1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 DominatorTree DT; 284 285 /// When verifying a basic block, keep track of all of the 286 /// instructions we have seen so far. 287 /// 288 /// This allows us to do efficient dominance checks for the case when an 289 /// instruction has an operand that is an instruction in the same block. 290 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 291 292 /// Keep track of the metadata nodes that have been checked already. 293 SmallPtrSet<const Metadata *, 32> MDNodes; 294 295 /// Keep track which DISubprogram is attached to which function. 296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 297 298 /// Track all DICompileUnits visited. 299 SmallPtrSet<const Metadata *, 2> CUVisited; 300 301 /// The result type for a landingpad. 302 Type *LandingPadResultTy; 303 304 /// Whether we've seen a call to @llvm.localescape in this function 305 /// already. 306 bool SawFrameEscape; 307 308 /// Whether the current function has a DISubprogram attached to it. 309 bool HasDebugInfo = false; 310 311 /// The current source language. 312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313 314 /// Whether source was present on the first DIFile encountered in each CU. 315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 316 317 /// Stores the count of how many objects were passed to llvm.localescape for a 318 /// given function and the largest index passed to llvm.localrecover. 319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 320 321 // Maps catchswitches and cleanuppads that unwind to siblings to the 322 // terminators that indicate the unwind, used to detect cycles therein. 323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 324 325 /// Cache of constants visited in search of ConstantExprs. 326 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 327 328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 329 SmallVector<const Function *, 4> DeoptimizeDeclarations; 330 331 /// Cache of attribute lists verified. 332 SmallPtrSet<const void *, 32> AttributeListsVisited; 333 334 // Verify that this GlobalValue is only used in this module. 335 // This map is used to avoid visiting uses twice. We can arrive at a user 336 // twice, if they have multiple operands. In particular for very large 337 // constant expressions, we can arrive at a particular user many times. 338 SmallPtrSet<const Value *, 32> GlobalValueVisited; 339 340 // Keeps track of duplicate function argument debug info. 341 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 342 343 TBAAVerifier TBAAVerifyHelper; 344 345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346 347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 348 349 public: 350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 351 const Module &M) 352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 353 SawFrameEscape(false), TBAAVerifyHelper(this) { 354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 355 } 356 357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 358 359 bool verify(const Function &F) { 360 assert(F.getParent() == &M && 361 "An instance of this class only works with a specific module!"); 362 363 // First ensure the function is well-enough formed to compute dominance 364 // information, and directly compute a dominance tree. We don't rely on the 365 // pass manager to provide this as it isolates us from a potentially 366 // out-of-date dominator tree and makes it significantly more complex to run 367 // this code outside of a pass manager. 368 // FIXME: It's really gross that we have to cast away constness here. 369 if (!F.empty()) 370 DT.recalculate(const_cast<Function &>(F)); 371 372 for (const BasicBlock &BB : F) { 373 if (!BB.empty() && BB.back().isTerminator()) 374 continue; 375 376 if (OS) { 377 *OS << "Basic Block in function '" << F.getName() 378 << "' does not have terminator!\n"; 379 BB.printAsOperand(*OS, true, MST); 380 *OS << "\n"; 381 } 382 return false; 383 } 384 385 Broken = false; 386 // FIXME: We strip const here because the inst visitor strips const. 387 visit(const_cast<Function &>(F)); 388 verifySiblingFuncletUnwinds(); 389 InstsInThisBlock.clear(); 390 DebugFnArgs.clear(); 391 LandingPadResultTy = nullptr; 392 SawFrameEscape = false; 393 SiblingFuncletInfo.clear(); 394 verifyNoAliasScopeDecl(); 395 NoAliasScopeDecls.clear(); 396 397 return !Broken; 398 } 399 400 /// Verify the module that this instance of \c Verifier was initialized with. 401 bool verify() { 402 Broken = false; 403 404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 405 for (const Function &F : M) 406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 407 DeoptimizeDeclarations.push_back(&F); 408 409 // Now that we've visited every function, verify that we never asked to 410 // recover a frame index that wasn't escaped. 411 verifyFrameRecoverIndices(); 412 for (const GlobalVariable &GV : M.globals()) 413 visitGlobalVariable(GV); 414 415 for (const GlobalAlias &GA : M.aliases()) 416 visitGlobalAlias(GA); 417 418 for (const NamedMDNode &NMD : M.named_metadata()) 419 visitNamedMDNode(NMD); 420 421 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 422 visitComdat(SMEC.getValue()); 423 424 visitModuleFlags(M); 425 visitModuleIdents(M); 426 visitModuleCommandLines(M); 427 428 verifyCompileUnits(); 429 430 verifyDeoptimizeCallingConvs(); 431 DISubprogramAttachments.clear(); 432 return !Broken; 433 } 434 435 private: 436 /// Whether a metadata node is allowed to be, or contain, a DILocation. 437 enum class AreDebugLocsAllowed { No, Yes }; 438 439 // Verification methods... 440 void visitGlobalValue(const GlobalValue &GV); 441 void visitGlobalVariable(const GlobalVariable &GV); 442 void visitGlobalAlias(const GlobalAlias &GA); 443 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 444 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 445 const GlobalAlias &A, const Constant &C); 446 void visitNamedMDNode(const NamedMDNode &NMD); 447 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 448 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 449 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 450 void visitComdat(const Comdat &C); 451 void visitModuleIdents(const Module &M); 452 void visitModuleCommandLines(const Module &M); 453 void visitModuleFlags(const Module &M); 454 void visitModuleFlag(const MDNode *Op, 455 DenseMap<const MDString *, const MDNode *> &SeenIDs, 456 SmallVectorImpl<const MDNode *> &Requirements); 457 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 458 void visitFunction(const Function &F); 459 void visitBasicBlock(BasicBlock &BB); 460 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 461 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 462 void visitProfMetadata(Instruction &I, MDNode *MD); 463 void visitAnnotationMetadata(MDNode *Annotation); 464 465 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 467 #include "llvm/IR/Metadata.def" 468 void visitDIScope(const DIScope &N); 469 void visitDIVariable(const DIVariable &N); 470 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 471 void visitDITemplateParameter(const DITemplateParameter &N); 472 473 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 474 475 // InstVisitor overrides... 476 using InstVisitor<Verifier>::visit; 477 void visit(Instruction &I); 478 479 void visitTruncInst(TruncInst &I); 480 void visitZExtInst(ZExtInst &I); 481 void visitSExtInst(SExtInst &I); 482 void visitFPTruncInst(FPTruncInst &I); 483 void visitFPExtInst(FPExtInst &I); 484 void visitFPToUIInst(FPToUIInst &I); 485 void visitFPToSIInst(FPToSIInst &I); 486 void visitUIToFPInst(UIToFPInst &I); 487 void visitSIToFPInst(SIToFPInst &I); 488 void visitIntToPtrInst(IntToPtrInst &I); 489 void visitPtrToIntInst(PtrToIntInst &I); 490 void visitBitCastInst(BitCastInst &I); 491 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 492 void visitPHINode(PHINode &PN); 493 void visitCallBase(CallBase &Call); 494 void visitUnaryOperator(UnaryOperator &U); 495 void visitBinaryOperator(BinaryOperator &B); 496 void visitICmpInst(ICmpInst &IC); 497 void visitFCmpInst(FCmpInst &FC); 498 void visitExtractElementInst(ExtractElementInst &EI); 499 void visitInsertElementInst(InsertElementInst &EI); 500 void visitShuffleVectorInst(ShuffleVectorInst &EI); 501 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 502 void visitCallInst(CallInst &CI); 503 void visitInvokeInst(InvokeInst &II); 504 void visitGetElementPtrInst(GetElementPtrInst &GEP); 505 void visitLoadInst(LoadInst &LI); 506 void visitStoreInst(StoreInst &SI); 507 void verifyDominatesUse(Instruction &I, unsigned i); 508 void visitInstruction(Instruction &I); 509 void visitTerminator(Instruction &I); 510 void visitBranchInst(BranchInst &BI); 511 void visitReturnInst(ReturnInst &RI); 512 void visitSwitchInst(SwitchInst &SI); 513 void visitIndirectBrInst(IndirectBrInst &BI); 514 void visitCallBrInst(CallBrInst &CBI); 515 void visitSelectInst(SelectInst &SI); 516 void visitUserOp1(Instruction &I); 517 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 518 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 519 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 520 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 521 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 522 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 523 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 524 void visitFenceInst(FenceInst &FI); 525 void visitAllocaInst(AllocaInst &AI); 526 void visitExtractValueInst(ExtractValueInst &EVI); 527 void visitInsertValueInst(InsertValueInst &IVI); 528 void visitEHPadPredecessors(Instruction &I); 529 void visitLandingPadInst(LandingPadInst &LPI); 530 void visitResumeInst(ResumeInst &RI); 531 void visitCatchPadInst(CatchPadInst &CPI); 532 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 533 void visitCleanupPadInst(CleanupPadInst &CPI); 534 void visitFuncletPadInst(FuncletPadInst &FPI); 535 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 536 void visitCleanupReturnInst(CleanupReturnInst &CRI); 537 538 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 539 void verifySwiftErrorValue(const Value *SwiftErrorVal); 540 void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); 541 void verifyMustTailCall(CallInst &CI); 542 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 543 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 544 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 545 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 546 const Value *V); 547 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 548 const Value *V, bool IsIntrinsic); 549 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 550 551 void visitConstantExprsRecursively(const Constant *EntryC); 552 void visitConstantExpr(const ConstantExpr *CE); 553 void verifyStatepoint(const CallBase &Call); 554 void verifyFrameRecoverIndices(); 555 void verifySiblingFuncletUnwinds(); 556 557 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 558 template <typename ValueOrMetadata> 559 void verifyFragmentExpression(const DIVariable &V, 560 DIExpression::FragmentInfo Fragment, 561 ValueOrMetadata *Desc); 562 void verifyFnArgs(const DbgVariableIntrinsic &I); 563 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 564 565 /// Module-level debug info verification... 566 void verifyCompileUnits(); 567 568 /// Module-level verification that all @llvm.experimental.deoptimize 569 /// declarations share the same calling convention. 570 void verifyDeoptimizeCallingConvs(); 571 572 /// Verify all-or-nothing property of DIFile source attribute within a CU. 573 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 574 575 /// Verify the llvm.experimental.noalias.scope.decl declarations 576 void verifyNoAliasScopeDecl(); 577 }; 578 579 } // end anonymous namespace 580 581 /// We know that cond should be true, if not print an error message. 582 #define Assert(C, ...) \ 583 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 584 585 /// We know that a debug info condition should be true, if not print 586 /// an error message. 587 #define AssertDI(C, ...) \ 588 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 589 590 void Verifier::visit(Instruction &I) { 591 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 592 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 593 InstVisitor<Verifier>::visit(I); 594 } 595 596 // Helper to recursively iterate over indirect users. By 597 // returning false, the callback can ask to stop recursing 598 // further. 599 static void forEachUser(const Value *User, 600 SmallPtrSet<const Value *, 32> &Visited, 601 llvm::function_ref<bool(const Value *)> Callback) { 602 if (!Visited.insert(User).second) 603 return; 604 for (const Value *TheNextUser : User->materialized_users()) 605 if (Callback(TheNextUser)) 606 forEachUser(TheNextUser, Visited, Callback); 607 } 608 609 void Verifier::visitGlobalValue(const GlobalValue &GV) { 610 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 611 "Global is external, but doesn't have external or weak linkage!", &GV); 612 613 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 614 Assert(GO->getAlignment() <= Value::MaximumAlignment, 615 "huge alignment values are unsupported", GO); 616 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 617 "Only global variables can have appending linkage!", &GV); 618 619 if (GV.hasAppendingLinkage()) { 620 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 621 Assert(GVar && GVar->getValueType()->isArrayTy(), 622 "Only global arrays can have appending linkage!", GVar); 623 } 624 625 if (GV.isDeclarationForLinker()) 626 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 627 628 if (GV.hasDLLImportStorageClass()) { 629 Assert(!GV.isDSOLocal(), 630 "GlobalValue with DLLImport Storage is dso_local!", &GV); 631 632 Assert((GV.isDeclaration() && 633 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 634 GV.hasAvailableExternallyLinkage(), 635 "Global is marked as dllimport, but not external", &GV); 636 } 637 638 if (GV.isImplicitDSOLocal()) 639 Assert(GV.isDSOLocal(), 640 "GlobalValue with local linkage or non-default " 641 "visibility must be dso_local!", 642 &GV); 643 644 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 645 if (const Instruction *I = dyn_cast<Instruction>(V)) { 646 if (!I->getParent() || !I->getParent()->getParent()) 647 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 648 I); 649 else if (I->getParent()->getParent()->getParent() != &M) 650 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 651 I->getParent()->getParent(), 652 I->getParent()->getParent()->getParent()); 653 return false; 654 } else if (const Function *F = dyn_cast<Function>(V)) { 655 if (F->getParent() != &M) 656 CheckFailed("Global is used by function in a different module", &GV, &M, 657 F, F->getParent()); 658 return false; 659 } 660 return true; 661 }); 662 } 663 664 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 665 if (GV.hasInitializer()) { 666 Assert(GV.getInitializer()->getType() == GV.getValueType(), 667 "Global variable initializer type does not match global " 668 "variable type!", 669 &GV); 670 // If the global has common linkage, it must have a zero initializer and 671 // cannot be constant. 672 if (GV.hasCommonLinkage()) { 673 Assert(GV.getInitializer()->isNullValue(), 674 "'common' global must have a zero initializer!", &GV); 675 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 676 &GV); 677 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 678 } 679 } 680 681 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 682 GV.getName() == "llvm.global_dtors")) { 683 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 684 "invalid linkage for intrinsic global variable", &GV); 685 // Don't worry about emitting an error for it not being an array, 686 // visitGlobalValue will complain on appending non-array. 687 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 688 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 689 PointerType *FuncPtrTy = 690 FunctionType::get(Type::getVoidTy(Context), false)-> 691 getPointerTo(DL.getProgramAddressSpace()); 692 Assert(STy && 693 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 694 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 695 STy->getTypeAtIndex(1) == FuncPtrTy, 696 "wrong type for intrinsic global variable", &GV); 697 Assert(STy->getNumElements() == 3, 698 "the third field of the element type is mandatory, " 699 "specify i8* null to migrate from the obsoleted 2-field form"); 700 Type *ETy = STy->getTypeAtIndex(2); 701 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 702 Assert(ETy->isPointerTy() && 703 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 704 "wrong type for intrinsic global variable", &GV); 705 } 706 } 707 708 if (GV.hasName() && (GV.getName() == "llvm.used" || 709 GV.getName() == "llvm.compiler.used")) { 710 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 711 "invalid linkage for intrinsic global variable", &GV); 712 Type *GVType = GV.getValueType(); 713 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 714 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 715 Assert(PTy, "wrong type for intrinsic global variable", &GV); 716 if (GV.hasInitializer()) { 717 const Constant *Init = GV.getInitializer(); 718 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 719 Assert(InitArray, "wrong initalizer for intrinsic global variable", 720 Init); 721 for (Value *Op : InitArray->operands()) { 722 Value *V = Op->stripPointerCasts(); 723 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 724 isa<GlobalAlias>(V), 725 "invalid llvm.used member", V); 726 Assert(V->hasName(), "members of llvm.used must be named", V); 727 } 728 } 729 } 730 } 731 732 // Visit any debug info attachments. 733 SmallVector<MDNode *, 1> MDs; 734 GV.getMetadata(LLVMContext::MD_dbg, MDs); 735 for (auto *MD : MDs) { 736 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 737 visitDIGlobalVariableExpression(*GVE); 738 else 739 AssertDI(false, "!dbg attachment of global variable must be a " 740 "DIGlobalVariableExpression"); 741 } 742 743 // Scalable vectors cannot be global variables, since we don't know 744 // the runtime size. If the global is an array containing scalable vectors, 745 // that will be caught by the isValidElementType methods in StructType or 746 // ArrayType instead. 747 Assert(!isa<ScalableVectorType>(GV.getValueType()), 748 "Globals cannot contain scalable vectors", &GV); 749 750 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 751 Assert(!STy->containsScalableVectorType(), 752 "Globals cannot contain scalable vectors", &GV); 753 754 if (!GV.hasInitializer()) { 755 visitGlobalValue(GV); 756 return; 757 } 758 759 // Walk any aggregate initializers looking for bitcasts between address spaces 760 visitConstantExprsRecursively(GV.getInitializer()); 761 762 visitGlobalValue(GV); 763 } 764 765 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 766 SmallPtrSet<const GlobalAlias*, 4> Visited; 767 Visited.insert(&GA); 768 visitAliaseeSubExpr(Visited, GA, C); 769 } 770 771 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 772 const GlobalAlias &GA, const Constant &C) { 773 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 774 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 775 &GA); 776 777 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 778 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 779 780 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 781 &GA); 782 } else { 783 // Only continue verifying subexpressions of GlobalAliases. 784 // Do not recurse into global initializers. 785 return; 786 } 787 } 788 789 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 790 visitConstantExprsRecursively(CE); 791 792 for (const Use &U : C.operands()) { 793 Value *V = &*U; 794 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 795 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 796 else if (const auto *C2 = dyn_cast<Constant>(V)) 797 visitAliaseeSubExpr(Visited, GA, *C2); 798 } 799 } 800 801 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 802 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 803 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 804 "weak_odr, or external linkage!", 805 &GA); 806 const Constant *Aliasee = GA.getAliasee(); 807 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 808 Assert(GA.getType() == Aliasee->getType(), 809 "Alias and aliasee types should match!", &GA); 810 811 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 812 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 813 814 visitAliaseeSubExpr(GA, *Aliasee); 815 816 visitGlobalValue(GA); 817 } 818 819 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 820 // There used to be various other llvm.dbg.* nodes, but we don't support 821 // upgrading them and we want to reserve the namespace for future uses. 822 if (NMD.getName().startswith("llvm.dbg.")) 823 AssertDI(NMD.getName() == "llvm.dbg.cu", 824 "unrecognized named metadata node in the llvm.dbg namespace", 825 &NMD); 826 for (const MDNode *MD : NMD.operands()) { 827 if (NMD.getName() == "llvm.dbg.cu") 828 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 829 830 if (!MD) 831 continue; 832 833 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 834 } 835 } 836 837 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 838 // Only visit each node once. Metadata can be mutually recursive, so this 839 // avoids infinite recursion here, as well as being an optimization. 840 if (!MDNodes.insert(&MD).second) 841 return; 842 843 Assert(&MD.getContext() == &Context, 844 "MDNode context does not match Module context!", &MD); 845 846 switch (MD.getMetadataID()) { 847 default: 848 llvm_unreachable("Invalid MDNode subclass"); 849 case Metadata::MDTupleKind: 850 break; 851 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 852 case Metadata::CLASS##Kind: \ 853 visit##CLASS(cast<CLASS>(MD)); \ 854 break; 855 #include "llvm/IR/Metadata.def" 856 } 857 858 for (const Metadata *Op : MD.operands()) { 859 if (!Op) 860 continue; 861 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 862 &MD, Op); 863 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 864 "DILocation not allowed within this metadata node", &MD, Op); 865 if (auto *N = dyn_cast<MDNode>(Op)) { 866 visitMDNode(*N, AllowLocs); 867 continue; 868 } 869 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 870 visitValueAsMetadata(*V, nullptr); 871 continue; 872 } 873 } 874 875 // Check these last, so we diagnose problems in operands first. 876 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 877 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 878 } 879 880 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 881 Assert(MD.getValue(), "Expected valid value", &MD); 882 Assert(!MD.getValue()->getType()->isMetadataTy(), 883 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 884 885 auto *L = dyn_cast<LocalAsMetadata>(&MD); 886 if (!L) 887 return; 888 889 Assert(F, "function-local metadata used outside a function", L); 890 891 // If this was an instruction, bb, or argument, verify that it is in the 892 // function that we expect. 893 Function *ActualF = nullptr; 894 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 895 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 896 ActualF = I->getParent()->getParent(); 897 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 898 ActualF = BB->getParent(); 899 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 900 ActualF = A->getParent(); 901 assert(ActualF && "Unimplemented function local metadata case!"); 902 903 Assert(ActualF == F, "function-local metadata used in wrong function", L); 904 } 905 906 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 907 Metadata *MD = MDV.getMetadata(); 908 if (auto *N = dyn_cast<MDNode>(MD)) { 909 visitMDNode(*N, AreDebugLocsAllowed::No); 910 return; 911 } 912 913 // Only visit each node once. Metadata can be mutually recursive, so this 914 // avoids infinite recursion here, as well as being an optimization. 915 if (!MDNodes.insert(MD).second) 916 return; 917 918 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 919 visitValueAsMetadata(*V, F); 920 } 921 922 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 923 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 924 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 925 926 void Verifier::visitDILocation(const DILocation &N) { 927 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 928 "location requires a valid scope", &N, N.getRawScope()); 929 if (auto *IA = N.getRawInlinedAt()) 930 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 931 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 932 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 933 } 934 935 void Verifier::visitGenericDINode(const GenericDINode &N) { 936 AssertDI(N.getTag(), "invalid tag", &N); 937 } 938 939 void Verifier::visitDIScope(const DIScope &N) { 940 if (auto *F = N.getRawFile()) 941 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 942 } 943 944 void Verifier::visitDISubrange(const DISubrange &N) { 945 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 946 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 947 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 948 N.getRawUpperBound(), 949 "Subrange must contain count or upperBound", &N); 950 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 951 "Subrange can have any one of count or upperBound", &N); 952 auto *CBound = N.getRawCountNode(); 953 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 954 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 955 "Count must be signed constant or DIVariable or DIExpression", &N); 956 auto Count = N.getCount(); 957 AssertDI(!Count || !Count.is<ConstantInt *>() || 958 Count.get<ConstantInt *>()->getSExtValue() >= -1, 959 "invalid subrange count", &N); 960 auto *LBound = N.getRawLowerBound(); 961 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 962 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 963 "LowerBound must be signed constant or DIVariable or DIExpression", 964 &N); 965 auto *UBound = N.getRawUpperBound(); 966 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 967 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 968 "UpperBound must be signed constant or DIVariable or DIExpression", 969 &N); 970 auto *Stride = N.getRawStride(); 971 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 972 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 973 "Stride must be signed constant or DIVariable or DIExpression", &N); 974 } 975 976 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 977 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 978 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 979 "GenericSubrange must contain count or upperBound", &N); 980 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 981 "GenericSubrange can have any one of count or upperBound", &N); 982 auto *CBound = N.getRawCountNode(); 983 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 984 "Count must be signed constant or DIVariable or DIExpression", &N); 985 auto *LBound = N.getRawLowerBound(); 986 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 987 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 988 "LowerBound must be signed constant or DIVariable or DIExpression", 989 &N); 990 auto *UBound = N.getRawUpperBound(); 991 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 992 "UpperBound must be signed constant or DIVariable or DIExpression", 993 &N); 994 auto *Stride = N.getRawStride(); 995 AssertDI(Stride, "GenericSubrange must contain stride", &N); 996 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 997 "Stride must be signed constant or DIVariable or DIExpression", &N); 998 } 999 1000 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1001 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1002 } 1003 1004 void Verifier::visitDIBasicType(const DIBasicType &N) { 1005 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1006 N.getTag() == dwarf::DW_TAG_unspecified_type || 1007 N.getTag() == dwarf::DW_TAG_string_type, 1008 "invalid tag", &N); 1009 } 1010 1011 void Verifier::visitDIStringType(const DIStringType &N) { 1012 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1013 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1014 "has conflicting flags", &N); 1015 } 1016 1017 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1018 // Common scope checks. 