1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements functions and classes used to support LTO. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/LTO/LTO.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/Bitcode/BitcodeReader.h" 19 #include "llvm/Bitcode/BitcodeWriter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/Config/llvm-config.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/DiagnosticPrinter.h" 24 #include "llvm/IR/LegacyPassManager.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/LTO/LTOBackend.h" 28 #include "llvm/Linker/IRMover.h" 29 #include "llvm/Object/IRObjectFile.h" 30 #include "llvm/Support/Error.h" 31 #include "llvm/Support/ManagedStatic.h" 32 #include "llvm/Support/MemoryBuffer.h" 33 #include "llvm/Support/Path.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/SourceMgr.h" 36 #include "llvm/Support/TargetRegistry.h" 37 #include "llvm/Support/ThreadPool.h" 38 #include "llvm/Support/Threading.h" 39 #include "llvm/Support/VCSRevision.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 45 #include "llvm/Transforms/Utils/SplitModule.h" 46 47 #include <set> 48 49 using namespace llvm; 50 using namespace lto; 51 using namespace object; 52 53 #define DEBUG_TYPE "lto" 54 55 static cl::opt<bool> 56 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 57 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 58 59 /// Enable global value internalization in LTO. 60 cl::opt<bool> EnableLTOInternalization( 61 "enable-lto-internalization", cl::init(true), cl::Hidden, 62 cl::desc("Enable global value internalization in LTO")); 63 64 // Returns a unique hash for the Module considering the current list of 65 // export/import and other global analysis results. 66 // The hash is produced in \p Key. 67 static void computeCacheKey( 68 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 69 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 70 const FunctionImporter::ExportSetTy &ExportList, 71 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 72 const GVSummaryMapTy &DefinedGlobals, 73 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 74 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 75 // Compute the unique hash for this entry. 76 // This is based on the current compiler version, the module itself, the 77 // export list, the hash for every single module in the import list, the 78 // list of ResolvedODR for the module, and the list of preserved symbols. 79 SHA1 Hasher; 80 81 // Start with the compiler revision 82 Hasher.update(LLVM_VERSION_STRING); 83 #ifdef LLVM_REVISION 84 Hasher.update(LLVM_REVISION); 85 #endif 86 87 // Include the parts of the LTO configuration that affect code generation. 88 auto AddString = [&](StringRef Str) { 89 Hasher.update(Str); 90 Hasher.update(ArrayRef<uint8_t>{0}); 91 }; 92 auto AddUnsigned = [&](unsigned I) { 93 uint8_t Data[4]; 94 Data[0] = I; 95 Data[1] = I >> 8; 96 Data[2] = I >> 16; 97 Data[3] = I >> 24; 98 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 99 }; 100 auto AddUint64 = [&](uint64_t I) { 101 uint8_t Data[8]; 102 Data[0] = I; 103 Data[1] = I >> 8; 104 Data[2] = I >> 16; 105 Data[3] = I >> 24; 106 Data[4] = I >> 32; 107 Data[5] = I >> 40; 108 Data[6] = I >> 48; 109 Data[7] = I >> 56; 110 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 111 }; 112 AddString(Conf.CPU); 113 // FIXME: Hash more of Options. For now all clients initialize Options from 114 // command-line flags (which is unsupported in production), but may set 115 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 116 // DataSections and DebuggerTuning via command line flags. 117 AddUnsigned(Conf.Options.RelaxELFRelocations); 118 AddUnsigned(Conf.Options.FunctionSections); 119 AddUnsigned(Conf.Options.DataSections); 120 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 121 for (auto &A : Conf.MAttrs) 122 AddString(A); 123 if (Conf.RelocModel) 124 AddUnsigned(*Conf.RelocModel); 125 else 126 AddUnsigned(-1); 127 if (Conf.CodeModel) 128 AddUnsigned(*Conf.CodeModel); 129 else 130 AddUnsigned(-1); 131 AddUnsigned(Conf.CGOptLevel); 132 AddUnsigned(Conf.CGFileType); 133 AddUnsigned(Conf.OptLevel); 134 AddUnsigned(Conf.UseNewPM); 135 AddString(Conf.OptPipeline); 136 AddString(Conf.AAPipeline); 137 AddString(Conf.OverrideTriple); 138 AddString(Conf.DefaultTriple); 139 AddString(Conf.DwoDir); 140 141 // Include the hash for the current module 142 auto ModHash = Index.getModuleHash(ModuleID); 143 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 144 for (auto F : ExportList) 145 // The export list can impact the internalization, be conservative here 146 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F))); 147 148 // Include the hash for every module we import functions from. The set of 149 // imported symbols for each module may affect code generation and is 150 // sensitive to link order, so include that as well. 151 for (auto &Entry : ImportList) { 152 auto ModHash = Index.getModuleHash(Entry.first()); 153 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 154 155 AddUint64(Entry.second.size()); 156 for (auto &Fn : Entry.second) 157 AddUint64(Fn); 158 } 159 160 // Include the hash for the resolved ODR. 161 for (auto &Entry : ResolvedODR) { 162 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 163 sizeof(GlobalValue::GUID))); 164 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 165 sizeof(GlobalValue::LinkageTypes))); 166 } 167 168 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 169 // defined in this module. 170 std::set<GlobalValue::GUID> UsedCfiDefs; 171 std::set<GlobalValue::GUID> UsedCfiDecls; 172 173 // Typeids used in this module. 