1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/LLVMContext.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/ModuleSlotTracker.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Statepoint.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/AtomicOrdering.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <memory> 111 #include <string> 112 #include <utility> 113 114 using namespace llvm; 115 116 namespace llvm { 117 118 struct VerifierSupport { 119 raw_ostream *OS; 120 const Module &M; 121 ModuleSlotTracker MST; 122 const DataLayout &DL; 123 LLVMContext &Context; 124 125 /// Track the brokenness of the module while recursively visiting. 126 bool Broken = false; 127 /// Broken debug info can be "recovered" from by stripping the debug info. 128 bool BrokenDebugInfo = false; 129 /// Whether to treat broken debug info as an error. 130 bool TreatBrokenDebugInfoAsError = true; 131 132 explicit VerifierSupport(raw_ostream *OS, const Module &M) 133 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 134 135 private: 136 void Write(const Module *M) { 137 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 138 } 139 140 void Write(const Value *V) { 141 if (V) 142 Write(*V); 143 } 144 145 void Write(const Value &V) { 146 if (isa<Instruction>(V)) { 147 V.print(*OS, MST); 148 *OS << '\n'; 149 } else { 150 V.printAsOperand(*OS, true, MST); 151 *OS << '\n'; 152 } 153 } 154 155 void Write(const Metadata *MD) { 156 if (!MD) 157 return; 158 MD->print(*OS, MST, &M); 159 *OS << '\n'; 160 } 161 162 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 163 Write(MD.get()); 164 } 165 166 void Write(const NamedMDNode *NMD) { 167 if (!NMD) 168 return; 169 NMD->print(*OS, MST); 170 *OS << '\n'; 171 } 172 173 void Write(Type *T) { 174 if (!T) 175 return; 176 *OS << ' ' << *T; 177 } 178 179 void Write(const Comdat *C) { 180 if (!C) 181 return; 182 *OS << *C; 183 } 184 185 void Write(const APInt *AI) { 186 if (!AI) 187 return; 188 *OS << *AI << '\n'; 189 } 190 191 void Write(const unsigned i) { *OS << i << '\n'; } 192 193 template <typename T> void Write(ArrayRef<T> Vs) { 194 for (const T &V : Vs) 195 Write(V); 196 } 197 198 template <typename T1, typename... Ts> 199 void WriteTs(const T1 &V1, const Ts &... Vs) { 200 Write(V1); 201 WriteTs(Vs...); 202 } 203 204 template <typename... Ts> void WriteTs() {} 205 206 public: 207 /// A check failed, so printout out the condition and the message. 208 /// 209 /// This provides a nice place to put a breakpoint if you want to see why 210 /// something is not correct. 211 void CheckFailed(const Twine &Message) { 212 if (OS) 213 *OS << Message << '\n'; 214 Broken = true; 215 } 216 217 /// A check failed (with values to print). 218 /// 219 /// This calls the Message-only version so that the above is easier to set a 220 /// breakpoint on. 221 template <typename T1, typename... Ts> 222 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 223 CheckFailed(Message); 224 if (OS) 225 WriteTs(V1, Vs...); 226 } 227 228 /// A debug info check failed. 229 void DebugInfoCheckFailed(const Twine &Message) { 230 if (OS) 231 *OS << Message << '\n'; 232 Broken |= TreatBrokenDebugInfoAsError; 233 BrokenDebugInfo = true; 234 } 235 236 /// A debug info check failed (with values to print). 237 template <typename T1, typename... Ts> 238 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 239 const Ts &... Vs) { 240 DebugInfoCheckFailed(Message); 241 if (OS) 242 WriteTs(V1, Vs...); 243 } 244 }; 245 246 } // namespace llvm 247 248 namespace { 249 250 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 251 friend class InstVisitor<Verifier>; 252 253 DominatorTree DT; 254 255 /// When verifying a basic block, keep track of all of the 256 /// instructions we have seen so far. 257 /// 258 /// This allows us to do efficient dominance checks for the case when an 259 /// instruction has an operand that is an instruction in the same block. 260 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 261 262 /// Keep track of the metadata nodes that have been checked already. 263 SmallPtrSet<const Metadata *, 32> MDNodes; 264 265 /// Keep track which DISubprogram is attached to which function. 266 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 267 268 /// Track all DICompileUnits visited. 269 SmallPtrSet<const Metadata *, 2> CUVisited; 270 271 /// The result type for a landingpad. 272 Type *LandingPadResultTy; 273 274 /// Whether we've seen a call to @llvm.localescape in this function 275 /// already. 276 bool SawFrameEscape; 277 278 /// Whether the current function has a DISubprogram attached to it. 279 bool HasDebugInfo = false; 280 281 /// Whether source was present on the first DIFile encountered in each CU. 282 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 283 284 /// Stores the count of how many objects were passed to llvm.localescape for a 285 /// given function and the largest index passed to llvm.localrecover. 286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 287 288 // Maps catchswitches and cleanuppads that unwind to siblings to the 289 // terminators that indicate the unwind, used to detect cycles therein. 290 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 291 292 /// Cache of constants visited in search of ConstantExprs. 293 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 294 295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 296 SmallVector<const Function *, 4> DeoptimizeDeclarations; 297 298 // Verify that this GlobalValue is only used in this module. 299 // This map is used to avoid visiting uses twice. We can arrive at a user 300 // twice, if they have multiple operands. In particular for very large 301 // constant expressions, we can arrive at a particular user many times. 302 SmallPtrSet<const Value *, 32> GlobalValueVisited; 303 304 // Keeps track of duplicate function argument debug info. 305 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 306 307 TBAAVerifier TBAAVerifyHelper; 308 309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 310 311 public: 312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 313 const Module &M) 314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 315 SawFrameEscape(false), TBAAVerifyHelper(this) { 316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 317 } 318 319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 320 321 bool verify(const Function &F) { 322 assert(F.getParent() == &M && 323 "An instance of this class only works with a specific module!"); 324 325 // First ensure the function is well-enough formed to compute dominance 326 // information, and directly compute a dominance tree. We don't rely on the 327 // pass manager to provide this as it isolates us from a potentially 328 // out-of-date dominator tree and makes it significantly more complex to run 329 // this code outside of a pass manager. 330 // FIXME: It's really gross that we have to cast away constness here. 331 if (!F.empty()) 332 DT.recalculate(const_cast<Function &>(F)); 333 334 for (const BasicBlock &BB : F) { 335 if (!BB.empty() && BB.back().isTerminator()) 336 continue; 337 338 if (OS) { 339 *OS << "Basic Block in function '" << F.getName() 340 << "' does not have terminator!\n"; 341 BB.printAsOperand(*OS, true, MST); 342 *OS << "\n"; 343 } 344 return false; 345 } 346 347 Broken = false; 348 // FIXME: We strip const here because the inst visitor strips const. 349 visit(const_cast<Function &>(F)); 350 verifySiblingFuncletUnwinds(); 351 InstsInThisBlock.clear(); 352 DebugFnArgs.clear(); 353 LandingPadResultTy = nullptr; 354 SawFrameEscape = false; 355 SiblingFuncletInfo.clear(); 356 357 return !Broken; 358 } 359 360 /// Verify the module that this instance of \c Verifier was initialized with. 361 bool verify() { 362 Broken = false; 363 364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 365 for (const Function &F : M) 366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 367 DeoptimizeDeclarations.push_back(&F); 368 369 // Now that we've visited every function, verify that we never asked to 370 // recover a frame index that wasn't escaped. 371 verifyFrameRecoverIndices(); 372 for (const GlobalVariable &GV : M.globals()) 373 visitGlobalVariable(GV); 374 375 for (const GlobalAlias &GA : M.aliases()) 376 visitGlobalAlias(GA); 377 378 for (const NamedMDNode &NMD : M.named_metadata()) 379 visitNamedMDNode(NMD); 380 381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 382 visitComdat(SMEC.getValue()); 383 384 visitModuleFlags(M); 385 visitModuleIdents(M); 386 visitModuleCommandLines(M); 387 388 verifyCompileUnits(); 389 390 verifyDeoptimizeCallingConvs(); 391 DISubprogramAttachments.clear(); 392 return !Broken; 393 } 394 395 private: 396 // Verification methods... 397 void visitGlobalValue(const GlobalValue &GV); 398 void visitGlobalVariable(const GlobalVariable &GV); 399 void visitGlobalAlias(const GlobalAlias &GA); 400 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 401 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 402 const GlobalAlias &A, const Constant &C); 403 void visitNamedMDNode(const NamedMDNode &NMD); 404 void visitMDNode(const MDNode &MD); 405 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 406 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 407 void visitComdat(const Comdat &C); 408 void visitModuleIdents(const Module &M); 409 void visitModuleCommandLines(const Module &M); 410 void visitModuleFlags(const Module &M); 411 void visitModuleFlag(const MDNode *Op, 412 DenseMap<const MDString *, const MDNode *> &SeenIDs, 413 SmallVectorImpl<const MDNode *> &Requirements); 414 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 415 void visitFunction(const Function &F); 416 void visitBasicBlock(BasicBlock &BB); 417 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 418 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 419 420 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 422 #include "llvm/IR/Metadata.def" 423 void visitDIScope(const DIScope &N); 424 void visitDIVariable(const DIVariable &N); 425 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 426 void visitDITemplateParameter(const DITemplateParameter &N); 427 428 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 429 430 // InstVisitor overrides... 431 using InstVisitor<Verifier>::visit; 432 void visit(Instruction &I); 433 434 void visitTruncInst(TruncInst &I); 435 void visitZExtInst(ZExtInst &I); 436 void visitSExtInst(SExtInst &I); 437 void visitFPTruncInst(FPTruncInst &I); 438 void visitFPExtInst(FPExtInst &I); 439 void visitFPToUIInst(FPToUIInst &I); 440 void visitFPToSIInst(FPToSIInst &I); 441 void visitUIToFPInst(UIToFPInst &I); 442 void visitSIToFPInst(SIToFPInst &I); 443 void visitIntToPtrInst(IntToPtrInst &I); 444 void visitPtrToIntInst(PtrToIntInst &I); 445 void visitBitCastInst(BitCastInst &I); 446 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 447 void visitPHINode(PHINode &PN); 448 void visitCallBase(CallBase &Call); 449 void visitUnaryOperator(UnaryOperator &U); 450 void visitBinaryOperator(BinaryOperator &B); 451 void visitICmpInst(ICmpInst &IC); 452 void visitFCmpInst(FCmpInst &FC); 453 void visitExtractElementInst(ExtractElementInst &EI); 454 void visitInsertElementInst(InsertElementInst &EI); 455 void visitShuffleVectorInst(ShuffleVectorInst &EI); 456 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 457 void visitCallInst(CallInst &CI); 458 void visitInvokeInst(InvokeInst &II); 459 void visitGetElementPtrInst(GetElementPtrInst &GEP); 460 void visitLoadInst(LoadInst &LI); 461 void visitStoreInst(StoreInst &SI); 462 void verifyDominatesUse(Instruction &I, unsigned i); 463 void visitInstruction(Instruction &I); 464 void visitTerminator(Instruction &I); 465 void visitBranchInst(BranchInst &BI); 466 void visitReturnInst(ReturnInst &RI); 467 void visitSwitchInst(SwitchInst &SI); 468 void visitIndirectBrInst(IndirectBrInst &BI); 469 void visitCallBrInst(CallBrInst &CBI); 470 void visitSelectInst(SelectInst &SI); 471 void visitUserOp1(Instruction &I); 472 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 478 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 479 void visitFenceInst(FenceInst &FI); 480 void visitAllocaInst(AllocaInst &AI); 481 void visitExtractValueInst(ExtractValueInst &EVI); 482 void visitInsertValueInst(InsertValueInst &IVI); 483 void visitEHPadPredecessors(Instruction &I); 484 void visitLandingPadInst(LandingPadInst &LPI); 485 void visitResumeInst(ResumeInst &RI); 486 void visitCatchPadInst(CatchPadInst &CPI); 487 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 488 void visitCleanupPadInst(CleanupPadInst &CPI); 489 void visitFuncletPadInst(FuncletPadInst &FPI); 490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 491 void visitCleanupReturnInst(CleanupReturnInst &CRI); 492 493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 494 void verifySwiftErrorValue(const Value *SwiftErrorVal); 495 void verifyMustTailCall(CallInst &CI); 496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 497 unsigned ArgNo, std::string &Suffix); 498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 500 const Value *V); 501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 503 const Value *V, bool IsIntrinsic); 504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 505 506 void visitConstantExprsRecursively(const Constant *EntryC); 507 void visitConstantExpr(const ConstantExpr *CE); 508 void verifyStatepoint(const CallBase &Call); 509 void verifyFrameRecoverIndices(); 510 void verifySiblingFuncletUnwinds(); 511 512 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 513 template <typename ValueOrMetadata> 514 void verifyFragmentExpression(const DIVariable &V, 515 DIExpression::FragmentInfo Fragment, 516 ValueOrMetadata *Desc); 517 void verifyFnArgs(const DbgVariableIntrinsic &I); 518 519 /// Module-level debug info verification... 520 void verifyCompileUnits(); 521 522 /// Module-level verification that all @llvm.experimental.deoptimize 523 /// declarations share the same calling convention. 524 void verifyDeoptimizeCallingConvs(); 525 526 /// Verify all-or-nothing property of DIFile source attribute within a CU. 527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 528 }; 529 530 } // end anonymous namespace 531 532 /// We know that cond should be true, if not print an error message. 533 #define Assert(C, ...) \ 534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 535 536 /// We know that a debug info condition should be true, if not print 537 /// an error message. 538 #define AssertDI(C, ...) \ 539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 540 541 void Verifier::visit(Instruction &I) { 542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 544 InstVisitor<Verifier>::visit(I); 545 } 546 547 // Helper to recursively iterate over indirect users. By 548 // returning false, the callback can ask to stop recursing 549 // further. 550 static void forEachUser(const Value *User, 551 SmallPtrSet<const Value *, 32> &Visited, 552 llvm::function_ref<bool(const Value *)> Callback) { 553 if (!Visited.insert(User).second) 554 return; 555 for (const Value *TheNextUser : User->materialized_users()) 556 if (Callback(TheNextUser)) 557 forEachUser(TheNextUser, Visited, Callback); 558 } 559 560 void Verifier::visitGlobalValue(const GlobalValue &GV) { 561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 562 "Global is external, but doesn't have external or weak linkage!", &GV); 563 564 Assert(GV.getAlignment() <= Value::MaximumAlignment, 565 "huge alignment values are unsupported", &GV); 566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 567 "Only global variables can have appending linkage!", &GV); 568 569 if (GV.hasAppendingLinkage()) { 570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 571 Assert(GVar && GVar->getValueType()->isArrayTy(), 572 "Only global arrays can have appending linkage!", GVar); 573 } 574 575 if (GV.isDeclarationForLinker()) 576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 577 578 if (GV.hasDLLImportStorageClass()) { 579 Assert(!GV.isDSOLocal(), 580 "GlobalValue with DLLImport Storage is dso_local!", &GV); 581 582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 583 GV.hasAvailableExternallyLinkage(), 584 "Global is marked as dllimport, but not external", &GV); 585 } 586 587 if (GV.hasLocalLinkage()) 588 Assert(GV.isDSOLocal(), 589 "GlobalValue with private or internal linkage must be dso_local!", 590 &GV); 591 592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 593 Assert(GV.isDSOLocal(), 594 "GlobalValue with non default visibility must be dso_local!", &GV); 595 596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 597 if (const Instruction *I = dyn_cast<Instruction>(V)) { 598 if (!I->getParent() || !I->getParent()->getParent()) 599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 600 I); 601 else if (I->getParent()->getParent()->getParent() != &M) 602 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 603 I->getParent()->getParent(), 604 I->getParent()->getParent()->getParent()); 605 return false; 606 } else if (const Function *F = dyn_cast<Function>(V)) { 607 if (F->getParent() != &M) 608 CheckFailed("Global is used by function in a different module", &GV, &M, 609 F, F->getParent()); 610 return false; 611 } 612 return true; 613 }); 614 } 615 616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 617 if (GV.hasInitializer()) { 618 Assert(GV.getInitializer()->getType() == GV.getValueType(), 619 "Global variable initializer type does not match global " 620 "variable type!", 621 &GV); 622 // If the global has common linkage, it must have a zero initializer and 623 // cannot be constant. 624 if (GV.hasCommonLinkage()) { 625 Assert(GV.getInitializer()->isNullValue(), 626 "'common' global must have a zero initializer!", &GV); 627 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 628 &GV); 629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 630 } 631 } 632 633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 634 GV.getName() == "llvm.global_dtors")) { 635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 636 "invalid linkage for intrinsic global variable", &GV); 637 // Don't worry about emitting an error for it not being an array, 638 // visitGlobalValue will complain on appending non-array. 639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 640 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 641 PointerType *FuncPtrTy = 642 FunctionType::get(Type::getVoidTy(Context), false)-> 643 getPointerTo(DL.getProgramAddressSpace()); 644 Assert(STy && 645 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 646 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 647 STy->getTypeAtIndex(1) == FuncPtrTy, 648 "wrong type for intrinsic global variable", &GV); 649 Assert(STy->getNumElements() == 3, 650 "the third field of the element type is mandatory, " 651 "specify i8* null to migrate from the obsoleted 2-field form"); 652 Type *ETy = STy->getTypeAtIndex(2); 653 Assert(ETy->isPointerTy() && 654 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 655 "wrong type for intrinsic global variable", &GV); 656 } 657 } 658 659 if (GV.hasName() && (GV.getName() == "llvm.used" || 660 GV.getName() == "llvm.compiler.used")) { 661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 662 "invalid linkage for intrinsic global variable", &GV); 663 Type *GVType = GV.getValueType(); 664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 666 Assert(PTy, "wrong type for intrinsic global variable", &GV); 667 if (GV.hasInitializer()) { 668 const Constant *Init = GV.getInitializer(); 669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 670 Assert(InitArray, "wrong initalizer for intrinsic global variable", 671 Init); 672 for (Value *Op : InitArray->operands()) { 673 Value *V = Op->stripPointerCastsNoFollowAliases(); 674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 675 isa<GlobalAlias>(V), 676 "invalid llvm.used member", V); 677 Assert(V->hasName(), "members of llvm.used must be named", V); 678 } 679 } 680 } 681 } 682 683 // Visit any debug info attachments. 684 SmallVector<MDNode *, 1> MDs; 685 GV.getMetadata(LLVMContext::MD_dbg, MDs); 686 for (auto *MD : MDs) { 687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 688 visitDIGlobalVariableExpression(*GVE); 689 else 690 AssertDI(false, "!dbg attachment of global variable must be a " 691 "DIGlobalVariableExpression"); 692 } 693 694 if (!GV.hasInitializer()) { 695 visitGlobalValue(GV); 696 return; 697 } 698 699 // Walk any aggregate initializers looking for bitcasts between address spaces 700 visitConstantExprsRecursively(GV.getInitializer()); 701 702 visitGlobalValue(GV); 703 } 704 705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 706 SmallPtrSet<const GlobalAlias*, 4> Visited; 707 Visited.insert(&GA); 708 visitAliaseeSubExpr(Visited, GA, C); 709 } 710 711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 712 const GlobalAlias &GA, const Constant &C) { 713 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 714 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 715 &GA); 716 717 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 718 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 719 720 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 721 &GA); 722 } else { 723 // Only continue verifying subexpressions of GlobalAliases. 724 // Do not recurse into global initializers. 725 return; 726 } 727 } 728 729 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 730 visitConstantExprsRecursively(CE); 731 732 for (const Use &U : C.operands()) { 733 Value *V = &*U; 734 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 735 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 736 else if (const auto *C2 = dyn_cast<Constant>(V)) 737 visitAliaseeSubExpr(Visited, GA, *C2); 738 } 739 } 740 741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 742 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 743 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 744 "weak_odr, or external linkage!", 745 &GA); 746 const Constant *Aliasee = GA.getAliasee(); 747 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 748 Assert(GA.getType() == Aliasee->getType(), 749 "Alias and aliasee types should match!", &GA); 750 751 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 752 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 753 754 visitAliaseeSubExpr(GA, *Aliasee); 755 756 visitGlobalValue(GA); 757 } 758 759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 760 // There used to be various other llvm.dbg.* nodes, but we don't support 761 // upgrading them and we want to reserve the namespace for future uses. 762 if (NMD.getName().startswith("llvm.dbg.")) 763 AssertDI(NMD.getName() == "llvm.dbg.cu", 764 "unrecognized named metadata node in the llvm.dbg namespace", 765 &NMD); 766 for (const MDNode *MD : NMD.operands()) { 767 if (NMD.getName() == "llvm.dbg.cu") 768 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 769 770 if (!MD) 771 continue; 772 773 visitMDNode(*MD); 774 } 775 } 776 777 void Verifier::visitMDNode(const MDNode &MD) { 778 // Only visit each node once. Metadata can be mutually recursive, so this 779 // avoids infinite recursion here, as well as being an optimization. 780 if (!MDNodes.insert(&MD).second) 781 return; 782 783 switch (MD.getMetadataID()) { 784 default: 785 llvm_unreachable("Invalid MDNode subclass"); 786 case Metadata::MDTupleKind: 787 break; 788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 789 case Metadata::CLASS##Kind: \ 790 visit##CLASS(cast<CLASS>(MD)); \ 791 break; 792 #include "llvm/IR/Metadata.def" 793 } 794 795 for (const Metadata *Op : MD.operands()) { 796 if (!Op) 797 continue; 798 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 799 &MD, Op); 800 if (auto *N = dyn_cast<MDNode>(Op)) { 801 visitMDNode(*N); 802 continue; 803 } 804 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 805 visitValueAsMetadata(*V, nullptr); 806 continue; 807 } 808 } 809 810 // Check these last, so we diagnose problems in operands first. 811 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 812 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 813 } 814 815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 816 Assert(MD.getValue(), "Expected valid value", &MD); 817 Assert(!MD.getValue()->getType()->isMetadataTy(), 818 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 819 820 auto *L = dyn_cast<LocalAsMetadata>(&MD); 821 if (!L) 822 return; 823 824 Assert(F, "function-local metadata used outside a function", L); 825 826 // If this was an instruction, bb, or argument, verify that it is in the 827 // function that we expect. 