1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/SmallSet.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 18 #include "llvm/Analysis/StackSafetyAnalysis.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Bitcode/BitcodeReader.h" 22 #include "llvm/Bitcode/BitcodeWriter.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/AutoUpgrade.h" 26 #include "llvm/IR/DiagnosticPrinter.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMRemarkStreamer.h" 29 #include "llvm/IR/LegacyPassManager.h" 30 #include "llvm/IR/Mangler.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/LTO/LTOBackend.h" 33 #include "llvm/LTO/SummaryBasedOptimizations.h" 34 #include "llvm/Linker/IRMover.h" 35 #include "llvm/Object/IRObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Error.h" 38 #include "llvm/Support/ManagedStatic.h" 39 #include "llvm/Support/MemoryBuffer.h" 40 #include "llvm/Support/Path.h" 41 #include "llvm/Support/SHA1.h" 42 #include "llvm/Support/SourceMgr.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Support/ThreadPool.h" 45 #include "llvm/Support/Threading.h" 46 #include "llvm/Support/TimeProfiler.h" 47 #include "llvm/Support/VCSRevision.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 55 #include "llvm/Transforms/Utils/SplitModule.h" 56 57 #include <set> 58 59 using namespace llvm; 60 using namespace lto; 61 using namespace object; 62 63 #define DEBUG_TYPE "lto" 64 65 static cl::opt<bool> 66 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 67 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 68 69 /// Enable global value internalization in LTO. 70 cl::opt<bool> EnableLTOInternalization( 71 "enable-lto-internalization", cl::init(true), cl::Hidden, 72 cl::desc("Enable global value internalization in LTO")); 73 74 // Computes a unique hash for the Module considering the current list of 75 // export/import and other global analysis results. 76 // The hash is produced in \p Key. 77 void llvm::computeLTOCacheKey( 78 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 79 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 80 const FunctionImporter::ExportSetTy &ExportList, 81 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 82 const GVSummaryMapTy &DefinedGlobals, 83 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 84 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 85 // Compute the unique hash for this entry. 86 // This is based on the current compiler version, the module itself, the 87 // export list, the hash for every single module in the import list, the 88 // list of ResolvedODR for the module, and the list of preserved symbols. 89 SHA1 Hasher; 90 91 // Start with the compiler revision 92 Hasher.update(LLVM_VERSION_STRING); 93 #ifdef LLVM_REVISION 94 Hasher.update(LLVM_REVISION); 95 #endif 96 97 // Include the parts of the LTO configuration that affect code generation. 98 auto AddString = [&](StringRef Str) { 99 Hasher.update(Str); 100 Hasher.update(ArrayRef<uint8_t>{0}); 101 }; 102 auto AddUnsigned = [&](unsigned I) { 103 uint8_t Data[4]; 104 support::endian::write32le(Data, I); 105 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 106 }; 107 auto AddUint64 = [&](uint64_t I) { 108 uint8_t Data[8]; 109 support::endian::write64le(Data, I); 110 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 111 }; 112 AddString(Conf.CPU); 113 // FIXME: Hash more of Options. For now all clients initialize Options from 114 // command-line flags (which is unsupported in production), but may set 115 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 116 // DataSections and DebuggerTuning via command line flags. 117 AddUnsigned(Conf.Options.RelaxELFRelocations); 118 AddUnsigned(Conf.Options.FunctionSections); 119 AddUnsigned(Conf.Options.DataSections); 120 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 121 for (auto &A : Conf.MAttrs) 122 AddString(A); 123 if (Conf.RelocModel) 124 AddUnsigned(*Conf.RelocModel); 125 else 126 AddUnsigned(-1); 127 if (Conf.CodeModel) 128 AddUnsigned(*Conf.CodeModel); 129 else 130 AddUnsigned(-1); 131 AddUnsigned(Conf.CGOptLevel); 132 AddUnsigned(Conf.CGFileType); 133 AddUnsigned(Conf.OptLevel); 134 AddUnsigned(Conf.UseNewPM); 135 AddUnsigned(Conf.Freestanding); 136 AddString(Conf.OptPipeline); 137 AddString(Conf.AAPipeline); 138 AddString(Conf.OverrideTriple); 139 AddString(Conf.DefaultTriple); 140 AddString(Conf.DwoDir); 141 142 // Include the hash for the current module 143 auto ModHash = Index.getModuleHash(ModuleID); 144 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 145 146 std::vector<uint64_t> ExportsGUID; 147 ExportsGUID.reserve(ExportList.size()); 148 for (const auto &VI : ExportList) { 149 auto GUID = VI.getGUID(); 150 ExportsGUID.push_back(GUID); 151 } 152 153 // Sort the export list elements GUIDs. 154 llvm::sort(ExportsGUID); 155 for (uint64_t GUID : ExportsGUID) { 156 // The export list can impact the internalization, be conservative here 157 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 158 } 159 160 // Include the hash for every module we import functions from. The set of 161 // imported symbols for each module may affect code generation and is 162 // sensitive to link order, so include that as well. 163 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 164 std::vector<ImportMapIteratorTy> ImportModulesVector; 165 ImportModulesVector.reserve(ImportList.size()); 166 167 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 168 ++It) { 169 ImportModulesVector.push_back(It); 170 } 171 llvm::sort(ImportModulesVector, 172 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 173 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 174 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 175 auto ModHash = Index.getModuleHash(EntryIt->first()); 176 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 177 178 AddUint64(EntryIt->second.size()); 179 for (auto &Fn : EntryIt->second) 180 AddUint64(Fn); 181 } 182 183 // Include the hash for the resolved ODR. 184 for (auto &Entry : ResolvedODR) { 185 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 186 sizeof(GlobalValue::GUID))); 187 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 188 sizeof(GlobalValue::LinkageTypes))); 189 } 190 191 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 192 // defined in this module. 193 std::set<GlobalValue::GUID> UsedCfiDefs; 194 std::set<GlobalValue::GUID> UsedCfiDecls; 195 196 // Typeids used in this module. 197 std::set<GlobalValue::GUID> UsedTypeIds; 198 199 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 200 if (CfiFunctionDefs.count(ValueGUID)) 201 UsedCfiDefs.insert(ValueGUID); 202 if (CfiFunctionDecls.count(ValueGUID)) 203 UsedCfiDecls.insert(ValueGUID); 204 }; 205 206 auto AddUsedThings = [&](GlobalValueSummary *GS) { 207 if (!GS) return; 208 AddUnsigned(GS->getVisibility()); 209 AddUnsigned(GS->isLive()); 210 AddUnsigned(GS->canAutoHide()); 211 for (const ValueInfo &VI : GS->refs()) { 212 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 213 AddUsedCfiGlobal(VI.getGUID()); 214 } 215 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 216 AddUnsigned(GVS->maybeReadOnly()); 217 AddUnsigned(GVS->maybeWriteOnly()); 218 } 219 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 220 for (auto &TT : FS->type_tests()) 221 UsedTypeIds.insert(TT); 222 for (auto &TT : FS->type_test_assume_vcalls()) 223 UsedTypeIds.insert(TT.GUID); 224 for (auto &TT : FS->type_checked_load_vcalls()) 225 UsedTypeIds.insert(TT.GUID); 226 for (auto &TT : FS->type_test_assume_const_vcalls()) 227 UsedTypeIds.insert(TT.VFunc.GUID); 228 for (auto &TT : FS->type_checked_load_const_vcalls()) 229 UsedTypeIds.insert(TT.VFunc.GUID); 230 for (auto &ET : FS->calls()) { 231 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 232 AddUsedCfiGlobal(ET.first.getGUID()); 233 } 234 } 235 }; 236 237 // Include the hash for the linkage type to reflect internalization and weak 238 // resolution, and collect any used type identifier resolutions. 