174 std::set<GlobalValue::GUID> UsedTypeIds; 175 176 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 177 if (CfiFunctionDefs.count(ValueGUID)) 178 UsedCfiDefs.insert(ValueGUID); 179 if (CfiFunctionDecls.count(ValueGUID)) 180 UsedCfiDecls.insert(ValueGUID); 181 }; 182 183 auto AddUsedThings = [&](GlobalValueSummary *GS) { 184 if (!GS) return; 185 AddUnsigned(GS->isLive()); 186 for (const ValueInfo &VI : GS->refs()) { 187 AddUnsigned(VI.isDSOLocal()); 188 AddUsedCfiGlobal(VI.getGUID()); 189 } 190 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) 191 AddUnsigned(GVS->isReadOnly()); 192 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 193 for (auto &TT : FS->type_tests()) 194 UsedTypeIds.insert(TT); 195 for (auto &TT : FS->type_test_assume_vcalls()) 196 UsedTypeIds.insert(TT.GUID); 197 for (auto &TT : FS->type_checked_load_vcalls()) 198 UsedTypeIds.insert(TT.GUID); 199 for (auto &TT : FS->type_test_assume_const_vcalls()) 200 UsedTypeIds.insert(TT.VFunc.GUID); 201 for (auto &TT : FS->type_checked_load_const_vcalls()) 202 UsedTypeIds.insert(TT.VFunc.GUID); 203 for (auto &ET : FS->calls()) { 204 AddUnsigned(ET.first.isDSOLocal()); 205 AddUsedCfiGlobal(ET.first.getGUID()); 206 } 207 } 208 }; 209 210 // Include the hash for the linkage type to reflect internalization and weak 211 // resolution, and collect any used type identifier resolutions. 212 for (auto &GS : DefinedGlobals) { 213 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 214 Hasher.update( 215 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 216 AddUsedCfiGlobal(GS.first); 217 AddUsedThings(GS.second); 218 } 219 220 // Imported functions may introduce new uses of type identifier resolutions, 221 // so we need to collect their used resolutions as well. 222 for (auto &ImpM : ImportList) 223 for (auto &ImpF : ImpM.second) 224 AddUsedThings(Index.findSummaryInModule(ImpF, ImpM.first())); 225 226 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 227 AddString(TId); 228 229 AddUnsigned(S.TTRes.TheKind); 230 AddUnsigned(S.TTRes.SizeM1BitWidth); 231 232 AddUint64(S.TTRes.AlignLog2); 233 AddUint64(S.TTRes.SizeM1); 234 AddUint64(S.TTRes.BitMask); 235 AddUint64(S.TTRes.InlineBits); 236 237 AddUint64(S.WPDRes.size()); 238 for (auto &WPD : S.WPDRes) { 239 AddUnsigned(WPD.first); 240 AddUnsigned(WPD.second.TheKind); 241 AddString(WPD.second.SingleImplName); 242 243 AddUint64(WPD.second.ResByArg.size()); 244 for (auto &ByArg : WPD.second.ResByArg) { 245 AddUint64(ByArg.first.size()); 246 for (uint64_t Arg : ByArg.first) 247 AddUint64(Arg); 248 AddUnsigned(ByArg.second.TheKind); 249 AddUint64(ByArg.second.Info); 250 AddUnsigned(ByArg.second.Byte); 251 AddUnsigned(ByArg.second.Bit); 252 } 253 } 254 }; 255 256 // Include the hash for all type identifiers used by this module. 257 for (GlobalValue::GUID TId : UsedTypeIds) { 258 auto TidIter = Index.typeIds().equal_range(TId); 259 for (auto It = TidIter.first; It != TidIter.second; ++It) 260 AddTypeIdSummary(It->second.first, It->second.second); 261 } 262 263 AddUnsigned(UsedCfiDefs.size()); 264 for (auto &V : UsedCfiDefs) 265 AddUint64(V); 266 267 AddUnsigned(UsedCfiDecls.size()); 268 for (auto &V : UsedCfiDecls) 269 AddUint64(V); 270 271 if (!Conf.SampleProfile.empty()) { 272 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 273 if (FileOrErr) { 274 Hasher.update(FileOrErr.get()->getBuffer()); 275 276 if (!Conf.ProfileRemapping.empty()) { 277 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 278 if (FileOrErr) 279 Hasher.update(FileOrErr.get()->getBuffer()); 280 } 281 } 282 } 283 284 Key = toHex(Hasher.result()); 285 } 286 287 static void thinLTOResolvePrevailingGUID( 288 GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID, 289 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 290 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 291 isPrevailing, 292 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 293 recordNewLinkage) { 294 for (auto &S : GVSummaryList) { 295 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 296 // Ignore local and appending linkage values since the linker 297 // doesn't resolve them. 298 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 299 GlobalValue::isAppendingLinkage(S->linkage())) 300 continue; 301 // We need to emit only one of these. The prevailing module will keep it, 302 // but turned into a weak, while the others will drop it when possible. 303 // This is both a compile-time optimization and a correctness 304 // transformation. This is necessary for correctness when we have exported 305 // a reference - we need to convert the linkonce to weak to 306 // ensure a copy is kept to satisfy the exported reference. 307 // FIXME: We may want to split the compile time and correctness 308 // aspects into separate routines. 309 if (isPrevailing(GUID, S.get())) { 310 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 311 S->setLinkage(GlobalValue::getWeakLinkage( 312 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 313 } 314 // Alias and aliasee can't be turned into available_externally. 315 else if (!isa<AliasSummary>(S.get()) && 316 !GlobalInvolvedWithAlias.count(S.get())) 317 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 318 if (S->linkage() != OriginalLinkage) 319 recordNewLinkage(S->modulePath(), GUID, S->linkage()); 320 } 321 } 322 323 /// Resolve linkage for prevailing symbols in the \p Index. 324 // 325 // We'd like to drop these functions if they are no longer referenced in the 326 // current module. However there is a chance that another module is still 327 // referencing them because of the import. We make sure we always emit at least 328 // one copy. 329 void llvm::thinLTOResolvePrevailingInIndex( 330 ModuleSummaryIndex &Index, 331 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 332 isPrevailing, 333 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 334 recordNewLinkage) { 335 // We won't optimize the globals that are referenced by an alias for now 336 // Ideally we should turn the alias into a global and duplicate the definition 337 // when needed. 