828 Function *ActualF = nullptr; 829 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 830 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 831 ActualF = I->getParent()->getParent(); 832 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 833 ActualF = BB->getParent(); 834 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 835 ActualF = A->getParent(); 836 assert(ActualF && "Unimplemented function local metadata case!"); 837 838 Assert(ActualF == F, "function-local metadata used in wrong function", L); 839 } 840 841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 842 Metadata *MD = MDV.getMetadata(); 843 if (auto *N = dyn_cast<MDNode>(MD)) { 844 visitMDNode(*N); 845 return; 846 } 847 848 // Only visit each node once. Metadata can be mutually recursive, so this 849 // avoids infinite recursion here, as well as being an optimization. 850 if (!MDNodes.insert(MD).second) 851 return; 852 853 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 854 visitValueAsMetadata(*V, F); 855 } 856 857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 860 861 void Verifier::visitDILocation(const DILocation &N) { 862 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 863 "location requires a valid scope", &N, N.getRawScope()); 864 if (auto *IA = N.getRawInlinedAt()) 865 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 866 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 867 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 868 } 869 870 void Verifier::visitGenericDINode(const GenericDINode &N) { 871 AssertDI(N.getTag(), "invalid tag", &N); 872 } 873 874 void Verifier::visitDIScope(const DIScope &N) { 875 if (auto *F = N.getRawFile()) 876 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 877 } 878 879 void Verifier::visitDISubrange(const DISubrange &N) { 880 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 881 auto Count = N.getCount(); 882 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 883 &N); 884 AssertDI(!Count.is<ConstantInt*>() || 885 Count.get<ConstantInt*>()->getSExtValue() >= -1, 886 "invalid subrange count", &N); 887 } 888 889 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 890 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 891 } 892 893 void Verifier::visitDIBasicType(const DIBasicType &N) { 894 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 895 N.getTag() == dwarf::DW_TAG_unspecified_type, 896 "invalid tag", &N); 897 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 898 "has conflicting flags", &N); 899 } 900 901 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 902 // Common scope checks. 903 visitDIScope(N); 904 905 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 906 N.getTag() == dwarf::DW_TAG_pointer_type || 907 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 908 N.getTag() == dwarf::DW_TAG_reference_type || 909 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 910 N.getTag() == dwarf::DW_TAG_const_type || 911 N.getTag() == dwarf::DW_TAG_volatile_type || 912 N.getTag() == dwarf::DW_TAG_restrict_type || 913 N.getTag() == dwarf::DW_TAG_atomic_type || 914 N.getTag() == dwarf::DW_TAG_member || 915 N.getTag() == dwarf::DW_TAG_inheritance || 916 N.getTag() == dwarf::DW_TAG_friend, 917 "invalid tag", &N); 918 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 919 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 920 N.getRawExtraData()); 921 } 922 923 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 924 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 925 N.getRawBaseType()); 926 927 if (N.getDWARFAddressSpace()) { 928 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 929 N.getTag() == dwarf::DW_TAG_reference_type || 930 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 931 "DWARF address space only applies to pointer or reference types", 932 &N); 933 } 934 } 935 936 /// Detect mutually exclusive flags. 937 static bool hasConflictingReferenceFlags(unsigned Flags) { 938 return ((Flags & DINode::FlagLValueReference) && 939 (Flags & DINode::FlagRValueReference)) || 940 ((Flags & DINode::FlagTypePassByValue) && 941 (Flags & DINode::FlagTypePassByReference)); 942 } 943 944 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 945 auto *Params = dyn_cast<MDTuple>(&RawParams); 946 AssertDI(Params, "invalid template params", &N, &RawParams); 947 for (Metadata *Op : Params->operands()) { 948 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 949 &N, Params, Op); 950 } 951 } 952 953 void Verifier::visitDICompositeType(const DICompositeType &N) { 954 // Common scope checks. 955 visitDIScope(N); 956 957 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 958 N.getTag() == dwarf::DW_TAG_structure_type || 959 N.getTag() == dwarf::DW_TAG_union_type || 960 N.getTag() == dwarf::DW_TAG_enumeration_type || 961 N.getTag() == dwarf::DW_TAG_class_type || 962 N.getTag() == dwarf::DW_TAG_variant_part, 963 "invalid tag", &N); 964 965 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 966 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 967 N.getRawBaseType()); 968 969 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 970 "invalid composite elements", &N, N.getRawElements()); 971 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 972 N.getRawVTableHolder()); 973 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 974 "invalid reference flags", &N); 975 976 if (N.isVector()) { 977 const DINodeArray Elements = N.getElements(); 978 AssertDI(Elements.size() == 1 && 979 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 980 "invalid vector, expected one element of type subrange", &N); 981 } 982 983 if (auto *Params = N.getRawTemplateParams()) 984 visitTemplateParams(N, *Params); 985 986 if (N.getTag() == dwarf::DW_TAG_class_type || 987 N.getTag() == dwarf::DW_TAG_union_type) { 988 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 989 "class/union requires a filename", &N, N.getFile()); 990 } 991 992 if (auto *D = N.getRawDiscriminator()) { 993 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 994 "discriminator can only appear on variant part"); 995 } 996 } 997 998 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 999 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1000 if (auto *Types = N.getRawTypeArray()) { 1001 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1002 for (Metadata *Ty : N.getTypeArray()->operands()) { 1003 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1004 } 1005 } 1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1007 "invalid reference flags", &N); 1008 } 1009 1010 void Verifier::visitDIFile(const DIFile &N) { 1011 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1012 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1013 if (Checksum) { 1014 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1015 "invalid checksum kind", &N); 1016 size_t Size; 1017 switch (Checksum->Kind) { 1018 case DIFile::CSK_MD5: 1019 Size = 32; 1020 break; 1021 case DIFile::CSK_SHA1: 1022 Size = 40; 1023 break; 1024 } 1025 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1026 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1027 "invalid checksum", &N); 1028 } 1029 } 1030 1031 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1032 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1033 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1034 1035 // Don't bother verifying the compilation directory or producer string 1036 // as those could be empty. 1037 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1038 N.getRawFile()); 1039 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1040 N.getFile()); 1041 1042 verifySourceDebugInfo(N, *N.getFile()); 1043 1044 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1045 "invalid emission kind", &N); 1046 1047 if (auto *Array = N.getRawEnumTypes()) { 1048 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1049 for (Metadata *Op : N.getEnumTypes()->operands()) { 1050 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1051 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1052 "invalid enum type", &N, N.getEnumTypes(), Op); 1053 } 1054 } 1055 if (auto *Array = N.getRawRetainedTypes()) { 1056 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1057 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1058 AssertDI(Op && (isa<DIType>(Op) || 1059 (isa<DISubprogram>(Op) && 1060 !cast<DISubprogram>(Op)->isDefinition())), 1061 "invalid retained type", &N, Op); 1062 } 1063 } 1064 if (auto *Array = N.getRawGlobalVariables()) { 1065 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1066 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1067 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1068 "invalid global variable ref", &N, Op); 1069 } 1070 } 1071 if (auto *Array = N.getRawImportedEntities()) { 1072 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1073 for (Metadata *Op : N.getImportedEntities()->operands()) { 1074 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1075 &N, Op); 1076 } 1077 } 1078 if (auto *Array = N.getRawMacros()) { 1079 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1080 for (Metadata *Op : N.getMacros()->operands()) { 1081 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1082 } 1083 } 1084 CUVisited.insert(&N); 1085 } 1086 1087 void Verifier::visitDISubprogram(const DISubprogram &N) { 1088 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1089 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1090 if (auto *F = N.getRawFile()) 1091 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1092 else 1093 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1094 if (auto *T = N.getRawType()) 1095 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1096 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1097 N.getRawContainingType()); 1098 if (auto *Params = N.getRawTemplateParams()) 1099 visitTemplateParams(N, *Params); 1100 if (auto *S = N.getRawDeclaration()) 1101 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1102 "invalid subprogram declaration", &N, S); 1103 if (auto *RawNode = N.getRawRetainedNodes()) { 1104 auto *Node = dyn_cast<MDTuple>(RawNode); 1105 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1106 for (Metadata *Op : Node->operands()) { 1107 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1108 "invalid retained nodes, expected DILocalVariable or DILabel", 1109 &N, Node, Op); 1110 } 1111 } 1112 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1113 "invalid reference flags", &N); 1114 1115 auto *Unit = N.getRawUnit(); 1116 if (N.isDefinition()) { 1117 // Subprogram definitions (not part of the type hierarchy). 1118 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1119 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1120 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1121 if (N.getFile()) 1122 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1123 } else { 1124 // Subprogram declarations (part of the type hierarchy). 1125 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1126 } 1127 1128 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1129 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1130 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1131 for (Metadata *Op : ThrownTypes->operands()) 1132 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1133 Op); 1134 } 1135 1136 if (N.areAllCallsDescribed()) 1137 AssertDI(N.isDefinition(), 1138 "DIFlagAllCallsDescribed must be attached to a definition"); 1139 } 1140 1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1142 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1143 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1144 "invalid local scope", &N, N.getRawScope()); 1145 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1146 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1147 } 1148 1149 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1150 visitDILexicalBlockBase(N); 1151 1152 AssertDI(N.getLine() || !N.getColumn(), 1153 "cannot have column info without line info", &N); 1154 } 1155 1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1157 visitDILexicalBlockBase(N); 1158 } 1159 1160 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1161 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1162 if (auto *S = N.getRawScope()) 1163 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1164 if (auto *S = N.getRawDecl()) 1165 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1166 } 1167 1168 void Verifier::visitDINamespace(const DINamespace &N) { 1169 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1170 if (auto *S = N.getRawScope()) 1171 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1172 } 1173 1174 void Verifier::visitDIMacro(const DIMacro &N) { 1175 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1176 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1177 "invalid macinfo type", &N); 1178 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1179 if (!N.getValue().empty()) { 1180 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1181 } 1182 } 1183 1184 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1185 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1186 "invalid macinfo type", &N); 1187 if (auto *F = N.getRawFile()) 1188 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1189 1190 if (auto *Array = N.getRawElements()) { 1191 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1192 for (Metadata *Op : N.getElements()->operands()) { 1193 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1194 } 1195 } 1196 } 1197 1198 void Verifier::visitDIModule(const DIModule &N) { 1199 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1200 AssertDI(!N.getName().empty(), "anonymous module", &N); 1201 } 1202 1203 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1204 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1205 } 1206 1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1208 visitDITemplateParameter(N); 1209 1210 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1211 &N); 1212 } 1213 1214 void Verifier::visitDITemplateValueParameter( 1215 const DITemplateValueParameter &N) { 1216 visitDITemplateParameter(N); 1217 1218 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1219 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1220 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1221 "invalid tag", &N); 1222 } 1223 1224 void Verifier::visitDIVariable(const DIVariable &N) { 1225 if (auto *S = N.getRawScope()) 1226 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1227 if (auto *F = N.getRawFile()) 1228 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1229 } 1230 1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1232 // Checks common to all variables. 1233 visitDIVariable(N); 1234 1235 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1236 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1237 AssertDI(N.getType(), "missing global variable type", &N); 1238 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1239 AssertDI(isa<DIDerivedType>(Member), 1240 "invalid static data member declaration", &N, Member); 1241 } 1242 } 1243 1244 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1245 // Checks common to all variables. 1246 visitDIVariable(N); 1247 1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1249 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1250 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1251 "local variable requires a valid scope", &N, N.getRawScope()); 1252 if (auto Ty = N.getType()) 1253 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1254 } 1255 1256 void Verifier::visitDILabel(const DILabel &N) { 1257 if (auto *S = N.getRawScope()) 1258 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1259 if (auto *F = N.getRawFile()) 1260 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1261 1262 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1263 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1264 "label requires a valid scope", &N, N.getRawScope()); 1265 } 1266 1267 void Verifier::visitDIExpression(const DIExpression &N) { 1268 AssertDI(N.isValid(), "invalid expression", &N); 1269 } 1270 1271 void Verifier::visitDIGlobalVariableExpression( 1272 const DIGlobalVariableExpression &GVE) { 1273 AssertDI(GVE.getVariable(), "missing variable"); 1274 if (auto *Var = GVE.getVariable()) 1275 visitDIGlobalVariable(*Var); 1276 if (auto *Expr = GVE.getExpression()) { 1277 visitDIExpression(*Expr); 1278 if (auto Fragment = Expr->getFragmentInfo()) 1279 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1280 } 1281 } 1282 1283 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1284 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1285 if (auto *T = N.getRawType()) 1286 AssertDI(isType(T), "invalid type ref", &N, T); 1287 if (auto *F = N.getRawFile()) 1288 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1289 } 1290 1291 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1292 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1293 N.getTag() == dwarf::DW_TAG_imported_declaration, 1294 "invalid tag", &N); 1295 if (auto *S = N.getRawScope()) 1296 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1297 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1298 N.getRawEntity()); 1299 } 1300 1301 void Verifier::visitComdat(const Comdat &C) { 1302 // The Module is invalid if the GlobalValue has private linkage. Entities 1303 // with private linkage don't have entries in the symbol table. 1304 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1305 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1306 GV); 1307 } 1308 1309 void Verifier::visitModuleIdents(const Module &M) { 1310 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1311 if (!Idents) 1312 return; 1313 1314 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1315 // Scan each llvm.ident entry and make sure that this requirement is met. 1316 for (const MDNode *N : Idents->operands()) { 1317 Assert(N->getNumOperands() == 1, 1318 "incorrect number of operands in llvm.ident metadata", N); 1319 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1320 ("invalid value for llvm.ident metadata entry operand" 1321 "(the operand should be a string)"), 1322 N->getOperand(0)); 1323 } 1324 } 1325 1326 void Verifier::visitModuleCommandLines(const Module &M) { 1327 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1328 if (!CommandLines) 1329 return; 1330 1331 // llvm.commandline takes a list of metadata entry. Each entry has only one 1332 // string. Scan each llvm.commandline entry and make sure that this 1333 // requirement is met. 1334 for (const MDNode *N : CommandLines->operands()) { 1335 Assert(N->getNumOperands() == 1, 1336 "incorrect number of operands in llvm.commandline metadata", N); 1337 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1338 ("invalid value for llvm.commandline metadata entry operand" 1339 "(the operand should be a string)"), 1340 N->getOperand(0)); 1341 } 1342 } 1343 1344 void Verifier::visitModuleFlags(const Module &M) { 1345 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1346 if (!Flags) return; 1347 1348 // Scan each flag, and track the flags and requirements. 1349 DenseMap<const MDString*, const MDNode*> SeenIDs; 1350 SmallVector<const MDNode*, 16> Requirements; 1351 for (const MDNode *MDN : Flags->operands()) 1352 visitModuleFlag(MDN, SeenIDs, Requirements); 1353 1354 // Validate that the requirements in the module are valid. 1355 for (const MDNode *Requirement : Requirements) { 1356 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1357 const Metadata *ReqValue = Requirement->getOperand(1); 1358 1359 const MDNode *Op = SeenIDs.lookup(Flag); 1360 if (!Op) { 1361 CheckFailed("invalid requirement on flag, flag is not present in module", 1362 Flag); 1363 continue; 1364 } 1365 1366 if (Op->getOperand(2) != ReqValue) { 1367 CheckFailed(("invalid requirement on flag, " 1368 "flag does not have the required value"), 1369 Flag); 1370 continue; 1371 } 1372 } 1373 } 1374 1375 void 1376 Verifier::visitModuleFlag(const MDNode *Op, 1377 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1378 SmallVectorImpl<const MDNode *> &Requirements) { 1379 // Each module flag should have three arguments, the merge behavior (a 1380 // constant int), the flag ID (an MDString), and the value. 1381 Assert(Op->getNumOperands() == 3, 1382 "incorrect number of operands in module flag", Op); 1383 Module::ModFlagBehavior MFB; 1384 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1385 Assert( 1386 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1387 "invalid behavior operand in module flag (expected constant integer)", 1388 Op->getOperand(0)); 1389 Assert(false, 1390 "invalid behavior operand in module flag (unexpected constant)", 1391 Op->getOperand(0)); 1392 } 1393 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1394 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1395 Op->getOperand(1)); 1396 1397 // Sanity check the values for behaviors with additional requirements. 1398 switch (MFB) { 1399 case Module::Error: 1400 case Module::Warning: 1401 case Module::Override: 1402 // These behavior types accept any value. 1403 break; 1404 1405 case Module::Max: { 1406 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1407 "invalid value for 'max' module flag (expected constant integer)", 1408 Op->getOperand(2)); 1409 break; 1410 } 1411 1412 case Module::Require: { 1413 // The value should itself be an MDNode with two operands, a flag ID (an 1414 // MDString), and a value. 1415 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1416 Assert(Value && Value->getNumOperands() == 2, 1417 "invalid value for 'require' module flag (expected metadata pair)", 1418 Op->getOperand(2)); 1419 Assert(isa<MDString>(Value->getOperand(0)), 1420 ("invalid value for 'require' module flag " 1421 "(first value operand should be a string)"), 1422 Value->getOperand(0)); 1423 1424 // Append it to the list of requirements, to check once all module flags are 1425 // scanned. 1426 Requirements.push_back(Value); 1427 break; 1428 } 1429 1430 case Module::Append: 1431 case Module::AppendUnique: { 1432 // These behavior types require the operand be an MDNode. 1433 Assert(isa<MDNode>(Op->getOperand(2)), 1434 "invalid value for 'append'-type module flag " 1435 "(expected a metadata node)", 1436 Op->getOperand(2)); 1437 break; 1438 } 1439 } 1440 1441 // Unless this is a "requires" flag, check the ID is unique. 1442 if (MFB != Module::Require) { 1443 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1444 Assert(Inserted, 1445 "module flag identifiers must be unique (or of 'require' type)", ID); 1446 } 1447 1448 if (ID->getString() == "wchar_size") { 1449 ConstantInt *Value 1450 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1451 Assert(Value, "wchar_size metadata requires constant integer argument"); 1452 } 1453 1454 if (ID->getString() == "Linker Options") { 1455 // If the llvm.linker.options named metadata exists, we assume that the 1456 // bitcode reader has upgraded the module flag. Otherwise the flag might 1457 // have been created by a client directly. 1458 Assert(M.getNamedMetadata("llvm.linker.options"), 1459 "'Linker Options' named metadata no longer supported"); 1460 } 1461 1462 if (ID->getString() == "CG Profile") { 1463 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1464 visitModuleFlagCGProfileEntry(MDO); 1465 } 1466 } 1467 1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1469 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1470 if (!FuncMDO) 1471 return; 1472 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1473 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1474 FuncMDO); 1475 }; 1476 auto Node = dyn_cast_or_null<MDNode>(MDO); 1477 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1478 CheckFunction(Node->getOperand(0)); 1479 CheckFunction(Node->getOperand(1)); 1480 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1481 Assert(Count && Count->getType()->isIntegerTy(), 1482 "expected an integer constant", Node->getOperand(2)); 1483 } 1484 1485 /// Return true if this attribute kind only applies to functions. 