1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyNoAliasScopeDomination(
119     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121              "scopes are not dominating"));
122 
123 namespace llvm {
124 
125 struct VerifierSupport {
126   raw_ostream *OS;
127   const Module &M;
128   ModuleSlotTracker MST;
129   Triple TT;
130   const DataLayout &DL;
131   LLVMContext &Context;
132 
133   /// Track the brokenness of the module while recursively visiting.
134   bool Broken = false;
135   /// Broken debug info can be "recovered" from by stripping the debug info.
136   bool BrokenDebugInfo = false;
137   /// Whether to treat broken debug info as an error.
138   bool TreatBrokenDebugInfoAsError = true;
139 
140   explicit VerifierSupport(raw_ostream *OS, const Module &M)
141       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142         Context(M.getContext()) {}
143 
144 private:
145   void Write(const Module *M) {
146     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147   }
148 
149   void Write(const Value *V) {
150     if (V)
151       Write(*V);
152   }
153 
154   void Write(const Value &V) {
155     if (isa<Instruction>(V)) {
156       V.print(*OS, MST);
157       *OS << '\n';
158     } else {
159       V.printAsOperand(*OS, true, MST);
160       *OS << '\n';
161     }
162   }
163 
164   void Write(const Metadata *MD) {
165     if (!MD)
166       return;
167     MD->print(*OS, MST, &M);
168     *OS << '\n';
169   }
170 
171   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172     Write(MD.get());
173   }
174 
175   void Write(const NamedMDNode *NMD) {
176     if (!NMD)
177       return;
178     NMD->print(*OS, MST);
179     *OS << '\n';
180   }
181 
182   void Write(Type *T) {
183     if (!T)
184       return;
185     *OS << ' ' << *T;
186   }
187 
188   void Write(const Comdat *C) {
189     if (!C)
190       return;
191     *OS << *C;
192   }
193 
194   void Write(const APInt *AI) {
195     if (!AI)
196       return;
197     *OS << *AI << '\n';
198   }
199 
200   void Write(const unsigned i) { *OS << i << '\n'; }
201 
202   // NOLINTNEXTLINE(readability-identifier-naming)
203   void Write(const Attribute *A) {
204     if (!A)
205       return;
206     *OS << A->getAsString() << '\n';
207   }
208 
209   // NOLINTNEXTLINE(readability-identifier-naming)
210   void Write(const AttributeSet *AS) {
211     if (!AS)
212       return;
213     *OS << AS->getAsString() << '\n';
214   }
215 
216   // NOLINTNEXTLINE(readability-identifier-naming)
217   void Write(const AttributeList *AL) {
218     if (!AL)
219       return;
220     AL->print(*OS);
221   }
222 
223   template <typename T> void Write(ArrayRef<T> Vs) {
224     for (const T &V : Vs)
225       Write(V);
226   }
227 
228   template <typename T1, typename... Ts>
229   void WriteTs(const T1 &V1, const Ts &... Vs) {
230     Write(V1);
231     WriteTs(Vs...);
232   }
233 
234   template <typename... Ts> void WriteTs() {}
235 
236 public:
237   /// A check failed, so printout out the condition and the message.
238   ///
239   /// This provides a nice place to put a breakpoint if you want to see why
240   /// something is not correct.
241   void CheckFailed(const Twine &Message) {
242     if (OS)
243       *OS << Message << '\n';
244     Broken = true;
245   }
246 
247   /// A check failed (with values to print).
248   ///
249   /// This calls the Message-only version so that the above is easier to set a
250   /// breakpoint on.
251   template <typename T1, typename... Ts>
252   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253     CheckFailed(Message);
254     if (OS)
255       WriteTs(V1, Vs...);
256   }
257 
258   /// A debug info check failed.
259   void DebugInfoCheckFailed(const Twine &Message) {
260     if (OS)
261       *OS << Message << '\n';
262     Broken |= TreatBrokenDebugInfoAsError;
263     BrokenDebugInfo = true;
264   }
265 
266   /// A debug info check failed (with values to print).