1019 visitDIScope(N); 1020 1021 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1022 N.getTag() == dwarf::DW_TAG_pointer_type || 1023 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1024 N.getTag() == dwarf::DW_TAG_reference_type || 1025 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1026 N.getTag() == dwarf::DW_TAG_const_type || 1027 N.getTag() == dwarf::DW_TAG_volatile_type || 1028 N.getTag() == dwarf::DW_TAG_restrict_type || 1029 N.getTag() == dwarf::DW_TAG_atomic_type || 1030 N.getTag() == dwarf::DW_TAG_member || 1031 N.getTag() == dwarf::DW_TAG_inheritance || 1032 N.getTag() == dwarf::DW_TAG_friend || 1033 N.getTag() == dwarf::DW_TAG_set_type, 1034 "invalid tag", &N); 1035 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1036 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1037 N.getRawExtraData()); 1038 } 1039 1040 if (N.getTag() == dwarf::DW_TAG_set_type) { 1041 if (auto *T = N.getRawBaseType()) { 1042 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1043 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1044 AssertDI( 1045 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1046 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1047 Basic->getEncoding() == dwarf::DW_ATE_signed || 1048 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1049 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1050 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1051 "invalid set base type", &N, T); 1052 } 1053 } 1054 1055 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1056 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1057 N.getRawBaseType()); 1058 1059 if (N.getDWARFAddressSpace()) { 1060 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1061 N.getTag() == dwarf::DW_TAG_reference_type || 1062 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1063 "DWARF address space only applies to pointer or reference types", 1064 &N); 1065 } 1066 } 1067 1068 /// Detect mutually exclusive flags. 1069 static bool hasConflictingReferenceFlags(unsigned Flags) { 1070 return ((Flags & DINode::FlagLValueReference) && 1071 (Flags & DINode::FlagRValueReference)) || 1072 ((Flags & DINode::FlagTypePassByValue) && 1073 (Flags & DINode::FlagTypePassByReference)); 1074 } 1075 1076 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1077 auto *Params = dyn_cast<MDTuple>(&RawParams); 1078 AssertDI(Params, "invalid template params", &N, &RawParams); 1079 for (Metadata *Op : Params->operands()) { 1080 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1081 &N, Params, Op); 1082 } 1083 } 1084 1085 void Verifier::visitDICompositeType(const DICompositeType &N) { 1086 // Common scope checks. 1087 visitDIScope(N); 1088 1089 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1090 N.getTag() == dwarf::DW_TAG_structure_type || 1091 N.getTag() == dwarf::DW_TAG_union_type || 1092 N.getTag() == dwarf::DW_TAG_enumeration_type || 1093 N.getTag() == dwarf::DW_TAG_class_type || 1094 N.getTag() == dwarf::DW_TAG_variant_part, 1095 "invalid tag", &N); 1096 1097 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1098 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1099 N.getRawBaseType()); 1100 1101 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1102 "invalid composite elements", &N, N.getRawElements()); 1103 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1104 N.getRawVTableHolder()); 1105 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1106 "invalid reference flags", &N); 1107 unsigned DIBlockByRefStruct = 1 << 4; 1108 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1109 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1110 1111 if (N.isVector()) { 1112 const DINodeArray Elements = N.getElements(); 1113 AssertDI(Elements.size() == 1 && 1114 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1115 "invalid vector, expected one element of type subrange", &N); 1116 } 1117 1118 if (auto *Params = N.getRawTemplateParams()) 1119 visitTemplateParams(N, *Params); 1120 1121 if (auto *D = N.getRawDiscriminator()) { 1122 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1123 "discriminator can only appear on variant part"); 1124 } 1125 1126 if (N.getRawDataLocation()) { 1127 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1128 "dataLocation can only appear in array type"); 1129 } 1130 1131 if (N.getRawAssociated()) { 1132 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1133 "associated can only appear in array type"); 1134 } 1135 1136 if (N.getRawAllocated()) { 1137 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1138 "allocated can only appear in array type"); 1139 } 1140 1141 if (N.getRawRank()) { 1142 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1143 "rank can only appear in array type"); 1144 } 1145 } 1146 1147 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1148 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1149 if (auto *Types = N.getRawTypeArray()) { 1150 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1151 for (Metadata *Ty : N.getTypeArray()->operands()) { 1152 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1153 } 1154 } 1155 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1156 "invalid reference flags", &N); 1157 } 1158 1159 void Verifier::visitDIFile(const DIFile &N) { 1160 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1161 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1162 if (Checksum) { 1163 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1164 "invalid checksum kind", &N); 1165 size_t Size; 1166 switch (Checksum->Kind) { 1167 case DIFile::CSK_MD5: 1168 Size = 32; 1169 break; 1170 case DIFile::CSK_SHA1: 1171 Size = 40; 1172 break; 1173 case DIFile::CSK_SHA256: 1174 Size = 64; 1175 break; 1176 } 1177 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1178 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1179 "invalid checksum", &N); 1180 } 1181 } 1182 1183 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1184 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1185 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1186 1187 // Don't bother verifying the compilation directory or producer string 1188 // as those could be empty. 1189 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1190 N.getRawFile()); 1191 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1192 N.getFile()); 1193 1194 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1195 1196 verifySourceDebugInfo(N, *N.getFile()); 1197 1198 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1199 "invalid emission kind", &N); 1200 1201 if (auto *Array = N.getRawEnumTypes()) { 1202 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1203 for (Metadata *Op : N.getEnumTypes()->operands()) { 1204 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1205 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1206 "invalid enum type", &N, N.getEnumTypes(), Op); 1207 } 1208 } 1209 if (auto *Array = N.getRawRetainedTypes()) { 1210 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1211 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1212 AssertDI(Op && (isa<DIType>(Op) || 1213 (isa<DISubprogram>(Op) && 1214 !cast<DISubprogram>(Op)->isDefinition())), 1215 "invalid retained type", &N, Op); 1216 } 1217 } 1218 if (auto *Array = N.getRawGlobalVariables()) { 1219 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1220 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1221 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1222 "invalid global variable ref", &N, Op); 1223 } 1224 } 1225 if (auto *Array = N.getRawImportedEntities()) { 1226 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1227 for (Metadata *Op : N.getImportedEntities()->operands()) { 1228 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1229 &N, Op); 1230 } 1231 } 1232 if (auto *Array = N.getRawMacros()) { 1233 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1234 for (Metadata *Op : N.getMacros()->operands()) { 1235 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1236 } 1237 } 1238 CUVisited.insert(&N); 1239 } 1240 1241 void Verifier::visitDISubprogram(const DISubprogram &N) { 1242 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1243 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1244 if (auto *F = N.getRawFile()) 1245 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1246 else 1247 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1248 if (auto *T = N.getRawType()) 1249 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1250 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1251 N.getRawContainingType()); 1252 if (auto *Params = N.getRawTemplateParams()) 1253 visitTemplateParams(N, *Params); 1254 if (auto *S = N.getRawDeclaration()) 1255 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1256 "invalid subprogram declaration", &N, S); 1257 if (auto *RawNode = N.getRawRetainedNodes()) { 1258 auto *Node = dyn_cast<MDTuple>(RawNode); 1259 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1260 for (Metadata *Op : Node->operands()) { 1261 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1262 "invalid retained nodes, expected DILocalVariable or DILabel", 1263 &N, Node, Op); 1264 } 1265 } 1266 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1267 "invalid reference flags", &N); 1268 1269 auto *Unit = N.getRawUnit(); 1270 if (N.isDefinition()) { 1271 // Subprogram definitions (not part of the type hierarchy). 1272 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1273 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1274 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1275 if (N.getFile()) 1276 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1277 } else { 1278 // Subprogram declarations (part of the type hierarchy). 1279 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1280 } 1281 1282 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1283 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1284 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1285 for (Metadata *Op : ThrownTypes->operands()) 1286 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1287 Op); 1288 } 1289 1290 if (N.areAllCallsDescribed()) 1291 AssertDI(N.isDefinition(), 1292 "DIFlagAllCallsDescribed must be attached to a definition"); 1293 } 1294 1295 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1296 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1297 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1298 "invalid local scope", &N, N.getRawScope()); 1299 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1300 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1301 } 1302 1303 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1304 visitDILexicalBlockBase(N); 1305 1306 AssertDI(N.getLine() || !N.getColumn(), 1307 "cannot have column info without line info", &N); 1308 } 1309 1310 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1311 visitDILexicalBlockBase(N); 1312 } 1313 1314 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1315 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1316 if (auto *S = N.getRawScope()) 1317 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1318 if (auto *S = N.getRawDecl()) 1319 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1320 } 1321 1322 void Verifier::visitDINamespace(const DINamespace &N) { 1323 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1324 if (auto *S = N.getRawScope()) 1325 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1326 } 1327 1328 void Verifier::visitDIMacro(const DIMacro &N) { 1329 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1330 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1331 "invalid macinfo type", &N); 1332 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1333 if (!N.getValue().empty()) { 1334 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1335 } 1336 } 1337 1338 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1339 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1340 "invalid macinfo type", &N); 1341 if (auto *F = N.getRawFile()) 1342 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1343 1344 if (auto *Array = N.getRawElements()) { 1345 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1346 for (Metadata *Op : N.getElements()->operands()) { 1347 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1348 } 1349 } 1350 } 1351 1352 void Verifier::visitDIArgList(const DIArgList &N) { 1353 AssertDI(!N.getNumOperands(), 1354 "DIArgList should have no operands other than a list of " 1355 "ValueAsMetadata", 1356 &N); 1357 } 1358 1359 void Verifier::visitDIModule(const DIModule &N) { 1360 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1361 AssertDI(!N.getName().empty(), "anonymous module", &N); 1362 } 1363 1364 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1365 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1366 } 1367 1368 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1369 visitDITemplateParameter(N); 1370 1371 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1372 &N); 1373 } 1374 1375 void Verifier::visitDITemplateValueParameter( 1376 const DITemplateValueParameter &N) { 1377 visitDITemplateParameter(N); 1378 1379 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1380 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1381 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1382 "invalid tag", &N); 1383 } 1384 1385 void Verifier::visitDIVariable(const DIVariable &N) { 1386 if (auto *S = N.getRawScope()) 1387 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1388 if (auto *F = N.getRawFile()) 1389 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1390 } 1391 1392 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1393 // Checks common to all variables. 1394 visitDIVariable(N); 1395 1396 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1397 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1398 // Assert only if the global variable is not an extern 1399 if (N.isDefinition()) 1400 AssertDI(N.getType(), "missing global variable type", &N); 1401 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1402 AssertDI(isa<DIDerivedType>(Member), 1403 "invalid static data member declaration", &N, Member); 1404 } 1405 } 1406 1407 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1408 // Checks common to all variables. 1409 visitDIVariable(N); 1410 1411 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1412 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1413 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1414 "local variable requires a valid scope", &N, N.getRawScope()); 1415 if (auto Ty = N.getType()) 1416 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1417 } 1418 1419 void Verifier::visitDILabel(const DILabel &N) { 1420 if (auto *S = N.getRawScope()) 1421 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1422 if (auto *F = N.getRawFile()) 1423 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1424 1425 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1426 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1427 "label requires a valid scope", &N, N.getRawScope()); 1428 } 1429 1430 void Verifier::visitDIExpression(const DIExpression &N) { 1431 AssertDI(N.isValid(), "invalid expression", &N); 1432 } 1433 1434 void Verifier::visitDIGlobalVariableExpression( 1435 const DIGlobalVariableExpression &GVE) { 1436 AssertDI(GVE.getVariable(), "missing variable"); 1437 if (auto *Var = GVE.getVariable()) 1438 visitDIGlobalVariable(*Var); 1439 if (auto *Expr = GVE.getExpression()) { 1440 visitDIExpression(*Expr); 1441 if (auto Fragment = Expr->getFragmentInfo()) 1442 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1443 } 1444 } 1445 1446 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1447 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1448 if (auto *T = N.getRawType()) 1449 AssertDI(isType(T), "invalid type ref", &N, T); 1450 if (auto *F = N.getRawFile()) 1451 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1452 } 1453 1454 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1455 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1456 N.getTag() == dwarf::DW_TAG_imported_declaration, 1457 "invalid tag", &N); 1458 if (auto *S = N.getRawScope()) 1459 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1460 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1461 N.getRawEntity()); 1462 } 1463 1464 void Verifier::visitComdat(const Comdat &C) { 1465 // In COFF the Module is invalid if the GlobalValue has private linkage. 1466 // Entities with private linkage don't have entries in the symbol table. 1467 if (TT.isOSBinFormatCOFF()) 1468 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1469 Assert(!GV->hasPrivateLinkage(), 1470 "comdat global value has private linkage", GV); 1471 } 1472 1473 void Verifier::visitModuleIdents(const Module &M) { 1474 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1475 if (!Idents) 1476 return; 1477 1478 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1479 // Scan each llvm.ident entry and make sure that this requirement is met. 1480 for (const MDNode *N : Idents->operands()) { 1481 Assert(N->getNumOperands() == 1, 1482 "incorrect number of operands in llvm.ident metadata", N); 1483 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1484 ("invalid value for llvm.ident metadata entry operand" 1485 "(the operand should be a string)"), 1486 N->getOperand(0)); 1487 } 1488 } 1489 1490 void Verifier::visitModuleCommandLines(const Module &M) { 1491 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1492 if (!CommandLines) 1493 return; 1494 1495 // llvm.commandline takes a list of metadata entry. Each entry has only one 1496 // string. Scan each llvm.commandline entry and make sure that this 1497 // requirement is met. 1498 for (const MDNode *N : CommandLines->operands()) { 1499 Assert(N->getNumOperands() == 1, 1500 "incorrect number of operands in llvm.commandline metadata", N); 1501 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1502 ("invalid value for llvm.commandline metadata entry operand" 1503 "(the operand should be a string)"), 1504 N->getOperand(0)); 1505 } 1506 } 1507 1508 void Verifier::visitModuleFlags(const Module &M) { 1509 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1510 if (!Flags) return; 1511 1512 // Scan each flag, and track the flags and requirements. 1513 DenseMap<const MDString*, const MDNode*> SeenIDs; 1514 SmallVector<const MDNode*, 16> Requirements; 1515 for (const MDNode *MDN : Flags->operands()) 1516 visitModuleFlag(MDN, SeenIDs, Requirements); 1517 1518 // Validate that the requirements in the module are valid. 1519 for (const MDNode *Requirement : Requirements) { 1520 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1521 const Metadata *ReqValue = Requirement->getOperand(1); 1522 1523 const MDNode *Op = SeenIDs.lookup(Flag); 1524 if (!Op) { 1525 CheckFailed("invalid requirement on flag, flag is not present in module", 1526 Flag); 1527 continue; 1528 } 1529 1530 if (Op->getOperand(2) != ReqValue) { 1531 CheckFailed(("invalid requirement on flag, " 1532 "flag does not have the required value"), 1533 Flag); 1534 continue; 1535 } 1536 } 1537 } 1538 1539 void 1540 Verifier::visitModuleFlag(const MDNode *Op, 1541 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1542 SmallVectorImpl<const MDNode *> &Requirements) { 1543 // Each module flag should have three arguments, the merge behavior (a 1544 // constant int), the flag ID (an MDString), and the value. 1545 Assert(Op->getNumOperands() == 3, 1546 "incorrect number of operands in module flag", Op); 1547 Module::ModFlagBehavior MFB; 1548 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1549 Assert( 1550 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1551 "invalid behavior operand in module flag (expected constant integer)", 1552 Op->getOperand(0)); 1553 Assert(false, 1554 "invalid behavior operand in module flag (unexpected constant)", 1555 Op->getOperand(0)); 1556 } 1557 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1558 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1559 Op->getOperand(1)); 1560 1561 // Sanity check the values for behaviors with additional requirements. 1562 switch (MFB) { 1563 case Module::Error: 1564 case Module::Warning: 1565 case Module::Override: 1566 // These behavior types accept any value. 1567 break; 1568 1569 case Module::Max: { 1570 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1571 "invalid value for 'max' module flag (expected constant integer)", 1572 Op->getOperand(2)); 1573 break; 1574 } 1575 1576 case Module::Require: { 1577 // The value should itself be an MDNode with two operands, a flag ID (an 1578 // MDString), and a value. 1579 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1580 Assert(Value && Value->getNumOperands() == 2, 1581 "invalid value for 'require' module flag (expected metadata pair)", 1582 Op->getOperand(2)); 1583 Assert(isa<MDString>(Value->getOperand(0)), 1584 ("invalid value for 'require' module flag " 1585 "(first value operand should be a string)"), 1586 Value->getOperand(0)); 1587 1588 // Append it to the list of requirements, to check once all module flags are 1589 // scanned. 1590 Requirements.push_back(Value); 1591 break; 1592 } 1593 1594 case Module::Append: 1595 case Module::AppendUnique: { 1596 // These behavior types require the operand be an MDNode. 1597 Assert(isa<MDNode>(Op->getOperand(2)), 1598 "invalid value for 'append'-type module flag " 1599 "(expected a metadata node)", 1600 Op->getOperand(2)); 1601 break; 1602 } 1603 } 1604 1605 // Unless this is a "requires" flag, check the ID is unique. 1606 if (MFB != Module::Require) { 1607 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1608 Assert(Inserted, 1609 "module flag identifiers must be unique (or of 'require' type)", ID); 1610 } 1611 1612 if (ID->getString() == "wchar_size") { 1613 ConstantInt *Value 1614 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1615 Assert(Value, "wchar_size metadata requires constant integer argument"); 1616 } 1617 1618 if (ID->getString() == "Linker Options") { 1619 // If the llvm.linker.options named metadata exists, we assume that the 1620 // bitcode reader has upgraded the module flag. Otherwise the flag might 1621 // have been created by a client directly. 1622 Assert(M.getNamedMetadata("llvm.linker.options"), 1623 "'Linker Options' named metadata no longer supported"); 1624 } 1625 1626 if (ID->getString() == "SemanticInterposition") { 1627 ConstantInt *Value = 1628 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1629 Assert(Value, 1630 "SemanticInterposition metadata requires constant integer argument"); 1631 } 1632 1633 if (ID->getString() == "CG Profile") { 1634 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1635 visitModuleFlagCGProfileEntry(MDO); 1636 } 1637 } 1638 1639 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1640 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1641 if (!FuncMDO) 1642 return; 1643 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1644 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1645 "expected a Function or null", FuncMDO); 1646 }; 1647 auto Node = dyn_cast_or_null<MDNode>(MDO); 1648 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1649 CheckFunction(Node->getOperand(0)); 1650 CheckFunction(Node->getOperand(1)); 1651 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1652 Assert(Count && Count->getType()->isIntegerTy(), 1653 "expected an integer constant", Node->getOperand(2)); 1654 } 1655 1656 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1657 for (Attribute A : Attrs) { 1658 1659 if (A.isStringAttribute()) { 1660 #define GET_ATTR_NAMES 1661 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1662 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1663 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1664 auto V = A.getValueAsString(); \ 1665 if (!(V.empty() || V == "true" || V == "false")) \ 1666 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1667 ""); \ 1668 } 1669 1670 #include "llvm/IR/Attributes.inc" 1671 continue; 1672 } 1673 1674 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1675 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1676 V); 1677 return; 1678 } 1679 } 1680 } 1681 1682 // VerifyParameterAttrs - Check the given attributes for an argument or return 1683 // value of the specified type. The value V is printed in error messages. 