1486 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1487 switch (Kind) { 1488 case Attribute::NoReturn: 1489 case Attribute::NoCfCheck: 1490 case Attribute::NoUnwind: 1491 case Attribute::NoInline: 1492 case Attribute::AlwaysInline: 1493 case Attribute::OptimizeForSize: 1494 case Attribute::StackProtect: 1495 case Attribute::StackProtectReq: 1496 case Attribute::StackProtectStrong: 1497 case Attribute::SafeStack: 1498 case Attribute::ShadowCallStack: 1499 case Attribute::NoRedZone: 1500 case Attribute::NoImplicitFloat: 1501 case Attribute::Naked: 1502 case Attribute::InlineHint: 1503 case Attribute::StackAlignment: 1504 case Attribute::UWTable: 1505 case Attribute::NonLazyBind: 1506 case Attribute::ReturnsTwice: 1507 case Attribute::SanitizeAddress: 1508 case Attribute::SanitizeHWAddress: 1509 case Attribute::SanitizeThread: 1510 case Attribute::SanitizeMemory: 1511 case Attribute::MinSize: 1512 case Attribute::NoDuplicate: 1513 case Attribute::Builtin: 1514 case Attribute::NoBuiltin: 1515 case Attribute::Cold: 1516 case Attribute::OptForFuzzing: 1517 case Attribute::OptimizeNone: 1518 case Attribute::JumpTable: 1519 case Attribute::Convergent: 1520 case Attribute::ArgMemOnly: 1521 case Attribute::NoRecurse: 1522 case Attribute::InaccessibleMemOnly: 1523 case Attribute::InaccessibleMemOrArgMemOnly: 1524 case Attribute::AllocSize: 1525 case Attribute::SpeculativeLoadHardening: 1526 case Attribute::Speculatable: 1527 case Attribute::StrictFP: 1528 return true; 1529 default: 1530 break; 1531 } 1532 return false; 1533 } 1534 1535 /// Return true if this is a function attribute that can also appear on 1536 /// arguments. 1537 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1538 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1539 Kind == Attribute::ReadNone; 1540 } 1541 1542 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1543 const Value *V) { 1544 for (Attribute A : Attrs) { 1545 if (A.isStringAttribute()) 1546 continue; 1547 1548 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1549 if (!IsFunction) { 1550 CheckFailed("Attribute '" + A.getAsString() + 1551 "' only applies to functions!", 1552 V); 1553 return; 1554 } 1555 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1556 CheckFailed("Attribute '" + A.getAsString() + 1557 "' does not apply to functions!", 1558 V); 1559 return; 1560 } 1561 } 1562 } 1563 1564 // VerifyParameterAttrs - Check the given attributes for an argument or return 1565 // value of the specified type. The value V is printed in error messages. 1566 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1567 const Value *V) { 1568 if (!Attrs.hasAttributes()) 1569 return; 1570 1571 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1572 1573 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1574 Assert(Attrs.getNumAttributes() == 1, 1575 "Attribute 'immarg' is incompatible with other attributes", V); 1576 } 1577 1578 // Check for mutually incompatible attributes. Only inreg is compatible with 1579 // sret. 1580 unsigned AttrCount = 0; 1581 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1582 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1583 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1584 Attrs.hasAttribute(Attribute::InReg); 1585 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1586 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1587 "and 'sret' are incompatible!", 1588 V); 1589 1590 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1591 Attrs.hasAttribute(Attribute::ReadOnly)), 1592 "Attributes " 1593 "'inalloca and readonly' are incompatible!", 1594 V); 1595 1596 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1597 Attrs.hasAttribute(Attribute::Returned)), 1598 "Attributes " 1599 "'sret and returned' are incompatible!", 1600 V); 1601 1602 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1603 Attrs.hasAttribute(Attribute::SExt)), 1604 "Attributes " 1605 "'zeroext and signext' are incompatible!", 1606 V); 1607 1608 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1609 Attrs.hasAttribute(Attribute::ReadOnly)), 1610 "Attributes " 1611 "'readnone and readonly' are incompatible!", 1612 V); 1613 1614 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1615 Attrs.hasAttribute(Attribute::WriteOnly)), 1616 "Attributes " 1617 "'readnone and writeonly' are incompatible!", 1618 V); 1619 1620 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1621 Attrs.hasAttribute(Attribute::WriteOnly)), 1622 "Attributes " 1623 "'readonly and writeonly' are incompatible!", 1624 V); 1625 1626 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1627 Attrs.hasAttribute(Attribute::AlwaysInline)), 1628 "Attributes " 1629 "'noinline and alwaysinline' are incompatible!", 1630 V); 1631 1632 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1633 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1634 "Wrong types for attribute: " + 1635 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1636 V); 1637 1638 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1639 SmallPtrSet<Type*, 4> Visited; 1640 if (!PTy->getElementType()->isSized(&Visited)) { 1641 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1642 !Attrs.hasAttribute(Attribute::InAlloca), 1643 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1644 V); 1645 } 1646 if (!isa<PointerType>(PTy->getElementType())) 1647 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1648 "Attribute 'swifterror' only applies to parameters " 1649 "with pointer to pointer type!", 1650 V); 1651 } else { 1652 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1653 "Attribute 'byval' only applies to parameters with pointer type!", 1654 V); 1655 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1656 "Attribute 'swifterror' only applies to parameters " 1657 "with pointer type!", 1658 V); 1659 } 1660 } 1661 1662 // Check parameter attributes against a function type. 1663 // The value V is printed in error messages. 1664 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1665 const Value *V, bool IsIntrinsic) { 1666 if (Attrs.isEmpty()) 1667 return; 1668 1669 bool SawNest = false; 1670 bool SawReturned = false; 1671 bool SawSRet = false; 1672 bool SawSwiftSelf = false; 1673 bool SawSwiftError = false; 1674 1675 // Verify return value attributes. 1676 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1677 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1678 !RetAttrs.hasAttribute(Attribute::Nest) && 1679 !RetAttrs.hasAttribute(Attribute::StructRet) && 1680 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1681 !RetAttrs.hasAttribute(Attribute::Returned) && 1682 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1683 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1684 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1685 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1686 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1687 "values!", 1688 V); 1689 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1690 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1691 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1692 "Attribute '" + RetAttrs.getAsString() + 1693 "' does not apply to function returns", 1694 V); 1695 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1696 1697 // Verify parameter attributes. 1698 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1699 Type *Ty = FT->getParamType(i); 1700 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1701 1702 if (!IsIntrinsic) { 1703 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1704 "immarg attribute only applies to intrinsics",V); 1705 } 1706 1707 verifyParameterAttrs(ArgAttrs, Ty, V); 1708 1709 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1710 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1711 SawNest = true; 1712 } 1713 1714 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1715 Assert(!SawReturned, "More than one parameter has attribute returned!", 1716 V); 1717 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1718 "Incompatible argument and return types for 'returned' attribute", 1719 V); 1720 SawReturned = true; 1721 } 1722 1723 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1724 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1725 Assert(i == 0 || i == 1, 1726 "Attribute 'sret' is not on first or second parameter!", V); 1727 SawSRet = true; 1728 } 1729 1730 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1731 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1732 SawSwiftSelf = true; 1733 } 1734 1735 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1736 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1737 V); 1738 SawSwiftError = true; 1739 } 1740 1741 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1742 Assert(i == FT->getNumParams() - 1, 1743 "inalloca isn't on the last parameter!", V); 1744 } 1745 } 1746 1747 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1748 return; 1749 1750 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1751 1752 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1753 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1754 "Attributes 'readnone and readonly' are incompatible!", V); 1755 1756 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1757 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1758 "Attributes 'readnone and writeonly' are incompatible!", V); 1759 1760 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1761 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1762 "Attributes 'readonly and writeonly' are incompatible!", V); 1763 1764 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1765 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1766 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1767 "incompatible!", 1768 V); 1769 1770 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1771 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1772 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1773 1774 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1775 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1776 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1777 1778 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1779 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1780 "Attribute 'optnone' requires 'noinline'!", V); 1781 1782 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1783 "Attributes 'optsize and optnone' are incompatible!", V); 1784 1785 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1786 "Attributes 'minsize and optnone' are incompatible!", V); 1787 } 1788 1789 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1790 const GlobalValue *GV = cast<GlobalValue>(V); 1791 Assert(GV->hasGlobalUnnamedAddr(), 1792 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1793 } 1794 1795 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1796 std::pair<unsigned, Optional<unsigned>> Args = 1797 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1798 1799 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1800 if (ParamNo >= FT->getNumParams()) { 1801 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1802 return false; 1803 } 1804 1805 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1806 CheckFailed("'allocsize' " + Name + 1807 " argument must refer to an integer parameter", 1808 V); 1809 return false; 1810 } 1811 1812 return true; 1813 }; 1814 1815 if (!CheckParam("element size", Args.first)) 1816 return; 1817 1818 if (Args.second && !CheckParam("number of elements", *Args.second)) 1819 return; 1820 } 1821 } 1822 1823 void Verifier::verifyFunctionMetadata( 1824 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1825 for (const auto &Pair : MDs) { 1826 if (Pair.first == LLVMContext::MD_prof) { 1827 MDNode *MD = Pair.second; 1828 Assert(MD->getNumOperands() >= 2, 1829 "!prof annotations should have no less than 2 operands", MD); 1830 1831 // Check first operand. 1832 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1833 MD); 1834 Assert(isa<MDString>(MD->getOperand(0)), 1835 "expected string with name of the !prof annotation", MD); 1836 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1837 StringRef ProfName = MDS->getString(); 1838 Assert(ProfName.equals("function_entry_count") || 1839 ProfName.equals("synthetic_function_entry_count"), 1840 "first operand should be 'function_entry_count'" 1841 " or 'synthetic_function_entry_count'", 1842 MD); 1843 1844 // Check second operand. 1845 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1846 MD); 1847 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1848 "expected integer argument to function_entry_count", MD); 1849 } 1850 } 1851 } 1852 1853 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1854 if (!ConstantExprVisited.insert(EntryC).second) 1855 return; 1856 1857 SmallVector<const Constant *, 16> Stack; 1858 Stack.push_back(EntryC); 1859 1860 while (!Stack.empty()) { 1861 const Constant *C = Stack.pop_back_val(); 1862 1863 // Check this constant expression. 1864 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1865 visitConstantExpr(CE); 1866 1867 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1868 // Global Values get visited separately, but we do need to make sure 1869 // that the global value is in the correct module 1870 Assert(GV->getParent() == &M, "Referencing global in another module!", 1871 EntryC, &M, GV, GV->getParent()); 1872 continue; 1873 } 1874 1875 // Visit all sub-expressions. 1876 for (const Use &U : C->operands()) { 1877 const auto *OpC = dyn_cast<Constant>(U); 1878 if (!OpC) 1879 continue; 1880 if (!ConstantExprVisited.insert(OpC).second) 1881 continue; 1882 Stack.push_back(OpC); 1883 } 1884 } 1885 } 1886 1887 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1888 if (CE->getOpcode() == Instruction::BitCast) 1889 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1890 CE->getType()), 1891 "Invalid bitcast", CE); 1892 1893 if (CE->getOpcode() == Instruction::IntToPtr || 1894 CE->getOpcode() == Instruction::PtrToInt) { 1895 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1896 ? CE->getType() 1897 : CE->getOperand(0)->getType(); 1898 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1899 ? "inttoptr not supported for non-integral pointers" 1900 : "ptrtoint not supported for non-integral pointers"; 1901 Assert( 1902 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1903 Msg); 1904 } 1905 } 1906 1907 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1908 // There shouldn't be more attribute sets than there are parameters plus the 1909 // function and return value. 1910 return Attrs.getNumAttrSets() <= Params + 2; 1911 } 1912 1913 /// Verify that statepoint intrinsic is well formed. 1914 void Verifier::verifyStatepoint(const CallBase &Call) { 1915 assert(Call.getCalledFunction() && 1916 Call.getCalledFunction()->getIntrinsicID() == 1917 Intrinsic::experimental_gc_statepoint); 1918 1919 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1920 !Call.onlyAccessesArgMemory(), 1921 "gc.statepoint must read and write all memory to preserve " 1922 "reordering restrictions required by safepoint semantics", 1923 Call); 1924 1925 const int64_t NumPatchBytes = 1926 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1927 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1928 Assert(NumPatchBytes >= 0, 1929 "gc.statepoint number of patchable bytes must be " 1930 "positive", 1931 Call); 1932 1933 const Value *Target = Call.getArgOperand(2); 1934 auto *PT = dyn_cast<PointerType>(Target->getType()); 1935 Assert(PT && PT->getElementType()->isFunctionTy(), 1936 "gc.statepoint callee must be of function pointer type", Call, Target); 1937 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1938 1939 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1940 Assert(NumCallArgs >= 0, 1941 "gc.statepoint number of arguments to underlying call " 1942 "must be positive", 1943 Call); 1944 const int NumParams = (int)TargetFuncType->getNumParams(); 1945 if (TargetFuncType->isVarArg()) { 1946 Assert(NumCallArgs >= NumParams, 1947 "gc.statepoint mismatch in number of vararg call args", Call); 1948 1949 // TODO: Remove this limitation 1950 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1951 "gc.statepoint doesn't support wrapping non-void " 1952 "vararg functions yet", 1953 Call); 1954 } else 1955 Assert(NumCallArgs == NumParams, 1956 "gc.statepoint mismatch in number of call args", Call); 1957 1958 const uint64_t Flags 1959 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 1960 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1961 "unknown flag used in gc.statepoint flags argument", Call); 1962 1963 // Verify that the types of the call parameter arguments match 1964 // the type of the wrapped callee. 1965 AttributeList Attrs = Call.getAttributes(); 1966 for (int i = 0; i < NumParams; i++) { 1967 Type *ParamType = TargetFuncType->getParamType(i); 1968 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 1969 Assert(ArgType == ParamType, 1970 "gc.statepoint call argument does not match wrapped " 1971 "function type", 1972 Call); 1973 1974 if (TargetFuncType->isVarArg()) { 1975 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 1976 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 1977 "Attribute 'sret' cannot be used for vararg call arguments!", 1978 Call); 1979 } 1980 } 1981 1982 const int EndCallArgsInx = 4 + NumCallArgs; 1983 1984 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 1985 Assert(isa<ConstantInt>(NumTransitionArgsV), 1986 "gc.statepoint number of transition arguments " 1987 "must be constant integer", 1988 Call); 1989 const int NumTransitionArgs = 1990 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1991 Assert(NumTransitionArgs >= 0, 1992 "gc.statepoint number of transition arguments must be positive", Call); 1993 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1994 1995 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 1996 Assert(isa<ConstantInt>(NumDeoptArgsV), 1997 "gc.statepoint number of deoptimization arguments " 1998 "must be constant integer", 1999 Call); 2000 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2001 Assert(NumDeoptArgs >= 0, 2002 "gc.statepoint number of deoptimization arguments " 2003 "must be positive", 2004 Call); 2005 2006 const int ExpectedNumArgs = 2007 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2008 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2009 "gc.statepoint too few arguments according to length fields", Call); 2010 2011 // Check that the only uses of this gc.statepoint are gc.result or 2012 // gc.relocate calls which are tied to this statepoint and thus part 2013 // of the same statepoint sequence 2014 for (const User *U : Call.users()) { 2015 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2016 Assert(UserCall, "illegal use of statepoint token", Call, U); 2017 if (!UserCall) 2018 continue; 2019 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2020 "gc.result or gc.relocate are the only value uses " 2021 "of a gc.statepoint", 2022 Call, U); 2023 if (isa<GCResultInst>(UserCall)) { 2024 Assert(UserCall->getArgOperand(0) == &Call, 2025 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2026 } else if (isa<GCRelocateInst>(Call)) { 2027 Assert(UserCall->getArgOperand(0) == &Call, 2028 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2029 } 2030 } 2031 2032 // Note: It is legal for a single derived pointer to be listed multiple 2033 // times. It's non-optimal, but it is legal. It can also happen after 2034 // insertion if we strip a bitcast away. 2035 // Note: It is really tempting to check that each base is relocated and 2036 // that a derived pointer is never reused as a base pointer. This turns 2037 // out to be problematic since optimizations run after safepoint insertion 2038 // can recognize equality properties that the insertion logic doesn't know 2039 // about. See example statepoint.ll in the verifier subdirectory 2040 } 2041 2042 void Verifier::verifyFrameRecoverIndices() { 2043 for (auto &Counts : FrameEscapeInfo) { 2044 Function *F = Counts.first; 2045 unsigned EscapedObjectCount = Counts.second.first; 2046 unsigned MaxRecoveredIndex = Counts.second.second; 2047 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2048 "all indices passed to llvm.localrecover must be less than the " 2049 "number of arguments passed to llvm.localescape in the parent " 2050 "function", 2051 F); 2052 } 2053 } 2054 2055 static Instruction *getSuccPad(Instruction *Terminator) { 2056 BasicBlock *UnwindDest; 2057 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2058 UnwindDest = II->getUnwindDest(); 2059 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2060 UnwindDest = CSI->getUnwindDest(); 2061 else 2062 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2063 return UnwindDest->getFirstNonPHI(); 2064 } 2065 2066 void Verifier::verifySiblingFuncletUnwinds() { 2067 SmallPtrSet<Instruction *, 8> Visited; 2068 SmallPtrSet<Instruction *, 8> Active; 2069 for (const auto &Pair : SiblingFuncletInfo) { 2070 Instruction *PredPad = Pair.first; 2071 if (Visited.count(PredPad)) 2072 continue; 2073 Active.insert(PredPad); 2074 Instruction *Terminator = Pair.second; 2075 do { 2076 Instruction *SuccPad = getSuccPad(Terminator); 2077 if (Active.count(SuccPad)) { 2078 // Found a cycle; report error 2079 Instruction *CyclePad = SuccPad; 2080 SmallVector<Instruction *, 8> CycleNodes; 2081 do { 2082 CycleNodes.push_back(CyclePad); 2083 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2084 if (CycleTerminator != CyclePad) 2085 CycleNodes.push_back(CycleTerminator); 2086 CyclePad = getSuccPad(CycleTerminator); 2087 } while (CyclePad != SuccPad); 2088 Assert(false, "EH pads can't handle each other's exceptions", 2089 ArrayRef<Instruction *>(CycleNodes)); 2090 } 2091 // Don't re-walk a node we've already checked 2092 if (!Visited.insert(SuccPad).second) 2093 break; 2094 // Walk to this successor if it has a map entry. 2095 PredPad = SuccPad; 2096 auto TermI = SiblingFuncletInfo.find(PredPad); 2097 if (TermI == SiblingFuncletInfo.end()) 2098 break; 2099 Terminator = TermI->second; 2100 Active.insert(PredPad); 2101 } while (true); 2102 // Each node only has one successor, so we've walked all the active 2103 // nodes' successors. 2104 Active.clear(); 2105 } 2106 } 2107 2108 // visitFunction - Verify that a function is ok. 2109 // 2110 void Verifier::visitFunction(const Function &F) { 2111 visitGlobalValue(F); 2112 2113 // Check function arguments. 2114 FunctionType *FT = F.getFunctionType(); 2115 unsigned NumArgs = F.arg_size(); 2116 2117 Assert(&Context == &F.getContext(), 2118 "Function context does not match Module context!", &F); 2119 2120 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2121 Assert(FT->getNumParams() == NumArgs, 2122 "# formal arguments must match # of arguments for function type!", &F, 2123 FT); 2124 Assert(F.getReturnType()->isFirstClassType() || 2125 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2126 "Functions cannot return aggregate values!", &F); 2127 2128 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2129 "Invalid struct return type!", &F); 2130 2131 AttributeList Attrs = F.getAttributes(); 2132 2133 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2134 "Attribute after last parameter!", &F); 2135 2136 bool isLLVMdotName = F.getName().size() >= 5 && 2137 F.getName().substr(0, 5) == "llvm."; 2138 2139 // Check function attributes. 2140 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2141 2142 // On function declarations/definitions, we do not support the builtin 2143 // attribute. We do not check this in VerifyFunctionAttrs since that is 2144 // checking for Attributes that can/can not ever be on functions. 2145 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2146 "Attribute 'builtin' can only be applied to a callsite.", &F); 2147 2148 // Check that this function meets the restrictions on this calling convention. 2149 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2150 // restrictions can be lifted. 