1 //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions and classes used to support LTO. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/LTO/LTO.h" 14 #include "llvm/ADT/Statistic.h" 15 #include "llvm/Analysis/TargetLibraryInfo.h" 16 #include "llvm/Analysis/TargetTransformInfo.h" 17 #include "llvm/Bitcode/BitcodeReader.h" 18 #include "llvm/Bitcode/BitcodeWriter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/IR/AutoUpgrade.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/LegacyPassManager.h" 25 #include "llvm/IR/Mangler.h" 26 #include "llvm/IR/Metadata.h" 27 #include "llvm/IR/RemarkStreamer.h" 28 #include "llvm/LTO/LTOBackend.h" 29 #include "llvm/LTO/SummaryBasedOptimizations.h" 30 #include "llvm/Linker/IRMover.h" 31 #include "llvm/Object/IRObjectFile.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/Path.h" 36 #include "llvm/Support/SHA1.h" 37 #include "llvm/Support/SourceMgr.h" 38 #include "llvm/Support/TargetRegistry.h" 39 #include "llvm/Support/ThreadPool.h" 40 #include "llvm/Support/Threading.h" 41 #include "llvm/Support/VCSRevision.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include "llvm/Transforms/IPO.h" 46 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 47 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 48 #include "llvm/Transforms/Utils/FunctionImportUtils.h" 49 #include "llvm/Transforms/Utils/SplitModule.h" 50 51 #include <set> 52 53 using namespace llvm; 54 using namespace lto; 55 using namespace object; 56 57 #define DEBUG_TYPE "lto" 58 59 static cl::opt<bool> 60 DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden, 61 cl::desc("Dump the SCCs in the ThinLTO index's callgraph")); 62 63 /// Enable global value internalization in LTO. 64 cl::opt<bool> EnableLTOInternalization( 65 "enable-lto-internalization", cl::init(true), cl::Hidden, 66 cl::desc("Enable global value internalization in LTO")); 67 68 // Computes a unique hash for the Module considering the current list of 69 // export/import and other global analysis results. 70 // The hash is produced in \p Key. 71 void llvm::computeLTOCacheKey( 72 SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, 73 StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, 74 const FunctionImporter::ExportSetTy &ExportList, 75 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 76 const GVSummaryMapTy &DefinedGlobals, 77 const std::set<GlobalValue::GUID> &CfiFunctionDefs, 78 const std::set<GlobalValue::GUID> &CfiFunctionDecls) { 79 // Compute the unique hash for this entry. 80 // This is based on the current compiler version, the module itself, the 81 // export list, the hash for every single module in the import list, the 82 // list of ResolvedODR for the module, and the list of preserved symbols. 83 SHA1 Hasher; 84 85 // Start with the compiler revision 86 Hasher.update(LLVM_VERSION_STRING); 87 #ifdef LLVM_REVISION 88 Hasher.update(LLVM_REVISION); 89 #endif 90 91 // Include the parts of the LTO configuration that affect code generation. 92 auto AddString = [&](StringRef Str) { 93 Hasher.update(Str); 94 Hasher.update(ArrayRef<uint8_t>{0}); 95 }; 96 auto AddUnsigned = [&](unsigned I) { 97 uint8_t Data[4]; 98 Data[0] = I; 99 Data[1] = I >> 8; 100 Data[2] = I >> 16; 101 Data[3] = I >> 24; 102 Hasher.update(ArrayRef<uint8_t>{Data, 4}); 103 }; 104 auto AddUint64 = [&](uint64_t I) { 105 uint8_t Data[8]; 106 Data[0] = I; 107 Data[1] = I >> 8; 108 Data[2] = I >> 16; 109 Data[3] = I >> 24; 110 Data[4] = I >> 32; 111 Data[5] = I >> 40; 112 Data[6] = I >> 48; 113 Data[7] = I >> 56; 114 Hasher.update(ArrayRef<uint8_t>{Data, 8}); 115 }; 116 AddString(Conf.CPU); 117 // FIXME: Hash more of Options. For now all clients initialize Options from 118 // command-line flags (which is unsupported in production), but may set 119 // RelaxELFRelocations. The clang driver can also pass FunctionSections, 120 // DataSections and DebuggerTuning via command line flags. 121 AddUnsigned(Conf.Options.RelaxELFRelocations); 122 AddUnsigned(Conf.Options.FunctionSections); 123 AddUnsigned(Conf.Options.DataSections); 124 AddUnsigned((unsigned)Conf.Options.DebuggerTuning); 125 for (auto &A : Conf.MAttrs) 126 AddString(A); 127 if (Conf.RelocModel) 128 AddUnsigned(*Conf.RelocModel); 129 else 130 AddUnsigned(-1); 131 if (Conf.CodeModel) 132 AddUnsigned(*Conf.CodeModel); 133 else 134 AddUnsigned(-1); 135 AddUnsigned(Conf.CGOptLevel); 136 AddUnsigned(Conf.CGFileType); 137 AddUnsigned(Conf.OptLevel); 138 AddUnsigned(Conf.UseNewPM); 139 AddUnsigned(Conf.Freestanding); 140 AddString(Conf.OptPipeline); 141 AddString(Conf.AAPipeline); 142 AddString(Conf.OverrideTriple); 143 AddString(Conf.DefaultTriple); 144 AddString(Conf.DwoDir); 145 146 // Include the hash for the current module 147 auto ModHash = Index.getModuleHash(ModuleID); 148 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 149 for (auto F : ExportList) 150 // The export list can impact the internalization, be conservative here 151 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F))); 152 153 // Include the hash for every module we import functions from. The set of 154 // imported symbols for each module may affect code generation and is 155 // sensitive to link order, so include that as well. 156 for (auto &Entry : ImportList) { 157 auto ModHash = Index.getModuleHash(Entry.first()); 158 Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); 159 160 AddUint64(Entry.second.size()); 161 for (auto &Fn : Entry.second) 162 AddUint64(Fn); 163 } 164 165 // Include the hash for the resolved ODR. 166 for (auto &Entry : ResolvedODR) { 167 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, 168 sizeof(GlobalValue::GUID))); 169 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, 170 sizeof(GlobalValue::LinkageTypes))); 171 } 172 173 // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or 174 // defined in this module. 175 std::set<GlobalValue::GUID> UsedCfiDefs; 176 std::set<GlobalValue::GUID> UsedCfiDecls; 177 178 // Typeids used in this module. 