267   template <typename T1, typename... Ts>
268   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269                             const Ts &... Vs) {
270     DebugInfoCheckFailed(Message);
271     if (OS)
272       WriteTs(V1, Vs...);
273   }
274 };
275 
276 } // namespace llvm
277 
278 namespace {
279 
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281   friend class InstVisitor<Verifier>;
282 
283   DominatorTree DT;
284 
285   /// When verifying a basic block, keep track of all of the
286   /// instructions we have seen so far.
287   ///
288   /// This allows us to do efficient dominance checks for the case when an
289   /// instruction has an operand that is an instruction in the same block.
290   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291 
292   /// Keep track of the metadata nodes that have been checked already.
293   SmallPtrSet<const Metadata *, 32> MDNodes;
294 
295   /// Keep track which DISubprogram is attached to which function.
296   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297 
298   /// Track all DICompileUnits visited.
299   SmallPtrSet<const Metadata *, 2> CUVisited;
300 
301   /// The result type for a landingpad.
302   Type *LandingPadResultTy;
303 
304   /// Whether we've seen a call to @llvm.localescape in this function
305   /// already.
306   bool SawFrameEscape;
307 
308   /// Whether the current function has a DISubprogram attached to it.
309   bool HasDebugInfo = false;
310 
311   /// The current source language.
312   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313 
314   /// Whether source was present on the first DIFile encountered in each CU.
315   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316 
317   /// Stores the count of how many objects were passed to llvm.localescape for a
318   /// given function and the largest index passed to llvm.localrecover.
319   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
320 
321   // Maps catchswitches and cleanuppads that unwind to siblings to the
322   // terminators that indicate the unwind, used to detect cycles therein.
323   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324 
325   /// Cache of constants visited in search of ConstantExprs.
326   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327 
328   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329   SmallVector<const Function *, 4> DeoptimizeDeclarations;
330 
331   /// Cache of attribute lists verified.
332   SmallPtrSet<const void *, 32> AttributeListsVisited;
333 
334   // Verify that this GlobalValue is only used in this module.
335   // This map is used to avoid visiting uses twice. We can arrive at a user
336   // twice, if they have multiple operands. In particular for very large
337   // constant expressions, we can arrive at a particular user many times.
338   SmallPtrSet<const Value *, 32> GlobalValueVisited;
339 
340   // Keeps track of duplicate function argument debug info.
341   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
342 
343   TBAAVerifier TBAAVerifyHelper;
344 
345   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346 
347   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348 
349 public:
350   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351                     const Module &M)
352       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353         SawFrameEscape(false), TBAAVerifyHelper(this) {
354     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355   }
356 
357   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358 
359   bool verify(const Function &F) {
360     assert(F.getParent() == &M &&
361            "An instance of this class only works with a specific module!");
362 
363     // First ensure the function is well-enough formed to compute dominance
364     // information, and directly compute a dominance tree. We don't rely on the
365     // pass manager to provide this as it isolates us from a potentially
366     // out-of-date dominator tree and makes it significantly more complex to run
367     // this code outside of a pass manager.
368     // FIXME: It's really gross that we have to cast away constness here.
369     if (!F.empty())
370       DT.recalculate(const_cast<Function &>(F));
371 
372     for (const BasicBlock &BB : F) {
373       if (!BB.empty() && BB.back().isTerminator())
374         continue;
375 
376       if (OS) {
377         *OS << "Basic Block in function '" << F.getName()
378             << "' does not have terminator!\n";
379         BB.printAsOperand(*OS, true, MST);
380         *OS << "\n";
381       }
382       return false;
383     }
384 
385     Broken = false;
386     // FIXME: We strip const here because the inst visitor strips const.