239 for (auto &GS : DefinedGlobals) { 240 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 241 Hasher.update( 242 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 243 AddUsedCfiGlobal(GS.first); 244 AddUsedThings(GS.second); 245 } 246 247 // Imported functions may introduce new uses of type identifier resolutions, 248 // so we need to collect their used resolutions as well. 249 for (auto &ImpM : ImportList) 250 for (auto &ImpF : ImpM.second) { 251 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 252 AddUsedThings(S); 253 // If this is an alias, we also care about any types/etc. that the aliasee 254 // may reference. 255 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 256 AddUsedThings(AS->getBaseObject()); 257 } 258 259 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 260 AddString(TId); 261 262 AddUnsigned(S.TTRes.TheKind); 263 AddUnsigned(S.TTRes.SizeM1BitWidth); 264 265 AddUint64(S.TTRes.AlignLog2); 266 AddUint64(S.TTRes.SizeM1); 267 AddUint64(S.TTRes.BitMask); 268 AddUint64(S.TTRes.InlineBits); 269 270 AddUint64(S.WPDRes.size()); 271 for (auto &WPD : S.WPDRes) { 272 AddUnsigned(WPD.first); 273 AddUnsigned(WPD.second.TheKind); 274 AddString(WPD.second.SingleImplName); 275 276 AddUint64(WPD.second.ResByArg.size()); 277 for (auto &ByArg : WPD.second.ResByArg) { 278 AddUint64(ByArg.first.size()); 279 for (uint64_t Arg : ByArg.first) 280 AddUint64(Arg); 281 AddUnsigned(ByArg.second.TheKind); 282 AddUint64(ByArg.second.Info); 283 AddUnsigned(ByArg.second.Byte); 284 AddUnsigned(ByArg.second.Bit); 285 } 286 } 287 }; 288 289 // Include the hash for all type identifiers used by this module. 290 for (GlobalValue::GUID TId : UsedTypeIds) { 291 auto TidIter = Index.typeIds().equal_range(TId); 292 for (auto It = TidIter.first; It != TidIter.second; ++It) 293 AddTypeIdSummary(It->second.first, It->second.second); 294 } 295 296 AddUnsigned(UsedCfiDefs.size()); 297 for (auto &V : UsedCfiDefs) 298 AddUint64(V); 299 300 AddUnsigned(UsedCfiDecls.size()); 301 for (auto &V : UsedCfiDecls) 302 AddUint64(V); 303 304 if (!Conf.SampleProfile.empty()) { 305 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 306 if (FileOrErr) { 307 Hasher.update(FileOrErr.get()->getBuffer()); 308 309 if (!Conf.ProfileRemapping.empty()) { 310 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 311 if (FileOrErr) 312 Hasher.update(FileOrErr.get()->getBuffer()); 313 } 314 } 315 } 316 317 Key = toHex(Hasher.result()); 318 } 319 320 static void thinLTOResolvePrevailingGUID( 321 const Config &C, ValueInfo VI, 322 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 323 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 324 isPrevailing, 325 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 326 recordNewLinkage, 327 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 328 GlobalValue::VisibilityTypes Visibility = 329 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 330 : GlobalValue::DefaultVisibility; 331 for (auto &S : VI.getSummaryList()) { 332 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 333 // Ignore local and appending linkage values since the linker 334 // doesn't resolve them. 335 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 336 GlobalValue::isAppendingLinkage(S->linkage())) 337 continue; 338 // We need to emit only one of these. The prevailing module will keep it, 339 // but turned into a weak, while the others will drop it when possible. 340 // This is both a compile-time optimization and a correctness 341 // transformation. This is necessary for correctness when we have exported 342 // a reference - we need to convert the linkonce to weak to 343 // ensure a copy is kept to satisfy the exported reference. 344 // FIXME: We may want to split the compile time and correctness 345 // aspects into separate routines. 346 if (isPrevailing(VI.getGUID(), S.get())) { 347 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 348 S->setLinkage(GlobalValue::getWeakLinkage( 349 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 350 // The kept copy is eligible for auto-hiding (hidden visibility) if all 351 // copies were (i.e. they were all linkonce_odr global unnamed addr). 352 // If any copy is not (e.g. it was originally weak_odr), then the symbol 353 // must remain externally available (e.g. a weak_odr from an explicitly 354 // instantiated template). Additionally, if it is in the 355 // GUIDPreservedSymbols set, that means that it is visibile outside 356 // the summary (e.g. in a native object or a bitcode file without 357 // summary), and in that case we cannot hide it as it isn't possible to 358 // check all copies. 359 S->setCanAutoHide(VI.canAutoHide() && 360 !GUIDPreservedSymbols.count(VI.getGUID())); 361 } 362 if (C.VisibilityScheme == Config::FromPrevailing) 363 Visibility = S->getVisibility(); 364 } 365 // Alias and aliasee can't be turned into available_externally. 366 else if (!isa<AliasSummary>(S.get()) && 367 !GlobalInvolvedWithAlias.count(S.get())) 368 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 369 370 // For ELF, set visibility to the computed visibility from summaries. We 371 // don't track visibility from declarations so this may be more relaxed than 372 // the most constraining one. 373 if (C.VisibilityScheme == Config::ELF) 374 S->setVisibility(Visibility); 375 376 if (S->linkage() != OriginalLinkage) 377 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 378 } 379 380 if (C.VisibilityScheme == Config::FromPrevailing) { 381 for (auto &S : VI.getSummaryList()) { 382 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 383 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 384 GlobalValue::isAppendingLinkage(S->linkage())) 385 continue; 386 S->setVisibility(Visibility); 387 } 388 } 389 } 390 391 /// Resolve linkage for prevailing symbols in the \p Index. 392 // 393 // We'd like to drop these functions if they are no longer referenced in the 394 // current module. However there is a chance that another module is still 395 // referencing them because of the import. We make sure we always emit at least 396 // one copy. 397 void llvm::thinLTOResolvePrevailingInIndex( 398 const Config &C, ModuleSummaryIndex &Index, 399 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 400 isPrevailing, 401 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 402 recordNewLinkage, 403 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 404 // We won't optimize the globals that are referenced by an alias for now 405 // Ideally we should turn the alias into a global and duplicate the definition 406 // when needed. 