1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/StackSafetyAnalysis.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Bitcode/BitcodeReader.h" 23 #include "llvm/Bitcode/BitcodeWriter.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/DiagnosticPrinter.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMRemarkStreamer.h" 30 #include "llvm/IR/LegacyPassManager.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/LTO/LTOBackend.h" 34 #include "llvm/LTO/SummaryBasedOptimizations.h" 35 #include "llvm/Linker/IRMover.h" 36 #include "llvm/MC/TargetRegistry.h" 37 #include "llvm/Object/IRObjectFile.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Error.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/ManagedStatic.h" 42 #include "llvm/Support/MemoryBuffer.h" 43 #include "llvm/Support/Path.h" 44 #include "llvm/Support/SHA1.h" 45 #include "llvm/Support/SourceMgr.h" 46 #include "llvm/Support/ThreadPool.h" 47 #include "llvm/Support/Threading.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/ToolOutputFile.h" 50 #include "llvm/Support/VCSRevision.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 56 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 57 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 58 #include "llvm/Transforms/Utils/SplitModule.h" 59 60 #include <set> 61 62 using namespace llvm; 63 using namespace lto; 64 using namespace object; 65 66 #define DEBUG_TYPE "lto" 67 68 static cl::opt<bool> 69 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 70 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 71 72 /// Enable global value internalization in LTO. 73 cl::opt<bool> EnableLTOInternalization( 74 "enable-lto-internalization", cl::init(true), cl::Hidden, 75 cl::desc("Enable global value internalization in LTO")); 76 77 // Computes a unique hash for the Module considering the current list of 78 // export/import and other global analysis results. 79 // The hash is produced in \p Key. 80 void llvm::computeLTOCacheKey( 81 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 82 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 83 const FunctionImporter::ExportSetTy &ExportList, 84 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 85 const GVSummaryMapTy &DefinedGlobals, 86 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 87 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 88 // Compute the unique hash for this entry. 89 // This is based on the current compiler version, the module itself, the 90 // export list, the hash for every single module in the import list, the 91 // list of ResolvedODR for the module, and the list of preserved symbols. 92 SHA1 Hasher; 93 94 // Start with the compiler revision 95 Hasher.update(LLVM_VERSION_STRING); 96 #ifdef LLVM_REVISION 97 Hasher.update(LLVM_REVISION); 98 #endif 99 100 // Include the parts of the LTO configuration that affect code generation. 101 auto AddString = [&](StringRef Str) { 102 Hasher.update(Str); 103 Hasher.update(ArrayRef<uint8_t>{0}); 104 }; 105 auto AddUnsigned = [&](unsigned I) { 106 uint8_t Data[4]; 107 support::endian::write32le(Data, I); 108 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 109 }; 110 auto AddUint64 = [&](uint64_t I) { 111 uint8_t Data[8]; 112 support::endian::write64le(Data, I); 113 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 114 }; 115 AddString(Conf.CPU); 116 // FIXME: Hash more of Options. For now all clients initialize Options from 117 // command-line flags (which is unsupported in production), but may set 118 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 119 // DataSections and DebuggerTuning via command line flags. 120 AddUnsigned(Conf.Options.RelaxELFRelocations); 121 AddUnsigned(Conf.Options.FunctionSections); 122 AddUnsigned(Conf.Options.DataSections); 123 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 124 for (auto &A : Conf.MAttrs) 125 AddString(A); 126 if (Conf.RelocModel) 127 AddUnsigned(*Conf.RelocModel); 128 else 129 AddUnsigned(-1); 130 if (Conf.CodeModel) 131 AddUnsigned(*Conf.CodeModel); 132 else 133 AddUnsigned(-1); 134 AddUnsigned(Conf.CGOptLevel); 135 AddUnsigned(Conf.CGFileType); 136 AddUnsigned(Conf.OptLevel); 137 AddUnsigned(Conf.UseNewPM); 138 AddUnsigned(Conf.Freestanding); 139 AddString(Conf.OptPipeline); 140 AddString(Conf.AAPipeline); 141 AddString(Conf.OverrideTriple); 142 AddString(Conf.DefaultTriple); 143 AddString(Conf.DwoDir); 144 145 // Include the hash for the current module 146 auto ModHash = Index.getModuleHash(ModuleID); 147 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 148 149 std::vector<uint64_t> ExportsGUID; 150 ExportsGUID.reserve(ExportList.size()); 151 for (const auto &VI : ExportList) { 152 auto GUID = VI.getGUID(); 153 ExportsGUID.push_back(GUID); 154 } 155 156 // Sort the export list elements GUIDs. 157 llvm::sort(ExportsGUID); 158 for (uint64_t GUID : ExportsGUID) { 159 // The export list can impact the internalization, be conservative here 160 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 161 } 162 163 // Include the hash for every module we import functions from. The set of 164 // imported symbols for each module may affect code generation and is 165 // sensitive to link order, so include that as well. 166 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 167 std::vector<ImportMapIteratorTy> ImportModulesVector; 168 ImportModulesVector.reserve(ImportList.size()); 169 170 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 171 ++It) { 172 ImportModulesVector.push_back(It); 173 } 174 llvm::sort(ImportModulesVector, 175 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 176 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 177 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 178 auto ModHash = Index.getModuleHash(EntryIt->first()); 179 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 180 181 AddUint64(EntryIt->second.size()); 182 for (auto &Fn : EntryIt->second) 183 AddUint64(Fn); 184 } 185 186 // Include the hash for the resolved ODR. 187 for (auto &Entry : ResolvedODR) { 188 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 189 sizeof(GlobalValue::GUID))); 190 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 191 sizeof(GlobalValue::LinkageTypes))); 192 } 193 194 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 195 // defined in this module. 196 std::set<GlobalValue::GUID> UsedCfiDefs; 197 std::set<GlobalValue::GUID> UsedCfiDecls; 198 199 // Typeids used in this module. 200 std::set<GlobalValue::GUID> UsedTypeIds; 201 202 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 203 if (CfiFunctionDefs.count(ValueGUID)) 204 UsedCfiDefs.insert(ValueGUID); 205 if (CfiFunctionDecls.count(ValueGUID)) 206 UsedCfiDecls.insert(ValueGUID); 207 }; 208 209 auto AddUsedThings = [&](GlobalValueSummary *GS) { 210 if (!GS) return; 211 AddUnsigned(GS->getVisibility()); 212 AddUnsigned(GS->isLive()); 213 AddUnsigned(GS->canAutoHide()); 214 for (const ValueInfo &VI : GS->refs()) { 215 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 216 AddUsedCfiGlobal(VI.getGUID()); 217 } 218 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 219 AddUnsigned(GVS->maybeReadOnly()); 220 AddUnsigned(GVS->maybeWriteOnly()); 221 } 222 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 223 for (auto &TT : FS->type_tests()) 224 UsedTypeIds.insert(TT); 225 for (auto &TT : FS->type_test_assume_vcalls()) 226 UsedTypeIds.insert(TT.GUID); 227 for (auto &TT : FS->type_checked_load_vcalls()) 228 UsedTypeIds.insert(TT.GUID); 229 for (auto &TT : FS->type_test_assume_const_vcalls()) 230 UsedTypeIds.insert(TT.VFunc.GUID); 231 for (auto &TT : FS->type_checked_load_const_vcalls()) 232 UsedTypeIds.insert(TT.VFunc.GUID); 233 for (auto &ET : FS->calls()) { 234 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 235 AddUsedCfiGlobal(ET.first.getGUID()); 236 } 237 } 238 }; 239 240 // Include the hash for the linkage type to reflect internalization and weak 241 // resolution, and collect any used type identifier resolutions. 