338 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 339 for (auto &I : Index) 340 for (auto &S : I.second.SummaryList) 341 if (auto AS = dyn_cast<AliasSummary>(S.get())) 342 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 343 344 for (auto &I : Index) 345 thinLTOResolvePrevailingGUID(I.second.SummaryList, I.first, 346 GlobalInvolvedWithAlias, isPrevailing, 347 recordNewLinkage); 348 } 349 350 static void thinLTOInternalizeAndPromoteGUID( 351 GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID, 352 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) { 353 for (auto &S : GVSummaryList) { 354 if (isExported(S->modulePath(), GUID)) { 355 if (GlobalValue::isLocalLinkage(S->linkage())) 356 S->setLinkage(GlobalValue::ExternalLinkage); 357 } else if (EnableLTOInternalization && 358 // Ignore local and appending linkage values since the linker 359 // doesn't resolve them. 360 !GlobalValue::isLocalLinkage(S->linkage()) && 361 !GlobalValue::isAppendingLinkage(S->linkage())) 362 S->setLinkage(GlobalValue::InternalLinkage); 363 } 364 } 365 366 // Update the linkages in the given \p Index to mark exported values 367 // as external and non-exported values as internal. 368 void llvm::thinLTOInternalizeAndPromoteInIndex( 369 ModuleSummaryIndex &Index, 370 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) { 371 for (auto &I : Index) 372 thinLTOInternalizeAndPromoteGUID(I.second.SummaryList, I.first, isExported); 373 } 374 375 // Requires a destructor for std::vector<InputModule>. 376 InputFile::~InputFile() = default; 377 378 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 379 std::unique_ptr<InputFile> File(new InputFile); 380 381 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 382 if (!FOrErr) 383 return FOrErr.takeError(); 384 385 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 386 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 387 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 388 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 389 390 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 391 size_t Begin = File->Symbols.size(); 392 for (const irsymtab::Reader::SymbolRef &Sym : 393 FOrErr->TheReader.module_symbols(I)) 394 // Skip symbols that are irrelevant to LTO. Note that this condition needs 395 // to match the one in Skip() in LTO::addRegularLTO(). 396 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 397 File->Symbols.push_back(Sym); 398 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 399 } 400 401 File->Mods = FOrErr->Mods; 402 File->Strtab = std::move(FOrErr->Strtab); 403 return std::move(File); 404 } 405 406 StringRef InputFile::getName() const { 407 return Mods[0].getModuleIdentifier(); 408 } 409 410 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 411 Config &Conf) 412 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 413 Ctx(Conf), CombinedModule(llvm::make_unique<Module>("ld-temp.o", Ctx)), 414 Mover(llvm::make_unique<IRMover>(*CombinedModule)) {} 415 416 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 417 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 418 if (!Backend) 419 this->Backend = 420 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 421 } 422 423 LTO::LTO(Config Conf, ThinBackend Backend, 424 unsigned ParallelCodeGenParallelismLevel) 425 : Conf(std::move(Conf)), 426 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 427 ThinLTO(std::move(Backend)) {} 428 429 // Requires a destructor for MapVector<BitcodeModule>. 430 LTO::~LTO() = default; 431 432 // Add the symbols in the given module to the GlobalResolutions map, and resolve 433 // their partitions. 434 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 435 ArrayRef<SymbolResolution> Res, 436 unsigned Partition, bool InSummary) { 437 auto *ResI = Res.begin(); 438 auto *ResE = Res.end(); 439 (void)ResE; 440 for (const InputFile::Symbol &Sym : Syms) { 441 assert(ResI != ResE); 442 SymbolResolution Res = *ResI++; 443 444 StringRef Name = Sym.getName(); 445 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 446 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 447 // way they are handled by lld), otherwise we can end up with two 448 // global resolutions (one with and one for a copy of the symbol without). 449 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 450 Name = Name.substr(strlen("__imp_")); 451 auto &GlobalRes = GlobalResolutions[Name]; 452 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 453 if (Res.Prevailing) { 454 assert(!GlobalRes.Prevailing && 455 "Multiple prevailing defs are not allowed"); 456 GlobalRes.Prevailing = true; 457 GlobalRes.IRName = Sym.getIRName(); 458 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 459 // Sometimes it can be two copies of symbol in a module and prevailing 460 // symbol can have no IR name. That might happen if symbol is defined in 461 // module level inline asm block. In case we have multiple modules with 462 // the same symbol we want to use IR name of the prevailing symbol. 463 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 464 // we can later use it to check if there is any prevailing copy in IR. 465 GlobalRes.IRName = Sym.getIRName(); 466 } 467 468 // Set the partition to external if we know it is re-defined by the linker 469 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 470 // regular object, is referenced from llvm.compiler_used, or was already 471 // recorded as being referenced from a different partition. 472 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 473 (GlobalRes.Partition != GlobalResolution::Unknown && 474 GlobalRes.Partition != Partition)) { 475 GlobalRes.Partition = GlobalResolution::External; 476 } else 477 // First recorded reference, save the current partition. 