1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 namespace llvm {
117 
118 struct VerifierSupport {
119   raw_ostream *OS;
120   const Module &M;
121   ModuleSlotTracker MST;
122   const DataLayout &DL;
123   LLVMContext &Context;
124 
125   /// Track the brokenness of the module while recursively visiting.
126   bool Broken = false;
127   /// Broken debug info can be "recovered" from by stripping the debug info.
128   bool BrokenDebugInfo = false;
129   /// Whether to treat broken debug info as an error.
130   bool TreatBrokenDebugInfoAsError = true;
131 
132   explicit VerifierSupport(raw_ostream *OS, const Module &M)
133       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
134 
135 private:
136   void Write(const Module *M) {
137     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
138   }
139 
140   void Write(const Value *V) {
141     if (V)
142       Write(*V);
143   }
144 
145   void Write(const Value &V) {
146     if (isa<Instruction>(V)) {
147       V.print(*OS, MST);
148       *OS << '\n';
149     } else {
150       V.printAsOperand(*OS, true, MST);
151       *OS << '\n';
152     }
153   }
154 
155   void Write(const Metadata *MD) {
156     if (!MD)
157       return;
158     MD->print(*OS, MST, &M);
159     *OS << '\n';
160   }
161 
162   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163     Write(MD.get());
164   }
165 
166   void Write(const NamedMDNode *NMD) {
167     if (!NMD)
168       return;
169     NMD->print(*OS, MST);
170     *OS << '\n';
171   }
172 
173   void Write(Type *T) {
174     if (!T)
175       return;
176     *OS << ' ' << *T;
177   }
178 
179   void Write(const Comdat *C) {
180     if (!C)
181       return;
182     *OS << *C;
183   }
184 
185   void Write(const APInt *AI) {
186     if (!AI)
187       return;
188     *OS << *AI << '\n';
189   }
190 
191   void Write(const unsigned i) { *OS << i << '\n'; }
192 
193   template <typename T> void Write(ArrayRef<T> Vs) {
194     for (const T &V : Vs)
195       Write(V);
196   }
197 
198   template <typename T1, typename... Ts>
199   void WriteTs(const T1 &V1, const Ts &... Vs) {
200     Write(V1);
201     WriteTs(Vs...);
202   }
203 
204   template <typename... Ts> void WriteTs() {}
205 
206 public:
207   /// A check failed, so printout out the condition and the message.
208   ///
209   /// This provides a nice place to put a breakpoint if you want to see why
210   /// something is not correct.
211   void CheckFailed(const Twine &Message) {
212     if (OS)
213       *OS << Message << '\n';
214     Broken = true;
215   }
216 
217   /// A check failed (with values to print).
218   ///
219   /// This calls the Message-only version so that the above is easier to set a
220   /// breakpoint on.
221   template <typename T1, typename... Ts>
222   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223     CheckFailed(Message);
224     if (OS)
225       WriteTs(V1, Vs...);
226   }
227 
228   /// A debug info check failed.
229   void DebugInfoCheckFailed(const Twine &Message) {
230     if (OS)
231       *OS << Message << '\n';
232     Broken |= TreatBrokenDebugInfoAsError;
233     BrokenDebugInfo = true;
234   }
235 
236   /// A debug info check failed (with values to print).
237   template <typename T1, typename... Ts>
238   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239                             const Ts &... Vs) {
240     DebugInfoCheckFailed(Message);
241     if (OS)
242       WriteTs(V1, Vs...);
243   }
244 };
245 
246 } // namespace llvm
247 
248 namespace {
249 
250 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251   friend class InstVisitor<Verifier>;
252 
253   DominatorTree DT;
254 
255   /// When verifying a basic block, keep track of all of the
256   /// instructions we have seen so far.
257   ///
258   /// This allows us to do efficient dominance checks for the case when an
259   /// instruction has an operand that is an instruction in the same block.
260   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
261 
262   /// Keep track of the metadata nodes that have been checked already.
263   SmallPtrSet<const Metadata *, 32> MDNodes;
264 
265   /// Keep track which DISubprogram is attached to which function.
266   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
267 
268   /// Track all DICompileUnits visited.
269   SmallPtrSet<const Metadata *, 2> CUVisited;
270 
271   /// The result type for a landingpad.
272   Type *LandingPadResultTy;
273 
274   /// Whether we've seen a call to @llvm.localescape in this function
275   /// already.
276   bool SawFrameEscape;
277 
278   /// Whether the current function has a DISubprogram attached to it.
279   bool HasDebugInfo = false;
280 
281   /// Whether source was present on the first DIFile encountered in each CU.
282   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
283 
284   /// Stores the count of how many objects were passed to llvm.localescape for a
285   /// given function and the largest index passed to llvm.localrecover.
286   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287 
288   // Maps catchswitches and cleanuppads that unwind to siblings to the
289   // terminators that indicate the unwind, used to detect cycles therein.
290   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
291 
292   /// Cache of constants visited in search of ConstantExprs.
293   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296   SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298   // Verify that this GlobalValue is only used in this module.
299   // This map is used to avoid visiting uses twice. We can arrive at a user
300   // twice, if they have multiple operands. In particular for very large
301   // constant expressions, we can arrive at a particular user many times.
302   SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304   // Keeps track of duplicate function argument debug info.
305   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306 
307   TBAAVerifier TBAAVerifyHelper;
308 
309   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313                     const Module &M)
314       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315         SawFrameEscape(false), TBAAVerifyHelper(this) {
316     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317   }
318 
319   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321   bool verify(const Function &F) {
322     assert(F.getParent() == &M &&
323            "An instance of this class only works with a specific module!");
324 
325     // First ensure the function is well-enough formed to compute dominance
326     // information, and directly compute a dominance tree. We don't rely on the
327     // pass manager to provide this as it isolates us from a potentially
328     // out-of-date dominator tree and makes it significantly more complex to run
329     // this code outside of a pass manager.
330     // FIXME: It's really gross that we have to cast away constness here.
331     if (!F.empty())
332       DT.recalculate(const_cast<Function &>(F));
333 
334     for (const BasicBlock &BB : F) {
335       if (!BB.empty() && BB.back().isTerminator())
336         continue;
337 
338       if (OS) {
339         *OS << "Basic Block in function '" << F.getName()
340             << "' does not have terminator!\n";
341         BB.printAsOperand(*OS, true, MST);
342         *OS << "\n";
343       }
344       return false;
345     }
346 
347     Broken = false;
348     // FIXME: We strip const here because the inst visitor strips const.
349     visit(const_cast<Function &>(F));
350     verifySiblingFuncletUnwinds();
351     InstsInThisBlock.clear();
352     DebugFnArgs.clear();
353     LandingPadResultTy = nullptr;
354     SawFrameEscape = false;
355     SiblingFuncletInfo.clear();
356 
357     return !Broken;
358   }
359 
360   /// Verify the module that this instance of \c Verifier was initialized with.
361   bool verify() {
362     Broken = false;
363 
364     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365     for (const Function &F : M)
366       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367         DeoptimizeDeclarations.push_back(&F);
368 
369     // Now that we've visited every function, verify that we never asked to
370     // recover a frame index that wasn't escaped.
371     verifyFrameRecoverIndices();
372     for (const GlobalVariable &GV : M.globals())
373       visitGlobalVariable(GV);
374 
375     for (const GlobalAlias &GA : M.aliases())
376       visitGlobalAlias(GA);
377 
378     for (const NamedMDNode &NMD : M.named_metadata())
379       visitNamedMDNode(NMD);
380 
381     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382       visitComdat(SMEC.getValue());
383 
384     visitModuleFlags(M);
385     visitModuleIdents(M);
386     visitModuleCommandLines(M);
387 
388     verifyCompileUnits();
389 
390     verifyDeoptimizeCallingConvs();
391     DISubprogramAttachments.clear();
392     return !Broken;
393   }
394 
395 private:
396   // Verification methods...
397   void visitGlobalValue(const GlobalValue &GV);
398   void visitGlobalVariable(const GlobalVariable &GV);
399   void visitGlobalAlias(const GlobalAlias &GA);
400   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402                            const GlobalAlias &A, const Constant &C);
403   void visitNamedMDNode(const NamedMDNode &NMD);
404   void visitMDNode(const MDNode &MD);
405   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407   void visitComdat(const Comdat &C);
408   void visitModuleIdents(const Module &M);
409   void visitModuleCommandLines(const Module &M);
410   void visitModuleFlags(const Module &M);
411   void visitModuleFlag(const MDNode *Op,
412                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
413                        SmallVectorImpl<const MDNode *> &Requirements);
414   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415   void visitFunction(const Function &F);
416   void visitBasicBlock(BasicBlock &BB);
417   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
419 
420   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422 #include "llvm/IR/Metadata.def"
423   void visitDIScope(const DIScope &N);
424   void visitDIVariable(const DIVariable &N);
425   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426   void visitDITemplateParameter(const DITemplateParameter &N);
427 
428   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
429 
430   // InstVisitor overrides...
431   using InstVisitor<Verifier>::visit;
432   void visit(Instruction &I);
433 
434   void visitTruncInst(TruncInst &I);
435   void visitZExtInst(ZExtInst &I);
436   void visitSExtInst(SExtInst &I);
437   void visitFPTruncInst(FPTruncInst &I);
438   void visitFPExtInst(FPExtInst &I);
439   void visitFPToUIInst(FPToUIInst &I);
440   void visitFPToSIInst(FPToSIInst &I);
441   void visitUIToFPInst(UIToFPInst &I);
442   void visitSIToFPInst(SIToFPInst &I);
443   void visitIntToPtrInst(IntToPtrInst &I);
444   void visitPtrToIntInst(PtrToIntInst &I);
445   void visitBitCastInst(BitCastInst &I);
446   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447   void visitPHINode(PHINode &PN);
448   void visitCallBase(CallBase &Call);
449   void visitUnaryOperator(UnaryOperator &U);
450   void visitBinaryOperator(BinaryOperator &B);
451   void visitICmpInst(ICmpInst &IC);
452   void visitFCmpInst(FCmpInst &FC);
453   void visitExtractElementInst(ExtractElementInst &EI);
454   void visitInsertElementInst(InsertElementInst &EI);
455   void visitShuffleVectorInst(ShuffleVectorInst &EI);
456   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457   void visitCallInst(CallInst &CI);
458   void visitInvokeInst(InvokeInst &II);
459   void visitGetElementPtrInst(GetElementPtrInst &GEP);
460   void visitLoadInst(LoadInst &LI);
461   void visitStoreInst(StoreInst &SI);
462   void verifyDominatesUse(Instruction &I, unsigned i);
463   void visitInstruction(Instruction &I);
464   void visitTerminator(Instruction &I);
465   void visitBranchInst(BranchInst &BI);
466   void visitReturnInst(ReturnInst &RI);
467   void visitSwitchInst(SwitchInst &SI);
468   void visitIndirectBrInst(IndirectBrInst &BI);
469   void visitCallBrInst(CallBrInst &CBI);
470   void visitSelectInst(SelectInst &SI);
471   void visitUserOp1(Instruction &I);
472   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479   void visitFenceInst(FenceInst &FI);
480   void visitAllocaInst(AllocaInst &AI);
481   void visitExtractValueInst(ExtractValueInst &EVI);
482   void visitInsertValueInst(InsertValueInst &IVI);
483   void visitEHPadPredecessors(Instruction &I);
484   void visitLandingPadInst(LandingPadInst &LPI);
485   void visitResumeInst(ResumeInst &RI);
486   void visitCatchPadInst(CatchPadInst &CPI);
487   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488   void visitCleanupPadInst(CleanupPadInst &CPI);
489   void visitFuncletPadInst(FuncletPadInst &FPI);
490   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491   void visitCleanupReturnInst(CleanupReturnInst &CRI);
492 
493   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494   void verifySwiftErrorValue(const Value *SwiftErrorVal);
495   void verifyMustTailCall(CallInst &CI);
496   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497                         unsigned ArgNo, std::string &Suffix);
498   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500                             const Value *V);
501   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503                            const Value *V, bool IsIntrinsic);
504   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
505 
506   void visitConstantExprsRecursively(const Constant *EntryC);
507   void visitConstantExpr(const ConstantExpr *CE);
508   void verifyStatepoint(const CallBase &Call);
509   void verifyFrameRecoverIndices();
510   void verifySiblingFuncletUnwinds();
511 
512   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513   template <typename ValueOrMetadata>
514   void verifyFragmentExpression(const DIVariable &V,
515                                 DIExpression::FragmentInfo Fragment,
516                                 ValueOrMetadata *Desc);
517   void verifyFnArgs(const DbgVariableIntrinsic &I);
518 
519   /// Module-level debug info verification...
520   void verifyCompileUnits();
521 
522   /// Module-level verification that all @llvm.experimental.deoptimize
523   /// declarations share the same calling convention.
524   void verifyDeoptimizeCallingConvs();
525 
526   /// Verify all-or-nothing property of DIFile source attribute within a CU.
527   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
528 };
529 
530 } // end anonymous namespace
531 
532 /// We know that cond should be true, if not print an error message.
533 #define Assert(C, ...) \
534   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
535 
536 /// We know that a debug info condition should be true, if not print
537 /// an error message.
538 #define AssertDI(C, ...) \
539   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
540 
541 void Verifier::visit(Instruction &I) {
542   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
544   InstVisitor<Verifier>::visit(I);
545 }
546 
547 // Helper to recursively iterate over indirect users. By
548 // returning false, the callback can ask to stop recursing
549 // further.
550 static void forEachUser(const Value *User,
551                         SmallPtrSet<const Value *, 32> &Visited,
552                         llvm::function_ref<bool(const Value *)> Callback) {
553   if (!Visited.insert(User).second)
554     return;
555   for (const Value *TheNextUser : User->materialized_users())
556     if (Callback(TheNextUser))
557       forEachUser(TheNextUser, Visited, Callback);
558 }
559 
560 void Verifier::visitGlobalValue(const GlobalValue &GV) {
561   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
562          "Global is external, but doesn't have external or weak linkage!", &GV);
563 
564   Assert(GV.getAlignment() <= Value::MaximumAlignment,
565          "huge alignment values are unsupported", &GV);
566   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
567          "Only global variables can have appending linkage!", &GV);
568 
569   if (GV.hasAppendingLinkage()) {
570     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571     Assert(GVar && GVar->getValueType()->isArrayTy(),
572            "Only global arrays can have appending linkage!", GVar);
573   }
574 
575   if (GV.isDeclarationForLinker())
576     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
577 
578   if (GV.hasDLLImportStorageClass()) {
579     Assert(!GV.isDSOLocal(),
580            "GlobalValue with DLLImport Storage is dso_local!", &GV);
581 
582     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
583                GV.hasAvailableExternallyLinkage(),
584            "Global is marked as dllimport, but not external", &GV);
585   }
586 
587   if (GV.hasLocalLinkage())
588     Assert(GV.isDSOLocal(),
589            "GlobalValue with private or internal linkage must be dso_local!",
590            &GV);
591 
592   if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593     Assert(GV.isDSOLocal(),
594            "GlobalValue with non default visibility must be dso_local!", &GV);
595 
596   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597     if (const Instruction *I = dyn_cast<Instruction>(V)) {
598       if (!I->getParent() || !I->getParent()->getParent())
599         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
600                     I);
601       else if (I->getParent()->getParent()->getParent() != &M)
602         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603                     I->getParent()->getParent(),
604                     I->getParent()->getParent()->getParent());
605       return false;
606     } else if (const Function *F = dyn_cast<Function>(V)) {
607       if (F->getParent() != &M)
608         CheckFailed("Global is used by function in a different module", &GV, &M,
609                     F, F->getParent());
610       return false;
611     }
612     return true;
613   });
614 }
615 
616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617   if (GV.hasInitializer()) {
618     Assert(GV.getInitializer()->getType() == GV.getValueType(),
619            "Global variable initializer type does not match global "
620            "variable type!",
621            &GV);
622     // If the global has common linkage, it must have a zero initializer and
623     // cannot be constant.
624     if (GV.hasCommonLinkage()) {
625       Assert(GV.getInitializer()->isNullValue(),
626              "'common' global must have a zero initializer!", &GV);
627       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
628              &GV);
629       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
630     }
631   }
632 
633   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634                        GV.getName() == "llvm.global_dtors")) {
635     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
636            "invalid linkage for intrinsic global variable", &GV);
637     // Don't worry about emitting an error for it not being an array,
638     // visitGlobalValue will complain on appending non-array.
639     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641       PointerType *FuncPtrTy =
642           FunctionType::get(Type::getVoidTy(Context), false)->
643           getPointerTo(DL.getProgramAddressSpace());
644       Assert(STy &&
645                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
646                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
647                  STy->getTypeAtIndex(1) == FuncPtrTy,
648              "wrong type for intrinsic global variable", &GV);
649       Assert(STy->getNumElements() == 3,
650              "the third field of the element type is mandatory, "
651              "specify i8* null to migrate from the obsoleted 2-field form");
652       Type *ETy = STy->getTypeAtIndex(2);
653       Assert(ETy->isPointerTy() &&
654                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
655              "wrong type for intrinsic global variable", &GV);
656     }
657   }
658 
659   if (GV.hasName() && (GV.getName() == "llvm.used" ||
660                        GV.getName() == "llvm.compiler.used")) {
661     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
662            "invalid linkage for intrinsic global variable", &GV);
663     Type *GVType = GV.getValueType();
664     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666       Assert(PTy, "wrong type for intrinsic global variable", &GV);
667       if (GV.hasInitializer()) {
668         const Constant *Init = GV.getInitializer();
669         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670         Assert(InitArray, "wrong initalizer for intrinsic global variable",
671                Init);
672         for (Value *Op : InitArray->operands()) {
673           Value *V = Op->stripPointerCastsNoFollowAliases();
674           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
675                      isa<GlobalAlias>(V),
676                  "invalid llvm.used member", V);
677           Assert(V->hasName(), "members of llvm.used must be named", V);
678         }
679       }
680     }
681   }
682 
683   // Visit any debug info attachments.
684   SmallVector<MDNode *, 1> MDs;
685   GV.getMetadata(LLVMContext::MD_dbg, MDs);
686   for (auto *MD : MDs) {
687     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688       visitDIGlobalVariableExpression(*GVE);
689     else
690       AssertDI(false, "!dbg attachment of global variable must be a "
691                       "DIGlobalVariableExpression");
692   }
693 
694   if (!GV.hasInitializer()) {
695     visitGlobalValue(GV);
696     return;
697   }
698 
699   // Walk any aggregate initializers looking for bitcasts between address spaces
700   visitConstantExprsRecursively(GV.getInitializer());
701 
702   visitGlobalValue(GV);
703 }
704 
705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
706   SmallPtrSet<const GlobalAlias*, 4> Visited;
707   Visited.insert(&GA);
708   visitAliaseeSubExpr(Visited, GA, C);
709 }
710 
711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
712                                    const GlobalAlias &GA, const Constant &C) {
713   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
714     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
715            &GA);
716 
717     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
718       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
719 
720       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
721              &GA);
722     } else {
723       // Only continue verifying subexpressions of GlobalAliases.
724       // Do not recurse into global initializers.
725       return;
726     }
727   }
728 
729   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
730     visitConstantExprsRecursively(CE);
731 
732   for (const Use &U : C.operands()) {
733     Value *V = &*U;
734     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
735       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
736     else if (const auto *C2 = dyn_cast<Constant>(V))
737       visitAliaseeSubExpr(Visited, GA, *C2);
738   }
739 }
740 
741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
742   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
743          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
744          "weak_odr, or external linkage!",
745          &GA);
746   const Constant *Aliasee = GA.getAliasee();
747   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
748   Assert(GA.getType() == Aliasee->getType(),
749          "Alias and aliasee types should match!", &GA);
750 
751   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
752          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
753 
754   visitAliaseeSubExpr(GA, *Aliasee);
755 
756   visitGlobalValue(GA);
757 }
758 
759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
760   // There used to be various other llvm.dbg.* nodes, but we don't support
761   // upgrading them and we want to reserve the namespace for future uses.
762   if (NMD.getName().startswith("llvm.dbg."))
763     AssertDI(NMD.getName() == "llvm.dbg.cu",
764              "unrecognized named metadata node in the llvm.dbg namespace",
765              &NMD);
766   for (const MDNode *MD : NMD.operands()) {
767     if (NMD.getName() == "llvm.dbg.cu")
768       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
769 
770     if (!MD)
771       continue;
772 
773     visitMDNode(*MD);
774   }
775 }
776 
777 void Verifier::visitMDNode(const MDNode &MD) {
778   // Only visit each node once.  Metadata can be mutually recursive, so this
779   // avoids infinite recursion here, as well as being an optimization.