242 for (auto &GS : DefinedGlobals) { 243 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 244 Hasher.update( 245 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 246 AddUsedCfiGlobal(GS.first); 247 AddUsedThings(GS.second); 248 } 249 250 // Imported functions may introduce new uses of type identifier resolutions, 251 // so we need to collect their used resolutions as well. 252 for (auto &ImpM : ImportList) 253 for (auto &ImpF : ImpM.second) { 254 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 255 AddUsedThings(S); 256 // If this is an alias, we also care about any types/etc. that the aliasee 257 // may reference. 258 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 259 AddUsedThings(AS->getBaseObject()); 260 } 261 262 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 263 AddString(TId); 264 265 AddUnsigned(S.TTRes.TheKind); 266 AddUnsigned(S.TTRes.SizeM1BitWidth); 267 268 AddUint64(S.TTRes.AlignLog2); 269 AddUint64(S.TTRes.SizeM1); 270 AddUint64(S.TTRes.BitMask); 271 AddUint64(S.TTRes.InlineBits); 272 273 AddUint64(S.WPDRes.size()); 274 for (auto &WPD : S.WPDRes) { 275 AddUnsigned(WPD.first); 276 AddUnsigned(WPD.second.TheKind); 277 AddString(WPD.second.SingleImplName); 278 279 AddUint64(WPD.second.ResByArg.size()); 280 for (auto &ByArg : WPD.second.ResByArg) { 281 AddUint64(ByArg.first.size()); 282 for (uint64_t Arg : ByArg.first) 283 AddUint64(Arg); 284 AddUnsigned(ByArg.second.TheKind); 285 AddUint64(ByArg.second.Info); 286 AddUnsigned(ByArg.second.Byte); 287 AddUnsigned(ByArg.second.Bit); 288 } 289 } 290 }; 291 292 // Include the hash for all type identifiers used by this module. 293 for (GlobalValue::GUID TId : UsedTypeIds) { 294 auto TidIter = Index.typeIds().equal_range(TId); 295 for (auto It = TidIter.first; It != TidIter.second; ++It) 296 AddTypeIdSummary(It->second.first, It->second.second); 297 } 298 299 AddUnsigned(UsedCfiDefs.size()); 300 for (auto &V : UsedCfiDefs) 301 AddUint64(V); 302 303 AddUnsigned(UsedCfiDecls.size()); 304 for (auto &V : UsedCfiDecls) 305 AddUint64(V); 306 307 if (!Conf.SampleProfile.empty()) { 308 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 309 if (FileOrErr) { 310 Hasher.update(FileOrErr.get()->getBuffer()); 311 312 if (!Conf.ProfileRemapping.empty()) { 313 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 314 if (FileOrErr) 315 Hasher.update(FileOrErr.get()->getBuffer()); 316 } 317 } 318 } 319 320 Key = toHex(Hasher.result()); 321 } 322 323 static void thinLTOResolvePrevailingGUID( 324 const Config &C, ValueInfo VI, 325 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 326 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 327 isPrevailing, 328 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 329 recordNewLinkage, 330 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 331 GlobalValue::VisibilityTypes Visibility = 332 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 333 : GlobalValue::DefaultVisibility; 334 for (auto &S : VI.getSummaryList()) { 335 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 336 // Ignore local and appending linkage values since the linker 337 // doesn't resolve them. 338 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 339 GlobalValue::isAppendingLinkage(S->linkage())) 340 continue; 341 // We need to emit only one of these. The prevailing module will keep it, 342 // but turned into a weak, while the others will drop it when possible. 343 // This is both a compile-time optimization and a correctness 344 // transformation. This is necessary for correctness when we have exported 345 // a reference - we need to convert the linkonce to weak to 346 // ensure a copy is kept to satisfy the exported reference. 347 // FIXME: We may want to split the compile time and correctness 348 // aspects into separate routines. 349 if (isPrevailing(VI.getGUID(), S.get())) { 350 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 351 S->setLinkage(GlobalValue::getWeakLinkage( 352 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 353 // The kept copy is eligible for auto-hiding (hidden visibility) if all 354 // copies were (i.e. they were all linkonce_odr global unnamed addr). 355 // If any copy is not (e.g. it was originally weak_odr), then the symbol 356 // must remain externally available (e.g. a weak_odr from an explicitly 357 // instantiated template). Additionally, if it is in the 358 // GUIDPreservedSymbols set, that means that it is visibile outside 359 // the summary (e.g. in a native object or a bitcode file without 360 // summary), and in that case we cannot hide it as it isn't possible to 361 // check all copies. 362 S->setCanAutoHide(VI.canAutoHide() && 363 !GUIDPreservedSymbols.count(VI.getGUID())); 364 } 365 if (C.VisibilityScheme == Config::FromPrevailing) 366 Visibility = S->getVisibility(); 367 } 368 // Alias and aliasee can't be turned into available_externally. 369 else if (!isa<AliasSummary>(S.get()) && 370 !GlobalInvolvedWithAlias.count(S.get())) 371 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 372 373 // For ELF, set visibility to the computed visibility from summaries. We 374 // don't track visibility from declarations so this may be more relaxed than 375 // the most constraining one. 376 if (C.VisibilityScheme == Config::ELF) 377 S->setVisibility(Visibility); 378 379 if (S->linkage() != OriginalLinkage) 380 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 381 } 382 383 if (C.VisibilityScheme == Config::FromPrevailing) { 384 for (auto &S : VI.getSummaryList()) { 385 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 386 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 387 GlobalValue::isAppendingLinkage(S->linkage())) 388 continue; 389 S->setVisibility(Visibility); 390 } 391 } 392 } 393 394 /// Resolve linkage for prevailing symbols in the \p Index. 395 // 396 // We'd like to drop these functions if they are no longer referenced in the 397 // current module. However there is a chance that another module is still 398 // referencing them because of the import. We make sure we always emit at least 399 // one copy. 400 void llvm::thinLTOResolvePrevailingInIndex( 401 const Config &C, ModuleSummaryIndex &Index, 402 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 403 isPrevailing, 404 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 405 recordNewLinkage, 406 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 407 // We won't optimize the globals that are referenced by an alias for now 408 // Ideally we should turn the alias into a global and duplicate the definition 409 // when needed. 