2151 switch (F.getCallingConv()) { 2152 default: 2153 case CallingConv::C: 2154 break; 2155 case CallingConv::AMDGPU_KERNEL: 2156 case CallingConv::SPIR_KERNEL: 2157 Assert(F.getReturnType()->isVoidTy(), 2158 "Calling convention requires void return type", &F); 2159 LLVM_FALLTHROUGH; 2160 case CallingConv::AMDGPU_VS: 2161 case CallingConv::AMDGPU_HS: 2162 case CallingConv::AMDGPU_GS: 2163 case CallingConv::AMDGPU_PS: 2164 case CallingConv::AMDGPU_CS: 2165 Assert(!F.hasStructRetAttr(), 2166 "Calling convention does not allow sret", &F); 2167 LLVM_FALLTHROUGH; 2168 case CallingConv::Fast: 2169 case CallingConv::Cold: 2170 case CallingConv::Intel_OCL_BI: 2171 case CallingConv::PTX_Kernel: 2172 case CallingConv::PTX_Device: 2173 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2174 "perfect forwarding!", 2175 &F); 2176 break; 2177 } 2178 2179 // Check that the argument values match the function type for this function... 2180 unsigned i = 0; 2181 for (const Argument &Arg : F.args()) { 2182 Assert(Arg.getType() == FT->getParamType(i), 2183 "Argument value does not match function argument type!", &Arg, 2184 FT->getParamType(i)); 2185 Assert(Arg.getType()->isFirstClassType(), 2186 "Function arguments must have first-class types!", &Arg); 2187 if (!isLLVMdotName) { 2188 Assert(!Arg.getType()->isMetadataTy(), 2189 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2190 Assert(!Arg.getType()->isTokenTy(), 2191 "Function takes token but isn't an intrinsic", &Arg, &F); 2192 } 2193 2194 // Check that swifterror argument is only used by loads and stores. 2195 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2196 verifySwiftErrorValue(&Arg); 2197 } 2198 ++i; 2199 } 2200 2201 if (!isLLVMdotName) 2202 Assert(!F.getReturnType()->isTokenTy(), 2203 "Functions returns a token but isn't an intrinsic", &F); 2204 2205 // Get the function metadata attachments. 2206 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2207 F.getAllMetadata(MDs); 2208 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2209 verifyFunctionMetadata(MDs); 2210 2211 // Check validity of the personality function 2212 if (F.hasPersonalityFn()) { 2213 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2214 if (Per) 2215 Assert(Per->getParent() == F.getParent(), 2216 "Referencing personality function in another module!", 2217 &F, F.getParent(), Per, Per->getParent()); 2218 } 2219 2220 if (F.isMaterializable()) { 2221 // Function has a body somewhere we can't see. 2222 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2223 MDs.empty() ? nullptr : MDs.front().second); 2224 } else if (F.isDeclaration()) { 2225 for (const auto &I : MDs) { 2226 AssertDI(I.first != LLVMContext::MD_dbg, 2227 "function declaration may not have a !dbg attachment", &F); 2228 Assert(I.first != LLVMContext::MD_prof, 2229 "function declaration may not have a !prof attachment", &F); 2230 2231 // Verify the metadata itself. 2232 visitMDNode(*I.second); 2233 } 2234 Assert(!F.hasPersonalityFn(), 2235 "Function declaration shouldn't have a personality routine", &F); 2236 } else { 2237 // Verify that this function (which has a body) is not named "llvm.*". It 2238 // is not legal to define intrinsics. 2239 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2240 2241 // Check the entry node 2242 const BasicBlock *Entry = &F.getEntryBlock(); 2243 Assert(pred_empty(Entry), 2244 "Entry block to function must not have predecessors!", Entry); 2245 2246 // The address of the entry block cannot be taken, unless it is dead. 2247 if (Entry->hasAddressTaken()) { 2248 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2249 "blockaddress may not be used with the entry block!", Entry); 2250 } 2251 2252 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2253 // Visit metadata attachments. 2254 for (const auto &I : MDs) { 2255 // Verify that the attachment is legal. 2256 switch (I.first) { 2257 default: 2258 break; 2259 case LLVMContext::MD_dbg: { 2260 ++NumDebugAttachments; 2261 AssertDI(NumDebugAttachments == 1, 2262 "function must have a single !dbg attachment", &F, I.second); 2263 AssertDI(isa<DISubprogram>(I.second), 2264 "function !dbg attachment must be a subprogram", &F, I.second); 2265 auto *SP = cast<DISubprogram>(I.second); 2266 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2267 AssertDI(!AttachedTo || AttachedTo == &F, 2268 "DISubprogram attached to more than one function", SP, &F); 2269 AttachedTo = &F; 2270 break; 2271 } 2272 case LLVMContext::MD_prof: 2273 ++NumProfAttachments; 2274 Assert(NumProfAttachments == 1, 2275 "function must have a single !prof attachment", &F, I.second); 2276 break; 2277 } 2278 2279 // Verify the metadata itself. 2280 visitMDNode(*I.second); 2281 } 2282 } 2283 2284 // If this function is actually an intrinsic, verify that it is only used in 2285 // direct call/invokes, never having its "address taken". 2286 // Only do this if the module is materialized, otherwise we don't have all the 2287 // uses. 2288 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2289 const User *U; 2290 if (F.hasAddressTaken(&U)) 2291 Assert(false, "Invalid user of intrinsic instruction!", U); 2292 } 2293 2294 auto *N = F.getSubprogram(); 2295 HasDebugInfo = (N != nullptr); 2296 if (!HasDebugInfo) 2297 return; 2298 2299 // Check that all !dbg attachments lead to back to N (or, at least, another 2300 // subprogram that describes the same function). 2301 // 2302 // FIXME: Check this incrementally while visiting !dbg attachments. 2303 // FIXME: Only check when N is the canonical subprogram for F. 2304 SmallPtrSet<const MDNode *, 32> Seen; 2305 for (auto &BB : F) 2306 for (auto &I : BB) { 2307 // Be careful about using DILocation here since we might be dealing with 2308 // broken code (this is the Verifier after all). 2309 DILocation *DL = 2310 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2311 if (!DL) 2312 continue; 2313 if (!Seen.insert(DL).second) 2314 continue; 2315 2316 Metadata *Parent = DL->getRawScope(); 2317 AssertDI(Parent && isa<DILocalScope>(Parent), 2318 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2319 Parent); 2320 DILocalScope *Scope = DL->getInlinedAtScope(); 2321 if (Scope && !Seen.insert(Scope).second) 2322 continue; 2323 2324 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2325 2326 // Scope and SP could be the same MDNode and we don't want to skip 2327 // validation in that case 2328 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2329 continue; 2330 2331 // FIXME: Once N is canonical, check "SP == &N". 2332 AssertDI(SP->describes(&F), 2333 "!dbg attachment points at wrong subprogram for function", N, &F, 2334 &I, DL, Scope, SP); 2335 } 2336 } 2337 2338 // verifyBasicBlock - Verify that a basic block is well formed... 2339 // 2340 void Verifier::visitBasicBlock(BasicBlock &BB) { 2341 InstsInThisBlock.clear(); 2342 2343 // Ensure that basic blocks have terminators! 2344 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2345 2346 // Check constraints that this basic block imposes on all of the PHI nodes in 2347 // it. 2348 if (isa<PHINode>(BB.front())) { 2349 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2350 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2351 llvm::sort(Preds); 2352 for (const PHINode &PN : BB.phis()) { 2353 // Ensure that PHI nodes have at least one entry! 2354 Assert(PN.getNumIncomingValues() != 0, 2355 "PHI nodes must have at least one entry. If the block is dead, " 2356 "the PHI should be removed!", 2357 &PN); 2358 Assert(PN.getNumIncomingValues() == Preds.size(), 2359 "PHINode should have one entry for each predecessor of its " 2360 "parent basic block!", 2361 &PN); 2362 2363 // Get and sort all incoming values in the PHI node... 2364 Values.clear(); 2365 Values.reserve(PN.getNumIncomingValues()); 2366 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2367 Values.push_back( 2368 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2369 llvm::sort(Values); 2370 2371 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2372 // Check to make sure that if there is more than one entry for a 2373 // particular basic block in this PHI node, that the incoming values are 2374 // all identical. 2375 // 2376 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2377 Values[i].second == Values[i - 1].second, 2378 "PHI node has multiple entries for the same basic block with " 2379 "different incoming values!", 2380 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2381 2382 // Check to make sure that the predecessors and PHI node entries are 2383 // matched up. 2384 Assert(Values[i].first == Preds[i], 2385 "PHI node entries do not match predecessors!", &PN, 2386 Values[i].first, Preds[i]); 2387 } 2388 } 2389 } 2390 2391 // Check that all instructions have their parent pointers set up correctly. 2392 for (auto &I : BB) 2393 { 2394 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2395 } 2396 } 2397 2398 void Verifier::visitTerminator(Instruction &I) { 2399 // Ensure that terminators only exist at the end of the basic block. 2400 Assert(&I == I.getParent()->getTerminator(), 2401 "Terminator found in the middle of a basic block!", I.getParent()); 2402 visitInstruction(I); 2403 } 2404 2405 void Verifier::visitBranchInst(BranchInst &BI) { 2406 if (BI.isConditional()) { 2407 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2408 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2409 } 2410 visitTerminator(BI); 2411 } 2412 2413 void Verifier::visitReturnInst(ReturnInst &RI) { 2414 Function *F = RI.getParent()->getParent(); 2415 unsigned N = RI.getNumOperands(); 2416 if (F->getReturnType()->isVoidTy()) 2417 Assert(N == 0, 2418 "Found return instr that returns non-void in Function of void " 2419 "return type!", 2420 &RI, F->getReturnType()); 2421 else 2422 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2423 "Function return type does not match operand " 2424 "type of return inst!", 2425 &RI, F->getReturnType()); 2426 2427 // Check to make sure that the return value has necessary properties for 2428 // terminators... 2429 visitTerminator(RI); 2430 } 2431 2432 void Verifier::visitSwitchInst(SwitchInst &SI) { 2433 // Check to make sure that all of the constants in the switch instruction 2434 // have the same type as the switched-on value. 2435 Type *SwitchTy = SI.getCondition()->getType(); 2436 SmallPtrSet<ConstantInt*, 32> Constants; 2437 for (auto &Case : SI.cases()) { 2438 Assert(Case.getCaseValue()->getType() == SwitchTy, 2439 "Switch constants must all be same type as switch value!", &SI); 2440 Assert(Constants.insert(Case.getCaseValue()).second, 2441 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2442 } 2443 2444 visitTerminator(SI); 2445 } 2446 2447 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2448 Assert(BI.getAddress()->getType()->isPointerTy(), 2449 "Indirectbr operand must have pointer type!", &BI); 2450 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2451 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2452 "Indirectbr destinations must all have pointer type!", &BI); 2453 2454 visitTerminator(BI); 2455 } 2456 2457 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2458 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2459 &CBI); 2460 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2461 &CBI); 2462 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2463 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2464 "Callbr successors must all have pointer type!", &CBI); 2465 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2466 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2467 "Using an unescaped label as a callbr argument!", &CBI); 2468 if (isa<BasicBlock>(CBI.getOperand(i))) 2469 for (unsigned j = i + 1; j != e; ++j) 2470 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2471 "Duplicate callbr destination!", &CBI); 2472 } 2473 2474 visitTerminator(CBI); 2475 } 2476 2477 void Verifier::visitSelectInst(SelectInst &SI) { 2478 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2479 SI.getOperand(2)), 2480 "Invalid operands for select instruction!", &SI); 2481 2482 Assert(SI.getTrueValue()->getType() == SI.getType(), 2483 "Select values must have same type as select instruction!", &SI); 2484 visitInstruction(SI); 2485 } 2486 2487 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2488 /// a pass, if any exist, it's an error. 2489 /// 2490 void Verifier::visitUserOp1(Instruction &I) { 2491 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2492 } 2493 2494 void Verifier::visitTruncInst(TruncInst &I) { 2495 // Get the source and destination types 2496 Type *SrcTy = I.getOperand(0)->getType(); 2497 Type *DestTy = I.getType(); 2498 2499 // Get the size of the types in bits, we'll need this later 2500 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2501 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2502 2503 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2504 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2505 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2506 "trunc source and destination must both be a vector or neither", &I); 2507 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2508 2509 visitInstruction(I); 2510 } 2511 2512 void Verifier::visitZExtInst(ZExtInst &I) { 2513 // Get the source and destination types 2514 Type *SrcTy = I.getOperand(0)->getType(); 2515 Type *DestTy = I.getType(); 2516 2517 // Get the size of the types in bits, we'll need this later 2518 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2519 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2520 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2521 "zext source and destination must both be a vector or neither", &I); 2522 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2523 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2524 2525 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2526 2527 visitInstruction(I); 2528 } 2529 2530 void Verifier::visitSExtInst(SExtInst &I) { 2531 // Get the source and destination types 2532 Type *SrcTy = I.getOperand(0)->getType(); 2533 Type *DestTy = I.getType(); 2534 2535 // Get the size of the types in bits, we'll need this later 2536 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2537 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2538 2539 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2540 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2541 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2542 "sext source and destination must both be a vector or neither", &I); 2543 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2544 2545 visitInstruction(I); 2546 } 2547 2548 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2549 // Get the source and destination types 2550 Type *SrcTy = I.getOperand(0)->getType(); 2551 Type *DestTy = I.getType(); 2552 // Get the size of the types in bits, we'll need this later 2553 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2554 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2555 2556 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2557 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2558 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2559 "fptrunc source and destination must both be a vector or neither", &I); 2560 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2561 2562 visitInstruction(I); 2563 } 2564 2565 void Verifier::visitFPExtInst(FPExtInst &I) { 2566 // Get the source and destination types 2567 Type *SrcTy = I.getOperand(0)->getType(); 2568 Type *DestTy = I.getType(); 2569 2570 // Get the size of the types in bits, we'll need this later 2571 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2572 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2573 2574 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2575 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2576 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2577 "fpext source and destination must both be a vector or neither", &I); 2578 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2579 2580 visitInstruction(I); 2581 } 2582 2583 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2584 // Get the source and destination types 2585 Type *SrcTy = I.getOperand(0)->getType(); 2586 Type *DestTy = I.getType(); 2587 2588 bool SrcVec = SrcTy->isVectorTy(); 2589 bool DstVec = DestTy->isVectorTy(); 2590 2591 Assert(SrcVec == DstVec, 2592 "UIToFP source and dest must both be vector or scalar", &I); 2593 Assert(SrcTy->isIntOrIntVectorTy(), 2594 "UIToFP source must be integer or integer vector", &I); 2595 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2596 &I); 2597 2598 if (SrcVec && DstVec) 2599 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2600 cast<VectorType>(DestTy)->getNumElements(), 2601 "UIToFP source and dest vector length mismatch", &I); 2602 2603 visitInstruction(I); 2604 } 2605 2606 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2607 // Get the source and destination types 2608 Type *SrcTy = I.getOperand(0)->getType(); 2609 Type *DestTy = I.getType(); 2610 2611 bool SrcVec = SrcTy->isVectorTy(); 2612 bool DstVec = DestTy->isVectorTy(); 2613 2614 Assert(SrcVec == DstVec, 2615 "SIToFP source and dest must both be vector or scalar", &I); 2616 Assert(SrcTy->isIntOrIntVectorTy(), 2617 "SIToFP source must be integer or integer vector", &I); 2618 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2619 &I); 2620 2621 if (SrcVec && DstVec) 2622 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2623 cast<VectorType>(DestTy)->getNumElements(), 2624 "SIToFP source and dest vector length mismatch", &I); 2625 2626 visitInstruction(I); 2627 } 2628 2629 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2630 // Get the source and destination types 2631 Type *SrcTy = I.getOperand(0)->getType(); 2632 Type *DestTy = I.getType(); 2633 2634 bool SrcVec = SrcTy->isVectorTy(); 2635 bool DstVec = DestTy->isVectorTy(); 2636 2637 Assert(SrcVec == DstVec, 2638 "FPToUI source and dest must both be vector or scalar", &I); 2639 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2640 &I); 2641 Assert(DestTy->isIntOrIntVectorTy(), 2642 "FPToUI result must be integer or integer vector", &I); 2643 2644 if (SrcVec && DstVec) 2645 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2646 cast<VectorType>(DestTy)->getNumElements(), 2647 "FPToUI source and dest vector length mismatch", &I); 2648 2649 visitInstruction(I); 2650 } 2651 2652 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2653 // Get the source and destination types 2654 Type *SrcTy = I.getOperand(0)->getType(); 2655 Type *DestTy = I.getType(); 2656 2657 bool SrcVec = SrcTy->isVectorTy(); 2658 bool DstVec = DestTy->isVectorTy(); 2659 2660 Assert(SrcVec == DstVec, 2661 "FPToSI source and dest must both be vector or scalar", &I); 2662 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2663 &I); 2664 Assert(DestTy->isIntOrIntVectorTy(), 2665 "FPToSI result must be integer or integer vector", &I); 2666 2667 if (SrcVec && DstVec) 2668 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2669 cast<VectorType>(DestTy)->getNumElements(), 2670 "FPToSI source and dest vector length mismatch", &I); 2671 2672 visitInstruction(I); 2673 } 2674 2675 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2676 // Get the source and destination types 2677 Type *SrcTy = I.getOperand(0)->getType(); 2678 Type *DestTy = I.getType(); 2679 2680 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2681 2682 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2683 Assert(!DL.isNonIntegralPointerType(PTy), 2684 "ptrtoint not supported for non-integral pointers"); 2685 2686 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2687 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2688 &I); 2689 2690 if (SrcTy->isVectorTy()) { 2691 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2692 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2693 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2694 "PtrToInt Vector width mismatch", &I); 2695 } 2696 2697 visitInstruction(I); 2698 } 2699 2700 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2701 // Get the source and destination types 2702 Type *SrcTy = I.getOperand(0)->getType(); 2703 Type *DestTy = I.getType(); 2704 2705 Assert(SrcTy->isIntOrIntVectorTy(), 2706 "IntToPtr source must be an integral", &I); 2707 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2708 2709 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2710 Assert(!DL.isNonIntegralPointerType(PTy), 2711 "inttoptr not supported for non-integral pointers"); 2712 2713 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2714 &I); 2715 if (SrcTy->isVectorTy()) { 2716 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2717 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2718 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2719 "IntToPtr Vector width mismatch", &I); 2720 } 2721 visitInstruction(I); 2722 } 2723 2724 void Verifier::visitBitCastInst(BitCastInst &I) { 2725 Assert( 2726 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2727 "Invalid bitcast", &I); 2728 visitInstruction(I); 2729 } 2730 2731 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2732 Type *SrcTy = I.getOperand(0)->getType(); 2733 Type *DestTy = I.getType(); 2734 2735 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2736 &I); 2737 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2738 &I); 2739 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2740 "AddrSpaceCast must be between different address spaces", &I); 2741 if (SrcTy->isVectorTy()) 2742 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2743 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2744 visitInstruction(I); 2745 } 2746 2747 /// visitPHINode - Ensure that a PHI node is well formed. 2748 /// 2749 void Verifier::visitPHINode(PHINode &PN) { 2750 // Ensure that the PHI nodes are all grouped together at the top of the block. 2751 // This can be tested by checking whether the instruction before this is 2752 // either nonexistent (because this is begin()) or is a PHI node. If not, 2753 // then there is some other instruction before a PHI. 2754 Assert(&PN == &PN.getParent()->front() || 2755 isa<PHINode>(--BasicBlock::iterator(&PN)), 2756 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2757 2758 // Check that a PHI doesn't yield a Token. 2759 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2760 2761 // Check that all of the values of the PHI node have the same type as the 2762 // result, and that the incoming blocks are really basic blocks. 2763 for (Value *IncValue : PN.incoming_values()) { 2764 Assert(PN.getType() == IncValue->getType(), 2765 "PHI node operands are not the same type as the result!", &PN); 2766 } 2767 2768 // All other PHI node constraints are checked in the visitBasicBlock method. 2769 2770 visitInstruction(PN); 2771 } 2772 2773 void Verifier::visitCallBase(CallBase &Call) { 2774 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2775 "Called function must be a pointer!", Call); 2776 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2777 2778 Assert(FPTy->getElementType()->isFunctionTy(), 2779 "Called function is not pointer to function type!", Call); 2780 2781 Assert(FPTy->getElementType() == Call.getFunctionType(), 2782 "Called function is not the same type as the call!", Call); 2783 2784 FunctionType *FTy = Call.getFunctionType(); 2785 2786 // Verify that the correct number of arguments are being passed 2787 if (FTy->isVarArg()) 2788 Assert(Call.arg_size() >= FTy->getNumParams(), 2789 "Called function requires more parameters than were provided!", 2790 Call); 2791 else 2792 Assert(Call.arg_size() == FTy->getNumParams(), 2793 "Incorrect number of arguments passed to called function!", Call); 2794 2795 // Verify that all arguments to the call match the function type. 2796 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2797 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2798 "Call parameter type does not match function signature!", 2799 Call.getArgOperand(i), FTy->getParamType(i), Call); 2800 2801 AttributeList Attrs = Call.getAttributes(); 2802 2803 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2804 "Attribute after last parameter!", Call); 2805 2806 bool IsIntrinsic = Call.getCalledFunction() && 2807 Call.getCalledFunction()->getName().startswith("llvm."); 2808 2809 Function *Callee 2810 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2811 2812 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2813 // Don't allow speculatable on call sites, unless the underlying function 2814 // declaration is also speculatable. 2815 Assert(Callee && Callee->isSpeculatable(), 2816 "speculatable attribute may not apply to call sites", Call); 2817 } 2818 2819 // Verify call attributes. 