387     visit(const_cast<Function &>(F));
388     verifySiblingFuncletUnwinds();
389     InstsInThisBlock.clear();
390     DebugFnArgs.clear();
391     LandingPadResultTy = nullptr;
392     SawFrameEscape = false;
393     SiblingFuncletInfo.clear();
394     verifyNoAliasScopeDecl();
395     NoAliasScopeDecls.clear();
396 
397     return !Broken;
398   }
399 
400   /// Verify the module that this instance of \c Verifier was initialized with.
401   bool verify() {
402     Broken = false;
403 
404     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405     for (const Function &F : M)
406       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407         DeoptimizeDeclarations.push_back(&F);
408 
409     // Now that we've visited every function, verify that we never asked to
410     // recover a frame index that wasn't escaped.
411     verifyFrameRecoverIndices();
412     for (const GlobalVariable &GV : M.globals())
413       visitGlobalVariable(GV);
414 
415     for (const GlobalAlias &GA : M.aliases())
416       visitGlobalAlias(GA);
417 
418     for (const NamedMDNode &NMD : M.named_metadata())
419       visitNamedMDNode(NMD);
420 
421     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
422       visitComdat(SMEC.getValue());
423 
424     visitModuleFlags(M);
425     visitModuleIdents(M);
426     visitModuleCommandLines(M);
427 
428     verifyCompileUnits();
429 
430     verifyDeoptimizeCallingConvs();
431     DISubprogramAttachments.clear();
432     return !Broken;
433   }
434 
435 private:
436   /// Whether a metadata node is allowed to be, or contain, a DILocation.
437   enum class AreDebugLocsAllowed { No, Yes };
438 
439   // Verification methods...
440   void visitGlobalValue(const GlobalValue &GV);
441   void visitGlobalVariable(const GlobalVariable &GV);
442   void visitGlobalAlias(const GlobalAlias &GA);
443   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
444   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
445                            const GlobalAlias &A, const Constant &C);
446   void visitNamedMDNode(const NamedMDNode &NMD);
447   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
448   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
449   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
450   void visitComdat(const Comdat &C);
451   void visitModuleIdents(const Module &M);
452   void visitModuleCommandLines(const Module &M);
453   void visitModuleFlags(const Module &M);
454   void visitModuleFlag(const MDNode *Op,
455                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
456                        SmallVectorImpl<const MDNode *> &Requirements);
457   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
458   void visitFunction(const Function &F);
459   void visitBasicBlock(BasicBlock &BB);
460   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
461   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
462   void visitProfMetadata(Instruction &I, MDNode *MD);
463   void visitAnnotationMetadata(MDNode *Annotation);
464 
465   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
467 #include "llvm/IR/Metadata.def"
468   void visitDIScope(const DIScope &N);
469   void visitDIVariable(const DIVariable &N);
470   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
471   void visitDITemplateParameter(const DITemplateParameter &N);
472 
473   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
474 
475   // InstVisitor overrides...
