1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 16 #include "llvm/Analysis/StackSafetyAnalysis.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/Bitcode/BitcodeWriter.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/DiagnosticPrinter.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/LLVMRemarkStreamer.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Mangler.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/LTO/LTOBackend.h" 31 #include "llvm/LTO/SummaryBasedOptimizations.h" 32 #include "llvm/Linker/IRMover.h" 33 #include "llvm/Object/IRObjectFile.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Error.h" 36 #include "llvm/Support/ManagedStatic.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Support/SHA1.h" 40 #include "llvm/Support/SourceMgr.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Support/ThreadPool.h" 43 #include "llvm/Support/Threading.h" 44 #include "llvm/Support/TimeProfiler.h" 45 #include "llvm/Support/VCSRevision.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 51 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 52 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 53 #include "llvm/Transforms/Utils/SplitModule.h" 54 55 #include <set> 56 57 using namespace llvm; 58 using namespace lto; 59 using namespace object; 60 61 #define DEBUG_TYPE "lto" 62 63 static cl::opt<bool> 64 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 65 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 66 67 /// Enable global value internalization in LTO. 68 cl::opt<bool> EnableLTOInternalization( 69 "enable-lto-internalization", cl::init(true), cl::Hidden, 70 cl::desc("Enable global value internalization in LTO")); 71 72 // Computes a unique hash for the Module considering the current list of 73 // export/import and other global analysis results. 74 // The hash is produced in \p Key. 75 void llvm::computeLTOCacheKey( 76 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 77 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 78 const FunctionImporter::ExportSetTy &ExportList, 79 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 80 const GVSummaryMapTy &DefinedGlobals, 81 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 82 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 83 // Compute the unique hash for this entry. 84 // This is based on the current compiler version, the module itself, the 85 // export list, the hash for every single module in the import list, the 86 // list of ResolvedODR for the module, and the list of preserved symbols. 87 SHA1 Hasher; 88 89 // Start with the compiler revision 90 Hasher.update(LLVM_VERSION_STRING); 91 #ifdef LLVM_REVISION 92 Hasher.update(LLVM_REVISION); 93 #endif 94 95 // Include the parts of the LTO configuration that affect code generation. 96 auto AddString = [&](StringRef Str) { 97 Hasher.update(Str); 98 Hasher.update(ArrayRef<uint8_t>{0}); 99 }; 100 auto AddUnsigned = [&](unsigned I) { 101 uint8_t Data[4]; 102 support::endian::write32le(Data, I); 103 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 104 }; 105 auto AddUint64 = [&](uint64_t I) { 106 uint8_t Data[8]; 107 support::endian::write64le(Data, I); 108 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 109 }; 110 AddString(Conf.CPU); 111 // FIXME: Hash more of Options. For now all clients initialize Options from 112 // command-line flags (which is unsupported in production), but may set 113 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 114 // DataSections and DebuggerTuning via command line flags. 115 AddUnsigned(Conf.Options.RelaxELFRelocations); 116 AddUnsigned(Conf.Options.FunctionSections); 117 AddUnsigned(Conf.Options.DataSections); 118 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 119 for (auto &A : Conf.MAttrs) 120 AddString(A); 121 if (Conf.RelocModel) 122 AddUnsigned(*Conf.RelocModel); 123 else 124 AddUnsigned(-1); 125 if (Conf.CodeModel) 126 AddUnsigned(*Conf.CodeModel); 127 else 128 AddUnsigned(-1); 129 AddUnsigned(Conf.CGOptLevel); 130 AddUnsigned(Conf.CGFileType); 131 AddUnsigned(Conf.OptLevel); 132 AddUnsigned(Conf.UseNewPM); 133 AddUnsigned(Conf.Freestanding); 134 AddString(Conf.OptPipeline); 135 AddString(Conf.AAPipeline); 136 AddString(Conf.OverrideTriple); 137 AddString(Conf.DefaultTriple); 138 AddString(Conf.DwoDir); 139 140 // Include the hash for the current module 141 auto ModHash = Index.getModuleHash(ModuleID); 142 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 143 144 std::vector<uint64_t> ExportsGUID; 145 ExportsGUID.reserve(ExportList.size()); 146 for (const auto &VI : ExportList) { 147 auto GUID = VI.getGUID(); 148 ExportsGUID.push_back(GUID); 149 } 150 151 // Sort the export list elements GUIDs. 152 llvm::sort(ExportsGUID); 153 for (uint64_t GUID : ExportsGUID) { 154 // The export list can impact the internalization, be conservative here 155 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); 156 } 157 158 // Include the hash for every module we import functions from. The set of 159 // imported symbols for each module may affect code generation and is 160 // sensitive to link order, so include that as well. 161 using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; 162 std::vector<ImportMapIteratorTy> ImportModulesVector; 163 ImportModulesVector.reserve(ImportList.size()); 164 165 for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); 166 ++It) { 167 ImportModulesVector.push_back(It); 168 } 169 llvm::sort(ImportModulesVector, 170 [](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs) 171 -> bool { return Lhs->getKey() < Rhs->getKey(); }); 172 for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) { 173 auto ModHash = Index.getModuleHash(EntryIt->first()); 174 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 175 176 AddUint64(EntryIt->second.size()); 177 for (auto &Fn : EntryIt->second) 178 AddUint64(Fn); 179 } 180 181 // Include the hash for the resolved ODR. 182 for (auto &Entry : ResolvedODR) { 183 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 184 sizeof(GlobalValue::GUID))); 185 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 186 sizeof(GlobalValue::LinkageTypes))); 187 } 188 189 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 190 // defined in this module. 191 std::set<GlobalValue::GUID> UsedCfiDefs; 192 std::set<GlobalValue::GUID> UsedCfiDecls; 193 194 // Typeids used in this module. 195 std::set<GlobalValue::GUID> UsedTypeIds; 196 197 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 198 if (CfiFunctionDefs.count(ValueGUID)) 199 UsedCfiDefs.insert(ValueGUID); 200 if (CfiFunctionDecls.count(ValueGUID)) 201 UsedCfiDecls.insert(ValueGUID); 202 }; 203 204 auto AddUsedThings = [&](GlobalValueSummary *GS) { 205 if (!GS) return; 206 AddUnsigned(GS->getVisibility()); 207 AddUnsigned(GS->isLive()); 208 AddUnsigned(GS->canAutoHide()); 209 for (const ValueInfo &VI : GS->refs()) { 210 AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation())); 211 AddUsedCfiGlobal(VI.getGUID()); 212 } 213 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 214 AddUnsigned(GVS->maybeReadOnly()); 215 AddUnsigned(GVS->maybeWriteOnly()); 216 } 217 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 218 for (auto &TT : FS->type_tests()) 219 UsedTypeIds.insert(TT); 220 for (auto &TT : FS->type_test_assume_vcalls()) 221 UsedTypeIds.insert(TT.GUID); 222 for (auto &TT : FS->type_checked_load_vcalls()) 223 UsedTypeIds.insert(TT.GUID); 224 for (auto &TT : FS->type_test_assume_const_vcalls()) 225 UsedTypeIds.insert(TT.VFunc.GUID); 226 for (auto &TT : FS->type_checked_load_const_vcalls()) 227 UsedTypeIds.insert(TT.VFunc.GUID); 228 for (auto &ET : FS->calls()) { 229 AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation())); 230 AddUsedCfiGlobal(ET.first.getGUID()); 231 } 232 } 233 }; 234 235 // Include the hash for the linkage type to reflect internalization and weak 236 // resolution, and collect any used type identifier resolutions. 