179 std::set<GlobalValue::GUID> UsedTypeIds; 180 181 auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { 182 if (CfiFunctionDefs.count(ValueGUID)) 183 UsedCfiDefs.insert(ValueGUID); 184 if (CfiFunctionDecls.count(ValueGUID)) 185 UsedCfiDecls.insert(ValueGUID); 186 }; 187 188 auto AddUsedThings = [&](GlobalValueSummary *GS) { 189 if (!GS) return; 190 AddUnsigned(GS->isLive()); 191 AddUnsigned(GS->canAutoHide()); 192 for (const ValueInfo &VI : GS->refs()) { 193 AddUnsigned(VI.isDSOLocal()); 194 AddUsedCfiGlobal(VI.getGUID()); 195 } 196 if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) { 197 AddUnsigned(GVS->maybeReadOnly()); 198 AddUnsigned(GVS->maybeWriteOnly()); 199 } 200 if (auto *FS = dyn_cast<FunctionSummary>(GS)) { 201 for (auto &TT : FS->type_tests()) 202 UsedTypeIds.insert(TT); 203 for (auto &TT : FS->type_test_assume_vcalls()) 204 UsedTypeIds.insert(TT.GUID); 205 for (auto &TT : FS->type_checked_load_vcalls()) 206 UsedTypeIds.insert(TT.GUID); 207 for (auto &TT : FS->type_test_assume_const_vcalls()) 208 UsedTypeIds.insert(TT.VFunc.GUID); 209 for (auto &TT : FS->type_checked_load_const_vcalls()) 210 UsedTypeIds.insert(TT.VFunc.GUID); 211 for (auto &ET : FS->calls()) { 212 AddUnsigned(ET.first.isDSOLocal()); 213 AddUsedCfiGlobal(ET.first.getGUID()); 214 } 215 } 216 }; 217 218 // Include the hash for the linkage type to reflect internalization and weak 219 // resolution, and collect any used type identifier resolutions. 220 for (auto &GS : DefinedGlobals) { 221 GlobalValue::LinkageTypes Linkage = GS.second->linkage(); 222 Hasher.update( 223 ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); 224 AddUsedCfiGlobal(GS.first); 225 AddUsedThings(GS.second); 226 } 227 228 // Imported functions may introduce new uses of type identifier resolutions, 229 // so we need to collect their used resolutions as well. 230 for (auto &ImpM : ImportList) 231 for (auto &ImpF : ImpM.second) { 232 GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first()); 233 AddUsedThings(S); 234 // If this is an alias, we also care about any types/etc. that the aliasee 235 // may reference. 236 if (auto *AS = dyn_cast_or_null<AliasSummary>(S)) 237 AddUsedThings(AS->getBaseObject()); 238 } 239 240 auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { 241 AddString(TId); 242 243 AddUnsigned(S.TTRes.TheKind); 244 AddUnsigned(S.TTRes.SizeM1BitWidth); 245 246 AddUint64(S.TTRes.AlignLog2); 247 AddUint64(S.TTRes.SizeM1); 248 AddUint64(S.TTRes.BitMask); 249 AddUint64(S.TTRes.InlineBits); 250 251 AddUint64(S.WPDRes.size()); 252 for (auto &WPD : S.WPDRes) { 253 AddUnsigned(WPD.first); 254 AddUnsigned(WPD.second.TheKind); 255 AddString(WPD.second.SingleImplName); 256 257 AddUint64(WPD.second.ResByArg.size()); 258 for (auto &ByArg : WPD.second.ResByArg) { 259 AddUint64(ByArg.first.size()); 260 for (uint64_t Arg : ByArg.first) 261 AddUint64(Arg); 262 AddUnsigned(ByArg.second.TheKind); 263 AddUint64(ByArg.second.Info); 264 AddUnsigned(ByArg.second.Byte); 265 AddUnsigned(ByArg.second.Bit); 266 } 267 } 268 }; 269 270 // Include the hash for all type identifiers used by this module. 271 for (GlobalValue::GUID TId : UsedTypeIds) { 272 auto TidIter = Index.typeIds().equal_range(TId); 273 for (auto It = TidIter.first; It != TidIter.second; ++It) 274 AddTypeIdSummary(It->second.first, It->second.second); 275 } 276 277 AddUnsigned(UsedCfiDefs.size()); 278 for (auto &V : UsedCfiDefs) 279 AddUint64(V); 280 281 AddUnsigned(UsedCfiDecls.size()); 282 for (auto &V : UsedCfiDecls) 283 AddUint64(V); 284 285 if (!Conf.SampleProfile.empty()) { 286 auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); 287 if (FileOrErr) { 288 Hasher.update(FileOrErr.get()->getBuffer()); 289 290 if (!Conf.ProfileRemapping.empty()) { 291 FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping); 292 if (FileOrErr) 293 Hasher.update(FileOrErr.get()->getBuffer()); 294 } 295 } 296 } 297 298 Key = toHex(Hasher.result()); 299 } 300 301 static void thinLTOResolvePrevailingGUID( 302 ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, 303 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 304 isPrevailing, 305 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 306 recordNewLinkage, 307 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 308 for (auto &S : VI.getSummaryList()) { 309 GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); 310 // Ignore local and appending linkage values since the linker 311 // doesn't resolve them. 312 if (GlobalValue::isLocalLinkage(OriginalLinkage) || 313 GlobalValue::isAppendingLinkage(S->linkage())) 314 continue; 315 // We need to emit only one of these. The prevailing module will keep it, 316 // but turned into a weak, while the others will drop it when possible. 317 // This is both a compile-time optimization and a correctness 318 // transformation. This is necessary for correctness when we have exported 319 // a reference - we need to convert the linkonce to weak to 320 // ensure a copy is kept to satisfy the exported reference. 321 // FIXME: We may want to split the compile time and correctness 322 // aspects into separate routines. 323 if (isPrevailing(VI.getGUID(), S.get())) { 324 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) { 325 S->setLinkage(GlobalValue::getWeakLinkage( 326 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 327 // The kept copy is eligible for auto-hiding (hidden visibility) if all 328 // copies were (i.e. they were all linkonce_odr global unnamed addr). 329 // If any copy is not (e.g. it was originally weak_odr), then the symbol 330 // must remain externally available (e.g. a weak_odr from an explicitly 331 // instantiated template). Additionally, if it is in the 332 // GUIDPreservedSymbols set, that means that it is visibile outside 333 // the summary (e.g. in a native object or a bitcode file without 334 // summary), and in that case we cannot hide it as it isn't possible to 335 // check all copies. 336 S->setCanAutoHide(VI.canAutoHide() && 337 !GUIDPreservedSymbols.count(VI.getGUID())); 338 } 339 } 340 // Alias and aliasee can't be turned into available_externally. 341 else if (!isa<AliasSummary>(S.get()) && 342 !GlobalInvolvedWithAlias.count(S.get())) 343 S->setLinkage(GlobalValue::AvailableExternallyLinkage); 344 if (S->linkage() != OriginalLinkage) 345 recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); 346 } 347 } 348 349 /// Resolve linkage for prevailing symbols in the \p Index. 350 // 351 // We'd like to drop these functions if they are no longer referenced in the 352 // current module. However there is a chance that another module is still 353 // referencing them because of the import. We make sure we always emit at least 354 // one copy. 355 void llvm::thinLTOResolvePrevailingInIndex( 356 ModuleSummaryIndex &Index, 357 function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> 358 isPrevailing, 359 function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> 360 recordNewLinkage, 361 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 362 // We won't optimize the globals that are referenced by an alias for now 363 // Ideally we should turn the alias into a global and duplicate the definition 364 // when needed. 