476   using InstVisitor<Verifier>::visit;
477   void visit(Instruction &I);
478 
479   void visitTruncInst(TruncInst &I);
480   void visitZExtInst(ZExtInst &I);
481   void visitSExtInst(SExtInst &I);
482   void visitFPTruncInst(FPTruncInst &I);
483   void visitFPExtInst(FPExtInst &I);
484   void visitFPToUIInst(FPToUIInst &I);
485   void visitFPToSIInst(FPToSIInst &I);
486   void visitUIToFPInst(UIToFPInst &I);
487   void visitSIToFPInst(SIToFPInst &I);
488   void visitIntToPtrInst(IntToPtrInst &I);
489   void visitPtrToIntInst(PtrToIntInst &I);
490   void visitBitCastInst(BitCastInst &I);
491   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
492   void visitPHINode(PHINode &PN);
493   void visitCallBase(CallBase &Call);
494   void visitUnaryOperator(UnaryOperator &U);
495   void visitBinaryOperator(BinaryOperator &B);
496   void visitICmpInst(ICmpInst &IC);
497   void visitFCmpInst(FCmpInst &FC);
498   void visitExtractElementInst(ExtractElementInst &EI);
499   void visitInsertElementInst(InsertElementInst &EI);
500   void visitShuffleVectorInst(ShuffleVectorInst &EI);
501   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
502   void visitCallInst(CallInst &CI);
503   void visitInvokeInst(InvokeInst &II);
504   void visitGetElementPtrInst(GetElementPtrInst &GEP);
505   void visitLoadInst(LoadInst &LI);
506   void visitStoreInst(StoreInst &SI);
507   void verifyDominatesUse(Instruction &I, unsigned i);
508   void visitInstruction(Instruction &I);
509   void visitTerminator(Instruction &I);
510   void visitBranchInst(BranchInst &BI);
511   void visitReturnInst(ReturnInst &RI);
512   void visitSwitchInst(SwitchInst &SI);
513   void visitIndirectBrInst(IndirectBrInst &BI);
514   void visitCallBrInst(CallBrInst &CBI);
515   void visitSelectInst(SelectInst &SI);
516   void visitUserOp1(Instruction &I);
517   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
518   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
519   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
520   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
521   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
522   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
523   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
524   void visitFenceInst(FenceInst &FI);
525   void visitAllocaInst(AllocaInst &AI);
526   void visitExtractValueInst(ExtractValueInst &EVI);
527   void visitInsertValueInst(InsertValueInst &IVI);
528   void visitEHPadPredecessors(Instruction &I);
529   void visitLandingPadInst(LandingPadInst &LPI);
530   void visitResumeInst(ResumeInst &RI);
531   void visitCatchPadInst(CatchPadInst &CPI);
532   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
533   void visitCleanupPadInst(CleanupPadInst &CPI);
534   void visitFuncletPadInst(FuncletPadInst &FPI);
535   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
536   void visitCleanupReturnInst(CleanupReturnInst &CRI);
537 
538   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
539   void verifySwiftErrorValue(const Value *SwiftErrorVal);
540   void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context);
541   void verifyMustTailCall(CallInst &CI);
542   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
543   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
544   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
545   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
546                                     const Value *V);
547   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
548                            const Value *V, bool IsIntrinsic);
549   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
550 
551   void visitConstantExprsRecursively(const Constant *EntryC);
552   void visitConstantExpr(const ConstantExpr *CE);
553   void verifyStatepoint(const CallBase &Call);
554   void verifyFrameRecoverIndices();
555   void verifySiblingFuncletUnwinds();
556 
557   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
558   template <typename ValueOrMetadata>
559   void verifyFragmentExpression(const DIVariable &V,
560                                 DIExpression::FragmentInfo Fragment,
561                                 ValueOrMetadata *Desc);
562   void verifyFnArgs(const DbgVariableIntrinsic &I);
563   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
564 
565   /// Module-level debug info verification...
566   void verifyCompileUnits();
567 
568   /// Module-level verification that all @llvm.experimental.deoptimize
569   /// declarations share the same calling convention.
570   void verifyDeoptimizeCallingConvs();
571 
572   /// Verify all-or-nothing property of DIFile source attribute within a CU.
573   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
574 
575   /// Verify the llvm.experimental.noalias.scope.decl declarations
576   void verifyNoAliasScopeDecl();
577 };
578 
579 } // end anonymous namespace
580 
581 /// We know that cond should be true, if not print an error message.
582 #define Assert(C, ...) \
583   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
584 
585 /// We know that a debug info condition should be true, if not print
586 /// an error message.
587 #define AssertDI(C, ...) \
588   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
589 
590 void Verifier::visit(Instruction &I) {
591   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
592     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
593   InstVisitor<Verifier>::visit(I);
594 }
595 
596 // Helper to recursively iterate over indirect users. By
597 // returning false, the callback can ask to stop recursing
598 // further.