407 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 408 for (auto &I : Index) 409 for (auto &S : I.second.SummaryList) 410 if (auto AS = dyn_cast<AliasSummary>(S.get())) 411 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 412 413 for (auto &I : Index) 414 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 415 GlobalInvolvedWithAlias, isPrevailing, 416 recordNewLinkage, GUIDPreservedSymbols); 417 } 418 419 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 420 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 421 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 422 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 423 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 424 return false; 425 } 426 427 static void thinLTOInternalizeAndPromoteGUID( 428 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 429 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 430 isPrevailing) { 431 for (auto &S : VI.getSummaryList()) { 432 if (isExported(S->modulePath(), VI)) { 433 if (GlobalValue::isLocalLinkage(S->linkage())) 434 S->setLinkage(GlobalValue::ExternalLinkage); 435 } else if (EnableLTOInternalization && 436 // Ignore local and appending linkage values since the linker 437 // doesn't resolve them. 438 !GlobalValue::isLocalLinkage(S->linkage()) && 439 (!GlobalValue::isInterposableLinkage(S->linkage()) || 440 isPrevailing(VI.getGUID(), S.get())) && 441 S->linkage() != GlobalValue::AppendingLinkage && 442 // We can't internalize available_externally globals because this 443 // can break function pointer equality. 444 S->linkage() != GlobalValue::AvailableExternallyLinkage && 445 // Functions and read-only variables with linkonce_odr and 446 // weak_odr linkage can be internalized. We can't internalize 447 // linkonce_odr and weak_odr variables which are both modified 448 // and read somewhere in the program because reads and writes 449 // will become inconsistent. 450 !isWeakObjectWithRWAccess(S.get())) 451 S->setLinkage(GlobalValue::InternalLinkage); 452 } 453 } 454 455 // Update the linkages in the given \p Index to mark exported values 456 // as external and non-exported values as internal. 457 void llvm::thinLTOInternalizeAndPromoteInIndex( 458 ModuleSummaryIndex &Index, 459 function_ref<bool(StringRef, ValueInfo)> isExported, 460 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 461 isPrevailing) { 462 for (auto &I : Index) 463 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 464 isPrevailing); 465 } 466 467 // Requires a destructor for std::vector<InputModule>. 468 InputFile::~InputFile() = default; 469 470 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 471 std::unique_ptr<InputFile> File(new InputFile); 472 473 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 474 if (!FOrErr) 475 return FOrErr.takeError(); 476 477 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 478 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 479 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 480 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 481 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 482 483 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 484 size_t Begin = File->Symbols.size(); 485 for (const irsymtab::Reader::SymbolRef &Sym : 486 FOrErr->TheReader.module_symbols(I)) 487 // Skip symbols that are irrelevant to LTO. Note that this condition needs 488 // to match the one in Skip() in LTO::addRegularLTO(). 489 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 490 File->Symbols.push_back(Sym); 491 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 492 } 493 494 File->Mods = FOrErr->Mods; 495 File->Strtab = std::move(FOrErr->Strtab); 496 return std::move(File); 497 } 498 499 StringRef InputFile::getName() const { 500 return Mods[0].getModuleIdentifier(); 501 } 502 503 BitcodeModule &InputFile::getSingleBitcodeModule() { 504 assert(Mods.size() == 1 && "Expect only one bitcode module"); 505 return Mods[0]; 506 } 507 508 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 509 const Config &Conf) 510 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 511 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 512 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 513 514 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 515 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 516 if (!Backend) 517 this->Backend = 518 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 519 } 520 521 LTO::LTO(Config Conf, ThinBackend Backend, 522 unsigned ParallelCodeGenParallelismLevel) 523 : Conf(std::move(Conf)), 524 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 525 ThinLTO(std::move(Backend)) {} 526 527 // Requires a destructor for MapVector<BitcodeModule>. 528 LTO::~LTO() = default; 529 530 // Add the symbols in the given module to the GlobalResolutions map, and resolve 531 // their partitions. 532 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 533 ArrayRef<SymbolResolution> Res, 534 unsigned Partition, bool InSummary) { 535 auto *ResI = Res.begin(); 536 auto *ResE = Res.end(); 537 (void)ResE; 538 for (const InputFile::Symbol &Sym : Syms) { 539 assert(ResI != ResE); 540 SymbolResolution Res = *ResI++; 541 542 StringRef Name = Sym.getName(); 543 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 544 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 545 // way they are handled by lld), otherwise we can end up with two 546 // global resolutions (one with and one for a copy of the symbol without). 547 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 548 Name = Name.substr(strlen("__imp_")); 549 auto &GlobalRes = GlobalResolutions[Name]; 550 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 551 if (Res.Prevailing) { 552 assert(!GlobalRes.Prevailing && 553 "Multiple prevailing defs are not allowed"); 554 GlobalRes.Prevailing = true; 555 GlobalRes.IRName = std::string(Sym.getIRName()); 556 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 557 // Sometimes it can be two copies of symbol in a module and prevailing 558 // symbol can have no IR name. That might happen if symbol is defined in 559 // module level inline asm block. In case we have multiple modules with 560 // the same symbol we want to use IR name of the prevailing symbol. 561 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 562 // we can later use it to check if there is any prevailing copy in IR. 563 GlobalRes.IRName = std::string(Sym.getIRName()); 564 } 565 566 // Set the partition to external if we know it is re-defined by the linker 567 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 568 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 569 // already recorded as being referenced from a different partition. 570 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 571 (GlobalRes.Partition != GlobalResolution::Unknown && 572 GlobalRes.Partition != Partition)) { 573 GlobalRes.Partition = GlobalResolution::External; 574 } else 575 // First recorded reference, save the current partition. 576 GlobalRes.Partition = Partition; 577 578 // Flag as visible outside of summary if visible from a regular object or 579 // from a module that does not have a summary. 