478 GlobalRes.Partition = Partition; 479 480 // Flag as visible outside of summary if visible from a regular object or 481 // from a module that does not have a summary. 482 GlobalRes.VisibleOutsideSummary |= 483 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 484 } 485 } 486 487 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 488 ArrayRef<SymbolResolution> Res) { 489 StringRef Path = Input->getName(); 490 OS << Path << '\n'; 491 auto ResI = Res.begin(); 492 for (const InputFile::Symbol &Sym : Input->symbols()) { 493 assert(ResI != Res.end()); 494 SymbolResolution Res = *ResI++; 495 496 OS << "-r=" << Path << ',' << Sym.getName() << ','; 497 if (Res.Prevailing) 498 OS << 'p'; 499 if (Res.FinalDefinitionInLinkageUnit) 500 OS << 'l'; 501 if (Res.VisibleToRegularObj) 502 OS << 'x'; 503 if (Res.LinkerRedefined) 504 OS << 'r'; 505 OS << '\n'; 506 } 507 OS.flush(); 508 assert(ResI == Res.end()); 509 } 510 511 Error LTO::add(std::unique_ptr<InputFile> Input, 512 ArrayRef<SymbolResolution> Res) { 513 assert(!CalledGetMaxTasks); 514 515 if (Conf.ResolutionFile) 516 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 517 518 if (RegularLTO.CombinedModule->getTargetTriple().empty()) 519 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 520 521 const SymbolResolution *ResI = Res.begin(); 522 for (unsigned I = 0; I != Input->Mods.size(); ++I) 523 if (Error Err = addModule(*Input, I, ResI, Res.end())) 524 return Err; 525 526 assert(ResI == Res.end()); 527 return Error::success(); 528 } 529 530 Error LTO::addModule(InputFile &Input, unsigned ModI, 531 const SymbolResolution *&ResI, 532 const SymbolResolution *ResE) { 533 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 534 if (!LTOInfo) 535 return LTOInfo.takeError(); 536 537 BitcodeModule BM = Input.Mods[ModI]; 538 auto ModSyms = Input.module_symbols(ModI); 539 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 540 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 541 LTOInfo->HasSummary); 542 543 if (LTOInfo->IsThinLTO) 544 return addThinLTO(BM, ModSyms, ResI, ResE); 545 546 Expected<RegularLTOState::AddedModule> ModOrErr = 547 addRegularLTO(BM, ModSyms, ResI, ResE); 548 if (!ModOrErr) 549 return ModOrErr.takeError(); 550 551 if (!LTOInfo->HasSummary) 552 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 553 554 // Regular LTO module summaries are added to a dummy module that represents 555 // the combined regular LTO module. 556 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 557 return Err; 558 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 559 return Error::success(); 560 } 561 562 // Checks whether the given global value is in a non-prevailing comdat 563 // (comdat containing values the linker indicated were not prevailing, 564 // which we then dropped to available_externally), and if so, removes 565 // it from the comdat. This is called for all global values to ensure the 566 // comdat is empty rather than leaving an incomplete comdat. It is needed for 567 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 568 // and thin LTO modules) compilation. Since the regular LTO module will be 569 // linked first in the final native link, we want to make sure the linker 570 // doesn't select any of these incomplete comdats that would be left 571 // in the regular LTO module without this cleanup. 572 static void 573 handleNonPrevailingComdat(GlobalValue &GV, 574 std::set<const Comdat *> &NonPrevailingComdats) { 575 Comdat *C = GV.getComdat(); 576 if (!C) 577 return; 578 579 if (!NonPrevailingComdats.count(C)) 580 return; 581 582 // Additionally need to drop externally visible global values from the comdat 583 // to available_externally, so that there aren't multiply defined linker 584 // errors. 585 if (!GV.hasLocalLinkage()) 586 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 587 588 if (auto GO = dyn_cast<GlobalObject>(&GV)) 589 GO->setComdat(nullptr); 590 } 591 592 // Add a regular LTO object to the link. 593 // The resulting module needs to be linked into the combined LTO module with 594 // linkRegularLTO. 595 Expected<LTO::RegularLTOState::AddedModule> 596 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 597 const SymbolResolution *&ResI, 598 const SymbolResolution *ResE) { 599 RegularLTOState::AddedModule Mod; 600 Expected<std::unique_ptr<Module>> MOrErr = 601 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 602 /*IsImporting*/ false); 603 if (!MOrErr) 604 return MOrErr.takeError(); 605 Module &M = **MOrErr; 606 Mod.M = std::move(*MOrErr); 607 608 if (Error Err = M.materializeMetadata()) 609 return std::move(Err); 610 UpgradeDebugInfo(M); 611 612 ModuleSymbolTable SymTab; 613 SymTab.addModule(&M); 614 615 for (GlobalVariable &GV : M.globals()) 616 if (GV.hasAppendingLinkage()) 617 Mod.Keep.push_back(&GV); 618 619 DenseSet<GlobalObject *> AliasedGlobals; 620 for (auto &GA : M.aliases()) 621 if (GlobalObject *GO = GA.getBaseObject()) 622 AliasedGlobals.insert(GO); 623 624 // In this function we need IR GlobalValues matching the symbols in Syms 625 // (which is not backed by a module), so we need to enumerate them in the same 626 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 627 // matches the order of an irsymtab, but when we read the irsymtab in 628 // InputFile::create we omit some symbols that are irrelevant to LTO. The 629 // Skip() function skips the same symbols from the module as InputFile does 630 // from the symbol table. 