(); 1250 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1251 const GVSummaryMapTy &DefinedGlobals = 1252 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1253 BackendThreadPool.async( 1254 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1255 const FunctionImporter::ImportMapTy &ImportList, 1256 const FunctionImporter::ExportSetTy &ExportList, 1257 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1258 &ResolvedODR, 1259 const GVSummaryMapTy &DefinedGlobals, 1260 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1261 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1262 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1263 "thin backend"); 1264 Error E = runThinLTOBackendThread( 1265 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1266 ResolvedODR, DefinedGlobals, ModuleMap); 1267 if (E) { 1268 std::unique_lock<std::mutex> L(ErrMu); 1269 if (Err) 1270 Err = joinErrors(std::move(*Err), std::move(E)); 1271 else 1272 Err = std::move(E); 1273 } 1274 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1275 timeTraceProfilerFinishThread(); 1276 }, 1277 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1278 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1279 return Error::success(); 1280 } 1281 1282 Error wait() override { 1283 BackendThreadPool.wait(); 1284 if (Err) 1285 return std::move(*Err); 1286 else 1287 return Error::success(); 1288 } 1289 1290 unsigned getThreadCount() override { 1291 return BackendThreadPool.getThreadCount(); 1292 } 1293 }; 1294 } // end anonymous namespace 1295 1296 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) { 1297 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1298 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1299 AddStreamFn AddStream, NativeObjectCache Cache) { 1300 return std::make_unique<InProcessThinBackend>( 1301 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1302 Cache); 1303 }; 1304 } 1305 1306 // Given the original \p Path to an output file, replace any path 1307 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1308 // resulting directory if it does not yet exist. 1309 std::string lto::getThinLTOOutputFile(const std::string &Path, 1310 const std::string &OldPrefix, 1311 const std::string &NewPrefix) { 1312 if (OldPrefix.empty() && NewPrefix.empty()) 1313 return Path; 1314 SmallString<128> NewPath(Path); 1315 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1316 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1317 if (!ParentPath.empty()) { 1318 // Make sure the new directory exists, creating it if necessary. 1319 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1320 llvm::errs() << "warning: could not create directory '" << ParentPath 1321 << "': " << EC.message() << '\n'; 1322 } 1323 return std::string(NewPath.str()); 1324 } 1325 1326 namespace { 1327 class WriteIndexesThinBackend : public ThinBackendProc { 1328 std::string OldPrefix, NewPrefix; 1329 bool ShouldEmitImportsFiles; 1330 raw_fd_ostream *LinkedObjectsFile; 1331 lto::IndexWriteCallback OnWrite; 1332 1333 public: 1334 WriteIndexesThinBackend( 1335 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1336 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1337 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1338 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1339 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1340 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1341 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1342 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1343 1344 Error start( 1345 unsigned Task, BitcodeModule BM, 1346 const FunctionImporter::ImportMapTy &ImportList, 1347 const FunctionImporter::ExportSetTy &ExportList, 1348 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1349 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1350 StringRef ModulePath = BM.getModuleIdentifier(); 1351 std::string NewModulePath = 1352 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1353 1354 if (LinkedObjectsFile) 1355 *LinkedObjectsFile << NewModulePath << '\n'; 1356 1357 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1358 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1359 ImportList, ModuleToSummariesForIndex); 1360 1361 std::error_code EC; 1362 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1363 sys::fs::OpenFlags::OF_None); 1364 if (EC) 1365 return errorCodeToError(EC); 1366 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1367 1368 if (ShouldEmitImportsFiles) { 1369 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1370 ModuleToSummariesForIndex); 1371 if (EC) 1372 return errorCodeToError(EC); 1373 } 1374 1375 if (OnWrite) 1376 OnWrite(std::string(ModulePath)); 1377 return Error::success(); 1378 } 1379 1380 Error wait() override { return Error::success(); } 1381 1382 // WriteIndexesThinBackend