780   if (!MDNodes.insert(&MD).second)
781     return;
782 
783   switch (MD.getMetadataID()) {
784   default:
785     llvm_unreachable("Invalid MDNode subclass");
786   case Metadata::MDTupleKind:
787     break;
788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
789   case Metadata::CLASS##Kind:                                                  \
790     visit##CLASS(cast<CLASS>(MD));                                             \
791     break;
792 #include "llvm/IR/Metadata.def"
793   }
794 
795   for (const Metadata *Op : MD.operands()) {
796     if (!Op)
797       continue;
798     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
799            &MD, Op);
800     if (auto *N = dyn_cast<MDNode>(Op)) {
801       visitMDNode(*N);
802       continue;
803     }
804     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
805       visitValueAsMetadata(*V, nullptr);
806       continue;
807     }
808   }
809 
810   // Check these last, so we diagnose problems in operands first.
811   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
812   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
813 }
814 
815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
816   Assert(MD.getValue(), "Expected valid value", &MD);
817   Assert(!MD.getValue()->getType()->isMetadataTy(),
818          "Unexpected metadata round-trip through values", &MD, MD.getValue());
819 
820   auto *L = dyn_cast<LocalAsMetadata>(&MD);
821   if (!L)
822     return;
823 
824   Assert(F, "function-local metadata used outside a function", L);
825 
826   // If this was an instruction, bb, or argument, verify that it is in the
827   // function that we expect.
828   Function *ActualF = nullptr;
829   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
830     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
831     ActualF = I->getParent()->getParent();
832   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
833     ActualF = BB->getParent();
834   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
835     ActualF = A->getParent();
836   assert(ActualF && "Unimplemented function local metadata case!");
837 
838   Assert(ActualF == F, "function-local metadata used in wrong function", L);
839 }
840 
841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
842   Metadata *MD = MDV.getMetadata();
843   if (auto *N = dyn_cast<MDNode>(MD)) {
844     visitMDNode(*N);
845     return;
846   }
847 
848   // Only visit each node once.  Metadata can be mutually recursive, so this
849   // avoids infinite recursion here, as well as being an optimization.
850   if (!MDNodes.insert(MD).second)
851     return;
852 
853   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
854     visitValueAsMetadata(*V, F);
855 }
856 
857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
860 
861 void Verifier::visitDILocation(const DILocation &N) {
862   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
863            "location requires a valid scope", &N, N.getRawScope());
864   if (auto *IA = N.getRawInlinedAt())
865     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
866   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
867     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
868 }
869 
870 void Verifier::visitGenericDINode(const GenericDINode &N) {
871   AssertDI(N.getTag(), "invalid tag", &N);
872 }
873 
874 void Verifier::visitDIScope(const DIScope &N) {
875   if (auto *F = N.getRawFile())
876     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
877 }
878 
879 void Verifier::visitDISubrange(const DISubrange &N) {
880   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
881   auto Count = N.getCount();
882   AssertDI(Count, "Count must either be a signed constant or a DIVariable",
883            &N);
884   AssertDI(!Count.is<ConstantInt*>() ||
885                Count.get<ConstantInt*>()->getSExtValue() >= -1,
886            "invalid subrange count", &N);
887 }
888 
889 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
890   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
891 }
892 
893 void Verifier::visitDIBasicType(const DIBasicType &N) {
894   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
895                N.getTag() == dwarf::DW_TAG_unspecified_type,
896            "invalid tag", &N);
897   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
898             "has conflicting flags", &N);
899 }
900 
901 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
902   // Common scope checks.
903   visitDIScope(N);
904 
905   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
906                N.getTag() == dwarf::DW_TAG_pointer_type ||
907                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
908                N.getTag() == dwarf::DW_TAG_reference_type ||
909                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
910                N.getTag() == dwarf::DW_TAG_const_type ||
911                N.getTag() == dwarf::DW_TAG_volatile_type ||
912                N.getTag() == dwarf::DW_TAG_restrict_type ||
913                N.getTag() == dwarf::DW_TAG_atomic_type ||
914                N.getTag() == dwarf::DW_TAG_member ||
915                N.getTag() == dwarf::DW_TAG_inheritance ||
916                N.getTag() == dwarf::DW_TAG_friend,
917            "invalid tag", &N);
918   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
919     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
920              N.getRawExtraData());
921   }
922 
923   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
924   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
925            N.getRawBaseType());
926 
927   if (N.getDWARFAddressSpace()) {
928     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
929                  N.getTag() == dwarf::DW_TAG_reference_type ||
930                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
931              "DWARF address space only applies to pointer or reference types",
932              &N);
933   }
934 }
935 
936 /// Detect mutually exclusive flags.
937 static bool hasConflictingReferenceFlags(unsigned Flags) {
938   return ((Flags & DINode::FlagLValueReference) &&
939           (Flags & DINode::FlagRValueReference)) ||
940          ((Flags & DINode::FlagTypePassByValue) &&
941           (Flags & DINode::FlagTypePassByReference));
942 }
943 
944 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
945   auto *Params = dyn_cast<MDTuple>(&RawParams);
946   AssertDI(Params, "invalid template params", &N, &RawParams);
947   for (Metadata *Op : Params->operands()) {
948     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
949              &N, Params, Op);
950   }
951 }
952 
953 void Verifier::visitDICompositeType(const DICompositeType &N) {
954   // Common scope checks.
955   visitDIScope(N);
956 
957   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
958                N.getTag() == dwarf::DW_TAG_structure_type ||
959                N.getTag() == dwarf::DW_TAG_union_type ||
960                N.getTag() == dwarf::DW_TAG_enumeration_type ||
961                N.getTag() == dwarf::DW_TAG_class_type ||
962                N.getTag() == dwarf::DW_TAG_variant_part,
963            "invalid tag", &N);
964 
965   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
966   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
967            N.getRawBaseType());
968 
969   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
970            "invalid composite elements", &N, N.getRawElements());
971   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
972            N.getRawVTableHolder());
973   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
974            "invalid reference flags", &N);
975 
976   if (N.isVector()) {
977     const DINodeArray Elements = N.getElements();
978     AssertDI(Elements.size() == 1 &&
979              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
980              "invalid vector, expected one element of type subrange", &N);
981   }
982 
983   if (auto *Params = N.getRawTemplateParams())
984     visitTemplateParams(N, *Params);
985 
986   if (N.getTag() == dwarf::DW_TAG_class_type ||
987       N.getTag() == dwarf::DW_TAG_union_type) {
988     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
989              "class/union requires a filename", &N, N.getFile());
990   }
991 
992   if (auto *D = N.getRawDiscriminator()) {
993     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
994              "discriminator can only appear on variant part");
995   }
996 }
997 
998 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
999   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1000   if (auto *Types = N.getRawTypeArray()) {
1001     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1002     for (Metadata *Ty : N.getTypeArray()->operands()) {
1003       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1004     }
1005   }
1006   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1007            "invalid reference flags", &N);
1008 }
1009 
1010 void Verifier::visitDIFile(const DIFile &N) {
1011   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1012   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1013   if (Checksum) {
1014     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1015              "invalid checksum kind", &N);
1016     size_t Size;
1017     switch (Checksum->Kind) {
1018     case DIFile::CSK_MD5:
1019       Size = 32;
1020       break;
1021     case DIFile::CSK_SHA1:
1022       Size = 40;
1023       break;
1024     }
1025     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1026     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1027              "invalid checksum", &N);
1028   }
1029 }
1030 
1031 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1032   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1033   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1034 
1035   // Don't bother verifying the compilation directory or producer string
1036   // as those could be empty.
1037   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1038            N.getRawFile());
1039   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1040            N.getFile());
1041 
1042   verifySourceDebugInfo(N, *N.getFile());
1043 
1044   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1045            "invalid emission kind", &N);
1046 
1047   if (auto *Array = N.getRawEnumTypes()) {
1048     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1049     for (Metadata *Op : N.getEnumTypes()->operands()) {
1050       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1051       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1052                "invalid enum type", &N, N.getEnumTypes(), Op);
1053     }
1054   }
1055   if (auto *Array = N.getRawRetainedTypes()) {
1056     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1057     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1058       AssertDI(Op && (isa<DIType>(Op) ||
1059                       (isa<DISubprogram>(Op) &&
1060                        !cast<DISubprogram>(Op)->isDefinition())),
1061                "invalid retained type", &N, Op);
1062     }
1063   }
1064   if (auto *Array = N.getRawGlobalVariables()) {
1065     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1066     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1067       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1068                "invalid global variable ref", &N, Op);
1069     }
1070   }
1071   if (auto *Array = N.getRawImportedEntities()) {
1072     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1073     for (Metadata *Op : N.getImportedEntities()->operands()) {
1074       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1075                &N, Op);
1076     }
1077   }
1078   if (auto *Array = N.getRawMacros()) {
1079     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1080     for (Metadata *Op : N.getMacros()->operands()) {
1081       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1082     }
1083   }
1084   CUVisited.insert(&N);
1085 }
1086 
1087 void Verifier::visitDISubprogram(const DISubprogram &N) {
1088   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1089   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1090   if (auto *F = N.getRawFile())
1091     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1092   else
1093     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1094   if (auto *T = N.getRawType())
1095     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1096   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1097            N.getRawContainingType());
1098   if (auto *Params = N.getRawTemplateParams())
1099     visitTemplateParams(N, *Params);
1100   if (auto *S = N.getRawDeclaration())
1101     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1102              "invalid subprogram declaration", &N, S);
1103   if (auto *RawNode = N.getRawRetainedNodes()) {
1104     auto *Node = dyn_cast<MDTuple>(RawNode);
1105     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1106     for (Metadata *Op : Node->operands()) {
1107       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1108                "invalid retained nodes, expected DILocalVariable or DILabel",
1109                &N, Node, Op);
1110     }
1111   }
1112   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1113            "invalid reference flags", &N);
1114 
1115   auto *Unit = N.getRawUnit();
1116   if (N.isDefinition()) {
1117     // Subprogram definitions (not part of the type hierarchy).
1118     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1119     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1120     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1121     if (N.getFile())
1122       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1123   } else {
1124     // Subprogram declarations (part of the type hierarchy).
1125     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1126   }
1127 
1128   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1129     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1130     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1131     for (Metadata *Op : ThrownTypes->operands())
1132       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1133                Op);
1134   }
1135 
1136   if (N.areAllCallsDescribed())
1137     AssertDI(N.isDefinition(),
1138              "DIFlagAllCallsDescribed must be attached to a definition");
1139 }
1140 
1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1142   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1143   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1144            "invalid local scope", &N, N.getRawScope());
1145   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1146     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1147 }
1148 
1149 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1150   visitDILexicalBlockBase(N);
1151 
1152   AssertDI(N.getLine() || !N.getColumn(),
1153            "cannot have column info without line info", &N);
1154 }
1155 
1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1157   visitDILexicalBlockBase(N);
1158 }
1159 
1160 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1161   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1162   if (auto *S = N.getRawScope())
1163     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1164   if (auto *S = N.getRawDecl())
1165     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1166 }
1167 
1168 void Verifier::visitDINamespace(const DINamespace &N) {
1169   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1170   if (auto *S = N.getRawScope())
1171     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1172 }
1173 
1174 void Verifier::visitDIMacro(const DIMacro &N) {
1175   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1176                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1177            "invalid macinfo type", &N);
1178   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1179   if (!N.getValue().empty()) {
1180     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1181   }
1182 }
1183 
1184 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1185   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1186            "invalid macinfo type", &N);
1187   if (auto *F = N.getRawFile())
1188     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1189 
1190   if (auto *Array = N.getRawElements()) {
1191     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1192     for (Metadata *Op : N.getElements()->operands()) {
1193       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1194     }
1195   }
1196 }
1197 
1198 void Verifier::visitDIModule(const DIModule &N) {
1199   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1200   AssertDI(!N.getName().empty(), "anonymous module", &N);
1201 }
1202 
1203 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1204   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1205 }
1206 
1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1208   visitDITemplateParameter(N);
1209 
1210   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1211            &N);
1212 }
1213 
1214 void Verifier::visitDITemplateValueParameter(
1215     const DITemplateValueParameter &N) {
1216   visitDITemplateParameter(N);
1217 
1218   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1219                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1220                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1221            "invalid tag", &N);
1222 }
1223 
1224 void Verifier::visitDIVariable(const DIVariable &N) {
1225   if (auto *S = N.getRawScope())
1226     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1227   if (auto *F = N.getRawFile())
1228     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1229 }
1230 
1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1232   // Checks common to all variables.
1233   visitDIVariable(N);
1234 
1235   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1236   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1237   AssertDI(N.getType(), "missing global variable type", &N);
1238   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1239     AssertDI(isa<DIDerivedType>(Member),
1240              "invalid static data member declaration", &N, Member);
1241   }
1242 }
1243 
1244 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1245   // Checks common to all variables.
1246   visitDIVariable(N);
1247 
1248   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1249   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1250   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1251            "local variable requires a valid scope", &N, N.getRawScope());
1252   if (auto Ty = N.getType())
1253     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1254 }
1255 
1256 void Verifier::visitDILabel(const DILabel &N) {
1257   if (auto *S = N.getRawScope())
1258     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1259   if (auto *F = N.getRawFile())
1260     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1261 
1262   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1263   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1264            "label requires a valid scope", &N, N.getRawScope());
1265 }
1266 
1267 void Verifier::visitDIExpression(const DIExpression &N) {
1268   AssertDI(N.isValid(), "invalid expression", &N);
1269 }
1270 
1271 void Verifier::visitDIGlobalVariableExpression(
1272     const DIGlobalVariableExpression &GVE) {
1273   AssertDI(GVE.getVariable(), "missing variable");
1274   if (auto *Var = GVE.getVariable())
1275     visitDIGlobalVariable(*Var);
1276   if (auto *Expr = GVE.getExpression()) {
1277     visitDIExpression(*Expr);
1278     if (auto Fragment = Expr->getFragmentInfo())
1279       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1280   }
1281 }
1282 
1283 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1284   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1285   if (auto *T = N.getRawType())
1286     AssertDI(isType(T), "invalid type ref", &N, T);
1287   if (auto *F = N.getRawFile())
1288     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1289 }
1290 
1291 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1292   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1293                N.getTag() == dwarf::DW_TAG_imported_declaration,
1294            "invalid tag", &N);
1295   if (auto *S = N.getRawScope())
1296     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1297   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1298            N.getRawEntity());
1299 }
1300 
1301 void Verifier::visitComdat(const Comdat &C) {
1302   // The Module is invalid if the GlobalValue has private linkage.  Entities
1303   // with private linkage don't have entries in the symbol table.
1304   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1305     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1306            GV);
1307 }
1308 
1309 void Verifier::visitModuleIdents(const Module &M) {
1310   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1311   if (!Idents)
1312     return;
1313 
1314   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1315   // Scan each llvm.ident entry and make sure that this requirement is met.
1316   for (const MDNode *N : Idents->operands()) {
1317     Assert(N->getNumOperands() == 1,
1318            "incorrect number of operands in llvm.ident metadata", N);
1319     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1320            ("invalid value for llvm.ident metadata entry operand"
1321             "(the operand should be a string)"),
1322            N->getOperand(0));
1323   }
1324 }
1325 
1326 void Verifier::visitModuleCommandLines(const Module &M) {
1327   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1328   if (!CommandLines)
1329     return;
1330 
1331   // llvm.commandline takes a list of metadata entry. Each entry has only one
1332   // string. Scan each llvm.commandline entry and make sure that this
1333   // requirement is met.
1334   for (const MDNode *N : CommandLines->operands()) {
1335     Assert(N->getNumOperands() == 1,
1336            "incorrect number of operands in llvm.commandline metadata", N);
1337     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1338            ("invalid value for llvm.commandline metadata entry operand"
1339             "(the operand should be a string)"),
1340            N->getOperand(0));
1341   }
1342 }
1343 
1344 void Verifier::visitModuleFlags(const Module &M) {
1345   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1346   if (!Flags) return;
1347 
1348   // Scan each flag, and track the flags and requirements.
1349   DenseMap<const MDString*, const MDNode*> SeenIDs;
1350   SmallVector<const MDNode*, 16> Requirements;
1351   for (const MDNode *MDN : Flags->operands())
1352     visitModuleFlag(MDN, SeenIDs, Requirements);
1353 
1354   // Validate that the requirements in the module are valid.
1355   for (const MDNode *Requirement : Requirements) {
1356     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1357     const Metadata *ReqValue = Requirement->getOperand(1);
1358 
1359     const MDNode *Op = SeenIDs.lookup(Flag);
1360     if (!Op) {
1361       CheckFailed("invalid requirement on flag, flag is not present in module",
1362                   Flag);
1363       continue;
1364     }
1365 
1366     if (Op->getOperand(2) != ReqValue) {
1367       CheckFailed(("invalid requirement on flag, "
1368                    "flag does not have the required value"),
1369                   Flag);
1370       continue;
1371     }
1372   }
1373 }
1374 
1375 void
1376 Verifier::visitModuleFlag(const MDNode *Op,
1377                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1378                           SmallVectorImpl<const MDNode *> &Requirements) {
1379   // Each module flag should have three arguments, the merge behavior (a
1380   // constant int), the flag ID (an MDString), and the value.
1381   Assert(Op->getNumOperands() == 3,
1382          "incorrect number of operands in module flag", Op);
1383   Module::ModFlagBehavior MFB;
1384   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1385     Assert(
1386         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1387         "invalid behavior operand in module flag (expected constant integer)",
1388         Op->getOperand(0));
1389     Assert(false,
1390            "invalid behavior operand in module flag (unexpected constant)",
1391            Op->getOperand(0));
1392   }
1393   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1394   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1395          Op->getOperand(1));
1396 
1397   // Sanity check the values for behaviors with additional requirements.
1398   switch (MFB) {
1399   case Module::Error:
1400   case Module::Warning:
1401   case Module::Override:
1402     // These behavior types accept any value.
1403     break;
1404 
1405   case Module::Max: {
1406     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1407            "invalid value for 'max' module flag (expected constant integer)",
1408            Op->getOperand(2));
1409     break;
1410   }
1411 
1412   case Module::Require: {
1413     // The value should itself be an MDNode with two operands, a flag ID (an
1414     // MDString), and a value.
1415     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1416     Assert(Value && Value->getNumOperands() == 2,
1417            "invalid value for 'require' module flag (expected metadata pair)",
1418            Op->getOperand(2));
1419     Assert(isa<MDString>(Value->getOperand(0)),
1420            ("invalid value for 'require' module flag "
1421             "(first value operand should be a string)"),
1422            Value->getOperand(0));
1423 
1424     // Append it to the list of requirements, to check once all module flags are
1425     // scanned.
1426     Requirements.push_back(Value);
1427     break;
1428   }
1429 
1430   case Module::Append:
1431   case Module::AppendUnique: {
1432     // These behavior types require the operand be an MDNode.
1433     Assert(isa<MDNode>(Op->getOperand(2)),
1434            "invalid value for 'append'-type module flag "
1435            "(expected a metadata node)",
1436            Op->getOperand(2));
1437     break;
1438   }
1439   }
1440 
1441   // Unless this is a "requires" flag, check the ID is unique.
1442   if (MFB != Module::Require) {
1443     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1444     Assert(Inserted,
1445            "module flag identifiers must be unique (or of 'require' type)", ID);
1446   }
1447 
1448   if (ID->getString() == "wchar_size") {
1449     ConstantInt *Value
1450       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1451     Assert(Value, "wchar_size metadata requires constant integer argument");
1452   }
1453 
1454   if (ID->getString() == "Linker Options") {
1455     // If the llvm.linker.options named metadata exists, we assume that the
1456     // bitcode reader has upgraded the module flag. Otherwise the flag might
1457     // have been created by a client directly.
1458     Assert(M.getNamedMetadata("llvm.linker.options"),
1459            "'Linker Options' named metadata no longer supported");
1460   }
1461 
1462   if (ID->getString() == "CG Profile") {
1463     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1464       visitModuleFlagCGProfileEntry(MDO);
1465   }
1466 }
1467 
1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1469   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1470     if (!FuncMDO)
1471       return;
1472     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1473     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1474            FuncMDO);
1475   };
1476   auto Node = dyn_cast_or_null<MDNode>(MDO);
1477   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1478   CheckFunction(Node->getOperand(0));
1479   CheckFunction(Node->getOperand(1));
1480   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1481   Assert(Count && Count->getType()->isIntegerTy(),
1482          "expected an integer constant", Node->getOperand(2));
1483 }
1484 
1485 /// Return true if this attribute kind only applies to functions.