237 for (auto &GS : DefinedGlobals) { 238 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 239 Hasher.update( 240 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 241 AddUsedCfiGlobal(GS.first); 242 AddUsedThings(GS.second); 243 } 244 245 // Imported functions may introduce new uses of type identifier resolutions, 246 // so we need to collect their used resolutions as well. 247 for (auto &ImpM : ImportList) 248 for (auto &ImpF : ImpM.second) { 249 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 250 AddUsedThings(S); 251 // If this is an alias, we also care about any types/etc. that the aliasee 252 // may reference. 253 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 254 AddUsedThings(AS->getBaseObject()); 255 } 256 257 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 258 AddString(TId); 259 260 AddUnsigned(S.TTRes.TheKind); 261 AddUnsigned(S.TTRes.SizeM1BitWidth); 262 263 AddUint64(S.TTRes.AlignLog2); 264 AddUint64(S.TTRes.SizeM1); 265 AddUint64(S.TTRes.BitMask); 266 AddUint64(S.TTRes.InlineBits); 267 268 AddUint64(S.WPDRes.size()); 269 for (auto &WPD : S.WPDRes) { 270 AddUnsigned(WPD.first); 271 AddUnsigned(WPD.second.TheKind); 272 AddString(WPD.second.SingleImplName); 273 274 AddUint64(WPD.second.ResByArg.size()); 275 for (auto &ByArg : WPD.second.ResByArg) { 276 AddUint64(ByArg.first.size()); 277 for (uint64_t Arg : ByArg.first) 278 AddUint64(Arg); 279 AddUnsigned(ByArg.second.TheKind); 280 AddUint64(ByArg.second.Info); 281 AddUnsigned(ByArg.second.Byte); 282 AddUnsigned(ByArg.second.Bit); 283 } 284 } 285 }; 286 287 // Include the hash for all type identifiers used by this module. 288 for (GlobalValue::GUID TId : UsedTypeIds) { 289 auto TidIter = Index.typeIds().equal_range(TId); 290 for (auto It = TidIter.first; It != TidIter.second; ++It) 291 AddTypeIdSummary(It->second.first, It->second.second); 292 } 293 294 AddUnsigned(UsedCfiDefs.size()); 295 for (auto &V : UsedCfiDefs) 296 AddUint64(V); 297 298 AddUnsigned(UsedCfiDecls.size()); 299 for (auto &V : UsedCfiDecls) 300 AddUint64(V); 301 302 if (!Conf.SampleProfile.empty()) { 303 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 304 if (FileOrErr) { 305 Hasher.update(FileOrErr.get()->getBuffer()); 306 307 if (!Conf.ProfileRemapping.empty()) { 308 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 309 if (FileOrErr) 310 Hasher.update(FileOrErr.get()->getBuffer()); 311 } 312 } 313 } 314 315 Key = toHex(Hasher.result()); 316 } 317 318 static void thinLTOResolvePrevailingGUID( 319 const Config &C, ValueInfo VI, 320 DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 321 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 322 isPrevailing, 323 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 324 recordNewLinkage, 325 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 326 GlobalValue::VisibilityTypes Visibility = 327 C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() 328 : GlobalValue::DefaultVisibility; 329 for (auto &S : VI.getSummaryList()) { 330 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 331 // Ignore local and appending linkage values since the linker 332 // doesn't resolve them. 333 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 334 GlobalValue::isAppendingLinkage(S->linkage())) 335 continue; 336 // We need to emit only one of these. The prevailing module will keep it, 337 // but turned into a weak, while the others will drop it when possible. 338 // This is both a compile-time optimization and a correctness 339 // transformation. This is necessary for correctness when we have exported 340 // a reference - we need to convert the linkonce to weak to 341 // ensure a copy is kept to satisfy the exported reference. 342 // FIXME: We may want to split the compile time and correctness 343 // aspects into separate routines. 344 if (isPrevailing(VI.getGUID(), S.get())) { 345 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 346 S->setLinkage(GlobalValue::getWeakLinkage( 347 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 348 // The kept copy is eligible for auto-hiding (hidden visibility) if all 349 // copies were (i.e. they were all linkonce_odr global unnamed addr). 350 // If any copy is not (e.g. it was originally weak_odr), then the symbol 351 // must remain externally available (e.g. a weak_odr from an explicitly 352 // instantiated template). Additionally, if it is in the 353 // GUIDPreservedSymbols set, that means that it is visibile outside 354 // the summary (e.g. in a native object or a bitcode file without 355 // summary), and in that case we cannot hide it as it isn't possible to 356 // check all copies. 357 S->setCanAutoHide(VI.canAutoHide() && 358 !GUIDPreservedSymbols.count(VI.getGUID())); 359 } 360 if (C.VisibilityScheme == Config::FromPrevailing) 361 Visibility = S->getVisibility(); 362 } 363 // Alias and aliasee can't be turned into available_externally. 364 else if (!isa<AliasSummary>(S.get()) && 365 !GlobalInvolvedWithAlias.count(S.get())) 366 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 367 368 // For ELF, set visibility to the computed visibility from summaries. We 369 // don't track visibility from declarations so this may be more relaxed than 370 // the most constraining one. 371 if (C.VisibilityScheme == Config::ELF) 372 S->setVisibility(Visibility); 373 374 if (S->linkage() != OriginalLinkage) 375 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 376 } 377 378 if (C.VisibilityScheme == Config::FromPrevailing) { 379 for (auto &S : VI.getSummaryList()) { 380 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 381 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 382 GlobalValue::isAppendingLinkage(S->linkage())) 383 continue; 384 S->setVisibility(Visibility); 385 } 386 } 387 } 388 389 /// Resolve linkage for prevailing symbols in the \p Index. 390 // 391 // We'd like to drop these functions if they are no longer referenced in the 392 // current module. However there is a chance that another module is still 393 // referencing them because of the import. We make sure we always emit at least 394 // one copy. 395 void llvm::thinLTOResolvePrevailingInIndex( 396 const Config &C, ModuleSummaryIndex &Index, 397 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 398 isPrevailing, 399 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 400 recordNewLinkage, 401 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 402 // We won't optimize the globals that are referenced by an alias for now 403 // Ideally we should turn the alias into a global and duplicate the definition 404 // when needed. 