2820 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2821 2822 // Conservatively check the inalloca argument. 2823 // We have a bug if we can find that there is an underlying alloca without 2824 // inalloca. 2825 if (Call.hasInAllocaArgument()) { 2826 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2827 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2828 Assert(AI->isUsedWithInAlloca(), 2829 "inalloca argument for call has mismatched alloca", AI, Call); 2830 } 2831 2832 // For each argument of the callsite, if it has the swifterror argument, 2833 // make sure the underlying alloca/parameter it comes from has a swifterror as 2834 // well. 2835 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2836 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2837 Value *SwiftErrorArg = Call.getArgOperand(i); 2838 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2839 Assert(AI->isSwiftError(), 2840 "swifterror argument for call has mismatched alloca", AI, Call); 2841 continue; 2842 } 2843 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2844 Assert(ArgI, 2845 "swifterror argument should come from an alloca or parameter", 2846 SwiftErrorArg, Call); 2847 Assert(ArgI->hasSwiftErrorAttr(), 2848 "swifterror argument for call has mismatched parameter", ArgI, 2849 Call); 2850 } 2851 2852 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2853 // Don't allow immarg on call sites, unless the underlying declaration 2854 // also has the matching immarg. 2855 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2856 "immarg may not apply only to call sites", 2857 Call.getArgOperand(i), Call); 2858 } 2859 2860 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2861 Value *ArgVal = Call.getArgOperand(i); 2862 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2863 "immarg operand has non-immediate parameter", ArgVal, Call); 2864 } 2865 } 2866 2867 if (FTy->isVarArg()) { 2868 // FIXME? is 'nest' even legal here? 2869 bool SawNest = false; 2870 bool SawReturned = false; 2871 2872 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2873 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2874 SawNest = true; 2875 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2876 SawReturned = true; 2877 } 2878 2879 // Check attributes on the varargs part. 2880 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2881 Type *Ty = Call.getArgOperand(Idx)->getType(); 2882 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2883 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2884 2885 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2886 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2887 SawNest = true; 2888 } 2889 2890 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2891 Assert(!SawReturned, "More than one parameter has attribute returned!", 2892 Call); 2893 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2894 "Incompatible argument and return types for 'returned' " 2895 "attribute", 2896 Call); 2897 SawReturned = true; 2898 } 2899 2900 // Statepoint intrinsic is vararg but the wrapped function may be not. 2901 // Allow sret here and check the wrapped function in verifyStatepoint. 2902 if (!Call.getCalledFunction() || 2903 Call.getCalledFunction()->getIntrinsicID() != 2904 Intrinsic::experimental_gc_statepoint) 2905 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2906 "Attribute 'sret' cannot be used for vararg call arguments!", 2907 Call); 2908 2909 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2910 Assert(Idx == Call.arg_size() - 1, 2911 "inalloca isn't on the last argument!", Call); 2912 } 2913 } 2914 2915 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2916 if (!IsIntrinsic) { 2917 for (Type *ParamTy : FTy->params()) { 2918 Assert(!ParamTy->isMetadataTy(), 2919 "Function has metadata parameter but isn't an intrinsic", Call); 2920 Assert(!ParamTy->isTokenTy(), 2921 "Function has token parameter but isn't an intrinsic", Call); 2922 } 2923 } 2924 2925 // Verify that indirect calls don't return tokens. 2926 if (!Call.getCalledFunction()) 2927 Assert(!FTy->getReturnType()->isTokenTy(), 2928 "Return type cannot be token for indirect call!"); 2929 2930 if (Function *F = Call.getCalledFunction()) 2931 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2932 visitIntrinsicCall(ID, Call); 2933 2934 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2935 // at most one "gc-transition" operand bundle. 2936 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2937 FoundGCTransitionBundle = false; 2938 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 2939 OperandBundleUse BU = Call.getOperandBundleAt(i); 2940 uint32_t Tag = BU.getTagID(); 2941 if (Tag == LLVMContext::OB_deopt) { 2942 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 2943 FoundDeoptBundle = true; 2944 } else if (Tag == LLVMContext::OB_gc_transition) { 2945 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2946 Call); 2947 FoundGCTransitionBundle = true; 2948 } else if (Tag == LLVMContext::OB_funclet) { 2949 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 2950 FoundFuncletBundle = true; 2951 Assert(BU.Inputs.size() == 1, 2952 "Expected exactly one funclet bundle operand", Call); 2953 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2954 "Funclet bundle operands should correspond to a FuncletPadInst", 2955 Call); 2956 } 2957 } 2958 2959 // Verify that each inlinable callsite of a debug-info-bearing function in a 2960 // debug-info-bearing function has a debug location attached to it. Failure to 2961 // do so causes assertion failures when the inliner sets up inline scope info. 2962 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 2963 Call.getCalledFunction()->getSubprogram()) 2964 AssertDI(Call.getDebugLoc(), 2965 "inlinable function call in a function with " 2966 "debug info must have a !dbg location", 2967 Call); 2968 2969 visitInstruction(Call); 2970 } 2971 2972 /// Two types are "congruent" if they are identical, or if they are both pointer 2973 /// types with different pointee types and the same address space. 2974 static bool isTypeCongruent(Type *L, Type *R) { 2975 if (L == R) 2976 return true; 2977 PointerType *PL = dyn_cast<PointerType>(L); 2978 PointerType *PR = dyn_cast<PointerType>(R); 2979 if (!PL || !PR) 2980 return false; 2981 return PL->getAddressSpace() == PR->getAddressSpace(); 2982 } 2983 2984 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 2985 static const Attribute::AttrKind ABIAttrs[] = { 2986 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2987 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2988 Attribute::SwiftError}; 2989 AttrBuilder Copy; 2990 for (auto AK : ABIAttrs) { 2991 if (Attrs.hasParamAttribute(I, AK)) 2992 Copy.addAttribute(AK); 2993 } 2994 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 2995 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 2996 return Copy; 2997 } 2998 2999 void Verifier::verifyMustTailCall(CallInst &CI) { 3000 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3001 3002 // - The caller and callee prototypes must match. Pointer types of 3003 // parameters or return types may differ in pointee type, but not 3004 // address space. 3005 Function *F = CI.getParent()->getParent(); 3006 FunctionType *CallerTy = F->getFunctionType(); 3007 FunctionType *CalleeTy = CI.getFunctionType(); 3008 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3009 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3010 "cannot guarantee tail call due to mismatched parameter counts", 3011 &CI); 3012 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3013 Assert( 3014 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3015 "cannot guarantee tail call due to mismatched parameter types", &CI); 3016 } 3017 } 3018 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3019 "cannot guarantee tail call due to mismatched varargs", &CI); 3020 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3021 "cannot guarantee tail call due to mismatched return types", &CI); 3022 3023 // - The calling conventions of the caller and callee must match. 3024 Assert(F->getCallingConv() == CI.getCallingConv(), 3025 "cannot guarantee tail call due to mismatched calling conv", &CI); 3026 3027 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3028 // returned, and inalloca, must match. 3029 AttributeList CallerAttrs = F->getAttributes(); 3030 AttributeList CalleeAttrs = CI.getAttributes(); 3031 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3032 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3033 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3034 Assert(CallerABIAttrs == CalleeABIAttrs, 3035 "cannot guarantee tail call due to mismatched ABI impacting " 3036 "function attributes", 3037 &CI, CI.getOperand(I)); 3038 } 3039 3040 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3041 // or a pointer bitcast followed by a ret instruction. 3042 // - The ret instruction must return the (possibly bitcasted) value 3043 // produced by the call or void. 3044 Value *RetVal = &CI; 3045 Instruction *Next = CI.getNextNode(); 3046 3047 // Handle the optional bitcast. 3048 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3049 Assert(BI->getOperand(0) == RetVal, 3050 "bitcast following musttail call must use the call", BI); 3051 RetVal = BI; 3052 Next = BI->getNextNode(); 3053 } 3054 3055 // Check the return. 3056 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3057 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3058 &CI); 3059 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3060 "musttail call result must be returned", Ret); 3061 } 3062 3063 void Verifier::visitCallInst(CallInst &CI) { 3064 visitCallBase(CI); 3065 3066 if (CI.isMustTailCall()) 3067 verifyMustTailCall(CI); 3068 } 3069 3070 void Verifier::visitInvokeInst(InvokeInst &II) { 3071 visitCallBase(II); 3072 3073 // Verify that the first non-PHI instruction of the unwind destination is an 3074 // exception handling instruction. 3075 Assert( 3076 II.getUnwindDest()->isEHPad(), 3077 "The unwind destination does not have an exception handling instruction!", 3078 &II); 3079 3080 visitTerminator(II); 3081 } 3082 3083 /// visitUnaryOperator - Check the argument to the unary operator. 3084 /// 3085 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3086 Assert(U.getType() == U.getOperand(0)->getType(), 3087 "Unary operators must have same type for" 3088 "operands and result!", 3089 &U); 3090 3091 switch (U.getOpcode()) { 3092 // Check that floating-point arithmetic operators are only used with 3093 // floating-point operands. 3094 case Instruction::FNeg: 3095 Assert(U.getType()->isFPOrFPVectorTy(), 3096 "FNeg operator only works with float types!", &U); 3097 break; 3098 default: 3099 llvm_unreachable("Unknown UnaryOperator opcode!"); 3100 } 3101 3102 visitInstruction(U); 3103 } 3104 3105 /// visitBinaryOperator - Check that both arguments to the binary operator are 3106 /// of the same type! 3107 /// 3108 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3109 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3110 "Both operands to a binary operator are not of the same type!", &B); 3111 3112 switch (B.getOpcode()) { 3113 // Check that integer arithmetic operators are only used with 3114 // integral operands. 3115 case Instruction::Add: 3116 case Instruction::Sub: 3117 case Instruction::Mul: 3118 case Instruction::SDiv: 3119 case Instruction::UDiv: 3120 case Instruction::SRem: 3121 case Instruction::URem: 3122 Assert(B.getType()->isIntOrIntVectorTy(), 3123 "Integer arithmetic operators only work with integral types!", &B); 3124 Assert(B.getType() == B.getOperand(0)->getType(), 3125 "Integer arithmetic operators must have same type " 3126 "for operands and result!", 3127 &B); 3128 break; 3129 // Check that floating-point arithmetic operators are only used with 3130 // floating-point operands. 3131 case Instruction::FAdd: 3132 case Instruction::FSub: 3133 case Instruction::FMul: 3134 case Instruction::FDiv: 3135 case Instruction::FRem: 3136 Assert(B.getType()->isFPOrFPVectorTy(), 3137 "Floating-point arithmetic operators only work with " 3138 "floating-point types!", 3139 &B); 3140 Assert(B.getType() == B.getOperand(0)->getType(), 3141 "Floating-point arithmetic operators must have same type " 3142 "for operands and result!", 3143 &B); 3144 break; 3145 // Check that logical operators are only used with integral operands. 3146 case Instruction::And: 3147 case Instruction::Or: 3148 case Instruction::Xor: 3149 Assert(B.getType()->isIntOrIntVectorTy(), 3150 "Logical operators only work with integral types!", &B); 3151 Assert(B.getType() == B.getOperand(0)->getType(), 3152 "Logical operators must have same type for operands and result!", 3153 &B); 3154 break; 3155 case Instruction::Shl: 3156 case Instruction::LShr: 3157 case Instruction::AShr: 3158 Assert(B.getType()->isIntOrIntVectorTy(), 3159 "Shifts only work with integral types!", &B); 3160 Assert(B.getType() == B.getOperand(0)->getType(), 3161 "Shift return type must be same as operands!", &B); 3162 break; 3163 default: 3164 llvm_unreachable("Unknown BinaryOperator opcode!"); 3165 } 3166 3167 visitInstruction(B); 3168 } 3169 3170 void Verifier::visitICmpInst(ICmpInst &IC) { 3171 // Check that the operands are the same type 3172 Type *Op0Ty = IC.getOperand(0)->getType(); 3173 Type *Op1Ty = IC.getOperand(1)->getType(); 3174 Assert(Op0Ty == Op1Ty, 3175 "Both operands to ICmp instruction are not of the same type!", &IC); 3176 // Check that the operands are the right type 3177 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3178 "Invalid operand types for ICmp instruction", &IC); 3179 // Check that the predicate is valid. 3180 Assert(IC.isIntPredicate(), 3181 "Invalid predicate in ICmp instruction!", &IC); 3182 3183 visitInstruction(IC); 3184 } 3185 3186 void Verifier::visitFCmpInst(FCmpInst &FC) { 3187 // Check that the operands are the same type 3188 Type *Op0Ty = FC.getOperand(0)->getType(); 3189 Type *Op1Ty = FC.getOperand(1)->getType(); 3190 Assert(Op0Ty == Op1Ty, 3191 "Both operands to FCmp instruction are not of the same type!", &FC); 3192 // Check that the operands are the right type 3193 Assert(Op0Ty->isFPOrFPVectorTy(), 3194 "Invalid operand types for FCmp instruction", &FC); 3195 // Check that the predicate is valid. 3196 Assert(FC.isFPPredicate(), 3197 "Invalid predicate in FCmp instruction!", &FC); 3198 3199 visitInstruction(FC); 3200 } 3201 3202 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3203 Assert( 3204 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3205 "Invalid extractelement operands!", &EI); 3206 visitInstruction(EI); 3207 } 3208 3209 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3210 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3211 IE.getOperand(2)), 3212 "Invalid insertelement operands!", &IE); 3213 visitInstruction(IE); 3214 } 3215 3216 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3217 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3218 SV.getOperand(2)), 3219 "Invalid shufflevector operands!", &SV); 3220 visitInstruction(SV); 3221 } 3222 3223 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3224 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3225 3226 Assert(isa<PointerType>(TargetTy), 3227 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3228 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3229 3230 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3231 Assert(all_of( 3232 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3233 "GEP indexes must be integers", &GEP); 3234 Type *ElTy = 3235 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3236 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3237 3238 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3239 GEP.getResultElementType() == ElTy, 3240 "GEP is not of right type for indices!", &GEP, ElTy); 3241 3242 if (GEP.getType()->isVectorTy()) { 3243 // Additional checks for vector GEPs. 3244 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3245 if (GEP.getPointerOperandType()->isVectorTy()) 3246 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3247 "Vector GEP result width doesn't match operand's", &GEP); 3248 for (Value *Idx : Idxs) { 3249 Type *IndexTy = Idx->getType(); 3250 if (IndexTy->isVectorTy()) { 3251 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3252 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3253 } 3254 Assert(IndexTy->isIntOrIntVectorTy(), 3255 "All GEP indices should be of integer type"); 3256 } 3257 } 3258 3259 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3260 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3261 "GEP address space doesn't match type", &GEP); 3262 } 3263 3264 visitInstruction(GEP); 3265 } 3266 3267 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3268 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3269 } 3270 3271 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3272 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3273 "precondition violation"); 3274 3275 unsigned NumOperands = Range->getNumOperands(); 3276 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3277 unsigned NumRanges = NumOperands / 2; 3278 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3279 3280 ConstantRange LastRange(1, true); // Dummy initial value 3281 for (unsigned i = 0; i < NumRanges; ++i) { 3282 ConstantInt *Low = 3283 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3284 Assert(Low, "The lower limit must be an integer!", Low); 3285 ConstantInt *High = 3286 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3287 Assert(High, "The upper limit must be an integer!", High); 3288 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3289 "Range types must match instruction type!", &I); 3290 3291 APInt HighV = High->getValue(); 3292 APInt LowV = Low->getValue(); 3293 ConstantRange CurRange(LowV, HighV); 3294 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3295 "Range must not be empty!", Range); 3296 if (i != 0) { 3297 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3298 "Intervals are overlapping", Range); 3299 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3300 Range); 3301 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3302 Range); 3303 } 3304 LastRange = ConstantRange(LowV, HighV); 3305 } 3306 if (NumRanges > 2) { 3307 APInt FirstLow = 3308 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3309 APInt FirstHigh = 3310 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3311 ConstantRange FirstRange(FirstLow, FirstHigh); 3312 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3313 "Intervals are overlapping", Range); 3314 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3315 Range); 3316 } 3317 } 3318 3319 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3320 unsigned Size = DL.getTypeSizeInBits(Ty); 3321 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3322 Assert(!(Size & (Size - 1)), 3323 "atomic memory access' operand must have a power-of-two size", Ty, I); 3324 } 3325 3326 void Verifier::visitLoadInst(LoadInst &LI) { 3327 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3328 Assert(PTy, "Load operand must be a pointer.", &LI); 3329 Type *ElTy = LI.getType(); 3330 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3331 "huge alignment values are unsupported", &LI); 3332 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3333 if (LI.isAtomic()) { 3334 Assert(LI.getOrdering() != AtomicOrdering::Release && 3335 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3336 "Load cannot have Release ordering", &LI); 3337 Assert(LI.getAlignment() != 0, 3338 "Atomic load must specify explicit alignment", &LI); 3339 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3340 "atomic load operand must have integer, pointer, or floating point " 3341 "type!", 3342 ElTy, &LI); 3343 checkAtomicMemAccessSize(ElTy, &LI); 3344 } else { 3345 Assert(LI.getSyncScopeID() == SyncScope::System, 3346 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3347 } 3348 3349 visitInstruction(LI); 3350 } 3351 3352 void Verifier::visitStoreInst(StoreInst &SI) { 3353 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3354 Assert(PTy, "Store operand must be a pointer.", &SI); 3355 Type *ElTy = PTy->getElementType(); 3356 Assert(ElTy == SI.getOperand(0)->getType(), 3357 "Stored value type does not match pointer operand type!", &SI, ElTy); 3358 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3359 "huge alignment values are unsupported", &SI); 3360 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3361 if (SI.isAtomic()) { 3362 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3363 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3364 "Store cannot have Acquire ordering", &SI); 3365 Assert(SI.getAlignment() != 0, 3366 "Atomic store must specify explicit alignment", &SI); 3367 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3368 "atomic store operand must have integer, pointer, or floating point " 3369 "type!", 3370 ElTy, &SI); 3371 checkAtomicMemAccessSize(ElTy, &SI); 3372 } else { 3373 Assert(SI.getSyncScopeID() == SyncScope::System, 3374 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3375 } 3376 visitInstruction(SI); 3377 } 3378 3379 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3380 void Verifier::verifySwiftErrorCall(CallBase &Call, 3381 const Value *SwiftErrorVal) { 3382 unsigned Idx = 0; 3383 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3384 if (*I == SwiftErrorVal) { 3385 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3386 "swifterror value when used in a callsite should be marked " 3387 "with swifterror attribute", 3388 SwiftErrorVal, Call); 3389 } 3390 } 3391 } 3392 3393 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3394 // Check that swifterror value is only used by loads, stores, or as 3395 // a swifterror argument. 3396 for (const User *U : SwiftErrorVal->users()) { 3397 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3398 isa<InvokeInst>(U), 3399 "swifterror value can only be loaded and stored from, or " 3400 "as a swifterror argument!", 3401 SwiftErrorVal, U); 3402 // If it is used by a store, check it is the second operand. 3403 if (auto StoreI = dyn_cast<StoreInst>(U)) 3404 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3405 "swifterror value should be the second operand when used " 3406 "by stores", SwiftErrorVal, U); 3407 if (auto *Call = dyn_cast<CallBase>(U)) 3408 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3409 } 3410 } 3411 3412 void Verifier::visitAllocaInst(AllocaInst &AI) { 3413 SmallPtrSet<Type*, 4> Visited; 3414 PointerType *PTy = AI.getType(); 3415 // TODO: Relax this restriction? 3416 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3417 "Allocation instruction pointer not in the stack address space!", 3418 &AI); 3419 Assert(AI.getAllocatedType()->isSized(&Visited), 3420 "Cannot allocate unsized type", &AI); 3421 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3422 "Alloca array size must have integer type", &AI); 3423 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3424 "huge alignment values are unsupported", &AI); 3425 3426 if (AI.isSwiftError()) { 3427 verifySwiftErrorValue(&AI); 3428 } 3429 3430 visitInstruction(AI); 3431 } 3432 3433 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3434 3435 // FIXME: more conditions??? 