580 GlobalRes.VisibleOutsideSummary |= 581 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 582 583 GlobalRes.ExportDynamic |= Res.ExportDynamic; 584 } 585 } 586 587 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 588 ArrayRef<SymbolResolution> Res) { 589 StringRef Path = Input->getName(); 590 OS << Path << '\n'; 591 auto ResI = Res.begin(); 592 for (const InputFile::Symbol &Sym : Input->symbols()) { 593 assert(ResI != Res.end()); 594 SymbolResolution Res = *ResI++; 595 596 OS << "-r=" << Path << ',' << Sym.getName() << ','; 597 if (Res.Prevailing) 598 OS << 'p'; 599 if (Res.FinalDefinitionInLinkageUnit) 600 OS << 'l'; 601 if (Res.VisibleToRegularObj) 602 OS << 'x'; 603 if (Res.LinkerRedefined) 604 OS << 'r'; 605 OS << '\n'; 606 } 607 OS.flush(); 608 assert(ResI == Res.end()); 609 } 610 611 Error LTO::add(std::unique_ptr<InputFile> Input, 612 ArrayRef<SymbolResolution> Res) { 613 assert(!CalledGetMaxTasks); 614 615 if (Conf.ResolutionFile) 616 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 617 618 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 619 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 620 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 621 Conf.VisibilityScheme = Config::ELF; 622 } 623 624 const SymbolResolution *ResI = Res.begin(); 625 for (unsigned I = 0; I != Input->Mods.size(); ++I) 626 if (Error Err = addModule(*Input, I, ResI, Res.end())) 627 return Err; 628 629 assert(ResI == Res.end()); 630 return Error::success(); 631 } 632 633 Error LTO::addModule(InputFile &Input, unsigned ModI, 634 const SymbolResolution *&ResI, 635 const SymbolResolution *ResE) { 636 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 637 if (!LTOInfo) 638 return LTOInfo.takeError(); 639 640 if (EnableSplitLTOUnit.hasValue()) { 641 // If only some modules were split, flag this in the index so that 642 // we can skip or error on optimizations that need consistently split 643 // modules (whole program devirt and lower type tests). 644 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 645 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 646 } else 647 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 648 649 BitcodeModule BM = Input.Mods[ModI]; 650 auto ModSyms = Input.module_symbols(ModI); 651 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 652 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 653 LTOInfo->HasSummary); 654 655 if (LTOInfo->IsThinLTO) 656 return addThinLTO(BM, ModSyms, ResI, ResE); 657 658 RegularLTO.EmptyCombinedModule = false; 659 Expected<RegularLTOState::AddedModule> ModOrErr = 660 addRegularLTO(BM, ModSyms, ResI, ResE); 661 if (!ModOrErr) 662 return ModOrErr.takeError(); 663 664 if (!LTOInfo->HasSummary) 665 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 666 667 // Regular LTO module summaries are added to a dummy module that represents 668 // the combined regular LTO module. 669 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 670 return Err; 671 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 672 return Error::success(); 673 } 674 675 // Checks whether the given global value is in a non-prevailing comdat 676 // (comdat containing values the linker indicated were not prevailing, 677 // which we then dropped to available_externally), and if so, removes 678 // it from the comdat. This is called for all global values to ensure the 679 // comdat is empty rather than leaving an incomplete comdat. It is needed for 680 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 681 // and thin LTO modules) compilation. Since the regular LTO module will be 682 // linked first in the final native link, we want to make sure the linker 683 // doesn't select any of these incomplete comdats that would be left 684 // in the regular LTO module without this cleanup. 685 static void 686 handleNonPrevailingComdat(GlobalValue &GV, 687 std::set<const Comdat *> &NonPrevailingComdats) { 688 Comdat *C = GV.getComdat(); 689 if (!C) 690 return; 691 692 if (!NonPrevailingComdats.count(C)) 693 return; 694 695 // Additionally need to drop externally visible global values from the comdat 696 // to available_externally, so that there aren't multiply defined linker 697 // errors. 698 if (!GV.hasLocalLinkage()) 699 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 700 701 if (auto GO = dyn_cast<GlobalObject>(&GV)) 702 GO->setComdat(nullptr); 703 } 704 705 // Add a regular LTO object to the link. 706 // The resulting module needs to be linked into the combined LTO module with 707 // linkRegularLTO. 708 Expected<LTO::RegularLTOState::AddedModule> 709 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 710 const SymbolResolution *&ResI, 711 const SymbolResolution *ResE) { 712 RegularLTOState::AddedModule Mod; 713 Expected<std::unique_ptr<Module>> MOrErr = 714 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 715 /*IsImporting*/ false); 716 if (!MOrErr) 717 return MOrErr.takeError(); 718 Module &M = **MOrErr; 719 Mod.M = std::move(*MOrErr); 720 721 if (Error Err = M.materializeMetadata()) 722 return std::move(Err); 723 UpgradeDebugInfo(M); 724 725 ModuleSymbolTable SymTab; 726 SymTab.addModule(&M); 727 728 for (GlobalVariable &GV : M.globals()) 729 if (GV.hasAppendingLinkage()) 730 Mod.Keep.push_back(&GV); 731 732 DenseSet<GlobalObject *> AliasedGlobals; 733 for (auto &GA : M.aliases()) 734 if (GlobalObject *GO = GA.getBaseObject()) 735 AliasedGlobals.insert(GO); 736 737 // In this function we need IR GlobalValues matching the symbols in Syms 738 // (which is not backed by a module), so we need to enumerate them in the same 739 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 740 // matches the order of an irsymtab, but when we read the irsymtab in 741 // InputFile::create we omit some symbols that are irrelevant to LTO. The 742 // Skip() function skips the same symbols from the module as InputFile does 743 // from the symbol table. 744 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 745 auto Skip = [&]() { 746 while (MsymI != MsymE) { 747 auto Flags = SymTab.getSymbolFlags(*MsymI); 748 if ((Flags & object::BasicSymbolRef::SF_Global) && 749 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 750 return; 751 ++MsymI; 752 } 753 }; 754 Skip(); 755 756 std::set<const Comdat *> NonPrevailingComdats; 757 SmallSet<StringRef, 2> NonPrevailingAsmSymbols; 758 for (const InputFile::Symbol &Sym : Syms) { 759 assert(ResI != ResE); 760 SymbolResolution Res = *ResI++; 761 762 assert(MsymI != MsymE); 763 ModuleSymbolTable::Symbol Msym = *MsymI++; 764 Skip(); 765 766 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 767 if (Res.Prevailing) { 768 if (Sym.isUndefined()) 769 continue; 770 Mod.Keep.push_back(GV); 771 // For symbols re-defined with linker -wrap and -defsym options, 772 // set the linkage to weak to inhibit IPO. The linkage will be 773 // restored by the linker. 774 if (Res.LinkerRedefined) 775 GV->setLinkage(GlobalValue::WeakAnyLinkage); 776 777 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 778 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 779 GV->setLinkage(GlobalValue::getWeakLinkage( 780 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 781 } else if (isa<GlobalObject>(GV) && 782 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 783 GV->hasAvailableExternallyLinkage()) && 784 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 785 // Any of the above three types of linkage indicates that the 786 // chosen prevailing symbol will have the same semantics as this copy of 787 // the symbol, so we may be able to link it with available_externally 788 // linkage. We will decide later whether to do that when we link this 789 // module (in linkRegularLTO), based on whether it is undefined. 790 Mod.Keep.push_back(GV); 791 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 792 if (GV->hasComdat()) 793 NonPrevailingComdats.insert(GV->getComdat()); 794 cast<GlobalObject>(GV)->setComdat(nullptr); 795 } 796 797 // Set the 'local' flag based on the linker resolution for this symbol. 798 if (Res.FinalDefinitionInLinkageUnit) { 799 GV->setDSOLocal(true); 800 if (GV->hasDLLImportStorageClass()) 801 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 802 DefaultStorageClass); 803 } 804 } else if (auto *AS = Msym.dyn_cast<ModuleSymbolTable::AsmSymbol *>()) { 805 // Collect non-prevailing symbols. 