410 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 411 for (auto &I : Index) 412 for (auto &S : I.second.SummaryList) 413 if (auto AS = dyn_cast<AliasSummary>(S.get())) 414 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 415 416 for (auto &I : Index) 417 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 418 GlobalInvolvedWithAlias, isPrevailing, 419 recordNewLinkage, GUIDPreservedSymbols); 420 } 421 422 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 423 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 424 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 425 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 426 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 427 return false; 428 } 429 430 static void thinLTOInternalizeAndPromoteGUID( 431 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 432 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 433 isPrevailing) { 434 for (auto &S : VI.getSummaryList()) { 435 if (isExported(S->modulePath(), VI)) { 436 if (GlobalValue::isLocalLinkage(S->linkage())) 437 S->setLinkage(GlobalValue::ExternalLinkage); 438 } else if (EnableLTOInternalization && 439 // Ignore local and appending linkage values since the linker 440 // doesn't resolve them. 441 !GlobalValue::isLocalLinkage(S->linkage()) && 442 (!GlobalValue::isInterposableLinkage(S->linkage()) || 443 isPrevailing(VI.getGUID(), S.get())) && 444 S->linkage() != GlobalValue::AppendingLinkage && 445 // We can't internalize available_externally globals because this 446 // can break function pointer equality. 447 S->linkage() != GlobalValue::AvailableExternallyLinkage && 448 // Functions and read-only variables with linkonce_odr and 449 // weak_odr linkage can be internalized. We can't internalize 450 // linkonce_odr and weak_odr variables which are both modified 451 // and read somewhere in the program because reads and writes 452 // will become inconsistent. 453 !isWeakObjectWithRWAccess(S.get())) 454 S->setLinkage(GlobalValue::InternalLinkage); 455 } 456 } 457 458 // Update the linkages in the given \p Index to mark exported values 459 // as external and non-exported values as internal. 460 void llvm::thinLTOInternalizeAndPromoteInIndex( 461 ModuleSummaryIndex &Index, 462 function_ref<bool(StringRef, ValueInfo)> isExported, 463 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 464 isPrevailing) { 465 for (auto &I : Index) 466 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 467 isPrevailing); 468 } 469 470 // Requires a destructor for std::vector<InputModule>. 471 InputFile::~InputFile() = default; 472 473 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 474 std::unique_ptr<InputFile> File(new InputFile); 475 476 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 477 if (!FOrErr) 478 return FOrErr.takeError(); 479 480 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 481 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 482 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 483 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 484 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 485 486 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 487 size_t Begin = File->Symbols.size(); 488 for (const irsymtab::Reader::SymbolRef &Sym : 489 FOrErr->TheReader.module_symbols(I)) 490 // Skip symbols that are irrelevant to LTO. Note that this condition needs 491 // to match the one in Skip() in LTO::addRegularLTO(). 492 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 493 File->Symbols.push_back(Sym); 494 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 495 } 496 497 File->Mods = FOrErr->Mods; 498 File->Strtab = std::move(FOrErr->Strtab); 499 return std::move(File); 500 } 501 502 StringRef InputFile::getName() const { 503 return Mods[0].getModuleIdentifier(); 504 } 505 506 BitcodeModule &InputFile::getSingleBitcodeModule() { 507 assert(Mods.size() == 1 && "Expect only one bitcode module"); 508 return Mods[0]; 509 } 510 511 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 512 const Config &Conf) 513 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 514 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 515 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 516 517 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 518 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 519 if (!Backend) 520 this->Backend = 521 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 522 } 523 524 LTO::LTO(Config Conf, ThinBackend Backend, 525 unsigned ParallelCodeGenParallelismLevel) 526 : Conf(std::move(Conf)), 527 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 528 ThinLTO(std::move(Backend)) {} 529 530 // Requires a destructor for MapVector<BitcodeModule>. 531 LTO::~LTO() = default; 532 533 // Add the symbols in the given module to the GlobalResolutions map, and resolve 534 // their partitions. 535 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 536 ArrayRef<SymbolResolution> Res, 537 unsigned Partition, bool InSummary) { 538 auto *ResI = Res.begin(); 539 auto *ResE = Res.end(); 540 (void)ResE; 541 const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 542 for (const InputFile::Symbol &Sym : Syms) { 543 assert(ResI != ResE); 544 SymbolResolution Res = *ResI++; 545 546 StringRef Name = Sym.getName(); 547 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 548 // way they are handled by lld), otherwise we can end up with two 549 // global resolutions (one with and one for a copy of the symbol without). 550 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 551 Name = Name.substr(strlen("__imp_")); 552 auto &GlobalRes = GlobalResolutions[Name]; 553 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 554 if (Res.Prevailing) { 555 assert(!GlobalRes.Prevailing && 556 "Multiple prevailing defs are not allowed"); 557 GlobalRes.Prevailing = true; 558 GlobalRes.IRName = std::string(Sym.getIRName()); 559 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 560 // Sometimes it can be two copies of symbol in a module and prevailing 561 // symbol can have no IR name. That might happen if symbol is defined in 562 // module level inline asm block. In case we have multiple modules with 563 // the same symbol we want to use IR name of the prevailing symbol. 564 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 565 // we can later use it to check if there is any prevailing copy in IR. 566 GlobalRes.IRName = std::string(Sym.getIRName()); 567 } 568 569 // Set the partition to external if we know it is re-defined by the linker 570 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 571 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 572 // already recorded as being referenced from a different partition. 573 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 574 (GlobalRes.Partition != GlobalResolution::Unknown && 575 GlobalRes.Partition != Partition)) { 576 GlobalRes.Partition = GlobalResolution::External; 577 } else 578 // First recorded reference, save the current partition. 579 GlobalRes.Partition = Partition; 580 581 // Flag as visible outside of summary if visible from a regular object or 582 // from a module that does not have a summary. 583 GlobalRes.VisibleOutsideSummary |= 584 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 585 586 GlobalRes.ExportDynamic |= Res.ExportDynamic; 587 } 588 } 589 590 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 591 ArrayRef<SymbolResolution> Res) { 592 StringRef Path = Input->getName(); 593 OS << Path << '\n'; 594 auto ResI = Res.begin(); 595 for (const InputFile::Symbol &Sym : Input->symbols()) { 596 assert(ResI != Res.end()); 597 SymbolResolution Res = *ResI++; 598 599 OS << "-r=" << Path << ',' << Sym.getName() << ','; 600 if (Res.Prevailing) 601 OS << 'p'; 602 if (Res.FinalDefinitionInLinkageUnit) 603 OS << 'l'; 604 if (Res.VisibleToRegularObj) 605 OS << 'x'; 606 if (Res.LinkerRedefined) 607 OS << 'r'; 608 OS << '\n'; 609 } 610 OS.flush(); 611 assert(ResI == Res.end()); 612 } 613 614 Error LTO::add(std::unique_ptr<InputFile> Input, 615 ArrayRef<SymbolResolution> Res) { 616 assert(!CalledGetMaxTasks); 617 618 if (Conf.ResolutionFile) 619 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 620 621 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 622 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 623 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 624 Conf.VisibilityScheme = Config::ELF; 625 } 626 627 const SymbolResolution *ResI = Res.begin(); 628 for (unsigned I = 0; I != Input->Mods.size(); ++I) 629 if (Error Err = addModule(*Input, I, ResI, Res.end())) 630 return Err; 631 632 assert(ResI == Res.end()); 633 return Error::success(); 634 } 635 636 Error LTO::addModule(InputFile &Input, unsigned ModI, 637 const SymbolResolution *&ResI, 638 const SymbolResolution *ResE) { 639 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 640 if (!LTOInfo) 641 return LTOInfo.takeError(); 642 643 if (EnableSplitLTOUnit.hasValue()) { 644 // If only some modules were split, flag this in the index so that 645 // we can skip or error on optimizations that need consistently split 646 // modules (whole program devirt and lower type tests). 