631 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 632 auto Skip = [&]() { 633 while (MsymI != MsymE) { 634 auto Flags = SymTab.getSymbolFlags(*MsymI); 635 if ((Flags & object::BasicSymbolRef::SF_Global) && 636 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 637 return; 638 ++MsymI; 639 } 640 }; 641 Skip(); 642 643 std::set<const Comdat *> NonPrevailingComdats; 644 for (const InputFile::Symbol &Sym : Syms) { 645 assert(ResI != ResE); 646 SymbolResolution Res = *ResI++; 647 648 assert(MsymI != MsymE); 649 ModuleSymbolTable::Symbol Msym = *MsymI++; 650 Skip(); 651 652 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 653 if (Res.Prevailing) { 654 if (Sym.isUndefined()) 655 continue; 656 Mod.Keep.push_back(GV); 657 // For symbols re-defined with linker -wrap and -defsym options, 658 // set the linkage to weak to inhibit IPO. The linkage will be 659 // restored by the linker. 660 if (Res.LinkerRedefined) 661 GV->setLinkage(GlobalValue::WeakAnyLinkage); 662 663 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 664 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 665 GV->setLinkage(GlobalValue::getWeakLinkage( 666 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 667 } else if (isa<GlobalObject>(GV) && 668 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 669 GV->hasAvailableExternallyLinkage()) && 670 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 671 // Any of the above three types of linkage indicates that the 672 // chosen prevailing symbol will have the same semantics as this copy of 673 // the symbol, so we may be able to link it with available_externally 674 // linkage. We will decide later whether to do that when we link this 675 // module (in linkRegularLTO), based on whether it is undefined. 676 Mod.Keep.push_back(GV); 677 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 678 if (GV->hasComdat()) 679 NonPrevailingComdats.insert(GV->getComdat()); 680 cast<GlobalObject>(GV)->setComdat(nullptr); 681 } 682 683 // Set the 'local' flag based on the linker resolution for this symbol. 684 if (Res.FinalDefinitionInLinkageUnit) 685 GV->setDSOLocal(true); 686 } 687 // Common resolution: collect the maximum size/alignment over all commons. 688 // We also record if we see an instance of a common as prevailing, so that 689 // if none is prevailing we can ignore it later. 690 if (Sym.isCommon()) { 691 // FIXME: We should figure out what to do about commons defined by asm. 692 // For now they aren't reported correctly by ModuleSymbolTable. 693 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()]; 694 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 695 CommonRes.Align = std::max(CommonRes.Align, Sym.getCommonAlignment()); 696 CommonRes.Prevailing |= Res.Prevailing; 697 } 698 699 } 700 if (!M.getComdatSymbolTable().empty()) 701 for (GlobalValue &GV : M.global_values()) 702 handleNonPrevailingComdat(GV, NonPrevailingComdats); 703 assert(MsymI == MsymE); 704 return std::move(Mod); 705 } 706 707 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 708 bool LivenessFromIndex) { 709 std::vector<GlobalValue *> Keep; 710 for (GlobalValue *GV : Mod.Keep) { 711 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) 712 continue; 713 714 if (!GV->hasAvailableExternallyLinkage()) { 715 Keep.push_back(GV); 716 continue; 717 } 718 719 // Only link available_externally definitions if we don't already have a 720 // definition. 721 GlobalValue *CombinedGV = 722 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 723 if (CombinedGV && !CombinedGV->isDeclaration()) 724 continue; 725 726 Keep.push_back(GV); 727 } 728 729 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 730 [](GlobalValue &, IRMover::ValueAdder) {}, 731 /* IsPerformingImport */ false); 732 } 733 734 // Add a ThinLTO module to the link. 735 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 736 const SymbolResolution *&ResI, 737 const SymbolResolution *ResE) { 738 if (Error Err = 739 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 740 ThinLTO.ModuleMap.size())) 741 return Err; 742 743 for (const InputFile::Symbol &Sym : Syms) { 744 assert(ResI != ResE); 745 SymbolResolution Res = *ResI++; 746 747 if (!Sym.getIRName().empty()) { 748 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 749 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 750 if (Res.Prevailing) { 751 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 752 753 // For linker redefined symbols (via --wrap or --defsym) we want to 754 // switch the linkage to `weak` to prevent IPOs from happening. 755 // Find the summary in the module for this very GV and record the new 756 // linkage so that we can switch it when we import the GV. 757 if (Res.LinkerRedefined) 758 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 759 GUID, BM.getModuleIdentifier())) 760 S->setLinkage(GlobalValue::WeakAnyLinkage); 761 } 762 763 // If the linker resolved the symbol to a local definition then mark it 764 // as local in the summary for the module we are adding. 765 if (Res.FinalDefinitionInLinkageUnit) { 766 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 767 GUID, BM.getModuleIdentifier())) { 768 S->setDSOLocal(true); 769 } 770 } 771 } 772 } 773 774 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 775 return make_error<StringError>( 776 "Expected at most one ThinLTO module per bitcode file", 777 inconvertibleErrorCode()); 778 779 return Error::success(); 780 } 781 782 unsigned LTO::getMaxTasks() const { 783 CalledGetMaxTasks = true; 784 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size(); 785 } 786 787 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 788 // Compute "dead" symbols, we don't want to import/export these! 789 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 790 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 791 for (auto &Res : GlobalResolutions) { 792 // Normally resolution have IR name of symbol. We can do nothing here 793 // otherwise. See comments in GlobalResolution struct for more details. 