should always return 1 to prevent module 1383 // re-ordering and avoid non-determinism in the final link. 1384 unsigned getThreadCount() override { return 1; } 1385 }; 1386 } // end anonymous namespace 1387 1388 ThinBackend lto::createWriteIndexesThinBackend( 1389 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1390 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1391 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1392 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1393 AddStreamFn AddStream, NativeObjectCache Cache) { 1394 return std::make_unique<WriteIndexesThinBackend>( 1395 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1396 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1397 }; 1398 } 1399 1400 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1401 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1402 timeTraceProfilerBegin("ThinLink", StringRef("")); 1403 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1404 if (llvm::timeTraceProfilerEnabled()) 1405 llvm::timeTraceProfilerEnd(); 1406 }); 1407 if (ThinLTO.ModuleMap.empty()) 1408 return Error::success(); 1409 1410 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1411 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1412 return Error::success(); 1413 } 1414 1415 if (Conf.CombinedIndexHook && 1416 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1417 return Error::success(); 1418 1419 // Collect for each module the list of function it defines (GUID -> 1420 // Summary). 1421 StringMap<GVSummaryMapTy> 1422 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1423 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1424 ModuleToDefinedGVSummaries); 1425 // Create entries for any modules that didn't have any GV summaries 1426 // (either they didn't have any GVs to start with, or we suppressed 1427 // generation of the summaries because they e.g. had inline assembly 1428 // uses that couldn't be promoted/renamed on export). This is so 1429 // InProcessThinBackend::start can still launch a backend thread, which 1430 // is passed the map of summaries for the module, without any special 1431 // handling for this case. 1432 for (auto &Mod : ThinLTO.ModuleMap) 1433 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1434 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1435 1436 // Synthesize entry counts for functions in the CombinedIndex. 1437 computeSyntheticCounts(ThinLTO.CombinedIndex); 1438 1439 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1440 ThinLTO.ModuleMap.size()); 1441 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1442 ThinLTO.ModuleMap.size()); 1443 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1444 1445 if (DumpThinCGSCCs) 1446 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1447 1448 std::set<GlobalValue::GUID> ExportedGUIDs; 1449 1450 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1451 // the summaries before whole program devirtualization below. 1452 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1453 Conf.HasWholeProgramVisibility, 1454 DynamicExportSymbols); 1455 1456 // Perform index-based WPD. This will return immediately if there are 1457 // no index entries in the typeIdMetadata map (e.g. if we are instead 1458 // performing IR-based WPD in hybrid regular/thin LTO mode). 1459 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1460 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1461 LocalWPDTargetsMap); 1462 1463 if (Conf.OptLevel > 0) 1464 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1465 ImportLists, ExportLists); 1466 1467 // Figure out which symbols need to be internalized. This also needs to happen 1468 // at -O0 because summary-based DCE is implemented using internalization, and 1469 // we must apply DCE consistently with the full LTO module in order to avoid 1470 // undefined references during the final link. 1471 for (auto &Res : GlobalResolutions) { 1472 // If the symbol does not have external references or it is not prevailing, 1473 // then not need to mark it as exported from a ThinLTO partition. 1474 if (Res.second.Partition != GlobalResolution::External || 1475 !Res.second.isPrevailingIRSymbol()) 1476 continue; 1477 auto GUID = GlobalValue::getGUID( 1478 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1479 // Mark exported unless index-based analysis determined it to be dead. 1480 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1481 ExportedGUIDs.insert(GUID); 1482 } 1483 1484 // Any functions referenced by the jump table in the regular LTO object must 1485 // be exported. 