599 static void forEachUser(const Value *User,
600                         SmallPtrSet<const Value *, 32> &Visited,
601                         llvm::function_ref<bool(const Value *)> Callback) {
602   if (!Visited.insert(User).second)
603     return;
604   for (const Value *TheNextUser : User->materialized_users())
605     if (Callback(TheNextUser))
606       forEachUser(TheNextUser, Visited, Callback);
607 }
608 
609 void Verifier::visitGlobalValue(const GlobalValue &GV) {
610   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
611          "Global is external, but doesn't have external or weak linkage!", &GV);
612 
613   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
614     Assert(GO->getAlignment() <= Value::MaximumAlignment,
615            "huge alignment values are unsupported", GO);
616   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
617          "Only global variables can have appending linkage!", &GV);
618 
619   if (GV.hasAppendingLinkage()) {
620     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
621     Assert(GVar && GVar->getValueType()->isArrayTy(),
622            "Only global arrays can have appending linkage!", GVar);
623   }
624 
625   if (GV.isDeclarationForLinker())
626     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
627 
628   if (GV.hasDLLImportStorageClass()) {
629     Assert(!GV.isDSOLocal(),
630            "GlobalValue with DLLImport Storage is dso_local!", &GV);
631 
632     Assert((GV.isDeclaration() &&
633             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
634                GV.hasAvailableExternallyLinkage(),
635            "Global is marked as dllimport, but not external", &GV);
636   }
637 
638   if (GV.isImplicitDSOLocal())
639     Assert(GV.isDSOLocal(),
640            "GlobalValue with local linkage or non-default "
641            "visibility must be dso_local!",
642            &GV);
643 
644   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
645     if (const Instruction *I = dyn_cast<Instruction>(V)) {
646       if (!I->getParent() || !I->getParent()->getParent())
647         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
648                     I);
649       else if (I->getParent()->getParent()->getParent() != &M)
650         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
651                     I->getParent()->getParent(),
652                     I->getParent()->getParent()->getParent());
653       return false;
654     } else if (const Function *F = dyn_cast<Function>(V)) {
655       if (F->getParent() != &M)
656         CheckFailed("Global is used by function in a different module", &GV, &M,
657                     F, F->getParent());
658       return false;
659     }
660     return true;
661   });
662 }
663 
664 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
665   if (GV.hasInitializer()) {
666     Assert(GV.getInitializer()->getType() == GV.getValueType(),
667            "Global variable initializer type does not match global "
668            "variable type!",
669            &GV);
670     // If the global has common linkage, it must have a zero initializer and
671     // cannot be constant.
672     if (GV.hasCommonLinkage()) {
673       Assert(GV.getInitializer()->isNullValue(),
674              "'common' global must have a zero initializer!", &GV);
675       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
676              &GV);
677       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
678     }
679   }
680 
681   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
682                        GV.getName() == "llvm.global_dtors")) {
683     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
684            "invalid linkage for intrinsic global variable", &GV);
685     // Don't worry about emitting an error for it not being an array,
686     // visitGlobalValue will complain on appending non-array.