405 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 406 for (auto &I : Index) 407 for (auto &S : I.second.SummaryList) 408 if (auto AS = dyn_cast<AliasSummary>(S.get())) 409 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 410 411 for (auto &I : Index) 412 thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I), 413 GlobalInvolvedWithAlias, isPrevailing, 414 recordNewLinkage, GUIDPreservedSymbols); 415 } 416 417 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 418 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 419 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 420 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 421 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 422 return false; 423 } 424 425 static void thinLTOInternalizeAndPromoteGUID( 426 ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, 427 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 428 isPrevailing) { 429 for (auto &S : VI.getSummaryList()) { 430 if (isExported(S->modulePath(), VI)) { 431 if (GlobalValue::isLocalLinkage(S->linkage())) 432 S->setLinkage(GlobalValue::ExternalLinkage); 433 } else if (EnableLTOInternalization && 434 // Ignore local and appending linkage values since the linker 435 // doesn't resolve them. 436 !GlobalValue::isLocalLinkage(S->linkage()) && 437 (!GlobalValue::isInterposableLinkage(S->linkage()) || 438 isPrevailing(VI.getGUID(), S.get())) && 439 S->linkage() != GlobalValue::AppendingLinkage && 440 // We can't internalize available_externally globals because this 441 // can break function pointer equality. 442 S->linkage() != GlobalValue::AvailableExternallyLinkage && 443 // Functions and read-only variables with linkonce_odr and 444 // weak_odr linkage can be internalized. We can't internalize 445 // linkonce_odr and weak_odr variables which are both modified 446 // and read somewhere in the program because reads and writes 447 // will become inconsistent. 448 !isWeakObjectWithRWAccess(S.get())) 449 S->setLinkage(GlobalValue::InternalLinkage); 450 } 451 } 452 453 // Update the linkages in the given \p Index to mark exported values 454 // as external and non-exported values as internal. 455 void llvm::thinLTOInternalizeAndPromoteInIndex( 456 ModuleSummaryIndex &Index, 457 function_ref<bool(StringRef, ValueInfo)> isExported, 458 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 459 isPrevailing) { 460 for (auto &I : Index) 461 thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported, 462 isPrevailing); 463 } 464 465 // Requires a destructor for std::vector<InputModule>. 466 InputFile::~InputFile() = default; 467 468 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 469 std::unique_ptr<InputFile> File(new InputFile); 470 471 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 472 if (!FOrErr) 473 return FOrErr.takeError(); 474 475 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 476 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 477 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 478 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 479 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 480 481 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 482 size_t Begin = File->Symbols.size(); 483 for (const irsymtab::Reader::SymbolRef &Sym : 484 FOrErr->TheReader.module_symbols(I)) 485 // Skip symbols that are irrelevant to LTO. Note that this condition needs 486 // to match the one in Skip() in LTO::addRegularLTO(). 487 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 488 File->Symbols.push_back(Sym); 489 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 490 } 491 492 File->Mods = FOrErr->Mods; 493 File->Strtab = std::move(FOrErr->Strtab); 494 return std::move(File); 495 } 496 497 StringRef InputFile::getName() const { 498 return Mods[0].getModuleIdentifier(); 499 } 500 501 BitcodeModule &InputFile::getSingleBitcodeModule() { 502 assert(Mods.size() == 1 && "Expect only one bitcode module"); 503 return Mods[0]; 504 } 505 506 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 507 const Config &Conf) 508 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 509 Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)), 510 Mover(std::make_unique<IRMover>(*CombinedModule)) {} 511 512 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 513 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 514 if (!Backend) 515 this->Backend = 516 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 517 } 518 519 LTO::LTO(Config Conf, ThinBackend Backend, 520 unsigned ParallelCodeGenParallelismLevel) 521 : Conf(std::move(Conf)), 522 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 523 ThinLTO(std::move(Backend)) {} 524 525 // Requires a destructor for MapVector<BitcodeModule>. 526 LTO::~LTO() = default; 527 528 // Add the symbols in the given module to the GlobalResolutions map, and resolve 529 // their partitions. 530 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 531 ArrayRef<SymbolResolution> Res, 532 unsigned Partition, bool InSummary) { 533 auto *ResI = Res.begin(); 534 auto *ResE = Res.end(); 535 (void)ResE; 536 for (const InputFile::Symbol &Sym : Syms) { 537 assert(ResI != ResE); 538 SymbolResolution Res = *ResI++; 539 540 StringRef Name = Sym.getName(); 541 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 542 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 543 // way they are handled by lld), otherwise we can end up with two 544 // global resolutions (one with and one for a copy of the symbol without). 545 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 546 Name = Name.substr(strlen("__imp_")); 547 auto &GlobalRes = GlobalResolutions[Name]; 548 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 549 if (Res.Prevailing) { 550 assert(!GlobalRes.Prevailing && 551 "Multiple prevailing defs are not allowed"); 552 GlobalRes.Prevailing = true; 553 GlobalRes.IRName = std::string(Sym.getIRName()); 554 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 555 // Sometimes it can be two copies of symbol in a module and prevailing 556 // symbol can have no IR name. That might happen if symbol is defined in 557 // module level inline asm block. In case we have multiple modules with 558 // the same symbol we want to use IR name of the prevailing symbol. 559 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 560 // we can later use it to check if there is any prevailing copy in IR. 561 GlobalRes.IRName = std::string(Sym.getIRName()); 562 } 563 564 // Set the partition to external if we know it is re-defined by the linker 565 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 566 // regular object, is referenced from llvm.compiler.used/llvm.used, or was 567 // already recorded as being referenced from a different partition. 568 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 569 (GlobalRes.Partition != GlobalResolution::Unknown && 570 GlobalRes.Partition != Partition)) { 571 GlobalRes.Partition = GlobalResolution::External; 572 } else 573 // First recorded reference, save the current partition. 574 GlobalRes.Partition = Partition; 575 576 // Flag as visible outside of summary if visible from a regular object or 577 // from a module that does not have a summary. 