1486 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1487   switch (Kind) {
1488   case Attribute::NoReturn:
1489   case Attribute::NoCfCheck:
1490   case Attribute::NoUnwind:
1491   case Attribute::NoInline:
1492   case Attribute::AlwaysInline:
1493   case Attribute::OptimizeForSize:
1494   case Attribute::StackProtect:
1495   case Attribute::StackProtectReq:
1496   case Attribute::StackProtectStrong:
1497   case Attribute::SafeStack:
1498   case Attribute::ShadowCallStack:
1499   case Attribute::NoRedZone:
1500   case Attribute::NoImplicitFloat:
1501   case Attribute::Naked:
1502   case Attribute::InlineHint:
1503   case Attribute::StackAlignment:
1504   case Attribute::UWTable:
1505   case Attribute::NonLazyBind:
1506   case Attribute::ReturnsTwice:
1507   case Attribute::SanitizeAddress:
1508   case Attribute::SanitizeHWAddress:
1509   case Attribute::SanitizeThread:
1510   case Attribute::SanitizeMemory:
1511   case Attribute::MinSize:
1512   case Attribute::NoDuplicate:
1513   case Attribute::Builtin:
1514   case Attribute::NoBuiltin:
1515   case Attribute::Cold:
1516   case Attribute::OptForFuzzing:
1517   case Attribute::OptimizeNone:
1518   case Attribute::JumpTable:
1519   case Attribute::Convergent:
1520   case Attribute::ArgMemOnly:
1521   case Attribute::NoRecurse:
1522   case Attribute::InaccessibleMemOnly:
1523   case Attribute::InaccessibleMemOrArgMemOnly:
1524   case Attribute::AllocSize:
1525   case Attribute::SpeculativeLoadHardening:
1526   case Attribute::Speculatable:
1527   case Attribute::StrictFP:
1528     return true;
1529   default:
1530     break;
1531   }
1532   return false;
1533 }
1534 
1535 /// Return true if this is a function attribute that can also appear on
1536 /// arguments.
1537 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1538   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1539          Kind == Attribute::ReadNone;
1540 }
1541 
1542 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1543                                     const Value *V) {
1544   for (Attribute A : Attrs) {
1545     if (A.isStringAttribute())
1546       continue;
1547 
1548     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1549       if (!IsFunction) {
1550         CheckFailed("Attribute '" + A.getAsString() +
1551                         "' only applies to functions!",
1552                     V);
1553         return;
1554       }
1555     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1556       CheckFailed("Attribute '" + A.getAsString() +
1557                       "' does not apply to functions!",
1558                   V);
1559       return;
1560     }
1561   }
1562 }
1563 
1564 // VerifyParameterAttrs - Check the given attributes for an argument or return
1565 // value of the specified type.  The value V is printed in error messages.
1566 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1567                                     const Value *V) {
1568   if (!Attrs.hasAttributes())
1569     return;
1570 
1571   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1572 
1573   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1574     Assert(Attrs.getNumAttributes() == 1,
1575            "Attribute 'immarg' is incompatible with other attributes", V);
1576   }
1577 
1578   // Check for mutually incompatible attributes.  Only inreg is compatible with
1579   // sret.
1580   unsigned AttrCount = 0;
1581   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1582   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1583   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1584                Attrs.hasAttribute(Attribute::InReg);
1585   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1586   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1587                          "and 'sret' are incompatible!",
1588          V);
1589 
1590   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1591            Attrs.hasAttribute(Attribute::ReadOnly)),
1592          "Attributes "
1593          "'inalloca and readonly' are incompatible!",
1594          V);
1595 
1596   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1597            Attrs.hasAttribute(Attribute::Returned)),
1598          "Attributes "
1599          "'sret and returned' are incompatible!",
1600          V);
1601 
1602   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1603            Attrs.hasAttribute(Attribute::SExt)),
1604          "Attributes "
1605          "'zeroext and signext' are incompatible!",
1606          V);
1607 
1608   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1609            Attrs.hasAttribute(Attribute::ReadOnly)),
1610          "Attributes "
1611          "'readnone and readonly' are incompatible!",
1612          V);
1613 
1614   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1615            Attrs.hasAttribute(Attribute::WriteOnly)),
1616          "Attributes "
1617          "'readnone and writeonly' are incompatible!",
1618          V);
1619 
1620   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1621            Attrs.hasAttribute(Attribute::WriteOnly)),
1622          "Attributes "
1623          "'readonly and writeonly' are incompatible!",
1624          V);
1625 
1626   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1627            Attrs.hasAttribute(Attribute::AlwaysInline)),
1628          "Attributes "
1629          "'noinline and alwaysinline' are incompatible!",
1630          V);
1631 
1632   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1633   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1634          "Wrong types for attribute: " +
1635              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1636          V);
1637 
1638   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1639     SmallPtrSet<Type*, 4> Visited;
1640     if (!PTy->getElementType()->isSized(&Visited)) {
1641       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1642                  !Attrs.hasAttribute(Attribute::InAlloca),
1643              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1644              V);
1645     }
1646     if (!isa<PointerType>(PTy->getElementType()))
1647       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1648              "Attribute 'swifterror' only applies to parameters "
1649              "with pointer to pointer type!",
1650              V);
1651   } else {
1652     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1653            "Attribute 'byval' only applies to parameters with pointer type!",
1654            V);
1655     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1656            "Attribute 'swifterror' only applies to parameters "
1657            "with pointer type!",
1658            V);
1659   }
1660 }
1661 
1662 // Check parameter attributes against a function type.
1663 // The value V is printed in error messages.
1664 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1665                                    const Value *V, bool IsIntrinsic) {
1666   if (Attrs.isEmpty())
1667     return;
1668 
1669   bool SawNest = false;
1670   bool SawReturned = false;
1671   bool SawSRet = false;
1672   bool SawSwiftSelf = false;
1673   bool SawSwiftError = false;
1674 
1675   // Verify return value attributes.
1676   AttributeSet RetAttrs = Attrs.getRetAttributes();
1677   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1678           !RetAttrs.hasAttribute(Attribute::Nest) &&
1679           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1680           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1681           !RetAttrs.hasAttribute(Attribute::Returned) &&
1682           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1683           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1684           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1685          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1686          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1687          "values!",
1688          V);
1689   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1690           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1691           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1692          "Attribute '" + RetAttrs.getAsString() +
1693              "' does not apply to function returns",
1694          V);
1695   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1696 
1697   // Verify parameter attributes.
1698   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1699     Type *Ty = FT->getParamType(i);
1700     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1701 
1702     if (!IsIntrinsic) {
1703       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1704              "immarg attribute only applies to intrinsics",V);
1705     }
1706 
1707     verifyParameterAttrs(ArgAttrs, Ty, V);
1708 
1709     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1710       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1711       SawNest = true;
1712     }
1713 
1714     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1715       Assert(!SawReturned, "More than one parameter has attribute returned!",
1716              V);
1717       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1718              "Incompatible argument and return types for 'returned' attribute",
1719              V);
1720       SawReturned = true;
1721     }
1722 
1723     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1724       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1725       Assert(i == 0 || i == 1,
1726              "Attribute 'sret' is not on first or second parameter!", V);
1727       SawSRet = true;
1728     }
1729 
1730     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1731       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1732       SawSwiftSelf = true;
1733     }
1734 
1735     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1736       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1737              V);
1738       SawSwiftError = true;
1739     }
1740 
1741     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1742       Assert(i == FT->getNumParams() - 1,
1743              "inalloca isn't on the last parameter!", V);
1744     }
1745   }
1746 
1747   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1748     return;
1749 
1750   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1751 
1752   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1753            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1754          "Attributes 'readnone and readonly' are incompatible!", V);
1755 
1756   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1757            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1758          "Attributes 'readnone and writeonly' are incompatible!", V);
1759 
1760   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1761            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1762          "Attributes 'readonly and writeonly' are incompatible!", V);
1763 
1764   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1765            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1766          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1767          "incompatible!",
1768          V);
1769 
1770   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1771            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1772          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1773 
1774   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1775            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1776          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1777 
1778   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1779     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1780            "Attribute 'optnone' requires 'noinline'!", V);
1781 
1782     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1783            "Attributes 'optsize and optnone' are incompatible!", V);
1784 
1785     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1786            "Attributes 'minsize and optnone' are incompatible!", V);
1787   }
1788 
1789   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1790     const GlobalValue *GV = cast<GlobalValue>(V);
1791     Assert(GV->hasGlobalUnnamedAddr(),
1792            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1793   }
1794 
1795   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1796     std::pair<unsigned, Optional<unsigned>> Args =
1797         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1798 
1799     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1800       if (ParamNo >= FT->getNumParams()) {
1801         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1802         return false;
1803       }
1804 
1805       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1806         CheckFailed("'allocsize' " + Name +
1807                         " argument must refer to an integer parameter",
1808                     V);
1809         return false;
1810       }
1811 
1812       return true;
1813     };
1814 
1815     if (!CheckParam("element size", Args.first))
1816       return;
1817 
1818     if (Args.second && !CheckParam("number of elements", *Args.second))
1819       return;
1820   }
1821 }
1822 
1823 void Verifier::verifyFunctionMetadata(
1824     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1825   for (const auto &Pair : MDs) {
1826     if (Pair.first == LLVMContext::MD_prof) {
1827       MDNode *MD = Pair.second;
1828       Assert(MD->getNumOperands() >= 2,
1829              "!prof annotations should have no less than 2 operands", MD);
1830 
1831       // Check first operand.
1832       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1833              MD);
1834       Assert(isa<MDString>(MD->getOperand(0)),
1835              "expected string with name of the !prof annotation", MD);
1836       MDString *MDS = cast<MDString>(MD->getOperand(0));
1837       StringRef ProfName = MDS->getString();
1838       Assert(ProfName.equals("function_entry_count") ||
1839                  ProfName.equals("synthetic_function_entry_count"),
1840              "first operand should be 'function_entry_count'"
1841              " or 'synthetic_function_entry_count'",
1842              MD);
1843 
1844       // Check second operand.
1845       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1846              MD);
1847       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1848              "expected integer argument to function_entry_count", MD);
1849     }
1850   }
1851 }
1852 
1853 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1854   if (!ConstantExprVisited.insert(EntryC).second)
1855     return;
1856 
1857   SmallVector<const Constant *, 16> Stack;
1858   Stack.push_back(EntryC);
1859 
1860   while (!Stack.empty()) {
1861     const Constant *C = Stack.pop_back_val();
1862 
1863     // Check this constant expression.
1864     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1865       visitConstantExpr(CE);
1866 
1867     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1868       // Global Values get visited separately, but we do need to make sure
1869       // that the global value is in the correct module
1870       Assert(GV->getParent() == &M, "Referencing global in another module!",
1871              EntryC, &M, GV, GV->getParent());
1872       continue;
1873     }
1874 
1875     // Visit all sub-expressions.
1876     for (const Use &U : C->operands()) {
1877       const auto *OpC = dyn_cast<Constant>(U);
1878       if (!OpC)
1879         continue;
1880       if (!ConstantExprVisited.insert(OpC).second)
1881         continue;
1882       Stack.push_back(OpC);
1883     }
1884   }
1885 }
1886 
1887 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1888   if (CE->getOpcode() == Instruction::BitCast)
1889     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1890                                  CE->getType()),
1891            "Invalid bitcast", CE);
1892 
1893   if (CE->getOpcode() == Instruction::IntToPtr ||
1894       CE->getOpcode() == Instruction::PtrToInt) {
1895     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1896                       ? CE->getType()
1897                       : CE->getOperand(0)->getType();
1898     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1899                         ? "inttoptr not supported for non-integral pointers"
1900                         : "ptrtoint not supported for non-integral pointers";
1901     Assert(
1902         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1903         Msg);
1904   }
1905 }
1906 
1907 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1908   // There shouldn't be more attribute sets than there are parameters plus the
1909   // function and return value.
1910   return Attrs.getNumAttrSets() <= Params + 2;
1911 }
1912 
1913 /// Verify that statepoint intrinsic is well formed.
1914 void Verifier::verifyStatepoint(const CallBase &Call) {
1915   assert(Call.getCalledFunction() &&
1916          Call.getCalledFunction()->getIntrinsicID() ==
1917              Intrinsic::experimental_gc_statepoint);
1918 
1919   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1920              !Call.onlyAccessesArgMemory(),
1921          "gc.statepoint must read and write all memory to preserve "
1922          "reordering restrictions required by safepoint semantics",
1923          Call);
1924 
1925   const int64_t NumPatchBytes =
1926       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1927   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1928   Assert(NumPatchBytes >= 0,
1929          "gc.statepoint number of patchable bytes must be "
1930          "positive",
1931          Call);
1932 
1933   const Value *Target = Call.getArgOperand(2);
1934   auto *PT = dyn_cast<PointerType>(Target->getType());
1935   Assert(PT && PT->getElementType()->isFunctionTy(),
1936          "gc.statepoint callee must be of function pointer type", Call, Target);
1937   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1938 
1939   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1940   Assert(NumCallArgs >= 0,
1941          "gc.statepoint number of arguments to underlying call "
1942          "must be positive",
1943          Call);
1944   const int NumParams = (int)TargetFuncType->getNumParams();
1945   if (TargetFuncType->isVarArg()) {
1946     Assert(NumCallArgs >= NumParams,
1947            "gc.statepoint mismatch in number of vararg call args", Call);
1948 
1949     // TODO: Remove this limitation
1950     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1951            "gc.statepoint doesn't support wrapping non-void "
1952            "vararg functions yet",
1953            Call);
1954   } else
1955     Assert(NumCallArgs == NumParams,
1956            "gc.statepoint mismatch in number of call args", Call);
1957 
1958   const uint64_t Flags
1959     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1960   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1961          "unknown flag used in gc.statepoint flags argument", Call);
1962 
1963   // Verify that the types of the call parameter arguments match
1964   // the type of the wrapped callee.
1965   AttributeList Attrs = Call.getAttributes();
1966   for (int i = 0; i < NumParams; i++) {
1967     Type *ParamType = TargetFuncType->getParamType(i);
1968     Type *ArgType = Call.getArgOperand(5 + i)->getType();
1969     Assert(ArgType == ParamType,
1970            "gc.statepoint call argument does not match wrapped "
1971            "function type",
1972            Call);
1973 
1974     if (TargetFuncType->isVarArg()) {
1975       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1976       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
1977              "Attribute 'sret' cannot be used for vararg call arguments!",
1978              Call);
1979     }
1980   }
1981 
1982   const int EndCallArgsInx = 4 + NumCallArgs;
1983 
1984   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
1985   Assert(isa<ConstantInt>(NumTransitionArgsV),
1986          "gc.statepoint number of transition arguments "
1987          "must be constant integer",
1988          Call);
1989   const int NumTransitionArgs =
1990       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1991   Assert(NumTransitionArgs >= 0,
1992          "gc.statepoint number of transition arguments must be positive", Call);
1993   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1994 
1995   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
1996   Assert(isa<ConstantInt>(NumDeoptArgsV),
1997          "gc.statepoint number of deoptimization arguments "
1998          "must be constant integer",
1999          Call);
2000   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2001   Assert(NumDeoptArgs >= 0,
2002          "gc.statepoint number of deoptimization arguments "
2003          "must be positive",
2004          Call);
2005 
2006   const int ExpectedNumArgs =
2007       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2008   Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2009          "gc.statepoint too few arguments according to length fields", Call);
2010 
2011   // Check that the only uses of this gc.statepoint are gc.result or
2012   // gc.relocate calls which are tied to this statepoint and thus part
2013   // of the same statepoint sequence
2014   for (const User *U : Call.users()) {
2015     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2016     Assert(UserCall, "illegal use of statepoint token", Call, U);
2017     if (!UserCall)
2018       continue;
2019     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2020            "gc.result or gc.relocate are the only value uses "
2021            "of a gc.statepoint",
2022            Call, U);
2023     if (isa<GCResultInst>(UserCall)) {
2024       Assert(UserCall->getArgOperand(0) == &Call,
2025              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2026     } else if (isa<GCRelocateInst>(Call)) {
2027       Assert(UserCall->getArgOperand(0) == &Call,
2028              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2029     }
2030   }
2031 
2032   // Note: It is legal for a single derived pointer to be listed multiple
2033   // times.  It's non-optimal, but it is legal.  It can also happen after
2034   // insertion if we strip a bitcast away.
2035   // Note: It is really tempting to check that each base is relocated and
2036   // that a derived pointer is never reused as a base pointer.  This turns
2037   // out to be problematic since optimizations run after safepoint insertion
2038   // can recognize equality properties that the insertion logic doesn't know
2039   // about.  See example statepoint.ll in the verifier subdirectory
2040 }
2041 
2042 void Verifier::verifyFrameRecoverIndices() {
2043   for (auto &Counts : FrameEscapeInfo) {
2044     Function *F = Counts.first;
2045     unsigned EscapedObjectCount = Counts.second.first;
2046     unsigned MaxRecoveredIndex = Counts.second.second;
2047     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2048            "all indices passed to llvm.localrecover must be less than the "
2049            "number of arguments passed to llvm.localescape in the parent "
2050            "function",
2051            F);
2052   }
2053 }
2054 
2055 static Instruction *getSuccPad(Instruction *Terminator) {
2056   BasicBlock *UnwindDest;
2057   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2058     UnwindDest = II->getUnwindDest();
2059   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2060     UnwindDest = CSI->getUnwindDest();
2061   else
2062     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2063   return UnwindDest->getFirstNonPHI();
2064 }
2065 
2066 void Verifier::verifySiblingFuncletUnwinds() {
2067   SmallPtrSet<Instruction *, 8> Visited;
2068   SmallPtrSet<Instruction *, 8> Active;
2069   for (const auto &Pair : SiblingFuncletInfo) {
2070     Instruction *PredPad = Pair.first;
2071     if (Visited.count(PredPad))
2072       continue;
2073     Active.insert(PredPad);
2074     Instruction *Terminator = Pair.second;
2075     do {
2076       Instruction *SuccPad = getSuccPad(Terminator);
2077       if (Active.count(SuccPad)) {
2078         // Found a cycle; report error
2079         Instruction *CyclePad = SuccPad;
2080         SmallVector<Instruction *, 8> CycleNodes;
2081         do {
2082           CycleNodes.push_back(CyclePad);
2083           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2084           if (CycleTerminator != CyclePad)
2085             CycleNodes.push_back(CycleTerminator);
2086           CyclePad = getSuccPad(CycleTerminator);
2087         } while (CyclePad != SuccPad);
2088         Assert(false, "EH pads can't handle each other's exceptions",
2089                ArrayRef<Instruction *>(CycleNodes));
2090       }
2091       // Don't re-walk a node we've already checked
2092       if (!Visited.insert(SuccPad).second)
2093         break;
2094       // Walk to this successor if it has a map entry.
2095       PredPad = SuccPad;
2096       auto TermI = SiblingFuncletInfo.find(PredPad);
2097       if (TermI == SiblingFuncletInfo.end())
2098         break;
2099       Terminator = TermI->second;
2100       Active.insert(PredPad);
2101     } while (true);
2102     // Each node only has one successor, so we've walked all the active
2103     // nodes' successors.
2104     Active.clear();
2105   }
2106 }
2107 
2108 // visitFunction - Verify that a function is ok.
2109 //
2110 void Verifier::visitFunction(const Function &F) {
2111   visitGlobalValue(F);
2112 
2113   // Check function arguments.
2114   FunctionType *FT = F.getFunctionType();
2115   unsigned NumArgs = F.arg_size();
2116 
2117   Assert(&Context == &F.getContext(),
2118          "Function context does not match Module context!", &F);
2119 
2120   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2121   Assert(FT->getNumParams() == NumArgs,
2122          "# formal arguments must match # of arguments for function type!", &F,
2123          FT);
2124   Assert(F.getReturnType()->isFirstClassType() ||
2125              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2126          "Functions cannot return aggregate values!", &F);
2127 
2128   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2129          "Invalid struct return type!", &F);
2130 
2131   AttributeList Attrs = F.getAttributes();
2132 
2133   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2134          "Attribute after last parameter!", &F);
2135 
2136   bool isLLVMdotName = F.getName().size() >= 5 &&
2137                        F.getName().substr(0, 5) == "llvm.";
2138 
2139   // Check function attributes.
2140   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2141 
2142   // On function declarations/definitions, we do not support the builtin
2143   // attribute. We do not check this in VerifyFunctionAttrs since that is
2144   // checking for Attributes that can/can not ever be on functions.
2145   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2146          "Attribute 'builtin' can only be applied to a callsite.", &F);
2147 
2148   // Check that this function meets the restrictions on this calling convention.
2149   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2150   // restrictions can be lifted.
2151   switch (F.getCallingConv()) {
2152   default:
2153   case CallingConv::C:
2154     break;
2155   case CallingConv::AMDGPU_KERNEL:
2156   case CallingConv::SPIR_KERNEL:
2157     Assert(F.getReturnType()->isVoidTy(),
2158            "Calling convention requires void return type", &F);
2159     LLVM_FALLTHROUGH;
2160   case CallingConv::AMDGPU_VS:
2161   case CallingConv::AMDGPU_HS:
2162   case CallingConv::AMDGPU_GS:
2163   case CallingConv::AMDGPU_PS:
2164   case CallingConv::AMDGPU_CS:
2165     Assert(!F.hasStructRetAttr(),
2166            "Calling convention does not allow sret", &F);
2167     LLVM_FALLTHROUGH;
2168   case CallingConv::Fast:
2169   case CallingConv::Cold:
2170   case CallingConv::Intel_OCL_BI:
2171   case CallingConv::PTX_Kernel:
2172   case CallingConv::PTX_Device:
2173     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2174                           "perfect forwarding!",
2175            &F);
2176     break;
2177   }
2178 
2179   // Check that the argument values match the function type for this function...