3436 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3437 "cmpxchg instructions must be atomic.", &CXI); 3438 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3439 "cmpxchg instructions must be atomic.", &CXI); 3440 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3441 "cmpxchg instructions cannot be unordered.", &CXI); 3442 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3443 "cmpxchg instructions cannot be unordered.", &CXI); 3444 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3445 "cmpxchg instructions failure argument shall be no stronger than the " 3446 "success argument", 3447 &CXI); 3448 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3449 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3450 "cmpxchg failure ordering cannot include release semantics", &CXI); 3451 3452 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3453 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3454 Type *ElTy = PTy->getElementType(); 3455 Assert(ElTy->isIntOrPtrTy(), 3456 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3457 checkAtomicMemAccessSize(ElTy, &CXI); 3458 Assert(ElTy == CXI.getOperand(1)->getType(), 3459 "Expected value type does not match pointer operand type!", &CXI, 3460 ElTy); 3461 Assert(ElTy == CXI.getOperand(2)->getType(), 3462 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3463 visitInstruction(CXI); 3464 } 3465 3466 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3467 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3468 "atomicrmw instructions must be atomic.", &RMWI); 3469 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3470 "atomicrmw instructions cannot be unordered.", &RMWI); 3471 auto Op = RMWI.getOperation(); 3472 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3473 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3474 Type *ElTy = PTy->getElementType(); 3475 if (Op == AtomicRMWInst::Xchg) { 3476 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3477 AtomicRMWInst::getOperationName(Op) + 3478 " operand must have integer or floating point type!", 3479 &RMWI, ElTy); 3480 } else if (AtomicRMWInst::isFPOperation(Op)) { 3481 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3482 AtomicRMWInst::getOperationName(Op) + 3483 " operand must have floating point type!", 3484 &RMWI, ElTy); 3485 } else { 3486 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3487 AtomicRMWInst::getOperationName(Op) + 3488 " operand must have integer type!", 3489 &RMWI, ElTy); 3490 } 3491 checkAtomicMemAccessSize(ElTy, &RMWI); 3492 Assert(ElTy == RMWI.getOperand(1)->getType(), 3493 "Argument value type does not match pointer operand type!", &RMWI, 3494 ElTy); 3495 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3496 "Invalid binary operation!", &RMWI); 3497 visitInstruction(RMWI); 3498 } 3499 3500 void Verifier::visitFenceInst(FenceInst &FI) { 3501 const AtomicOrdering Ordering = FI.getOrdering(); 3502 Assert(Ordering == AtomicOrdering::Acquire || 3503 Ordering == AtomicOrdering::Release || 3504 Ordering == AtomicOrdering::AcquireRelease || 3505 Ordering == AtomicOrdering::SequentiallyConsistent, 3506 "fence instructions may only have acquire, release, acq_rel, or " 3507 "seq_cst ordering.", 3508 &FI); 3509 visitInstruction(FI); 3510 } 3511 3512 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3513 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3514 EVI.getIndices()) == EVI.getType(), 3515 "Invalid ExtractValueInst operands!", &EVI); 3516 3517 visitInstruction(EVI); 3518 } 3519 3520 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3521 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3522 IVI.getIndices()) == 3523 IVI.getOperand(1)->getType(), 3524 "Invalid InsertValueInst operands!", &IVI); 3525 3526 visitInstruction(IVI); 3527 } 3528 3529 static Value *getParentPad(Value *EHPad) { 3530 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3531 return FPI->getParentPad(); 3532 3533 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3534 } 3535 3536 void Verifier::visitEHPadPredecessors(Instruction &I) { 3537 assert(I.isEHPad()); 3538 3539 BasicBlock *BB = I.getParent(); 3540 Function *F = BB->getParent(); 3541 3542 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3543 3544 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3545 // The landingpad instruction defines its parent as a landing pad block. The 3546 // landing pad block may be branched to only by the unwind edge of an 3547 // invoke. 3548 for (BasicBlock *PredBB : predecessors(BB)) { 3549 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3550 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3551 "Block containing LandingPadInst must be jumped to " 3552 "only by the unwind edge of an invoke.", 3553 LPI); 3554 } 3555 return; 3556 } 3557 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3558 if (!pred_empty(BB)) 3559 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3560 "Block containg CatchPadInst must be jumped to " 3561 "only by its catchswitch.", 3562 CPI); 3563 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3564 "Catchswitch cannot unwind to one of its catchpads", 3565 CPI->getCatchSwitch(), CPI); 3566 return; 3567 } 3568 3569 // Verify that each pred has a legal terminator with a legal to/from EH 3570 // pad relationship. 3571 Instruction *ToPad = &I; 3572 Value *ToPadParent = getParentPad(ToPad); 3573 for (BasicBlock *PredBB : predecessors(BB)) { 3574 Instruction *TI = PredBB->getTerminator(); 3575 Value *FromPad; 3576 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3577 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3578 "EH pad must be jumped to via an unwind edge", ToPad, II); 3579 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3580 FromPad = Bundle->Inputs[0]; 3581 else 3582 FromPad = ConstantTokenNone::get(II->getContext()); 3583 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3584 FromPad = CRI->getOperand(0); 3585 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3586 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3587 FromPad = CSI; 3588 } else { 3589 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3590 } 3591 3592 // The edge may exit from zero or more nested pads. 3593 SmallSet<Value *, 8> Seen; 3594 for (;; FromPad = getParentPad(FromPad)) { 3595 Assert(FromPad != ToPad, 3596 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3597 if (FromPad == ToPadParent) { 3598 // This is a legal unwind edge. 3599 break; 3600 } 3601 Assert(!isa<ConstantTokenNone>(FromPad), 3602 "A single unwind edge may only enter one EH pad", TI); 3603 Assert(Seen.insert(FromPad).second, 3604 "EH pad jumps through a cycle of pads", FromPad); 3605 } 3606 } 3607 } 3608 3609 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3610 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3611 // isn't a cleanup. 3612 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3613 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3614 3615 visitEHPadPredecessors(LPI); 3616 3617 if (!LandingPadResultTy) 3618 LandingPadResultTy = LPI.getType(); 3619 else 3620 Assert(LandingPadResultTy == LPI.getType(), 3621 "The landingpad instruction should have a consistent result type " 3622 "inside a function.", 3623 &LPI); 3624 3625 Function *F = LPI.getParent()->getParent(); 3626 Assert(F->hasPersonalityFn(), 3627 "LandingPadInst needs to be in a function with a personality.", &LPI); 3628 3629 // The landingpad instruction must be the first non-PHI instruction in the 3630 // block. 3631 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3632 "LandingPadInst not the first non-PHI instruction in the block.", 3633 &LPI); 3634 3635 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3636 Constant *Clause = LPI.getClause(i); 3637 if (LPI.isCatch(i)) { 3638 Assert(isa<PointerType>(Clause->getType()), 3639 "Catch operand does not have pointer type!", &LPI); 3640 } else { 3641 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3642 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3643 "Filter operand is not an array of constants!", &LPI); 3644 } 3645 } 3646 3647 visitInstruction(LPI); 3648 } 3649 3650 void Verifier::visitResumeInst(ResumeInst &RI) { 3651 Assert(RI.getFunction()->hasPersonalityFn(), 3652 "ResumeInst needs to be in a function with a personality.", &RI); 3653 3654 if (!LandingPadResultTy) 3655 LandingPadResultTy = RI.getValue()->getType(); 3656 else 3657 Assert(LandingPadResultTy == RI.getValue()->getType(), 3658 "The resume instruction should have a consistent result type " 3659 "inside a function.", 3660 &RI); 3661 3662 visitTerminator(RI); 3663 } 3664 3665 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3666 BasicBlock *BB = CPI.getParent(); 3667 3668 Function *F = BB->getParent(); 3669 Assert(F->hasPersonalityFn(), 3670 "CatchPadInst needs to be in a function with a personality.", &CPI); 3671 3672 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3673 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3674 CPI.getParentPad()); 3675 3676 // The catchpad instruction must be the first non-PHI instruction in the 3677 // block. 3678 Assert(BB->getFirstNonPHI() == &CPI, 3679 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3680 3681 visitEHPadPredecessors(CPI); 3682 visitFuncletPadInst(CPI); 3683 } 3684 3685 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3686 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3687 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3688 CatchReturn.getOperand(0)); 3689 3690 visitTerminator(CatchReturn); 3691 } 3692 3693 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3694 BasicBlock *BB = CPI.getParent(); 3695 3696 Function *F = BB->getParent(); 3697 Assert(F->hasPersonalityFn(), 3698 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3699 3700 // The cleanuppad instruction must be the first non-PHI instruction in the 3701 // block. 3702 Assert(BB->getFirstNonPHI() == &CPI, 3703 "CleanupPadInst not the first non-PHI instruction in the block.", 3704 &CPI); 3705 3706 auto *ParentPad = CPI.getParentPad(); 3707 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3708 "CleanupPadInst has an invalid parent.", &CPI); 3709 3710 visitEHPadPredecessors(CPI); 3711 visitFuncletPadInst(CPI); 3712 } 3713 3714 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3715 User *FirstUser = nullptr; 3716 Value *FirstUnwindPad = nullptr; 3717 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3718 SmallSet<FuncletPadInst *, 8> Seen; 3719 3720 while (!Worklist.empty()) { 3721 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3722 Assert(Seen.insert(CurrentPad).second, 3723 "FuncletPadInst must not be nested within itself", CurrentPad); 3724 Value *UnresolvedAncestorPad = nullptr; 3725 for (User *U : CurrentPad->users()) { 3726 BasicBlock *UnwindDest; 3727 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3728 UnwindDest = CRI->getUnwindDest(); 3729 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3730 // We allow catchswitch unwind to caller to nest 3731 // within an outer pad that unwinds somewhere else, 3732 // because catchswitch doesn't have a nounwind variant. 3733 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3734 if (CSI->unwindsToCaller()) 3735 continue; 3736 UnwindDest = CSI->getUnwindDest(); 3737 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3738 UnwindDest = II->getUnwindDest(); 3739 } else if (isa<CallInst>(U)) { 3740 // Calls which don't unwind may be found inside funclet 3741 // pads that unwind somewhere else. We don't *require* 3742 // such calls to be annotated nounwind. 3743 continue; 3744 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3745 // The unwind dest for a cleanup can only be found by 3746 // recursive search. Add it to the worklist, and we'll 3747 // search for its first use that determines where it unwinds. 3748 Worklist.push_back(CPI); 3749 continue; 3750 } else { 3751 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3752 continue; 3753 } 3754 3755 Value *UnwindPad; 3756 bool ExitsFPI; 3757 if (UnwindDest) { 3758 UnwindPad = UnwindDest->getFirstNonPHI(); 3759 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3760 continue; 3761 Value *UnwindParent = getParentPad(UnwindPad); 3762 // Ignore unwind edges that don't exit CurrentPad. 3763 if (UnwindParent == CurrentPad) 3764 continue; 3765 // Determine whether the original funclet pad is exited, 3766 // and if we are scanning nested pads determine how many 3767 // of them are exited so we can stop searching their 3768 // children. 3769 Value *ExitedPad = CurrentPad; 3770 ExitsFPI = false; 3771 do { 3772 if (ExitedPad == &FPI) { 3773 ExitsFPI = true; 3774 // Now we can resolve any ancestors of CurrentPad up to 3775 // FPI, but not including FPI since we need to make sure 3776 // to check all direct users of FPI for consistency. 3777 UnresolvedAncestorPad = &FPI; 3778 break; 3779 } 3780 Value *ExitedParent = getParentPad(ExitedPad); 3781 if (ExitedParent == UnwindParent) { 3782 // ExitedPad is the ancestor-most pad which this unwind 3783 // edge exits, so we can resolve up to it, meaning that 3784 // ExitedParent is the first ancestor still unresolved. 3785 UnresolvedAncestorPad = ExitedParent; 3786 break; 3787 } 3788 ExitedPad = ExitedParent; 3789 } while (!isa<ConstantTokenNone>(ExitedPad)); 3790 } else { 3791 // Unwinding to caller exits all pads. 3792 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3793 ExitsFPI = true; 3794 UnresolvedAncestorPad = &FPI; 3795 } 3796 3797 if (ExitsFPI) { 3798 // This unwind edge exits FPI. Make sure it agrees with other 3799 // such edges. 3800 if (FirstUser) { 3801 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3802 "pad must have the same unwind " 3803 "dest", 3804 &FPI, U, FirstUser); 3805 } else { 3806 FirstUser = U; 3807 FirstUnwindPad = UnwindPad; 3808 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3809 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3810 getParentPad(UnwindPad) == getParentPad(&FPI)) 3811 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3812 } 3813 } 3814 // Make sure we visit all uses of FPI, but for nested pads stop as 3815 // soon as we know where they unwind to. 3816 if (CurrentPad != &FPI) 3817 break; 3818 } 3819 if (UnresolvedAncestorPad) { 3820 if (CurrentPad == UnresolvedAncestorPad) { 3821 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3822 // we've found an unwind edge that exits it, because we need to verify 3823 // all direct uses of FPI. 3824 assert(CurrentPad == &FPI); 3825 continue; 3826 } 3827 // Pop off the worklist any nested pads that we've found an unwind 3828 // destination for. The pads on the worklist are the uncles, 3829 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3830 // for all ancestors of CurrentPad up to but not including 3831 // UnresolvedAncestorPad. 3832 Value *ResolvedPad = CurrentPad; 3833 while (!Worklist.empty()) { 3834 Value *UnclePad = Worklist.back(); 3835 Value *AncestorPad = getParentPad(UnclePad); 3836 // Walk ResolvedPad up the ancestor list until we either find the 3837 // uncle's parent or the last resolved ancestor. 3838 while (ResolvedPad != AncestorPad) { 3839 Value *ResolvedParent = getParentPad(ResolvedPad); 3840 if (ResolvedParent == UnresolvedAncestorPad) { 3841 break; 3842 } 3843 ResolvedPad = ResolvedParent; 3844 } 3845 // If the resolved ancestor search didn't find the uncle's parent, 3846 // then the uncle is not yet resolved. 3847 if (ResolvedPad != AncestorPad) 3848 break; 3849 // This uncle is resolved, so pop it from the worklist. 3850 Worklist.pop_back(); 3851 } 3852 } 3853 } 3854 3855 if (FirstUnwindPad) { 3856 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3857 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3858 Value *SwitchUnwindPad; 3859 if (SwitchUnwindDest) 3860 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3861 else 3862 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3863 Assert(SwitchUnwindPad == FirstUnwindPad, 3864 "Unwind edges out of a catch must have the same unwind dest as " 3865 "the parent catchswitch", 3866 &FPI, FirstUser, CatchSwitch); 3867 } 3868 } 3869 3870 visitInstruction(FPI); 3871 } 3872 3873 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3874 BasicBlock *BB = CatchSwitch.getParent(); 3875 3876 Function *F = BB->getParent(); 3877 Assert(F->hasPersonalityFn(), 3878 "CatchSwitchInst needs to be in a function with a personality.", 3879 &CatchSwitch); 3880 3881 // The catchswitch instruction must be the first non-PHI instruction in the 3882 // block. 3883 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3884 "CatchSwitchInst not the first non-PHI instruction in the block.", 3885 &CatchSwitch); 3886 3887 auto *ParentPad = CatchSwitch.getParentPad(); 3888 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3889 "CatchSwitchInst has an invalid parent.", ParentPad); 3890 3891 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3892 Instruction *I = UnwindDest->getFirstNonPHI(); 3893 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3894 "CatchSwitchInst must unwind to an EH block which is not a " 3895 "landingpad.", 3896 &CatchSwitch); 3897 3898 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3899 if (getParentPad(I) == ParentPad) 3900 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3901 } 3902 3903 Assert(CatchSwitch.getNumHandlers() != 0, 3904 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3905 3906 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3907 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3908 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3909 } 3910 3911 visitEHPadPredecessors(CatchSwitch); 3912 visitTerminator(CatchSwitch); 3913 } 3914 3915 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3916 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3917 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3918 CRI.getOperand(0)); 3919 3920 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3921 Instruction *I = UnwindDest->getFirstNonPHI(); 3922 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3923 "CleanupReturnInst must unwind to an EH block which is not a " 3924 "landingpad.", 3925 &CRI); 3926 } 3927 3928 visitTerminator(CRI); 3929 } 3930 3931 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3932 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3933 // If the we have an invalid invoke, don't try to compute the dominance. 3934 // We already reject it in the invoke specific checks and the dominance 3935 // computation doesn't handle multiple edges. 3936 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3937 if (II->getNormalDest() == II->getUnwindDest()) 3938 return; 3939 } 3940 3941 // Quick check whether the def has already been encountered in the same block. 3942 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 3943 // uses are defined to happen on the incoming edge, not at the instruction. 3944 // 3945 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3946 // wrapping an SSA value, assert that we've already encountered it. See 3947 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3948 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3949 return; 3950 3951 const Use &U = I.getOperandUse(i); 3952 Assert(DT.dominates(Op, U), 3953 "Instruction does not dominate all uses!", Op, &I); 3954 } 3955 3956 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3957 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3958 "apply only to pointer types", &I); 3959 Assert(isa<LoadInst>(I), 3960 "dereferenceable, dereferenceable_or_null apply only to load" 3961 " instructions, use attributes for calls or invokes", &I); 3962 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3963 "take one operand!", &I); 3964 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3965 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3966 "dereferenceable_or_null metadata value must be an i64!", &I); 3967 } 3968 3969 /// verifyInstruction - Verify that an instruction is well formed. 3970 /// 3971 void Verifier::visitInstruction(Instruction &I) { 3972 BasicBlock *BB = I.getParent(); 3973 Assert(BB, "Instruction not embedded in basic block!", &I); 3974 3975 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3976 for (User *U : I.users()) { 3977 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3978 "Only PHI nodes may reference their own value!", &I); 3979 } 3980 } 3981 3982 // Check that void typed values don't have names 3983 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3984 "Instruction has a name, but provides a void value!", &I); 3985 3986 // Check that the return value of the instruction is either void or a legal 3987 // value type. 3988 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3989 "Instruction returns a non-scalar type!", &I); 3990 3991 // Check that the instruction doesn't produce metadata. Calls are already 3992 // checked against the callee type. 3993 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3994 "Invalid use of metadata!", &I); 3995 3996 // Check that all uses of the instruction, if they are instructions 3997 // themselves, actually have parent basic blocks. If the use is not an 3998 // instruction, it is an error! 3999 for (Use &U : I.uses()) { 4000 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4001 Assert(Used->getParent() != nullptr, 4002 "Instruction referencing" 4003 " instruction not embedded in a basic block!", 4004 &I, Used); 4005 else { 4006 CheckFailed("Use of instruction is not an instruction!", U); 4007 return; 4008 } 4009 } 4010 4011 // Get a pointer to the call base of the instruction if it is some form of 4012 // call. 4013 const CallBase *CBI = dyn_cast<CallBase>(&I); 4014 4015 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4016 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4017 4018 // Check to make sure that only first-class-values are operands to 4019 // instructions. 4020 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4021 Assert(false, "Instruction operands must be first-class values!", &I); 4022 } 4023 4024 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4025 // Check to make sure that the "address of" an intrinsic function is never 4026 // taken. 4027 Assert(!F->isIntrinsic() || 4028 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4029 "Cannot take the address of an intrinsic!", &I); 4030 Assert( 4031 !F->isIntrinsic() || isa<CallInst>(I) || 4032 F->getIntrinsicID() == Intrinsic::donothing || 4033 F->getIntrinsicID() == Intrinsic::coro_resume || 4034 F->getIntrinsicID() == Intrinsic::coro_destroy || 4035 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4036 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4037 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4038 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4039 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4040 "statepoint, coro_resume or coro_destroy", 4041 &I); 4042 Assert(F->getParent() == &M, "Referencing function in another module!", 4043 &I, &M, F, F->getParent()); 4044 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4045 Assert(OpBB->getParent() == BB->getParent(), 4046 "Referring to a basic block in another function!", &I); 4047 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4048 Assert(OpArg->getParent() == BB->getParent(), 4049 "Referring to an argument in another function!", &I); 4050 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4051 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4052 &M, GV, GV->getParent()); 4053 } else if (isa<Instruction>(I.getOperand(i))) { 4054 verifyDominatesUse(I, i); 4055 } else if (isa<InlineAsm>(I.getOperand(i))) { 4056 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4057 "Cannot take the address of an inline asm!", &I); 4058 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4059 if (CE->getType()->isPtrOrPtrVectorTy() || 4060 !DL.getNonIntegralAddressSpaces().empty()) { 4061 // If we have a ConstantExpr pointer, we need to see if it came from an 4062 // illegal bitcast. If the datalayout string specifies non-integral 4063 // address spaces then we also need to check for illegal ptrtoint and 4064 // inttoptr expressions. 