578 GlobalRes.VisibleOutsideSummary |= 579 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 580 581 GlobalRes.ExportDynamic |= Res.ExportDynamic; 582 } 583 } 584 585 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 586 ArrayRef<SymbolResolution> Res) { 587 StringRef Path = Input->getName(); 588 OS << Path << '\n'; 589 auto ResI = Res.begin(); 590 for (const InputFile::Symbol &Sym : Input->symbols()) { 591 assert(ResI != Res.end()); 592 SymbolResolution Res = *ResI++; 593 594 OS << "-r=" << Path << ',' << Sym.getName() << ','; 595 if (Res.Prevailing) 596 OS << 'p'; 597 if (Res.FinalDefinitionInLinkageUnit) 598 OS << 'l'; 599 if (Res.VisibleToRegularObj) 600 OS << 'x'; 601 if (Res.LinkerRedefined) 602 OS << 'r'; 603 OS << '\n'; 604 } 605 OS.flush(); 606 assert(ResI == Res.end()); 607 } 608 609 Error LTO::add(std::unique_ptr<InputFile> Input, 610 ArrayRef<SymbolResolution> Res) { 611 assert(!CalledGetMaxTasks); 612 613 if (Conf.ResolutionFile) 614 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 615 616 if (RegularLTO.CombinedModule->getTargetTriple().empty()) { 617 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 618 if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) 619 Conf.VisibilityScheme = Config::ELF; 620 } 621 622 const SymbolResolution *ResI = Res.begin(); 623 for (unsigned I = 0; I != Input->Mods.size(); ++I) 624 if (Error Err = addModule(*Input, I, ResI, Res.end())) 625 return Err; 626 627 assert(ResI == Res.end()); 628 return Error::success(); 629 } 630 631 Error LTO::addModule(InputFile &Input, unsigned ModI, 632 const SymbolResolution *&ResI, 633 const SymbolResolution *ResE) { 634 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 635 if (!LTOInfo) 636 return LTOInfo.takeError(); 637 638 if (EnableSplitLTOUnit.hasValue()) { 639 // If only some modules were split, flag this in the index so that 640 // we can skip or error on optimizations that need consistently split 641 // modules (whole program devirt and lower type tests). 642 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 643 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 644 } else 645 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 646 647 BitcodeModule BM = Input.Mods[ModI]; 648 auto ModSyms = Input.module_symbols(ModI); 649 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 650 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 651 LTOInfo->HasSummary); 652 653 if (LTOInfo->IsThinLTO) 654 return addThinLTO(BM, ModSyms, ResI, ResE); 655 656 RegularLTO.EmptyCombinedModule = false; 657 Expected<RegularLTOState::AddedModule> ModOrErr = 658 addRegularLTO(BM, ModSyms, ResI, ResE); 659 if (!ModOrErr) 660 return ModOrErr.takeError(); 661 662 if (!LTOInfo->HasSummary) 663 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 664 665 // Regular LTO module summaries are added to a dummy module that represents 666 // the combined regular LTO module. 667 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 668 return Err; 669 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 670 return Error::success(); 671 } 672 673 // Checks whether the given global value is in a non-prevailing comdat 674 // (comdat containing values the linker indicated were not prevailing, 675 // which we then dropped to available_externally), and if so, removes 676 // it from the comdat. This is called for all global values to ensure the 677 // comdat is empty rather than leaving an incomplete comdat. It is needed for 678 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 679 // and thin LTO modules) compilation. Since the regular LTO module will be 680 // linked first in the final native link, we want to make sure the linker 681 // doesn't select any of these incomplete comdats that would be left 682 // in the regular LTO module without this cleanup. 683 static void 684 handleNonPrevailingComdat(GlobalValue &GV, 685 std::set<const Comdat *> &NonPrevailingComdats) { 686 Comdat *C = GV.getComdat(); 687 if (!C) 688 return; 689 690 if (!NonPrevailingComdats.count(C)) 691 return; 692 693 // Additionally need to drop externally visible global values from the comdat 694 // to available_externally, so that there aren't multiply defined linker 695 // errors. 696 if (!GV.hasLocalLinkage()) 697 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 698 699 if (auto GO = dyn_cast<GlobalObject>(&GV)) 700 GO->setComdat(nullptr); 701 } 702 703 // Add a regular LTO object to the link. 704 // The resulting module needs to be linked into the combined LTO module with 705 // linkRegularLTO. 706 Expected<LTO::RegularLTOState::AddedModule> 707 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 708 const SymbolResolution *&ResI, 709 const SymbolResolution *ResE) { 710 RegularLTOState::AddedModule Mod; 711 Expected<std::unique_ptr<Module>> MOrErr = 712 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 713 /*IsImporting*/ false); 714 if (!MOrErr) 715 return MOrErr.takeError(); 716 Module &M = **MOrErr; 717 Mod.M = std::move(*MOrErr); 718 719 if (Error Err = M.materializeMetadata()) 720 return std::move(Err); 721 UpgradeDebugInfo(M); 722 723 ModuleSymbolTable SymTab; 724 SymTab.addModule(&M); 725 726 for (GlobalVariable &GV : M.globals()) 727 if (GV.hasAppendingLinkage()) 728 Mod.Keep.push_back(&GV); 729 730 DenseSet<GlobalObject *> AliasedGlobals; 731 for (auto &GA : M.aliases()) 732 if (GlobalObject *GO = GA.getBaseObject()) 733 AliasedGlobals.insert(GO); 734 735 // In this function we need IR GlobalValues matching the symbols in Syms 736 // (which is not backed by a module), so we need to enumerate them in the same 737 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 738 // matches the order of an irsymtab, but when we read the irsymtab in 739 // InputFile::create we omit some symbols that are irrelevant to LTO. The 740 // Skip() function skips the same symbols from the module as InputFile does 741 // from the symbol table. 742 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 743 auto Skip = [&]() { 744 while (MsymI != MsymE) { 745 auto Flags = SymTab.getSymbolFlags(*MsymI); 746 if ((Flags & object::BasicSymbolRef::SF_Global) && 747 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 748 return; 749 ++MsymI; 750 } 751 }; 752 Skip(); 753 754 std::set<const Comdat *> NonPrevailingComdats; 755 for (const InputFile::Symbol &Sym : Syms) { 756 assert(ResI != ResE); 757 SymbolResolution Res = *ResI++; 758 759 assert(MsymI != MsymE); 760 ModuleSymbolTable::Symbol Msym = *MsymI++; 761 Skip(); 762 763 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 764 if (Res.Prevailing) { 765 if (Sym.isUndefined()) 766 continue; 767 Mod.Keep.push_back(GV); 768 // For symbols re-defined with linker -wrap and -defsym options, 769 // set the linkage to weak to inhibit IPO. The linkage will be 770 // restored by the linker. 771 if (Res.LinkerRedefined) 772 GV->setLinkage(GlobalValue::WeakAnyLinkage); 773 774 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 775 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 776 GV->setLinkage(GlobalValue::getWeakLinkage( 777 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 778 } else if (isa<GlobalObject>(GV) && 779 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 780 GV->hasAvailableExternallyLinkage()) && 781 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 782 // Any of the above three types of linkage indicates that the 783 // chosen prevailing symbol will have the same semantics as this copy of 784 // the symbol, so we may be able to link it with available_externally 785 // linkage. We will decide later whether to do that when we link this 786 // module (in linkRegularLTO), based on whether it is undefined. 787 Mod.Keep.push_back(GV); 788 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 789 if (GV->hasComdat()) 790 NonPrevailingComdats.insert(GV->getComdat()); 791 cast<GlobalObject>(GV)->setComdat(nullptr); 792 } 793 794 // Set the 'local' flag based on the linker resolution for this symbol. 