2180   unsigned i = 0;
2181   for (const Argument &Arg : F.args()) {
2182     Assert(Arg.getType() == FT->getParamType(i),
2183            "Argument value does not match function argument type!", &Arg,
2184            FT->getParamType(i));
2185     Assert(Arg.getType()->isFirstClassType(),
2186            "Function arguments must have first-class types!", &Arg);
2187     if (!isLLVMdotName) {
2188       Assert(!Arg.getType()->isMetadataTy(),
2189              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2190       Assert(!Arg.getType()->isTokenTy(),
2191              "Function takes token but isn't an intrinsic", &Arg, &F);
2192     }
2193 
2194     // Check that swifterror argument is only used by loads and stores.
2195     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2196       verifySwiftErrorValue(&Arg);
2197     }
2198     ++i;
2199   }
2200 
2201   if (!isLLVMdotName)
2202     Assert(!F.getReturnType()->isTokenTy(),
2203            "Functions returns a token but isn't an intrinsic", &F);
2204 
2205   // Get the function metadata attachments.
2206   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2207   F.getAllMetadata(MDs);
2208   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2209   verifyFunctionMetadata(MDs);
2210 
2211   // Check validity of the personality function
2212   if (F.hasPersonalityFn()) {
2213     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2214     if (Per)
2215       Assert(Per->getParent() == F.getParent(),
2216              "Referencing personality function in another module!",
2217              &F, F.getParent(), Per, Per->getParent());
2218   }
2219 
2220   if (F.isMaterializable()) {
2221     // Function has a body somewhere we can't see.
2222     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2223            MDs.empty() ? nullptr : MDs.front().second);
2224   } else if (F.isDeclaration()) {
2225     for (const auto &I : MDs) {
2226       AssertDI(I.first != LLVMContext::MD_dbg,
2227                "function declaration may not have a !dbg attachment", &F);
2228       Assert(I.first != LLVMContext::MD_prof,
2229              "function declaration may not have a !prof attachment", &F);
2230 
2231       // Verify the metadata itself.
2232       visitMDNode(*I.second);
2233     }
2234     Assert(!F.hasPersonalityFn(),
2235            "Function declaration shouldn't have a personality routine", &F);
2236   } else {
2237     // Verify that this function (which has a body) is not named "llvm.*".  It
2238     // is not legal to define intrinsics.
2239     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2240 
2241     // Check the entry node
2242     const BasicBlock *Entry = &F.getEntryBlock();
2243     Assert(pred_empty(Entry),
2244            "Entry block to function must not have predecessors!", Entry);
2245 
2246     // The address of the entry block cannot be taken, unless it is dead.
2247     if (Entry->hasAddressTaken()) {
2248       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2249              "blockaddress may not be used with the entry block!", Entry);
2250     }
2251 
2252     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2253     // Visit metadata attachments.
2254     for (const auto &I : MDs) {
2255       // Verify that the attachment is legal.
2256       switch (I.first) {
2257       default:
2258         break;
2259       case LLVMContext::MD_dbg: {
2260         ++NumDebugAttachments;
2261         AssertDI(NumDebugAttachments == 1,
2262                  "function must have a single !dbg attachment", &F, I.second);
2263         AssertDI(isa<DISubprogram>(I.second),
2264                  "function !dbg attachment must be a subprogram", &F, I.second);
2265         auto *SP = cast<DISubprogram>(I.second);
2266         const Function *&AttachedTo = DISubprogramAttachments[SP];
2267         AssertDI(!AttachedTo || AttachedTo == &F,
2268                  "DISubprogram attached to more than one function", SP, &F);
2269         AttachedTo = &F;
2270         break;
2271       }
2272       case LLVMContext::MD_prof:
2273         ++NumProfAttachments;
2274         Assert(NumProfAttachments == 1,
2275                "function must have a single !prof attachment", &F, I.second);
2276         break;
2277       }
2278 
2279       // Verify the metadata itself.
2280       visitMDNode(*I.second);
2281     }
2282   }
2283 
2284   // If this function is actually an intrinsic, verify that it is only used in
2285   // direct call/invokes, never having its "address taken".
2286   // Only do this if the module is materialized, otherwise we don't have all the
2287   // uses.
2288   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2289     const User *U;
2290     if (F.hasAddressTaken(&U))
2291       Assert(false, "Invalid user of intrinsic instruction!", U);
2292   }
2293 
2294   auto *N = F.getSubprogram();
2295   HasDebugInfo = (N != nullptr);
2296   if (!HasDebugInfo)
2297     return;
2298 
2299   // Check that all !dbg attachments lead to back to N (or, at least, another
2300   // subprogram that describes the same function).
2301   //
2302   // FIXME: Check this incrementally while visiting !dbg attachments.
2303   // FIXME: Only check when N is the canonical subprogram for F.
2304   SmallPtrSet<const MDNode *, 32> Seen;
2305   for (auto &BB : F)
2306     for (auto &I : BB) {
2307       // Be careful about using DILocation here since we might be dealing with
2308       // broken code (this is the Verifier after all).
2309       DILocation *DL =
2310           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2311       if (!DL)
2312         continue;
2313       if (!Seen.insert(DL).second)
2314         continue;
2315 
2316       Metadata *Parent = DL->getRawScope();
2317       AssertDI(Parent && isa<DILocalScope>(Parent),
2318                "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2319                Parent);
2320       DILocalScope *Scope = DL->getInlinedAtScope();
2321       if (Scope && !Seen.insert(Scope).second)
2322         continue;
2323 
2324       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2325 
2326       // Scope and SP could be the same MDNode and we don't want to skip
2327       // validation in that case
2328       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2329         continue;
2330 
2331       // FIXME: Once N is canonical, check "SP == &N".
2332       AssertDI(SP->describes(&F),
2333                "!dbg attachment points at wrong subprogram for function", N, &F,
2334                &I, DL, Scope, SP);
2335     }
2336 }
2337 
2338 // verifyBasicBlock - Verify that a basic block is well formed...
2339 //
2340 void Verifier::visitBasicBlock(BasicBlock &BB) {
2341   InstsInThisBlock.clear();
2342 
2343   // Ensure that basic blocks have terminators!
2344   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2345 
2346   // Check constraints that this basic block imposes on all of the PHI nodes in
2347   // it.
2348   if (isa<PHINode>(BB.front())) {
2349     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2350     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2351     llvm::sort(Preds);
2352     for (const PHINode &PN : BB.phis()) {
2353       // Ensure that PHI nodes have at least one entry!
2354       Assert(PN.getNumIncomingValues() != 0,
2355              "PHI nodes must have at least one entry.  If the block is dead, "
2356              "the PHI should be removed!",
2357              &PN);
2358       Assert(PN.getNumIncomingValues() == Preds.size(),
2359              "PHINode should have one entry for each predecessor of its "
2360              "parent basic block!",
2361              &PN);
2362 
2363       // Get and sort all incoming values in the PHI node...
2364       Values.clear();
2365       Values.reserve(PN.getNumIncomingValues());
2366       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2367         Values.push_back(
2368             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2369       llvm::sort(Values);
2370 
2371       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2372         // Check to make sure that if there is more than one entry for a
2373         // particular basic block in this PHI node, that the incoming values are
2374         // all identical.
2375         //
2376         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2377                    Values[i].second == Values[i - 1].second,
2378                "PHI node has multiple entries for the same basic block with "
2379                "different incoming values!",
2380                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2381 
2382         // Check to make sure that the predecessors and PHI node entries are
2383         // matched up.
2384         Assert(Values[i].first == Preds[i],
2385                "PHI node entries do not match predecessors!", &PN,
2386                Values[i].first, Preds[i]);
2387       }
2388     }
2389   }
2390 
2391   // Check that all instructions have their parent pointers set up correctly.
2392   for (auto &I : BB)
2393   {
2394     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2395   }
2396 }
2397 
2398 void Verifier::visitTerminator(Instruction &I) {
2399   // Ensure that terminators only exist at the end of the basic block.
2400   Assert(&I == I.getParent()->getTerminator(),
2401          "Terminator found in the middle of a basic block!", I.getParent());
2402   visitInstruction(I);
2403 }
2404 
2405 void Verifier::visitBranchInst(BranchInst &BI) {
2406   if (BI.isConditional()) {
2407     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2408            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2409   }
2410   visitTerminator(BI);
2411 }
2412 
2413 void Verifier::visitReturnInst(ReturnInst &RI) {
2414   Function *F = RI.getParent()->getParent();
2415   unsigned N = RI.getNumOperands();
2416   if (F->getReturnType()->isVoidTy())
2417     Assert(N == 0,
2418            "Found return instr that returns non-void in Function of void "
2419            "return type!",
2420            &RI, F->getReturnType());
2421   else
2422     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2423            "Function return type does not match operand "
2424            "type of return inst!",
2425            &RI, F->getReturnType());
2426 
2427   // Check to make sure that the return value has necessary properties for
2428   // terminators...
2429   visitTerminator(RI);
2430 }
2431 
2432 void Verifier::visitSwitchInst(SwitchInst &SI) {
2433   // Check to make sure that all of the constants in the switch instruction
2434   // have the same type as the switched-on value.
2435   Type *SwitchTy = SI.getCondition()->getType();
2436   SmallPtrSet<ConstantInt*, 32> Constants;
2437   for (auto &Case : SI.cases()) {
2438     Assert(Case.getCaseValue()->getType() == SwitchTy,
2439            "Switch constants must all be same type as switch value!", &SI);
2440     Assert(Constants.insert(Case.getCaseValue()).second,
2441            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2442   }
2443 
2444   visitTerminator(SI);
2445 }
2446 
2447 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2448   Assert(BI.getAddress()->getType()->isPointerTy(),
2449          "Indirectbr operand must have pointer type!", &BI);
2450   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2451     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2452            "Indirectbr destinations must all have pointer type!", &BI);
2453 
2454   visitTerminator(BI);
2455 }
2456 
2457 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2458   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2459          &CBI);
2460   Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2461          &CBI);
2462   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2463     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2464            "Callbr successors must all have pointer type!", &CBI);
2465   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2466     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2467            "Using an unescaped label as a callbr argument!", &CBI);
2468     if (isa<BasicBlock>(CBI.getOperand(i)))
2469       for (unsigned j = i + 1; j != e; ++j)
2470         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2471                "Duplicate callbr destination!", &CBI);
2472   }
2473 
2474   visitTerminator(CBI);
2475 }
2476 
2477 void Verifier::visitSelectInst(SelectInst &SI) {
2478   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2479                                          SI.getOperand(2)),
2480          "Invalid operands for select instruction!", &SI);
2481 
2482   Assert(SI.getTrueValue()->getType() == SI.getType(),
2483          "Select values must have same type as select instruction!", &SI);
2484   visitInstruction(SI);
2485 }
2486 
2487 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2488 /// a pass, if any exist, it's an error.
2489 ///
2490 void Verifier::visitUserOp1(Instruction &I) {
2491   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2492 }
2493 
2494 void Verifier::visitTruncInst(TruncInst &I) {
2495   // Get the source and destination types
2496   Type *SrcTy = I.getOperand(0)->getType();
2497   Type *DestTy = I.getType();
2498 
2499   // Get the size of the types in bits, we'll need this later
2500   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2501   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2502 
2503   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2504   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2505   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2506          "trunc source and destination must both be a vector or neither", &I);
2507   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2508 
2509   visitInstruction(I);
2510 }
2511 
2512 void Verifier::visitZExtInst(ZExtInst &I) {
2513   // Get the source and destination types
2514   Type *SrcTy = I.getOperand(0)->getType();
2515   Type *DestTy = I.getType();
2516 
2517   // Get the size of the types in bits, we'll need this later
2518   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2519   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2520   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2521          "zext source and destination must both be a vector or neither", &I);
2522   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2523   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2524 
2525   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2526 
2527   visitInstruction(I);
2528 }
2529 
2530 void Verifier::visitSExtInst(SExtInst &I) {
2531   // Get the source and destination types
2532   Type *SrcTy = I.getOperand(0)->getType();
2533   Type *DestTy = I.getType();
2534 
2535   // Get the size of the types in bits, we'll need this later
2536   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2537   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2538 
2539   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2540   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2541   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2542          "sext source and destination must both be a vector or neither", &I);
2543   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2544 
2545   visitInstruction(I);
2546 }
2547 
2548 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2549   // Get the source and destination types
2550   Type *SrcTy = I.getOperand(0)->getType();
2551   Type *DestTy = I.getType();
2552   // Get the size of the types in bits, we'll need this later
2553   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2554   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2555 
2556   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2557   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2558   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2559          "fptrunc source and destination must both be a vector or neither", &I);
2560   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2561 
2562   visitInstruction(I);
2563 }
2564 
2565 void Verifier::visitFPExtInst(FPExtInst &I) {
2566   // Get the source and destination types
2567   Type *SrcTy = I.getOperand(0)->getType();
2568   Type *DestTy = I.getType();
2569 
2570   // Get the size of the types in bits, we'll need this later
2571   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2572   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2573 
2574   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2575   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2576   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2577          "fpext source and destination must both be a vector or neither", &I);
2578   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2579 
2580   visitInstruction(I);
2581 }
2582 
2583 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2584   // Get the source and destination types
2585   Type *SrcTy = I.getOperand(0)->getType();
2586   Type *DestTy = I.getType();
2587 
2588   bool SrcVec = SrcTy->isVectorTy();
2589   bool DstVec = DestTy->isVectorTy();
2590 
2591   Assert(SrcVec == DstVec,
2592          "UIToFP source and dest must both be vector or scalar", &I);
2593   Assert(SrcTy->isIntOrIntVectorTy(),
2594          "UIToFP source must be integer or integer vector", &I);
2595   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2596          &I);
2597 
2598   if (SrcVec && DstVec)
2599     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2600                cast<VectorType>(DestTy)->getNumElements(),
2601            "UIToFP source and dest vector length mismatch", &I);
2602 
2603   visitInstruction(I);
2604 }
2605 
2606 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2607   // Get the source and destination types
2608   Type *SrcTy = I.getOperand(0)->getType();
2609   Type *DestTy = I.getType();
2610 
2611   bool SrcVec = SrcTy->isVectorTy();
2612   bool DstVec = DestTy->isVectorTy();
2613 
2614   Assert(SrcVec == DstVec,
2615          "SIToFP source and dest must both be vector or scalar", &I);
2616   Assert(SrcTy->isIntOrIntVectorTy(),
2617          "SIToFP source must be integer or integer vector", &I);
2618   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2619          &I);
2620 
2621   if (SrcVec && DstVec)
2622     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2623                cast<VectorType>(DestTy)->getNumElements(),
2624            "SIToFP source and dest vector length mismatch", &I);
2625 
2626   visitInstruction(I);
2627 }
2628 
2629 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2630   // Get the source and destination types
2631   Type *SrcTy = I.getOperand(0)->getType();
2632   Type *DestTy = I.getType();
2633 
2634   bool SrcVec = SrcTy->isVectorTy();
2635   bool DstVec = DestTy->isVectorTy();
2636 
2637   Assert(SrcVec == DstVec,
2638          "FPToUI source and dest must both be vector or scalar", &I);
2639   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2640          &I);
2641   Assert(DestTy->isIntOrIntVectorTy(),
2642          "FPToUI result must be integer or integer vector", &I);
2643 
2644   if (SrcVec && DstVec)
2645     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2646                cast<VectorType>(DestTy)->getNumElements(),
2647            "FPToUI source and dest vector length mismatch", &I);
2648 
2649   visitInstruction(I);
2650 }
2651 
2652 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2653   // Get the source and destination types
2654   Type *SrcTy = I.getOperand(0)->getType();
2655   Type *DestTy = I.getType();
2656 
2657   bool SrcVec = SrcTy->isVectorTy();
2658   bool DstVec = DestTy->isVectorTy();
2659 
2660   Assert(SrcVec == DstVec,
2661          "FPToSI source and dest must both be vector or scalar", &I);
2662   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2663          &I);
2664   Assert(DestTy->isIntOrIntVectorTy(),
2665          "FPToSI result must be integer or integer vector", &I);
2666 
2667   if (SrcVec && DstVec)
2668     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2669                cast<VectorType>(DestTy)->getNumElements(),
2670            "FPToSI source and dest vector length mismatch", &I);
2671 
2672   visitInstruction(I);
2673 }
2674 
2675 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2676   // Get the source and destination types
2677   Type *SrcTy = I.getOperand(0)->getType();
2678   Type *DestTy = I.getType();
2679 
2680   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2681 
2682   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2683     Assert(!DL.isNonIntegralPointerType(PTy),
2684            "ptrtoint not supported for non-integral pointers");
2685 
2686   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2687   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2688          &I);
2689 
2690   if (SrcTy->isVectorTy()) {
2691     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2692     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2693     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2694            "PtrToInt Vector width mismatch", &I);
2695   }
2696 
2697   visitInstruction(I);
2698 }
2699 
2700 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2701   // Get the source and destination types
2702   Type *SrcTy = I.getOperand(0)->getType();
2703   Type *DestTy = I.getType();
2704 
2705   Assert(SrcTy->isIntOrIntVectorTy(),
2706          "IntToPtr source must be an integral", &I);
2707   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2708 
2709   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2710     Assert(!DL.isNonIntegralPointerType(PTy),
2711            "inttoptr not supported for non-integral pointers");
2712 
2713   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2714          &I);
2715   if (SrcTy->isVectorTy()) {
2716     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2717     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2718     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2719            "IntToPtr Vector width mismatch", &I);
2720   }
2721   visitInstruction(I);
2722 }
2723 
2724 void Verifier::visitBitCastInst(BitCastInst &I) {
2725   Assert(
2726       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2727       "Invalid bitcast", &I);
2728   visitInstruction(I);
2729 }
2730 
2731 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2732   Type *SrcTy = I.getOperand(0)->getType();
2733   Type *DestTy = I.getType();
2734 
2735   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2736          &I);
2737   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2738          &I);
2739   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2740          "AddrSpaceCast must be between different address spaces", &I);
2741   if (SrcTy->isVectorTy())
2742     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2743            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2744   visitInstruction(I);
2745 }
2746 
2747 /// visitPHINode - Ensure that a PHI node is well formed.
2748 ///
2749 void Verifier::visitPHINode(PHINode &PN) {
2750   // Ensure that the PHI nodes are all grouped together at the top of the block.
2751   // This can be tested by checking whether the instruction before this is
2752   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2753   // then there is some other instruction before a PHI.
2754   Assert(&PN == &PN.getParent()->front() ||
2755              isa<PHINode>(--BasicBlock::iterator(&PN)),
2756          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2757 
2758   // Check that a PHI doesn't yield a Token.
2759   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2760 
2761   // Check that all of the values of the PHI node have the same type as the
2762   // result, and that the incoming blocks are really basic blocks.
2763   for (Value *IncValue : PN.incoming_values()) {
2764     Assert(PN.getType() == IncValue->getType(),
2765            "PHI node operands are not the same type as the result!", &PN);
2766   }
2767 
2768   // All other PHI node constraints are checked in the visitBasicBlock method.
2769 
2770   visitInstruction(PN);
2771 }
2772 
2773 void Verifier::visitCallBase(CallBase &Call) {
2774   Assert(Call.getCalledValue()->getType()->isPointerTy(),
2775          "Called function must be a pointer!", Call);
2776   PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2777 
2778   Assert(FPTy->getElementType()->isFunctionTy(),
2779          "Called function is not pointer to function type!", Call);
2780 
2781   Assert(FPTy->getElementType() == Call.getFunctionType(),
2782          "Called function is not the same type as the call!", Call);
2783 
2784   FunctionType *FTy = Call.getFunctionType();
2785 
2786   // Verify that the correct number of arguments are being passed
2787   if (FTy->isVarArg())
2788     Assert(Call.arg_size() >= FTy->getNumParams(),
2789            "Called function requires more parameters than were provided!",
2790            Call);
2791   else
2792     Assert(Call.arg_size() == FTy->getNumParams(),
2793            "Incorrect number of arguments passed to called function!", Call);
2794 
2795   // Verify that all arguments to the call match the function type.
2796   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2797     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2798            "Call parameter type does not match function signature!",
2799            Call.getArgOperand(i), FTy->getParamType(i), Call);
2800 
2801   AttributeList Attrs = Call.getAttributes();
2802 
2803   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2804          "Attribute after last parameter!", Call);
2805 
2806   bool IsIntrinsic = Call.getCalledFunction() &&
2807                      Call.getCalledFunction()->getName().startswith("llvm.");
2808 
2809   Function *Callee
2810     = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2811 
2812   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2813     // Don't allow speculatable on call sites, unless the underlying function
2814     // declaration is also speculatable.
2815     Assert(Callee && Callee->isSpeculatable(),
2816            "speculatable attribute may not apply to call sites", Call);
2817   }
2818 
2819   // Verify call attributes.
2820   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2821 
2822   // Conservatively check the inalloca argument.
2823   // We have a bug if we can find that there is an underlying alloca without
2824   // inalloca.