647 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 648 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 649 } else 650 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 651 652 BitcodeModule BM = Input.Mods[ModI]; 653 auto ModSyms = Input.module_symbols(ModI); 654 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 655 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 656 LTOInfo->HasSummary); 657 658 if (LTOInfo->IsThinLTO) 659 return addThinLTO(BM, ModSyms, ResI, ResE); 660 661 RegularLTO.EmptyCombinedModule = false; 662 Expected<RegularLTOState::AddedModule> ModOrErr = 663 addRegularLTO(BM, ModSyms, ResI, ResE); 664 if (!ModOrErr) 665 return ModOrErr.takeError(); 666 667 if (!LTOInfo->HasSummary) 668 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 669 670 // Regular LTO module summaries are added to a dummy module that represents 671 // the combined regular LTO module. 672 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 673 return Err; 674 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 675 return Error::success(); 676 } 677 678 // Checks whether the given global value is in a non-prevailing comdat 679 // (comdat containing values the linker indicated were not prevailing, 680 // which we then dropped to available_externally), and if so, removes 681 // it from the comdat. This is called for all global values to ensure the 682 // comdat is empty rather than leaving an incomplete comdat. It is needed for 683 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 684 // and thin LTO modules) compilation. Since the regular LTO module will be 685 // linked first in the final native link, we want to make sure the linker 686 // doesn't select any of these incomplete comdats that would be left 687 // in the regular LTO module without this cleanup. 688 static void 689 handleNonPrevailingComdat(GlobalValue &GV, 690 std::set<const Comdat *> &NonPrevailingComdats) { 691 Comdat *C = GV.getComdat(); 692 if (!C) 693 return; 694 695 if (!NonPrevailingComdats.count(C)) 696 return; 697 698 // Additionally need to drop externally visible global values from the comdat 699 // to available_externally, so that there aren't multiply defined linker 700 // errors. 701 if (!GV.hasLocalLinkage()) 702 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 703 704 if (auto GO = dyn_cast<GlobalObject>(&GV)) 705 GO->setComdat(nullptr); 706 } 707 708 // Add a regular LTO object to the link. 709 // The resulting module needs to be linked into the combined LTO module with 710 // linkRegularLTO. 711 Expected<LTO::RegularLTOState::AddedModule> 712 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 713 const SymbolResolution *&ResI, 714 const SymbolResolution *ResE) { 715 RegularLTOState::AddedModule Mod; 716 Expected<std::unique_ptr<Module>> MOrErr = 717 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 718 /*IsImporting*/ false); 719 if (!MOrErr) 720 return MOrErr.takeError(); 721 Module &M = **MOrErr; 722 Mod.M = std::move(*MOrErr); 723 724 if (Error Err = M.materializeMetadata()) 725 return std::move(Err); 726 UpgradeDebugInfo(M); 727 728 ModuleSymbolTable SymTab; 729 SymTab.addModule(&M); 730 731 for (GlobalVariable &GV : M.globals()) 732 if (GV.hasAppendingLinkage()) 733 Mod.Keep.push_back(&GV); 734 735 DenseSet<GlobalObject *> AliasedGlobals; 736 for (auto &GA : M.aliases()) 737 if (GlobalObject *GO = GA.getAliaseeObject()) 738 AliasedGlobals.insert(GO); 739 740 // In this function we need IR GlobalValues matching the symbols in Syms 741 // (which is not backed by a module), so we need to enumerate them in the same 742 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 743 // matches the order of an irsymtab, but when we read the irsymtab in 744 // InputFile::create we omit some symbols that are irrelevant to LTO. The 745 // Skip() function skips the same symbols from the module as InputFile does 746 // from the symbol table. 747 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 748 auto Skip = [&]() { 749 while (MsymI != MsymE) { 750 auto Flags = SymTab.getSymbolFlags(*MsymI); 751 if ((Flags & object::BasicSymbolRef::SF_Global) && 752 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 753 return; 754 ++MsymI; 755 } 756 }; 757 Skip(); 758 759 std::set<const Comdat *> NonPrevailingComdats; 760 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 761 for (const InputFile::Symbol &Sym : Syms) { 762 assert(ResI != ResE); 763 SymbolResolution Res = *ResI++; 764 765 assert(MsymI != MsymE); 766 ModuleSymbolTable::Symbol Msym = *MsymI++; 767 Skip(); 768 769 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 770 if (Res.Prevailing) { 771 if (Sym.isUndefined()) 772 continue; 773 Mod.Keep.push_back(GV); 774 // For symbols re-defined with linker -wrap and -defsym options, 775 // set the linkage to weak to inhibit IPO. The linkage will be 776 // restored by the linker. 777 if (Res.LinkerRedefined) 778 GV->setLinkage(GlobalValue::WeakAnyLinkage); 779 780 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 781 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 782 GV->setLinkage(GlobalValue::getWeakLinkage( 783 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 784 } else if (isa<GlobalObject>(GV) && 785 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 786 GV->hasAvailableExternallyLinkage()) && 787 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 788 // Any of the above three types of linkage indicates that the 789 // chosen prevailing symbol will have the same semantics as this copy of 790 // the symbol, so we may be able to link it with available_externally 791 // linkage. We will decide later whether to do that when we link this 792 // module (in linkRegularLTO), based on whether it is undefined. 793 Mod.Keep.push_back(GV); 794 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 795 if (GV->hasComdat()) 796 NonPrevailingComdats.insert(GV->getComdat()); 797 cast<GlobalObject>(GV)->setComdat(nullptr); 798 } 799 800 // Set the 'local' flag based on the linker resolution for this symbol. 801 if (Res.FinalDefinitionInLinkageUnit) { 802 GV->setDSOLocal(true); 803 if (GV->hasDLLImportStorageClass()) 804 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 805 DefaultStorageClass); 806 } 807 } else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) { 808 // Collect non-prevailing symbols. 809 if (!Res.Prevailing) 810 NonPrevailingAsmSymbols.insert(AS->first); 811 } else { 812 llvm_unreachable("unknown symbol type"); 813 } 814 815 // Common resolution: collect the maximum size/alignment over all commons. 816 // We also record if we see an instance of a common as prevailing, so that 817 // if none is prevailing we can ignore it later. 