806 if (!Res.Prevailing) 807 NonPrevailingAsmSymbols.insert(AS->first); 808 } else { 809 llvm_unreachable("unknown symbol type"); 810 } 811 812 // Common resolution: collect the maximum size/alignment over all commons. 813 // We also record if we see an instance of a common as prevailing, so that 814 // if none is prevailing we can ignore it later. 815 if (Sym.isCommon()) { 816 // FIXME: We should figure out what to do about commons defined by asm. 817 // For now they aren't reported correctly by ModuleSymbolTable. 818 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 819 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 820 MaybeAlign SymAlign(Sym.getCommonAlignment()); 821 if (SymAlign) 822 CommonRes.Align = max(*SymAlign, CommonRes.Align); 823 CommonRes.Prevailing |= Res.Prevailing; 824 } 825 } 826 827 if (!M.getComdatSymbolTable().empty()) 828 for (GlobalValue &GV : M.global_values()) 829 handleNonPrevailingComdat(GV, NonPrevailingComdats); 830 831 // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm 832 // block. 833 if (!M.getModuleInlineAsm().empty()) { 834 std::string NewIA = ".lto_discard"; 835 if (!NonPrevailingAsmSymbols.empty()) { 836 // Don't dicard a symbol if there is a live .symver for it. 837 ModuleSymbolTable::CollectAsmSymvers( 838 M, [&](StringRef Name, StringRef Alias) { 839 if (!NonPrevailingAsmSymbols.count(Alias)) 840 NonPrevailingAsmSymbols.erase(Name); 841 }); 842 NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", "); 843 } 844 NewIA += "\n"; 845 M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); 846 } 847 848 assert(MsymI == MsymE); 849 return std::move(Mod); 850 } 851 852 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 853 bool LivenessFromIndex) { 854 std::vector<GlobalValue *> Keep; 855 for (GlobalValue *GV : Mod.Keep) { 856 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 857 if (Function *F = dyn_cast<Function>(GV)) { 858 OptimizationRemarkEmitter ORE(F, nullptr); 859 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 860 << ore::NV("Function", F) 861 << " not added to the combined module "); 862 } 863 continue; 864 } 865 866 if (!GV->hasAvailableExternallyLinkage()) { 867 Keep.push_back(GV); 868 continue; 869 } 870 871 // Only link available_externally definitions if we don't already have a 872 // definition. 873 GlobalValue *CombinedGV = 874 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 875 if (CombinedGV && !CombinedGV->isDeclaration()) 876 continue; 877 878 Keep.push_back(GV); 879 } 880 881 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 882 [](GlobalValue &, IRMover::ValueAdder) {}, 883 /* IsPerformingImport */ false); 884 } 885 886 // Add a ThinLTO module to the link. 887 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 888 const SymbolResolution *&ResI, 889 const SymbolResolution *ResE) { 890 if (Error Err = 891 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 892 ThinLTO.ModuleMap.size())) 893 return Err; 894 895 for (const InputFile::Symbol &Sym : Syms) { 896 assert(ResI != ResE); 897 SymbolResolution Res = *ResI++; 898 899 if (!Sym.getIRName().empty()) { 900 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 901 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 902 if (Res.Prevailing) { 903 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 904 905 // For linker redefined symbols (via --wrap or --defsym) we want to 906 // switch the linkage to `weak` to prevent IPOs from happening. 907 // Find the summary in the module for this very GV and record the new 908 // linkage so that we can switch it when we import the GV. 909 if (Res.LinkerRedefined) 910 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 911 GUID, BM.getModuleIdentifier())) 912 S->setLinkage(GlobalValue::WeakAnyLinkage); 913 } 914 915 // If the linker resolved the symbol to a local definition then mark it 916 // as local in the summary for the module we are adding. 917 if (Res.FinalDefinitionInLinkageUnit) { 918 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 919 GUID, BM.getModuleIdentifier())) { 920 S->setDSOLocal(true); 921 } 922 } 923 } 924 } 925 926 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 927 return make_error<StringError>( 928 "Expected at most one ThinLTO module per bitcode file", 929 inconvertibleErrorCode()); 930 931 if (!Conf.ThinLTOModulesToCompile.empty()) { 932 if (!ThinLTO.ModulesToCompile) 933 ThinLTO.ModulesToCompile = ModuleMapType(); 934 // This is a fuzzy name matching where only modules with name containing the 935 // specified switch values are going to be compiled. 936 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 937 if (BM.getModuleIdentifier().contains(Name)) { 938 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 939 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 940 << " to compile\n"; 941 } 942 } 943 } 944 945 return Error::success(); 946 } 947 948 unsigned LTO::getMaxTasks() const { 949 CalledGetMaxTasks = true; 950 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 951 : ThinLTO.ModuleMap.size(); 952 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 953 } 954 955 // If only some of the modules were split, we cannot correctly handle 956 // code that contains type tests or type checked loads. 957 Error LTO::checkPartiallySplit() { 958 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 959 return Error::success(); 960 961 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 962 Intrinsic::getName(Intrinsic::type_test)); 963 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 964 Intrinsic::getName(Intrinsic::type_checked_load)); 965 966 // First check if there are type tests / type checked loads in the 967 // merged regular LTO module IR. 968 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 969 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 970 return make_error<StringError>( 971 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 972 inconvertibleErrorCode()); 973 974 // Otherwise check if there are any recorded in the combined summary from the 975 // ThinLTO modules. 976 for (auto &P : ThinLTO.CombinedIndex) { 977 for (auto &S : P.second.SummaryList) { 978 auto *FS = dyn_cast<FunctionSummary>(S.get()); 979 if (!FS) 980 continue; 981 if (!FS->type_test_assume_vcalls().empty() || 982 !FS->type_checked_load_vcalls().empty() || 983 !FS->type_test_assume_const_vcalls().empty() || 984 !FS->type_checked_load_const_vcalls().empty() || 985 !FS->type_tests().empty()) 986 return make_error<StringError>( 987 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 988 inconvertibleErrorCode()); 989 } 990 } 991 return Error::success(); 992 } 993 994 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 995 // Compute "dead" symbols, we don't want to import/export these! 996 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 997 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 998 for (auto &Res : GlobalResolutions) { 999 // Normally resolution have IR name of symbol. We can do nothing here 1000 // otherwise. See comments in GlobalResolution struct for more details. 1001 if (Res.second.IRName.empty()) 1002 continue; 1003 1004 GlobalValue::GUID GUID = GlobalValue::getGUID( 1005 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1006 1007 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 1008 GUIDPreservedSymbols.insert(GUID); 1009 1010 if (Res.second.ExportDynamic) 1011 DynamicExportSymbols.insert(GUID); 1012 1013 GUIDPrevailingResolutions[GUID] = 1014 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 1015 } 1016 1017 auto isPrevailing = [&](GlobalValue::GUID G) { 1018 auto It = GUIDPrevailingResolutions.find(G); 1019 if (It == GUIDPrevailingResolutions.end()) 1020 return PrevailingType::Unknown; 1021 return It->second; 1022 }; 1023 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 1024 isPrevailing, Conf.OptLevel > 0); 1025 1026 // Setup output file to emit statistics. 