2825   if (Call.hasInAllocaArgument()) {
2826     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2827     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2828       Assert(AI->isUsedWithInAlloca(),
2829              "inalloca argument for call has mismatched alloca", AI, Call);
2830   }
2831 
2832   // For each argument of the callsite, if it has the swifterror argument,
2833   // make sure the underlying alloca/parameter it comes from has a swifterror as
2834   // well.
2835   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2836     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2837       Value *SwiftErrorArg = Call.getArgOperand(i);
2838       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2839         Assert(AI->isSwiftError(),
2840                "swifterror argument for call has mismatched alloca", AI, Call);
2841         continue;
2842       }
2843       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2844       Assert(ArgI,
2845              "swifterror argument should come from an alloca or parameter",
2846              SwiftErrorArg, Call);
2847       Assert(ArgI->hasSwiftErrorAttr(),
2848              "swifterror argument for call has mismatched parameter", ArgI,
2849              Call);
2850     }
2851 
2852     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2853       // Don't allow immarg on call sites, unless the underlying declaration
2854       // also has the matching immarg.
2855       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2856              "immarg may not apply only to call sites",
2857              Call.getArgOperand(i), Call);
2858     }
2859 
2860     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2861       Value *ArgVal = Call.getArgOperand(i);
2862       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2863              "immarg operand has non-immediate parameter", ArgVal, Call);
2864     }
2865   }
2866 
2867   if (FTy->isVarArg()) {
2868     // FIXME? is 'nest' even legal here?
2869     bool SawNest = false;
2870     bool SawReturned = false;
2871 
2872     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2873       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2874         SawNest = true;
2875       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2876         SawReturned = true;
2877     }
2878 
2879     // Check attributes on the varargs part.
2880     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2881       Type *Ty = Call.getArgOperand(Idx)->getType();
2882       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2883       verifyParameterAttrs(ArgAttrs, Ty, &Call);
2884 
2885       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2886         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2887         SawNest = true;
2888       }
2889 
2890       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2891         Assert(!SawReturned, "More than one parameter has attribute returned!",
2892                Call);
2893         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2894                "Incompatible argument and return types for 'returned' "
2895                "attribute",
2896                Call);
2897         SawReturned = true;
2898       }
2899 
2900       // Statepoint intrinsic is vararg but the wrapped function may be not.
2901       // Allow sret here and check the wrapped function in verifyStatepoint.
2902       if (!Call.getCalledFunction() ||
2903           Call.getCalledFunction()->getIntrinsicID() !=
2904               Intrinsic::experimental_gc_statepoint)
2905         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2906                "Attribute 'sret' cannot be used for vararg call arguments!",
2907                Call);
2908 
2909       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2910         Assert(Idx == Call.arg_size() - 1,
2911                "inalloca isn't on the last argument!", Call);
2912     }
2913   }
2914 
2915   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2916   if (!IsIntrinsic) {
2917     for (Type *ParamTy : FTy->params()) {
2918       Assert(!ParamTy->isMetadataTy(),
2919              "Function has metadata parameter but isn't an intrinsic", Call);
2920       Assert(!ParamTy->isTokenTy(),
2921              "Function has token parameter but isn't an intrinsic", Call);
2922     }
2923   }
2924 
2925   // Verify that indirect calls don't return tokens.
2926   if (!Call.getCalledFunction())
2927     Assert(!FTy->getReturnType()->isTokenTy(),
2928            "Return type cannot be token for indirect call!");
2929 
2930   if (Function *F = Call.getCalledFunction())
2931     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2932       visitIntrinsicCall(ID, Call);
2933 
2934   // Verify that a callsite has at most one "deopt", at most one "funclet" and
2935   // at most one "gc-transition" operand bundle.
2936   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2937        FoundGCTransitionBundle = false;
2938   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2939     OperandBundleUse BU = Call.getOperandBundleAt(i);
2940     uint32_t Tag = BU.getTagID();
2941     if (Tag == LLVMContext::OB_deopt) {
2942       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2943       FoundDeoptBundle = true;
2944     } else if (Tag == LLVMContext::OB_gc_transition) {
2945       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2946              Call);
2947       FoundGCTransitionBundle = true;
2948     } else if (Tag == LLVMContext::OB_funclet) {
2949       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2950       FoundFuncletBundle = true;
2951       Assert(BU.Inputs.size() == 1,
2952              "Expected exactly one funclet bundle operand", Call);
2953       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2954              "Funclet bundle operands should correspond to a FuncletPadInst",
2955              Call);
2956     }
2957   }
2958 
2959   // Verify that each inlinable callsite of a debug-info-bearing function in a
2960   // debug-info-bearing function has a debug location attached to it. Failure to
2961   // do so causes assertion failures when the inliner sets up inline scope info.
2962   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2963       Call.getCalledFunction()->getSubprogram())
2964     AssertDI(Call.getDebugLoc(),
2965              "inlinable function call in a function with "
2966              "debug info must have a !dbg location",
2967              Call);
2968 
2969   visitInstruction(Call);
2970 }
2971 
2972 /// Two types are "congruent" if they are identical, or if they are both pointer
2973 /// types with different pointee types and the same address space.
2974 static bool isTypeCongruent(Type *L, Type *R) {
2975   if (L == R)
2976     return true;
2977   PointerType *PL = dyn_cast<PointerType>(L);
2978   PointerType *PR = dyn_cast<PointerType>(R);
2979   if (!PL || !PR)
2980     return false;
2981   return PL->getAddressSpace() == PR->getAddressSpace();
2982 }
2983 
2984 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2985   static const Attribute::AttrKind ABIAttrs[] = {
2986       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2987       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2988       Attribute::SwiftError};
2989   AttrBuilder Copy;
2990   for (auto AK : ABIAttrs) {
2991     if (Attrs.hasParamAttribute(I, AK))
2992       Copy.addAttribute(AK);
2993   }
2994   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2995     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2996   return Copy;
2997 }
2998 
2999 void Verifier::verifyMustTailCall(CallInst &CI) {
3000   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3001 
3002   // - The caller and callee prototypes must match.  Pointer types of
3003   //   parameters or return types may differ in pointee type, but not
3004   //   address space.
3005   Function *F = CI.getParent()->getParent();
3006   FunctionType *CallerTy = F->getFunctionType();
3007   FunctionType *CalleeTy = CI.getFunctionType();
3008   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3009     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3010            "cannot guarantee tail call due to mismatched parameter counts",
3011            &CI);
3012     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3013       Assert(
3014           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3015           "cannot guarantee tail call due to mismatched parameter types", &CI);
3016     }
3017   }
3018   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3019          "cannot guarantee tail call due to mismatched varargs", &CI);
3020   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3021          "cannot guarantee tail call due to mismatched return types", &CI);
3022 
3023   // - The calling conventions of the caller and callee must match.
3024   Assert(F->getCallingConv() == CI.getCallingConv(),
3025          "cannot guarantee tail call due to mismatched calling conv", &CI);
3026 
3027   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3028   //   returned, and inalloca, must match.
3029   AttributeList CallerAttrs = F->getAttributes();
3030   AttributeList CalleeAttrs = CI.getAttributes();
3031   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3032     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3033     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3034     Assert(CallerABIAttrs == CalleeABIAttrs,
3035            "cannot guarantee tail call due to mismatched ABI impacting "
3036            "function attributes",
3037            &CI, CI.getOperand(I));
3038   }
3039 
3040   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3041   //   or a pointer bitcast followed by a ret instruction.
3042   // - The ret instruction must return the (possibly bitcasted) value
3043   //   produced by the call or void.
3044   Value *RetVal = &CI;
3045   Instruction *Next = CI.getNextNode();
3046 
3047   // Handle the optional bitcast.
3048   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3049     Assert(BI->getOperand(0) == RetVal,
3050            "bitcast following musttail call must use the call", BI);
3051     RetVal = BI;
3052     Next = BI->getNextNode();
3053   }
3054 
3055   // Check the return.
3056   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3057   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3058          &CI);
3059   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3060          "musttail call result must be returned", Ret);
3061 }
3062 
3063 void Verifier::visitCallInst(CallInst &CI) {
3064   visitCallBase(CI);
3065 
3066   if (CI.isMustTailCall())
3067     verifyMustTailCall(CI);
3068 }
3069 
3070 void Verifier::visitInvokeInst(InvokeInst &II) {
3071   visitCallBase(II);
3072 
3073   // Verify that the first non-PHI instruction of the unwind destination is an
3074   // exception handling instruction.
3075   Assert(
3076       II.getUnwindDest()->isEHPad(),
3077       "The unwind destination does not have an exception handling instruction!",
3078       &II);
3079 
3080   visitTerminator(II);
3081 }
3082 
3083 /// visitUnaryOperator - Check the argument to the unary operator.
3084 ///
3085 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3086   Assert(U.getType() == U.getOperand(0)->getType(),
3087          "Unary operators must have same type for"
3088          "operands and result!",
3089          &U);
3090 
3091   switch (U.getOpcode()) {
3092   // Check that floating-point arithmetic operators are only used with
3093   // floating-point operands.
3094   case Instruction::FNeg:
3095     Assert(U.getType()->isFPOrFPVectorTy(),
3096            "FNeg operator only works with float types!", &U);
3097     break;
3098   default:
3099     llvm_unreachable("Unknown UnaryOperator opcode!");
3100   }
3101 
3102   visitInstruction(U);
3103 }
3104 
3105 /// visitBinaryOperator - Check that both arguments to the binary operator are
3106 /// of the same type!
3107 ///
3108 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3109   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3110          "Both operands to a binary operator are not of the same type!", &B);
3111 
3112   switch (B.getOpcode()) {
3113   // Check that integer arithmetic operators are only used with
3114   // integral operands.
3115   case Instruction::Add:
3116   case Instruction::Sub:
3117   case Instruction::Mul:
3118   case Instruction::SDiv:
3119   case Instruction::UDiv:
3120   case Instruction::SRem:
3121   case Instruction::URem:
3122     Assert(B.getType()->isIntOrIntVectorTy(),
3123            "Integer arithmetic operators only work with integral types!", &B);
3124     Assert(B.getType() == B.getOperand(0)->getType(),
3125            "Integer arithmetic operators must have same type "
3126            "for operands and result!",
3127            &B);
3128     break;
3129   // Check that floating-point arithmetic operators are only used with
3130   // floating-point operands.
3131   case Instruction::FAdd:
3132   case Instruction::FSub:
3133   case Instruction::FMul:
3134   case Instruction::FDiv:
3135   case Instruction::FRem:
3136     Assert(B.getType()->isFPOrFPVectorTy(),
3137            "Floating-point arithmetic operators only work with "
3138            "floating-point types!",
3139            &B);
3140     Assert(B.getType() == B.getOperand(0)->getType(),
3141            "Floating-point arithmetic operators must have same type "
3142            "for operands and result!",
3143            &B);
3144     break;
3145   // Check that logical operators are only used with integral operands.
3146   case Instruction::And:
3147   case Instruction::Or:
3148   case Instruction::Xor:
3149     Assert(B.getType()->isIntOrIntVectorTy(),
3150            "Logical operators only work with integral types!", &B);
3151     Assert(B.getType() == B.getOperand(0)->getType(),
3152            "Logical operators must have same type for operands and result!",
3153            &B);
3154     break;
3155   case Instruction::Shl:
3156   case Instruction::LShr:
3157   case Instruction::AShr:
3158     Assert(B.getType()->isIntOrIntVectorTy(),
3159            "Shifts only work with integral types!", &B);
3160     Assert(B.getType() == B.getOperand(0)->getType(),
3161            "Shift return type must be same as operands!", &B);
3162     break;
3163   default:
3164     llvm_unreachable("Unknown BinaryOperator opcode!");
3165   }
3166 
3167   visitInstruction(B);
3168 }
3169 
3170 void Verifier::visitICmpInst(ICmpInst &IC) {
3171   // Check that the operands are the same type
3172   Type *Op0Ty = IC.getOperand(0)->getType();
3173   Type *Op1Ty = IC.getOperand(1)->getType();
3174   Assert(Op0Ty == Op1Ty,
3175          "Both operands to ICmp instruction are not of the same type!", &IC);
3176   // Check that the operands are the right type
3177   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3178          "Invalid operand types for ICmp instruction", &IC);
3179   // Check that the predicate is valid.
3180   Assert(IC.isIntPredicate(),
3181          "Invalid predicate in ICmp instruction!", &IC);
3182 
3183   visitInstruction(IC);
3184 }
3185 
3186 void Verifier::visitFCmpInst(FCmpInst &FC) {
3187   // Check that the operands are the same type
3188   Type *Op0Ty = FC.getOperand(0)->getType();
3189   Type *Op1Ty = FC.getOperand(1)->getType();
3190   Assert(Op0Ty == Op1Ty,
3191          "Both operands to FCmp instruction are not of the same type!", &FC);
3192   // Check that the operands are the right type
3193   Assert(Op0Ty->isFPOrFPVectorTy(),
3194          "Invalid operand types for FCmp instruction", &FC);
3195   // Check that the predicate is valid.
3196   Assert(FC.isFPPredicate(),
3197          "Invalid predicate in FCmp instruction!", &FC);
3198 
3199   visitInstruction(FC);
3200 }
3201 
3202 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3203   Assert(
3204       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3205       "Invalid extractelement operands!", &EI);
3206   visitInstruction(EI);
3207 }
3208 
3209 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3210   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3211                                             IE.getOperand(2)),
3212          "Invalid insertelement operands!", &IE);
3213   visitInstruction(IE);
3214 }
3215 
3216 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3217   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3218                                             SV.getOperand(2)),
3219          "Invalid shufflevector operands!", &SV);
3220   visitInstruction(SV);
3221 }
3222 
3223 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3224   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3225 
3226   Assert(isa<PointerType>(TargetTy),
3227          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3228   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3229 
3230   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3231   Assert(all_of(
3232       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3233       "GEP indexes must be integers", &GEP);
3234   Type *ElTy =
3235       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3236   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3237 
3238   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3239              GEP.getResultElementType() == ElTy,
3240          "GEP is not of right type for indices!", &GEP, ElTy);
3241 
3242   if (GEP.getType()->isVectorTy()) {
3243     // Additional checks for vector GEPs.
3244     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3245     if (GEP.getPointerOperandType()->isVectorTy())
3246       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3247              "Vector GEP result width doesn't match operand's", &GEP);
3248     for (Value *Idx : Idxs) {
3249       Type *IndexTy = Idx->getType();
3250       if (IndexTy->isVectorTy()) {
3251         unsigned IndexWidth = IndexTy->getVectorNumElements();
3252         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3253       }
3254       Assert(IndexTy->isIntOrIntVectorTy(),
3255              "All GEP indices should be of integer type");
3256     }
3257   }
3258 
3259   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3260     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3261            "GEP address space doesn't match type", &GEP);
3262   }
3263 
3264   visitInstruction(GEP);
3265 }
3266 
3267 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3268   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3269 }
3270 
3271 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3272   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3273          "precondition violation");
3274 
3275   unsigned NumOperands = Range->getNumOperands();
3276   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3277   unsigned NumRanges = NumOperands / 2;
3278   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3279 
3280   ConstantRange LastRange(1, true); // Dummy initial value
3281   for (unsigned i = 0; i < NumRanges; ++i) {
3282     ConstantInt *Low =
3283         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3284     Assert(Low, "The lower limit must be an integer!", Low);
3285     ConstantInt *High =
3286         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3287     Assert(High, "The upper limit must be an integer!", High);
3288     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3289            "Range types must match instruction type!", &I);
3290 
3291     APInt HighV = High->getValue();
3292     APInt LowV = Low->getValue();
3293     ConstantRange CurRange(LowV, HighV);
3294     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3295            "Range must not be empty!", Range);
3296     if (i != 0) {
3297       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3298              "Intervals are overlapping", Range);
3299       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3300              Range);
3301       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3302              Range);
3303     }
3304     LastRange = ConstantRange(LowV, HighV);
3305   }
3306   if (NumRanges > 2) {
3307     APInt FirstLow =
3308         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3309     APInt FirstHigh =
3310         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3311     ConstantRange FirstRange(FirstLow, FirstHigh);
3312     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3313            "Intervals are overlapping", Range);
3314     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3315            Range);
3316   }
3317 }
3318 
3319 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3320   unsigned Size = DL.getTypeSizeInBits(Ty);
3321   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3322   Assert(!(Size & (Size - 1)),
3323          "atomic memory access' operand must have a power-of-two size", Ty, I);
3324 }
3325 
3326 void Verifier::visitLoadInst(LoadInst &LI) {
3327   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3328   Assert(PTy, "Load operand must be a pointer.", &LI);
3329   Type *ElTy = LI.getType();
3330   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3331          "huge alignment values are unsupported", &LI);
3332   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3333   if (LI.isAtomic()) {
3334     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3335                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3336            "Load cannot have Release ordering", &LI);
3337     Assert(LI.getAlignment() != 0,
3338            "Atomic load must specify explicit alignment", &LI);
3339     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3340            "atomic load operand must have integer, pointer, or floating point "
3341            "type!",
3342            ElTy, &LI);
3343     checkAtomicMemAccessSize(ElTy, &LI);
3344   } else {
3345     Assert(LI.getSyncScopeID() == SyncScope::System,
3346            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3347   }
3348 
3349   visitInstruction(LI);
3350 }
3351 
3352 void Verifier::visitStoreInst(StoreInst &SI) {
3353   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3354   Assert(PTy, "Store operand must be a pointer.", &SI);
3355   Type *ElTy = PTy->getElementType();
3356   Assert(ElTy == SI.getOperand(0)->getType(),
3357          "Stored value type does not match pointer operand type!", &SI, ElTy);
3358   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3359          "huge alignment values are unsupported", &SI);
3360   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3361   if (SI.isAtomic()) {
3362     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3363                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3364            "Store cannot have Acquire ordering", &SI);
3365     Assert(SI.getAlignment() != 0,
3366            "Atomic store must specify explicit alignment", &SI);
3367     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3368            "atomic store operand must have integer, pointer, or floating point "
3369            "type!",
3370            ElTy, &SI);
3371     checkAtomicMemAccessSize(ElTy, &SI);
3372   } else {
3373     Assert(SI.getSyncScopeID() == SyncScope::System,
3374            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3375   }
3376   visitInstruction(SI);
3377 }
3378 
3379 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3380 void Verifier::verifySwiftErrorCall(CallBase &Call,
3381                                     const Value *SwiftErrorVal) {
3382   unsigned Idx = 0;
3383   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3384     if (*I == SwiftErrorVal) {
3385       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3386              "swifterror value when used in a callsite should be marked "
3387              "with swifterror attribute",
3388              SwiftErrorVal, Call);
3389     }
3390   }
3391 }
3392 
3393 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3394   // Check that swifterror value is only used by loads, stores, or as
3395   // a swifterror argument.
3396   for (const User *U : SwiftErrorVal->users()) {
3397     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3398            isa<InvokeInst>(U),
3399            "swifterror value can only be loaded and stored from, or "
3400            "as a swifterror argument!",
3401            SwiftErrorVal, U);
3402     // If it is used by a store, check it is the second operand.
3403     if (auto StoreI = dyn_cast<StoreInst>(U))
3404       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3405              "swifterror value should be the second operand when used "
3406              "by stores", SwiftErrorVal, U);
3407     if (auto *Call = dyn_cast<CallBase>(U))
3408       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3409   }
3410 }
3411 
3412 void Verifier::visitAllocaInst(AllocaInst &AI) {
3413   SmallPtrSet<Type*, 4> Visited;
3414   PointerType *PTy = AI.getType();
3415   // TODO: Relax this restriction?
3416   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3417          "Allocation instruction pointer not in the stack address space!",
3418          &AI);
3419   Assert(AI.getAllocatedType()->isSized(&Visited),
3420          "Cannot allocate unsized type", &AI);
3421   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3422          "Alloca array size must have integer type", &AI);
3423   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3424          "huge alignment values are unsupported", &AI);
3425 
3426   if (AI.isSwiftError()) {
3427     verifySwiftErrorValue(&AI);
3428   }
3429 
3430   visitInstruction(AI);
3431 }
3432 
3433 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3434 
3435   // FIXME: more conditions???