818 if (Sym.isCommon()) { 819 // FIXME: We should figure out what to do about commons defined by asm. 820 // For now they aren't reported correctly by ModuleSymbolTable. 821 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 822 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 823 MaybeAlign SymAlign(Sym.getCommonAlignment()); 824 if (SymAlign) 825 CommonRes.Align = max(*SymAlign, CommonRes.Align); 826 CommonRes.Prevailing |= Res.Prevailing; 827 } 828 } 829 830 if (!M.getComdatSymbolTable().empty()) 831 for (GlobalValue &GV : M.global_values()) 832 handleNonPrevailingComdat(GV, NonPrevailingComdats); 833 834 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 835 // block. 836 if (!M.getModuleInlineAsm().empty()) { 837 std::string NewIA = ".lto_discard"; 838 if (!NonPrevailingAsmSymbols.empty()) { 839 // Don't dicard a symbol if there is a live .symver for it. 840 ModuleSymbolTable::CollectAsmSymvers( 841 M, [&](StringRef Name, StringRef Alias) { 842 if (!NonPrevailingAsmSymbols.count(Alias)) 843 NonPrevailingAsmSymbols.erase(Name); 844 }); 845 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 846 } 847 NewIA += "\n"; 848 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 849 } 850 851 assert(MsymI == MsymE); 852 return std::move(Mod); 853 } 854 855 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 856 bool LivenessFromIndex) { 857 std::vector<GlobalValue *> Keep; 858 for (GlobalValue *GV : Mod.Keep) { 859 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 860 if (Function *F = dyn_cast<Function>(GV)) { 861 if (DiagnosticOutputFile) { 862 if (Error Err = F->materialize()) 863 return Err; 864 OptimizationRemarkEmitter ORE(F, nullptr); 865 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 866 << ore::NV("Function", F) 867 << " not added to the combined module "); 868 } 869 } 870 continue; 871 } 872 873 if (!GV->hasAvailableExternallyLinkage()) { 874 Keep.push_back(GV); 875 continue; 876 } 877 878 // Only link available_externally definitions if we don't already have a 879 // definition. 880 GlobalValue *CombinedGV = 881 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 882 if (CombinedGV && !CombinedGV->isDeclaration()) 883 continue; 884 885 Keep.push_back(GV); 886 } 887 888 return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr, 889 /* IsPerformingImport */ false); 890 } 891 892 // Add a ThinLTO module to the link. 893 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 894 const SymbolResolution *&ResI, 895 const SymbolResolution *ResE) { 896 if (Error Err = 897 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 898 ThinLTO.ModuleMap.size())) 899 return Err; 900 901 for (const InputFile::Symbol &Sym : Syms) { 902 assert(ResI != ResE); 903 SymbolResolution Res = *ResI++; 904 905 if (!Sym.getIRName().empty()) { 906 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 907 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 908 if (Res.Prevailing) { 909 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 910 911 // For linker redefined symbols (via --wrap or --defsym) we want to 912 // switch the linkage to `weak` to prevent IPOs from happening. 913 // Find the summary in the module for this very GV and record the new 914 // linkage so that we can switch it when we import the GV. 915 if (Res.LinkerRedefined) 916 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 917 GUID, BM.getModuleIdentifier())) 918 S->setLinkage(GlobalValue::WeakAnyLinkage); 919 } 920 921 // If the linker resolved the symbol to a local definition then mark it 922 // as local in the summary for the module we are adding. 923 if (Res.FinalDefinitionInLinkageUnit) { 924 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 925 GUID, BM.getModuleIdentifier())) { 926 S->setDSOLocal(true); 927 } 928 } 929 } 930 } 931 932 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 933 return make_error<StringError>( 934 "Expected at most one ThinLTO module per bitcode file", 935 inconvertibleErrorCode()); 936 937 if (!Conf.ThinLTOModulesToCompile.empty()) { 938 if (!ThinLTO.ModulesToCompile) 939 ThinLTO.ModulesToCompile = ModuleMapType(); 940 // This is a fuzzy name matching where only modules with name containing the 941 // specified switch values are going to be compiled. 942 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 943 if (BM.getModuleIdentifier().contains(Name)) { 944 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 945 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 946 << " to compile\n"; 947 } 948 } 949 } 950 951 return Error::success(); 952 } 953 954 unsigned LTO::getMaxTasks() const { 955 CalledGetMaxTasks = true; 956 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 957 : ThinLTO.ModuleMap.size(); 958 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 959 } 960 961 // If only some of the modules were split, we cannot correctly handle 962 // code that contains type tests or type checked loads. 963 Error LTO::checkPartiallySplit() { 964 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 965 return Error::success(); 966 967 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 968 Intrinsic::getName(Intrinsic::type_test)); 969 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 970 Intrinsic::getName(Intrinsic::type_checked_load)); 971 972 // First check if there are type tests / type checked loads in the 973 // merged regular LTO module IR. 974 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 975 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 976 return make_error<StringError>( 977 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 978 inconvertibleErrorCode()); 979 980 // Otherwise check if there are any recorded in the combined summary from the 981 // ThinLTO modules. 982 for (auto &P : ThinLTO.CombinedIndex) { 983 for (auto &S : P.second.SummaryList) { 984 auto *FS = dyn_cast<FunctionSummary>(S.get()); 985 if (!FS) 986 continue; 987 if (!FS->type_test_assume_vcalls().empty() || 988 !FS->type_checked_load_vcalls().empty() || 989 !FS->type_test_assume_const_vcalls().empty() || 990 !FS->type_checked_load_const_vcalls().empty() || 991 !FS->type_tests().empty()) 992 return make_error<StringError>( 993 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 994 inconvertibleErrorCode()); 995 } 996 } 997 return Error::success(); 998 } 999 1000 Error LTO::run(AddStreamFn AddStream, FileCache Cache) { 1001 // Compute "dead" symbols, we don't want to import/export these! 1002 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 1003 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 1004 for (auto &Res : GlobalResolutions) { 1005 // Normally resolution have IR name of symbol. We can do nothing here 1006 // otherwise. See comments in GlobalResolution struct for more details. 1007 if (Res.second.IRName.empty()) 1008 continue; 1009 1010 GlobalValue::GUID GUID = GlobalValue::getGUID( 1011 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1012 1013 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1014 GUIDPreservedSymbols.insert(GUID); 1015 1016 if (Res.second.ExportDynamic) 1017 DynamicExportSymbols.insert(GUID); 1018 1019 GUIDPrevailingResolutions[GUID] = 1020 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1021 } 1022 1023 auto isPrevailing = [&](GlobalValue::GUID G) { 1024 auto It = GUIDPrevailingResolutions.find(G); 1025 if (It == GUIDPrevailingResolutions.end()) 1026 return PrevailingType::Unknown; 1027 return It->second; 1028 }; 1029 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1030 isPrevailing, Conf.OptLevel > 0); 1031 1032 // Setup output file to emit statistics. 