1684 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1685 const Value *V) { 1686 if (!Attrs.hasAttributes()) 1687 return; 1688 1689 verifyAttributeTypes(Attrs, V); 1690 1691 for (Attribute Attr : Attrs) 1692 Assert(Attr.isStringAttribute() || 1693 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1694 "Attribute '" + Attr.getAsString() + 1695 "' does not apply to parameters", 1696 V); 1697 1698 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1699 Assert(Attrs.getNumAttributes() == 1, 1700 "Attribute 'immarg' is incompatible with other attributes", V); 1701 } 1702 1703 // Check for mutually incompatible attributes. Only inreg is compatible with 1704 // sret. 1705 unsigned AttrCount = 0; 1706 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1707 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1708 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1709 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1710 Attrs.hasAttribute(Attribute::InReg); 1711 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1712 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1713 Assert(AttrCount <= 1, 1714 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1715 "'byref', and 'sret' are incompatible!", 1716 V); 1717 1718 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1719 Attrs.hasAttribute(Attribute::ReadOnly)), 1720 "Attributes " 1721 "'inalloca and readonly' are incompatible!", 1722 V); 1723 1724 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1725 Attrs.hasAttribute(Attribute::Returned)), 1726 "Attributes " 1727 "'sret and returned' are incompatible!", 1728 V); 1729 1730 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1731 Attrs.hasAttribute(Attribute::SExt)), 1732 "Attributes " 1733 "'zeroext and signext' are incompatible!", 1734 V); 1735 1736 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1737 Attrs.hasAttribute(Attribute::ReadOnly)), 1738 "Attributes " 1739 "'readnone and readonly' are incompatible!", 1740 V); 1741 1742 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1743 Attrs.hasAttribute(Attribute::WriteOnly)), 1744 "Attributes " 1745 "'readnone and writeonly' are incompatible!", 1746 V); 1747 1748 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1749 Attrs.hasAttribute(Attribute::WriteOnly)), 1750 "Attributes " 1751 "'readonly and writeonly' are incompatible!", 1752 V); 1753 1754 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1755 Attrs.hasAttribute(Attribute::AlwaysInline)), 1756 "Attributes " 1757 "'noinline and alwaysinline' are incompatible!", 1758 V); 1759 1760 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1761 for (Attribute Attr : Attrs) { 1762 if (!Attr.isStringAttribute() && 1763 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1764 CheckFailed("Attribute '" + Attr.getAsString() + 1765 "' applied to incompatible type!", V); 1766 return; 1767 } 1768 } 1769 1770 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1771 if (Attrs.hasAttribute(Attribute::ByVal)) { 1772 SmallPtrSet<Type *, 4> Visited; 1773 Assert(Attrs.getByValType()->isSized(&Visited), 1774 "Attribute 'byval' does not support unsized types!", V); 1775 } 1776 if (Attrs.hasAttribute(Attribute::ByRef)) { 1777 SmallPtrSet<Type *, 4> Visited; 1778 Assert(Attrs.getByRefType()->isSized(&Visited), 1779 "Attribute 'byref' does not support unsized types!", V); 1780 } 1781 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1782 SmallPtrSet<Type *, 4> Visited; 1783 Assert(Attrs.getInAllocaType()->isSized(&Visited), 1784 "Attribute 'inalloca' does not support unsized types!", V); 1785 } 1786 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1787 SmallPtrSet<Type *, 4> Visited; 1788 Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1789 "Attribute 'preallocated' does not support unsized types!", V); 1790 } 1791 if (!PTy->isOpaque()) { 1792 if (!isa<PointerType>(PTy->getElementType())) 1793 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1794 "Attribute 'swifterror' only applies to parameters " 1795 "with pointer to pointer type!", 1796 V); 1797 if (Attrs.hasAttribute(Attribute::ByRef)) { 1798 Assert(Attrs.getByRefType() == PTy->getElementType(), 1799 "Attribute 'byref' type does not match parameter!", V); 1800 } 1801 1802 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1803 Assert(Attrs.getByValType() == PTy->getElementType(), 1804 "Attribute 'byval' type does not match parameter!", V); 1805 } 1806 1807 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1808 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1809 "Attribute 'preallocated' type does not match parameter!", V); 1810 } 1811 1812 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1813 Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1814 "Attribute 'inalloca' type does not match parameter!", V); 1815 } 1816 1817 if (Attrs.hasAttribute(Attribute::ElementType)) { 1818 Assert(Attrs.getElementType() == PTy->getElementType(), 1819 "Attribute 'elementtype' type does not match parameter!", V); 1820 } 1821 } 1822 } 1823 } 1824 1825 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1826 const Value *V) { 1827 if (Attrs.hasFnAttr(Attr)) { 1828 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1829 unsigned N; 1830 if (S.getAsInteger(10, N)) 1831 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1832 } 1833 } 1834 1835 // Check parameter attributes against a function type. 1836 // The value V is printed in error messages. 1837 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1838 const Value *V, bool IsIntrinsic) { 1839 if (Attrs.isEmpty()) 1840 return; 1841 1842 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1843 Assert(Attrs.hasParentContext(Context), 1844 "Attribute list does not match Module context!", &Attrs, V); 1845 for (const auto &AttrSet : Attrs) { 1846 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1847 "Attribute set does not match Module context!", &AttrSet, V); 1848 for (const auto &A : AttrSet) { 1849 Assert(A.hasParentContext(Context), 1850 "Attribute does not match Module context!", &A, V); 1851 } 1852 } 1853 } 1854 1855 bool SawNest = false; 1856 bool SawReturned = false; 1857 bool SawSRet = false; 1858 bool SawSwiftSelf = false; 1859 bool SawSwiftAsync = false; 1860 bool SawSwiftError = false; 1861 1862 // Verify return value attributes. 1863 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1864 for (Attribute RetAttr : RetAttrs) 1865 Assert(RetAttr.isStringAttribute() || 1866 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1867 "Attribute '" + RetAttr.getAsString() + 1868 "' does not apply to function return values", 1869 V); 1870 1871 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1872 1873 // Verify parameter attributes. 1874 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1875 Type *Ty = FT->getParamType(i); 1876 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1877 1878 if (!IsIntrinsic) { 1879 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1880 "immarg attribute only applies to intrinsics",V); 1881 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1882 "Attribute 'elementtype' can only be applied to intrinsics.", V); 1883 } 1884 1885 verifyParameterAttrs(ArgAttrs, Ty, V); 1886 1887 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1888 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1889 SawNest = true; 1890 } 1891 1892 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1893 Assert(!SawReturned, "More than one parameter has attribute returned!", 1894 V); 1895 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1896 "Incompatible argument and return types for 'returned' attribute", 1897 V); 1898 SawReturned = true; 1899 } 1900 1901 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1902 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1903 Assert(i == 0 || i == 1, 1904 "Attribute 'sret' is not on first or second parameter!", V); 1905 SawSRet = true; 1906 } 1907 1908 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1909 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1910 SawSwiftSelf = true; 1911 } 1912 1913 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1914 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1915 SawSwiftAsync = true; 1916 } 1917 1918 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1919 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1920 V); 1921 SawSwiftError = true; 1922 } 1923 1924 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1925 Assert(i == FT->getNumParams() - 1, 1926 "inalloca isn't on the last parameter!", V); 1927 } 1928 } 1929 1930 if (!Attrs.hasFnAttrs()) 1931 return; 1932 1933 verifyAttributeTypes(Attrs.getFnAttrs(), V); 1934 for (Attribute FnAttr : Attrs.getFnAttrs()) 1935 Assert(FnAttr.isStringAttribute() || 1936 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1937 "Attribute '" + FnAttr.getAsString() + 1938 "' does not apply to functions!", 1939 V); 1940 1941 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1942 Attrs.hasFnAttr(Attribute::ReadOnly)), 1943 "Attributes 'readnone and readonly' are incompatible!", V); 1944 1945 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1946 Attrs.hasFnAttr(Attribute::WriteOnly)), 1947 "Attributes 'readnone and writeonly' are incompatible!", V); 1948 1949 Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 1950 Attrs.hasFnAttr(Attribute::WriteOnly)), 1951 "Attributes 'readonly and writeonly' are incompatible!", V); 1952 1953 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1954 Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 1955 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1956 "incompatible!", 1957 V); 1958 1959 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1960 Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 1961 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1962 1963 Assert(!(Attrs.hasFnAttr(Attribute::NoInline) && 1964 Attrs.hasFnAttr(Attribute::AlwaysInline)), 1965 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1966 1967 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 1968 Assert(Attrs.hasFnAttr(Attribute::NoInline), 1969 "Attribute 'optnone' requires 'noinline'!", V); 1970 1971 Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 1972 "Attributes 'optsize and optnone' are incompatible!", V); 1973 1974 Assert(!Attrs.hasFnAttr(Attribute::MinSize), 1975 "Attributes 'minsize and optnone' are incompatible!", V); 1976 } 1977 1978 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 1979 const GlobalValue *GV = cast<GlobalValue>(V); 1980 Assert(GV->hasGlobalUnnamedAddr(), 1981 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1982 } 1983 1984 if (Attrs.hasFnAttr(Attribute::AllocSize)) { 1985 std::pair<unsigned, Optional<unsigned>> Args = 1986 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1987 1988 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1989 if (ParamNo >= FT->getNumParams()) { 1990 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1991 return false; 1992 } 1993 1994 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1995 CheckFailed("'allocsize' " + Name + 1996 " argument must refer to an integer parameter", 1997 V); 1998 return false; 1999 } 2000 2001 return true; 2002 }; 2003 2004 if (!CheckParam("element size", Args.first)) 2005 return; 2006 2007 if (Args.second && !CheckParam("number of elements", *Args.second)) 2008 return; 2009 } 2010 2011 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2012 std::pair<unsigned, unsigned> Args = 2013 Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex); 2014 2015 if (Args.first > Args.second && Args.second != 0) 2016 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2017 } 2018 2019 if (Attrs.hasFnAttr("frame-pointer")) { 2020 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2021 if (FP != "all" && FP != "non-leaf" && FP != "none") 2022 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2023 } 2024 2025 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2026 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2027 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2028 } 2029 2030 void Verifier::verifyFunctionMetadata( 2031 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2032 for (const auto &Pair : MDs) { 2033 if (Pair.first == LLVMContext::MD_prof) { 2034 MDNode *MD = Pair.second; 2035 Assert(MD->getNumOperands() >= 2, 2036 "!prof annotations should have no less than 2 operands", MD); 2037 2038 // Check first operand. 2039 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2040 MD); 2041 Assert(isa<MDString>(MD->getOperand(0)), 2042 "expected string with name of the !prof annotation", MD); 2043 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2044 StringRef ProfName = MDS->getString(); 2045 Assert(ProfName.equals("function_entry_count") || 2046 ProfName.equals("synthetic_function_entry_count"), 2047 "first operand should be 'function_entry_count'" 2048 " or 'synthetic_function_entry_count'", 2049 MD); 2050 2051 // Check second operand. 2052 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2053 MD); 2054 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2055 "expected integer argument to function_entry_count", MD); 2056 } 2057 } 2058 } 2059 2060 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2061 if (!ConstantExprVisited.insert(EntryC).second) 2062 return; 2063 2064 SmallVector<const Constant *, 16> Stack; 2065 Stack.push_back(EntryC); 2066 2067 while (!Stack.empty()) { 2068 const Constant *C = Stack.pop_back_val(); 2069 2070 // Check this constant expression. 2071 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2072 visitConstantExpr(CE); 2073 2074 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2075 // Global Values get visited separately, but we do need to make sure 2076 // that the global value is in the correct module 2077 Assert(GV->getParent() == &M, "Referencing global in another module!", 2078 EntryC, &M, GV, GV->getParent()); 2079 continue; 2080 } 2081 2082 // Visit all sub-expressions. 2083 for (const Use &U : C->operands()) { 2084 const auto *OpC = dyn_cast<Constant>(U); 2085 if (!OpC) 2086 continue; 2087 if (!ConstantExprVisited.insert(OpC).second) 2088 continue; 2089 Stack.push_back(OpC); 2090 } 2091 } 2092 } 2093 2094 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2095 if (CE->getOpcode() == Instruction::BitCast) 2096 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2097 CE->getType()), 2098 "Invalid bitcast", CE); 2099 } 2100 2101 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2102 // There shouldn't be more attribute sets than there are parameters plus the 2103 // function and return value. 2104 return Attrs.getNumAttrSets() <= Params + 2; 2105 } 2106 2107 /// Verify that statepoint intrinsic is well formed. 2108 void Verifier::verifyStatepoint(const CallBase &Call) { 2109 assert(Call.getCalledFunction() && 2110 Call.getCalledFunction()->getIntrinsicID() == 2111 Intrinsic::experimental_gc_statepoint); 2112 2113 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2114 !Call.onlyAccessesArgMemory(), 2115 "gc.statepoint must read and write all memory to preserve " 2116 "reordering restrictions required by safepoint semantics", 2117 Call); 2118 2119 const int64_t NumPatchBytes = 2120 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2121 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2122 Assert(NumPatchBytes >= 0, 2123 "gc.statepoint number of patchable bytes must be " 2124 "positive", 2125 Call); 2126 2127 const Value *Target = Call.getArgOperand(2); 2128 auto *PT = dyn_cast<PointerType>(Target->getType()); 2129 Assert(PT && PT->getElementType()->isFunctionTy(), 2130 "gc.statepoint callee must be of function pointer type", Call, Target); 2131 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2132 2133 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2134 Assert(NumCallArgs >= 0, 2135 "gc.statepoint number of arguments to underlying call " 2136 "must be positive", 2137 Call); 2138 const int NumParams = (int)TargetFuncType->getNumParams(); 2139 if (TargetFuncType->isVarArg()) { 2140 Assert(NumCallArgs >= NumParams, 2141 "gc.statepoint mismatch in number of vararg call args", Call); 2142 2143 // TODO: Remove this limitation 2144 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2145 "gc.statepoint doesn't support wrapping non-void " 2146 "vararg functions yet", 2147 Call); 2148 } else 2149 Assert(NumCallArgs == NumParams, 2150 "gc.statepoint mismatch in number of call args", Call); 2151 2152 const uint64_t Flags 2153 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2154 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2155 "unknown flag used in gc.statepoint flags argument", Call); 2156 2157 // Verify that the types of the call parameter arguments match 2158 // the type of the wrapped callee. 2159 AttributeList Attrs = Call.getAttributes(); 2160 for (int i = 0; i < NumParams; i++) { 2161 Type *ParamType = TargetFuncType->getParamType(i); 2162 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2163 Assert(ArgType == ParamType, 2164 "gc.statepoint call argument does not match wrapped " 2165 "function type", 2166 Call); 2167 2168 if (TargetFuncType->isVarArg()) { 2169 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2170 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2171 "Attribute 'sret' cannot be used for vararg call arguments!", 2172 Call); 2173 } 2174 } 2175 2176 const int EndCallArgsInx = 4 + NumCallArgs; 2177 2178 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2179 Assert(isa<ConstantInt>(NumTransitionArgsV), 2180 "gc.statepoint number of transition arguments " 2181 "must be constant integer", 2182 Call); 2183 const int NumTransitionArgs = 2184 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2185 Assert(NumTransitionArgs == 0, 2186 "gc.statepoint w/inline transition bundle is deprecated", Call); 2187 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2188 2189 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2190 Assert(isa<ConstantInt>(NumDeoptArgsV), 2191 "gc.statepoint number of deoptimization arguments " 2192 "must be constant integer", 2193 Call); 2194 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2195 Assert(NumDeoptArgs == 0, 2196 "gc.statepoint w/inline deopt operands is deprecated", Call); 2197 2198 const int ExpectedNumArgs = 7 + NumCallArgs; 2199 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2200 "gc.statepoint too many arguments", Call); 2201 2202 // Check that the only uses of this gc.statepoint are gc.result or 2203 // gc.relocate calls which are tied to this statepoint and thus part 2204 // of the same statepoint sequence 2205 for (const User *U : Call.users()) { 2206 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2207 Assert(UserCall, "illegal use of statepoint token", Call, U); 2208 if (!UserCall) 2209 continue; 2210 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2211 "gc.result or gc.relocate are the only value uses " 2212 "of a gc.statepoint", 2213 Call, U); 2214 if (isa<GCResultInst>(UserCall)) { 2215 Assert(UserCall->getArgOperand(0) == &Call, 2216 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2217 } else if (isa<GCRelocateInst>(Call)) { 2218 Assert(UserCall->getArgOperand(0) == &Call, 2219 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2220 } 2221 } 2222 2223 // Note: It is legal for a single derived pointer to be listed multiple 2224 // times. It's non-optimal, but it is legal. It can also happen after 2225 // insertion if we strip a bitcast away. 2226 // Note: It is really tempting to check that each base is relocated and 2227 // that a derived pointer is never reused as a base pointer. This turns 2228 // out to be problematic since optimizations run after safepoint insertion 2229 // can recognize equality properties that the insertion logic doesn't know 2230 // about. See example statepoint.ll in the verifier subdirectory 2231 } 2232 2233 void Verifier::verifyFrameRecoverIndices() { 2234 for (auto &Counts : FrameEscapeInfo) { 2235 Function *F = Counts.first; 2236 unsigned EscapedObjectCount = Counts.second.first; 2237 unsigned MaxRecoveredIndex = Counts.second.second; 2238 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2239 "all indices passed to llvm.localrecover must be less than the " 2240 "number of arguments passed to llvm.localescape in the parent " 2241 "function", 2242 F); 2243 } 2244 } 2245 2246 static Instruction *getSuccPad(Instruction *Terminator) { 2247 BasicBlock *UnwindDest; 2248 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2249 UnwindDest = II->getUnwindDest(); 2250 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2251 UnwindDest = CSI->getUnwindDest(); 2252 else 2253 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2254 return UnwindDest->getFirstNonPHI(); 2255 } 2256 2257 void Verifier::verifySiblingFuncletUnwinds() { 2258 SmallPtrSet<Instruction *, 8> Visited; 2259 SmallPtrSet<Instruction *, 8> Active; 2260 for (const auto &Pair : SiblingFuncletInfo) { 2261 Instruction *PredPad = Pair.first; 2262 if (Visited.count(PredPad)) 2263 continue; 2264 Active.insert(PredPad); 2265 Instruction *Terminator = Pair.second; 2266 do { 2267 Instruction *SuccPad = getSuccPad(Terminator); 2268 if (Active.count(SuccPad)) { 2269 // Found a cycle; report error 2270 Instruction *CyclePad = SuccPad; 2271 SmallVector<Instruction *, 8> CycleNodes; 2272 do { 2273 CycleNodes.push_back(CyclePad); 2274 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2275 if (CycleTerminator != CyclePad) 2276 CycleNodes.push_back(CycleTerminator); 2277 CyclePad = getSuccPad(CycleTerminator); 2278 } while (CyclePad != SuccPad); 2279 Assert(false, "EH pads can't handle each other's exceptions", 2280 ArrayRef<Instruction *>(CycleNodes)); 2281 } 2282 // Don't re-walk a node we've already checked 2283 if (!Visited.insert(SuccPad).second) 2284 break; 2285 // Walk to this successor if it has a map entry. 2286 PredPad = SuccPad; 2287 auto TermI = SiblingFuncletInfo.find(PredPad); 2288 if (TermI == SiblingFuncletInfo.end()) 2289 break; 2290 Terminator = TermI->second; 2291 Active.insert(PredPad); 2292 } while (true); 2293 // Each node only has one successor, so we've walked all the active 2294 // nodes' successors. 2295 Active.clear(); 2296 } 2297 } 2298 2299 // visitFunction - Verify that a function is ok. 2300 // 2301 void Verifier::visitFunction(const Function &F) { 2302 visitGlobalValue(F); 2303 2304 // Check function arguments. 2305 FunctionType *FT = F.getFunctionType(); 2306 unsigned NumArgs = F.arg_size(); 2307 2308 Assert(&Context == &F.getContext(), 2309 "Function context does not match Module context!", &F); 2310 2311 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2312 Assert(FT->getNumParams() == NumArgs, 2313 "# formal arguments must match # of arguments for function type!", &F, 2314 FT); 2315 Assert(F.getReturnType()->isFirstClassType() || 2316 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2317 "Functions cannot return aggregate values!", &F); 2318 2319 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2320 "Invalid struct return type!", &F); 2321 2322 AttributeList Attrs = F.getAttributes(); 2323 2324 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2325 "Attribute after last parameter!", &F); 2326 2327 bool IsIntrinsic = F.isIntrinsic(); 2328 2329 // Check function attributes. 2330 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic); 2331 2332 // On function declarations/definitions, we do not support the builtin 2333 // attribute. We do not check this in VerifyFunctionAttrs since that is 2334 // checking for Attributes that can/can not ever be on functions. 2335 Assert(!Attrs.hasFnAttr(Attribute::Builtin), 2336 "Attribute 'builtin' can only be applied to a callsite.", &F); 2337 2338 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2339 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2340 2341 // Check that this function meets the restrictions on this calling convention. 2342 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2343 // restrictions can be lifted. 2344 switch (F.getCallingConv()) { 2345 default: 2346 case CallingConv::C: 2347 break; 2348 case CallingConv::X86_INTR: { 2349 Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2350 "Calling convention parameter requires byval", &F); 2351 break; 2352 } 2353 case CallingConv::AMDGPU_KERNEL: 2354 case CallingConv::SPIR_KERNEL: 2355 Assert(F.getReturnType()->isVoidTy(), 2356 "Calling convention requires void return type", &F); 2357 LLVM_FALLTHROUGH; 2358 case CallingConv::AMDGPU_VS: 2359 case CallingConv::AMDGPU_HS: 2360 case CallingConv::AMDGPU_GS: 2361 case CallingConv::AMDGPU_PS: 2362 case CallingConv::AMDGPU_CS: 2363 Assert(!F.hasStructRetAttr(), 2364 "Calling convention does not allow sret", &F); 2365 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2366 const unsigned StackAS = DL.getAllocaAddrSpace(); 2367 unsigned i = 0; 2368 for (const Argument &Arg : F.args()) { 2369 Assert(!Attrs.hasParamAttr(i, Attribute::ByVal), 2370 "Calling convention disallows byval", &F); 2371 Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2372 "Calling convention disallows preallocated", &F); 2373 Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2374 "Calling convention disallows inalloca", &F); 2375 2376 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2377 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2378 // value here. 2379 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2380 "Calling convention disallows stack byref", &F); 2381 } 2382 2383 ++i; 2384 } 2385 } 2386 2387 LLVM_FALLTHROUGH; 2388 case CallingConv::Fast: 2389 case CallingConv::Cold: 2390 case CallingConv::Intel_OCL_BI: 2391 case CallingConv::PTX_Kernel: 2392 case CallingConv::PTX_Device: 2393 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2394 "perfect forwarding!", 2395 &F); 2396 break; 2397 } 2398 2399 // Check that the argument values match the function type for this function... 2400 unsigned i = 0; 2401 for (const Argument &Arg : F.args()) { 2402 Assert(Arg.getType() == FT->getParamType(i), 2403 "Argument value does not match function argument type!", &Arg, 2404 FT->getParamType(i)); 2405 Assert(Arg.getType()->isFirstClassType(), 2406 "Function arguments must have first-class types!", &Arg); 2407 if (!IsIntrinsic) { 2408 Assert(!Arg.getType()->isMetadataTy(), 2409 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2410 Assert(!Arg.getType()->isTokenTy(), 2411 "Function takes token but isn't an intrinsic", &Arg, &F); 2412 Assert(!Arg.getType()->isX86_AMXTy(), 2413 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2414 } 2415 2416 // Check that swifterror argument is only used by loads and stores. 2417 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2418 verifySwiftErrorValue(&Arg); 2419 } 2420 ++i; 2421 } 2422 2423 if (!IsIntrinsic) { 2424 Assert(!F.getReturnType()->isTokenTy(), 2425 "Function returns a token but isn't an intrinsic", &F); 2426 Assert(!F.getReturnType()->isX86_AMXTy(), 2427 "Function returns a x86_amx but isn't an intrinsic", &F); 2428 } 2429 2430 // Get the function metadata attachments. 2431 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2432 F.getAllMetadata(MDs); 2433 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2434 verifyFunctionMetadata(MDs); 2435 2436 // Check validity of the personality function 2437 if (F.hasPersonalityFn()) { 2438 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2439 if (Per) 2440 Assert(Per->getParent() == F.getParent(), 2441 "Referencing personality function in another module!", 2442 &F, F.getParent(), Per, Per->getParent()); 2443 } 2444 2445 if (F.isMaterializable()) { 2446 // Function has a body somewhere we can't see. 2447 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2448 MDs.empty() ? nullptr : MDs.front().second); 2449 } else if (F.isDeclaration()) { 2450 for (const auto &I : MDs) { 2451 // This is used for call site debug information. 2452 AssertDI(I.first != LLVMContext::MD_dbg || 2453 !cast<DISubprogram>(I.second)->isDistinct(), 2454 "function declaration may only have a unique !dbg attachment", 2455 &F); 2456 Assert(I.first != LLVMContext::MD_prof, 2457 "function declaration may not have a !prof attachment", &F); 2458 2459 // Verify the metadata itself. 2460 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2461 } 2462 Assert(!F.hasPersonalityFn(), 2463 "Function declaration shouldn't have a personality routine", &F); 2464 } else { 2465 // Verify that this function (which has a body) is not named "llvm.*". It 2466 // is not legal to define intrinsics. 2467 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2468 2469 // Check the entry node 2470 const BasicBlock *Entry = &F.getEntryBlock(); 2471 Assert(pred_empty(Entry), 2472 "Entry block to function must not have predecessors!", Entry); 2473 2474 // The address of the entry block cannot be taken, unless it is dead. 2475 if (Entry->hasAddressTaken()) { 2476 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2477 "blockaddress may not be used with the entry block!", Entry); 2478 } 2479 2480 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2481 // Visit metadata attachments. 2482 for (const auto &I : MDs) { 2483 // Verify that the attachment is legal. 2484 auto AllowLocs = AreDebugLocsAllowed::No; 2485 switch (I.first) { 2486 default: 2487 break; 2488 case LLVMContext::MD_dbg: { 2489 ++NumDebugAttachments; 2490 AssertDI(NumDebugAttachments == 1, 2491 "function must have a single !dbg attachment", &F, I.second); 2492 AssertDI(isa<DISubprogram>(I.second), 2493 "function !dbg attachment must be a subprogram", &F, I.second); 2494 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2495 "function definition may only have a distinct !dbg attachment", 2496 &F); 2497 2498 auto *SP = cast<DISubprogram>(I.second); 2499 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2500 AssertDI(!AttachedTo || AttachedTo == &F, 2501 "DISubprogram attached to more than one function", SP, &F); 2502 AttachedTo = &F; 2503 AllowLocs = AreDebugLocsAllowed::Yes; 2504 break; 2505 } 2506 case LLVMContext::MD_prof: 2507 ++NumProfAttachments; 2508 Assert(NumProfAttachments == 1, 2509 "function must have a single !prof attachment", &F, I.second); 2510 break; 2511 } 2512 2513 // Verify the metadata itself. 