4065 visitConstantExprsRecursively(CE); 4066 } 4067 } 4068 } 4069 4070 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4071 Assert(I.getType()->isFPOrFPVectorTy(), 4072 "fpmath requires a floating point result!", &I); 4073 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4074 if (ConstantFP *CFP0 = 4075 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4076 const APFloat &Accuracy = CFP0->getValueAPF(); 4077 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4078 "fpmath accuracy must have float type", &I); 4079 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4080 "fpmath accuracy not a positive number!", &I); 4081 } else { 4082 Assert(false, "invalid fpmath accuracy!", &I); 4083 } 4084 } 4085 4086 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4087 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4088 "Ranges are only for loads, calls and invokes!", &I); 4089 visitRangeMetadata(I, Range, I.getType()); 4090 } 4091 4092 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4093 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4094 &I); 4095 Assert(isa<LoadInst>(I), 4096 "nonnull applies only to load instructions, use attributes" 4097 " for calls or invokes", 4098 &I); 4099 } 4100 4101 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4102 visitDereferenceableMetadata(I, MD); 4103 4104 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4105 visitDereferenceableMetadata(I, MD); 4106 4107 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4108 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4109 4110 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4111 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4112 &I); 4113 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4114 "use attributes for calls or invokes", &I); 4115 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4116 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4117 Assert(CI && CI->getType()->isIntegerTy(64), 4118 "align metadata value must be an i64!", &I); 4119 uint64_t Align = CI->getZExtValue(); 4120 Assert(isPowerOf2_64(Align), 4121 "align metadata value must be a power of 2!", &I); 4122 Assert(Align <= Value::MaximumAlignment, 4123 "alignment is larger that implementation defined limit", &I); 4124 } 4125 4126 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4127 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4128 visitMDNode(*N); 4129 } 4130 4131 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 4132 verifyFragmentExpression(*DII); 4133 4134 InstsInThisBlock.insert(&I); 4135 } 4136 4137 /// Allow intrinsics to be verified in different ways. 4138 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4139 Function *IF = Call.getCalledFunction(); 4140 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4141 IF); 4142 4143 // Verify that the intrinsic prototype lines up with what the .td files 4144 // describe. 4145 FunctionType *IFTy = IF->getFunctionType(); 4146 bool IsVarArg = IFTy->isVarArg(); 4147 4148 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4149 getIntrinsicInfoTableEntries(ID, Table); 4150 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4151 4152 SmallVector<Type *, 4> ArgTys; 4153 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(), 4154 TableRef, ArgTys), 4155 "Intrinsic has incorrect return type!", IF); 4156 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 4157 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i), 4158 TableRef, ArgTys), 4159 "Intrinsic has incorrect argument type!", IF); 4160 4161 // Verify if the intrinsic call matches the vararg property. 4162 if (IsVarArg) 4163 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4164 "Intrinsic was not defined with variable arguments!", IF); 4165 else 4166 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4167 "Callsite was not defined with variable arguments!", IF); 4168 4169 // All descriptors should be absorbed by now. 4170 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4171 4172 // Now that we have the intrinsic ID and the actual argument types (and we 4173 // know they are legal for the intrinsic!) get the intrinsic name through the 4174 // usual means. This allows us to verify the mangling of argument types into 4175 // the name. 4176 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4177 Assert(ExpectedName == IF->getName(), 4178 "Intrinsic name not mangled correctly for type arguments! " 4179 "Should be: " + 4180 ExpectedName, 4181 IF); 4182 4183 // If the intrinsic takes MDNode arguments, verify that they are either global 4184 // or are local to *this* function. 4185 for (Value *V : Call.args()) 4186 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4187 visitMetadataAsValue(*MD, Call.getCaller()); 4188 4189 switch (ID) { 4190 default: 4191 break; 4192 case Intrinsic::coro_id: { 4193 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4194 if (isa<ConstantPointerNull>(InfoArg)) 4195 break; 4196 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4197 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4198 "info argument of llvm.coro.begin must refer to an initialized " 4199 "constant"); 4200 Constant *Init = GV->getInitializer(); 4201 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4202 "info argument of llvm.coro.begin must refer to either a struct or " 4203 "an array"); 4204 break; 4205 } 4206 case Intrinsic::experimental_constrained_fadd: 4207 case Intrinsic::experimental_constrained_fsub: 4208 case Intrinsic::experimental_constrained_fmul: 4209 case Intrinsic::experimental_constrained_fdiv: 4210 case Intrinsic::experimental_constrained_frem: 4211 case Intrinsic::experimental_constrained_fma: 4212 case Intrinsic::experimental_constrained_fptrunc: 4213 case Intrinsic::experimental_constrained_fpext: 4214 case Intrinsic::experimental_constrained_sqrt: 4215 case Intrinsic::experimental_constrained_pow: 4216 case Intrinsic::experimental_constrained_powi: 4217 case Intrinsic::experimental_constrained_sin: 4218 case Intrinsic::experimental_constrained_cos: 4219 case Intrinsic::experimental_constrained_exp: 4220 case Intrinsic::experimental_constrained_exp2: 4221 case Intrinsic::experimental_constrained_log: 4222 case Intrinsic::experimental_constrained_log10: 4223 case Intrinsic::experimental_constrained_log2: 4224 case Intrinsic::experimental_constrained_rint: 4225 case Intrinsic::experimental_constrained_nearbyint: 4226 case Intrinsic::experimental_constrained_maxnum: 4227 case Intrinsic::experimental_constrained_minnum: 4228 case Intrinsic::experimental_constrained_ceil: 4229 case Intrinsic::experimental_constrained_floor: 4230 case Intrinsic::experimental_constrained_round: 4231 case Intrinsic::experimental_constrained_trunc: 4232 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4233 break; 4234 case Intrinsic::dbg_declare: // llvm.dbg.declare 4235 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4236 "invalid llvm.dbg.declare intrinsic call 1", Call); 4237 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4238 break; 4239 case Intrinsic::dbg_addr: // llvm.dbg.addr 4240 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4241 break; 4242 case Intrinsic::dbg_value: // llvm.dbg.value 4243 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4244 break; 4245 case Intrinsic::dbg_label: // llvm.dbg.label 4246 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4247 break; 4248 case Intrinsic::memcpy: 4249 case Intrinsic::memmove: 4250 case Intrinsic::memset: { 4251 const auto *MI = cast<MemIntrinsic>(&Call); 4252 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4253 return Alignment == 0 || isPowerOf2_32(Alignment); 4254 }; 4255 Assert(IsValidAlignment(MI->getDestAlignment()), 4256 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4257 Call); 4258 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4259 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4260 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4261 Call); 4262 } 4263 4264 break; 4265 } 4266 case Intrinsic::memcpy_element_unordered_atomic: 4267 case Intrinsic::memmove_element_unordered_atomic: 4268 case Intrinsic::memset_element_unordered_atomic: { 4269 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4270 4271 ConstantInt *ElementSizeCI = 4272 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4273 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4274 Assert(ElementSizeVal.isPowerOf2(), 4275 "element size of the element-wise atomic memory intrinsic " 4276 "must be a power of 2", 4277 Call); 4278 4279 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4280 uint64_t Length = LengthCI->getZExtValue(); 4281 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4282 Assert((Length % ElementSize) == 0, 4283 "constant length must be a multiple of the element size in the " 4284 "element-wise atomic memory intrinsic", 4285 Call); 4286 } 4287 4288 auto IsValidAlignment = [&](uint64_t Alignment) { 4289 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4290 }; 4291 uint64_t DstAlignment = AMI->getDestAlignment(); 4292 Assert(IsValidAlignment(DstAlignment), 4293 "incorrect alignment of the destination argument", Call); 4294 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4295 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4296 Assert(IsValidAlignment(SrcAlignment), 4297 "incorrect alignment of the source argument", Call); 4298 } 4299 break; 4300 } 4301 case Intrinsic::gcroot: 4302 case Intrinsic::gcwrite: 4303 case Intrinsic::gcread: 4304 if (ID == Intrinsic::gcroot) { 4305 AllocaInst *AI = 4306 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4307 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4308 Assert(isa<Constant>(Call.getArgOperand(1)), 4309 "llvm.gcroot parameter #2 must be a constant.", Call); 4310 if (!AI->getAllocatedType()->isPointerTy()) { 4311 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4312 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4313 "or argument #2 must be a non-null constant.", 4314 Call); 4315 } 4316 } 4317 4318 Assert(Call.getParent()->getParent()->hasGC(), 4319 "Enclosing function does not use GC.", Call); 4320 break; 4321 case Intrinsic::init_trampoline: 4322 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4323 "llvm.init_trampoline parameter #2 must resolve to a function.", 4324 Call); 4325 break; 4326 case Intrinsic::prefetch: 4327 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4328 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4329 "invalid arguments to llvm.prefetch", Call); 4330 break; 4331 case Intrinsic::stackprotector: 4332 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4333 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4334 break; 4335 case Intrinsic::localescape: { 4336 BasicBlock *BB = Call.getParent(); 4337 Assert(BB == &BB->getParent()->front(), 4338 "llvm.localescape used outside of entry block", Call); 4339 Assert(!SawFrameEscape, 4340 "multiple calls to llvm.localescape in one function", Call); 4341 for (Value *Arg : Call.args()) { 4342 if (isa<ConstantPointerNull>(Arg)) 4343 continue; // Null values are allowed as placeholders. 4344 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4345 Assert(AI && AI->isStaticAlloca(), 4346 "llvm.localescape only accepts static allocas", Call); 4347 } 4348 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4349 SawFrameEscape = true; 4350 break; 4351 } 4352 case Intrinsic::localrecover: { 4353 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4354 Function *Fn = dyn_cast<Function>(FnArg); 4355 Assert(Fn && !Fn->isDeclaration(), 4356 "llvm.localrecover first " 4357 "argument must be function defined in this module", 4358 Call); 4359 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4360 auto &Entry = FrameEscapeInfo[Fn]; 4361 Entry.second = unsigned( 4362 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4363 break; 4364 } 4365 4366 case Intrinsic::experimental_gc_statepoint: 4367 if (auto *CI = dyn_cast<CallInst>(&Call)) 4368 Assert(!CI->isInlineAsm(), 4369 "gc.statepoint support for inline assembly unimplemented", CI); 4370 Assert(Call.getParent()->getParent()->hasGC(), 4371 "Enclosing function does not use GC.", Call); 4372 4373 verifyStatepoint(Call); 4374 break; 4375 case Intrinsic::experimental_gc_result: { 4376 Assert(Call.getParent()->getParent()->hasGC(), 4377 "Enclosing function does not use GC.", Call); 4378 // Are we tied to a statepoint properly? 4379 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4380 const Function *StatepointFn = 4381 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4382 Assert(StatepointFn && StatepointFn->isDeclaration() && 4383 StatepointFn->getIntrinsicID() == 4384 Intrinsic::experimental_gc_statepoint, 4385 "gc.result operand #1 must be from a statepoint", Call, 4386 Call.getArgOperand(0)); 4387 4388 // Assert that result type matches wrapped callee. 4389 const Value *Target = StatepointCall->getArgOperand(2); 4390 auto *PT = cast<PointerType>(Target->getType()); 4391 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4392 Assert(Call.getType() == TargetFuncType->getReturnType(), 4393 "gc.result result type does not match wrapped callee", Call); 4394 break; 4395 } 4396 case Intrinsic::experimental_gc_relocate: { 4397 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4398 4399 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4400 "gc.relocate must return a pointer or a vector of pointers", Call); 4401 4402 // Check that this relocate is correctly tied to the statepoint 4403 4404 // This is case for relocate on the unwinding path of an invoke statepoint 4405 if (LandingPadInst *LandingPad = 4406 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4407 4408 const BasicBlock *InvokeBB = 4409 LandingPad->getParent()->getUniquePredecessor(); 4410 4411 // Landingpad relocates should have only one predecessor with invoke 4412 // statepoint terminator 4413 Assert(InvokeBB, "safepoints should have unique landingpads", 4414 LandingPad->getParent()); 4415 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4416 InvokeBB); 4417 Assert(isStatepoint(InvokeBB->getTerminator()), 4418 "gc relocate should be linked to a statepoint", InvokeBB); 4419 } else { 4420 // In all other cases relocate should be tied to the statepoint directly. 4421 // This covers relocates on a normal return path of invoke statepoint and 4422 // relocates of a call statepoint. 4423 auto Token = Call.getArgOperand(0); 4424 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4425 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4426 } 4427 4428 // Verify rest of the relocate arguments. 4429 const CallBase &StatepointCall = 4430 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4431 4432 // Both the base and derived must be piped through the safepoint. 4433 Value *Base = Call.getArgOperand(1); 4434 Assert(isa<ConstantInt>(Base), 4435 "gc.relocate operand #2 must be integer offset", Call); 4436 4437 Value *Derived = Call.getArgOperand(2); 4438 Assert(isa<ConstantInt>(Derived), 4439 "gc.relocate operand #3 must be integer offset", Call); 4440 4441 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4442 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4443 // Check the bounds 4444 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4445 "gc.relocate: statepoint base index out of bounds", Call); 4446 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4447 "gc.relocate: statepoint derived index out of bounds", Call); 4448 4449 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4450 // section of the statepoint's argument. 4451 Assert(StatepointCall.arg_size() > 0, 4452 "gc.statepoint: insufficient arguments"); 4453 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4454 "gc.statement: number of call arguments must be constant integer"); 4455 const unsigned NumCallArgs = 4456 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4457 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4458 "gc.statepoint: mismatch in number of call arguments"); 4459 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4460 "gc.statepoint: number of transition arguments must be " 4461 "a constant integer"); 4462 const int NumTransitionArgs = 4463 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4464 ->getZExtValue(); 4465 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4466 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4467 "gc.statepoint: number of deoptimization arguments must be " 4468 "a constant integer"); 4469 const int NumDeoptArgs = 4470 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4471 ->getZExtValue(); 4472 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4473 const int GCParamArgsEnd = StatepointCall.arg_size(); 4474 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4475 "gc.relocate: statepoint base index doesn't fall within the " 4476 "'gc parameters' section of the statepoint call", 4477 Call); 4478 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4479 "gc.relocate: statepoint derived index doesn't fall within the " 4480 "'gc parameters' section of the statepoint call", 4481 Call); 4482 4483 // Relocated value must be either a pointer type or vector-of-pointer type, 4484 // but gc_relocate does not need to return the same pointer type as the 4485 // relocated pointer. It can be casted to the correct type later if it's 4486 // desired. However, they must have the same address space and 'vectorness' 4487 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4488 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4489 "gc.relocate: relocated value must be a gc pointer", Call); 4490 4491 auto ResultType = Call.getType(); 4492 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4493 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4494 "gc.relocate: vector relocates to vector and pointer to pointer", 4495 Call); 4496 Assert( 4497 ResultType->getPointerAddressSpace() == 4498 DerivedType->getPointerAddressSpace(), 4499 "gc.relocate: relocating a pointer shouldn't change its address space", 4500 Call); 4501 break; 4502 } 4503 case Intrinsic::eh_exceptioncode: 4504 case Intrinsic::eh_exceptionpointer: { 4505 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4506 "eh.exceptionpointer argument must be a catchpad", Call); 4507 break; 4508 } 4509 case Intrinsic::masked_load: { 4510 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4511 Call); 4512 4513 Value *Ptr = Call.getArgOperand(0); 4514 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4515 Value *Mask = Call.getArgOperand(2); 4516 Value *PassThru = Call.getArgOperand(3); 4517 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4518 Call); 4519 Assert(Alignment->getValue().isPowerOf2(), 4520 "masked_load: alignment must be a power of 2", Call); 4521 4522 // DataTy is the overloaded type 4523 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4524 Assert(DataTy == Call.getType(), 4525 "masked_load: return must match pointer type", Call); 4526 Assert(PassThru->getType() == DataTy, 4527 "masked_load: pass through and data type must match", Call); 4528 Assert(Mask->getType()->getVectorNumElements() == 4529 DataTy->getVectorNumElements(), 4530 "masked_load: vector mask must be same length as data", Call); 4531 break; 4532 } 4533 case Intrinsic::masked_store: { 4534 Value *Val = Call.getArgOperand(0); 4535 Value *Ptr = Call.getArgOperand(1); 4536 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4537 Value *Mask = Call.getArgOperand(3); 4538 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4539 Call); 4540 Assert(Alignment->getValue().isPowerOf2(), 4541 "masked_store: alignment must be a power of 2", Call); 4542 4543 // DataTy is the overloaded type 4544 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4545 Assert(DataTy == Val->getType(), 4546 "masked_store: storee must match pointer type", Call); 4547 Assert(Mask->getType()->getVectorNumElements() == 4548 DataTy->getVectorNumElements(), 4549 "masked_store: vector mask must be same length as data", Call); 4550 break; 4551 } 4552 4553 case Intrinsic::experimental_guard: { 4554 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4555 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4556 "experimental_guard must have exactly one " 4557 "\"deopt\" operand bundle"); 4558 break; 4559 } 4560 4561 case Intrinsic::experimental_deoptimize: { 4562 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4563 Call); 4564 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4565 "experimental_deoptimize must have exactly one " 4566 "\"deopt\" operand bundle"); 4567 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4568 "experimental_deoptimize return type must match caller return type"); 4569 4570 if (isa<CallInst>(Call)) { 4571 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4572 Assert(RI, 4573 "calls to experimental_deoptimize must be followed by a return"); 4574 4575 if (!Call.getType()->isVoidTy() && RI) 4576 Assert(RI->getReturnValue() == &Call, 4577 "calls to experimental_deoptimize must be followed by a return " 4578 "of the value computed by experimental_deoptimize"); 4579 } 4580 4581 break; 4582 } 4583 case Intrinsic::sadd_sat: 4584 case Intrinsic::uadd_sat: 4585 case Intrinsic::ssub_sat: 4586 case Intrinsic::usub_sat: { 4587 Value *Op1 = Call.getArgOperand(0); 4588 Value *Op2 = Call.getArgOperand(1); 4589 Assert(Op1->getType()->isIntOrIntVectorTy(), 4590 "first operand of [us][add|sub]_sat must be an int type or vector " 4591 "of ints"); 4592 Assert(Op2->getType()->isIntOrIntVectorTy(), 4593 "second operand of [us][add|sub]_sat must be an int type or vector " 4594 "of ints"); 4595 break; 4596 } 4597 case Intrinsic::smul_fix: 4598 case Intrinsic::smul_fix_sat: 4599 case Intrinsic::umul_fix: { 4600 Value *Op1 = Call.getArgOperand(0); 4601 Value *Op2 = Call.getArgOperand(1); 4602 Assert(Op1->getType()->isIntOrIntVectorTy(), 4603 "first operand of [us]mul_fix[_sat] must be an int type or vector " 4604 "of ints"); 4605 Assert(Op2->getType()->isIntOrIntVectorTy(), 4606 "second operand of [us]mul_fix_[sat] must be an int type or vector " 4607 "of ints"); 4608 4609 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4610 Assert(Op3->getType()->getBitWidth() <= 32, 4611 "third argument of [us]mul_fix[_sat] must fit within 32 bits"); 4612 4613 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { 4614 Assert( 4615 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4616 "the scale of smul_fix[_sat] must be less than the width of the operands"); 4617 } else { 4618 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4619 "the scale of umul_fix[_sat] must be less than or equal to the width of " 4620 "the operands"); 4621 } 4622 break; 4623 } 4624 case Intrinsic::lround: 4625 case Intrinsic::llround: { 4626 Type *ValTy = Call.getArgOperand(0)->getType(); 4627 Type *ResultTy = Call.getType(); 4628 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4629 "Intrinsic does not support vectors", &Call); 4630 break; 4631 } 4632 }; 4633 } 4634 4635 /// Carefully grab the subprogram from a local scope. 4636 /// 4637 /// This carefully grabs the subprogram from a local scope, avoiding the 4638 /// built-in assertions that would typically fire. 4639 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4640 if (!LocalScope) 4641 return nullptr; 4642 4643 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4644 return SP; 4645 4646 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4647 return getSubprogram(LB->getRawScope()); 4648 4649 // Just return null; broken scope chains are checked elsewhere. 