365 DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; 366 for (auto &I : Index) 367 for (auto &S : I.second.SummaryList) 368 if (auto AS = dyn_cast<AliasSummary>(S.get())) 369 GlobalInvolvedWithAlias.insert(&AS->getAliasee()); 370 371 for (auto &I : Index) 372 thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias, 373 isPrevailing, recordNewLinkage, 374 GUIDPreservedSymbols); 375 } 376 377 static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) { 378 if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject())) 379 return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() && 380 (VarSummary->linkage() == GlobalValue::WeakODRLinkage || 381 VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage); 382 return false; 383 } 384 385 static void thinLTOInternalizeAndPromoteGUID( 386 GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID, 387 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) { 388 for (auto &S : GVSummaryList) { 389 if (isExported(S->modulePath(), GUID)) { 390 if (GlobalValue::isLocalLinkage(S->linkage())) 391 S->setLinkage(GlobalValue::ExternalLinkage); 392 } else if (EnableLTOInternalization && 393 // Ignore local and appending linkage values since the linker 394 // doesn't resolve them. 395 !GlobalValue::isLocalLinkage(S->linkage()) && 396 S->linkage() != GlobalValue::AppendingLinkage && 397 // We can't internalize available_externally globals because this 398 // can break function pointer equality. 399 S->linkage() != GlobalValue::AvailableExternallyLinkage && 400 // Functions and read-only variables with linkonce_odr and 401 // weak_odr linkage can be internalized. We can't internalize 402 // linkonce_odr and weak_odr variables which are both modified 403 // and read somewhere in the program because reads and writes 404 // will become inconsistent. 405 !isWeakObjectWithRWAccess(S.get())) 406 S->setLinkage(GlobalValue::InternalLinkage); 407 } 408 } 409 410 // Update the linkages in the given \p Index to mark exported values 411 // as external and non-exported values as internal. 412 void llvm::thinLTOInternalizeAndPromoteInIndex( 413 ModuleSummaryIndex &Index, 414 function_ref<bool(StringRef, GlobalValue::GUID)> isExported) { 415 for (auto &I : Index) 416 thinLTOInternalizeAndPromoteGUID(I.second.SummaryList, I.first, isExported); 417 } 418 419 // Requires a destructor for std::vector<InputModule>. 420 InputFile::~InputFile() = default; 421 422 Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { 423 std::unique_ptr<InputFile> File(new InputFile); 424 425 Expected<IRSymtabFile> FOrErr = readIRSymtab(Object); 426 if (!FOrErr) 427 return FOrErr.takeError(); 428 429 File->TargetTriple = FOrErr->TheReader.getTargetTriple(); 430 File->SourceFileName = FOrErr->TheReader.getSourceFileName(); 431 File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); 432 File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); 433 File->ComdatTable = FOrErr->TheReader.getComdatTable(); 434 435 for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { 436 size_t Begin = File->Symbols.size(); 437 for (const irsymtab::Reader::SymbolRef &Sym : 438 FOrErr->TheReader.module_symbols(I)) 439 // Skip symbols that are irrelevant to LTO. Note that this condition needs 440 // to match the one in Skip() in LTO::addRegularLTO(). 441 if (Sym.isGlobal() && !Sym.isFormatSpecific()) 442 File->Symbols.push_back(Sym); 443 File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); 444 } 445 446 File->Mods = FOrErr->Mods; 447 File->Strtab = std::move(FOrErr->Strtab); 448 return std::move(File); 449 } 450 451 StringRef InputFile::getName() const { 452 return Mods[0].getModuleIdentifier(); 453 } 454 455 BitcodeModule &InputFile::getSingleBitcodeModule() { 456 assert(Mods.size() == 1 && "Expect only one bitcode module"); 457 return Mods[0]; 458 } 459 460 LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, 461 Config &Conf) 462 : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), 463 Ctx(Conf), CombinedModule(llvm::make_unique<Module>("ld-temp.o", Ctx)), 464 Mover(llvm::make_unique<IRMover>(*CombinedModule)) {} 465 466 LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) 467 : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { 468 if (!Backend) 469 this->Backend = 470 createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); 471 } 472 473 LTO::LTO(Config Conf, ThinBackend Backend, 474 unsigned ParallelCodeGenParallelismLevel) 475 : Conf(std::move(Conf)), 476 RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), 477 ThinLTO(std::move(Backend)) {} 478 479 // Requires a destructor for MapVector<BitcodeModule>. 480 LTO::~LTO() = default; 481 482 // Add the symbols in the given module to the GlobalResolutions map, and resolve 483 // their partitions. 484 void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, 485 ArrayRef<SymbolResolution> Res, 486 unsigned Partition, bool InSummary) { 487 auto *ResI = Res.begin(); 488 auto *ResE = Res.end(); 489 (void)ResE; 490 for (const InputFile::Symbol &Sym : Syms) { 491 assert(ResI != ResE); 492 SymbolResolution Res = *ResI++; 493 494 StringRef Name = Sym.getName(); 495 Triple TT(RegularLTO.CombinedModule->getTargetTriple()); 496 // Strip the __imp_ prefix from COFF dllimport symbols (similar to the 497 // way they are handled by lld), otherwise we can end up with two 498 // global resolutions (one with and one for a copy of the symbol without). 499 if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_")) 500 Name = Name.substr(strlen("__imp_")); 501 auto &GlobalRes = GlobalResolutions[Name]; 502 GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); 503 if (Res.Prevailing) { 504 assert(!GlobalRes.Prevailing && 505 "Multiple prevailing defs are not allowed"); 506 GlobalRes.Prevailing = true; 507 GlobalRes.IRName = Sym.getIRName(); 508 } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { 509 // Sometimes it can be two copies of symbol in a module and prevailing 510 // symbol can have no IR name. That might happen if symbol is defined in 511 // module level inline asm block. In case we have multiple modules with 512 // the same symbol we want to use IR name of the prevailing symbol. 513 // Otherwise, if we haven't seen a prevailing symbol, set the name so that 514 // we can later use it to check if there is any prevailing copy in IR. 515 GlobalRes.IRName = Sym.getIRName(); 516 } 517 518 // Set the partition to external if we know it is re-defined by the linker 519 // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a 520 // regular object, is referenced from llvm.compiler_used, or was already 521 // recorded as being referenced from a different partition. 