2514 visitMDNode(*I.second, AllowLocs); 2515 } 2516 } 2517 2518 // If this function is actually an intrinsic, verify that it is only used in 2519 // direct call/invokes, never having its "address taken". 2520 // Only do this if the module is materialized, otherwise we don't have all the 2521 // uses. 2522 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2523 const User *U; 2524 if (F.hasAddressTaken(&U)) 2525 Assert(false, "Invalid user of intrinsic instruction!", U); 2526 } 2527 2528 // Check intrinsics' signatures. 2529 switch (F.getIntrinsicID()) { 2530 case Intrinsic::experimental_gc_get_pointer_base: { 2531 FunctionType *FT = F.getFunctionType(); 2532 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2533 Assert(isa<PointerType>(F.getReturnType()), 2534 "gc.get.pointer.base must return a pointer", F); 2535 Assert(FT->getParamType(0) == F.getReturnType(), 2536 "gc.get.pointer.base operand and result must be of the same type", 2537 F); 2538 break; 2539 } 2540 case Intrinsic::experimental_gc_get_pointer_offset: { 2541 FunctionType *FT = F.getFunctionType(); 2542 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2543 Assert(isa<PointerType>(FT->getParamType(0)), 2544 "gc.get.pointer.offset operand must be a pointer", F); 2545 Assert(F.getReturnType()->isIntegerTy(), 2546 "gc.get.pointer.offset must return integer", F); 2547 break; 2548 } 2549 } 2550 2551 auto *N = F.getSubprogram(); 2552 HasDebugInfo = (N != nullptr); 2553 if (!HasDebugInfo) 2554 return; 2555 2556 // Check that all !dbg attachments lead to back to N. 2557 // 2558 // FIXME: Check this incrementally while visiting !dbg attachments. 2559 // FIXME: Only check when N is the canonical subprogram for F. 2560 SmallPtrSet<const MDNode *, 32> Seen; 2561 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2562 // Be careful about using DILocation here since we might be dealing with 2563 // broken code (this is the Verifier after all). 2564 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2565 if (!DL) 2566 return; 2567 if (!Seen.insert(DL).second) 2568 return; 2569 2570 Metadata *Parent = DL->getRawScope(); 2571 AssertDI(Parent && isa<DILocalScope>(Parent), 2572 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2573 Parent); 2574 2575 DILocalScope *Scope = DL->getInlinedAtScope(); 2576 Assert(Scope, "Failed to find DILocalScope", DL); 2577 2578 if (!Seen.insert(Scope).second) 2579 return; 2580 2581 DISubprogram *SP = Scope->getSubprogram(); 2582 2583 // Scope and SP could be the same MDNode and we don't want to skip 2584 // validation in that case 2585 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2586 return; 2587 2588 AssertDI(SP->describes(&F), 2589 "!dbg attachment points at wrong subprogram for function", N, &F, 2590 &I, DL, Scope, SP); 2591 }; 2592 for (auto &BB : F) 2593 for (auto &I : BB) { 2594 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2595 // The llvm.loop annotations also contain two DILocations. 2596 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2597 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2598 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2599 if (BrokenDebugInfo) 2600 return; 2601 } 2602 } 2603 2604 // verifyBasicBlock - Verify that a basic block is well formed... 2605 // 2606 void Verifier::visitBasicBlock(BasicBlock &BB) { 2607 InstsInThisBlock.clear(); 2608 2609 // Ensure that basic blocks have terminators! 2610 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2611 2612 // Check constraints that this basic block imposes on all of the PHI nodes in 2613 // it. 2614 if (isa<PHINode>(BB.front())) { 2615 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2616 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2617 llvm::sort(Preds); 2618 for (const PHINode &PN : BB.phis()) { 2619 Assert(PN.getNumIncomingValues() == Preds.size(), 2620 "PHINode should have one entry for each predecessor of its " 2621 "parent basic block!", 2622 &PN); 2623 2624 // Get and sort all incoming values in the PHI node... 2625 Values.clear(); 2626 Values.reserve(PN.getNumIncomingValues()); 2627 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2628 Values.push_back( 2629 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2630 llvm::sort(Values); 2631 2632 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2633 // Check to make sure that if there is more than one entry for a 2634 // particular basic block in this PHI node, that the incoming values are 2635 // all identical. 2636 // 2637 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2638 Values[i].second == Values[i - 1].second, 2639 "PHI node has multiple entries for the same basic block with " 2640 "different incoming values!", 2641 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2642 2643 // Check to make sure that the predecessors and PHI node entries are 2644 // matched up. 2645 Assert(Values[i].first == Preds[i], 2646 "PHI node entries do not match predecessors!", &PN, 2647 Values[i].first, Preds[i]); 2648 } 2649 } 2650 } 2651 2652 // Check that all instructions have their parent pointers set up correctly. 2653 for (auto &I : BB) 2654 { 2655 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2656 } 2657 } 2658 2659 void Verifier::visitTerminator(Instruction &I) { 2660 // Ensure that terminators only exist at the end of the basic block. 2661 Assert(&I == I.getParent()->getTerminator(), 2662 "Terminator found in the middle of a basic block!", I.getParent()); 2663 visitInstruction(I); 2664 } 2665 2666 void Verifier::visitBranchInst(BranchInst &BI) { 2667 if (BI.isConditional()) { 2668 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2669 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2670 } 2671 visitTerminator(BI); 2672 } 2673 2674 void Verifier::visitReturnInst(ReturnInst &RI) { 2675 Function *F = RI.getParent()->getParent(); 2676 unsigned N = RI.getNumOperands(); 2677 if (F->getReturnType()->isVoidTy()) 2678 Assert(N == 0, 2679 "Found return instr that returns non-void in Function of void " 2680 "return type!", 2681 &RI, F->getReturnType()); 2682 else 2683 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2684 "Function return type does not match operand " 2685 "type of return inst!", 2686 &RI, F->getReturnType()); 2687 2688 // Check to make sure that the return value has necessary properties for 2689 // terminators... 2690 visitTerminator(RI); 2691 } 2692 2693 void Verifier::visitSwitchInst(SwitchInst &SI) { 2694 Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2695 // Check to make sure that all of the constants in the switch instruction 2696 // have the same type as the switched-on value. 2697 Type *SwitchTy = SI.getCondition()->getType(); 2698 SmallPtrSet<ConstantInt*, 32> Constants; 2699 for (auto &Case : SI.cases()) { 2700 Assert(Case.getCaseValue()->getType() == SwitchTy, 2701 "Switch constants must all be same type as switch value!", &SI); 2702 Assert(Constants.insert(Case.getCaseValue()).second, 2703 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2704 } 2705 2706 visitTerminator(SI); 2707 } 2708 2709 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2710 Assert(BI.getAddress()->getType()->isPointerTy(), 2711 "Indirectbr operand must have pointer type!", &BI); 2712 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2713 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2714 "Indirectbr destinations must all have pointer type!", &BI); 2715 2716 visitTerminator(BI); 2717 } 2718 2719 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2720 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2721 &CBI); 2722 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2723 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2724 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2725 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2726 "Callbr successors must all have pointer type!", &CBI); 2727 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2728 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2729 "Using an unescaped label as a callbr argument!", &CBI); 2730 if (isa<BasicBlock>(CBI.getOperand(i))) 2731 for (unsigned j = i + 1; j != e; ++j) 2732 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2733 "Duplicate callbr destination!", &CBI); 2734 } 2735 { 2736 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2737 for (Value *V : CBI.args()) 2738 if (auto *BA = dyn_cast<BlockAddress>(V)) 2739 ArgBBs.insert(BA->getBasicBlock()); 2740 for (BasicBlock *BB : CBI.getIndirectDests()) 2741 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2742 } 2743 2744 visitTerminator(CBI); 2745 } 2746 2747 void Verifier::visitSelectInst(SelectInst &SI) { 2748 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2749 SI.getOperand(2)), 2750 "Invalid operands for select instruction!", &SI); 2751 2752 Assert(SI.getTrueValue()->getType() == SI.getType(), 2753 "Select values must have same type as select instruction!", &SI); 2754 visitInstruction(SI); 2755 } 2756 2757 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2758 /// a pass, if any exist, it's an error. 2759 /// 2760 void Verifier::visitUserOp1(Instruction &I) { 2761 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2762 } 2763 2764 void Verifier::visitTruncInst(TruncInst &I) { 2765 // Get the source and destination types 2766 Type *SrcTy = I.getOperand(0)->getType(); 2767 Type *DestTy = I.getType(); 2768 2769 // Get the size of the types in bits, we'll need this later 2770 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2771 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2772 2773 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2774 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2775 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2776 "trunc source and destination must both be a vector or neither", &I); 2777 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2778 2779 visitInstruction(I); 2780 } 2781 2782 void Verifier::visitZExtInst(ZExtInst &I) { 2783 // Get the source and destination types 2784 Type *SrcTy = I.getOperand(0)->getType(); 2785 Type *DestTy = I.getType(); 2786 2787 // Get the size of the types in bits, we'll need this later 2788 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2789 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2790 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2791 "zext source and destination must both be a vector or neither", &I); 2792 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2793 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2794 2795 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2796 2797 visitInstruction(I); 2798 } 2799 2800 void Verifier::visitSExtInst(SExtInst &I) { 2801 // Get the source and destination types 2802 Type *SrcTy = I.getOperand(0)->getType(); 2803 Type *DestTy = I.getType(); 2804 2805 // Get the size of the types in bits, we'll need this later 2806 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2807 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2808 2809 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2810 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2811 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2812 "sext source and destination must both be a vector or neither", &I); 2813 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2814 2815 visitInstruction(I); 2816 } 2817 2818 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2819 // Get the source and destination types 2820 Type *SrcTy = I.getOperand(0)->getType(); 2821 Type *DestTy = I.getType(); 2822 // Get the size of the types in bits, we'll need this later 2823 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2824 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2825 2826 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2827 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2828 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2829 "fptrunc source and destination must both be a vector or neither", &I); 2830 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2831 2832 visitInstruction(I); 2833 } 2834 2835 void Verifier::visitFPExtInst(FPExtInst &I) { 2836 // Get the source and destination types 2837 Type *SrcTy = I.getOperand(0)->getType(); 2838 Type *DestTy = I.getType(); 2839 2840 // Get the size of the types in bits, we'll need this later 2841 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2842 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2843 2844 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2845 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2846 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2847 "fpext source and destination must both be a vector or neither", &I); 2848 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2849 2850 visitInstruction(I); 2851 } 2852 2853 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2854 // Get the source and destination types 2855 Type *SrcTy = I.getOperand(0)->getType(); 2856 Type *DestTy = I.getType(); 2857 2858 bool SrcVec = SrcTy->isVectorTy(); 2859 bool DstVec = DestTy->isVectorTy(); 2860 2861 Assert(SrcVec == DstVec, 2862 "UIToFP source and dest must both be vector or scalar", &I); 2863 Assert(SrcTy->isIntOrIntVectorTy(), 2864 "UIToFP source must be integer or integer vector", &I); 2865 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2866 &I); 2867 2868 if (SrcVec && DstVec) 2869 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2870 cast<VectorType>(DestTy)->getElementCount(), 2871 "UIToFP source and dest vector length mismatch", &I); 2872 2873 visitInstruction(I); 2874 } 2875 2876 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2877 // Get the source and destination types 2878 Type *SrcTy = I.getOperand(0)->getType(); 2879 Type *DestTy = I.getType(); 2880 2881 bool SrcVec = SrcTy->isVectorTy(); 2882 bool DstVec = DestTy->isVectorTy(); 2883 2884 Assert(SrcVec == DstVec, 2885 "SIToFP source and dest must both be vector or scalar", &I); 2886 Assert(SrcTy->isIntOrIntVectorTy(), 2887 "SIToFP source must be integer or integer vector", &I); 2888 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2889 &I); 2890 2891 if (SrcVec && DstVec) 2892 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2893 cast<VectorType>(DestTy)->getElementCount(), 2894 "SIToFP source and dest vector length mismatch", &I); 2895 2896 visitInstruction(I); 2897 } 2898 2899 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2900 // Get the source and destination types 2901 Type *SrcTy = I.getOperand(0)->getType(); 2902 Type *DestTy = I.getType(); 2903 2904 bool SrcVec = SrcTy->isVectorTy(); 2905 bool DstVec = DestTy->isVectorTy(); 2906 2907 Assert(SrcVec == DstVec, 2908 "FPToUI source and dest must both be vector or scalar", &I); 2909 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2910 &I); 2911 Assert(DestTy->isIntOrIntVectorTy(), 2912 "FPToUI result must be integer or integer vector", &I); 2913 2914 if (SrcVec && DstVec) 2915 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2916 cast<VectorType>(DestTy)->getElementCount(), 2917 "FPToUI source and dest vector length mismatch", &I); 2918 2919 visitInstruction(I); 2920 } 2921 2922 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2923 // Get the source and destination types 2924 Type *SrcTy = I.getOperand(0)->getType(); 2925 Type *DestTy = I.getType(); 2926 2927 bool SrcVec = SrcTy->isVectorTy(); 2928 bool DstVec = DestTy->isVectorTy(); 2929 2930 Assert(SrcVec == DstVec, 2931 "FPToSI source and dest must both be vector or scalar", &I); 2932 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2933 &I); 2934 Assert(DestTy->isIntOrIntVectorTy(), 2935 "FPToSI result must be integer or integer vector", &I); 2936 2937 if (SrcVec && DstVec) 2938 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2939 cast<VectorType>(DestTy)->getElementCount(), 2940 "FPToSI source and dest vector length mismatch", &I); 2941 2942 visitInstruction(I); 2943 } 2944 2945 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2946 // Get the source and destination types 2947 Type *SrcTy = I.getOperand(0)->getType(); 2948 Type *DestTy = I.getType(); 2949 2950 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2951 2952 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2953 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2954 &I); 2955 2956 if (SrcTy->isVectorTy()) { 2957 auto *VSrc = cast<VectorType>(SrcTy); 2958 auto *VDest = cast<VectorType>(DestTy); 2959 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2960 "PtrToInt Vector width mismatch", &I); 2961 } 2962 2963 visitInstruction(I); 2964 } 2965 2966 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2967 // Get the source and destination types 2968 Type *SrcTy = I.getOperand(0)->getType(); 2969 Type *DestTy = I.getType(); 2970 2971 Assert(SrcTy->isIntOrIntVectorTy(), 2972 "IntToPtr source must be an integral", &I); 2973 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2974 2975 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2976 &I); 2977 if (SrcTy->isVectorTy()) { 2978 auto *VSrc = cast<VectorType>(SrcTy); 2979 auto *VDest = cast<VectorType>(DestTy); 2980 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2981 "IntToPtr Vector width mismatch", &I); 2982 } 2983 visitInstruction(I); 2984 } 2985 2986 void Verifier::visitBitCastInst(BitCastInst &I) { 2987 Assert( 2988 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2989 "Invalid bitcast", &I); 2990 visitInstruction(I); 2991 } 2992 2993 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2994 Type *SrcTy = I.getOperand(0)->getType(); 2995 Type *DestTy = I.getType(); 2996 2997 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2998 &I); 2999 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3000 &I); 3001 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3002 "AddrSpaceCast must be between different address spaces", &I); 3003 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3004 Assert(SrcVTy->getElementCount() == 3005 cast<VectorType>(DestTy)->getElementCount(), 3006 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3007 visitInstruction(I); 3008 } 3009 3010 /// visitPHINode - Ensure that a PHI node is well formed. 3011 /// 3012 void Verifier::visitPHINode(PHINode &PN) { 3013 // Ensure that the PHI nodes are all grouped together at the top of the block. 3014 // This can be tested by checking whether the instruction before this is 3015 // either nonexistent (because this is begin()) or is a PHI node. If not, 3016 // then there is some other instruction before a PHI. 3017 Assert(&PN == &PN.getParent()->front() || 3018 isa<PHINode>(--BasicBlock::iterator(&PN)), 3019 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3020 3021 // Check that a PHI doesn't yield a Token. 3022 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3023 3024 // Check that all of the values of the PHI node have the same type as the 3025 // result, and that the incoming blocks are really basic blocks. 3026 for (Value *IncValue : PN.incoming_values()) { 3027 Assert(PN.getType() == IncValue->getType(), 3028 "PHI node operands are not the same type as the result!", &PN); 3029 } 3030 3031 // All other PHI node constraints are checked in the visitBasicBlock method. 3032 3033 visitInstruction(PN); 3034 } 3035 3036 void Verifier::visitCallBase(CallBase &Call) { 3037 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3038 "Called function must be a pointer!", Call); 3039 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3040 3041 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3042 "Called function is not the same type as the call!", Call); 3043 3044 FunctionType *FTy = Call.getFunctionType(); 3045 3046 // Verify that the correct number of arguments are being passed 3047 if (FTy->isVarArg()) 3048 Assert(Call.arg_size() >= FTy->getNumParams(), 3049 "Called function requires more parameters than were provided!", 3050 Call); 3051 else 3052 Assert(Call.arg_size() == FTy->getNumParams(), 3053 "Incorrect number of arguments passed to called function!", Call); 3054 3055 // Verify that all arguments to the call match the function type. 3056 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3057 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3058 "Call parameter type does not match function signature!", 3059 Call.getArgOperand(i), FTy->getParamType(i), Call); 3060 3061 AttributeList Attrs = Call.getAttributes(); 3062 3063 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3064 "Attribute after last parameter!", Call); 3065 3066 Function *Callee = 3067 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3068 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3069 if (IsIntrinsic) 3070 Assert(Callee->getValueType() == FTy, 3071 "Intrinsic called with incompatible signature", Call); 3072 3073 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3074 // Don't allow speculatable on call sites, unless the underlying function 3075 // declaration is also speculatable. 3076 Assert(Callee && Callee->isSpeculatable(), 3077 "speculatable attribute may not apply to call sites", Call); 3078 } 3079 3080 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3081 Assert(Call.getCalledFunction()->getIntrinsicID() == 3082 Intrinsic::call_preallocated_arg, 3083 "preallocated as a call site attribute can only be on " 3084 "llvm.call.preallocated.arg"); 3085 } 3086 3087 // Verify call attributes. 3088 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3089 3090 // Conservatively check the inalloca argument. 3091 // We have a bug if we can find that there is an underlying alloca without 3092 // inalloca. 3093 if (Call.hasInAllocaArgument()) { 3094 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3095 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3096 Assert(AI->isUsedWithInAlloca(), 3097 "inalloca argument for call has mismatched alloca", AI, Call); 3098 } 3099 3100 // For each argument of the callsite, if it has the swifterror argument, 3101 // make sure the underlying alloca/parameter it comes from has a swifterror as 3102 // well. 3103 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3104 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3105 Value *SwiftErrorArg = Call.getArgOperand(i); 3106 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3107 Assert(AI->isSwiftError(), 3108 "swifterror argument for call has mismatched alloca", AI, Call); 3109 continue; 3110 } 3111 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3112 Assert(ArgI, 3113 "swifterror argument should come from an alloca or parameter", 3114 SwiftErrorArg, Call); 3115 Assert(ArgI->hasSwiftErrorAttr(), 3116 "swifterror argument for call has mismatched parameter", ArgI, 3117 Call); 3118 } 3119 3120 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3121 // Don't allow immarg on call sites, unless the underlying declaration 3122 // also has the matching immarg. 3123 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3124 "immarg may not apply only to call sites", 3125 Call.getArgOperand(i), Call); 3126 } 3127 3128 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3129 Value *ArgVal = Call.getArgOperand(i); 3130 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3131 "immarg operand has non-immediate parameter", ArgVal, Call); 3132 } 3133 3134 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3135 Value *ArgVal = Call.getArgOperand(i); 3136 bool hasOB = 3137 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3138 bool isMustTail = Call.isMustTailCall(); 3139 Assert(hasOB != isMustTail, 3140 "preallocated operand either requires a preallocated bundle or " 3141 "the call to be musttail (but not both)", 3142 ArgVal, Call); 3143 } 3144 } 3145 3146 if (FTy->isVarArg()) { 3147 // FIXME? is 'nest' even legal here? 3148 bool SawNest = false; 3149 bool SawReturned = false; 3150 3151 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3152 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3153 SawNest = true; 3154 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3155 SawReturned = true; 3156 } 3157 3158 // Check attributes on the varargs part. 3159 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3160 Type *Ty = Call.getArgOperand(Idx)->getType(); 3161 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3162 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3163 3164 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3165 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3166 SawNest = true; 3167 } 3168 3169 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3170 Assert(!SawReturned, "More than one parameter has attribute returned!", 3171 Call); 3172 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3173 "Incompatible argument and return types for 'returned' " 3174 "attribute", 3175 Call); 3176 SawReturned = true; 3177 } 3178 3179 // Statepoint intrinsic is vararg but the wrapped function may be not. 3180 // Allow sret here and check the wrapped function in verifyStatepoint. 3181 if (!Call.getCalledFunction() || 3182 Call.getCalledFunction()->getIntrinsicID() != 3183 Intrinsic::experimental_gc_statepoint) 3184 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3185 "Attribute 'sret' cannot be used for vararg call arguments!", 3186 Call); 3187 3188 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3189 Assert(Idx == Call.arg_size() - 1, 3190 "inalloca isn't on the last argument!", Call); 3191 } 3192 } 3193 3194 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3195 if (!IsIntrinsic) { 3196 for (Type *ParamTy : FTy->params()) { 3197 Assert(!ParamTy->isMetadataTy(), 3198 "Function has metadata parameter but isn't an intrinsic", Call); 3199 Assert(!ParamTy->isTokenTy(), 3200 "Function has token parameter but isn't an intrinsic", Call); 3201 } 3202 } 3203 3204 // Verify that indirect calls don't return tokens. 3205 if (!Call.getCalledFunction()) { 3206 Assert(!FTy->getReturnType()->isTokenTy(), 3207 "Return type cannot be token for indirect call!"); 3208 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3209 "Return type cannot be x86_amx for indirect call!"); 3210 } 3211 3212 if (Function *F = Call.getCalledFunction()) 3213 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3214 visitIntrinsicCall(ID, Call); 3215 3216 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3217 // most one "gc-transition", at most one "cfguardtarget", 3218 // and at most one "preallocated" operand bundle. 