795 if (Res.FinalDefinitionInLinkageUnit) { 796 GV->setDSOLocal(true); 797 if (GV->hasDLLImportStorageClass()) 798 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 799 DefaultStorageClass); 800 } 801 } 802 // Common resolution: collect the maximum size/alignment over all commons. 803 // We also record if we see an instance of a common as prevailing, so that 804 // if none is prevailing we can ignore it later. 805 if (Sym.isCommon()) { 806 // FIXME: We should figure out what to do about commons defined by asm. 807 // For now they aren't reported correctly by ModuleSymbolTable. 808 auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; 809 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 810 MaybeAlign SymAlign(Sym.getCommonAlignment()); 811 if (SymAlign) 812 CommonRes.Align = max(*SymAlign, CommonRes.Align); 813 CommonRes.Prevailing |= Res.Prevailing; 814 } 815 816 } 817 if (!M.getComdatSymbolTable().empty()) 818 for (GlobalValue &GV : M.global_values()) 819 handleNonPrevailingComdat(GV, NonPrevailingComdats); 820 assert(MsymI == MsymE); 821 return std::move(Mod); 822 } 823 824 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 825 bool LivenessFromIndex) { 826 std::vector<GlobalValue *> Keep; 827 for (GlobalValue *GV : Mod.Keep) { 828 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) { 829 if (Function *F = dyn_cast<Function>(GV)) { 830 OptimizationRemarkEmitter ORE(F, nullptr); 831 ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F) 832 << ore::NV("Function", F) 833 << " not added to the combined module "); 834 } 835 continue; 836 } 837 838 if (!GV->hasAvailableExternallyLinkage()) { 839 Keep.push_back(GV); 840 continue; 841 } 842 843 // Only link available_externally definitions if we don't already have a 844 // definition. 845 GlobalValue *CombinedGV = 846 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 847 if (CombinedGV && !CombinedGV->isDeclaration()) 848 continue; 849 850 Keep.push_back(GV); 851 } 852 853 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 854 [](GlobalValue &, IRMover::ValueAdder) {}, 855 /* IsPerformingImport */ false); 856 } 857 858 // Add a ThinLTO module to the link. 859 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 860 const SymbolResolution *&ResI, 861 const SymbolResolution *ResE) { 862 if (Error Err = 863 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 864 ThinLTO.ModuleMap.size())) 865 return Err; 866 867 for (const InputFile::Symbol &Sym : Syms) { 868 assert(ResI != ResE); 869 SymbolResolution Res = *ResI++; 870 871 if (!Sym.getIRName().empty()) { 872 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 873 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 874 if (Res.Prevailing) { 875 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 876 877 // For linker redefined symbols (via --wrap or --defsym) we want to 878 // switch the linkage to `weak` to prevent IPOs from happening. 879 // Find the summary in the module for this very GV and record the new 880 // linkage so that we can switch it when we import the GV. 881 if (Res.LinkerRedefined) 882 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 883 GUID, BM.getModuleIdentifier())) 884 S->setLinkage(GlobalValue::WeakAnyLinkage); 885 } 886 887 // If the linker resolved the symbol to a local definition then mark it 888 // as local in the summary for the module we are adding. 889 if (Res.FinalDefinitionInLinkageUnit) { 890 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 891 GUID, BM.getModuleIdentifier())) { 892 S->setDSOLocal(true); 893 } 894 } 895 } 896 } 897 898 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 899 return make_error<StringError>( 900 "Expected at most one ThinLTO module per bitcode file", 901 inconvertibleErrorCode()); 902 903 if (!Conf.ThinLTOModulesToCompile.empty()) { 904 if (!ThinLTO.ModulesToCompile) 905 ThinLTO.ModulesToCompile = ModuleMapType(); 906 // This is a fuzzy name matching where only modules with name containing the 907 // specified switch values are going to be compiled. 908 for (const std::string &Name : Conf.ThinLTOModulesToCompile) { 909 if (BM.getModuleIdentifier().contains(Name)) { 910 ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM}); 911 llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() 912 << " to compile\n"; 913 } 914 } 915 } 916 917 return Error::success(); 918 } 919 920 unsigned LTO::getMaxTasks() const { 921 CalledGetMaxTasks = true; 922 auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() 923 : ThinLTO.ModuleMap.size(); 924 return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; 925 } 926 927 // If only some of the modules were split, we cannot correctly handle 928 // code that contains type tests or type checked loads. 929 Error LTO::checkPartiallySplit() { 930 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 931 return Error::success(); 932 933 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 934 Intrinsic::getName(Intrinsic::type_test)); 935 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 936 Intrinsic::getName(Intrinsic::type_checked_load)); 937 938 // First check if there are type tests / type checked loads in the 939 // merged regular LTO module IR. 940 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 941 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 942 return make_error<StringError>( 943 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 944 inconvertibleErrorCode()); 945 946 // Otherwise check if there are any recorded in the combined summary from the 947 // ThinLTO modules. 948 for (auto &P : ThinLTO.CombinedIndex) { 949 for (auto &S : P.second.SummaryList) { 950 auto *FS = dyn_cast<FunctionSummary>(S.get()); 951 if (!FS) 952 continue; 953 if (!FS->type_test_assume_vcalls().empty() || 954 !FS->type_checked_load_vcalls().empty() || 955 !FS->type_test_assume_const_vcalls().empty() || 956 !FS->type_checked_load_const_vcalls().empty() || 957 !FS->type_tests().empty()) 958 return make_error<StringError>( 959 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 960 inconvertibleErrorCode()); 961 } 962 } 963 return Error::success(); 964 } 965 966 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 967 // Compute "dead" symbols, we don't want to import/export these! 968 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 969 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 970 for (auto &Res : GlobalResolutions) { 971 // Normally resolution have IR name of symbol. We can do nothing here 972 // otherwise. See comments in GlobalResolution struct for more details. 973 if (Res.second.IRName.empty()) 974 continue; 975 976 GlobalValue::GUID GUID = GlobalValue::getGUID( 977 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 978 979 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 980 GUIDPreservedSymbols.insert(GUID); 981 982 if (Res.second.ExportDynamic) 983 DynamicExportSymbols.insert(GUID); 984 985 GUIDPrevailingResolutions[GUID] = 986 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 987 } 988 989 auto isPrevailing = [&](GlobalValue::GUID G) { 990 auto It = GUIDPrevailingResolutions.find(G); 991 if (It == GUIDPrevailingResolutions.end()) 992 return PrevailingType::Unknown; 993 return It->second; 994 }; 995 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 996 isPrevailing, Conf.OptLevel > 0); 997 998 // Setup output file to emit statistics. 