794 if (Res.second.IRName.empty()) 795 continue; 796 797 GlobalValue::GUID GUID = GlobalValue::getGUID( 798 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 799 800 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 801 GUIDPreservedSymbols.insert(GlobalValue::getGUID( 802 GlobalValue::dropLLVMManglingEscape(Res.second.IRName))); 803 804 GUIDPrevailingResolutions[GUID] = 805 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 806 } 807 808 auto isPrevailing = [&](GlobalValue::GUID G) { 809 auto It = GUIDPrevailingResolutions.find(G); 810 if (It == GUIDPrevailingResolutions.end()) 811 return PrevailingType::Unknown; 812 return It->second; 813 }; 814 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 815 isPrevailing, Conf.OptLevel > 0); 816 817 // Setup output file to emit statistics. 818 std::unique_ptr<ToolOutputFile> StatsFile = nullptr; 819 if (!Conf.StatsFile.empty()) { 820 EnableStatistics(false); 821 std::error_code EC; 822 StatsFile = 823 llvm::make_unique<ToolOutputFile>(Conf.StatsFile, EC, sys::fs::F_None); 824 if (EC) 825 return errorCodeToError(EC); 826 StatsFile->keep(); 827 } 828 829 Error Result = runRegularLTO(AddStream); 830 if (!Result) 831 Result = runThinLTO(AddStream, Cache); 832 833 if (StatsFile) 834 PrintStatisticsJSON(StatsFile->os()); 835 836 return Result; 837 } 838 839 Error LTO::runRegularLTO(AddStreamFn AddStream) { 840 for (auto &M : RegularLTO.ModsWithSummaries) 841 if (Error Err = linkRegularLTO(std::move(M), 842 /*LivenessFromIndex=*/true)) 843 return Err; 844 845 // Make sure commons have the right size/alignment: we kept the largest from 846 // all the prevailing when adding the inputs, and we apply it here. 847 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 848 for (auto &I : RegularLTO.Commons) { 849 if (!I.second.Prevailing) 850 // Don't do anything if no instance of this common was prevailing. 851 continue; 852 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 853 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 854 // Don't create a new global if the type is already correct, just make 855 // sure the alignment is correct. 856 OldGV->setAlignment(I.second.Align); 857 continue; 858 } 859 ArrayType *Ty = 860 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 861 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 862 GlobalValue::CommonLinkage, 863 ConstantAggregateZero::get(Ty), ""); 864 GV->setAlignment(I.second.Align); 865 if (OldGV) { 866 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 867 GV->takeName(OldGV); 868 OldGV->eraseFromParent(); 869 } else { 870 GV->setName(I.first); 871 } 872 } 873 874 if (Conf.PreOptModuleHook && 875 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 876 return Error::success(); 877 878 if (!Conf.CodeGenOnly) { 879 for (const auto &R : GlobalResolutions) { 880 if (!R.second.isPrevailingIRSymbol()) 881 continue; 882 if (R.second.Partition != 0 && 883 R.second.Partition != GlobalResolution::External) 884 continue; 885 886 GlobalValue *GV = 887 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 888 // Ignore symbols defined in other partitions. 889 // Also skip declarations, which are not allowed to have internal linkage. 890 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 891 continue; 892 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 893 : GlobalValue::UnnamedAddr::None); 894 if (EnableLTOInternalization && R.second.Partition == 0) 895 GV->setLinkage(GlobalValue::InternalLinkage); 896 } 897 898 if (Conf.PostInternalizeModuleHook && 899 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 900 return Error::success(); 901 } 902 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 903 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex); 904 } 905 906 /// This class defines the interface to the ThinLTO backend. 907 class lto::ThinBackendProc { 908 protected: 909 Config &Conf; 910 ModuleSummaryIndex &CombinedIndex; 911 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 912 913 public: 914 ThinBackendProc(Config &Conf, ModuleSummaryIndex &CombinedIndex, 915 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 916 : Conf(Conf), CombinedIndex(CombinedIndex), 917 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 918 919 virtual ~ThinBackendProc() {} 920 virtual Error start( 921 unsigned Task, BitcodeModule BM, 922 const FunctionImporter::ImportMapTy &ImportList, 923 const FunctionImporter::ExportSetTy &ExportList, 924 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 925 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 926 virtual Error wait() = 0; 927 }; 928 929 namespace { 930 class InProcessThinBackend : public ThinBackendProc { 931 ThreadPool BackendThreadPool; 932 AddStreamFn AddStream; 933 NativeObjectCache Cache; 934 std::set<GlobalValue::GUID> CfiFunctionDefs; 935 std::set<GlobalValue::GUID> CfiFunctionDecls; 936 937 Optional<Error> Err; 938 std::mutex ErrMu; 939 940 public: 941 InProcessThinBackend( 942 Config &Conf, ModuleSummaryIndex &CombinedIndex, 943 unsigned ThinLTOParallelismLevel, 944 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 945 AddStreamFn AddStream, NativeObjectCache Cache) 946 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 947 BackendThreadPool(ThinLTOParallelismLevel), 948 AddStream(std::move(AddStream)), Cache(std::move(Cache)) { 949 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 950 CfiFunctionDefs.insert( 951 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 952 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 953 CfiFunctionDecls.insert( 954 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 955 } 956 957 Error runThinLTOBackendThread( 958 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 959 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 960 const FunctionImporter::ImportMapTy &ImportList, 961 