687     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
688       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
689       PointerType *FuncPtrTy =
690           FunctionType::get(Type::getVoidTy(Context), false)->
691           getPointerTo(DL.getProgramAddressSpace());
692       Assert(STy &&
693                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
694                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
695                  STy->getTypeAtIndex(1) == FuncPtrTy,
696              "wrong type for intrinsic global variable", &GV);
697       Assert(STy->getNumElements() == 3,
698              "the third field of the element type is mandatory, "
699              "specify i8* null to migrate from the obsoleted 2-field form");
700       Type *ETy = STy->getTypeAtIndex(2);
701       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
702       Assert(ETy->isPointerTy() &&
703                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
704              "wrong type for intrinsic global variable", &GV);
705     }
706   }
707 
708   if (GV.hasName() && (GV.getName() == "llvm.used" ||
709                        GV.getName() == "llvm.compiler.used")) {
710     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
711            "invalid linkage for intrinsic global variable", &GV);
712     Type *GVType = GV.getValueType();
713     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
714       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
715       Assert(PTy, "wrong type for intrinsic global variable", &GV);
716       if (GV.hasInitializer()) {
717         const Constant *Init = GV.getInitializer();
718         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
719         Assert(InitArray, "wrong initalizer for intrinsic global variable",
720                Init);
721         for (Value *Op : InitArray->operands()) {
722           Value *V = Op->stripPointerCasts();
723           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
724                      isa<GlobalAlias>(V),
725                  "invalid llvm.used member", V);
726           Assert(V->hasName(), "members of llvm.used must be named", V);
727         }
728       }
729     }
730   }
731 
732   // Visit any debug info attachments.
733   SmallVector<MDNode *, 1> MDs;
734   GV.getMetadata(LLVMContext::MD_dbg, MDs);
735   for (auto *MD : MDs) {
736     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
737       visitDIGlobalVariableExpression(*GVE);
738     else
739       AssertDI(false, "!dbg attachment of global variable must be a "
740                       "DIGlobalVariableExpression");
741   }
742 
743   // Scalable vectors cannot be global variables, since we don't know
744   // the runtime size. If the global is an array containing scalable vectors,
745   // that will be caught by the isValidElementType methods in StructType or
746   // ArrayType instead.
747   Assert(!isa<ScalableVectorType>(GV.getValueType()),
748          "Globals cannot contain scalable vectors", &GV);
749 
750   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
751     Assert(!STy->containsScalableVectorType(),
752            "Globals cannot contain scalable vectors", &GV);
753 
754   if (!GV.hasInitializer()) {
755     visitGlobalValue(GV);
756     return;
757   }
758 
759   // Walk any aggregate initializers looking for bitcasts between address spaces
760   visitConstantExprsRecursively(GV.getInitializer());
761 
762   visitGlobalValue(GV);
763 }
764 
765 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
766   SmallPtrSet<const GlobalAlias*, 4> Visited;
767   Visited.insert(&GA);
768   visitAliaseeSubExpr(Visited, GA, C);
769 }
770 
771 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
772                                    const GlobalAlias &GA, const Constant &C) {
773   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
774     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
775            &GA);
776 
777     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
778       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
779 
780       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
781              &GA);
782     } else {
783       // Only continue verifying subexpressions of GlobalAliases.
784       // Do not recurse into global initializers.
785       return;
786     }
787   }
788 
789   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
790     visitConstantExprsRecursively(CE);
791 
792   for (const Use &U : C.operands()) {
793     Value *V = &*U;
794     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
795       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
796     else if (const auto *C2 = dyn_cast<Constant>(V))
797       visitAliaseeSubExpr(Visited, GA, *C2);
798   }
799 }
800 
801 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
802   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
803          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
804          "weak_odr, or external linkage!",
805          &GA);
806   const Constant *Aliasee = GA.getAliasee();
807   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
808   Assert(GA.getType() == Aliasee->getType(),
809          "Alias and aliasee types should match!", &GA);
810 
811   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
812          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
813 
814   visitAliaseeSubExpr(GA, *Aliasee);
815 
816   visitGlobalValue(GA);
817 }
818 
819 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
820   // There used to be various other llvm.dbg.* nodes, but we don't support
821   // upgrading them and we want to reserve the namespace for future uses.
822   if (NMD.getName().startswith("llvm.dbg."))
823     AssertDI(NMD.getName() == "llvm.dbg.cu",
824              "unrecognized named metadata node in the llvm.dbg namespace",
825              &NMD);
826   for (const MDNode *MD : NMD.operands()) {
827     if (NMD.getName() == "llvm.dbg.cu")
828       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
829 
830     if (!MD)
831       continue;
832 
833     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
834   }
835 }
836 
837 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
838   // Only visit each node once.  Metadata can be mutually recursive, so this
839   // avoids infinite recursion here, as well as being an optimization.