999 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 1000 if (!StatsFileOrErr) 1001 return StatsFileOrErr.takeError(); 1002 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 1003 1004 Error Result = runRegularLTO(AddStream); 1005 if (!Result) 1006 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 1007 1008 if (StatsFile) 1009 PrintStatisticsJSON(StatsFile->os()); 1010 1011 return Result; 1012 } 1013 1014 Error LTO::runRegularLTO(AddStreamFn AddStream) { 1015 // Setup optimization remarks. 1016 auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( 1017 RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename, 1018 Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, 1019 Conf.RemarksHotnessThreshold); 1020 if (!DiagFileOrErr) 1021 return DiagFileOrErr.takeError(); 1022 1023 // Finalize linking of regular LTO modules containing summaries now that 1024 // we have computed liveness information. 1025 for (auto &M : RegularLTO.ModsWithSummaries) 1026 if (Error Err = linkRegularLTO(std::move(M), 1027 /*LivenessFromIndex=*/true)) 1028 return Err; 1029 1030 // Ensure we don't have inconsistently split LTO units with type tests. 1031 // FIXME: this checks both LTO and ThinLTO. It happens to work as we take 1032 // this path both cases but eventually this should be split into two and 1033 // do the ThinLTO checks in `runThinLTO`. 1034 if (Error Err = checkPartiallySplit()) 1035 return Err; 1036 1037 // Make sure commons have the right size/alignment: we kept the largest from 1038 // all the prevailing when adding the inputs, and we apply it here. 1039 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 1040 for (auto &I : RegularLTO.Commons) { 1041 if (!I.second.Prevailing) 1042 // Don't do anything if no instance of this common was prevailing. 1043 continue; 1044 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 1045 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 1046 // Don't create a new global if the type is already correct, just make 1047 // sure the alignment is correct. 1048 OldGV->setAlignment(I.second.Align); 1049 continue; 1050 } 1051 ArrayType *Ty = 1052 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 1053 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 1054 GlobalValue::CommonLinkage, 1055 ConstantAggregateZero::get(Ty), ""); 1056 GV->setAlignment(I.second.Align); 1057 if (OldGV) { 1058 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 1059 GV->takeName(OldGV); 1060 OldGV->eraseFromParent(); 1061 } else { 1062 GV->setName(I.first); 1063 } 1064 } 1065 1066 // If allowed, upgrade public vcall visibility metadata to linkage unit 1067 // visibility before whole program devirtualization in the optimizer. 1068 updateVCallVisibilityInModule(*RegularLTO.CombinedModule, 1069 Conf.HasWholeProgramVisibility, 1070 DynamicExportSymbols); 1071 1072 if (Conf.PreOptModuleHook && 1073 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 1074 return Error::success(); 1075 1076 if (!Conf.CodeGenOnly) { 1077 for (const auto &R : GlobalResolutions) { 1078 if (!R.second.isPrevailingIRSymbol()) 1079 continue; 1080 if (R.second.Partition != 0 && 1081 R.second.Partition != GlobalResolution::External) 1082 continue; 1083 1084 GlobalValue *GV = 1085 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 1086 // Ignore symbols defined in other partitions. 1087 // Also skip declarations, which are not allowed to have internal linkage. 1088 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 1089 continue; 1090 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 1091 : GlobalValue::UnnamedAddr::None); 1092 if (EnableLTOInternalization && R.second.Partition == 0) 1093 GV->setLinkage(GlobalValue::InternalLinkage); 1094 } 1095 1096 RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); 1097 1098 if (Conf.PostInternalizeModuleHook && 1099 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1100 return Error::success(); 1101 } 1102 1103 if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { 1104 if (Error Err = 1105 backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1106 *RegularLTO.CombinedModule, ThinLTO.CombinedIndex)) 1107 return Err; 1108 } 1109 1110 return finalizeOptimizationRemarks(std::move(*DiagFileOrErr)); 1111 } 1112 1113 static const char *libcallRoutineNames[] = { 1114 #define HANDLE_LIBCALL(code, name) name, 1115 #include "llvm/IR/RuntimeLibcalls.def" 1116 #undef HANDLE_LIBCALL 1117 }; 1118 1119 ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() { 1120 return makeArrayRef(libcallRoutineNames); 1121 } 1122 1123 /// This class defines the interface to the ThinLTO backend. 1124 class lto::ThinBackendProc { 1125 protected: 1126 const Config &Conf; 1127 ModuleSummaryIndex &CombinedIndex; 1128 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1129 1130 public: 1131 ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1132 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1133 : Conf(Conf), CombinedIndex(CombinedIndex), 1134 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1135 1136 virtual ~ThinBackendProc() {} 1137 virtual Error start( 1138 unsigned Task, BitcodeModule BM, 1139 const FunctionImporter::ImportMapTy &ImportList, 1140 const FunctionImporter::ExportSetTy &ExportList, 1141 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1142 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1143 virtual Error wait() = 0; 1144 virtual unsigned getThreadCount() = 0; 1145 }; 1146 1147 namespace { 1148 class InProcessThinBackend : public ThinBackendProc { 1149 ThreadPool BackendThreadPool; 1150 AddStreamFn AddStream; 1151 NativeObjectCache Cache; 1152 std::set<GlobalValue::GUID> CfiFunctionDefs; 1153 std::set<GlobalValue::GUID> CfiFunctionDecls; 1154 1155 Optional<Error> Err; 1156 std::mutex ErrMu; 1157 1158 public: 1159 InProcessThinBackend( 1160 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1161 ThreadPoolStrategy ThinLTOParallelism, 1162 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1163 AddStreamFn AddStream, NativeObjectCache Cache) 1164 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1165 BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), 1166 Cache(std::move(Cache)) { 1167 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1168 CfiFunctionDefs.insert( 1169 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1170 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1171 CfiFunctionDecls.insert( 1172 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1173 } 1174 1175 Error runThinLTOBackendThread( 1176 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1177 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1178 const FunctionImporter::ImportMapTy &ImportList, 1179 const FunctionImporter::ExportSetTy &ExportList, 1180 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1181 const GVSummaryMapTy &DefinedGlobals, 1182 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1183 auto RunThinBackend = [&](AddStreamFn AddStream) { 1184 LTOLLVMContext BackendContext(Conf); 1185 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1186 if (!MOrErr) 1187 return MOrErr.takeError(); 1188 1189 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1190 ImportList, DefinedGlobals, ModuleMap); 1191 }; 1192 1193 auto ModuleID = BM.getModuleIdentifier(); 1194 1195 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1196 all_of(CombinedIndex.getModuleHash(ModuleID), 1197 [](uint32_t V) { return V == 0; })) 1198 // Cache disabled or no entry for this module in the combined index or 1199 // no module hash. 1200 return RunThinBackend(AddStream); 1201 1202 SmallString<40> Key; 1203 // The module may be cached, this helps