1033 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1034 if (!StatsFileOrErr) 1035 return StatsFileOrErr.takeError(); 1036 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1037 1038 Error Result = runRegularLTO(AddStream); 1039 if (!Result) 1040 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1041 1042 if (StatsFile) 1043 PrintStatisticsJSON(StatsFile->os()); 1044 1045 return Result; 1046 } 1047 1048 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1049 // Setup optimization remarks. 1050 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1051 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1052 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1053 Conf.RemarksHotnessThreshold); 1054 if (!DiagFileOrErr) 1055 return DiagFileOrErr.takeError(); 1056 DiagnosticOutputFile = std::move(*DiagFileOrErr); 1057 1058 // Finalize linking of regular LTO modules containing summaries now that 1059 // we have computed liveness information. 1060 for (auto &M : RegularLTO.ModsWithSummaries) 1061 if (Error Err = linkRegularLTO(std::move(M), 1062 /*LivenessFromIndex=*/true)) 1063 return Err; 1064 1065 // Ensure we don't have inconsistently split LTO units with type tests. 1066 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1067 // this path both cases but eventually this should be split into two and 1068 // do the ThinLTO checks in `runThinLTO`. 1069 if (Error Err = checkPartiallySplit()) 1070 return Err; 1071 1072 // Make sure commons have the right size/alignment: we kept the largest from 1073 // all the prevailing when adding the inputs, and we apply it here. 1074 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1075 for (auto &I : RegularLTO.Commons) { 1076 if (!I.second.Prevailing) 1077 // Don't do anything if no instance of this common was prevailing. 1078 continue; 1079 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1080 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1081 // Don't create a new global if the type is already correct, just make 1082 // sure the alignment is correct. 1083 OldGV->setAlignment(I.second.Align); 1084 continue; 1085 } 1086 ArrayType *Ty = 1087 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1088 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1089 GlobalValue::CommonLinkage, 1090 ConstantAggregateZero::get(Ty), ""); 1091 GV->setAlignment(I.second.Align); 1092 if (OldGV) { 1093 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1094 GV->takeName(OldGV); 1095 OldGV->eraseFromParent(); 1096 } else { 1097 GV->setName(I.first); 1098 } 1099 } 1100 1101 // If allowed, upgrade public vcall visibility metadata to linkage unit 1102 // visibility before whole program devirtualization in the optimizer. 1103 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1104 Conf.HasWholeProgramVisibility, 1105 DynamicExportSymbols); 1106 1107 if (Conf.PreOptModuleHook && 1108 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1109 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1110 1111 if (!Conf.CodeGenOnly) { 1112 for (const auto &R : GlobalResolutions) { 1113 if (!R.second.isPrevailingIRSymbol()) 1114 continue; 1115 if (R.second.Partition != 0 && 1116 R.second.Partition != GlobalResolution::External) 1117 continue; 1118 1119 GlobalValue *GV = 1120 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1121 // Ignore symbols defined in other partitions. 1122 // Also skip declarations, which are not allowed to have internal linkage. 1123 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1124 continue; 1125 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1126 : GlobalValue::UnnamedAddr::None); 1127 if (EnableLTOInternalization && R.second.Partition == 0) 1128 GV->setLinkage(GlobalValue::InternalLinkage); 1129 } 1130 1131 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1132 1133 if (Conf.PostInternalizeModuleHook && 1134 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1135 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1136 } 1137 1138 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1139 if (Error Err = 1140 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1141 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1142 return Err; 1143 } 1144 1145 return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); 1146 } 1147 1148 static const char *libcallRoutineNames[] = { 1149 #define HANDLE_LIBCALL(code, name) name, 1150 #include "llvm/IR/RuntimeLibcalls.def" 1151 #undef HANDLE_LIBCALL 1152 }; 1153 1154 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1155 return makeArrayRef(libcallRoutineNames); 1156 } 1157 1158 /// This class defines the interface to the ThinLTO backend. 1159 class lto::ThinBackendProc { 1160 protected: 1161 const Config &Conf; 1162 ModuleSummaryIndex &CombinedIndex; 1163 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1164 1165 public: 1166 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1167 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1168 : Conf(Conf), CombinedIndex(CombinedIndex), 1169 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1170 1171 virtual ~ThinBackendProc() = default; 1172 virtual Error start( 1173 unsigned Task, BitcodeModule BM, 1174 const FunctionImporter::ImportMapTy &ImportList, 1175 const FunctionImporter::ExportSetTy &ExportList, 1176 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1177 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1178 virtual Error wait() = 0; 1179 virtual unsigned getThreadCount() = 0; 1180 }; 1181 1182 namespace { 1183 class InProcessThinBackend : public ThinBackendProc { 1184 ThreadPool BackendThreadPool; 1185 AddStreamFn AddStream; 1186 FileCache Cache; 1187 std::set<GlobalValue::GUID> CfiFunctionDefs; 1188 std::set<GlobalValue::GUID> CfiFunctionDecls; 1189 1190 Optional<Error> Err; 1191 std::mutex ErrMu; 1192 1193 public: 1194 InProcessThinBackend( 1195 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1196 ThreadPoolStrategy ThinLTOParallelism, 1197 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1198 AddStreamFn AddStream, FileCache Cache) 1199 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1200 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1201 Cache(std::move(Cache)) { 1202 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1203 CfiFunctionDefs.insert( 1204 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1205 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1206 CfiFunctionDecls.insert( 1207 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1208 } 1209 1210 Error runThinLTOBackendThread( 1211 AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, 1212 ModuleSummaryIndex &CombinedIndex, 1213 const FunctionImporter::ImportMapTy &ImportList, 1214 const FunctionImporter::ExportSetTy &ExportList, 1215 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1216 const GVSummaryMapTy &DefinedGlobals, 1217 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1218 auto RunThinBackend = [&](AddStreamFn AddStream) { 1219 LTOLLVMContext BackendContext(Conf); 1220 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1221 if (!MOrErr) 1222 return MOrErr.takeError(); 1223 1224 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1225 ImportList, DefinedGlobals, &ModuleMap); 1226 }; 1227 1228 auto ModuleID = BM.getModuleIdentifier(); 1229 1230 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1231 all_of(CombinedIndex.getModuleHash(ModuleID), 1232 [](uint32_t V) { return V == 0; })) 1233 // Cache disabled or no entry for this module in the combined index or 1234 // no module hash. 1235 return RunThinBackend(AddStream); 1236 1237 SmallString<40> Key; 1238 // The module may be cached, this helps handling it. 1239 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1240 