1486 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1487 ExportedGUIDs.insert( 1488 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1489 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1490 ExportedGUIDs.insert( 1491 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1492 1493 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1494 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1495 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1496 ExportedGUIDs.count(VI.getGUID()); 1497 }; 1498 1499 // Update local devirtualized targets that were exported by cross-module 1500 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1501 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1502 LocalWPDTargetsMap); 1503 1504 auto isPrevailing = [&](GlobalValue::GUID GUID, 1505 const GlobalValueSummary *S) { 1506 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1507 }; 1508 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1509 isPrevailing); 1510 1511 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1512 GlobalValue::GUID GUID, 1513 GlobalValue::LinkageTypes NewLinkage) { 1514 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1515 }; 1516 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1517 recordNewLinkage, GUIDPreservedSymbols); 1518 1519 generateParamAccessSummary(ThinLTO.CombinedIndex); 1520 1521 if (llvm::timeTraceProfilerEnabled()) 1522 llvm::timeTraceProfilerEnd(); 1523 1524 TimeTraceScopeExit.release(); 1525 1526 std::unique_ptr<ThinBackendProc> BackendProc = 1527 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1528 AddStream, Cache); 1529 1530 auto &ModuleMap = 1531 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1532 1533 auto ProcessOneModule = [&](int I) -> Error { 1534 auto &Mod = *(ModuleMap.begin() + I); 1535 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1536 // combined module and parallel code generation partitions. 1537 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1538 Mod.second, ImportLists[Mod.first], 1539 ExportLists[Mod.first], ResolvedODR[Mod.first], 1540 ThinLTO.ModuleMap); 1541 }; 1542 1543 if (BackendProc->getThreadCount() == 1) { 1544 // Process the modules in the order they were provided on the command-line. 1545 // It is important for this codepath to be used for WriteIndexesThinBackend, 1546 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1547 // order as the inputs, which otherwise would affect the final link order. 1548 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1549 if (Error E = ProcessOneModule(I)) 1550 return E; 1551 } else { 1552 // When executing in parallel, process largest bitsize modules first to 1553 // improve parallelism, and avoid starving the thread pool near the end. 1554 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1555 // of 100 sec). 1556 std::vector<BitcodeModule *> ModulesVec; 1557 ModulesVec.reserve(ModuleMap.size()); 1558 for (auto &Mod : ModuleMap) 1559 ModulesVec.push_back(&Mod.second); 1560 for (int I : generateModulesOrdering(ModulesVec)) 1561 if (Error E = ProcessOneModule(I)) 1562 return E; 1563 } 1564 return BackendProc->wait(); 1565 } 1566 1567 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1568 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1569 StringRef RemarksFormat, bool RemarksWithHotness, 1570 Optional<uint64_t> RemarksHotnessThreshold, int Count) { 1571 std::string Filename = std::string(RemarksFilename); 1572 // For ThinLTO, file.opt.<format> becomes 1573 // file.opt.<format>.thin.<num>.<format>. 1574 if (!Filename.empty() && Count != -1) 1575 Filename = 1576 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1577 .str(); 1578 1579 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1580 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1581 RemarksHotnessThreshold); 1582 if (Error E = ResultOrErr.takeError()) 1583 return std::move(E); 1584 1585 if (*ResultOrErr) 1586 (*ResultOrErr)->keep(); 1587 1588 return ResultOrErr; 1589 } 1590 1591 Expected<std::unique_ptr<ToolOutputFile>> 1592 lto::setupStatsFile(StringRef StatsFilename) { 1593 // Setup output file to emit statistics. 1594 if (StatsFilename.empty()) 1595 return nullptr; 1596 1597 llvm::EnableStatistics(false); 1598 std::error_code EC; 1599 auto StatsFile = 1600 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1601 if (EC) 1602 return errorCodeToError(EC); 1603 1604 StatsFile->keep(); 1605 return std::move(StatsFile); 1606 } 1607 1608 // Compute the ordering we will process the inputs: the rough heuristic here 1609 // is to sort them per size so that the largest module get schedule as soon as 1610 // possible. This is purely a compile-time optimization. 1611 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1612 std::vector<int> ModulesOrdering; 1613 ModulesOrdering.resize(R.size()); 1614 std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); 1615 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1616 auto LSize = R[LeftIndex]->getBuffer().size(); 1617 auto RSize = R[RightIndex]->getBuffer().size(); 1618 return LSize > RSize; 1619 }); 1620 return ModulesOrdering; 1621 } 1622