handling it. 1204 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1205 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1206 CfiFunctionDecls); 1207 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1208 return RunThinBackend(CacheAddStream); 1209 1210 return Error::success(); 1211 } 1212 1213 Error start( 1214 unsigned Task, BitcodeModule BM, 1215 const FunctionImporter::ImportMapTy &ImportList, 1216 const FunctionImporter::ExportSetTy &ExportList, 1217 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1218 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1219 StringRef ModulePath = BM.getModuleIdentifier(); 1220 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1221 const GVSummaryMapTy &DefinedGlobals = 1222 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1223 BackendThreadPool.async( 1224 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1225 const FunctionImporter::ImportMapTy &ImportList, 1226 const FunctionImporter::ExportSetTy &ExportList, 1227 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1228 &ResolvedODR, 1229 const GVSummaryMapTy &DefinedGlobals, 1230 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1231 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1232 timeTraceProfilerInitialize(Conf.TimeTraceGranularity, 1233 "thin backend"); 1234 Error E = runThinLTOBackendThread( 1235 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1236 ResolvedODR, DefinedGlobals, ModuleMap); 1237 if (E) { 1238 std::unique_lock<std::mutex> L(ErrMu); 1239 if (Err) 1240 Err = joinErrors(std::move(*Err), std::move(E)); 1241 else 1242 Err = std::move(E); 1243 } 1244 if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) 1245 timeTraceProfilerFinishThread(); 1246 }, 1247 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1248 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1249 return Error::success(); 1250 } 1251 1252 Error wait() override { 1253 BackendThreadPool.wait(); 1254 if (Err) 1255 return std::move(*Err); 1256 else 1257 return Error::success(); 1258 } 1259 1260 unsigned getThreadCount() override { 1261 return BackendThreadPool.getThreadCount(); 1262 } 1263 }; 1264 } // end anonymous namespace 1265 1266 ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) { 1267 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1268 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1269 AddStreamFn AddStream, NativeObjectCache Cache) { 1270 return std::make_unique<InProcessThinBackend>( 1271 Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream, 1272 Cache); 1273 }; 1274 } 1275 1276 // Given the original \p Path to an output file, replace any path 1277 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1278 // resulting directory if it does not yet exist. 1279 std::string lto::getThinLTOOutputFile(const std::string &Path, 1280 const std::string &OldPrefix, 1281 const std::string &NewPrefix) { 1282 if (OldPrefix.empty() && NewPrefix.empty()) 1283 return Path; 1284 SmallString<128> NewPath(Path); 1285 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1286 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1287 if (!ParentPath.empty()) { 1288 // Make sure the new directory exists, creating it if necessary. 1289 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1290 llvm::errs() << "warning: could not create directory '" << ParentPath 1291 << "': " << EC.message() << '\n'; 1292 } 1293 return std::string(NewPath.str()); 1294 } 1295 1296 namespace { 1297 class WriteIndexesThinBackend : public ThinBackendProc { 1298 std::string OldPrefix, NewPrefix; 1299 bool ShouldEmitImportsFiles; 1300 raw_fd_ostream *LinkedObjectsFile; 1301 lto::IndexWriteCallback OnWrite; 1302 1303 public: 1304 WriteIndexesThinBackend( 1305 const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1306 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1307 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1308 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1309 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1310 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1311 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1312 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1313 1314 Error start( 1315 unsigned Task, BitcodeModule BM, 1316 const FunctionImporter::ImportMapTy &ImportList, 1317 const FunctionImporter::ExportSetTy &ExportList, 1318 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1319 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1320 StringRef ModulePath = BM.getModuleIdentifier(); 1321 std::string NewModulePath = 1322 getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix); 1323 1324 if (LinkedObjectsFile) 1325 *LinkedObjectsFile << NewModulePath << '\n'; 1326 1327 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1328 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1329 ImportList, ModuleToSummariesForIndex); 1330 1331 std::error_code EC; 1332 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1333 sys::fs::OpenFlags::OF_None); 1334 if (EC) 1335 return errorCodeToError(EC); 1336 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1337 1338 if (ShouldEmitImportsFiles) { 1339 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1340 ModuleToSummariesForIndex); 1341 if (EC) 1342 return errorCodeToError(EC); 1343 } 1344 1345 if (OnWrite) 1346 OnWrite(std::string(ModulePath)); 1347 return Error::success(); 1348 } 1349 1350 Error wait() override { return Error::success(); } 1351 1352 // WriteIndexesThinBackend should always return 1 to prevent module 1353 // re-ordering and avoid non-determinism in the final link. 1354 unsigned getThreadCount() override { return 1; } 1355 }; 1356 } // end anonymous namespace 1357 1358 ThinBackend lto::createWriteIndexesThinBackend( 1359 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1360 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1361 return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, 1362 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1363 AddStreamFn AddStream, NativeObjectCache Cache) { 1364 return std::make_unique<WriteIndexesThinBackend>( 1365 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1366 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1367 }; 1368 } 1369 1370 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1371 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1372 if (ThinLTO.ModuleMap.empty()) 1373 return Error::success(); 1374 1375 if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { 1376 llvm::errs() << "warning: [ThinLTO] No module compiled\n"; 1377 return Error::success(); 1378 } 1379 1380 if (Conf.CombinedIndexHook && 1381 !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) 1382 return Error::success(); 1383 1384 // Collect for each module the list of function it defines (GUID -> 1385 // Summary). 1386 StringMap<GVSummaryMapTy> 1387 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1388 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1389 ModuleToDefinedGVSummaries); 1390 // Create entries for any modules that didn't have any GV summaries 1391 // (either they didn't have any GVs to start with, or we suppressed 1392 // generation of the summaries because they e.g. had inline assembly 1393 // uses that couldn't be promoted/renamed on export). This is so 1394 // InProcessThinBackend::start can still launch a backend thread, which 1395 // is passed the map of summaries for the module, without any special 1396 // handling for this case. 1397 for (auto &Mod : ThinLTO.ModuleMap) 1398 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1399 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1400 1401 // Synthesize entry counts for functions in the CombinedIndex. 