522 if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || 523 (GlobalRes.Partition != GlobalResolution::Unknown && 524 GlobalRes.Partition != Partition)) { 525 GlobalRes.Partition = GlobalResolution::External; 526 } else 527 // First recorded reference, save the current partition. 528 GlobalRes.Partition = Partition; 529 530 // Flag as visible outside of summary if visible from a regular object or 531 // from a module that does not have a summary. 532 GlobalRes.VisibleOutsideSummary |= 533 (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); 534 } 535 } 536 537 static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, 538 ArrayRef<SymbolResolution> Res) { 539 StringRef Path = Input->getName(); 540 OS << Path << '\n'; 541 auto ResI = Res.begin(); 542 for (const InputFile::Symbol &Sym : Input->symbols()) { 543 assert(ResI != Res.end()); 544 SymbolResolution Res = *ResI++; 545 546 OS << "-r=" << Path << ',' << Sym.getName() << ','; 547 if (Res.Prevailing) 548 OS << 'p'; 549 if (Res.FinalDefinitionInLinkageUnit) 550 OS << 'l'; 551 if (Res.VisibleToRegularObj) 552 OS << 'x'; 553 if (Res.LinkerRedefined) 554 OS << 'r'; 555 OS << '\n'; 556 } 557 OS.flush(); 558 assert(ResI == Res.end()); 559 } 560 561 Error LTO::add(std::unique_ptr<InputFile> Input, 562 ArrayRef<SymbolResolution> Res) { 563 assert(!CalledGetMaxTasks); 564 565 if (Conf.ResolutionFile) 566 writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); 567 568 if (RegularLTO.CombinedModule->getTargetTriple().empty()) 569 RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); 570 571 const SymbolResolution *ResI = Res.begin(); 572 for (unsigned I = 0; I != Input->Mods.size(); ++I) 573 if (Error Err = addModule(*Input, I, ResI, Res.end())) 574 return Err; 575 576 assert(ResI == Res.end()); 577 return Error::success(); 578 } 579 580 Error LTO::addModule(InputFile &Input, unsigned ModI, 581 const SymbolResolution *&ResI, 582 const SymbolResolution *ResE) { 583 Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); 584 if (!LTOInfo) 585 return LTOInfo.takeError(); 586 587 if (EnableSplitLTOUnit.hasValue()) { 588 // If only some modules were split, flag this in the index so that 589 // we can skip or error on optimizations that need consistently split 590 // modules (whole program devirt and lower type tests). 591 if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit) 592 ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); 593 } else 594 EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; 595 596 BitcodeModule BM = Input.Mods[ModI]; 597 auto ModSyms = Input.module_symbols(ModI); 598 addModuleToGlobalRes(ModSyms, {ResI, ResE}, 599 LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, 600 LTOInfo->HasSummary); 601 602 if (LTOInfo->IsThinLTO) 603 return addThinLTO(BM, ModSyms, ResI, ResE); 604 605 Expected<RegularLTOState::AddedModule> ModOrErr = 606 addRegularLTO(BM, ModSyms, ResI, ResE); 607 if (!ModOrErr) 608 return ModOrErr.takeError(); 609 610 if (!LTOInfo->HasSummary) 611 return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false); 612 613 // Regular LTO module summaries are added to a dummy module that represents 614 // the combined regular LTO module. 615 if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull)) 616 return Err; 617 RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr)); 618 return Error::success(); 619 } 620 621 // Checks whether the given global value is in a non-prevailing comdat 622 // (comdat containing values the linker indicated were not prevailing, 623 // which we then dropped to available_externally), and if so, removes 624 // it from the comdat. This is called for all global values to ensure the 625 // comdat is empty rather than leaving an incomplete comdat. It is needed for 626 // regular LTO modules, in case we are in a mixed-LTO mode (both regular 627 // and thin LTO modules) compilation. Since the regular LTO module will be 628 // linked first in the final native link, we want to make sure the linker 629 // doesn't select any of these incomplete comdats that would be left 630 // in the regular LTO module without this cleanup. 631 static void 632 handleNonPrevailingComdat(GlobalValue &GV, 633 std::set<const Comdat *> &NonPrevailingComdats) { 634 Comdat *C = GV.getComdat(); 635 if (!C) 636 return; 637 638 if (!NonPrevailingComdats.count(C)) 639 return; 640 641 // Additionally need to drop externally visible global values from the comdat 642 // to available_externally, so that there aren't multiply defined linker 643 // errors. 644 if (!GV.hasLocalLinkage()) 645 GV.setLinkage(GlobalValue::AvailableExternallyLinkage); 646 647 if (auto GO = dyn_cast<GlobalObject>(&GV)) 648 GO->setComdat(nullptr); 649 } 650 651 // Add a regular LTO object to the link. 652 // The resulting module needs to be linked into the combined LTO module with 653 // linkRegularLTO. 654 Expected<LTO::RegularLTOState::AddedModule> 655 LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 656 const SymbolResolution *&ResI, 657 const SymbolResolution *ResE) { 658 RegularLTOState::AddedModule Mod; 659 Expected<std::unique_ptr<Module>> MOrErr = 660 BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, 661 /*IsImporting*/ false); 662 if (!MOrErr) 663 return MOrErr.takeError(); 664 Module &M = **MOrErr; 665 Mod.M = std::move(*MOrErr); 666 667 if (Error Err = M.materializeMetadata()) 668 return std::move(Err); 669 UpgradeDebugInfo(M); 670 671 ModuleSymbolTable SymTab; 672 SymTab.addModule(&M); 673 674 for (GlobalVariable &GV : M.globals()) 675 if (GV.hasAppendingLinkage()) 676 Mod.Keep.push_back(&GV); 677 678 DenseSet<GlobalObject *> AliasedGlobals; 679 for (auto &GA : M.aliases()) 680 if (GlobalObject *GO = GA.getBaseObject()) 681 AliasedGlobals.insert(GO); 682 683 // In this function we need IR GlobalValues matching the symbols in Syms 684 // (which is not backed by a module), so we need to enumerate them in the same 685 // order. The symbol enumeration order of a ModuleSymbolTable intentionally 686 // matches the order of an irsymtab, but when we read the irsymtab in 687 // InputFile::create we omit some symbols that are irrelevant to LTO. The 688 // Skip() function skips the same symbols from the module as InputFile does 689 // from the symbol table. 690 auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); 691 auto Skip = [&]() { 692 while (MsymI != MsymE) { 693 auto Flags = SymTab.getSymbolFlags(*MsymI); 694 if ((Flags & object::BasicSymbolRef::SF_Global) && 695 !