1027 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1028 if (!StatsFileOrErr) 1029 return StatsFileOrErr.takeError(); 1030 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1031 1032 Error Result = runRegularLTO(AddStream); 1033 if (!Result) 1034 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1035 1036 if (StatsFile) 1037 PrintStatisticsJSON(StatsFile->os()); 1038 1039 return Result; 1040 } 1041 1042 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1043 // Setup optimization remarks. 1044 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1045 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1046 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1047 Conf.RemarksHotnessThreshold); 1048 if (!DiagFileOrErr) 1049 return DiagFileOrErr.takeError(); 1050 1051 // Finalize linking of regular LTO modules containing summaries now that 1052 // we have computed liveness information. 1053 for (auto &M : RegularLTO.ModsWithSummaries) 1054 if (Error Err = linkRegularLTO(std::move(M), 1055 /*LivenessFromIndex=*/true)) 1056 return Err; 1057 1058 // Ensure we don't have inconsistently split LTO units with type tests. 1059 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1060 // this path both cases but eventually this should be split into two and 1061 // do the ThinLTO checks in `runThinLTO`. 1062 if (Error Err = checkPartiallySplit()) 1063 return Err; 1064 1065 // Make sure commons have the right size/alignment: we kept the largest from 1066 // all the prevailing when adding the inputs, and we apply it here. 1067 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1068 for (auto &I : RegularLTO.Commons) { 1069 if (!I.second.Prevailing) 1070 // Don't do anything if no instance of this common was prevailing. 1071 continue; 1072 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1073 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1074 // Don't create a new global if the type is already correct, just make 1075 // sure the alignment is correct. 1076 OldGV->setAlignment(I.second.Align); 1077 continue; 1078 } 1079 ArrayType *Ty = 1080 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1081 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1082 GlobalValue::CommonLinkage, 1083 ConstantAggregateZero::get(Ty), ""); 1084 GV->setAlignment(I.second.Align); 1085 if (OldGV) { 1086 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1087 GV->takeName(OldGV); 1088 OldGV->eraseFromParent(); 1089 } else { 1090 GV->setName(I.first); 1091 } 1092 } 1093 1094 // If allowed, upgrade public vcall visibility metadata to linkage unit 1095 // visibility before whole program devirtualization in the optimizer. 1096 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1097 Conf.HasWholeProgramVisibility, 1098 DynamicExportSymbols); 1099 1100 if (Conf.PreOptModuleHook && 1101 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1102 return Error::success(); 1103 1104 if (!Conf.CodeGenOnly) { 1105 for (const auto &R : GlobalResolutions) { 1106 if (!R.second.isPrevailingIRSymbol()) 1107 continue; 1108 if (R.second.Partition != 0 && 1109 R.second.Partition != GlobalResolution::External) 1110 continue; 1111 1112 GlobalValue *GV = 1113 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1114 // Ignore symbols defined in other partitions. 1115 // Also skip declarations, which are not allowed to have internal linkage. 1116 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1117 continue; 1118 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1119 : GlobalValue::UnnamedAddr::None); 1120 if (EnableLTOInternalization && R.second.Partition == 0) 1121 GV->setLinkage(GlobalValue::InternalLinkage); 1122 } 1123 1124 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1125 1126 if (Conf.PostInternalizeModuleHook && 1127 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1128 return Error::success(); 1129 } 1130 1131 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1132 if (Error Err = 1133 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1134 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1135 return Err; 1136 } 1137 1138 return finalizeOptimizationRemarks(std::move(*DiagFileOrErr)); 1139 } 1140 1141 static const char *libcallRoutineNames[] = { 1142 #define HANDLE_LIBCALL(code, name) name, 1143 #include "llvm/IR/RuntimeLibcalls.def" 1144 #undef HANDLE_LIBCALL 1145 }; 1146 1147 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1148 return makeArrayRef(libcallRoutineNames); 1149 } 1150 1151 /// This class defines the interface to the ThinLTO backend. 1152 class lto::ThinBackendProc { 1153 protected: 1154 const Config &Conf; 1155 ModuleSummaryIndex &CombinedIndex; 1156 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1157 1158 public: 1159 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1160 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1161 : Conf(Conf), CombinedIndex(CombinedIndex), 1162 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1163 1164 virtual ~ThinBackendProc() {} 1165 virtual Error start( 1166 unsigned Task, BitcodeModule BM, 1167 const FunctionImporter::ImportMapTy &ImportList, 1168 const FunctionImporter::ExportSetTy &ExportList, 1169 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1170 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1171 virtual Error wait() = 0; 1172 virtual unsigned getThreadCount() = 0; 1173 }; 1174 1175 namespace { 1176 class InProcessThinBackend : public ThinBackendProc { 1177 ThreadPool BackendThreadPool; 1178 AddStreamFn AddStream; 1179 NativeObjectCache Cache; 1180 std::set<GlobalValue::GUID> CfiFunctionDefs; 1181 std::set<GlobalValue::GUID> CfiFunctionDecls; 1182 1183 Optional<Error> Err; 1184 std::mutex ErrMu; 1185 1186 public: 1187 InProcessThinBackend( 1188 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1189 ThreadPoolStrategy ThinLTOParallelism, 1190 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1191 AddStreamFn AddStream, NativeObjectCache Cache) 1192 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1193 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1194 Cache(std::move(Cache)) { 1195 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1196 CfiFunctionDefs.insert( 1197 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1198 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1199 CfiFunctionDecls.insert( 1200 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1201 } 1202 1203 Error runThinLTOBackendThread( 1204 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1205 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1206 const FunctionImporter::ImportMapTy &ImportList, 1207 const FunctionImporter::ExportSetTy &ExportList, 1208 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1209 const GVSummaryMapTy &DefinedGlobals, 1210 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1211 auto RunThinBackend = [&](AddStreamFn AddStream) { 1212 LTOLLVMContext BackendContext(Conf); 1213 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1214 if (!MOrErr) 1215 return MOrErr.takeError(); 1216 1217 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1218 ImportList, DefinedGlobals, &ModuleMap); 1219 }; 1220 1221 auto ModuleID = BM.getModuleIdentifier(); 