3436   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3437          "cmpxchg instructions must be atomic.", &CXI);
3438   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3439          "cmpxchg instructions must be atomic.", &CXI);
3440   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3441          "cmpxchg instructions cannot be unordered.", &CXI);
3442   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3443          "cmpxchg instructions cannot be unordered.", &CXI);
3444   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3445          "cmpxchg instructions failure argument shall be no stronger than the "
3446          "success argument",
3447          &CXI);
3448   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3449              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3450          "cmpxchg failure ordering cannot include release semantics", &CXI);
3451 
3452   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3453   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3454   Type *ElTy = PTy->getElementType();
3455   Assert(ElTy->isIntOrPtrTy(),
3456          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3457   checkAtomicMemAccessSize(ElTy, &CXI);
3458   Assert(ElTy == CXI.getOperand(1)->getType(),
3459          "Expected value type does not match pointer operand type!", &CXI,
3460          ElTy);
3461   Assert(ElTy == CXI.getOperand(2)->getType(),
3462          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3463   visitInstruction(CXI);
3464 }
3465 
3466 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3467   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3468          "atomicrmw instructions must be atomic.", &RMWI);
3469   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3470          "atomicrmw instructions cannot be unordered.", &RMWI);
3471   auto Op = RMWI.getOperation();
3472   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3473   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3474   Type *ElTy = PTy->getElementType();
3475   if (Op == AtomicRMWInst::Xchg) {
3476     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3477            AtomicRMWInst::getOperationName(Op) +
3478            " operand must have integer or floating point type!",
3479            &RMWI, ElTy);
3480   } else if (AtomicRMWInst::isFPOperation(Op)) {
3481     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3482            AtomicRMWInst::getOperationName(Op) +
3483            " operand must have floating point type!",
3484            &RMWI, ElTy);
3485   } else {
3486     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3487            AtomicRMWInst::getOperationName(Op) +
3488            " operand must have integer type!",
3489            &RMWI, ElTy);
3490   }
3491   checkAtomicMemAccessSize(ElTy, &RMWI);
3492   Assert(ElTy == RMWI.getOperand(1)->getType(),
3493          "Argument value type does not match pointer operand type!", &RMWI,
3494          ElTy);
3495   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3496          "Invalid binary operation!", &RMWI);
3497   visitInstruction(RMWI);
3498 }
3499 
3500 void Verifier::visitFenceInst(FenceInst &FI) {
3501   const AtomicOrdering Ordering = FI.getOrdering();
3502   Assert(Ordering == AtomicOrdering::Acquire ||
3503              Ordering == AtomicOrdering::Release ||
3504              Ordering == AtomicOrdering::AcquireRelease ||
3505              Ordering == AtomicOrdering::SequentiallyConsistent,
3506          "fence instructions may only have acquire, release, acq_rel, or "
3507          "seq_cst ordering.",
3508          &FI);
3509   visitInstruction(FI);
3510 }
3511 
3512 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3513   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3514                                           EVI.getIndices()) == EVI.getType(),
3515          "Invalid ExtractValueInst operands!", &EVI);
3516 
3517   visitInstruction(EVI);
3518 }
3519 
3520 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3521   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3522                                           IVI.getIndices()) ==
3523              IVI.getOperand(1)->getType(),
3524          "Invalid InsertValueInst operands!", &IVI);
3525 
3526   visitInstruction(IVI);
3527 }
3528 
3529 static Value *getParentPad(Value *EHPad) {
3530   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3531     return FPI->getParentPad();
3532 
3533   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3534 }
3535 
3536 void Verifier::visitEHPadPredecessors(Instruction &I) {
3537   assert(I.isEHPad());
3538 
3539   BasicBlock *BB = I.getParent();
3540   Function *F = BB->getParent();
3541 
3542   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3543 
3544   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3545     // The landingpad instruction defines its parent as a landing pad block. The
3546     // landing pad block may be branched to only by the unwind edge of an
3547     // invoke.
3548     for (BasicBlock *PredBB : predecessors(BB)) {
3549       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3550       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3551              "Block containing LandingPadInst must be jumped to "
3552              "only by the unwind edge of an invoke.",
3553              LPI);
3554     }
3555     return;
3556   }
3557   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3558     if (!pred_empty(BB))
3559       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3560              "Block containg CatchPadInst must be jumped to "
3561              "only by its catchswitch.",
3562              CPI);
3563     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3564            "Catchswitch cannot unwind to one of its catchpads",
3565            CPI->getCatchSwitch(), CPI);
3566     return;
3567   }
3568 
3569   // Verify that each pred has a legal terminator with a legal to/from EH
3570   // pad relationship.
3571   Instruction *ToPad = &I;
3572   Value *ToPadParent = getParentPad(ToPad);
3573   for (BasicBlock *PredBB : predecessors(BB)) {
3574     Instruction *TI = PredBB->getTerminator();
3575     Value *FromPad;
3576     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3577       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3578              "EH pad must be jumped to via an unwind edge", ToPad, II);
3579       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3580         FromPad = Bundle->Inputs[0];
3581       else
3582         FromPad = ConstantTokenNone::get(II->getContext());
3583     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3584       FromPad = CRI->getOperand(0);
3585       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3586     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3587       FromPad = CSI;
3588     } else {
3589       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3590     }
3591 
3592     // The edge may exit from zero or more nested pads.
3593     SmallSet<Value *, 8> Seen;
3594     for (;; FromPad = getParentPad(FromPad)) {
3595       Assert(FromPad != ToPad,
3596              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3597       if (FromPad == ToPadParent) {
3598         // This is a legal unwind edge.
3599         break;
3600       }
3601       Assert(!isa<ConstantTokenNone>(FromPad),
3602              "A single unwind edge may only enter one EH pad", TI);
3603       Assert(Seen.insert(FromPad).second,
3604              "EH pad jumps through a cycle of pads", FromPad);
3605     }
3606   }
3607 }
3608 
3609 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3610   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3611   // isn't a cleanup.
3612   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3613          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3614 
3615   visitEHPadPredecessors(LPI);
3616 
3617   if (!LandingPadResultTy)
3618     LandingPadResultTy = LPI.getType();
3619   else
3620     Assert(LandingPadResultTy == LPI.getType(),
3621            "The landingpad instruction should have a consistent result type "
3622            "inside a function.",
3623            &LPI);
3624 
3625   Function *F = LPI.getParent()->getParent();
3626   Assert(F->hasPersonalityFn(),
3627          "LandingPadInst needs to be in a function with a personality.", &LPI);
3628 
3629   // The landingpad instruction must be the first non-PHI instruction in the
3630   // block.
3631   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3632          "LandingPadInst not the first non-PHI instruction in the block.",
3633          &LPI);
3634 
3635   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3636     Constant *Clause = LPI.getClause(i);
3637     if (LPI.isCatch(i)) {
3638       Assert(isa<PointerType>(Clause->getType()),
3639              "Catch operand does not have pointer type!", &LPI);
3640     } else {
3641       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3642       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3643              "Filter operand is not an array of constants!", &LPI);
3644     }
3645   }
3646 
3647   visitInstruction(LPI);
3648 }
3649 
3650 void Verifier::visitResumeInst(ResumeInst &RI) {
3651   Assert(RI.getFunction()->hasPersonalityFn(),
3652          "ResumeInst needs to be in a function with a personality.", &RI);
3653 
3654   if (!LandingPadResultTy)
3655     LandingPadResultTy = RI.getValue()->getType();
3656   else
3657     Assert(LandingPadResultTy == RI.getValue()->getType(),
3658            "The resume instruction should have a consistent result type "
3659            "inside a function.",
3660            &RI);
3661 
3662   visitTerminator(RI);
3663 }
3664 
3665 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3666   BasicBlock *BB = CPI.getParent();
3667 
3668   Function *F = BB->getParent();
3669   Assert(F->hasPersonalityFn(),
3670          "CatchPadInst needs to be in a function with a personality.", &CPI);
3671 
3672   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3673          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3674          CPI.getParentPad());
3675 
3676   // The catchpad instruction must be the first non-PHI instruction in the
3677   // block.
3678   Assert(BB->getFirstNonPHI() == &CPI,
3679          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3680 
3681   visitEHPadPredecessors(CPI);
3682   visitFuncletPadInst(CPI);
3683 }
3684 
3685 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3686   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3687          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3688          CatchReturn.getOperand(0));
3689 
3690   visitTerminator(CatchReturn);
3691 }
3692 
3693 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3694   BasicBlock *BB = CPI.getParent();
3695 
3696   Function *F = BB->getParent();
3697   Assert(F->hasPersonalityFn(),
3698          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3699 
3700   // The cleanuppad instruction must be the first non-PHI instruction in the
3701   // block.
3702   Assert(BB->getFirstNonPHI() == &CPI,
3703          "CleanupPadInst not the first non-PHI instruction in the block.",
3704          &CPI);
3705 
3706   auto *ParentPad = CPI.getParentPad();
3707   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3708          "CleanupPadInst has an invalid parent.", &CPI);
3709 
3710   visitEHPadPredecessors(CPI);
3711   visitFuncletPadInst(CPI);
3712 }
3713 
3714 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3715   User *FirstUser = nullptr;
3716   Value *FirstUnwindPad = nullptr;
3717   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3718   SmallSet<FuncletPadInst *, 8> Seen;
3719 
3720   while (!Worklist.empty()) {
3721     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3722     Assert(Seen.insert(CurrentPad).second,
3723            "FuncletPadInst must not be nested within itself", CurrentPad);
3724     Value *UnresolvedAncestorPad = nullptr;
3725     for (User *U : CurrentPad->users()) {
3726       BasicBlock *UnwindDest;
3727       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3728         UnwindDest = CRI->getUnwindDest();
3729       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3730         // We allow catchswitch unwind to caller to nest
3731         // within an outer pad that unwinds somewhere else,
3732         // because catchswitch doesn't have a nounwind variant.
3733         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3734         if (CSI->unwindsToCaller())
3735           continue;
3736         UnwindDest = CSI->getUnwindDest();
3737       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3738         UnwindDest = II->getUnwindDest();
3739       } else if (isa<CallInst>(U)) {
3740         // Calls which don't unwind may be found inside funclet
3741         // pads that unwind somewhere else.  We don't *require*
3742         // such calls to be annotated nounwind.
3743         continue;
3744       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3745         // The unwind dest for a cleanup can only be found by
3746         // recursive search.  Add it to the worklist, and we'll
3747         // search for its first use that determines where it unwinds.
3748         Worklist.push_back(CPI);
3749         continue;
3750       } else {
3751         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3752         continue;
3753       }
3754 
3755       Value *UnwindPad;
3756       bool ExitsFPI;
3757       if (UnwindDest) {
3758         UnwindPad = UnwindDest->getFirstNonPHI();
3759         if (!cast<Instruction>(UnwindPad)->isEHPad())
3760           continue;
3761         Value *UnwindParent = getParentPad(UnwindPad);
3762         // Ignore unwind edges that don't exit CurrentPad.
3763         if (UnwindParent == CurrentPad)
3764           continue;
3765         // Determine whether the original funclet pad is exited,
3766         // and if we are scanning nested pads determine how many
3767         // of them are exited so we can stop searching their
3768         // children.
3769         Value *ExitedPad = CurrentPad;
3770         ExitsFPI = false;
3771         do {
3772           if (ExitedPad == &FPI) {
3773             ExitsFPI = true;
3774             // Now we can resolve any ancestors of CurrentPad up to
3775             // FPI, but not including FPI since we need to make sure
3776             // to check all direct users of FPI for consistency.
3777             UnresolvedAncestorPad = &FPI;
3778             break;
3779           }
3780           Value *ExitedParent = getParentPad(ExitedPad);
3781           if (ExitedParent == UnwindParent) {
3782             // ExitedPad is the ancestor-most pad which this unwind
3783             // edge exits, so we can resolve up to it, meaning that
3784             // ExitedParent is the first ancestor still unresolved.
3785             UnresolvedAncestorPad = ExitedParent;
3786             break;
3787           }
3788           ExitedPad = ExitedParent;
3789         } while (!isa<ConstantTokenNone>(ExitedPad));
3790       } else {
3791         // Unwinding to caller exits all pads.
3792         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3793         ExitsFPI = true;
3794         UnresolvedAncestorPad = &FPI;
3795       }
3796 
3797       if (ExitsFPI) {
3798         // This unwind edge exits FPI.  Make sure it agrees with other
3799         // such edges.
3800         if (FirstUser) {
3801           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3802                                               "pad must have the same unwind "
3803                                               "dest",
3804                  &FPI, U, FirstUser);
3805         } else {
3806           FirstUser = U;
3807           FirstUnwindPad = UnwindPad;
3808           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3809           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3810               getParentPad(UnwindPad) == getParentPad(&FPI))
3811             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3812         }
3813       }
3814       // Make sure we visit all uses of FPI, but for nested pads stop as
3815       // soon as we know where they unwind to.
3816       if (CurrentPad != &FPI)
3817         break;
3818     }
3819     if (UnresolvedAncestorPad) {
3820       if (CurrentPad == UnresolvedAncestorPad) {
3821         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3822         // we've found an unwind edge that exits it, because we need to verify
3823         // all direct uses of FPI.
3824         assert(CurrentPad == &FPI);
3825         continue;
3826       }
3827       // Pop off the worklist any nested pads that we've found an unwind
3828       // destination for.  The pads on the worklist are the uncles,
3829       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3830       // for all ancestors of CurrentPad up to but not including
3831       // UnresolvedAncestorPad.
3832       Value *ResolvedPad = CurrentPad;
3833       while (!Worklist.empty()) {
3834         Value *UnclePad = Worklist.back();
3835         Value *AncestorPad = getParentPad(UnclePad);
3836         // Walk ResolvedPad up the ancestor list until we either find the
3837         // uncle's parent or the last resolved ancestor.
3838         while (ResolvedPad != AncestorPad) {
3839           Value *ResolvedParent = getParentPad(ResolvedPad);
3840           if (ResolvedParent == UnresolvedAncestorPad) {
3841             break;
3842           }
3843           ResolvedPad = ResolvedParent;
3844         }
3845         // If the resolved ancestor search didn't find the uncle's parent,
3846         // then the uncle is not yet resolved.
3847         if (ResolvedPad != AncestorPad)
3848           break;
3849         // This uncle is resolved, so pop it from the worklist.
3850         Worklist.pop_back();
3851       }
3852     }
3853   }
3854 
3855   if (FirstUnwindPad) {
3856     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3857       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3858       Value *SwitchUnwindPad;
3859       if (SwitchUnwindDest)
3860         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3861       else
3862         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3863       Assert(SwitchUnwindPad == FirstUnwindPad,
3864              "Unwind edges out of a catch must have the same unwind dest as "
3865              "the parent catchswitch",
3866              &FPI, FirstUser, CatchSwitch);
3867     }
3868   }
3869 
3870   visitInstruction(FPI);
3871 }
3872 
3873 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3874   BasicBlock *BB = CatchSwitch.getParent();
3875 
3876   Function *F = BB->getParent();
3877   Assert(F->hasPersonalityFn(),
3878          "CatchSwitchInst needs to be in a function with a personality.",
3879          &CatchSwitch);
3880 
3881   // The catchswitch instruction must be the first non-PHI instruction in the
3882   // block.
3883   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3884          "CatchSwitchInst not the first non-PHI instruction in the block.",
3885          &CatchSwitch);
3886 
3887   auto *ParentPad = CatchSwitch.getParentPad();
3888   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3889          "CatchSwitchInst has an invalid parent.", ParentPad);
3890 
3891   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3892     Instruction *I = UnwindDest->getFirstNonPHI();
3893     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3894            "CatchSwitchInst must unwind to an EH block which is not a "
3895            "landingpad.",
3896            &CatchSwitch);
3897 
3898     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3899     if (getParentPad(I) == ParentPad)
3900       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3901   }
3902 
3903   Assert(CatchSwitch.getNumHandlers() != 0,
3904          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3905 
3906   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3907     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3908            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3909   }
3910 
3911   visitEHPadPredecessors(CatchSwitch);
3912   visitTerminator(CatchSwitch);
3913 }
3914 
3915 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3916   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3917          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3918          CRI.getOperand(0));
3919 
3920   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3921     Instruction *I = UnwindDest->getFirstNonPHI();
3922     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3923            "CleanupReturnInst must unwind to an EH block which is not a "
3924            "landingpad.",
3925            &CRI);
3926   }
3927 
3928   visitTerminator(CRI);
3929 }
3930 
3931 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3932   Instruction *Op = cast<Instruction>(I.getOperand(i));
3933   // If the we have an invalid invoke, don't try to compute the dominance.
3934   // We already reject it in the invoke specific checks and the dominance
3935   // computation doesn't handle multiple edges.
3936   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3937     if (II->getNormalDest() == II->getUnwindDest())
3938       return;
3939   }
3940 
3941   // Quick check whether the def has already been encountered in the same block.
3942   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3943   // uses are defined to happen on the incoming edge, not at the instruction.
3944   //
3945   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3946   // wrapping an SSA value, assert that we've already encountered it.  See
3947   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3948   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3949     return;
3950 
3951   const Use &U = I.getOperandUse(i);
3952   Assert(DT.dominates(Op, U),
3953          "Instruction does not dominate all uses!", Op, &I);
3954 }
3955 
3956 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3957   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3958          "apply only to pointer types", &I);
3959   Assert(isa<LoadInst>(I),
3960          "dereferenceable, dereferenceable_or_null apply only to load"
3961          " instructions, use attributes for calls or invokes", &I);
3962   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3963          "take one operand!", &I);
3964   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3965   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3966          "dereferenceable_or_null metadata value must be an i64!", &I);
3967 }
3968 
3969 /// verifyInstruction - Verify that an instruction is well formed.
3970 ///
3971 void Verifier::visitInstruction(Instruction &I) {
3972   BasicBlock *BB = I.getParent();
3973   Assert(BB, "Instruction not embedded in basic block!", &I);
3974 
3975   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3976     for (User *U : I.users()) {
3977       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3978              "Only PHI nodes may reference their own value!", &I);
3979     }
3980   }
3981 
3982   // Check that void typed values don't have names
3983   Assert(!I.getType()->isVoidTy() || !I.hasName(),
3984          "Instruction has a name, but provides a void value!", &I);
3985 
3986   // Check that the return value of the instruction is either void or a legal
3987   // value type.
3988   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3989          "Instruction returns a non-scalar type!", &I);
3990 
3991   // Check that the instruction doesn't produce metadata. Calls are already
3992   // checked against the callee type.
3993   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3994          "Invalid use of metadata!", &I);
3995 
3996   // Check that all uses of the instruction, if they are instructions
3997   // themselves, actually have parent basic blocks.  If the use is not an
3998   // instruction, it is an error!
3999   for (Use &U : I.uses()) {
4000     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4001       Assert(Used->getParent() != nullptr,
4002              "Instruction referencing"
4003              " instruction not embedded in a basic block!",
4004              &I, Used);
4005     else {
4006       CheckFailed("Use of instruction is not an instruction!", U);
4007       return;
4008     }
4009   }
4010 
4011   // Get a pointer to the call base of the instruction if it is some form of
4012   // call.
4013   const CallBase *CBI = dyn_cast<CallBase>(&I);
4014 
4015   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4016     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4017 
4018     // Check to make sure that only first-class-values are operands to
4019     // instructions.
4020     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4021       Assert(false, "Instruction operands must be first-class values!", &I);
4022     }
4023 
4024     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4025       // Check to make sure that the "address of" an intrinsic function is never
4026       // taken.
4027       Assert(!F->isIntrinsic() ||
4028                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4029              "Cannot take the address of an intrinsic!", &I);
4030       Assert(
4031           !F->isIntrinsic() || isa<CallInst>(I) ||
4032               F->getIntrinsicID() == Intrinsic::donothing ||
4033               F->getIntrinsicID() == Intrinsic::coro_resume ||
4034               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4035               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4036               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4037               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4038               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4039           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4040           "statepoint, coro_resume or coro_destroy",
4041           &I);
4042       Assert(F->getParent() == &M, "Referencing function in another module!",
4043              &I, &M, F, F->getParent());
4044     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4045       Assert(OpBB->getParent() == BB->getParent(),
4046              "Referring to a basic block in another function!", &I);
4047     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4048       Assert(OpArg->getParent() == BB->getParent(),
4049              "Referring to an argument in another function!", &I);
4050     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4051       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4052              &M, GV, GV->getParent());
4053     } else if (isa<Instruction>(I.getOperand(i))) {
4054       verifyDominatesUse(I, i);
4055     } else if (isa<InlineAsm>(I.getOperand(i))) {
4056       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4057              "Cannot take the address of an inline asm!", &I);
4058     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4059       if (CE->getType()->isPtrOrPtrVectorTy() ||
4060           !DL.getNonIntegralAddressSpaces().empty()) {
4061         // If we have a ConstantExpr pointer, we need to see if it came from an
4062         // illegal bitcast.  If the datalayout string specifies non-integral
4063         // address spaces then we also need to check for illegal ptrtoint and
4064         // inttoptr expressions.
4065         visitConstantExprsRecursively(CE);
4066       }
4067     }
4068   }
4069 
4070   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4071     Assert(I.getType()->isFPOrFPVectorTy(),
4072            "fpmath requires a floating point result!", &I);
4073     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4074     if (ConstantFP *CFP0 =
4075             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4076       const APFloat &Accuracy = CFP0->getValueAPF();
4077       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4078              "fpmath accuracy must have float type", &I);
4079       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4080              "fpmath accuracy not a positive number!", &I);
4081     } else {
4082       Assert(false, "invalid fpmath accuracy!", &I);
4083     }
4084   }
4085 
4086   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4087     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4088            "Ranges are only for loads, calls and invokes!", &I);
4089     visitRangeMetadata(I, Range, I.getType());
4090   }
4091 
4092   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4093     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4094            &I);
4095     Assert(isa<LoadInst>(I),
4096            "nonnull applies only to load instructions, use attributes"
4097            " for calls or invokes",
4098            &I);
4099   }
4100 
4101   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4102     visitDereferenceableMetadata(I, MD);
4103 
4104   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4105     visitDereferenceableMetadata(I, MD);
4106 
4107   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4108     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4109 
4110   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4111     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4112            &I);
4113     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4114            "use attributes for calls or invokes", &I);
4115     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4116     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4117     Assert(CI && CI->getType()->isIntegerTy(64),
4118            "align metadata value must be an i64!", &I);
4119     uint64_t Align = CI->getZExtValue();
4120     Assert(isPowerOf2_64(Align),
4121            "align metadata value must be a power of 2!", &I);
4122     Assert(Align <= Value::MaximumAlignment,
4123            "alignment is larger that implementation defined limit", &I);
4124   }
4125 
4126   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4127     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4128     visitMDNode(*N);
4129   }
4130 
4131   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4132     verifyFragmentExpression(*DII);
4133 
4134   InstsInThisBlock.insert(&I);
4135 }
4136 
4137 /// Allow intrinsics to be verified in different ways.