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) 696 return; 697 ++MsymI; 698 } 699 }; 700 Skip(); 701 702 std::set<const Comdat *> NonPrevailingComdats; 703 for (const InputFile::Symbol &Sym : Syms) { 704 assert(ResI != ResE); 705 SymbolResolution Res = *ResI++; 706 707 assert(MsymI != MsymE); 708 ModuleSymbolTable::Symbol Msym = *MsymI++; 709 Skip(); 710 711 if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) { 712 if (Res.Prevailing) { 713 if (Sym.isUndefined()) 714 continue; 715 Mod.Keep.push_back(GV); 716 // For symbols re-defined with linker -wrap and -defsym options, 717 // set the linkage to weak to inhibit IPO. The linkage will be 718 // restored by the linker. 719 if (Res.LinkerRedefined) 720 GV->setLinkage(GlobalValue::WeakAnyLinkage); 721 722 GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); 723 if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) 724 GV->setLinkage(GlobalValue::getWeakLinkage( 725 GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); 726 } else if (isa<GlobalObject>(GV) && 727 (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || 728 GV->hasAvailableExternallyLinkage()) && 729 !AliasedGlobals.count(cast<GlobalObject>(GV))) { 730 // Any of the above three types of linkage indicates that the 731 // chosen prevailing symbol will have the same semantics as this copy of 732 // the symbol, so we may be able to link it with available_externally 733 // linkage. We will decide later whether to do that when we link this 734 // module (in linkRegularLTO), based on whether it is undefined. 735 Mod.Keep.push_back(GV); 736 GV->setLinkage(GlobalValue::AvailableExternallyLinkage); 737 if (GV->hasComdat()) 738 NonPrevailingComdats.insert(GV->getComdat()); 739 cast<GlobalObject>(GV)->setComdat(nullptr); 740 } 741 742 // Set the 'local' flag based on the linker resolution for this symbol. 743 if (Res.FinalDefinitionInLinkageUnit) { 744 GV->setDSOLocal(true); 745 if (GV->hasDLLImportStorageClass()) 746 GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: 747 DefaultStorageClass); 748 } 749 } 750 // Common resolution: collect the maximum size/alignment over all commons. 751 // We also record if we see an instance of a common as prevailing, so that 752 // if none is prevailing we can ignore it later. 753 if (Sym.isCommon()) { 754 // FIXME: We should figure out what to do about commons defined by asm. 755 // For now they aren't reported correctly by ModuleSymbolTable. 756 auto &CommonRes = RegularLTO.Commons[Sym.getIRName()]; 757 CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); 758 CommonRes.Align = std::max(CommonRes.Align, Sym.getCommonAlignment()); 759 CommonRes.Prevailing |= Res.Prevailing; 760 } 761 762 } 763 if (!M.getComdatSymbolTable().empty()) 764 for (GlobalValue &GV : M.global_values()) 765 handleNonPrevailingComdat(GV, NonPrevailingComdats); 766 assert(MsymI == MsymE); 767 return std::move(Mod); 768 } 769 770 Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, 771 bool LivenessFromIndex) { 772 std::vector<GlobalValue *> Keep; 773 for (GlobalValue *GV : Mod.Keep) { 774 if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) 775 continue; 776 777 if (!GV->hasAvailableExternallyLinkage()) { 778 Keep.push_back(GV); 779 continue; 780 } 781 782 // Only link available_externally definitions if we don't already have a 783 // definition. 784 GlobalValue *CombinedGV = 785 RegularLTO.CombinedModule->getNamedValue(GV->getName()); 786 if (CombinedGV && !CombinedGV->isDeclaration()) 787 continue; 788 789 Keep.push_back(GV); 790 } 791 792 return RegularLTO.Mover->move(std::move(Mod.M), Keep, 793 [](GlobalValue &, IRMover::ValueAdder) {}, 794 /* IsPerformingImport */ false); 795 } 796 797 // Add a ThinLTO module to the link. 798 Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, 799 const SymbolResolution *&ResI, 800 const SymbolResolution *ResE) { 801 if (Error Err = 802 BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(), 803 ThinLTO.ModuleMap.size())) 804 return Err; 805 806 for (const InputFile::Symbol &Sym : Syms) { 807 assert(ResI != ResE); 808 SymbolResolution Res = *ResI++; 809 810 if (!Sym.getIRName().empty()) { 811 auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( 812 Sym.getIRName(), GlobalValue::ExternalLinkage, "")); 813 if (Res.Prevailing) { 814 ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); 815 816 // For linker redefined symbols (via --wrap or --defsym) we want to 817 // switch the linkage to `weak` to prevent IPOs from happening. 818 // Find the summary in the module for this very GV and record the new 819 // linkage so that we can switch it when we import the GV. 820 if (Res.LinkerRedefined) 821 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 822 GUID, BM.getModuleIdentifier())) 823 S->setLinkage(GlobalValue::WeakAnyLinkage); 824 } 825 826 // If the linker resolved the symbol to a local definition then mark it 827 // as local in the summary for the module we are adding. 828 if (Res.FinalDefinitionInLinkageUnit) { 829 if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( 830 GUID, BM.getModuleIdentifier())) { 831 S->setDSOLocal(true); 832 } 833 } 834 } 835 } 836 837 if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) 838 return make_error<StringError>( 839 "Expected at most one ThinLTO module per bitcode file", 840 inconvertibleErrorCode()); 841 842 return Error::success(); 843 } 844 845 unsigned LTO::getMaxTasks() const { 846 CalledGetMaxTasks = true; 847 return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size(); 848 } 849 850 // If only some of the modules were split, we cannot correctly handle 851 // code that contains type tests or type checked loads. 852 Error LTO::checkPartiallySplit() { 853 if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) 854 return Error::success(); 855 856 Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( 857 Intrinsic::getName(Intrinsic::type_test)); 858 Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( 859 Intrinsic::getName(Intrinsic::type_checked_load)); 860 861 // First check if there are type tests / type checked loads in the 862 // merged regular LTO module IR. 863 if ((TypeTestFunc && !TypeTestFunc->use_empty()) || 864 (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty())) 865 return make_error<StringError>( 866 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 867 inconvertibleErrorCode()); 868 869 // Otherwise check if there are any recorded in the combined summary from the 870 // ThinLTO modules. 