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1241 CfiFunctionDecls); 1242 Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key); 1243 if (Error Err = CacheAddStreamOrErr.takeError()) 1244 return Err; 1245 AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; 1246 if (CacheAddStream) 1247 return RunThinBackend(CacheAddStream); 1248 1249 return Error::success(); 1250 } 1251 1252 Error start( 1253 unsigned Task, BitcodeModule BM, 1254 const FunctionImporter::ImportMapTy &ImportList, 1255 const FunctionImporter::ExportSetTy &ExportList, 1256 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1257 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1258 StringRef ModulePath = BM.getModuleIdentifier(); 1259 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1260 const GVSummaryMapTy &DefinedGlobals = 1261 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1262 BackendThreadPool.async( 1263 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1264 const FunctionImporter::ImportMapTy &ImportList, 1265 const FunctionImporter::ExportSetTy &ExportList, 1266 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1267 &ResolvedODR, 1268 const GVSummaryMapTy &DefinedGlobals, 1269 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1270 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1271 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1272 "thin backend"); 1273 Error E = runThinLTOBackendThread( 1274 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1275 ResolvedODR, DefinedGlobals, ModuleMap); 1276 if (E) { 1277 std::unique_lock<std::mutex> L(ErrMu); 1278 if (Err) 1279 Err = joinErrors(std::move(*Err), std::move(E)); 1280 else 1281 Err = std::move(E); 1282 } 1283 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1284 timeTraceProfilerFinishThread(); 1285 }, 1286 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1287 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1288 return Error::success(); 1289 } 1290 1291 Error wait() override { 1292 BackendThreadPool.wait(); 1293 if (Err) 1294 return std::move(*Err); 1295 else 1296 return Error::success(); 1297 } 1298 1299 unsigned getThreadCount() override { 1300 return BackendThreadPool.getThreadCount(); 1301 } 1302 }; 1303 } // end anonymous namespace 1304 1305 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) { 1306 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1307 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1308 AddStreamFn AddStream, FileCache Cache) { 1309 return std::make_unique<InProcessThinBackend>( 1310 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1311 Cache); 1312 }; 1313 } 1314 1315 // Given the original \p Path to an output file, replace any path 1316 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1317 // resulting directory if it does not yet exist. 1318 std::string lto::getThinLTOOutputFile(const std::string &Path, 1319 const std::string &OldPrefix, 1320 const std::string &NewPrefix) { 1321 if (OldPrefix.empty() && NewPrefix.empty()) 1322 return Path; 1323 SmallString<128> NewPath(Path); 1324 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1325 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1326 if (!ParentPath.empty()) { 1327 // Make sure the new directory exists, creating it if necessary. 1328 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1329 llvm::errs() << "warning: could not create directory '" << ParentPath 1330 << "': " << EC.message() << '\n'; 1331 } 1332 return std::string(NewPath.str()); 1333 } 1334 1335 namespace { 1336 class WriteIndexesThinBackend : public ThinBackendProc { 1337 std::string OldPrefix, NewPrefix; 1338 bool ShouldEmitImportsFiles; 1339 raw_fd_ostream *LinkedObjectsFile; 1340 lto::IndexWriteCallback OnWrite; 1341 1342 public: 1343 WriteIndexesThinBackend( 1344 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1345 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1346 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1347 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1348 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1349 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1350 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1351 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1352 1353 Error start( 1354 unsigned Task, BitcodeModule BM, 1355 const FunctionImporter::ImportMapTy &ImportList, 1356 const FunctionImporter::ExportSetTy &ExportList, 1357 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1358 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1359 StringRef ModulePath = BM.getModuleIdentifier(); 1360 std::string NewModulePath = 1361 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1362 1363 if (LinkedObjectsFile) 1364 *LinkedObjectsFile << NewModulePath << '\n'; 1365 1366 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1367 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1368 ImportList, ModuleToSummariesForIndex); 1369 1370 std::error_code EC; 1371 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1372 sys::fs::OpenFlags::OF_None); 1373 if (EC) 1374 return errorCodeToError(EC); 1375 writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1376 1377 if (ShouldEmitImportsFiles) { 1378 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1379 ModuleToSummariesForIndex); 1380 if (EC) 1381 return errorCodeToError(EC); 1382 } 1383 1384 if (OnWrite) 1385 OnWrite(std::string(ModulePath)); 1386 return Error::success(); 1387 } 1388 1389 Error wait() override { return Error::success(); } 1390 1391 // WriteIndexesThinBackend should always return 1 to prevent module 1392 // re-ordering and avoid non-determinism in the final link. 1393 unsigned getThreadCount() override { return 1; } 1394 }; 1395 } // end anonymous namespace 1396 1397 ThinBackend lto::createWriteIndexesThinBackend( 1398 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1399 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1400 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1401 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1402 AddStreamFn AddStream, FileCache Cache) { 1403 return std::make_unique<WriteIndexesThinBackend>( 1404 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1405 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1406 }; 1407 } 1408 1409 Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, 1410 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1411 timeTraceProfilerBegin("ThinLink", StringRef("")); 1412 auto TimeTraceScopeExit = llvm::make_scope_exit([]() { 1413 if (llvm::timeTraceProfilerEnabled()) 1414 llvm::timeTraceProfilerEnd(); 1415 }); 1416 if (ThinLTO.ModuleMap.empty()) 1417 return Error::success(); 1418 1419 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1420 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1421 return Error::success(); 1422 } 1423 1424 if (Conf.CombinedIndexHook && 1425 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1426 return Error::success(); 1427 1428 // Collect for each module the list of function it defines (GUID -> 1429 // Summary). 1430 StringMap<GVSummaryMapTy> 1431 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1432 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1433 ModuleToDefinedGVSummaries); 1434 // Create entries for any modules that didn't have any GV summaries 1435 // (either they didn't have any GVs to start with, or we suppressed 1436 // generation of the summaries because they e.g. had inline assembly 1437 // uses that couldn't be promoted/renamed on export). This is so 1438 // InProcessThinBackend::start can still launch a backend thread, which 1439 // is passed the map of summaries for the module, without any special 1440 // handling for this case. 1441 for (auto &Mod : ThinLTO.ModuleMap) 1442 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1443 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1444 1445 // Synthesize entry counts for functions in the CombinedIndex. 