4650 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4651 return nullptr; 4652 } 4653 4654 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4655 unsigned NumOperands = FPI.getNumArgOperands(); 4656 bool HasExceptionMD = false; 4657 bool HasRoundingMD = false; 4658 switch (FPI.getIntrinsicID()) { 4659 case Intrinsic::experimental_constrained_sqrt: 4660 case Intrinsic::experimental_constrained_sin: 4661 case Intrinsic::experimental_constrained_cos: 4662 case Intrinsic::experimental_constrained_exp: 4663 case Intrinsic::experimental_constrained_exp2: 4664 case Intrinsic::experimental_constrained_log: 4665 case Intrinsic::experimental_constrained_log10: 4666 case Intrinsic::experimental_constrained_log2: 4667 case Intrinsic::experimental_constrained_rint: 4668 case Intrinsic::experimental_constrained_nearbyint: 4669 case Intrinsic::experimental_constrained_ceil: 4670 case Intrinsic::experimental_constrained_floor: 4671 case Intrinsic::experimental_constrained_round: 4672 case Intrinsic::experimental_constrained_trunc: 4673 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", 4674 &FPI); 4675 HasExceptionMD = true; 4676 HasRoundingMD = true; 4677 break; 4678 4679 case Intrinsic::experimental_constrained_fma: 4680 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", 4681 &FPI); 4682 HasExceptionMD = true; 4683 HasRoundingMD = true; 4684 break; 4685 4686 case Intrinsic::experimental_constrained_fadd: 4687 case Intrinsic::experimental_constrained_fsub: 4688 case Intrinsic::experimental_constrained_fmul: 4689 case Intrinsic::experimental_constrained_fdiv: 4690 case Intrinsic::experimental_constrained_frem: 4691 case Intrinsic::experimental_constrained_pow: 4692 case Intrinsic::experimental_constrained_powi: 4693 case Intrinsic::experimental_constrained_maxnum: 4694 case Intrinsic::experimental_constrained_minnum: 4695 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", 4696 &FPI); 4697 HasExceptionMD = true; 4698 HasRoundingMD = true; 4699 break; 4700 4701 case Intrinsic::experimental_constrained_fptrunc: 4702 case Intrinsic::experimental_constrained_fpext: { 4703 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4704 Assert((NumOperands == 3), 4705 "invalid arguments for constrained FP intrinsic", &FPI); 4706 HasRoundingMD = true; 4707 } else { 4708 Assert((NumOperands == 2), 4709 "invalid arguments for constrained FP intrinsic", &FPI); 4710 } 4711 HasExceptionMD = true; 4712 4713 Value *Operand = FPI.getArgOperand(0); 4714 Type *OperandTy = Operand->getType(); 4715 Value *Result = &FPI; 4716 Type *ResultTy = Result->getType(); 4717 Assert(OperandTy->isFPOrFPVectorTy(), 4718 "Intrinsic first argument must be FP or FP vector", &FPI); 4719 Assert(ResultTy->isFPOrFPVectorTy(), 4720 "Intrinsic result must be FP or FP vector", &FPI); 4721 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4722 "Intrinsic first argument and result disagree on vector use", &FPI); 4723 if (OperandTy->isVectorTy()) { 4724 auto *OperandVecTy = cast<VectorType>(OperandTy); 4725 auto *ResultVecTy = cast<VectorType>(ResultTy); 4726 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4727 "Intrinsic first argument and result vector lengths must be equal", 4728 &FPI); 4729 } 4730 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4731 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4732 "Intrinsic first argument's type must be larger than result type", 4733 &FPI); 4734 } else { 4735 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4736 "Intrinsic first argument's type must be smaller than result type", 4737 &FPI); 4738 } 4739 } 4740 break; 4741 4742 default: 4743 llvm_unreachable("Invalid constrained FP intrinsic!"); 4744 } 4745 4746 // If a non-metadata argument is passed in a metadata slot then the 4747 // error will be caught earlier when the incorrect argument doesn't 4748 // match the specification in the intrinsic call table. Thus, no 4749 // argument type check is needed here. 4750 4751 if (HasExceptionMD) { 4752 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid, 4753 "invalid exception behavior argument", &FPI); 4754 } 4755 if (HasRoundingMD) { 4756 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid, 4757 "invalid rounding mode argument", &FPI); 4758 } 4759 } 4760 4761 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4762 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4763 AssertDI(isa<ValueAsMetadata>(MD) || 4764 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4765 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4766 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4767 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4768 DII.getRawVariable()); 4769 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4770 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4771 DII.getRawExpression()); 4772 4773 // Ignore broken !dbg attachments; they're checked elsewhere. 4774 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4775 if (!isa<DILocation>(N)) 4776 return; 4777 4778 BasicBlock *BB = DII.getParent(); 4779 Function *F = BB ? BB->getParent() : nullptr; 4780 4781 // The scopes for variables and !dbg attachments must agree. 4782 DILocalVariable *Var = DII.getVariable(); 4783 DILocation *Loc = DII.getDebugLoc(); 4784 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4785 &DII, BB, F); 4786 4787 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4788 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4789 if (!VarSP || !LocSP) 4790 return; // Broken scope chains are checked elsewhere. 4791 4792 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4793 " variable and !dbg attachment", 4794 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4795 Loc->getScope()->getSubprogram()); 4796 4797 // This check is redundant with one in visitLocalVariable(). 4798 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4799 Var->getRawType()); 4800 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType())) 4801 if (Type->isBlockByrefStruct()) 4802 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(), 4803 "BlockByRef variable without complex expression", Var, &DII); 4804 4805 verifyFnArgs(DII); 4806 } 4807 4808 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4809 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4810 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4811 DLI.getRawLabel()); 4812 4813 // Ignore broken !dbg attachments; they're checked elsewhere. 4814 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4815 if (!isa<DILocation>(N)) 4816 return; 4817 4818 BasicBlock *BB = DLI.getParent(); 4819 Function *F = BB ? BB->getParent() : nullptr; 4820 4821 // The scopes for variables and !dbg attachments must agree. 4822 DILabel *Label = DLI.getLabel(); 4823 DILocation *Loc = DLI.getDebugLoc(); 4824 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4825 &DLI, BB, F); 4826 4827 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4828 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4829 if (!LabelSP || !LocSP) 4830 return; 4831 4832 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4833 " label and !dbg attachment", 4834 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4835 Loc->getScope()->getSubprogram()); 4836 } 4837 4838 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4839 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4840 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4841 4842 // We don't know whether this intrinsic verified correctly. 4843 if (!V || !E || !E->isValid()) 4844 return; 4845 4846 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4847 auto Fragment = E->getFragmentInfo(); 4848 if (!Fragment) 4849 return; 4850 4851 // The frontend helps out GDB by emitting the members of local anonymous 4852 // unions as artificial local variables with shared storage. When SROA splits 4853 // the storage for artificial local variables that are smaller than the entire 4854 // union, the overhang piece will be outside of the allotted space for the 4855 // variable and this check fails. 4856 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4857 if (V->isArtificial()) 4858 return; 4859 4860 verifyFragmentExpression(*V, *Fragment, &I); 4861 } 4862 4863 template <typename ValueOrMetadata> 4864 void Verifier::verifyFragmentExpression(const DIVariable &V, 4865 DIExpression::FragmentInfo Fragment, 4866 ValueOrMetadata *Desc) { 4867 // If there's no size, the type is broken, but that should be checked 4868 // elsewhere. 4869 auto VarSize = V.getSizeInBits(); 4870 if (!VarSize) 4871 return; 4872 4873 unsigned FragSize = Fragment.SizeInBits; 4874 unsigned FragOffset = Fragment.OffsetInBits; 4875 AssertDI(FragSize + FragOffset <= *VarSize, 4876 "fragment is larger than or outside of variable", Desc, &V); 4877 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4878 } 4879 4880 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 4881 // This function does not take the scope of noninlined function arguments into 4882 // account. Don't run it if current function is nodebug, because it may 4883 // contain inlined debug intrinsics. 4884 if (!HasDebugInfo) 4885 return; 4886 4887 // For performance reasons only check non-inlined ones. 4888 if (I.getDebugLoc()->getInlinedAt()) 4889 return; 4890 4891 DILocalVariable *Var = I.getVariable(); 4892 AssertDI(Var, "dbg intrinsic without variable"); 4893 4894 unsigned ArgNo = Var->getArg(); 4895 if (!ArgNo) 4896 return; 4897 4898 // Verify there are no duplicate function argument debug info entries. 4899 // These will cause hard-to-debug assertions in the DWARF backend. 4900 if (DebugFnArgs.size() < ArgNo) 4901 DebugFnArgs.resize(ArgNo, nullptr); 4902 4903 auto *Prev = DebugFnArgs[ArgNo - 1]; 4904 DebugFnArgs[ArgNo - 1] = Var; 4905 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4906 Prev, Var); 4907 } 4908 4909 void Verifier::verifyCompileUnits() { 4910 // When more than one Module is imported into the same context, such as during 4911 // an LTO build before linking the modules, ODR type uniquing may cause types 4912 // to point to a different CU. This check does not make sense in this case. 4913 if (M.getContext().isODRUniquingDebugTypes()) 4914 return; 4915 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4916 SmallPtrSet<const Metadata *, 2> Listed; 4917 if (CUs) 4918 Listed.insert(CUs->op_begin(), CUs->op_end()); 4919 for (auto *CU : CUVisited) 4920 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4921 CUVisited.clear(); 4922 } 4923 4924 void Verifier::verifyDeoptimizeCallingConvs() { 4925 if (DeoptimizeDeclarations.empty()) 4926 return; 4927 4928 const Function *First = DeoptimizeDeclarations[0]; 4929 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4930 Assert(First->getCallingConv() == F->getCallingConv(), 4931 "All llvm.experimental.deoptimize declarations must have the same " 4932 "calling convention", 4933 First, F); 4934 } 4935 } 4936 4937 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 4938 bool HasSource = F.getSource().hasValue(); 4939 if (!HasSourceDebugInfo.count(&U)) 4940 HasSourceDebugInfo[&U] = HasSource; 4941 AssertDI(HasSource == HasSourceDebugInfo[&U], 4942 "inconsistent use of embedded source"); 4943 } 4944 4945 //===----------------------------------------------------------------------===// 4946 // Implement the public interfaces to this file... 4947 //===----------------------------------------------------------------------===// 4948 4949 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4950 Function &F = const_cast<Function &>(f); 4951 4952 // Don't use a raw_null_ostream. Printing IR is expensive. 4953 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4954 4955 // Note that this function's return value is inverted from what you would 4956 // expect of a function called "verify". 4957 return !V.verify(F); 4958 } 4959 4960 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4961 bool *BrokenDebugInfo) { 4962 // Don't use a raw_null_ostream. Printing IR is expensive. 4963 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4964 4965 bool Broken = false; 4966 for (const Function &F : M) 4967 Broken |= !V.verify(F); 4968 4969 Broken |= !V.verify(); 4970 if (BrokenDebugInfo) 4971 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4972 // Note that this function's return value is inverted from what you would 4973 // expect of a function called "verify". 4974 return Broken; 4975 } 4976 4977 namespace { 4978 4979 struct VerifierLegacyPass : public FunctionPass { 4980 static char ID; 4981 4982 std::unique_ptr<Verifier> V; 4983 bool FatalErrors = true; 4984 4985 VerifierLegacyPass() : FunctionPass(ID) { 4986 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4987 } 4988 explicit VerifierLegacyPass(bool FatalErrors) 4989 : FunctionPass(ID), 4990 FatalErrors(FatalErrors) { 4991 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4992 } 4993 4994 bool doInitialization(Module &M) override { 4995 V = llvm::make_unique<Verifier>( 4996 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 4997 return false; 4998 } 4999 5000 bool runOnFunction(Function &F) override { 5001 if (!V->verify(F) && FatalErrors) { 5002 errs() << "in function " << F.getName() << '\n'; 5003 report_fatal_error("Broken function found, compilation aborted!"); 5004 } 5005 return false; 5006 } 5007 5008 bool doFinalization(Module &M) override { 5009 bool HasErrors = false; 5010 for (Function &F : M) 5011 if (F.isDeclaration()) 5012 HasErrors |= !V->verify(F); 5013 5014 HasErrors |= !V->verify(); 5015 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5016 report_fatal_error("Broken module found, compilation aborted!"); 5017 return false; 5018 } 5019 5020 void getAnalysisUsage(AnalysisUsage &AU) const override { 5021 AU.setPreservesAll(); 5022 } 5023 }; 5024 5025 } // end anonymous namespace 5026 5027 /// Helper to issue failure from the TBAA verification 5028 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5029 if (Diagnostic) 5030 return Diagnostic->CheckFailed(Args...); 5031 } 5032 5033 #define AssertTBAA(C, ...) \ 5034 do { \ 5035 if (!(C)) { \ 5036 CheckFailed(__VA_ARGS__); \ 5037 return false; \ 5038 } \ 5039 } while (false) 5040 5041 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5042 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5043 /// struct-type node describing an aggregate data structure (like a struct). 5044 TBAAVerifier::TBAABaseNodeSummary 5045 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5046 bool IsNewFormat) { 5047 if (BaseNode->getNumOperands() < 2) { 5048 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5049 return {true, ~0u}; 5050 } 5051 5052 auto Itr = TBAABaseNodes.find(BaseNode); 5053 if (Itr != TBAABaseNodes.end()) 5054 return Itr->second; 5055 5056 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5057 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5058 (void)InsertResult; 5059 assert(InsertResult.second && "We just checked!"); 5060 return Result; 5061 } 5062 5063 TBAAVerifier::TBAABaseNodeSummary 5064 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5065 bool IsNewFormat) { 5066 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5067 5068 if (BaseNode->getNumOperands() == 2) { 5069 // Scalar nodes can only be accessed at offset 0. 5070 return isValidScalarTBAANode(BaseNode) 5071 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5072 : InvalidNode; 5073 } 5074 5075 if (IsNewFormat) { 5076 if (BaseNode->getNumOperands() % 3 != 0) { 5077 CheckFailed("Access tag nodes must have the number of operands that is a " 5078 "multiple of 3!", BaseNode); 5079 return InvalidNode; 5080 } 5081 } else { 5082 if (BaseNode->getNumOperands() % 2 != 1) { 5083 CheckFailed("Struct tag nodes must have an odd number of operands!", 5084 BaseNode); 5085 return InvalidNode; 5086 } 5087 } 5088 5089 // Check the type size field. 5090 if (IsNewFormat) { 5091 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5092 BaseNode->getOperand(1)); 5093 if (!TypeSizeNode) { 5094 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5095 return InvalidNode; 5096 } 5097 } 5098 5099 // Check the type name field. In the new format it can be anything. 5100 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5101 CheckFailed("Struct tag nodes have a string as their first operand", 5102 BaseNode); 5103 return InvalidNode; 5104 } 5105 5106 bool Failed = false; 5107 5108 Optional<APInt> PrevOffset; 5109 unsigned BitWidth = ~0u; 5110 5111 // We've already checked that BaseNode is not a degenerate root node with one 5112 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5113 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5114 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5115 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5116 Idx += NumOpsPerField) { 5117 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5118 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5119 if (!isa<MDNode>(FieldTy)) { 5120 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5121 Failed = true; 5122 continue; 5123 } 5124 5125 auto *OffsetEntryCI = 5126 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5127 if (!OffsetEntryCI) { 5128 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5129 Failed = true; 5130 continue; 5131 } 5132 5133 if (BitWidth == ~0u) 5134 BitWidth = OffsetEntryCI->getBitWidth(); 5135 5136 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5137 CheckFailed( 5138 "Bitwidth between the offsets and struct type entries must match", &I, 5139 BaseNode); 5140 Failed = true; 5141 continue; 5142 } 5143 5144 // NB! As far as I can tell, we generate a non-strictly increasing offset 5145 // sequence only from structs that have zero size bit fields. When 5146 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5147 // pick the field lexically the latest in struct type metadata node. This 5148 // mirrors the actual behavior of the alias analysis implementation. 5149 bool IsAscending = 5150 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5151 5152 if (!IsAscending) { 5153 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5154 Failed = true; 5155 } 5156 5157 PrevOffset = OffsetEntryCI->getValue(); 5158 5159 if (IsNewFormat) { 5160 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5161 BaseNode->getOperand(Idx + 2)); 5162 if (!MemberSizeNode) { 5163 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5164 Failed = true; 5165 continue; 5166 } 5167 } 5168 } 5169 5170 return Failed ? InvalidNode 5171 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5172 } 5173 5174 static bool IsRootTBAANode(const MDNode *MD) { 5175 return MD->getNumOperands() < 2; 5176 } 5177 5178 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5179 SmallPtrSetImpl<const MDNode *> &Visited) { 5180 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5181 return false; 5182 5183 if (!isa<MDString>(MD->getOperand(0))) 5184 return false; 5185 5186 if (MD->getNumOperands() == 3) { 5187 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5188 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5189 return false; 5190 } 5191 5192 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5193 return Parent && Visited.insert(Parent).second && 5194 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5195 } 5196 5197 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5198 auto ResultIt = TBAAScalarNodes.find(MD); 5199 if (ResultIt != TBAAScalarNodes.end()) 5200 return ResultIt->second; 5201 5202 SmallPtrSet<const MDNode *, 4> Visited; 5203 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5204 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5205 (void)InsertResult; 5206 assert(InsertResult.second && "Just checked!"); 5207 5208 return Result; 5209 } 5210 5211 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5212 /// Offset in place to be the offset within the field node returned. 5213 /// 5214 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5215 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5216 const MDNode *BaseNode, 5217 APInt &Offset, 5218 bool IsNewFormat) { 5219 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5220 5221 // Scalar nodes have only one possible "field" -- their parent in the access 5222 // hierarchy. Offset must be zero at this point, but our caller is supposed 5223 // to Assert that. 5224 if (BaseNode->getNumOperands() == 2) 5225 return cast<MDNode>(BaseNode->getOperand(1)); 5226 5227 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5228 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5229 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5230 Idx += NumOpsPerField) { 5231 auto *OffsetEntryCI = 5232 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5233 if (OffsetEntryCI->getValue().ugt(Offset)) { 5234 if (Idx == FirstFieldOpNo) { 5235 CheckFailed("Could not find TBAA parent in struct type node", &I, 5236 BaseNode, &Offset); 5237 return nullptr; 5238 } 5239 5240 unsigned PrevIdx = Idx - NumOpsPerField; 5241 auto *PrevOffsetEntryCI = 5242 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5243 Offset -= PrevOffsetEntryCI->getValue(); 5244 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5245 } 5246 } 5247 5248 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5249 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5250 BaseNode->getOperand(LastIdx + 1)); 5251 Offset -= LastOffsetEntryCI->getValue(); 5252 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5253 } 5254 5255 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5256 if (!Type || Type->getNumOperands() < 3) 5257 return false; 5258 5259 // In the new format type nodes shall have a reference to the parent type as 5260 // its first operand. 5261 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5262 if (!Parent) 5263 return false; 5264 5265 return true; 5266 } 5267 5268 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5269 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5270 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5271 isa<AtomicCmpXchgInst>(I), 5272 "This instruction shall not have a TBAA access tag!", &I); 5273 5274 bool IsStructPathTBAA = 5275 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5276 5277 AssertTBAA( 5278 IsStructPathTBAA, 5279 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5280 5281 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5282 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5283 5284 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5285 5286 if (IsNewFormat) { 5287 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5288 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5289 } else { 5290 AssertTBAA(MD->getNumOperands() < 5, 5291 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5292 } 5293 5294 // Check the access size field. 5295 if (IsNewFormat) { 5296 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5297 MD->getOperand(3)); 5298 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5299 } 5300 5301 // Check the immutability flag. 5302 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5303 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5304 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5305 MD->getOperand(ImmutabilityFlagOpNo)); 5306 AssertTBAA(IsImmutableCI, 5307 "Immutability tag on struct tag metadata must be a constant", 5308 &I, MD); 5309 AssertTBAA( 5310 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5311 "Immutability part of the struct tag metadata must be either 0 or 1", 5312 &I, MD); 5313 } 5314 5315 AssertTBAA(BaseNode && AccessType, 5316 "Malformed struct tag metadata: base and access-type " 5317 "should be non-null and point to Metadata nodes", 5318 &I, MD, BaseNode, AccessType); 5319 5320 if (!IsNewFormat) { 5321 AssertTBAA(isValidScalarTBAANode(AccessType), 5322 "Access type node must be a valid scalar type", &I, MD, 5323 AccessType); 5324 } 5325 5326 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5327 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5328 5329 APInt Offset = OffsetCI->getValue(); 5330 bool SeenAccessTypeInPath = false; 5331 5332 SmallPtrSet<MDNode *, 4> StructPath; 5333 5334 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5335 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5336 IsNewFormat)) { 5337 if (!StructPath.insert(BaseNode).second) { 5338 CheckFailed("Cycle detected in struct path", &I, MD); 5339 return false; 5340 } 5341 5342 bool Invalid; 5343 unsigned BaseNodeBitWidth; 5344 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5345 IsNewFormat); 5346 5347 // If the base node is invalid in itself, then we've already printed all the 5348 // errors we wanted to print. 5349 if (Invalid) 5350 return false; 5351 5352 SeenAccessTypeInPath |= BaseNode == AccessType; 5353 5354 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5355 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5356 &I, MD, &Offset); 5357 5358 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5359 (BaseNodeBitWidth == 0 && Offset == 0) || 5360 (IsNewFormat && BaseNodeBitWidth == ~0u), 5361 "Access bit-width not the same as description bit-width", &I, MD, 5362 BaseNodeBitWidth, Offset.getBitWidth()); 5363 5364 if (IsNewFormat && SeenAccessTypeInPath) 5365 break; 5366 } 5367 5368 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5369 &I, MD); 5370 return true; 5371 } 5372 5373 char VerifierLegacyPass::ID = 0; 5374 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5375 5376 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5377 return new VerifierLegacyPass(FatalErrors); 5378 } 5379 5380 AnalysisKey VerifierAnalysis::Key; 5381 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5382 ModuleAnalysisManager &) { 5383 Result Res; 5384 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5385 return Res; 5386 } 5387 5388 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5389 FunctionAnalysisManager &) { 5390 return { llvm::verifyFunction(F, &dbgs()), false }; 5391 } 5392 5393 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5394 auto Res = AM.getResult<VerifierAnalysis>(M); 5395 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5396 report_fatal_error("Broken module found, compilation aborted!"); 5397 5398 return PreservedAnalyses::all(); 5399 } 5400 5401 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5402 auto res = AM.getResult<VerifierAnalysis>(F); 5403 if (res.IRBroken && FatalErrors) 5404 report_fatal_error("Broken function found, compilation aborted!"); 5405 5406 return PreservedAnalyses::all(); 5407 } 5408