871 for (auto &P : ThinLTO.CombinedIndex) { 872 for (auto &S : P.second.SummaryList) { 873 auto *FS = dyn_cast<FunctionSummary>(S.get()); 874 if (!FS) 875 continue; 876 if (!FS->type_test_assume_vcalls().empty() || 877 !FS->type_checked_load_vcalls().empty() || 878 !FS->type_test_assume_const_vcalls().empty() || 879 !FS->type_checked_load_const_vcalls().empty() || 880 !FS->type_tests().empty()) 881 return make_error<StringError>( 882 "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)", 883 inconvertibleErrorCode()); 884 } 885 } 886 return Error::success(); 887 } 888 889 Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { 890 // Compute "dead" symbols, we don't want to import/export these! 891 DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; 892 DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; 893 for (auto &Res : GlobalResolutions) { 894 // Normally resolution have IR name of symbol. We can do nothing here 895 // otherwise. See comments in GlobalResolution struct for more details. 896 if (Res.second.IRName.empty()) 897 continue; 898 899 GlobalValue::GUID GUID = GlobalValue::getGUID( 900 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 901 902 if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) 903 GUIDPreservedSymbols.insert(GlobalValue::getGUID( 904 GlobalValue::dropLLVMManglingEscape(Res.second.IRName))); 905 906 GUIDPrevailingResolutions[GUID] = 907 Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; 908 } 909 910 auto isPrevailing = [&](GlobalValue::GUID G) { 911 auto It = GUIDPrevailingResolutions.find(G); 912 if (It == GUIDPrevailingResolutions.end()) 913 return PrevailingType::Unknown; 914 return It->second; 915 }; 916 computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols, 917 isPrevailing, Conf.OptLevel > 0); 918 919 // Setup output file to emit statistics. 920 auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); 921 if (!StatsFileOrErr) 922 return StatsFileOrErr.takeError(); 923 std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); 924 925 // Finalize linking of regular LTO modules containing summaries now that 926 // we have computed liveness information. 927 for (auto &M : RegularLTO.ModsWithSummaries) 928 if (Error Err = linkRegularLTO(std::move(M), 929 /*LivenessFromIndex=*/true)) 930 return Err; 931 932 // Ensure we don't have inconsistently split LTO units with type tests. 933 if (Error Err = checkPartiallySplit()) 934 return Err; 935 936 Error Result = runRegularLTO(AddStream); 937 if (!Result) 938 Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); 939 940 if (StatsFile) 941 PrintStatisticsJSON(StatsFile->os()); 942 943 return Result; 944 } 945 946 Error LTO::runRegularLTO(AddStreamFn AddStream) { 947 // Make sure commons have the right size/alignment: we kept the largest from 948 // all the prevailing when adding the inputs, and we apply it here. 949 const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); 950 for (auto &I : RegularLTO.Commons) { 951 if (!I.second.Prevailing) 952 // Don't do anything if no instance of this common was prevailing. 953 continue; 954 GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); 955 if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { 956 // Don't create a new global if the type is already correct, just make 957 // sure the alignment is correct. 958 OldGV->setAlignment(I.second.Align); 959 continue; 960 } 961 ArrayType *Ty = 962 ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); 963 auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, 964 GlobalValue::CommonLinkage, 965 ConstantAggregateZero::get(Ty), ""); 966 GV->setAlignment(I.second.Align); 967 if (OldGV) { 968 OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); 969 GV->takeName(OldGV); 970 OldGV->eraseFromParent(); 971 } else { 972 GV->setName(I.first); 973 } 974 } 975 976 if (Conf.PreOptModuleHook && 977 !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) 978 return Error::success(); 979 980 if (!Conf.CodeGenOnly) { 981 for (const auto &R : GlobalResolutions) { 982 if (!R.second.isPrevailingIRSymbol()) 983 continue; 984 if (R.second.Partition != 0 && 985 R.second.Partition != GlobalResolution::External) 986 continue; 987 988 GlobalValue *GV = 989 RegularLTO.CombinedModule->getNamedValue(R.second.IRName); 990 // Ignore symbols defined in other partitions. 991 // Also skip declarations, which are not allowed to have internal linkage. 992 if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) 993 continue; 994 GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global 995 : GlobalValue::UnnamedAddr::None); 996 if (EnableLTOInternalization && R.second.Partition == 0) 997 GV->setLinkage(GlobalValue::InternalLinkage); 998 } 999 1000 if (Conf.PostInternalizeModuleHook && 1001 !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) 1002 return Error::success(); 1003 } 1004 return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, 1005 std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex); 1006 } 1007 1008 /// This class defines the interface to the ThinLTO backend. 1009 class lto::ThinBackendProc { 1010 protected: 1011 Config &Conf; 1012 ModuleSummaryIndex &CombinedIndex; 1013 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries; 1014 1015 public: 1016 ThinBackendProc(Config &Conf, ModuleSummaryIndex &CombinedIndex, 1017 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries) 1018 : Conf(Conf), CombinedIndex(CombinedIndex), 1019 ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} 1020 1021 virtual ~ThinBackendProc() {} 1022 virtual Error start( 1023 unsigned Task, BitcodeModule BM, 1024 const FunctionImporter::ImportMapTy &ImportList, 1025 const FunctionImporter::ExportSetTy &ExportList, 1026 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1027 MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; 1028 virtual Error wait() = 0; 1029 }; 1030 1031 namespace { 1032 class InProcessThinBackend : public ThinBackendProc { 1033 ThreadPool BackendThreadPool; 1034 AddStreamFn AddStream; 1035 NativeObjectCache Cache; 1036 std::set<GlobalValue::GUID> CfiFunctionDefs; 1037 std::set<GlobalValue::GUID> CfiFunctionDecls; 1038 1039 Optional<Error> Err; 1040 std::mutex ErrMu; 1041 1042 public: 1043 InProcessThinBackend( 1044 Config &Conf, ModuleSummaryIndex &CombinedIndex, 1045 unsigned ThinLTOParallelismLevel, 1046 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1047 AddStreamFn AddStream, NativeObjectCache Cache) 1048 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1049 BackendThreadPool(ThinLTOParallelismLevel), 1050 AddStream(std::move(AddStream)), Cache(std::move(Cache)) { 1051 for (auto &Name : CombinedIndex.cfiFunctionDefs()) 1052 CfiFunctionDefs.insert( 1053 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1054 for (auto &Name : CombinedIndex.cfiFunctionDecls()) 1055 CfiFunctionDecls.insert( 