1222 1223 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1224 all_of(CombinedIndex.getModuleHash(ModuleID), 1225 [](uint32_t V) { return V == 0; })) 1226 // Cache disabled or no entry for this module in the combined index or 1227 // no module hash. 1228 return RunThinBackend(AddStream); 1229 1230 SmallString<40> Key; 1231 // The module may be cached, this helps handling it. 1232 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1233 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1234 CfiFunctionDecls); 1235 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1236 return RunThinBackend(CacheAddStream); 1237 1238 return Error::success(); 1239 } 1240 1241 Error start( 1242 unsigned Task, BitcodeModule BM, 1243 const FunctionImporter::ImportMapTy &ImportList, 1244 const FunctionImporter::ExportSetTy &ExportList, 1245 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1246 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1247 StringRef ModulePath = BM.getModuleIdentifier(); 1248 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1249 const GVSummaryMapTy &DefinedGlobals = 1250 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1251 BackendThreadPool.async( 1252 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1253 const FunctionImporter::ImportMapTy &ImportList, 1254 const FunctionImporter::ExportSetTy &ExportList, 1255 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1256 &ResolvedODR, 1257 const GVSummaryMapTy &DefinedGlobals, 1258 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1259 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1260 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1261 "thin backend"); 1262 Error E = runThinLTOBackendThread( 1263 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1264 ResolvedODR, DefinedGlobals, ModuleMap); 1265 if (E) { 1266 std::unique_lock<std::mutex> L(ErrMu); 1267 if (Err) 1268 Err = joinErrors(std::move(*Err), std::move(E)); 1269 else 1270 Err = std::move(E); 1271 } 1272 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1273 timeTraceProfilerFinishThread(); 1274 }, 1275 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1276 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1277 return Error::success(); 1278 } 1279 1280 Error wait() override { 1281 BackendThreadPool.wait(); 1282 if (Err) 1283 return std::move(*Err); 1284 else 1285 return Error::success(); 1286 } 1287 1288 unsigned getThreadCount() override { 1289 return BackendThreadPool.getThreadCount(); 1290 } 1291 }; 1292 } // end anonymous namespace 1293 1294 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) { 1295 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1296 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1297 AddStreamFn AddStream, NativeObjectCache Cache) { 1298 return std::make_unique<InProcessThinBackend>( 1299 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1300 Cache); 1301 }; 1302 } 1303 1304 // Given the original \p Path to an output file, replace any path 1305 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1306 // resulting directory if it does not yet exist. 1307 std::string lto::getThinLTOOutputFile(const std::string &Path, 1308 const std::string &OldPrefix, 1309 const std::string &NewPrefix) { 1310 if (OldPrefix.empty() && NewPrefix.empty()) 1311 return Path; 1312 SmallString<128> NewPath(Path); 1313 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1314 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1315 if (!ParentPath.empty()) { 1316 // Make sure the new directory exists, creating it if necessary. 1317 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1318 llvm::errs() << "warning: could not create directory '" << ParentPath 1319 << "': " << EC.message() << '\n'; 1320 } 1321 return std::string(NewPath.str()); 1322 } 1323 1324 namespace { 1325 class WriteIndexesThinBackend : public ThinBackendProc { 1326 std::string OldPrefix, NewPrefix; 1327 bool ShouldEmitImportsFiles; 1328 raw_fd_ostream *LinkedObjectsFile; 1329 lto::IndexWriteCallback OnWrite; 1330 1331 public: 1332 WriteIndexesThinBackend( 1333 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1334 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1335 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1336 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1337 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1338 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1339 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1340 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1341 1342 Error start( 1343 unsigned Task, BitcodeModule BM, 1344 const FunctionImporter::ImportMapTy &ImportList, 1345 const FunctionImporter::ExportSetTy &ExportList, 1346 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1347 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1348 StringRef ModulePath = BM.getModuleIdentifier(); 1349 std::string NewModulePath = 1350 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1351 1352 if (LinkedObjectsFile) 1353 *LinkedObjectsFile << NewModulePath << '\n'; 1354 1355 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1356 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1357 ImportList, ModuleToSummariesForIndex); 1358 1359 std::error_code EC; 1360 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1361 sys::fs::OpenFlags::OF_None); 1362 if (EC) 1363 return errorCodeToError(EC); 1364 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1365 1366 if (ShouldEmitImportsFiles) { 1367 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1368 ModuleToSummariesForIndex); 1369 if (EC) 1370 return errorCodeToError(EC); 1371 } 1372 1373 if (OnWrite) 1374 OnWrite(std::string(ModulePath)); 1375 return Error::success(); 1376 } 1377 1378 Error wait() override { return Error::success(); } 1379 1380 // WriteIndexesThinBackend should always return 1 to prevent module 1381 // re-ordering and avoid non-determinism in the final link. 1382 unsigned getThreadCount() override { return 1; } 1383 }; 1384 } // end anonymous namespace 1385 1386 ThinBackend lto::createWriteIndexesThinBackend( 1387 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1388 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1389 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1390 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1391 AddStreamFn AddStream, NativeObjectCache Cache) { 1392 return std::make_unique<WriteIndexesThinBackend>( 1393 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1394 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1395 }; 1396 } 1397 1398 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1399 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1400 if (ThinLTO.ModuleMap.empty()) 1401 return Error::success(); 1402 1403 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1404 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1405 return Error::success(); 1406 } 1407 1408 if (Conf.CombinedIndexHook && 1409 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1410 return Error::success(); 1411 1412 // Collect for each module the list of function it defines (GUID -> 1413 // Summary). 