1402 computeSyntheticCounts(ThinLTO.CombinedIndex); 1403 1404 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1405 ThinLTO.ModuleMap.size()); 1406 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1407 ThinLTO.ModuleMap.size()); 1408 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1409 1410 if (DumpThinCGSCCs) 1411 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1412 1413 std::set<GlobalValue::GUID> ExportedGUIDs; 1414 1415 // If allowed, upgrade public vcall visibility to linkage unit visibility in 1416 // the summaries before whole program devirtualization below. 1417 updateVCallVisibilityInIndex(ThinLTO.CombinedIndex, 1418 Conf.HasWholeProgramVisibility, 1419 DynamicExportSymbols); 1420 1421 // Perform index-based WPD. This will return immediately if there are 1422 // no index entries in the typeIdMetadata map (e.g. if we are instead 1423 // performing IR-based WPD in hybrid regular/thin LTO mode). 1424 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1425 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1426 LocalWPDTargetsMap); 1427 1428 if (Conf.OptLevel > 0) 1429 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1430 ImportLists, ExportLists); 1431 1432 // Figure out which symbols need to be internalized. This also needs to happen 1433 // at -O0 because summary-based DCE is implemented using internalization, and 1434 // we must apply DCE consistently with the full LTO module in order to avoid 1435 // undefined references during the final link. 1436 for (auto &Res : GlobalResolutions) { 1437 // If the symbol does not have external references or it is not prevailing, 1438 // then not need to mark it as exported from a ThinLTO partition. 1439 if (Res.second.Partition != GlobalResolution::External || 1440 !Res.second.isPrevailingIRSymbol()) 1441 continue; 1442 auto GUID = GlobalValue::getGUID( 1443 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1444 // Mark exported unless index-based analysis determined it to be dead. 1445 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1446 ExportedGUIDs.insert(GUID); 1447 } 1448 1449 // Any functions referenced by the jump table in the regular LTO object must 1450 // be exported. 1451 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1452 ExportedGUIDs.insert( 1453 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1454 1455 auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { 1456 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1457 return (ExportList != ExportLists.end() && ExportList->second.count(VI)) || 1458 ExportedGUIDs.count(VI.getGUID()); 1459 }; 1460 1461 // Update local devirtualized targets that were exported by cross-module 1462 // importing or by other devirtualizations marked in the ExportedGUIDs set. 1463 updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported, 1464 LocalWPDTargetsMap); 1465 1466 auto isPrevailing = [&](GlobalValue::GUID GUID, 1467 const GlobalValueSummary *S) { 1468 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1469 }; 1470 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported, 1471 isPrevailing); 1472 1473 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1474 GlobalValue::GUID GUID, 1475 GlobalValue::LinkageTypes NewLinkage) { 1476 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1477 }; 1478 thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing, 1479 recordNewLinkage, GUIDPreservedSymbols); 1480 1481 generateParamAccessSummary(ThinLTO.CombinedIndex); 1482 1483 std::unique_ptr<ThinBackendProc> BackendProc = 1484 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1485 AddStream, Cache); 1486 1487 auto &ModuleMap = 1488 ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; 1489 1490 auto ProcessOneModule = [&](int I) -> Error { 1491 auto &Mod = *(ModuleMap.begin() + I); 1492 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for 1493 // combined module and parallel code generation partitions. 1494 return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I, 1495 Mod.second, ImportLists[Mod.first], 1496 ExportLists[Mod.first], ResolvedODR[Mod.first], 1497 ThinLTO.ModuleMap); 1498 }; 1499 1500 if (BackendProc->getThreadCount() == 1) { 1501 // Process the modules in the order they were provided on the command-line. 1502 // It is important for this codepath to be used for WriteIndexesThinBackend, 1503 // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same 1504 // order as the inputs, which otherwise would affect the final link order. 1505 for (int I = 0, E = ModuleMap.size(); I != E; ++I) 1506 if (Error E = ProcessOneModule(I)) 1507 return E; 1508 } else { 1509 // When executing in parallel, process largest bitsize modules first to 1510 // improve parallelism, and avoid starving the thread pool near the end. 1511 // This saves about 15 sec on a 36-core machine while link `clang.exe` (out 1512 // of 100 sec). 1513 std::vector<BitcodeModule *> ModulesVec; 1514 ModulesVec.reserve(ModuleMap.size()); 1515 for (auto &Mod : ModuleMap) 1516 ModulesVec.push_back(&Mod.second); 1517 for (int I : generateModulesOrdering(ModulesVec)) 1518 if (Error E = ProcessOneModule(I)) 1519 return E; 1520 } 1521 return BackendProc->wait(); 1522 } 1523 1524 Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks( 1525 LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses, 1526 StringRef RemarksFormat, bool RemarksWithHotness, 1527 Optional<uint64_t> RemarksHotnessThreshold, int Count) { 1528 std::string Filename = std::string(RemarksFilename); 1529 // For ThinLTO, file.opt.<format> becomes 1530 // file.opt.<format>.thin.<num>.<format>. 1531 if (!Filename.empty() && Count != -1) 1532 Filename = 1533 (Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat) 1534 .str(); 1535 1536 auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( 1537 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, 1538 RemarksHotnessThreshold); 1539 if (Error E = ResultOrErr.takeError()) 1540 return std::move(E); 1541 1542 if (*ResultOrErr) 1543 (*ResultOrErr)->keep(); 1544 1545 return ResultOrErr; 1546 } 1547 1548 Expected<std::unique_ptr<ToolOutputFile>> 1549 lto::setupStatsFile(StringRef StatsFilename) { 1550 // Setup output file to emit statistics. 1551 if (StatsFilename.empty()) 1552 return nullptr; 1553 1554 llvm::EnableStatistics(false); 1555 std::error_code EC; 1556 auto StatsFile = 1557 std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1558 if (EC) 1559 return errorCodeToError(EC); 1560 1561 StatsFile->keep(); 1562 return std::move(StatsFile); 1563 } 1564 1565 // Compute the ordering we will process the inputs: the rough heuristic here 1566 // is to sort them per size so that the largest module get schedule as soon as 1567 // possible. This is purely a compile-time optimization. 1568 std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { 1569 std::vector<int> ModulesOrdering; 1570 ModulesOrdering.resize(R.size()); 1571 std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); 1572 llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) { 1573 auto LSize = R[LeftIndex]->getBuffer().size(); 1574 auto RSize = R[RightIndex]->getBuffer().size(); 1575 return LSize > RSize; 1576 }); 1577 return ModulesOrdering; 1578 } 1579