const FunctionImporter::ExportSetTy &ExportList, 962 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 963 const GVSummaryMapTy &DefinedGlobals, 964 MapVector<StringRef, BitcodeModule> &ModuleMap) { 965 auto RunThinBackend = [&](AddStreamFn AddStream) { 966 LTOLLVMContext BackendContext(Conf); 967 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 968 if (!MOrErr) 969 return MOrErr.takeError(); 970 971 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 972 ImportList, DefinedGlobals, ModuleMap); 973 }; 974 975 auto ModuleID = BM.getModuleIdentifier(); 976 977 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 978 all_of(CombinedIndex.getModuleHash(ModuleID), 979 [](uint32_t V) { return V == 0; })) 980 // Cache disabled or no entry for this module in the combined index or 981 // no module hash. 982 return RunThinBackend(AddStream); 983 984 SmallString<40> Key; 985 // The module may be cached, this helps handling it. 986 computeCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, ExportList, 987 ResolvedODR, DefinedGlobals, CfiFunctionDefs, 988 CfiFunctionDecls); 989 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 990 return RunThinBackend(CacheAddStream); 991 992 return Error::success(); 993 } 994 995 Error start( 996 unsigned Task, BitcodeModule BM, 997 const FunctionImporter::ImportMapTy &ImportList, 998 const FunctionImporter::ExportSetTy &ExportList, 999 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1000 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1001 StringRef ModulePath = BM.getModuleIdentifier(); 1002 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1003 const GVSummaryMapTy &DefinedGlobals = 1004 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1005 BackendThreadPool.async( 1006 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1007 const FunctionImporter::ImportMapTy &ImportList, 1008 const FunctionImporter::ExportSetTy &ExportList, 1009 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1010 &ResolvedODR, 1011 const GVSummaryMapTy &DefinedGlobals, 1012 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1013 Error E = runThinLTOBackendThread( 1014 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1015 ResolvedODR, DefinedGlobals, ModuleMap); 1016 if (E) { 1017 std::unique_lock<std::mutex> L(ErrMu); 1018 if (Err) 1019 Err = joinErrors(std::move(*Err), std::move(E)); 1020 else 1021 Err = std::move(E); 1022 } 1023 }, 1024 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1025 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1026 return Error::success(); 1027 } 1028 1029 Error wait() override { 1030 BackendThreadPool.wait(); 1031 if (Err) 1032 return std::move(*Err); 1033 else 1034 return Error::success(); 1035 } 1036 }; 1037 } // end anonymous namespace 1038 1039 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) { 1040 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, 1041 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1042 AddStreamFn AddStream, NativeObjectCache Cache) { 1043 return llvm::make_unique<InProcessThinBackend>( 1044 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries, 1045 AddStream, Cache); 1046 }; 1047 } 1048 1049 // Given the original \p Path to an output file, replace any path 1050 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1051 // resulting directory if it does not yet exist. 1052 std::string lto::getThinLTOOutputFile(const std::string &Path, 1053 const std::string &OldPrefix, 1054 const std::string &NewPrefix) { 1055 if (OldPrefix.empty() && NewPrefix.empty()) 1056 return Path; 1057 SmallString<128> NewPath(Path); 1058 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1059 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1060 if (!ParentPath.empty()) { 1061 // Make sure the new directory exists, creating it if necessary. 1062 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1063 llvm::errs() << "warning: could not create directory '" << ParentPath 1064 << "': " << EC.message() << '\n'; 1065 } 1066 return NewPath.str(); 1067 } 1068 1069 namespace { 1070 class WriteIndexesThinBackend : public ThinBackendProc { 1071 std::string OldPrefix, NewPrefix; 1072 bool ShouldEmitImportsFiles; 1073 raw_fd_ostream *LinkedObjectsFile; 1074 lto::IndexWriteCallback OnWrite; 1075 1076 public: 1077 WriteIndexesThinBackend( 1078 Config &Conf, ModuleSummaryIndex &CombinedIndex, 1079 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1080 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1081 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1082 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1083 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1084 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1085 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1086 1087 Error start( 1088 unsigned Task, BitcodeModule BM, 1089 const FunctionImporter::ImportMapTy &ImportList, 1090 const FunctionImporter::ExportSetTy &ExportList, 1091 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1092 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1093 StringRef ModulePath = BM.getModuleIdentifier(); 1094 std::string NewModulePath = 1095 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1096 1097 if (LinkedObjectsFile) 1098 *LinkedObjectsFile << NewModulePath << '\n'; 1099 1100 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1101 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1102 ImportList, ModuleToSummariesForIndex); 1103 1104 std::error_code EC; 1105 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1106 sys::fs::OpenFlags::F_None); 1107 if (EC) 1108 return errorCodeToError(EC); 1109 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1110 1111 if (ShouldEmitImportsFiles) { 1112 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1113 