3219 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3220 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3221 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3222 FoundAttachedCallBundle = false; 3223 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3224 OperandBundleUse BU = Call.getOperandBundleAt(i); 3225 uint32_t Tag = BU.getTagID(); 3226 if (Tag == LLVMContext::OB_deopt) { 3227 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3228 FoundDeoptBundle = true; 3229 } else if (Tag == LLVMContext::OB_gc_transition) { 3230 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3231 Call); 3232 FoundGCTransitionBundle = true; 3233 } else if (Tag == LLVMContext::OB_funclet) { 3234 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3235 FoundFuncletBundle = true; 3236 Assert(BU.Inputs.size() == 1, 3237 "Expected exactly one funclet bundle operand", Call); 3238 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3239 "Funclet bundle operands should correspond to a FuncletPadInst", 3240 Call); 3241 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3242 Assert(!FoundCFGuardTargetBundle, 3243 "Multiple CFGuardTarget operand bundles", Call); 3244 FoundCFGuardTargetBundle = true; 3245 Assert(BU.Inputs.size() == 1, 3246 "Expected exactly one cfguardtarget bundle operand", Call); 3247 } else if (Tag == LLVMContext::OB_preallocated) { 3248 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3249 Call); 3250 FoundPreallocatedBundle = true; 3251 Assert(BU.Inputs.size() == 1, 3252 "Expected exactly one preallocated bundle operand", Call); 3253 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3254 Assert(Input && 3255 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3256 "\"preallocated\" argument must be a token from " 3257 "llvm.call.preallocated.setup", 3258 Call); 3259 } else if (Tag == LLVMContext::OB_gc_live) { 3260 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3261 Call); 3262 FoundGCLiveBundle = true; 3263 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3264 Assert(!FoundAttachedCallBundle, 3265 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3266 FoundAttachedCallBundle = true; 3267 } 3268 } 3269 3270 if (FoundAttachedCallBundle) 3271 Assert((FTy->getReturnType()->isPointerTy() || 3272 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 3273 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 3274 "function returning a pointer or a non-returning function that has " 3275 "a void return type", 3276 Call); 3277 3278 // Verify that each inlinable callsite of a debug-info-bearing function in a 3279 // debug-info-bearing function has a debug location attached to it. Failure to 3280 // do so causes assertion failures when the inliner sets up inline scope info. 3281 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3282 Call.getCalledFunction()->getSubprogram()) 3283 AssertDI(Call.getDebugLoc(), 3284 "inlinable function call in a function with " 3285 "debug info must have a !dbg location", 3286 Call); 3287 3288 visitInstruction(Call); 3289 } 3290 3291 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, 3292 StringRef Context) { 3293 Assert(!Attrs.contains(Attribute::InAlloca), 3294 Twine("inalloca attribute not allowed in ") + Context); 3295 Assert(!Attrs.contains(Attribute::InReg), 3296 Twine("inreg attribute not allowed in ") + Context); 3297 Assert(!Attrs.contains(Attribute::SwiftError), 3298 Twine("swifterror attribute not allowed in ") + Context); 3299 Assert(!Attrs.contains(Attribute::Preallocated), 3300 Twine("preallocated attribute not allowed in ") + Context); 3301 Assert(!Attrs.contains(Attribute::ByRef), 3302 Twine("byref attribute not allowed in ") + Context); 3303 } 3304 3305 /// Two types are "congruent" if they are identical, or if they are both pointer 3306 /// types with different pointee types and the same address space. 3307 static bool isTypeCongruent(Type *L, Type *R) { 3308 if (L == R) 3309 return true; 3310 PointerType *PL = dyn_cast<PointerType>(L); 3311 PointerType *PR = dyn_cast<PointerType>(R); 3312 if (!PL || !PR) 3313 return false; 3314 return PL->getAddressSpace() == PR->getAddressSpace(); 3315 } 3316 3317 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3318 static const Attribute::AttrKind ABIAttrs[] = { 3319 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3320 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3321 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3322 Attribute::ByRef}; 3323 AttrBuilder Copy; 3324 for (auto AK : ABIAttrs) { 3325 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3326 if (Attr.isValid()) 3327 Copy.addAttribute(Attr); 3328 } 3329 3330 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3331 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3332 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3333 Attrs.hasParamAttr(I, Attribute::ByRef))) 3334 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3335 return Copy; 3336 } 3337 3338 void Verifier::verifyMustTailCall(CallInst &CI) { 3339 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3340 3341 Function *F = CI.getParent()->getParent(); 3342 FunctionType *CallerTy = F->getFunctionType(); 3343 FunctionType *CalleeTy = CI.getFunctionType(); 3344 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3345 "cannot guarantee tail call due to mismatched varargs", &CI); 3346 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3347 "cannot guarantee tail call due to mismatched return types", &CI); 3348 3349 // - The calling conventions of the caller and callee must match. 3350 Assert(F->getCallingConv() == CI.getCallingConv(), 3351 "cannot guarantee tail call due to mismatched calling conv", &CI); 3352 3353 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3354 // or a pointer bitcast followed by a ret instruction. 3355 // - The ret instruction must return the (possibly bitcasted) value 3356 // produced by the call or void. 3357 Value *RetVal = &CI; 3358 Instruction *Next = CI.getNextNode(); 3359 3360 // Handle the optional bitcast. 3361 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3362 Assert(BI->getOperand(0) == RetVal, 3363 "bitcast following musttail call must use the call", BI); 3364 RetVal = BI; 3365 Next = BI->getNextNode(); 3366 } 3367 3368 // Check the return. 3369 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3370 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3371 &CI); 3372 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3373 isa<UndefValue>(Ret->getReturnValue()), 3374 "musttail call result must be returned", Ret); 3375 3376 AttributeList CallerAttrs = F->getAttributes(); 3377 AttributeList CalleeAttrs = CI.getAttributes(); 3378 if (CI.getCallingConv() == CallingConv::SwiftTail || 3379 CI.getCallingConv() == CallingConv::Tail) { 3380 StringRef CCName = 3381 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3382 3383 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3384 // are allowed in swifttailcc call 3385 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3386 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3387 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3388 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3389 } 3390 for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3391 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3392 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3393 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3394 } 3395 // - Varargs functions are not allowed 3396 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3397 " tail call for varargs function"); 3398 return; 3399 } 3400 3401 // - The caller and callee prototypes must match. Pointer types of 3402 // parameters or return types may differ in pointee type, but not 3403 // address space. 3404 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3405 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3406 "cannot guarantee tail call due to mismatched parameter counts", 3407 &CI); 3408 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3409 Assert( 3410 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3411 "cannot guarantee tail call due to mismatched parameter types", &CI); 3412 } 3413 } 3414 3415 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3416 // returned, preallocated, and inalloca, must match. 3417 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3418 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3419 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3420 Assert(CallerABIAttrs == CalleeABIAttrs, 3421 "cannot guarantee tail call due to mismatched ABI impacting " 3422 "function attributes", 3423 &CI, CI.getOperand(I)); 3424 } 3425 } 3426 3427 void Verifier::visitCallInst(CallInst &CI) { 3428 visitCallBase(CI); 3429 3430 if (CI.isMustTailCall()) 3431 verifyMustTailCall(CI); 3432 } 3433 3434 void Verifier::visitInvokeInst(InvokeInst &II) { 3435 visitCallBase(II); 3436 3437 // Verify that the first non-PHI instruction of the unwind destination is an 3438 // exception handling instruction. 3439 Assert( 3440 II.getUnwindDest()->isEHPad(), 3441 "The unwind destination does not have an exception handling instruction!", 3442 &II); 3443 3444 visitTerminator(II); 3445 } 3446 3447 /// visitUnaryOperator - Check the argument to the unary operator. 3448 /// 3449 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3450 Assert(U.getType() == U.getOperand(0)->getType(), 3451 "Unary operators must have same type for" 3452 "operands and result!", 3453 &U); 3454 3455 switch (U.getOpcode()) { 3456 // Check that floating-point arithmetic operators are only used with 3457 // floating-point operands. 3458 case Instruction::FNeg: 3459 Assert(U.getType()->isFPOrFPVectorTy(), 3460 "FNeg operator only works with float types!", &U); 3461 break; 3462 default: 3463 llvm_unreachable("Unknown UnaryOperator opcode!"); 3464 } 3465 3466 visitInstruction(U); 3467 } 3468 3469 /// visitBinaryOperator - Check that both arguments to the binary operator are 3470 /// of the same type! 3471 /// 3472 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3473 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3474 "Both operands to a binary operator are not of the same type!", &B); 3475 3476 switch (B.getOpcode()) { 3477 // Check that integer arithmetic operators are only used with 3478 // integral operands. 3479 case Instruction::Add: 3480 case Instruction::Sub: 3481 case Instruction::Mul: 3482 case Instruction::SDiv: 3483 case Instruction::UDiv: 3484 case Instruction::SRem: 3485 case Instruction::URem: 3486 Assert(B.getType()->isIntOrIntVectorTy(), 3487 "Integer arithmetic operators only work with integral types!", &B); 3488 Assert(B.getType() == B.getOperand(0)->getType(), 3489 "Integer arithmetic operators must have same type " 3490 "for operands and result!", 3491 &B); 3492 break; 3493 // Check that floating-point arithmetic operators are only used with 3494 // floating-point operands. 3495 case Instruction::FAdd: 3496 case Instruction::FSub: 3497 case Instruction::FMul: 3498 case Instruction::FDiv: 3499 case Instruction::FRem: 3500 Assert(B.getType()->isFPOrFPVectorTy(), 3501 "Floating-point arithmetic operators only work with " 3502 "floating-point types!", 3503 &B); 3504 Assert(B.getType() == B.getOperand(0)->getType(), 3505 "Floating-point arithmetic operators must have same type " 3506 "for operands and result!", 3507 &B); 3508 break; 3509 // Check that logical operators are only used with integral operands. 3510 case Instruction::And: 3511 case Instruction::Or: 3512 case Instruction::Xor: 3513 Assert(B.getType()->isIntOrIntVectorTy(), 3514 "Logical operators only work with integral types!", &B); 3515 Assert(B.getType() == B.getOperand(0)->getType(), 3516 "Logical operators must have same type for operands and result!", 3517 &B); 3518 break; 3519 case Instruction::Shl: 3520 case Instruction::LShr: 3521 case Instruction::AShr: 3522 Assert(B.getType()->isIntOrIntVectorTy(), 3523 "Shifts only work with integral types!", &B); 3524 Assert(B.getType() == B.getOperand(0)->getType(), 3525 "Shift return type must be same as operands!", &B); 3526 break; 3527 default: 3528 llvm_unreachable("Unknown BinaryOperator opcode!"); 3529 } 3530 3531 visitInstruction(B); 3532 } 3533 3534 void Verifier::visitICmpInst(ICmpInst &IC) { 3535 // Check that the operands are the same type 3536 Type *Op0Ty = IC.getOperand(0)->getType(); 3537 Type *Op1Ty = IC.getOperand(1)->getType(); 3538 Assert(Op0Ty == Op1Ty, 3539 "Both operands to ICmp instruction are not of the same type!", &IC); 3540 // Check that the operands are the right type 3541 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3542 "Invalid operand types for ICmp instruction", &IC); 3543 // Check that the predicate is valid. 3544 Assert(IC.isIntPredicate(), 3545 "Invalid predicate in ICmp instruction!", &IC); 3546 3547 visitInstruction(IC); 3548 } 3549 3550 void Verifier::visitFCmpInst(FCmpInst &FC) { 3551 // Check that the operands are the same type 3552 Type *Op0Ty = FC.getOperand(0)->getType(); 3553 Type *Op1Ty = FC.getOperand(1)->getType(); 3554 Assert(Op0Ty == Op1Ty, 3555 "Both operands to FCmp instruction are not of the same type!", &FC); 3556 // Check that the operands are the right type 3557 Assert(Op0Ty->isFPOrFPVectorTy(), 3558 "Invalid operand types for FCmp instruction", &FC); 3559 // Check that the predicate is valid. 3560 Assert(FC.isFPPredicate(), 3561 "Invalid predicate in FCmp instruction!", &FC); 3562 3563 visitInstruction(FC); 3564 } 3565 3566 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3567 Assert( 3568 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3569 "Invalid extractelement operands!", &EI); 3570 visitInstruction(EI); 3571 } 3572 3573 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3574 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3575 IE.getOperand(2)), 3576 "Invalid insertelement operands!", &IE); 3577 visitInstruction(IE); 3578 } 3579 3580 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3581 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3582 SV.getShuffleMask()), 3583 "Invalid shufflevector operands!", &SV); 3584 visitInstruction(SV); 3585 } 3586 3587 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3588 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3589 3590 Assert(isa<PointerType>(TargetTy), 3591 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3592 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3593 3594 SmallVector<Value *, 16> Idxs(GEP.indices()); 3595 Assert(all_of( 3596 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3597 "GEP indexes must be integers", &GEP); 3598 Type *ElTy = 3599 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3600 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3601 3602 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3603 GEP.getResultElementType() == ElTy, 3604 "GEP is not of right type for indices!", &GEP, ElTy); 3605 3606 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3607 // Additional checks for vector GEPs. 3608 ElementCount GEPWidth = GEPVTy->getElementCount(); 3609 if (GEP.getPointerOperandType()->isVectorTy()) 3610 Assert( 3611 GEPWidth == 3612 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3613 "Vector GEP result width doesn't match operand's", &GEP); 3614 for (Value *Idx : Idxs) { 3615 Type *IndexTy = Idx->getType(); 3616 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3617 ElementCount IndexWidth = IndexVTy->getElementCount(); 3618 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3619 } 3620 Assert(IndexTy->isIntOrIntVectorTy(), 3621 "All GEP indices should be of integer type"); 3622 } 3623 } 3624 3625 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3626 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3627 "GEP address space doesn't match type", &GEP); 3628 } 3629 3630 visitInstruction(GEP); 3631 } 3632 3633 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3634 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3635 } 3636 3637 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3638 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3639 "precondition violation"); 3640 3641 unsigned NumOperands = Range->getNumOperands(); 3642 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3643 unsigned NumRanges = NumOperands / 2; 3644 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3645 3646 ConstantRange LastRange(1, true); // Dummy initial value 3647 for (unsigned i = 0; i < NumRanges; ++i) { 3648 ConstantInt *Low = 3649 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3650 Assert(Low, "The lower limit must be an integer!", Low); 3651 ConstantInt *High = 3652 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3653 Assert(High, "The upper limit must be an integer!", High); 3654 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3655 "Range types must match instruction type!", &I); 3656 3657 APInt HighV = High->getValue(); 3658 APInt LowV = Low->getValue(); 3659 ConstantRange CurRange(LowV, HighV); 3660 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3661 "Range must not be empty!", Range); 3662 if (i != 0) { 3663 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3664 "Intervals are overlapping", Range); 3665 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3666 Range); 3667 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3668 Range); 3669 } 3670 LastRange = ConstantRange(LowV, HighV); 3671 } 3672 if (NumRanges > 2) { 3673 APInt FirstLow = 3674 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3675 APInt FirstHigh = 3676 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3677 ConstantRange FirstRange(FirstLow, FirstHigh); 3678 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3679 "Intervals are overlapping", Range); 3680 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3681 Range); 3682 } 3683 } 3684 3685 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3686 unsigned Size = DL.getTypeSizeInBits(Ty); 3687 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3688 Assert(!(Size & (Size - 1)), 3689 "atomic memory access' operand must have a power-of-two size", Ty, I); 3690 } 3691 3692 void Verifier::visitLoadInst(LoadInst &LI) { 3693 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3694 Assert(PTy, "Load operand must be a pointer.", &LI); 3695 Type *ElTy = LI.getType(); 3696 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3697 "huge alignment values are unsupported", &LI); 3698 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3699 if (LI.isAtomic()) { 3700 Assert(LI.getOrdering() != AtomicOrdering::Release && 3701 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3702 "Load cannot have Release ordering", &LI); 3703 Assert(LI.getAlignment() != 0, 3704 "Atomic load must specify explicit alignment", &LI); 3705 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3706 "atomic load operand must have integer, pointer, or floating point " 3707 "type!", 3708 ElTy, &LI); 3709 checkAtomicMemAccessSize(ElTy, &LI); 3710 } else { 3711 Assert(LI.getSyncScopeID() == SyncScope::System, 3712 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3713 } 3714 3715 visitInstruction(LI); 3716 } 3717 3718 void Verifier::visitStoreInst(StoreInst &SI) { 3719 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3720 Assert(PTy, "Store operand must be a pointer.", &SI); 3721 Type *ElTy = SI.getOperand(0)->getType(); 3722 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3723 "Stored value type does not match pointer operand type!", &SI, ElTy); 3724 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3725 "huge alignment values are unsupported", &SI); 3726 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3727 if (SI.isAtomic()) { 3728 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3729 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3730 "Store cannot have Acquire ordering", &SI); 3731 Assert(SI.getAlignment() != 0, 3732 "Atomic store must specify explicit alignment", &SI); 3733 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3734 "atomic store operand must have integer, pointer, or floating point " 3735 "type!", 3736 ElTy, &SI); 3737 checkAtomicMemAccessSize(ElTy, &SI); 3738 } else { 3739 Assert(SI.getSyncScopeID() == SyncScope::System, 3740 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3741 } 3742 visitInstruction(SI); 3743 } 3744 3745 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3746 void Verifier::verifySwiftErrorCall(CallBase &Call, 3747 const Value *SwiftErrorVal) { 3748 for (const auto &I : llvm::enumerate(Call.args())) { 3749 if (I.value() == SwiftErrorVal) { 3750 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3751 "swifterror value when used in a callsite should be marked " 3752 "with swifterror attribute", 3753 SwiftErrorVal, Call); 3754 } 3755 } 3756 } 3757 3758 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3759 // Check that swifterror value is only used by loads, stores, or as 3760 // a swifterror argument. 3761 for (const User *U : SwiftErrorVal->users()) { 3762 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3763 isa<InvokeInst>(U), 3764 "swifterror value can only be loaded and stored from, or " 3765 "as a swifterror argument!", 3766 SwiftErrorVal, U); 3767 // If it is used by a store, check it is the second operand. 3768 if (auto StoreI = dyn_cast<StoreInst>(U)) 3769 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3770 "swifterror value should be the second operand when used " 3771 "by stores", SwiftErrorVal, U); 3772 if (auto *Call = dyn_cast<CallBase>(U)) 3773 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3774 } 3775 } 3776 3777 void Verifier::visitAllocaInst(AllocaInst &AI) { 3778 SmallPtrSet<Type*, 4> Visited; 3779 Assert(AI.getAllocatedType()->isSized(&Visited), 3780 "Cannot allocate unsized type", &AI); 3781 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3782 "Alloca array size must have integer type", &AI); 3783 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3784 "huge alignment values are unsupported", &AI); 3785 3786 if (AI.isSwiftError()) { 3787 verifySwiftErrorValue(&AI); 3788 } 3789 3790 visitInstruction(AI); 3791 } 3792 3793 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3794 Type *ElTy = CXI.getOperand(1)->getType(); 3795 Assert(ElTy->isIntOrPtrTy(), 3796 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3797 checkAtomicMemAccessSize(ElTy, &CXI); 3798 visitInstruction(CXI); 3799 } 3800 3801 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3802 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3803 "atomicrmw instructions cannot be unordered.", &RMWI); 3804 auto Op = RMWI.getOperation(); 3805 Type *ElTy = RMWI.getOperand(1)->getType(); 3806 if (Op == AtomicRMWInst::Xchg) { 3807 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3808 AtomicRMWInst::getOperationName(Op) + 3809 " operand must have integer or floating point type!", 3810 &RMWI, ElTy); 3811 } else if (AtomicRMWInst::isFPOperation(Op)) { 3812 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3813 AtomicRMWInst::getOperationName(Op) + 3814 " operand must have floating point type!", 3815 &RMWI, ElTy); 3816 } else { 3817 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3818 AtomicRMWInst::getOperationName(Op) + 3819 " operand must have integer type!", 3820 &RMWI, ElTy); 3821 } 3822 checkAtomicMemAccessSize(ElTy, &RMWI); 3823 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3824 "Invalid binary operation!", &RMWI); 3825 visitInstruction(RMWI); 3826 } 3827 3828 void Verifier::visitFenceInst(FenceInst &FI) { 3829 const AtomicOrdering Ordering = FI.getOrdering(); 3830 Assert(Ordering == AtomicOrdering::Acquire || 3831 Ordering == AtomicOrdering::Release || 3832 Ordering == AtomicOrdering::AcquireRelease || 3833 Ordering == AtomicOrdering::SequentiallyConsistent, 3834 "fence instructions may only have acquire, release, acq_rel, or " 3835 "seq_cst ordering.", 3836 &FI); 3837 visitInstruction(FI); 3838 } 3839 3840 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3841 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3842 EVI.getIndices()) == EVI.getType(), 3843 "Invalid ExtractValueInst operands!", &EVI); 3844 3845 visitInstruction(EVI); 3846 } 3847 3848 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3849 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3850 IVI.getIndices()) == 3851 IVI.getOperand(1)->getType(), 3852 "Invalid InsertValueInst operands!", &IVI); 3853 3854 visitInstruction(IVI); 3855 } 3856 3857 static Value *getParentPad(Value *EHPad) { 3858 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3859 return FPI->getParentPad(); 3860 3861 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3862 } 3863 3864 void Verifier::visitEHPadPredecessors(Instruction &I) { 3865 assert(I.isEHPad()); 3866 3867 BasicBlock *BB = I.getParent(); 3868 Function *F = BB->getParent(); 3869 3870 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3871 3872 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3873 // The landingpad instruction defines its parent as a landing pad block. The 3874 // landing pad block may be branched to only by the unwind edge of an 3875 // invoke. 3876 for (BasicBlock *PredBB : predecessors(BB)) { 3877 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3878 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3879 "Block containing LandingPadInst must be jumped to " 3880 "only by the unwind edge of an invoke.", 3881 LPI); 3882 } 3883 return; 3884 } 3885 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3886 if (!pred_empty(BB)) 3887 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3888 "Block containg CatchPadInst must be jumped to " 3889 "only by its catchswitch.", 3890 CPI); 3891 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3892 "Catchswitch cannot unwind to one of its catchpads", 3893 CPI->getCatchSwitch(), CPI); 3894 return; 3895 } 3896 3897 // Verify that each pred has a legal terminator with a legal to/from EH 3898 // pad relationship. 3899 Instruction *ToPad = &I; 3900 Value *ToPadParent = getParentPad(ToPad); 3901 for (BasicBlock *PredBB : predecessors(BB)) { 3902 Instruction *TI = PredBB->getTerminator(); 3903 Value *FromPad; 3904 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3905 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3906 "EH pad must be jumped to via an unwind edge", ToPad, II); 3907 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3908 FromPad = Bundle->Inputs[0]; 3909 else 3910 FromPad = ConstantTokenNone::get(II->getContext()); 3911 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3912 FromPad = CRI->getOperand(0); 3913 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3914 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3915 FromPad = CSI; 3916 } else { 3917 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3918 } 3919 3920 // The edge may exit from zero or more nested pads. 3921 SmallSet<Value *, 8> Seen; 3922 for (;; FromPad = getParentPad(FromPad)) { 3923 Assert(FromPad != ToPad, 3924 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3925 if (FromPad == ToPadParent) { 3926 // This is a legal unwind edge. 3927 break; 3928 } 3929 Assert(!isa<ConstantTokenNone>(FromPad), 3930 "A single unwind edge may only enter one EH pad", TI); 3931 Assert(Seen.insert(FromPad).second, 3932 "EH pad jumps through a cycle of pads", FromPad); 3933 } 3934 } 3935 } 3936 3937 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3938 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3939 // isn't a cleanup. 3940 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3941 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3942 3943 visitEHPadPredecessors(LPI); 3944 3945 if (!LandingPadResultTy) 3946 LandingPadResultTy = LPI.getType(); 3947 else 3948 Assert(LandingPadResultTy == LPI.getType(), 3949 "The landingpad instruction should have a consistent result type " 3950 "inside a function.", 3951 &LPI); 3952 3953 Function *F = LPI.getParent()->getParent(); 3954 Assert(F->hasPersonalityFn(), 3955 "LandingPadInst needs to be in a function with a personality.", &LPI); 3956 3957 // The landingpad instruction must be the first non-PHI instruction in the 3958 // block. 