1056 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name))); 1057 } 1058 1059 Error runThinLTOBackendThread( 1060 AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, 1061 BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1062 const FunctionImporter::ImportMapTy &ImportList, 1063 const FunctionImporter::ExportSetTy &ExportList, 1064 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1065 const GVSummaryMapTy &DefinedGlobals, 1066 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1067 auto RunThinBackend = [&](AddStreamFn AddStream) { 1068 LTOLLVMContext BackendContext(Conf); 1069 Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext); 1070 if (!MOrErr) 1071 return MOrErr.takeError(); 1072 1073 return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, 1074 ImportList, DefinedGlobals, ModuleMap); 1075 }; 1076 1077 auto ModuleID = BM.getModuleIdentifier(); 1078 1079 if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || 1080 all_of(CombinedIndex.getModuleHash(ModuleID), 1081 [](uint32_t V) { return V == 0; })) 1082 // Cache disabled or no entry for this module in the combined index or 1083 // no module hash. 1084 return RunThinBackend(AddStream); 1085 1086 SmallString<40> Key; 1087 // The module may be cached, this helps handling it. 1088 computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, 1089 ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, 1090 CfiFunctionDecls); 1091 if (AddStreamFn CacheAddStream = Cache(Task, Key)) 1092 return RunThinBackend(CacheAddStream); 1093 1094 return Error::success(); 1095 } 1096 1097 Error start( 1098 unsigned Task, BitcodeModule BM, 1099 const FunctionImporter::ImportMapTy &ImportList, 1100 const FunctionImporter::ExportSetTy &ExportList, 1101 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1102 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1103 StringRef ModulePath = BM.getModuleIdentifier(); 1104 assert(ModuleToDefinedGVSummaries.count(ModulePath)); 1105 const GVSummaryMapTy &DefinedGlobals = 1106 ModuleToDefinedGVSummaries.find(ModulePath)->second; 1107 BackendThreadPool.async( 1108 [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, 1109 const FunctionImporter::ImportMapTy &ImportList, 1110 const FunctionImporter::ExportSetTy &ExportList, 1111 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> 1112 &ResolvedODR, 1113 const GVSummaryMapTy &DefinedGlobals, 1114 MapVector<StringRef, BitcodeModule> &ModuleMap) { 1115 Error E = runThinLTOBackendThread( 1116 AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, 1117 ResolvedODR, DefinedGlobals, ModuleMap); 1118 if (E) { 1119 std::unique_lock<std::mutex> L(ErrMu); 1120 if (Err) 1121 Err = joinErrors(std::move(*Err), std::move(E)); 1122 else 1123 Err = std::move(E); 1124 } 1125 }, 1126 BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), 1127 std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap)); 1128 return Error::success(); 1129 } 1130 1131 Error wait() override { 1132 BackendThreadPool.wait(); 1133 if (Err) 1134 return std::move(*Err); 1135 else 1136 return Error::success(); 1137 } 1138 }; 1139 } // end anonymous namespace 1140 1141 ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) { 1142 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, 1143 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1144 AddStreamFn AddStream, NativeObjectCache Cache) { 1145 return llvm::make_unique<InProcessThinBackend>( 1146 Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries, 1147 AddStream, Cache); 1148 }; 1149 } 1150 1151 // Given the original \p Path to an output file, replace any path 1152 // prefix matching \p OldPrefix with \p NewPrefix. Also, create the 1153 // resulting directory if it does not yet exist. 1154 std::string lto::getThinLTOOutputFile(const std::string &Path, 1155 const std::string &OldPrefix, 1156 const std::string &NewPrefix) { 1157 if (OldPrefix.empty() && NewPrefix.empty()) 1158 return Path; 1159 SmallString<128> NewPath(Path); 1160 llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); 1161 StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); 1162 if (!ParentPath.empty()) { 1163 // Make sure the new directory exists, creating it if necessary. 1164 if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) 1165 llvm::errs() << "warning: could not create directory '" << ParentPath 1166 << "': " << EC.message() << '\n'; 1167 } 1168 return NewPath.str(); 1169 } 1170 1171 namespace { 1172 class WriteIndexesThinBackend : public ThinBackendProc { 1173 std::string OldPrefix, NewPrefix; 1174 bool ShouldEmitImportsFiles; 1175 raw_fd_ostream *LinkedObjectsFile; 1176 lto::IndexWriteCallback OnWrite; 1177 1178 public: 1179 WriteIndexesThinBackend( 1180 Config &Conf, ModuleSummaryIndex &CombinedIndex, 1181 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1182 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1183 raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) 1184 : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), 1185 OldPrefix(OldPrefix), NewPrefix(NewPrefix), 1186 ShouldEmitImportsFiles(ShouldEmitImportsFiles), 1187 LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {} 1188 1189 Error start( 1190 unsigned Task, BitcodeModule BM, 1191 const FunctionImporter::ImportMapTy &ImportList, 1192 const FunctionImporter::ExportSetTy &ExportList, 1193 const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, 1194 MapVector<StringRef, BitcodeModule> &ModuleMap) override { 1195 StringRef ModulePath = BM.getModuleIdentifier(); 1196 std::string NewModulePath = 1197 getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); 1198 1199 if (LinkedObjectsFile) 1200 *LinkedObjectsFile << NewModulePath << '\n'; 1201 1202 std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; 1203 gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, 1204 ImportList, ModuleToSummariesForIndex); 1205 1206 std::error_code EC; 1207 raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, 1208 sys::fs::OpenFlags::OF_None); 1209 if (EC) 1210 return errorCodeToError(EC); 1211 WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); 1212 1213 if (ShouldEmitImportsFiles) { 1214 EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports", 1215 ModuleToSummariesForIndex); 1216 if (EC) 1217 return errorCodeToError(EC); 1218 } 1219 1220 if (OnWrite) 1221 OnWrite(ModulePath); 1222 return Error::success(); 1223 } 1224 1225 Error wait() override { return Error::success(); } 1226 }; 1227 } // end anonymous namespace 1228 1229 ThinBackend lto::createWriteIndexesThinBackend( 1230 std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, 1231 raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { 1232 return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, 1233 const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries, 1234 AddStreamFn AddStream, NativeObjectCache Cache) { 1235 return llvm::make_unique<WriteIndexesThinBackend>( 1236 Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, 1237 ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite); 1238 }; 1239 } 1240 1241 Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, 1242 const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { 1243 if (ThinLTO.ModuleMap.empty()) 1244 return Error::success(); 1245 1246 if (Conf.CombinedIndexHook && !Conf.CombinedIndexHook(ThinLTO.CombinedIndex)) 1247 return Error::success(); 1248 1249 // Collect for each module the list of function it defines (GUID -> 1250 // Summary). 