1446 computeSyntheticCounts(ThinLTO.CombinedIndex); 1447 1448 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1449 ThinLTO.ModuleMap.size()); 1450 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1451 ThinLTO.ModuleMap.size()); 1452 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1453 1454 if (DumpThinCGSCCs) 1455 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1456 1457 std::set<GlobalValue::GUID> ExportedGUIDs; 1458 1459 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1460 // the summaries before whole program devirtualization below. 1461 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1462 Conf.HasWholeProgramVisibility, 1463 DynamicExportSymbols); 1464 1465 // Perform index-based WPD. This will return immediately if there are 1466 // no index entries in the typeIdMetadata map (e.g. if we are instead 1467 // performing IR-based WPD in hybrid regular/thin LTO mode). 1468 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1469 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1470 LocalWPDTargetsMap); 1471 1472 if (Conf.OptLevel > 0) 1473 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1474 ImportLists, ExportLists); 1475 1476 // Figure out which symbols need to be internalized. This also needs to happen 1477 // at -O0 because summary-based DCE is implemented using internalization, and 1478 // we must apply DCE consistently with the full LTO module in order to avoid 1479 // undefined references during the final link. 1480 for (auto &Res : GlobalResolutions) { 1481 // If the symbol does not have external references or it is not prevailing, 1482 // then not need to mark it as exported from a ThinLTO partition. 1483 if (Res.second.Partition != GlobalResolution::External || 1484 !Res.second.isPrevailingIRSymbol()) 1485 continue; 1486 auto GUID = GlobalValue::getGUID( 1487 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1488 // Mark exported unless index-based analysis determined it to be dead. 1489 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1490 ExportedGUIDs.insert(GUID); 1491 } 1492 1493 // Any functions referenced by the jump table in the regular LTO object must 1494 // be exported. 1495 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1496 ExportedGUIDs.insert( 1497 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1498 for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) 1499 ExportedGUIDs.insert( 1500 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl))); 1501 1502 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1503 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1504 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1505 ExportedGUIDs.count(VI.getGUID()); 1506 }; 1507 1508 // Update local devirtualized targets that were exported by cross-module 1509 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1510 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1511 LocalWPDTargetsMap); 1512 1513 auto isPrevailing = [&](GlobalValue::GUID GUID, 1514 const GlobalValueSummary *S) { 1515 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1516 }; 1517 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1518 isPrevailing); 1519 1520 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1521 GlobalValue::GUID GUID, 1522 GlobalValue::LinkageTypes NewLinkage) { 1523 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1524 }; 1525 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1526 recordNewLinkage, GUIDPreservedSymbols); 1527 1528 thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing); 1529 1530 generateParamAccessSummary(ThinLTO.CombinedIndex); 1531 1532 if (llvm::timeTraceProfilerEnabled()) 1533 llvm::timeTraceProfilerEnd(); 1534 1535 TimeTraceScopeExit.release(); 1536 1537 std::unique_ptr<ThinBackendProc> BackendProc = 1538 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1539 AddStream, Cache); 1540 1541 auto &ModuleMap = 1542 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1543 1544 auto ProcessOneModule = [&](int I) -> Error { 1545 auto &Mod = *(ModuleMap.begin() + I); 1546 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1547 // combined module and parallel code generation partitions. 1548 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1549 Mod.second, ImportLists[Mod.first], 1550 ExportLists[Mod.first], ResolvedODR[Mod.first], 1551 ThinLTO.ModuleMap); 1552 }; 1553 1554 if (BackendProc->getThreadCount() == 1) { 1555 // Process the modules in the order they were provided on the command-line. 1556 // It is important for this codepath to be used for WriteIndexesThinBackend, 1557 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1558 // order as the inputs, which otherwise would affect the final link order. 1559 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1560 if (Error E = ProcessOneModule(I)) 1561 return E; 1562 } else { 1563 // When executing in parallel, process largest bitsize modules first to 1564 // improve parallelism, and avoid starving the thread pool near the end. 1565 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1566 // of 100 sec). 1567 std::vector<BitcodeModule *> ModulesVec; 1568 ModulesVec.reserve(ModuleMap.size()); 1569 for (auto &Mod : ModuleMap) 1570 ModulesVec.push_back(&Mod.second); 1571 for (int I : generateModulesOrdering(ModulesVec)) 1572 if (Error E = ProcessOneModule(I)) 1573 return E; 1574 } 1575 return BackendProc->wait(); 1576 } 1577 1578 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1579 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1580 StringRef RemarksFormat, bool RemarksWithHotness, 1581 Optional<uint64_t> RemarksHotnessThreshold, int Count) { 1582 std::string Filename = std::string(RemarksFilename); 1583 // For ThinLTO, file.opt.<format> becomes 1584 // file.opt.<format>.thin.<num>.<format>. 1585 if (!Filename.empty() && Count != -1) 1586 Filename = 1587 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1588 .str(); 1589 1590 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1591 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1592 RemarksHotnessThreshold); 1593 if (Error E = ResultOrErr.takeError()) 1594 return std::move(E); 1595 1596 if (*ResultOrErr) 1597 (*ResultOrErr)->keep(); 1598 1599 return ResultOrErr; 1600 } 1601 1602 Expected<std::unique_ptr<ToolOutputFile>> 1603 lto::setupStatsFile(StringRef StatsFilename) { 1604 // Setup output file to emit statistics. 1605 if (StatsFilename.empty()) 1606 return nullptr; 1607 1608 llvm::EnableStatistics(false); 1609 std::error_code EC; 1610 auto StatsFile = 1611 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1612 if (EC) 1613 return errorCodeToError(EC); 1614 1615 StatsFile->keep(); 1616 return std::move(StatsFile); 1617 } 1618 1619 // Compute the ordering we will process the inputs: the rough heuristic here 1620 // is to sort them per size so that the largest module get schedule as soon as 1621 // possible. This is purely a compile-time optimization. 1622 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1623 auto Seq = llvm::seq<int>(0, R.size()); 1624 std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); 1625 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1626 auto LSize = R[LeftIndex]->getBuffer().size(); 1627 auto RSize = R[RightIndex]->getBuffer().size(); 1628 return LSize > RSize; 1629 }); 1630 return ModulesOrdering; 1631 } 1632