3959 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3960 "LandingPadInst not the first non-PHI instruction in the block.", 3961 &LPI); 3962 3963 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3964 Constant *Clause = LPI.getClause(i); 3965 if (LPI.isCatch(i)) { 3966 Assert(isa<PointerType>(Clause->getType()), 3967 "Catch operand does not have pointer type!", &LPI); 3968 } else { 3969 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3970 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3971 "Filter operand is not an array of constants!", &LPI); 3972 } 3973 } 3974 3975 visitInstruction(LPI); 3976 } 3977 3978 void Verifier::visitResumeInst(ResumeInst &RI) { 3979 Assert(RI.getFunction()->hasPersonalityFn(), 3980 "ResumeInst needs to be in a function with a personality.", &RI); 3981 3982 if (!LandingPadResultTy) 3983 LandingPadResultTy = RI.getValue()->getType(); 3984 else 3985 Assert(LandingPadResultTy == RI.getValue()->getType(), 3986 "The resume instruction should have a consistent result type " 3987 "inside a function.", 3988 &RI); 3989 3990 visitTerminator(RI); 3991 } 3992 3993 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3994 BasicBlock *BB = CPI.getParent(); 3995 3996 Function *F = BB->getParent(); 3997 Assert(F->hasPersonalityFn(), 3998 "CatchPadInst needs to be in a function with a personality.", &CPI); 3999 4000 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4001 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4002 CPI.getParentPad()); 4003 4004 // The catchpad instruction must be the first non-PHI instruction in the 4005 // block. 4006 Assert(BB->getFirstNonPHI() == &CPI, 4007 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4008 4009 visitEHPadPredecessors(CPI); 4010 visitFuncletPadInst(CPI); 4011 } 4012 4013 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4014 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4015 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4016 CatchReturn.getOperand(0)); 4017 4018 visitTerminator(CatchReturn); 4019 } 4020 4021 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4022 BasicBlock *BB = CPI.getParent(); 4023 4024 Function *F = BB->getParent(); 4025 Assert(F->hasPersonalityFn(), 4026 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4027 4028 // The cleanuppad instruction must be the first non-PHI instruction in the 4029 // block. 4030 Assert(BB->getFirstNonPHI() == &CPI, 4031 "CleanupPadInst not the first non-PHI instruction in the block.", 4032 &CPI); 4033 4034 auto *ParentPad = CPI.getParentPad(); 4035 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4036 "CleanupPadInst has an invalid parent.", &CPI); 4037 4038 visitEHPadPredecessors(CPI); 4039 visitFuncletPadInst(CPI); 4040 } 4041 4042 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4043 User *FirstUser = nullptr; 4044 Value *FirstUnwindPad = nullptr; 4045 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4046 SmallSet<FuncletPadInst *, 8> Seen; 4047 4048 while (!Worklist.empty()) { 4049 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4050 Assert(Seen.insert(CurrentPad).second, 4051 "FuncletPadInst must not be nested within itself", CurrentPad); 4052 Value *UnresolvedAncestorPad = nullptr; 4053 for (User *U : CurrentPad->users()) { 4054 BasicBlock *UnwindDest; 4055 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4056 UnwindDest = CRI->getUnwindDest(); 4057 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4058 // We allow catchswitch unwind to caller to nest 4059 // within an outer pad that unwinds somewhere else, 4060 // because catchswitch doesn't have a nounwind variant. 4061 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4062 if (CSI->unwindsToCaller()) 4063 continue; 4064 UnwindDest = CSI->getUnwindDest(); 4065 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4066 UnwindDest = II->getUnwindDest(); 4067 } else if (isa<CallInst>(U)) { 4068 // Calls which don't unwind may be found inside funclet 4069 // pads that unwind somewhere else. We don't *require* 4070 // such calls to be annotated nounwind. 4071 continue; 4072 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4073 // The unwind dest for a cleanup can only be found by 4074 // recursive search. Add it to the worklist, and we'll 4075 // search for its first use that determines where it unwinds. 4076 Worklist.push_back(CPI); 4077 continue; 4078 } else { 4079 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4080 continue; 4081 } 4082 4083 Value *UnwindPad; 4084 bool ExitsFPI; 4085 if (UnwindDest) { 4086 UnwindPad = UnwindDest->getFirstNonPHI(); 4087 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4088 continue; 4089 Value *UnwindParent = getParentPad(UnwindPad); 4090 // Ignore unwind edges that don't exit CurrentPad. 4091 if (UnwindParent == CurrentPad) 4092 continue; 4093 // Determine whether the original funclet pad is exited, 4094 // and if we are scanning nested pads determine how many 4095 // of them are exited so we can stop searching their 4096 // children. 4097 Value *ExitedPad = CurrentPad; 4098 ExitsFPI = false; 4099 do { 4100 if (ExitedPad == &FPI) { 4101 ExitsFPI = true; 4102 // Now we can resolve any ancestors of CurrentPad up to 4103 // FPI, but not including FPI since we need to make sure 4104 // to check all direct users of FPI for consistency. 4105 UnresolvedAncestorPad = &FPI; 4106 break; 4107 } 4108 Value *ExitedParent = getParentPad(ExitedPad); 4109 if (ExitedParent == UnwindParent) { 4110 // ExitedPad is the ancestor-most pad which this unwind 4111 // edge exits, so we can resolve up to it, meaning that 4112 // ExitedParent is the first ancestor still unresolved. 4113 UnresolvedAncestorPad = ExitedParent; 4114 break; 4115 } 4116 ExitedPad = ExitedParent; 4117 } while (!isa<ConstantTokenNone>(ExitedPad)); 4118 } else { 4119 // Unwinding to caller exits all pads. 4120 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4121 ExitsFPI = true; 4122 UnresolvedAncestorPad = &FPI; 4123 } 4124 4125 if (ExitsFPI) { 4126 // This unwind edge exits FPI. Make sure it agrees with other 4127 // such edges. 4128 if (FirstUser) { 4129 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4130 "pad must have the same unwind " 4131 "dest", 4132 &FPI, U, FirstUser); 4133 } else { 4134 FirstUser = U; 4135 FirstUnwindPad = UnwindPad; 4136 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4137 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4138 getParentPad(UnwindPad) == getParentPad(&FPI)) 4139 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4140 } 4141 } 4142 // Make sure we visit all uses of FPI, but for nested pads stop as 4143 // soon as we know where they unwind to. 4144 if (CurrentPad != &FPI) 4145 break; 4146 } 4147 if (UnresolvedAncestorPad) { 4148 if (CurrentPad == UnresolvedAncestorPad) { 4149 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4150 // we've found an unwind edge that exits it, because we need to verify 4151 // all direct uses of FPI. 4152 assert(CurrentPad == &FPI); 4153 continue; 4154 } 4155 // Pop off the worklist any nested pads that we've found an unwind 4156 // destination for. The pads on the worklist are the uncles, 4157 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4158 // for all ancestors of CurrentPad up to but not including 4159 // UnresolvedAncestorPad. 4160 Value *ResolvedPad = CurrentPad; 4161 while (!Worklist.empty()) { 4162 Value *UnclePad = Worklist.back(); 4163 Value *AncestorPad = getParentPad(UnclePad); 4164 // Walk ResolvedPad up the ancestor list until we either find the 4165 // uncle's parent or the last resolved ancestor. 4166 while (ResolvedPad != AncestorPad) { 4167 Value *ResolvedParent = getParentPad(ResolvedPad); 4168 if (ResolvedParent == UnresolvedAncestorPad) { 4169 break; 4170 } 4171 ResolvedPad = ResolvedParent; 4172 } 4173 // If the resolved ancestor search didn't find the uncle's parent, 4174 // then the uncle is not yet resolved. 4175 if (ResolvedPad != AncestorPad) 4176 break; 4177 // This uncle is resolved, so pop it from the worklist. 4178 Worklist.pop_back(); 4179 } 4180 } 4181 } 4182 4183 if (FirstUnwindPad) { 4184 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4185 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4186 Value *SwitchUnwindPad; 4187 if (SwitchUnwindDest) 4188 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4189 else 4190 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4191 Assert(SwitchUnwindPad == FirstUnwindPad, 4192 "Unwind edges out of a catch must have the same unwind dest as " 4193 "the parent catchswitch", 4194 &FPI, FirstUser, CatchSwitch); 4195 } 4196 } 4197 4198 visitInstruction(FPI); 4199 } 4200 4201 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4202 BasicBlock *BB = CatchSwitch.getParent(); 4203 4204 Function *F = BB->getParent(); 4205 Assert(F->hasPersonalityFn(), 4206 "CatchSwitchInst needs to be in a function with a personality.", 4207 &CatchSwitch); 4208 4209 // The catchswitch instruction must be the first non-PHI instruction in the 4210 // block. 4211 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4212 "CatchSwitchInst not the first non-PHI instruction in the block.", 4213 &CatchSwitch); 4214 4215 auto *ParentPad = CatchSwitch.getParentPad(); 4216 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4217 "CatchSwitchInst has an invalid parent.", ParentPad); 4218 4219 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4220 Instruction *I = UnwindDest->getFirstNonPHI(); 4221 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4222 "CatchSwitchInst must unwind to an EH block which is not a " 4223 "landingpad.", 4224 &CatchSwitch); 4225 4226 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4227 if (getParentPad(I) == ParentPad) 4228 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4229 } 4230 4231 Assert(CatchSwitch.getNumHandlers() != 0, 4232 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4233 4234 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4235 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4236 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4237 } 4238 4239 visitEHPadPredecessors(CatchSwitch); 4240 visitTerminator(CatchSwitch); 4241 } 4242 4243 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4244 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4245 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4246 CRI.getOperand(0)); 4247 4248 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4249 Instruction *I = UnwindDest->getFirstNonPHI(); 4250 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4251 "CleanupReturnInst must unwind to an EH block which is not a " 4252 "landingpad.", 4253 &CRI); 4254 } 4255 4256 visitTerminator(CRI); 4257 } 4258 4259 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4260 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4261 // If the we have an invalid invoke, don't try to compute the dominance. 4262 // We already reject it in the invoke specific checks and the dominance 4263 // computation doesn't handle multiple edges. 4264 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4265 if (II->getNormalDest() == II->getUnwindDest()) 4266 return; 4267 } 4268 4269 // Quick check whether the def has already been encountered in the same block. 4270 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4271 // uses are defined to happen on the incoming edge, not at the instruction. 4272 // 4273 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4274 // wrapping an SSA value, assert that we've already encountered it. See 4275 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4276 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4277 return; 4278 4279 const Use &U = I.getOperandUse(i); 4280 Assert(DT.dominates(Op, U), 4281 "Instruction does not dominate all uses!", Op, &I); 4282 } 4283 4284 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4285 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4286 "apply only to pointer types", &I); 4287 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4288 "dereferenceable, dereferenceable_or_null apply only to load" 4289 " and inttoptr instructions, use attributes for calls or invokes", &I); 4290 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4291 "take one operand!", &I); 4292 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4293 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4294 "dereferenceable_or_null metadata value must be an i64!", &I); 4295 } 4296 4297 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4298 Assert(MD->getNumOperands() >= 2, 4299 "!prof annotations should have no less than 2 operands", MD); 4300 4301 // Check first operand. 4302 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4303 Assert(isa<MDString>(MD->getOperand(0)), 4304 "expected string with name of the !prof annotation", MD); 4305 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4306 StringRef ProfName = MDS->getString(); 4307 4308 // Check consistency of !prof branch_weights metadata. 4309 if (ProfName.equals("branch_weights")) { 4310 if (isa<InvokeInst>(&I)) { 4311 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4312 "Wrong number of InvokeInst branch_weights operands", MD); 4313 } else { 4314 unsigned ExpectedNumOperands = 0; 4315 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4316 ExpectedNumOperands = BI->getNumSuccessors(); 4317 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4318 ExpectedNumOperands = SI->getNumSuccessors(); 4319 else if (isa<CallInst>(&I)) 4320 ExpectedNumOperands = 1; 4321 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4322 ExpectedNumOperands = IBI->getNumDestinations(); 4323 else if (isa<SelectInst>(&I)) 4324 ExpectedNumOperands = 2; 4325 else 4326 CheckFailed("!prof branch_weights are not allowed for this instruction", 4327 MD); 4328 4329 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4330 "Wrong number of operands", MD); 4331 } 4332 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4333 auto &MDO = MD->getOperand(i); 4334 Assert(MDO, "second operand should not be null", MD); 4335 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4336 "!prof brunch_weights operand is not a const int"); 4337 } 4338 } 4339 } 4340 4341 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4342 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4343 Assert(Annotation->getNumOperands() >= 1, 4344 "annotation must have at least one operand"); 4345 for (const MDOperand &Op : Annotation->operands()) 4346 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4347 } 4348 4349 /// verifyInstruction - Verify that an instruction is well formed. 4350 /// 4351 void Verifier::visitInstruction(Instruction &I) { 4352 BasicBlock *BB = I.getParent(); 4353 Assert(BB, "Instruction not embedded in basic block!", &I); 4354 4355 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4356 for (User *U : I.users()) { 4357 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4358 "Only PHI nodes may reference their own value!", &I); 4359 } 4360 } 4361 4362 // Check that void typed values don't have names 4363 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4364 "Instruction has a name, but provides a void value!", &I); 4365 4366 // Check that the return value of the instruction is either void or a legal 4367 // value type. 4368 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4369 "Instruction returns a non-scalar type!", &I); 4370 4371 // Check that the instruction doesn't produce metadata. Calls are already 4372 // checked against the callee type. 4373 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4374 "Invalid use of metadata!", &I); 4375 4376 // Check that all uses of the instruction, if they are instructions 4377 // themselves, actually have parent basic blocks. If the use is not an 4378 // instruction, it is an error! 4379 for (Use &U : I.uses()) { 4380 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4381 Assert(Used->getParent() != nullptr, 4382 "Instruction referencing" 4383 " instruction not embedded in a basic block!", 4384 &I, Used); 4385 else { 4386 CheckFailed("Use of instruction is not an instruction!", U); 4387 return; 4388 } 4389 } 4390 4391 // Get a pointer to the call base of the instruction if it is some form of 4392 // call. 4393 const CallBase *CBI = dyn_cast<CallBase>(&I); 4394 4395 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4396 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4397 4398 // Check to make sure that only first-class-values are operands to 4399 // instructions. 4400 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4401 Assert(false, "Instruction operands must be first-class values!", &I); 4402 } 4403 4404 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4405 // Check to make sure that the "address of" an intrinsic function is never 4406 // taken. 4407 Assert(!F->isIntrinsic() || 4408 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4409 "Cannot take the address of an intrinsic!", &I); 4410 Assert( 4411 !F->isIntrinsic() || isa<CallInst>(I) || 4412 F->getIntrinsicID() == Intrinsic::donothing || 4413 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4414 F->getIntrinsicID() == Intrinsic::seh_try_end || 4415 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4416 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4417 F->getIntrinsicID() == Intrinsic::coro_resume || 4418 F->getIntrinsicID() == Intrinsic::coro_destroy || 4419 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4420 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4421 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4422 F->getIntrinsicID() == Intrinsic::wasm_rethrow, 4423 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4424 "statepoint, coro_resume or coro_destroy", 4425 &I); 4426 Assert(F->getParent() == &M, "Referencing function in another module!", 4427 &I, &M, F, F->getParent()); 4428 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4429 Assert(OpBB->getParent() == BB->getParent(), 4430 "Referring to a basic block in another function!", &I); 4431 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4432 Assert(OpArg->getParent() == BB->getParent(), 4433 "Referring to an argument in another function!", &I); 4434 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4435 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4436 &M, GV, GV->getParent()); 4437 } else if (isa<Instruction>(I.getOperand(i))) { 4438 verifyDominatesUse(I, i); 4439 } else if (isa<InlineAsm>(I.getOperand(i))) { 4440 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4441 "Cannot take the address of an inline asm!", &I); 4442 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4443 if (CE->getType()->isPtrOrPtrVectorTy()) { 4444 // If we have a ConstantExpr pointer, we need to see if it came from an 4445 // illegal bitcast. 4446 visitConstantExprsRecursively(CE); 4447 } 4448 } 4449 } 4450 4451 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4452 Assert(I.getType()->isFPOrFPVectorTy(), 4453 "fpmath requires a floating point result!", &I); 4454 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4455 if (ConstantFP *CFP0 = 4456 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4457 const APFloat &Accuracy = CFP0->getValueAPF(); 4458 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4459 "fpmath accuracy must have float type", &I); 4460 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4461 "fpmath accuracy not a positive number!", &I); 4462 } else { 4463 Assert(false, "invalid fpmath accuracy!", &I); 4464 } 4465 } 4466 4467 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4468 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4469 "Ranges are only for loads, calls and invokes!", &I); 4470 visitRangeMetadata(I, Range, I.getType()); 4471 } 4472 4473 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4474 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4475 &I); 4476 Assert(isa<LoadInst>(I), 4477 "nonnull applies only to load instructions, use attributes" 4478 " for calls or invokes", 4479 &I); 4480 } 4481 4482 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4483 visitDereferenceableMetadata(I, MD); 4484 4485 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4486 visitDereferenceableMetadata(I, MD); 4487 4488 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4489 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4490 4491 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4492 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4493 &I); 4494 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4495 "use attributes for calls or invokes", &I); 4496 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4497 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4498 Assert(CI && CI->getType()->isIntegerTy(64), 4499 "align metadata value must be an i64!", &I); 4500 uint64_t Align = CI->getZExtValue(); 4501 Assert(isPowerOf2_64(Align), 4502 "align metadata value must be a power of 2!", &I); 4503 Assert(Align <= Value::MaximumAlignment, 4504 "alignment is larger that implementation defined limit", &I); 4505 } 4506 4507 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4508 visitProfMetadata(I, MD); 4509 4510 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4511 visitAnnotationMetadata(Annotation); 4512 4513 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4514 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4515 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4516 } 4517 4518 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4519 verifyFragmentExpression(*DII); 4520 verifyNotEntryValue(*DII); 4521 } 4522 4523 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4524 I.getAllMetadata(MDs); 4525 for (auto Attachment : MDs) { 4526 unsigned Kind = Attachment.first; 4527 auto AllowLocs = 4528 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4529 ? AreDebugLocsAllowed::Yes 4530 : AreDebugLocsAllowed::No; 4531 visitMDNode(*Attachment.second, AllowLocs); 4532 } 4533 4534 InstsInThisBlock.insert(&I); 4535 } 4536 4537 /// Allow intrinsics to be verified in different ways. 4538 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4539 Function *IF = Call.getCalledFunction(); 4540 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4541 IF); 4542 4543 // Verify that the intrinsic prototype lines up with what the .td files 4544 // describe. 4545 FunctionType *IFTy = IF->getFunctionType(); 4546 bool IsVarArg = IFTy->isVarArg(); 4547 4548 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4549 getIntrinsicInfoTableEntries(ID, Table); 4550 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4551 4552 // Walk the descriptors to extract overloaded types. 4553 SmallVector<Type *, 4> ArgTys; 4554 Intrinsic::MatchIntrinsicTypesResult Res = 4555 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4556 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4557 "Intrinsic has incorrect return type!", IF); 4558 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4559 "Intrinsic has incorrect argument type!", IF); 4560 4561 // Verify if the intrinsic call matches the vararg property. 4562 if (IsVarArg) 4563 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4564 "Intrinsic was not defined with variable arguments!", IF); 4565 else 4566 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4567 "Callsite was not defined with variable arguments!", IF); 4568 4569 // All descriptors should be absorbed by now. 4570 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4571 4572 // Now that we have the intrinsic ID and the actual argument types (and we 4573 // know they are legal for the intrinsic!) get the intrinsic name through the 4574 // usual means. This allows us to verify the mangling of argument types into 4575 // the name. 4576 const std::string ExpectedName = 4577 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4578 Assert(ExpectedName == IF->getName(), 4579 "Intrinsic name not mangled correctly for type arguments! " 4580 "Should be: " + 4581 ExpectedName, 4582 IF); 4583 4584 // If the intrinsic takes MDNode arguments, verify that they are either global 4585 // or are local to *this* function. 