ModuleToSummariesForIndex); 1114 if (EC) 1115 return errorCodeToError(EC); 1116 } 1117 1118 if (OnWrite) 1119 OnWrite(ModulePath); 1120 return Error::success(); 1121 } 1122 1123 Error wait() override { return Error::success(); } 1124 }; 1125 } // end anonymous namespace 1126 1127 ThinBackend lto::createWriteIndexesThinBackend( 1128 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1129 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1130 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, 1131 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1132 AddStreamFn AddStream, NativeObjectCache Cache) { 1133 return llvm::make_unique<WriteIndexesThinBackend>( 1134 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1135 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1136 }; 1137 } 1138 1139 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache) { 1140 if (ThinLTO.ModuleMap.empty()) 1141 return Error::success(); 1142 1143 if (Conf.CombinedIndexHook && !Conf.CombinedIndexHook(ThinLTO.CombinedIndex)) 1144 return Error::success(); 1145 1146 // Collect for each module the list of function it defines (GUID -> 1147 // Summary). 1148 StringMap<GVSummaryMapTy> 1149 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1150 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1151 ModuleToDefinedGVSummaries); 1152 // Create entries for any modules that didn't have any GV summaries 1153 // (either they didn't have any GVs to start with, or we suppressed 1154 // generation of the summaries because they e.g. had inline assembly 1155 // uses that couldn't be promoted/renamed on export). This is so 1156 // InProcessThinBackend::start can still launch a backend thread, which 1157 // is passed the map of summaries for the module, without any special 1158 // handling for this case. 1159 for (auto &Mod : ThinLTO.ModuleMap) 1160 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1161 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1162 1163 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1164 ThinLTO.ModuleMap.size()); 1165 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1166 ThinLTO.ModuleMap.size()); 1167 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1168 1169 if (DumpThinCGSCCs) 1170 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1171 1172 if (Conf.OptLevel > 0) 1173 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1174 ImportLists, ExportLists); 1175 1176 // Figure out which symbols need to be internalized. This also needs to happen 1177 // at -O0 because summary-based DCE is implemented using internalization, and 1178 // we must apply DCE consistently with the full LTO module in order to avoid 1179 // undefined references during the final link. 1180 std::set<GlobalValue::GUID> ExportedGUIDs; 1181 for (auto &Res : GlobalResolutions) { 1182 // If the symbol does not have external references or it is not prevailing, 1183 // then not need to mark it as exported from a ThinLTO partition. 1184 if (Res.second.Partition != GlobalResolution::External || 1185 !Res.second.isPrevailingIRSymbol()) 1186 continue; 1187 auto GUID = GlobalValue::getGUID( 1188 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1189 // Mark exported unless index-based analysis determined it to be dead. 1190 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1191 ExportedGUIDs.insert(GUID); 1192 } 1193 1194 // Any functions referenced by the jump table in the regular LTO object must 1195 // be exported. 1196 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1197 ExportedGUIDs.insert( 1198 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1199 1200 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { 1201 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1202 return (ExportList != ExportLists.end() && 1203 ExportList->second.count(GUID)) || 1204 ExportedGUIDs.count(GUID); 1205 }; 1206 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported); 1207 1208 auto isPrevailing = [&](GlobalValue::GUID GUID, 1209 const GlobalValueSummary *S) { 1210 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1211 }; 1212 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1213 GlobalValue::GUID GUID, 1214 GlobalValue::LinkageTypes NewLinkage) { 1215 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1216 }; 1217 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing, 1218 recordNewLinkage); 1219 1220 std::unique_ptr<ThinBackendProc> BackendProc = 1221 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1222 AddStream, Cache); 1223 1224 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined 1225 // module and parallel code generation partitions. 1226 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel; 1227 for (auto &Mod : ThinLTO.ModuleMap) { 1228 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first], 1229 ExportLists[Mod.first], 1230 ResolvedODR[Mod.first], ThinLTO.ModuleMap)) 1231 return E; 1232 ++Task; 1233 } 1234 1235 return BackendProc->wait(); 1236 } 1237 1238 Expected<std::unique_ptr<ToolOutputFile>> 1239 lto::setupOptimizationRemarks(LLVMContext &Context, 1240 StringRef LTORemarksFilename, 1241 bool LTOPassRemarksWithHotness, int Count) { 1242 if (LTOPassRemarksWithHotness) 1243 Context.setDiagnosticsHotnessRequested(true); 1244 if (LTORemarksFilename.empty()) 1245 return nullptr; 1246 1247 std::string Filename = LTORemarksFilename; 1248 if (Count != -1) 1249 Filename += ".thin." + llvm::utostr(Count) + ".yaml"; 1250 1251 std::error_code EC; 1252 auto DiagnosticFile = 1253 llvm::make_unique<ToolOutputFile>(Filename, EC, sys::fs::F_None); 1254 if (EC) 1255 return errorCodeToError(EC); 1256 Context.setDiagnosticsOutputFile( 1257 llvm::make_unique<yaml::Output>(DiagnosticFile->os())); 1258 DiagnosticFile->keep(); 1259 return std::move(DiagnosticFile); 1260 } 1261