1251 StringMap<GVSummaryMapTy> 1252 ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); 1253 ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( 1254 ModuleToDefinedGVSummaries); 1255 // Create entries for any modules that didn't have any GV summaries 1256 // (either they didn't have any GVs to start with, or we suppressed 1257 // generation of the summaries because they e.g. had inline assembly 1258 // uses that couldn't be promoted/renamed on export). This is so 1259 // InProcessThinBackend::start can still launch a backend thread, which 1260 // is passed the map of summaries for the module, without any special 1261 // handling for this case. 1262 for (auto &Mod : ThinLTO.ModuleMap) 1263 if (!ModuleToDefinedGVSummaries.count(Mod.first)) 1264 ModuleToDefinedGVSummaries.try_emplace(Mod.first); 1265 1266 // Synthesize entry counts for functions in the CombinedIndex. 1267 computeSyntheticCounts(ThinLTO.CombinedIndex); 1268 1269 StringMap<FunctionImporter::ImportMapTy> ImportLists( 1270 ThinLTO.ModuleMap.size()); 1271 StringMap<FunctionImporter::ExportSetTy> ExportLists( 1272 ThinLTO.ModuleMap.size()); 1273 StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; 1274 1275 if (DumpThinCGSCCs) 1276 ThinLTO.CombinedIndex.dumpSCCs(outs()); 1277 1278 std::set<GlobalValue::GUID> ExportedGUIDs; 1279 1280 // Perform index-based WPD. This will return immediately if there are 1281 // no index entries in the typeIdMetadata map (e.g. if we are instead 1282 // performing IR-based WPD in hybrid regular/thin LTO mode). 1283 std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; 1284 runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs, 1285 LocalWPDTargetsMap); 1286 1287 if (Conf.OptLevel > 0) 1288 ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1289 ImportLists, ExportLists); 1290 1291 // Update local devirtualized targets that were exported by cross-module 1292 // importing 1293 updateIndexWPDForExports(ThinLTO.CombinedIndex, ExportLists, 1294 LocalWPDTargetsMap); 1295 1296 // Figure out which symbols need to be internalized. This also needs to happen 1297 // at -O0 because summary-based DCE is implemented using internalization, and 1298 // we must apply DCE consistently with the full LTO module in order to avoid 1299 // undefined references during the final link. 1300 for (auto &Res : GlobalResolutions) { 1301 // If the symbol does not have external references or it is not prevailing, 1302 // then not need to mark it as exported from a ThinLTO partition. 1303 if (Res.second.Partition != GlobalResolution::External || 1304 !Res.second.isPrevailingIRSymbol()) 1305 continue; 1306 auto GUID = GlobalValue::getGUID( 1307 GlobalValue::dropLLVMManglingEscape(Res.second.IRName)); 1308 // Mark exported unless index-based analysis determined it to be dead. 1309 if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) 1310 ExportedGUIDs.insert(GUID); 1311 } 1312 1313 // Any functions referenced by the jump table in the regular LTO object must 1314 // be exported. 1315 for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) 1316 ExportedGUIDs.insert( 1317 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def))); 1318 1319 auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { 1320 const auto &ExportList = ExportLists.find(ModuleIdentifier); 1321 return (ExportList != ExportLists.end() && 1322 ExportList->second.count(GUID)) || 1323 ExportedGUIDs.count(GUID); 1324 }; 1325 thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported); 1326 1327 auto isPrevailing = [&](GlobalValue::GUID GUID, 1328 const GlobalValueSummary *S) { 1329 return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); 1330 }; 1331 auto recordNewLinkage = [&](StringRef ModuleIdentifier, 1332 GlobalValue::GUID GUID, 1333 GlobalValue::LinkageTypes NewLinkage) { 1334 ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; 1335 }; 1336 thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing, 1337 recordNewLinkage, GUIDPreservedSymbols); 1338 1339 std::unique_ptr<ThinBackendProc> BackendProc = 1340 ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, 1341 AddStream, Cache); 1342 1343 // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for combined 1344 // module and parallel code generation partitions. 1345 unsigned Task = RegularLTO.ParallelCodeGenParallelismLevel; 1346 for (auto &Mod : ThinLTO.ModuleMap) { 1347 if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first], 1348 ExportLists[Mod.first], 1349 ResolvedODR[Mod.first], ThinLTO.ModuleMap)) 1350 return E; 1351 ++Task; 1352 } 1353 1354 return BackendProc->wait(); 1355 } 1356 1357 Expected<std::unique_ptr<ToolOutputFile>> 1358 lto::setupOptimizationRemarks(LLVMContext &Context, StringRef RemarksFilename, 1359 StringRef RemarksPasses, StringRef RemarksFormat, 1360 bool RemarksWithHotness, int Count) { 1361 std::string Filename = RemarksFilename; 1362 if (!Filename.empty() && Count != -1) 1363 Filename += ".thin." + llvm::utostr(Count) + ".yaml"; 1364 1365 auto ResultOrErr = llvm::setupOptimizationRemarks( 1366 Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness); 1367 if (Error E = ResultOrErr.takeError()) 1368 return std::move(E); 1369 1370 if (*ResultOrErr) 1371 (*ResultOrErr)->keep(); 1372 1373 return ResultOrErr; 1374 } 1375 1376 Expected<std::unique_ptr<ToolOutputFile>> 1377 lto::setupStatsFile(StringRef StatsFilename) { 1378 // Setup output file to emit statistics. 1379 if (StatsFilename.empty()) 1380 return nullptr; 1381 1382 llvm::EnableStatistics(false); 1383 std::error_code EC; 1384 auto StatsFile = 1385 llvm::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None); 1386 if (EC) 1387 return errorCodeToError(EC); 1388 1389 StatsFile->keep(); 1390 return std::move(StatsFile); 1391 } 1392