4586 for (Value *V : Call.args()) { 4587 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4588 visitMetadataAsValue(*MD, Call.getCaller()); 4589 if (auto *Const = dyn_cast<Constant>(V)) 4590 Assert(!Const->getType()->isX86_AMXTy(), 4591 "const x86_amx is not allowed in argument!"); 4592 } 4593 4594 switch (ID) { 4595 default: 4596 break; 4597 case Intrinsic::assume: { 4598 for (auto &Elem : Call.bundle_op_infos()) { 4599 Assert(Elem.Tag->getKey() == "ignore" || 4600 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4601 "tags must be valid attribute names"); 4602 Attribute::AttrKind Kind = 4603 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4604 unsigned ArgCount = Elem.End - Elem.Begin; 4605 if (Kind == Attribute::Alignment) { 4606 Assert(ArgCount <= 3 && ArgCount >= 2, 4607 "alignment assumptions should have 2 or 3 arguments"); 4608 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4609 "first argument should be a pointer"); 4610 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4611 "second argument should be an integer"); 4612 if (ArgCount == 3) 4613 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4614 "third argument should be an integer if present"); 4615 return; 4616 } 4617 Assert(ArgCount <= 2, "to many arguments"); 4618 if (Kind == Attribute::None) 4619 break; 4620 if (Attribute::isIntAttrKind(Kind)) { 4621 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4622 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4623 "the second argument should be a constant integral value"); 4624 } else if (Attribute::canUseAsParamAttr(Kind)) { 4625 Assert((ArgCount) == 1, "this attribute should have one argument"); 4626 } else if (Attribute::canUseAsFnAttr(Kind)) { 4627 Assert((ArgCount) == 0, "this attribute has no argument"); 4628 } 4629 } 4630 break; 4631 } 4632 case Intrinsic::coro_id: { 4633 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4634 if (isa<ConstantPointerNull>(InfoArg)) 4635 break; 4636 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4637 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4638 "info argument of llvm.coro.id must refer to an initialized " 4639 "constant"); 4640 Constant *Init = GV->getInitializer(); 4641 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4642 "info argument of llvm.coro.id must refer to either a struct or " 4643 "an array"); 4644 break; 4645 } 4646 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4647 case Intrinsic::INTRINSIC: 4648 #include "llvm/IR/ConstrainedOps.def" 4649 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4650 break; 4651 case Intrinsic::dbg_declare: // llvm.dbg.declare 4652 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4653 "invalid llvm.dbg.declare intrinsic call 1", Call); 4654 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4655 break; 4656 case Intrinsic::dbg_addr: // llvm.dbg.addr 4657 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4658 break; 4659 case Intrinsic::dbg_value: // llvm.dbg.value 4660 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4661 break; 4662 case Intrinsic::dbg_label: // llvm.dbg.label 4663 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4664 break; 4665 case Intrinsic::memcpy: 4666 case Intrinsic::memcpy_inline: 4667 case Intrinsic::memmove: 4668 case Intrinsic::memset: { 4669 const auto *MI = cast<MemIntrinsic>(&Call); 4670 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4671 return Alignment == 0 || isPowerOf2_32(Alignment); 4672 }; 4673 Assert(IsValidAlignment(MI->getDestAlignment()), 4674 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4675 Call); 4676 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4677 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4678 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4679 Call); 4680 } 4681 4682 break; 4683 } 4684 case Intrinsic::memcpy_element_unordered_atomic: 4685 case Intrinsic::memmove_element_unordered_atomic: 4686 case Intrinsic::memset_element_unordered_atomic: { 4687 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4688 4689 ConstantInt *ElementSizeCI = 4690 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4691 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4692 Assert(ElementSizeVal.isPowerOf2(), 4693 "element size of the element-wise atomic memory intrinsic " 4694 "must be a power of 2", 4695 Call); 4696 4697 auto IsValidAlignment = [&](uint64_t Alignment) { 4698 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4699 }; 4700 uint64_t DstAlignment = AMI->getDestAlignment(); 4701 Assert(IsValidAlignment(DstAlignment), 4702 "incorrect alignment of the destination argument", Call); 4703 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4704 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4705 Assert(IsValidAlignment(SrcAlignment), 4706 "incorrect alignment of the source argument", Call); 4707 } 4708 break; 4709 } 4710 case Intrinsic::call_preallocated_setup: { 4711 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4712 Assert(NumArgs != nullptr, 4713 "llvm.call.preallocated.setup argument must be a constant"); 4714 bool FoundCall = false; 4715 for (User *U : Call.users()) { 4716 auto *UseCall = dyn_cast<CallBase>(U); 4717 Assert(UseCall != nullptr, 4718 "Uses of llvm.call.preallocated.setup must be calls"); 4719 const Function *Fn = UseCall->getCalledFunction(); 4720 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4721 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4722 Assert(AllocArgIndex != nullptr, 4723 "llvm.call.preallocated.alloc arg index must be a constant"); 4724 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4725 Assert(AllocArgIndexInt.sge(0) && 4726 AllocArgIndexInt.slt(NumArgs->getValue()), 4727 "llvm.call.preallocated.alloc arg index must be between 0 and " 4728 "corresponding " 4729 "llvm.call.preallocated.setup's argument count"); 4730 } else if (Fn && Fn->getIntrinsicID() == 4731 Intrinsic::call_preallocated_teardown) { 4732 // nothing to do 4733 } else { 4734 Assert(!FoundCall, "Can have at most one call corresponding to a " 4735 "llvm.call.preallocated.setup"); 4736 FoundCall = true; 4737 size_t NumPreallocatedArgs = 0; 4738 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4739 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4740 ++NumPreallocatedArgs; 4741 } 4742 } 4743 Assert(NumPreallocatedArgs != 0, 4744 "cannot use preallocated intrinsics on a call without " 4745 "preallocated arguments"); 4746 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4747 "llvm.call.preallocated.setup arg size must be equal to number " 4748 "of preallocated arguments " 4749 "at call site", 4750 Call, *UseCall); 4751 // getOperandBundle() cannot be called if more than one of the operand 4752 // bundle exists. There is already a check elsewhere for this, so skip 4753 // here if we see more than one. 4754 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4755 1) { 4756 return; 4757 } 4758 auto PreallocatedBundle = 4759 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4760 Assert(PreallocatedBundle, 4761 "Use of llvm.call.preallocated.setup outside intrinsics " 4762 "must be in \"preallocated\" operand bundle"); 4763 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4764 "preallocated bundle must have token from corresponding " 4765 "llvm.call.preallocated.setup"); 4766 } 4767 } 4768 break; 4769 } 4770 case Intrinsic::call_preallocated_arg: { 4771 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4772 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4773 Intrinsic::call_preallocated_setup, 4774 "llvm.call.preallocated.arg token argument must be a " 4775 "llvm.call.preallocated.setup"); 4776 Assert(Call.hasFnAttr(Attribute::Preallocated), 4777 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4778 "call site attribute"); 4779 break; 4780 } 4781 case Intrinsic::call_preallocated_teardown: { 4782 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4783 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4784 Intrinsic::call_preallocated_setup, 4785 "llvm.call.preallocated.teardown token argument must be a " 4786 "llvm.call.preallocated.setup"); 4787 break; 4788 } 4789 case Intrinsic::gcroot: 4790 case Intrinsic::gcwrite: 4791 case Intrinsic::gcread: 4792 if (ID == Intrinsic::gcroot) { 4793 AllocaInst *AI = 4794 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4795 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4796 Assert(isa<Constant>(Call.getArgOperand(1)), 4797 "llvm.gcroot parameter #2 must be a constant.", Call); 4798 if (!AI->getAllocatedType()->isPointerTy()) { 4799 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4800 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4801 "or argument #2 must be a non-null constant.", 4802 Call); 4803 } 4804 } 4805 4806 Assert(Call.getParent()->getParent()->hasGC(), 4807 "Enclosing function does not use GC.", Call); 4808 break; 4809 case Intrinsic::init_trampoline: 4810 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4811 "llvm.init_trampoline parameter #2 must resolve to a function.", 4812 Call); 4813 break; 4814 case Intrinsic::prefetch: 4815 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4816 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4817 "invalid arguments to llvm.prefetch", Call); 4818 break; 4819 case Intrinsic::stackprotector: 4820 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4821 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4822 break; 4823 case Intrinsic::localescape: { 4824 BasicBlock *BB = Call.getParent(); 4825 Assert(BB == &BB->getParent()->front(), 4826 "llvm.localescape used outside of entry block", Call); 4827 Assert(!SawFrameEscape, 4828 "multiple calls to llvm.localescape in one function", Call); 4829 for (Value *Arg : Call.args()) { 4830 if (isa<ConstantPointerNull>(Arg)) 4831 continue; // Null values are allowed as placeholders. 4832 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4833 Assert(AI && AI->isStaticAlloca(), 4834 "llvm.localescape only accepts static allocas", Call); 4835 } 4836 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4837 SawFrameEscape = true; 4838 break; 4839 } 4840 case Intrinsic::localrecover: { 4841 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4842 Function *Fn = dyn_cast<Function>(FnArg); 4843 Assert(Fn && !Fn->isDeclaration(), 4844 "llvm.localrecover first " 4845 "argument must be function defined in this module", 4846 Call); 4847 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4848 auto &Entry = FrameEscapeInfo[Fn]; 4849 Entry.second = unsigned( 4850 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4851 break; 4852 } 4853 4854 case Intrinsic::experimental_gc_statepoint: 4855 if (auto *CI = dyn_cast<CallInst>(&Call)) 4856 Assert(!CI->isInlineAsm(), 4857 "gc.statepoint support for inline assembly unimplemented", CI); 4858 Assert(Call.getParent()->getParent()->hasGC(), 4859 "Enclosing function does not use GC.", Call); 4860 4861 verifyStatepoint(Call); 4862 break; 4863 case Intrinsic::experimental_gc_result: { 4864 Assert(Call.getParent()->getParent()->hasGC(), 4865 "Enclosing function does not use GC.", Call); 4866 // Are we tied to a statepoint properly? 4867 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4868 const Function *StatepointFn = 4869 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4870 Assert(StatepointFn && StatepointFn->isDeclaration() && 4871 StatepointFn->getIntrinsicID() == 4872 Intrinsic::experimental_gc_statepoint, 4873 "gc.result operand #1 must be from a statepoint", Call, 4874 Call.getArgOperand(0)); 4875 4876 // Assert that result type matches wrapped callee. 4877 const Value *Target = StatepointCall->getArgOperand(2); 4878 auto *PT = cast<PointerType>(Target->getType()); 4879 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4880 Assert(Call.getType() == TargetFuncType->getReturnType(), 4881 "gc.result result type does not match wrapped callee", Call); 4882 break; 4883 } 4884 case Intrinsic::experimental_gc_relocate: { 4885 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4886 4887 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4888 "gc.relocate must return a pointer or a vector of pointers", Call); 4889 4890 // Check that this relocate is correctly tied to the statepoint 4891 4892 // This is case for relocate on the unwinding path of an invoke statepoint 4893 if (LandingPadInst *LandingPad = 4894 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4895 4896 const BasicBlock *InvokeBB = 4897 LandingPad->getParent()->getUniquePredecessor(); 4898 4899 // Landingpad relocates should have only one predecessor with invoke 4900 // statepoint terminator 4901 Assert(InvokeBB, "safepoints should have unique landingpads", 4902 LandingPad->getParent()); 4903 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4904 InvokeBB); 4905 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4906 "gc relocate should be linked to a statepoint", InvokeBB); 4907 } else { 4908 // In all other cases relocate should be tied to the statepoint directly. 4909 // This covers relocates on a normal return path of invoke statepoint and 4910 // relocates of a call statepoint. 4911 auto Token = Call.getArgOperand(0); 4912 Assert(isa<GCStatepointInst>(Token), 4913 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4914 } 4915 4916 // Verify rest of the relocate arguments. 4917 const CallBase &StatepointCall = 4918 *cast<GCRelocateInst>(Call).getStatepoint(); 4919 4920 // Both the base and derived must be piped through the safepoint. 4921 Value *Base = Call.getArgOperand(1); 4922 Assert(isa<ConstantInt>(Base), 4923 "gc.relocate operand #2 must be integer offset", Call); 4924 4925 Value *Derived = Call.getArgOperand(2); 4926 Assert(isa<ConstantInt>(Derived), 4927 "gc.relocate operand #3 must be integer offset", Call); 4928 4929 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4930 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4931 4932 // Check the bounds 4933 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4934 Assert(BaseIndex < Opt->Inputs.size(), 4935 "gc.relocate: statepoint base index out of bounds", Call); 4936 Assert(DerivedIndex < Opt->Inputs.size(), 4937 "gc.relocate: statepoint derived index out of bounds", Call); 4938 } 4939 4940 // Relocated value must be either a pointer type or vector-of-pointer type, 4941 // but gc_relocate does not need to return the same pointer type as the 4942 // relocated pointer. It can be casted to the correct type later if it's 4943 // desired. However, they must have the same address space and 'vectorness' 4944 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4945 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4946 "gc.relocate: relocated value must be a gc pointer", Call); 4947 4948 auto ResultType = Call.getType(); 4949 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4950 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4951 "gc.relocate: vector relocates to vector and pointer to pointer", 4952 Call); 4953 Assert( 4954 ResultType->getPointerAddressSpace() == 4955 DerivedType->getPointerAddressSpace(), 4956 "gc.relocate: relocating a pointer shouldn't change its address space", 4957 Call); 4958 break; 4959 } 4960 case Intrinsic::eh_exceptioncode: 4961 case Intrinsic::eh_exceptionpointer: { 4962 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4963 "eh.exceptionpointer argument must be a catchpad", Call); 4964 break; 4965 } 4966 case Intrinsic::get_active_lane_mask: { 4967 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4968 "vector", Call); 4969 auto *ElemTy = Call.getType()->getScalarType(); 4970 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4971 "i1", Call); 4972 break; 4973 } 4974 case Intrinsic::masked_load: { 4975 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4976 Call); 4977 4978 Value *Ptr = Call.getArgOperand(0); 4979 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4980 Value *Mask = Call.getArgOperand(2); 4981 Value *PassThru = Call.getArgOperand(3); 4982 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4983 Call); 4984 Assert(Alignment->getValue().isPowerOf2(), 4985 "masked_load: alignment must be a power of 2", Call); 4986 4987 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 4988 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 4989 "masked_load: return must match pointer type", Call); 4990 Assert(PassThru->getType() == Call.getType(), 4991 "masked_load: pass through and return type must match", Call); 4992 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4993 cast<VectorType>(Call.getType())->getElementCount(), 4994 "masked_load: vector mask must be same length as return", Call); 4995 break; 4996 } 4997 case Intrinsic::masked_store: { 4998 Value *Val = Call.getArgOperand(0); 4999 Value *Ptr = Call.getArgOperand(1); 5000 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5001 Value *Mask = Call.getArgOperand(3); 5002 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5003 Call); 5004 Assert(Alignment->getValue().isPowerOf2(), 5005 "masked_store: alignment must be a power of 2", Call); 5006 5007 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5008 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5009 "masked_store: storee must match pointer type", Call); 5010 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5011 cast<VectorType>(Val->getType())->getElementCount(), 5012 "masked_store: vector mask must be same length as value", Call); 5013 break; 5014 } 5015 5016 case Intrinsic::masked_gather: { 5017 const APInt &Alignment = 5018 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5019 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5020 "masked_gather: alignment must be 0 or a power of 2", Call); 5021 break; 5022 } 5023 case Intrinsic::masked_scatter: { 5024 const APInt &Alignment = 5025 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5026 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 5027 "masked_scatter: alignment must be 0 or a power of 2", Call); 5028 break; 5029 } 5030 5031 case Intrinsic::experimental_guard: { 5032 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5033 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5034 "experimental_guard must have exactly one " 5035 "\"deopt\" operand bundle"); 5036 break; 5037 } 5038 5039 case Intrinsic::experimental_deoptimize: { 5040 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5041 Call); 5042 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5043 "experimental_deoptimize must have exactly one " 5044 "\"deopt\" operand bundle"); 5045 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5046 "experimental_deoptimize return type must match caller return type"); 5047 5048 if (isa<CallInst>(Call)) { 5049 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5050 Assert(RI, 5051 "calls to experimental_deoptimize must be followed by a return"); 5052 5053 if (!Call.getType()->isVoidTy() && RI) 5054 Assert(RI->getReturnValue() == &Call, 5055 "calls to experimental_deoptimize must be followed by a return " 5056 "of the value computed by experimental_deoptimize"); 5057 } 5058 5059 break; 5060 } 5061 case Intrinsic::vector_reduce_and: 5062 case Intrinsic::vector_reduce_or: 5063 case Intrinsic::vector_reduce_xor: 5064 case Intrinsic::vector_reduce_add: 5065 case Intrinsic::vector_reduce_mul: 5066 case Intrinsic::vector_reduce_smax: 5067 case Intrinsic::vector_reduce_smin: 5068 case Intrinsic::vector_reduce_umax: 5069 case Intrinsic::vector_reduce_umin: { 5070 Type *ArgTy = Call.getArgOperand(0)->getType(); 5071 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5072 "Intrinsic has incorrect argument type!"); 5073 break; 5074 } 5075 case Intrinsic::vector_reduce_fmax: 5076 case Intrinsic::vector_reduce_fmin: { 5077 Type *ArgTy = Call.getArgOperand(0)->getType(); 5078 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5079 "Intrinsic has incorrect argument type!"); 5080 break; 5081 } 5082 case Intrinsic::vector_reduce_fadd: 5083 case Intrinsic::vector_reduce_fmul: { 5084 // Unlike the other reductions, the first argument is a start value. The 5085 // second argument is the vector to be reduced. 5086 Type *ArgTy = Call.getArgOperand(1)->getType(); 5087 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5088 "Intrinsic has incorrect argument type!"); 5089 break; 5090 } 5091 case Intrinsic::smul_fix: 5092 case Intrinsic::smul_fix_sat: 5093 case Intrinsic::umul_fix: 5094 case Intrinsic::umul_fix_sat: 5095 case Intrinsic::sdiv_fix: 5096 case Intrinsic::sdiv_fix_sat: 5097 case Intrinsic::udiv_fix: 5098 case Intrinsic::udiv_fix_sat: { 5099 Value *Op1 = Call.getArgOperand(0); 5100 Value *Op2 = Call.getArgOperand(1); 5101 Assert(Op1->getType()->isIntOrIntVectorTy(), 5102 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5103 "vector of ints"); 5104 Assert(Op2->getType()->isIntOrIntVectorTy(), 5105 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5106 "vector of ints"); 5107 5108 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5109 Assert(Op3->getType()->getBitWidth() <= 32, 5110 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5111 5112 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5113 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5114 Assert( 5115 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5116 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5117 "the operands"); 5118 } else { 5119 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5120 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5121 "to the width of the operands"); 5122 } 5123 break; 5124 } 5125 case Intrinsic::lround: 5126 case Intrinsic::llround: 5127 case Intrinsic::lrint: 5128 case Intrinsic::llrint: { 5129 Type *ValTy = Call.getArgOperand(0)->getType(); 5130 Type *ResultTy = Call.getType(); 5131 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5132 "Intrinsic does not support vectors", &Call); 5133 break; 5134 } 5135 case Intrinsic::bswap: { 5136 Type *Ty = Call.getType(); 5137 unsigned Size = Ty->getScalarSizeInBits(); 5138 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5139 break; 5140 } 5141 case Intrinsic::invariant_start: { 5142 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5143 Assert(InvariantSize && 5144 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5145 "invariant_start parameter must be -1, 0 or a positive number", 5146 &Call); 5147 break; 5148 } 5149 case Intrinsic::matrix_multiply: 5150 case Intrinsic::matrix_transpose: 5151 case Intrinsic::matrix_column_major_load: 5152 case Intrinsic::matrix_column_major_store: { 5153 Function *IF = Call.getCalledFunction(); 5154 ConstantInt *Stride = nullptr; 5155 ConstantInt *NumRows; 5156 ConstantInt *NumColumns; 5157 VectorType *ResultTy; 5158 Type *Op0ElemTy = nullptr; 5159 Type *Op1ElemTy = nullptr; 5160 switch (ID) { 5161 case Intrinsic::matrix_multiply: 5162 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5163 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5164 ResultTy = cast<VectorType>(Call.getType()); 5165 Op0ElemTy = 5166 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5167 Op1ElemTy = 5168 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5169 break; 5170 case Intrinsic::matrix_transpose: 5171 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5172 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5173 ResultTy = cast<VectorType>(Call.getType()); 5174 Op0ElemTy = 5175 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5176 break; 5177 case Intrinsic::matrix_column_major_load: 5178 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5179 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5180 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5181 ResultTy = cast<VectorType>(Call.getType()); 5182 Op0ElemTy = 5183 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5184 break; 5185 case Intrinsic::matrix_column_major_store: 5186 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5187 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5188 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5189 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5190 Op0ElemTy = 5191 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5192 Op1ElemTy = 5193 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5194 break; 5195 default: 5196 llvm_unreachable("unexpected intrinsic"); 5197 } 5198 5199 Assert(ResultTy->getElementType()->isIntegerTy() || 5200 ResultTy->getElementType()->isFloatingPointTy(), 5201 "Result type must be an integer or floating-point type!", IF); 5202 5203 Assert(ResultTy->getElementType() == Op0ElemTy, 5204 "Vector element type mismatch of the result and first operand " 5205 "vector!", IF); 5206 5207 if (Op1ElemTy) 5208 Assert(ResultTy->getElementType() == Op1ElemTy, 5209 "Vector element type mismatch of the result and second operand " 5210 "vector!", IF); 5211 5212 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5213 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5214 "Result of a matrix operation does not fit in the returned vector!"); 5215 5216 if (Stride) 5217 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5218 "Stride must be greater or equal than the number of rows!", IF); 5219 5220 break; 5221 } 5222 case Intrinsic::experimental_stepvector: { 5223 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5224 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5225 VecTy->getScalarSizeInBits() >= 8, 5226 "experimental_stepvector only supported for vectors of integers " 5227 "with a bitwidth of at least 8.", 5228 &Call); 5229 break; 5230 } 5231 case Intrinsic::experimental_vector_insert: { 5232 Value *Vec = Call.getArgOperand(0); 5233 Value *SubVec = Call.getArgOperand(1); 5234 Value *Idx = Call.getArgOperand(2); 5235 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5236 5237 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5238 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5239 5240 ElementCount VecEC = VecTy->getElementCount(); 5241 ElementCount SubVecEC = SubVecTy->getElementCount(); 5242 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5243 "experimental_vector_insert parameters must have the same element " 5244 "type.", 5245 &Call); 5246 Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5247 "experimental_vector_insert index must be a constant multiple of " 5248 "the subvector's known minimum vector length."); 5249 5250 // If this insertion is not the 'mixed' case where a fixed vector is 5251 // inserted into a scalable vector, ensure that the insertion of the 5252 // subvector does not overrun the parent vector. 5253 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5254 Assert( 5255 IdxN < VecEC.getKnownMinValue() && 5256 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5257 "subvector operand of experimental_vector_insert would overrun the " 5258 "vector being inserted into."); 5259 } 5260 break; 5261 } 5262 case Intrinsic::experimental_vector_extract: { 5263 Value *Vec = Call.getArgOperand(0); 5264 Value *Idx = Call.getArgOperand(1); 5265 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5266 5267 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5268 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5269 5270 ElementCount VecEC = VecTy->getElementCount(); 5271 ElementCount ResultEC = ResultTy->getElementCount(); 5272 5273 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5274 "experimental_vector_extract result must have the same element " 5275 "type as the input vector.", 5276 &Call); 5277 Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5278 "experimental_vector_extract index must be a constant multiple of " 5279 "the result type's known minimum vector length."); 5280 5281 // If this extraction is not the 'mixed' case where a fixed vector is is 5282 // extracted from a scalable vector, ensure that the extraction does not 5283 // overrun the parent vector. 5284 if (VecEC.isScalable() == ResultEC.isScalable()) { 5285 Assert(IdxN < VecEC.getKnownMinValue() && 5286 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5287 "experimental_vector_extract would overrun."); 5288 } 5289 break; 5290 } 5291 case Intrinsic::experimental_noalias_scope_decl: { 5292 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5293 break; 5294 } 5295 case Intrinsic::preserve_array_access_index: 5296 case Intrinsic::preserve_struct_access_index: { 5297 Type *ElemTy = Call.getAttributes().getParamElementType(0); 5298 Assert(ElemTy, 5299 "Intrinsic requires elementtype attribute on first argument.", 5300 &Call); 5301 break; 5302 } 5303 }; 5304 } 5305 5306 /// Carefully grab the subprogram from a local scope. 5307 /// 5308 /// This carefully grabs the subprogram from a local scope, avoiding the 5309 /// built-in assertions that would typically fire. 5310 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5311 if (!LocalScope) 5312 return nullptr; 5313 5314 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5315 return SP; 5316 5317 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5318 return getSubprogram(LB->getRawScope()); 5319 5320 // Just return null; broken scope chains are checked elsewhere. 5321 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5322 return nullptr; 5323 } 5324 5325 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5326 unsigned NumOperands; 5327 bool HasRoundingMD; 5328 switch (FPI.getIntrinsicID()) { 5329 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5330 case Intrinsic::INTRINSIC: \ 5331 NumOperands = NARG; \ 5332 HasRoundingMD = ROUND_MODE; \ 5333 break; 5334 #include "llvm/IR/ConstrainedOps.def" 5335 default: 5336 llvm_unreachable("Invalid constrained FP intrinsic!"); 5337 } 5338 NumOperands += (1 + HasRoundingMD); 5339 // Compare intrinsics carry an extra predicate metadata operand. 