4138 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4139   Function *IF = Call.getCalledFunction();
4140   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4141          IF);
4142 
4143   // Verify that the intrinsic prototype lines up with what the .td files
4144   // describe.
4145   FunctionType *IFTy = IF->getFunctionType();
4146   bool IsVarArg = IFTy->isVarArg();
4147 
4148   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4149   getIntrinsicInfoTableEntries(ID, Table);
4150   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4151 
4152   SmallVector<Type *, 4> ArgTys;
4153   Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4154                                         TableRef, ArgTys),
4155          "Intrinsic has incorrect return type!", IF);
4156   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4157     Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4158                                           TableRef, ArgTys),
4159            "Intrinsic has incorrect argument type!", IF);
4160 
4161   // Verify if the intrinsic call matches the vararg property.
4162   if (IsVarArg)
4163     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4164            "Intrinsic was not defined with variable arguments!", IF);
4165   else
4166     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4167            "Callsite was not defined with variable arguments!", IF);
4168 
4169   // All descriptors should be absorbed by now.
4170   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4171 
4172   // Now that we have the intrinsic ID and the actual argument types (and we
4173   // know they are legal for the intrinsic!) get the intrinsic name through the
4174   // usual means.  This allows us to verify the mangling of argument types into
4175   // the name.
4176   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4177   Assert(ExpectedName == IF->getName(),
4178          "Intrinsic name not mangled correctly for type arguments! "
4179          "Should be: " +
4180              ExpectedName,
4181          IF);
4182 
4183   // If the intrinsic takes MDNode arguments, verify that they are either global
4184   // or are local to *this* function.
4185   for (Value *V : Call.args())
4186     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4187       visitMetadataAsValue(*MD, Call.getCaller());
4188 
4189   switch (ID) {
4190   default:
4191     break;
4192   case Intrinsic::coro_id: {
4193     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4194     if (isa<ConstantPointerNull>(InfoArg))
4195       break;
4196     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4197     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4198       "info argument of llvm.coro.begin must refer to an initialized "
4199       "constant");
4200     Constant *Init = GV->getInitializer();
4201     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4202       "info argument of llvm.coro.begin must refer to either a struct or "
4203       "an array");
4204     break;
4205   }
4206   case Intrinsic::experimental_constrained_fadd:
4207   case Intrinsic::experimental_constrained_fsub:
4208   case Intrinsic::experimental_constrained_fmul:
4209   case Intrinsic::experimental_constrained_fdiv:
4210   case Intrinsic::experimental_constrained_frem:
4211   case Intrinsic::experimental_constrained_fma:
4212   case Intrinsic::experimental_constrained_fptrunc:
4213   case Intrinsic::experimental_constrained_fpext:
4214   case Intrinsic::experimental_constrained_sqrt:
4215   case Intrinsic::experimental_constrained_pow:
4216   case Intrinsic::experimental_constrained_powi:
4217   case Intrinsic::experimental_constrained_sin:
4218   case Intrinsic::experimental_constrained_cos:
4219   case Intrinsic::experimental_constrained_exp:
4220   case Intrinsic::experimental_constrained_exp2:
4221   case Intrinsic::experimental_constrained_log:
4222   case Intrinsic::experimental_constrained_log10:
4223   case Intrinsic::experimental_constrained_log2:
4224   case Intrinsic::experimental_constrained_rint:
4225   case Intrinsic::experimental_constrained_nearbyint:
4226   case Intrinsic::experimental_constrained_maxnum:
4227   case Intrinsic::experimental_constrained_minnum:
4228   case Intrinsic::experimental_constrained_ceil:
4229   case Intrinsic::experimental_constrained_floor:
4230   case Intrinsic::experimental_constrained_round:
4231   case Intrinsic::experimental_constrained_trunc:
4232     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4233     break;
4234   case Intrinsic::dbg_declare: // llvm.dbg.declare
4235     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4236            "invalid llvm.dbg.declare intrinsic call 1", Call);
4237     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4238     break;
4239   case Intrinsic::dbg_addr: // llvm.dbg.addr
4240     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4241     break;
4242   case Intrinsic::dbg_value: // llvm.dbg.value
4243     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4244     break;
4245   case Intrinsic::dbg_label: // llvm.dbg.label
4246     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4247     break;
4248   case Intrinsic::memcpy:
4249   case Intrinsic::memmove:
4250   case Intrinsic::memset: {
4251     const auto *MI = cast<MemIntrinsic>(&Call);
4252     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4253       return Alignment == 0 || isPowerOf2_32(Alignment);
4254     };
4255     Assert(IsValidAlignment(MI->getDestAlignment()),
4256            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4257            Call);
4258     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4259       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4260              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4261              Call);
4262     }
4263 
4264     break;
4265   }
4266   case Intrinsic::memcpy_element_unordered_atomic:
4267   case Intrinsic::memmove_element_unordered_atomic:
4268   case Intrinsic::memset_element_unordered_atomic: {
4269     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4270 
4271     ConstantInt *ElementSizeCI =
4272         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4273     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4274     Assert(ElementSizeVal.isPowerOf2(),
4275            "element size of the element-wise atomic memory intrinsic "
4276            "must be a power of 2",
4277            Call);
4278 
4279     if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4280       uint64_t Length = LengthCI->getZExtValue();
4281       uint64_t ElementSize = AMI->getElementSizeInBytes();
4282       Assert((Length % ElementSize) == 0,
4283              "constant length must be a multiple of the element size in the "
4284              "element-wise atomic memory intrinsic",
4285              Call);
4286     }
4287 
4288     auto IsValidAlignment = [&](uint64_t Alignment) {
4289       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4290     };
4291     uint64_t DstAlignment = AMI->getDestAlignment();
4292     Assert(IsValidAlignment(DstAlignment),
4293            "incorrect alignment of the destination argument", Call);
4294     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4295       uint64_t SrcAlignment = AMT->getSourceAlignment();
4296       Assert(IsValidAlignment(SrcAlignment),
4297              "incorrect alignment of the source argument", Call);
4298     }
4299     break;
4300   }
4301   case Intrinsic::gcroot:
4302   case Intrinsic::gcwrite:
4303   case Intrinsic::gcread:
4304     if (ID == Intrinsic::gcroot) {
4305       AllocaInst *AI =
4306           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4307       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4308       Assert(isa<Constant>(Call.getArgOperand(1)),
4309              "llvm.gcroot parameter #2 must be a constant.", Call);
4310       if (!AI->getAllocatedType()->isPointerTy()) {
4311         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4312                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4313                "or argument #2 must be a non-null constant.",
4314                Call);
4315       }
4316     }
4317 
4318     Assert(Call.getParent()->getParent()->hasGC(),
4319            "Enclosing function does not use GC.", Call);
4320     break;
4321   case Intrinsic::init_trampoline:
4322     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4323            "llvm.init_trampoline parameter #2 must resolve to a function.",
4324            Call);
4325     break;
4326   case Intrinsic::prefetch:
4327     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4328            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4329            "invalid arguments to llvm.prefetch", Call);
4330     break;
4331   case Intrinsic::stackprotector:
4332     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4333            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4334     break;
4335   case Intrinsic::localescape: {
4336     BasicBlock *BB = Call.getParent();
4337     Assert(BB == &BB->getParent()->front(),
4338            "llvm.localescape used outside of entry block", Call);
4339     Assert(!SawFrameEscape,
4340            "multiple calls to llvm.localescape in one function", Call);
4341     for (Value *Arg : Call.args()) {
4342       if (isa<ConstantPointerNull>(Arg))
4343         continue; // Null values are allowed as placeholders.
4344       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4345       Assert(AI && AI->isStaticAlloca(),
4346              "llvm.localescape only accepts static allocas", Call);
4347     }
4348     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4349     SawFrameEscape = true;
4350     break;
4351   }
4352   case Intrinsic::localrecover: {
4353     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4354     Function *Fn = dyn_cast<Function>(FnArg);
4355     Assert(Fn && !Fn->isDeclaration(),
4356            "llvm.localrecover first "
4357            "argument must be function defined in this module",
4358            Call);
4359     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4360     auto &Entry = FrameEscapeInfo[Fn];
4361     Entry.second = unsigned(
4362         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4363     break;
4364   }
4365 
4366   case Intrinsic::experimental_gc_statepoint:
4367     if (auto *CI = dyn_cast<CallInst>(&Call))
4368       Assert(!CI->isInlineAsm(),
4369              "gc.statepoint support for inline assembly unimplemented", CI);
4370     Assert(Call.getParent()->getParent()->hasGC(),
4371            "Enclosing function does not use GC.", Call);
4372 
4373     verifyStatepoint(Call);
4374     break;
4375   case Intrinsic::experimental_gc_result: {
4376     Assert(Call.getParent()->getParent()->hasGC(),
4377            "Enclosing function does not use GC.", Call);
4378     // Are we tied to a statepoint properly?
4379     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4380     const Function *StatepointFn =
4381         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4382     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4383                StatepointFn->getIntrinsicID() ==
4384                    Intrinsic::experimental_gc_statepoint,
4385            "gc.result operand #1 must be from a statepoint", Call,
4386            Call.getArgOperand(0));
4387 
4388     // Assert that result type matches wrapped callee.
4389     const Value *Target = StatepointCall->getArgOperand(2);
4390     auto *PT = cast<PointerType>(Target->getType());
4391     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4392     Assert(Call.getType() == TargetFuncType->getReturnType(),
4393            "gc.result result type does not match wrapped callee", Call);
4394     break;
4395   }
4396   case Intrinsic::experimental_gc_relocate: {
4397     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4398 
4399     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4400            "gc.relocate must return a pointer or a vector of pointers", Call);
4401 
4402     // Check that this relocate is correctly tied to the statepoint
4403 
4404     // This is case for relocate on the unwinding path of an invoke statepoint
4405     if (LandingPadInst *LandingPad =
4406             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4407 
4408       const BasicBlock *InvokeBB =
4409           LandingPad->getParent()->getUniquePredecessor();
4410 
4411       // Landingpad relocates should have only one predecessor with invoke
4412       // statepoint terminator
4413       Assert(InvokeBB, "safepoints should have unique landingpads",
4414              LandingPad->getParent());
4415       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4416              InvokeBB);
4417       Assert(isStatepoint(InvokeBB->getTerminator()),
4418              "gc relocate should be linked to a statepoint", InvokeBB);
4419     } else {
4420       // In all other cases relocate should be tied to the statepoint directly.
4421       // This covers relocates on a normal return path of invoke statepoint and
4422       // relocates of a call statepoint.
4423       auto Token = Call.getArgOperand(0);
4424       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4425              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4426     }
4427 
4428     // Verify rest of the relocate arguments.
4429     const CallBase &StatepointCall =
4430         *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4431 
4432     // Both the base and derived must be piped through the safepoint.
4433     Value *Base = Call.getArgOperand(1);
4434     Assert(isa<ConstantInt>(Base),
4435            "gc.relocate operand #2 must be integer offset", Call);
4436 
4437     Value *Derived = Call.getArgOperand(2);
4438     Assert(isa<ConstantInt>(Derived),
4439            "gc.relocate operand #3 must be integer offset", Call);
4440 
4441     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4442     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4443     // Check the bounds
4444     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4445            "gc.relocate: statepoint base index out of bounds", Call);
4446     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4447            "gc.relocate: statepoint derived index out of bounds", Call);
4448 
4449     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4450     // section of the statepoint's argument.
4451     Assert(StatepointCall.arg_size() > 0,
4452            "gc.statepoint: insufficient arguments");
4453     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4454            "gc.statement: number of call arguments must be constant integer");
4455     const unsigned NumCallArgs =
4456         cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4457     Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4458            "gc.statepoint: mismatch in number of call arguments");
4459     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4460            "gc.statepoint: number of transition arguments must be "
4461            "a constant integer");
4462     const int NumTransitionArgs =
4463         cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4464             ->getZExtValue();
4465     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4466     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4467            "gc.statepoint: number of deoptimization arguments must be "
4468            "a constant integer");
4469     const int NumDeoptArgs =
4470         cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4471             ->getZExtValue();
4472     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4473     const int GCParamArgsEnd = StatepointCall.arg_size();
4474     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4475            "gc.relocate: statepoint base index doesn't fall within the "
4476            "'gc parameters' section of the statepoint call",
4477            Call);
4478     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4479            "gc.relocate: statepoint derived index doesn't fall within the "
4480            "'gc parameters' section of the statepoint call",
4481            Call);
4482 
4483     // Relocated value must be either a pointer type or vector-of-pointer type,
4484     // but gc_relocate does not need to return the same pointer type as the
4485     // relocated pointer. It can be casted to the correct type later if it's
4486     // desired. However, they must have the same address space and 'vectorness'
4487     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4488     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4489            "gc.relocate: relocated value must be a gc pointer", Call);
4490 
4491     auto ResultType = Call.getType();
4492     auto DerivedType = Relocate.getDerivedPtr()->getType();
4493     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4494            "gc.relocate: vector relocates to vector and pointer to pointer",
4495            Call);
4496     Assert(
4497         ResultType->getPointerAddressSpace() ==
4498             DerivedType->getPointerAddressSpace(),
4499         "gc.relocate: relocating a pointer shouldn't change its address space",
4500         Call);
4501     break;
4502   }
4503   case Intrinsic::eh_exceptioncode:
4504   case Intrinsic::eh_exceptionpointer: {
4505     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4506            "eh.exceptionpointer argument must be a catchpad", Call);
4507     break;
4508   }
4509   case Intrinsic::masked_load: {
4510     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4511            Call);
4512 
4513     Value *Ptr = Call.getArgOperand(0);
4514     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4515     Value *Mask = Call.getArgOperand(2);
4516     Value *PassThru = Call.getArgOperand(3);
4517     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4518            Call);
4519     Assert(Alignment->getValue().isPowerOf2(),
4520            "masked_load: alignment must be a power of 2", Call);
4521 
4522     // DataTy is the overloaded type
4523     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4524     Assert(DataTy == Call.getType(),
4525            "masked_load: return must match pointer type", Call);
4526     Assert(PassThru->getType() == DataTy,
4527            "masked_load: pass through and data type must match", Call);
4528     Assert(Mask->getType()->getVectorNumElements() ==
4529                DataTy->getVectorNumElements(),
4530            "masked_load: vector mask must be same length as data", Call);
4531     break;
4532   }
4533   case Intrinsic::masked_store: {
4534     Value *Val = Call.getArgOperand(0);
4535     Value *Ptr = Call.getArgOperand(1);
4536     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4537     Value *Mask = Call.getArgOperand(3);
4538     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4539            Call);
4540     Assert(Alignment->getValue().isPowerOf2(),
4541            "masked_store: alignment must be a power of 2", Call);
4542 
4543     // DataTy is the overloaded type
4544     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4545     Assert(DataTy == Val->getType(),
4546            "masked_store: storee must match pointer type", Call);
4547     Assert(Mask->getType()->getVectorNumElements() ==
4548                DataTy->getVectorNumElements(),
4549            "masked_store: vector mask must be same length as data", Call);
4550     break;
4551   }
4552 
4553   case Intrinsic::experimental_guard: {
4554     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4555     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4556            "experimental_guard must have exactly one "
4557            "\"deopt\" operand bundle");
4558     break;
4559   }
4560 
4561   case Intrinsic::experimental_deoptimize: {
4562     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4563            Call);
4564     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4565            "experimental_deoptimize must have exactly one "
4566            "\"deopt\" operand bundle");
4567     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4568            "experimental_deoptimize return type must match caller return type");
4569 
4570     if (isa<CallInst>(Call)) {
4571       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4572       Assert(RI,
4573              "calls to experimental_deoptimize must be followed by a return");
4574 
4575       if (!Call.getType()->isVoidTy() && RI)
4576         Assert(RI->getReturnValue() == &Call,
4577                "calls to experimental_deoptimize must be followed by a return "
4578                "of the value computed by experimental_deoptimize");
4579     }
4580 
4581     break;
4582   }
4583   case Intrinsic::sadd_sat:
4584   case Intrinsic::uadd_sat:
4585   case Intrinsic::ssub_sat:
4586   case Intrinsic::usub_sat: {
4587     Value *Op1 = Call.getArgOperand(0);
4588     Value *Op2 = Call.getArgOperand(1);
4589     Assert(Op1->getType()->isIntOrIntVectorTy(),
4590            "first operand of [us][add|sub]_sat must be an int type or vector "
4591            "of ints");
4592     Assert(Op2->getType()->isIntOrIntVectorTy(),
4593            "second operand of [us][add|sub]_sat must be an int type or vector "
4594            "of ints");
4595     break;
4596   }
4597   case Intrinsic::smul_fix:
4598   case Intrinsic::smul_fix_sat:
4599   case Intrinsic::umul_fix: {
4600     Value *Op1 = Call.getArgOperand(0);
4601     Value *Op2 = Call.getArgOperand(1);
4602     Assert(Op1->getType()->isIntOrIntVectorTy(),
4603            "first operand of [us]mul_fix[_sat] must be an int type or vector "
4604            "of ints");
4605     Assert(Op2->getType()->isIntOrIntVectorTy(),
4606            "second operand of [us]mul_fix_[sat] must be an int type or vector "
4607            "of ints");
4608 
4609     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4610     Assert(Op3->getType()->getBitWidth() <= 32,
4611            "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4612 
4613     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4614       Assert(
4615           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4616           "the scale of smul_fix[_sat] must be less than the width of the operands");
4617     } else {
4618       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4619              "the scale of umul_fix[_sat] must be less than or equal to the width of "
4620              "the operands");
4621     }
4622     break;
4623   }
4624   case Intrinsic::lround:
4625   case Intrinsic::llround: {
4626     Type *ValTy = Call.getArgOperand(0)->getType();
4627     Type *ResultTy = Call.getType();
4628     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4629            "Intrinsic does not support vectors", &Call);
4630     break;
4631   }
4632   };
4633 }
4634 
4635 /// Carefully grab the subprogram from a local scope.
4636 ///
4637 /// This carefully grabs the subprogram from a local scope, avoiding the
4638 /// built-in assertions that would typically fire.
4639 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4640   if (!LocalScope)
4641     return nullptr;
4642 
4643   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4644     return SP;
4645 
4646   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4647     return getSubprogram(LB->getRawScope());
4648 
4649   // Just return null; broken scope chains are checked elsewhere.