1414 StringMap<GVSummaryMapTy> 1415 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1416 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1417 ModuleToDefinedGVSummaries); 1418 // Create entries for any modules that didn't have any GV summaries 1419 // (either they didn't have any GVs to start with, or we suppressed 1420 // generation of the summaries because they e.g. had inline assembly 1421 // uses that couldn't be promoted/renamed on export). This is so 1422 // InProcessThinBackend::start can still launch a backend thread, which 1423 // is passed the map of summaries for the module, without any special 1424 // handling for this case. 1425 for (auto &Mod : ThinLTO.ModuleMap) 1426 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1427 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1428 1429 // Synthesize entry counts for functions in the CombinedIndex. 1430 computeSyntheticCounts(ThinLTO.CombinedIndex); 1431 1432 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1433 ThinLTO.ModuleMap.size()); 1434 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1435 ThinLTO.ModuleMap.size()); 1436 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1437 1438 if (DumpThinCGSCCs) 1439 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1440 1441 std::set<GlobalValue::GUID> ExportedGUIDs; 1442 1443 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1444 // the summaries before whole program devirtualization below. 1445 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1446 Conf.HasWholeProgramVisibility, 1447 DynamicExportSymbols); 1448 1449 // Perform index-based WPD. This will return immediately if there are 1450 // no index entries in the typeIdMetadata map (e.g. if we are instead 1451 // performing IR-based WPD in hybrid regular/thin LTO mode). 1452 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1453 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1454 LocalWPDTargetsMap); 1455 1456 if (Conf.OptLevel > 0) 1457 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1458 ImportLists, ExportLists); 1459 1460 // Figure out which symbols need to be internalized. This also needs to happen 1461 // at -O0 because summary-based DCE is implemented using internalization, and 1462 // we must apply DCE consistently with the full LTO module in order to avoid 1463 // undefined references during the final link. 1464 for (auto &Res : GlobalResolutions) { 1465 // If the symbol does not have external references or it is not prevailing, 1466 // then not need to mark it as exported from a ThinLTO partition. 1467 if (Res.second.Partition != GlobalResolution::External || 1468 !Res.second.isPrevailingIRSymbol()) 1469 continue; 1470 auto GUID = GlobalValue::getGUID( 1471 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1472 // Mark exported unless index-based analysis determined it to be dead. 1473 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1474 ExportedGUIDs.insert(GUID); 1475 } 1476 1477 // Any functions referenced by the jump table in the regular LTO object must 1478 // be exported. 1479 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1480 ExportedGUIDs.insert( 1481 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1482 1483 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1484 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1485 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1486 ExportedGUIDs.count(VI.getGUID()); 1487 }; 1488 1489 // Update local devirtualized targets that were exported by cross-module 1490 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1491 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1492 LocalWPDTargetsMap); 1493 1494 auto isPrevailing = [&](GlobalValue::GUID GUID, 1495 const GlobalValueSummary *S) { 1496 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1497 }; 1498 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1499 isPrevailing); 1500 1501 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1502 GlobalValue::GUID GUID, 1503 GlobalValue::LinkageTypes NewLinkage) { 1504 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1505 }; 1506 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1507 recordNewLinkage, GUIDPreservedSymbols); 1508 1509 generateParamAccessSummary(ThinLTO.CombinedIndex); 1510 1511 std::unique_ptr<ThinBackendProc> BackendProc = 1512 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1513 AddStream, Cache); 1514 1515 auto &ModuleMap = 1516 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1517 1518 auto ProcessOneModule = [&](int I) -> Error { 1519 auto &Mod = *(ModuleMap.begin() + I); 1520 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1521 // combined module and parallel code generation partitions. 1522 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1523 Mod.second, ImportLists[Mod.first], 1524 ExportLists[Mod.first], ResolvedODR[Mod.first], 1525 ThinLTO.ModuleMap); 1526 }; 1527 1528 if (BackendProc->getThreadCount() == 1) { 1529 // Process the modules in the order they were provided on the command-line. 1530 // It is important for this codepath to be used for WriteIndexesThinBackend, 1531 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1532 // order as the inputs, which otherwise would affect the final link order. 1533 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1534 if (Error E = ProcessOneModule(I)) 1535 return E; 1536 } else { 1537 // When executing in parallel, process largest bitsize modules first to 1538 // improve parallelism, and avoid starving the thread pool near the end. 1539 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1540 // of 100 sec). 1541 std::vector<BitcodeModule *> ModulesVec; 1542 ModulesVec.reserve(ModuleMap.size()); 1543 for (auto &Mod : ModuleMap) 1544 ModulesVec.push_back(&Mod.second); 1545 for (int I : generateModulesOrdering(ModulesVec)) 1546 if (Error E = ProcessOneModule(I)) 1547 return E; 1548 } 1549 return BackendProc->wait(); 1550 } 1551 1552 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1553 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1554 StringRef RemarksFormat, bool RemarksWithHotness, 1555 Optional<uint64_t> RemarksHotnessThreshold, int Count) { 1556 std::string Filename = std::string(RemarksFilename); 1557 // For ThinLTO, file.opt.<format> becomes 1558 // file.opt.<format>.thin.<num>.<format>. 1559 if (!Filename.empty() && Count != -1) 1560 Filename = 1561 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1562 .str(); 1563 1564 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1565 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1566 RemarksHotnessThreshold); 1567 if (Error E = ResultOrErr.takeError()) 1568 return std::move(E); 1569 1570 if (*ResultOrErr) 1571 (*ResultOrErr)->keep(); 1572 1573 return ResultOrErr; 1574 } 1575 1576 Expected<std::unique_ptr<ToolOutputFile>> 1577 lto::setupStatsFile(StringRef StatsFilename) { 1578 // Setup output file to emit statistics. 1579 if (StatsFilename.empty()) 1580 return nullptr; 1581 1582 llvm::EnableStatistics(false); 1583 std::error_code EC; 1584 auto StatsFile = 1585 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1586 if (EC) 1587 return errorCodeToError(EC); 1588 1589 StatsFile->keep(); 1590 return std::move(StatsFile); 1591 } 1592 1593 // Compute the ordering we will process the inputs: the rough heuristic here 1594 // is to sort them per size so that the largest module get schedule as soon as 1595 // possible. This is purely a compile-time optimization. 1596 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1597 std::vector<int> ModulesOrdering; 1598 ModulesOrdering.resize(R.size()); 1599 std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); 1600 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1601 auto LSize = R[LeftIndex]->getBuffer().size(); 1602 auto RSize = R[RightIndex]->getBuffer().size(); 1603 return LSize > RSize; 1604 }); 1605 return ModulesOrdering; 1606 } 1607