5340 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5341 NumOperands += 1; 5342 Assert((FPI.getNumArgOperands() == NumOperands), 5343 "invalid arguments for constrained FP intrinsic", &FPI); 5344 5345 switch (FPI.getIntrinsicID()) { 5346 case Intrinsic::experimental_constrained_lrint: 5347 case Intrinsic::experimental_constrained_llrint: { 5348 Type *ValTy = FPI.getArgOperand(0)->getType(); 5349 Type *ResultTy = FPI.getType(); 5350 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5351 "Intrinsic does not support vectors", &FPI); 5352 } 5353 break; 5354 5355 case Intrinsic::experimental_constrained_lround: 5356 case Intrinsic::experimental_constrained_llround: { 5357 Type *ValTy = FPI.getArgOperand(0)->getType(); 5358 Type *ResultTy = FPI.getType(); 5359 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5360 "Intrinsic does not support vectors", &FPI); 5361 break; 5362 } 5363 5364 case Intrinsic::experimental_constrained_fcmp: 5365 case Intrinsic::experimental_constrained_fcmps: { 5366 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5367 Assert(CmpInst::isFPPredicate(Pred), 5368 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5369 break; 5370 } 5371 5372 case Intrinsic::experimental_constrained_fptosi: 5373 case Intrinsic::experimental_constrained_fptoui: { 5374 Value *Operand = FPI.getArgOperand(0); 5375 uint64_t NumSrcElem = 0; 5376 Assert(Operand->getType()->isFPOrFPVectorTy(), 5377 "Intrinsic first argument must be floating point", &FPI); 5378 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5379 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5380 } 5381 5382 Operand = &FPI; 5383 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5384 "Intrinsic first argument and result disagree on vector use", &FPI); 5385 Assert(Operand->getType()->isIntOrIntVectorTy(), 5386 "Intrinsic result must be an integer", &FPI); 5387 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5388 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5389 "Intrinsic first argument and result vector lengths must be equal", 5390 &FPI); 5391 } 5392 } 5393 break; 5394 5395 case Intrinsic::experimental_constrained_sitofp: 5396 case Intrinsic::experimental_constrained_uitofp: { 5397 Value *Operand = FPI.getArgOperand(0); 5398 uint64_t NumSrcElem = 0; 5399 Assert(Operand->getType()->isIntOrIntVectorTy(), 5400 "Intrinsic first argument must be integer", &FPI); 5401 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5402 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5403 } 5404 5405 Operand = &FPI; 5406 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5407 "Intrinsic first argument and result disagree on vector use", &FPI); 5408 Assert(Operand->getType()->isFPOrFPVectorTy(), 5409 "Intrinsic result must be a floating point", &FPI); 5410 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5411 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5412 "Intrinsic first argument and result vector lengths must be equal", 5413 &FPI); 5414 } 5415 } break; 5416 5417 case Intrinsic::experimental_constrained_fptrunc: 5418 case Intrinsic::experimental_constrained_fpext: { 5419 Value *Operand = FPI.getArgOperand(0); 5420 Type *OperandTy = Operand->getType(); 5421 Value *Result = &FPI; 5422 Type *ResultTy = Result->getType(); 5423 Assert(OperandTy->isFPOrFPVectorTy(), 5424 "Intrinsic first argument must be FP or FP vector", &FPI); 5425 Assert(ResultTy->isFPOrFPVectorTy(), 5426 "Intrinsic result must be FP or FP vector", &FPI); 5427 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5428 "Intrinsic first argument and result disagree on vector use", &FPI); 5429 if (OperandTy->isVectorTy()) { 5430 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5431 cast<FixedVectorType>(ResultTy)->getNumElements(), 5432 "Intrinsic first argument and result vector lengths must be equal", 5433 &FPI); 5434 } 5435 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5436 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5437 "Intrinsic first argument's type must be larger than result type", 5438 &FPI); 5439 } else { 5440 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5441 "Intrinsic first argument's type must be smaller than result type", 5442 &FPI); 5443 } 5444 } 5445 break; 5446 5447 default: 5448 break; 5449 } 5450 5451 // If a non-metadata argument is passed in a metadata slot then the 5452 // error will be caught earlier when the incorrect argument doesn't 5453 // match the specification in the intrinsic call table. Thus, no 5454 // argument type check is needed here. 5455 5456 Assert(FPI.getExceptionBehavior().hasValue(), 5457 "invalid exception behavior argument", &FPI); 5458 if (HasRoundingMD) { 5459 Assert(FPI.getRoundingMode().hasValue(), 5460 "invalid rounding mode argument", &FPI); 5461 } 5462 } 5463 5464 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5465 auto *MD = DII.getRawLocation(); 5466 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5467 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5468 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5469 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5470 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5471 DII.getRawVariable()); 5472 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5473 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5474 DII.getRawExpression()); 5475 5476 // Ignore broken !dbg attachments; they're checked elsewhere. 5477 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5478 if (!isa<DILocation>(N)) 5479 return; 5480 5481 BasicBlock *BB = DII.getParent(); 5482 Function *F = BB ? BB->getParent() : nullptr; 5483 5484 // The scopes for variables and !dbg attachments must agree. 5485 DILocalVariable *Var = DII.getVariable(); 5486 DILocation *Loc = DII.getDebugLoc(); 5487 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5488 &DII, BB, F); 5489 5490 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5491 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5492 if (!VarSP || !LocSP) 5493 return; // Broken scope chains are checked elsewhere. 5494 5495 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5496 " variable and !dbg attachment", 5497 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5498 Loc->getScope()->getSubprogram()); 5499 5500 // This check is redundant with one in visitLocalVariable(). 5501 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5502 Var->getRawType()); 5503 verifyFnArgs(DII); 5504 } 5505 5506 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5507 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5508 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5509 DLI.getRawLabel()); 5510 5511 // Ignore broken !dbg attachments; they're checked elsewhere. 5512 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5513 if (!isa<DILocation>(N)) 5514 return; 5515 5516 BasicBlock *BB = DLI.getParent(); 5517 Function *F = BB ? BB->getParent() : nullptr; 5518 5519 // The scopes for variables and !dbg attachments must agree. 5520 DILabel *Label = DLI.getLabel(); 5521 DILocation *Loc = DLI.getDebugLoc(); 5522 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5523 &DLI, BB, F); 5524 5525 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5526 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5527 if (!LabelSP || !LocSP) 5528 return; 5529 5530 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5531 " label and !dbg attachment", 5532 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5533 Loc->getScope()->getSubprogram()); 5534 } 5535 5536 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5537 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5538 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5539 5540 // We don't know whether this intrinsic verified correctly. 5541 if (!V || !E || !E->isValid()) 5542 return; 5543 5544 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5545 auto Fragment = E->getFragmentInfo(); 5546 if (!Fragment) 5547 return; 5548 5549 // The frontend helps out GDB by emitting the members of local anonymous 5550 // unions as artificial local variables with shared storage. When SROA splits 5551 // the storage for artificial local variables that are smaller than the entire 5552 // union, the overhang piece will be outside of the allotted space for the 5553 // variable and this check fails. 5554 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5555 if (V->isArtificial()) 5556 return; 5557 5558 verifyFragmentExpression(*V, *Fragment, &I); 5559 } 5560 5561 template <typename ValueOrMetadata> 5562 void Verifier::verifyFragmentExpression(const DIVariable &V, 5563 DIExpression::FragmentInfo Fragment, 5564 ValueOrMetadata *Desc) { 5565 // If there's no size, the type is broken, but that should be checked 5566 // elsewhere. 5567 auto VarSize = V.getSizeInBits(); 5568 if (!VarSize) 5569 return; 5570 5571 unsigned FragSize = Fragment.SizeInBits; 5572 unsigned FragOffset = Fragment.OffsetInBits; 5573 AssertDI(FragSize + FragOffset <= *VarSize, 5574 "fragment is larger than or outside of variable", Desc, &V); 5575 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5576 } 5577 5578 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5579 // This function does not take the scope of noninlined function arguments into 5580 // account. Don't run it if current function is nodebug, because it may 5581 // contain inlined debug intrinsics. 5582 if (!HasDebugInfo) 5583 return; 5584 5585 // For performance reasons only check non-inlined ones. 5586 if (I.getDebugLoc()->getInlinedAt()) 5587 return; 5588 5589 DILocalVariable *Var = I.getVariable(); 5590 AssertDI(Var, "dbg intrinsic without variable"); 5591 5592 unsigned ArgNo = Var->getArg(); 5593 if (!ArgNo) 5594 return; 5595 5596 // Verify there are no duplicate function argument debug info entries. 5597 // These will cause hard-to-debug assertions in the DWARF backend. 5598 if (DebugFnArgs.size() < ArgNo) 5599 DebugFnArgs.resize(ArgNo, nullptr); 5600 5601 auto *Prev = DebugFnArgs[ArgNo - 1]; 5602 DebugFnArgs[ArgNo - 1] = Var; 5603 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5604 Prev, Var); 5605 } 5606 5607 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5608 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5609 5610 // We don't know whether this intrinsic verified correctly. 5611 if (!E || !E->isValid()) 5612 return; 5613 5614 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5615 } 5616 5617 void Verifier::verifyCompileUnits() { 5618 // When more than one Module is imported into the same context, such as during 5619 // an LTO build before linking the modules, ODR type uniquing may cause types 5620 // to point to a different CU. This check does not make sense in this case. 5621 if (M.getContext().isODRUniquingDebugTypes()) 5622 return; 5623 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5624 SmallPtrSet<const Metadata *, 2> Listed; 5625 if (CUs) 5626 Listed.insert(CUs->op_begin(), CUs->op_end()); 5627 for (auto *CU : CUVisited) 5628 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5629 CUVisited.clear(); 5630 } 5631 5632 void Verifier::verifyDeoptimizeCallingConvs() { 5633 if (DeoptimizeDeclarations.empty()) 5634 return; 5635 5636 const Function *First = DeoptimizeDeclarations[0]; 5637 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5638 Assert(First->getCallingConv() == F->getCallingConv(), 5639 "All llvm.experimental.deoptimize declarations must have the same " 5640 "calling convention", 5641 First, F); 5642 } 5643 } 5644 5645 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5646 bool HasSource = F.getSource().hasValue(); 5647 if (!HasSourceDebugInfo.count(&U)) 5648 HasSourceDebugInfo[&U] = HasSource; 5649 AssertDI(HasSource == HasSourceDebugInfo[&U], 5650 "inconsistent use of embedded source"); 5651 } 5652 5653 void Verifier::verifyNoAliasScopeDecl() { 5654 if (NoAliasScopeDecls.empty()) 5655 return; 5656 5657 // only a single scope must be declared at a time. 5658 for (auto *II : NoAliasScopeDecls) { 5659 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5660 "Not a llvm.experimental.noalias.scope.decl ?"); 5661 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5662 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5663 Assert(ScopeListMV != nullptr, 5664 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5665 "argument", 5666 II); 5667 5668 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5669 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5670 II); 5671 Assert(ScopeListMD->getNumOperands() == 1, 5672 "!id.scope.list must point to a list with a single scope", II); 5673 } 5674 5675 // Only check the domination rule when requested. Once all passes have been 5676 // adapted this option can go away. 5677 if (!VerifyNoAliasScopeDomination) 5678 return; 5679 5680 // Now sort the intrinsics based on the scope MDNode so that declarations of 5681 // the same scopes are next to each other. 5682 auto GetScope = [](IntrinsicInst *II) { 5683 const auto *ScopeListMV = cast<MetadataAsValue>( 5684 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5685 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5686 }; 5687 5688 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5689 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5690 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5691 return GetScope(Lhs) < GetScope(Rhs); 5692 }; 5693 5694 llvm::sort(NoAliasScopeDecls, Compare); 5695 5696 // Go over the intrinsics and check that for the same scope, they are not 5697 // dominating each other. 5698 auto ItCurrent = NoAliasScopeDecls.begin(); 5699 while (ItCurrent != NoAliasScopeDecls.end()) { 5700 auto CurScope = GetScope(*ItCurrent); 5701 auto ItNext = ItCurrent; 5702 do { 5703 ++ItNext; 5704 } while (ItNext != NoAliasScopeDecls.end() && 5705 GetScope(*ItNext) == CurScope); 5706 5707 // [ItCurrent, ItNext) represents the declarations for the same scope. 5708 // Ensure they are not dominating each other.. but only if it is not too 5709 // expensive. 5710 if (ItNext - ItCurrent < 32) 5711 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5712 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5713 if (I != J) 5714 Assert(!DT.dominates(I, J), 5715 "llvm.experimental.noalias.scope.decl dominates another one " 5716 "with the same scope", 5717 I); 5718 ItCurrent = ItNext; 5719 } 5720 } 5721 5722 //===----------------------------------------------------------------------===// 5723 // Implement the public interfaces to this file... 5724 //===----------------------------------------------------------------------===// 5725 5726 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5727 Function &F = const_cast<Function &>(f); 5728 5729 // Don't use a raw_null_ostream. Printing IR is expensive. 5730 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5731 5732 // Note that this function's return value is inverted from what you would 5733 // expect of a function called "verify". 5734 return !V.verify(F); 5735 } 5736 5737 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5738 bool *BrokenDebugInfo) { 5739 // Don't use a raw_null_ostream. Printing IR is expensive. 5740 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5741 5742 bool Broken = false; 5743 for (const Function &F : M) 5744 Broken |= !V.verify(F); 5745 5746 Broken |= !V.verify(); 5747 if (BrokenDebugInfo) 5748 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5749 // Note that this function's return value is inverted from what you would 5750 // expect of a function called "verify". 5751 return Broken; 5752 } 5753 5754 namespace { 5755 5756 struct VerifierLegacyPass : public FunctionPass { 5757 static char ID; 5758 5759 std::unique_ptr<Verifier> V; 5760 bool FatalErrors = true; 5761 5762 VerifierLegacyPass() : FunctionPass(ID) { 5763 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5764 } 5765 explicit VerifierLegacyPass(bool FatalErrors) 5766 : FunctionPass(ID), 5767 FatalErrors(FatalErrors) { 5768 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5769 } 5770 5771 bool doInitialization(Module &M) override { 5772 V = std::make_unique<Verifier>( 5773 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5774 return false; 5775 } 5776 5777 bool runOnFunction(Function &F) override { 5778 if (!V->verify(F) && FatalErrors) { 5779 errs() << "in function " << F.getName() << '\n'; 5780 report_fatal_error("Broken function found, compilation aborted!"); 5781 } 5782 return false; 5783 } 5784 5785 bool doFinalization(Module &M) override { 5786 bool HasErrors = false; 5787 for (Function &F : M) 5788 if (F.isDeclaration()) 5789 HasErrors |= !V->verify(F); 5790 5791 HasErrors |= !V->verify(); 5792 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5793 report_fatal_error("Broken module found, compilation aborted!"); 5794 return false; 5795 } 5796 5797 void getAnalysisUsage(AnalysisUsage &AU) const override { 5798 AU.setPreservesAll(); 5799 } 5800 }; 5801 5802 } // end anonymous namespace 5803 5804 /// Helper to issue failure from the TBAA verification 5805 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5806 if (Diagnostic) 5807 return Diagnostic->CheckFailed(Args...); 5808 } 5809 5810 #define AssertTBAA(C, ...) \ 5811 do { \ 5812 if (!(C)) { \ 5813 CheckFailed(__VA_ARGS__); \ 5814 return false; \ 5815 } \ 5816 } while (false) 5817 5818 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5819 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5820 /// struct-type node describing an aggregate data structure (like a struct). 5821 TBAAVerifier::TBAABaseNodeSummary 5822 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5823 bool IsNewFormat) { 5824 if (BaseNode->getNumOperands() < 2) { 5825 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5826 return {true, ~0u}; 5827 } 5828 5829 auto Itr = TBAABaseNodes.find(BaseNode); 5830 if (Itr != TBAABaseNodes.end()) 5831 return Itr->second; 5832 5833 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5834 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5835 (void)InsertResult; 5836 assert(InsertResult.second && "We just checked!"); 5837 return Result; 5838 } 5839 5840 TBAAVerifier::TBAABaseNodeSummary 5841 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5842 bool IsNewFormat) { 5843 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5844 5845 if (BaseNode->getNumOperands() == 2) { 5846 // Scalar nodes can only be accessed at offset 0. 5847 return isValidScalarTBAANode(BaseNode) 5848 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5849 : InvalidNode; 5850 } 5851 5852 if (IsNewFormat) { 5853 if (BaseNode->getNumOperands() % 3 != 0) { 5854 CheckFailed("Access tag nodes must have the number of operands that is a " 5855 "multiple of 3!", BaseNode); 5856 return InvalidNode; 5857 } 5858 } else { 5859 if (BaseNode->getNumOperands() % 2 != 1) { 5860 CheckFailed("Struct tag nodes must have an odd number of operands!", 5861 BaseNode); 5862 return InvalidNode; 5863 } 5864 } 5865 5866 // Check the type size field. 5867 if (IsNewFormat) { 5868 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5869 BaseNode->getOperand(1)); 5870 if (!TypeSizeNode) { 5871 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5872 return InvalidNode; 5873 } 5874 } 5875 5876 // Check the type name field. In the new format it can be anything. 5877 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5878 CheckFailed("Struct tag nodes have a string as their first operand", 5879 BaseNode); 5880 return InvalidNode; 5881 } 5882 5883 bool Failed = false; 5884 5885 Optional<APInt> PrevOffset; 5886 unsigned BitWidth = ~0u; 5887 5888 // We've already checked that BaseNode is not a degenerate root node with one 5889 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5890 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5891 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5892 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5893 Idx += NumOpsPerField) { 5894 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5895 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5896 if (!isa<MDNode>(FieldTy)) { 5897 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5898 Failed = true; 5899 continue; 5900 } 5901 5902 auto *OffsetEntryCI = 5903 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5904 if (!OffsetEntryCI) { 5905 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5906 Failed = true; 5907 continue; 5908 } 5909 5910 if (BitWidth == ~0u) 5911 BitWidth = OffsetEntryCI->getBitWidth(); 5912 5913 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5914 CheckFailed( 5915 "Bitwidth between the offsets and struct type entries must match", &I, 5916 BaseNode); 5917 Failed = true; 5918 continue; 5919 } 5920 5921 // NB! As far as I can tell, we generate a non-strictly increasing offset 5922 // sequence only from structs that have zero size bit fields. When 5923 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5924 // pick the field lexically the latest in struct type metadata node. This 5925 // mirrors the actual behavior of the alias analysis implementation. 5926 bool IsAscending = 5927 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5928 5929 if (!IsAscending) { 5930 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5931 Failed = true; 5932 } 5933 5934 PrevOffset = OffsetEntryCI->getValue(); 5935 5936 if (IsNewFormat) { 5937 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5938 BaseNode->getOperand(Idx + 2)); 5939 if (!MemberSizeNode) { 5940 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5941 Failed = true; 5942 continue; 5943 } 5944 } 5945 } 5946 5947 return Failed ? InvalidNode 5948 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5949 } 5950 5951 static bool IsRootTBAANode(const MDNode *MD) { 5952 return MD->getNumOperands() < 2; 5953 } 5954 5955 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5956 SmallPtrSetImpl<const MDNode *> &Visited) { 5957 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5958 return false; 5959 5960 if (!isa<MDString>(MD->getOperand(0))) 5961 return false; 5962 5963 if (MD->getNumOperands() == 3) { 5964 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5965 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5966 return false; 5967 } 5968 5969 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5970 return Parent && Visited.insert(Parent).second && 5971 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5972 } 5973 5974 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5975 auto ResultIt = TBAAScalarNodes.find(MD); 5976 if (ResultIt != TBAAScalarNodes.end()) 5977 return ResultIt->second; 5978 5979 SmallPtrSet<const MDNode *, 4> Visited; 5980 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5981 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5982 (void)InsertResult; 5983 assert(InsertResult.second && "Just checked!"); 5984 5985 return Result; 5986 } 5987 5988 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5989 /// Offset in place to be the offset within the field node returned. 5990 /// 5991 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5992 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5993 const MDNode *BaseNode, 5994 APInt &Offset, 5995 bool IsNewFormat) { 5996 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5997 5998 // Scalar nodes have only one possible "field" -- their parent in the access 5999 // hierarchy. Offset must be zero at this point, but our caller is supposed 6000 // to Assert that. 6001 if (BaseNode->getNumOperands() == 2) 6002 return cast<MDNode>(BaseNode->getOperand(1)); 6003 6004 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6005 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6006 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6007 Idx += NumOpsPerField) { 6008 auto *OffsetEntryCI = 6009 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6010 if (OffsetEntryCI->getValue().ugt(Offset)) { 6011 if (Idx == FirstFieldOpNo) { 6012 CheckFailed("Could not find TBAA parent in struct type node", &I, 6013 BaseNode, &Offset); 6014 return nullptr; 6015 } 6016 6017 unsigned PrevIdx = Idx - NumOpsPerField; 6018 auto *PrevOffsetEntryCI = 6019 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6020 Offset -= PrevOffsetEntryCI->getValue(); 6021 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6022 } 6023 } 6024 6025 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6026 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6027 BaseNode->getOperand(LastIdx + 1)); 6028 Offset -= LastOffsetEntryCI->getValue(); 6029 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6030 } 6031 6032 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6033 if (!Type || Type->getNumOperands() < 3) 6034 return false; 6035 6036 // In the new format type nodes shall have a reference to the parent type as 6037 // its first operand. 6038 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 6039 if (!Parent) 6040 return false; 6041 6042 return true; 6043 } 6044 6045 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6046 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6047 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6048 isa<AtomicCmpXchgInst>(I), 6049 "This instruction shall not have a TBAA access tag!", &I); 6050 6051 bool IsStructPathTBAA = 6052 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6053 6054 AssertTBAA( 6055 IsStructPathTBAA, 6056 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6057 6058 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6059 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6060 6061 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6062 6063 if (IsNewFormat) { 6064 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6065 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6066 } else { 6067 AssertTBAA(MD->getNumOperands() < 5, 6068 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6069 } 6070 6071 // Check the access size field. 6072 if (IsNewFormat) { 6073 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6074 MD->getOperand(3)); 6075 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6076 } 6077 6078 // Check the immutability flag. 6079 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6080 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6081 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6082 MD->getOperand(ImmutabilityFlagOpNo)); 6083 AssertTBAA(IsImmutableCI, 6084 "Immutability tag on struct tag metadata must be a constant", 6085 &I, MD); 6086 AssertTBAA( 6087 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6088 "Immutability part of the struct tag metadata must be either 0 or 1", 6089 &I, MD); 6090 } 6091 6092 AssertTBAA(BaseNode && AccessType, 6093 "Malformed struct tag metadata: base and access-type " 6094 "should be non-null and point to Metadata nodes", 6095 &I, MD, BaseNode, AccessType); 6096 6097 if (!IsNewFormat) { 6098 AssertTBAA(isValidScalarTBAANode(AccessType), 6099 "Access type node must be a valid scalar type", &I, MD, 6100 AccessType); 6101 } 6102 6103 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6104 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6105 6106 APInt Offset = OffsetCI->getValue(); 6107 bool SeenAccessTypeInPath = false; 6108 6109 SmallPtrSet<MDNode *, 4> StructPath; 6110 6111 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6112 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6113 IsNewFormat)) { 6114 if (!StructPath.insert(BaseNode).second) { 6115 CheckFailed("Cycle detected in struct path", &I, MD); 6116 return false; 6117 } 6118 6119 bool Invalid; 6120 unsigned BaseNodeBitWidth; 6121 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6122 IsNewFormat); 6123 6124 // If the base node is invalid in itself, then we've already printed all the 6125 // errors we wanted to print. 6126 if (Invalid) 6127 return false; 6128 6129 SeenAccessTypeInPath |= BaseNode == AccessType; 6130 6131 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6132 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6133 &I, MD, &Offset); 6134 6135 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6136 (BaseNodeBitWidth == 0 && Offset == 0) || 6137 (IsNewFormat && BaseNodeBitWidth == ~0u), 6138 "Access bit-width not the same as description bit-width", &I, MD, 6139 BaseNodeBitWidth, Offset.getBitWidth()); 6140 6141 if (IsNewFormat && SeenAccessTypeInPath) 6142 break; 6143 } 6144 6145 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6146 &I, MD); 6147 return true; 6148 } 6149 6150 char VerifierLegacyPass::ID = 0; 6151 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6152 6153 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6154 return new VerifierLegacyPass(FatalErrors); 6155 } 6156 6157 AnalysisKey VerifierAnalysis::Key; 6158 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6159 ModuleAnalysisManager &) { 6160 Result Res; 6161 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6162 return Res; 6163 } 6164 6165 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6166 FunctionAnalysisManager &) { 6167 return { llvm::verifyFunction(F, &dbgs()), false }; 6168 } 6169 6170 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6171 auto Res = AM.getResult<VerifierAnalysis>(M); 6172 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6173 report_fatal_error("Broken module found, compilation aborted!"); 6174 6175 return PreservedAnalyses::all(); 6176 } 6177 6178 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6179 auto res = AM.getResult<VerifierAnalysis>(F); 6180 if (res.IRBroken && FatalErrors) 6181 report_fatal_error("Broken function found, compilation aborted!"); 6182 6183 return PreservedAnalyses::all(); 6184 } 6185