4650   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4651   return nullptr;
4652 }
4653 
4654 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4655   unsigned NumOperands = FPI.getNumArgOperands();
4656   bool HasExceptionMD = false;
4657   bool HasRoundingMD = false;
4658   switch (FPI.getIntrinsicID()) {
4659   case Intrinsic::experimental_constrained_sqrt:
4660   case Intrinsic::experimental_constrained_sin:
4661   case Intrinsic::experimental_constrained_cos:
4662   case Intrinsic::experimental_constrained_exp:
4663   case Intrinsic::experimental_constrained_exp2:
4664   case Intrinsic::experimental_constrained_log:
4665   case Intrinsic::experimental_constrained_log10:
4666   case Intrinsic::experimental_constrained_log2:
4667   case Intrinsic::experimental_constrained_rint:
4668   case Intrinsic::experimental_constrained_nearbyint:
4669   case Intrinsic::experimental_constrained_ceil:
4670   case Intrinsic::experimental_constrained_floor:
4671   case Intrinsic::experimental_constrained_round:
4672   case Intrinsic::experimental_constrained_trunc:
4673     Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4674            &FPI);
4675     HasExceptionMD = true;
4676     HasRoundingMD = true;
4677     break;
4678 
4679   case Intrinsic::experimental_constrained_fma:
4680     Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4681            &FPI);
4682     HasExceptionMD = true;
4683     HasRoundingMD = true;
4684     break;
4685 
4686   case Intrinsic::experimental_constrained_fadd:
4687   case Intrinsic::experimental_constrained_fsub:
4688   case Intrinsic::experimental_constrained_fmul:
4689   case Intrinsic::experimental_constrained_fdiv:
4690   case Intrinsic::experimental_constrained_frem:
4691   case Intrinsic::experimental_constrained_pow:
4692   case Intrinsic::experimental_constrained_powi:
4693   case Intrinsic::experimental_constrained_maxnum:
4694   case Intrinsic::experimental_constrained_minnum:
4695     Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4696            &FPI);
4697     HasExceptionMD = true;
4698     HasRoundingMD = true;
4699     break;
4700 
4701   case Intrinsic::experimental_constrained_fptrunc:
4702   case Intrinsic::experimental_constrained_fpext: {
4703     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4704       Assert((NumOperands == 3),
4705              "invalid arguments for constrained FP intrinsic", &FPI);
4706       HasRoundingMD = true;
4707     } else {
4708       Assert((NumOperands == 2),
4709              "invalid arguments for constrained FP intrinsic", &FPI);
4710     }
4711     HasExceptionMD = true;
4712 
4713     Value *Operand = FPI.getArgOperand(0);
4714     Type *OperandTy = Operand->getType();
4715     Value *Result = &FPI;
4716     Type *ResultTy = Result->getType();
4717     Assert(OperandTy->isFPOrFPVectorTy(),
4718            "Intrinsic first argument must be FP or FP vector", &FPI);
4719     Assert(ResultTy->isFPOrFPVectorTy(),
4720            "Intrinsic result must be FP or FP vector", &FPI);
4721     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4722            "Intrinsic first argument and result disagree on vector use", &FPI);
4723     if (OperandTy->isVectorTy()) {
4724       auto *OperandVecTy = cast<VectorType>(OperandTy);
4725       auto *ResultVecTy = cast<VectorType>(ResultTy);
4726       Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4727              "Intrinsic first argument and result vector lengths must be equal",
4728              &FPI);
4729     }
4730     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4731       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4732              "Intrinsic first argument's type must be larger than result type",
4733              &FPI);
4734     } else {
4735       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4736              "Intrinsic first argument's type must be smaller than result type",
4737              &FPI);
4738     }
4739   }
4740     break;
4741 
4742   default:
4743     llvm_unreachable("Invalid constrained FP intrinsic!");
4744   }
4745 
4746   // If a non-metadata argument is passed in a metadata slot then the
4747   // error will be caught earlier when the incorrect argument doesn't
4748   // match the specification in the intrinsic call table. Thus, no
4749   // argument type check is needed here.
4750 
4751   if (HasExceptionMD) {
4752     Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4753            "invalid exception behavior argument", &FPI);
4754   }
4755   if (HasRoundingMD) {
4756     Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4757            "invalid rounding mode argument", &FPI);
4758   }
4759 }
4760 
4761 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4762   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4763   AssertDI(isa<ValueAsMetadata>(MD) ||
4764              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4765          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4766   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4767          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4768          DII.getRawVariable());
4769   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4770          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4771          DII.getRawExpression());
4772 
4773   // Ignore broken !dbg attachments; they're checked elsewhere.
4774   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4775     if (!isa<DILocation>(N))
4776       return;
4777 
4778   BasicBlock *BB = DII.getParent();
4779   Function *F = BB ? BB->getParent() : nullptr;
4780 
4781   // The scopes for variables and !dbg attachments must agree.
4782   DILocalVariable *Var = DII.getVariable();
4783   DILocation *Loc = DII.getDebugLoc();
4784   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4785            &DII, BB, F);
4786 
4787   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4788   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4789   if (!VarSP || !LocSP)
4790     return; // Broken scope chains are checked elsewhere.
4791 
4792   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4793                                " variable and !dbg attachment",
4794            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4795            Loc->getScope()->getSubprogram());
4796 
4797   // This check is redundant with one in visitLocalVariable().
4798   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4799            Var->getRawType());
4800   if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4801     if (Type->isBlockByrefStruct())
4802       AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),
4803                "BlockByRef variable without complex expression", Var, &DII);
4804 
4805   verifyFnArgs(DII);
4806 }
4807 
4808 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4809   AssertDI(isa<DILabel>(DLI.getRawLabel()),
4810          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4811          DLI.getRawLabel());
4812 
4813   // Ignore broken !dbg attachments; they're checked elsewhere.
4814   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4815     if (!isa<DILocation>(N))
4816       return;
4817 
4818   BasicBlock *BB = DLI.getParent();
4819   Function *F = BB ? BB->getParent() : nullptr;
4820 
4821   // The scopes for variables and !dbg attachments must agree.
4822   DILabel *Label = DLI.getLabel();
4823   DILocation *Loc = DLI.getDebugLoc();
4824   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4825          &DLI, BB, F);
4826 
4827   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4828   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4829   if (!LabelSP || !LocSP)
4830     return;
4831 
4832   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4833                              " label and !dbg attachment",
4834            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4835            Loc->getScope()->getSubprogram());
4836 }
4837 
4838 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4839   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4840   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4841 
4842   // We don't know whether this intrinsic verified correctly.
4843   if (!V || !E || !E->isValid())
4844     return;
4845 
4846   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4847   auto Fragment = E->getFragmentInfo();
4848   if (!Fragment)
4849     return;
4850 
4851   // The frontend helps out GDB by emitting the members of local anonymous
4852   // unions as artificial local variables with shared storage. When SROA splits
4853   // the storage for artificial local variables that are smaller than the entire
4854   // union, the overhang piece will be outside of the allotted space for the
4855   // variable and this check fails.
4856   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4857   if (V->isArtificial())
4858     return;
4859 
4860   verifyFragmentExpression(*V, *Fragment, &I);
4861 }
4862 
4863 template <typename ValueOrMetadata>
4864 void Verifier::verifyFragmentExpression(const DIVariable &V,
4865                                         DIExpression::FragmentInfo Fragment,
4866                                         ValueOrMetadata *Desc) {
4867   // If there's no size, the type is broken, but that should be checked
4868   // elsewhere.
4869   auto VarSize = V.getSizeInBits();
4870   if (!VarSize)
4871     return;
4872 
4873   unsigned FragSize = Fragment.SizeInBits;
4874   unsigned FragOffset = Fragment.OffsetInBits;
4875   AssertDI(FragSize + FragOffset <= *VarSize,
4876          "fragment is larger than or outside of variable", Desc, &V);
4877   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4878 }
4879 
4880 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4881   // This function does not take the scope of noninlined function arguments into
4882   // account. Don't run it if current function is nodebug, because it may
4883   // contain inlined debug intrinsics.
4884   if (!HasDebugInfo)
4885     return;
4886 
4887   // For performance reasons only check non-inlined ones.
4888   if (I.getDebugLoc()->getInlinedAt())
4889     return;
4890 
4891   DILocalVariable *Var = I.getVariable();
4892   AssertDI(Var, "dbg intrinsic without variable");
4893 
4894   unsigned ArgNo = Var->getArg();
4895   if (!ArgNo)
4896     return;
4897 
4898   // Verify there are no duplicate function argument debug info entries.
4899   // These will cause hard-to-debug assertions in the DWARF backend.
4900   if (DebugFnArgs.size() < ArgNo)
4901     DebugFnArgs.resize(ArgNo, nullptr);
4902 
4903   auto *Prev = DebugFnArgs[ArgNo - 1];
4904   DebugFnArgs[ArgNo - 1] = Var;
4905   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4906            Prev, Var);
4907 }
4908 
4909 void Verifier::verifyCompileUnits() {
4910   // When more than one Module is imported into the same context, such as during
4911   // an LTO build before linking the modules, ODR type uniquing may cause types
4912   // to point to a different CU. This check does not make sense in this case.
4913   if (M.getContext().isODRUniquingDebugTypes())
4914     return;
4915   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4916   SmallPtrSet<const Metadata *, 2> Listed;
4917   if (CUs)
4918     Listed.insert(CUs->op_begin(), CUs->op_end());
4919   for (auto *CU : CUVisited)
4920     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4921   CUVisited.clear();
4922 }
4923 
4924 void Verifier::verifyDeoptimizeCallingConvs() {
4925   if (DeoptimizeDeclarations.empty())
4926     return;
4927 
4928   const Function *First = DeoptimizeDeclarations[0];
4929   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4930     Assert(First->getCallingConv() == F->getCallingConv(),
4931            "All llvm.experimental.deoptimize declarations must have the same "
4932            "calling convention",
4933            First, F);
4934   }
4935 }
4936 
4937 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4938   bool HasSource = F.getSource().hasValue();
4939   if (!HasSourceDebugInfo.count(&U))
4940     HasSourceDebugInfo[&U] = HasSource;
4941   AssertDI(HasSource == HasSourceDebugInfo[&U],
4942            "inconsistent use of embedded source");
4943 }
4944 
4945 //===----------------------------------------------------------------------===//
4946 //  Implement the public interfaces to this file...
4947 //===----------------------------------------------------------------------===//
4948 
4949 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4950   Function &F = const_cast<Function &>(f);
4951 
4952   // Don't use a raw_null_ostream.  Printing IR is expensive.
4953   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4954 
4955   // Note that this function's return value is inverted from what you would
4956   // expect of a function called "verify".
4957   return !V.verify(F);
4958 }
4959 
4960 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4961                         bool *BrokenDebugInfo) {
4962   // Don't use a raw_null_ostream.  Printing IR is expensive.
4963   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4964 
4965   bool Broken = false;
4966   for (const Function &F : M)
4967     Broken |= !V.verify(F);
4968 
4969   Broken |= !V.verify();
4970   if (BrokenDebugInfo)
4971     *BrokenDebugInfo = V.hasBrokenDebugInfo();
4972   // Note that this function's return value is inverted from what you would
4973   // expect of a function called "verify".
4974   return Broken;
4975 }
4976 
4977 namespace {
4978 
4979 struct VerifierLegacyPass : public FunctionPass {
4980   static char ID;
4981 
4982   std::unique_ptr<Verifier> V;
4983   bool FatalErrors = true;
4984 
4985   VerifierLegacyPass() : FunctionPass(ID) {
4986     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4987   }
4988   explicit VerifierLegacyPass(bool FatalErrors)
4989       : FunctionPass(ID),
4990         FatalErrors(FatalErrors) {
4991     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4992   }
4993 
4994   bool doInitialization(Module &M) override {
4995     V = llvm::make_unique<Verifier>(
4996         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4997     return false;
4998   }
4999 
5000   bool runOnFunction(Function &F) override {
5001     if (!V->verify(F) && FatalErrors) {
5002       errs() << "in function " << F.getName() << '\n';
5003       report_fatal_error("Broken function found, compilation aborted!");
5004     }
5005     return false;
5006   }
5007 
5008   bool doFinalization(Module &M) override {
5009     bool HasErrors = false;
5010     for (Function &F : M)
5011       if (F.isDeclaration())
5012         HasErrors |= !V->verify(F);
5013 
5014     HasErrors |= !V->verify();
5015     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5016       report_fatal_error("Broken module found, compilation aborted!");
5017     return false;
5018   }
5019 
5020   void getAnalysisUsage(AnalysisUsage &AU) const override {
5021     AU.setPreservesAll();
5022   }
5023 };
5024 
5025 } // end anonymous namespace
5026 
5027 /// Helper to issue failure from the TBAA verification
5028 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5029   if (Diagnostic)
5030     return Diagnostic->CheckFailed(Args...);
5031 }
5032 
5033 #define AssertTBAA(C, ...)                                                     \
5034   do {                                                                         \
5035     if (!(C)) {                                                                \
5036       CheckFailed(__VA_ARGS__);                                                \
5037       return false;                                                            \
5038     }                                                                          \
5039   } while (false)
5040 
5041 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5042 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5043 /// struct-type node describing an aggregate data structure (like a struct).
5044 TBAAVerifier::TBAABaseNodeSummary
5045 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5046                                  bool IsNewFormat) {
5047   if (BaseNode->getNumOperands() < 2) {
5048     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5049     return {true, ~0u};
5050   }
5051 
5052   auto Itr = TBAABaseNodes.find(BaseNode);
5053   if (Itr != TBAABaseNodes.end())
5054     return Itr->second;
5055 
5056   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5057   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5058   (void)InsertResult;
5059   assert(InsertResult.second && "We just checked!");
5060   return Result;
5061 }
5062 
5063 TBAAVerifier::TBAABaseNodeSummary
5064 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5065                                      bool IsNewFormat) {
5066   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5067 
5068   if (BaseNode->getNumOperands() == 2) {
5069     // Scalar nodes can only be accessed at offset 0.
5070     return isValidScalarTBAANode(BaseNode)
5071                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5072                : InvalidNode;
5073   }
5074 
5075   if (IsNewFormat) {
5076     if (BaseNode->getNumOperands() % 3 != 0) {
5077       CheckFailed("Access tag nodes must have the number of operands that is a "
5078                   "multiple of 3!", BaseNode);
5079       return InvalidNode;
5080     }
5081   } else {
5082     if (BaseNode->getNumOperands() % 2 != 1) {
5083       CheckFailed("Struct tag nodes must have an odd number of operands!",
5084                   BaseNode);
5085       return InvalidNode;
5086     }
5087   }
5088 
5089   // Check the type size field.
5090   if (IsNewFormat) {
5091     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5092         BaseNode->getOperand(1));
5093     if (!TypeSizeNode) {
5094       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5095       return InvalidNode;
5096     }
5097   }
5098 
5099   // Check the type name field. In the new format it can be anything.
5100   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5101     CheckFailed("Struct tag nodes have a string as their first operand",
5102                 BaseNode);
5103     return InvalidNode;
5104   }
5105 
5106   bool Failed = false;
5107 
5108   Optional<APInt> PrevOffset;
5109   unsigned BitWidth = ~0u;
5110 
5111   // We've already checked that BaseNode is not a degenerate root node with one
5112   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5113   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5114   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5115   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5116            Idx += NumOpsPerField) {
5117     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5118     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5119     if (!isa<MDNode>(FieldTy)) {
5120       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5121       Failed = true;
5122       continue;
5123     }
5124 
5125     auto *OffsetEntryCI =
5126         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5127     if (!OffsetEntryCI) {
5128       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5129       Failed = true;
5130       continue;
5131     }
5132 
5133     if (BitWidth == ~0u)
5134       BitWidth = OffsetEntryCI->getBitWidth();
5135 
5136     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5137       CheckFailed(
5138           "Bitwidth between the offsets and struct type entries must match", &I,
5139           BaseNode);
5140       Failed = true;
5141       continue;
5142     }
5143 
5144     // NB! As far as I can tell, we generate a non-strictly increasing offset
5145     // sequence only from structs that have zero size bit fields.  When
5146     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5147     // pick the field lexically the latest in struct type metadata node.  This
5148     // mirrors the actual behavior of the alias analysis implementation.
5149     bool IsAscending =
5150         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5151 
5152     if (!IsAscending) {
5153       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5154       Failed = true;
5155     }
5156 
5157     PrevOffset = OffsetEntryCI->getValue();
5158 
5159     if (IsNewFormat) {
5160       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5161           BaseNode->getOperand(Idx + 2));
5162       if (!MemberSizeNode) {
5163         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5164         Failed = true;
5165         continue;
5166       }
5167     }
5168   }
5169 
5170   return Failed ? InvalidNode
5171                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5172 }
5173 
5174 static bool IsRootTBAANode(const MDNode *MD) {
5175   return MD->getNumOperands() < 2;
5176 }
5177 
5178 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5179                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5180   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5181     return false;
5182 
5183   if (!isa<MDString>(MD->getOperand(0)))
5184     return false;
5185 
5186   if (MD->getNumOperands() == 3) {
5187     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5188     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5189       return false;
5190   }
5191 
5192   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5193   return Parent && Visited.insert(Parent).second &&
5194          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5195 }
5196 
5197 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5198   auto ResultIt = TBAAScalarNodes.find(MD);
5199   if (ResultIt != TBAAScalarNodes.end())
5200     return ResultIt->second;
5201 
5202   SmallPtrSet<const MDNode *, 4> Visited;
5203   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5204   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5205   (void)InsertResult;
5206   assert(InsertResult.second && "Just checked!");
5207 
5208   return Result;
5209 }
5210 
5211 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5212 /// Offset in place to be the offset within the field node returned.
5213 ///
5214 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5215 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5216                                                    const MDNode *BaseNode,
5217                                                    APInt &Offset,
5218                                                    bool IsNewFormat) {
5219   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5220 
5221   // Scalar nodes have only one possible "field" -- their parent in the access
5222   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5223   // to Assert that.
5224   if (BaseNode->getNumOperands() == 2)
5225     return cast<MDNode>(BaseNode->getOperand(1));
5226 
5227   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5228   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5229   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5230            Idx += NumOpsPerField) {
5231     auto *OffsetEntryCI =
5232         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5233     if (OffsetEntryCI->getValue().ugt(Offset)) {
5234       if (Idx == FirstFieldOpNo) {
5235         CheckFailed("Could not find TBAA parent in struct type node", &I,
5236                     BaseNode, &Offset);
5237         return nullptr;
5238       }
5239 
5240       unsigned PrevIdx = Idx - NumOpsPerField;
5241       auto *PrevOffsetEntryCI =
5242           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5243       Offset -= PrevOffsetEntryCI->getValue();
5244       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5245     }
5246   }
5247 
5248   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5249   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5250       BaseNode->getOperand(LastIdx + 1));
5251   Offset -= LastOffsetEntryCI->getValue();
5252   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5253 }
5254 
5255 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5256   if (!Type || Type->getNumOperands() < 3)
5257     return false;
5258 
5259   // In the new format type nodes shall have a reference to the parent type as
5260   // its first operand.
5261   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5262   if (!Parent)
5263     return false;
5264 
5265   return true;
5266 }
5267 
5268 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5269   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5270                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5271                  isa<AtomicCmpXchgInst>(I),
5272              "This instruction shall not have a TBAA access tag!", &I);
5273 
5274   bool IsStructPathTBAA =
5275       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5276 
5277   AssertTBAA(
5278       IsStructPathTBAA,
5279       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5280 
5281   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5282   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5283 
5284   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5285 
5286   if (IsNewFormat) {
5287     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5288                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5289   } else {
5290     AssertTBAA(MD->getNumOperands() < 5,
5291                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5292   }
5293 
5294   // Check the access size field.
5295   if (IsNewFormat) {
5296     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5297         MD->getOperand(3));
5298     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5299   }
5300 
5301   // Check the immutability flag.
5302   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5303   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5304     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5305         MD->getOperand(ImmutabilityFlagOpNo));
5306     AssertTBAA(IsImmutableCI,
5307                "Immutability tag on struct tag metadata must be a constant",
5308                &I, MD);
5309     AssertTBAA(
5310         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5311         "Immutability part of the struct tag metadata must be either 0 or 1",
5312         &I, MD);
5313   }
5314 
5315   AssertTBAA(BaseNode && AccessType,
5316              "Malformed struct tag metadata: base and access-type "
5317              "should be non-null and point to Metadata nodes",
5318              &I, MD, BaseNode, AccessType);
5319 
5320   if (!IsNewFormat) {
5321     AssertTBAA(isValidScalarTBAANode(AccessType),
5322                "Access type node must be a valid scalar type", &I, MD,
5323                AccessType);
5324   }
5325 
5326   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5327   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5328 
5329   APInt Offset = OffsetCI->getValue();
5330   bool SeenAccessTypeInPath = false;
5331 
5332   SmallPtrSet<MDNode *, 4> StructPath;
5333 
5334   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5335        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5336                                                IsNewFormat)) {
5337     if (!StructPath.insert(BaseNode).second) {
5338       CheckFailed("Cycle detected in struct path", &I, MD);
5339       return false;
5340     }
5341 
5342     bool Invalid;
5343     unsigned BaseNodeBitWidth;
5344     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5345                                                              IsNewFormat);
5346 
5347     // If the base node is invalid in itself, then we've already printed all the
5348     // errors we wanted to print.
5349     if (Invalid)
5350       return false;
5351 
5352     SeenAccessTypeInPath |= BaseNode == AccessType;
5353 
5354     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5355       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5356                  &I, MD, &Offset);
5357 
5358     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5359                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5360                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5361                "Access bit-width not the same as description bit-width", &I, MD,
5362                BaseNodeBitWidth, Offset.getBitWidth());
5363 
5364     if (IsNewFormat && SeenAccessTypeInPath)
5365       break;
5366   }
5367 
5368   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5369              &I, MD);
5370   return true;
5371 }
5372 
5373 char VerifierLegacyPass::ID = 0;
5374 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5375 
5376 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5377   return new VerifierLegacyPass(FatalErrors);
5378 }
5379 
5380 AnalysisKey VerifierAnalysis::Key;
5381 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5382                                                ModuleAnalysisManager &) {
5383   Result Res;
5384   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5385   return Res;
5386 }
5387 
5388 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5389                                                FunctionAnalysisManager &) {
5390   return { llvm::verifyFunction(F, &dbgs()), false };
5391 }
5392 
5393 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5394   auto Res = AM.getResult<VerifierAnalysis>(M);
5395   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5396     report_fatal_error("Broken module found, compilation aborted!");
5397 
5398   return PreservedAnalyses::all();
5399 }
5400 
5401 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5402   auto res = AM.getResult<VerifierAnalysis>(F);
5403   if (res.IRBroken && FatalErrors)
5404     report_fatal_error("Broken function found, compilation aborted!");
5405 
5406   return PreservedAnalyses::all();
5407 }
5408