840   if (!MDNodes.insert(&MD).second)
841     return;
842 
843   Assert(&MD.getContext() == &Context,
844          "MDNode context does not match Module context!", &MD);
845 
846   switch (MD.getMetadataID()) {
847   default:
848     llvm_unreachable("Invalid MDNode subclass");
849   case Metadata::MDTupleKind:
850     break;
851 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
852   case Metadata::CLASS##Kind:                                                  \
853     visit##CLASS(cast<CLASS>(MD));                                             \
854     break;
855 #include "llvm/IR/Metadata.def"
856   }
857 
858   for (const Metadata *Op : MD.operands()) {
859     if (!Op)
860       continue;
861     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
862            &MD, Op);
863     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
864              "DILocation not allowed within this metadata node", &MD, Op);
865     if (auto *N = dyn_cast<MDNode>(Op)) {
866       visitMDNode(*N, AllowLocs);
867       continue;
868     }
869     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
870       visitValueAsMetadata(*V, nullptr);
871       continue;
872     }
873   }
874 
875   // Check these last, so we diagnose problems in operands first.
876   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
877   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
878 }
879 
880 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
881   Assert(MD.getValue(), "Expected valid value", &MD);
882   Assert(!MD.getValue()->getType()->isMetadataTy(),
883          "Unexpected metadata round-trip through values", &MD, MD.getValue());
884 
885   auto *L = dyn_cast<LocalAsMetadata>(&MD);
886   if (!L)
887     return;
888 
889   Assert(F, "function-local metadata used outside a function", L);
890 
891   // If this was an instruction, bb, or argument, verify that it is in the
892   // function that we expect.
893   Function *ActualF = nullptr;
894   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
895     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
896     ActualF = I->getParent()->getParent();
897   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
898     ActualF = BB->getParent();
899   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
900     ActualF = A->getParent();
901   assert(ActualF && "Unimplemented function local metadata case!");
902 
903   Assert(ActualF == F, "function-local metadata used in wrong function", L);
904 }
905 
906 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
907   Metadata *MD = MDV.getMetadata();
908   if (auto *N = dyn_cast<MDNode>(MD)) {
909     visitMDNode(*N, AreDebugLocsAllowed::No);
910     return;
911   }
912 
913   // Only visit each node once.  Metadata can be mutually recursive, so this
914   // avoids infinite recursion here, as well as being an optimization.
915   if (!MDNodes.insert(MD).second)
916     return;
917 
918   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
919     visitValueAsMetadata(*V, F);
920 }
921 
922 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
923 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
924 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
925 
926 void Verifier::visitDILocation(const DILocation &N) {
927   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
928            "location requires a valid scope", &N, N.getRawScope());
929   if (auto *IA = N.getRawInlinedAt())
930     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
931   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
932     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
933 }
934 
935 void Verifier::visitGenericDINode(const GenericDINode &N) {
936   AssertDI(N.getTag(), "invalid tag", &N);
937 }
938 
939 void Verifier::visitDIScope(const DIScope &N) {
940   if (auto *F = N.getRawFile())
941     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
942 }
943 
944 void Verifier::visitDISubrange(const DISubrange &N) {
945   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
946   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
947   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
948                N.getRawUpperBound(),
949            "Subrange must contain count or upperBound", &N);
950   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
951            "Subrange can have any one of count or upperBound", &N);
952   auto *CBound = N.getRawCountNode();
953   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
954                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
955            "Count must be signed constant or DIVariable or DIExpression", &N);
956   auto Count = N.getCount();
957   AssertDI(!Count || !Count.is<ConstantInt *>() ||
958                Count.get<ConstantInt *>()->getSExtValue() >= -1,
959            "invalid subrange count", &N);
960   auto *LBound = N.getRawLowerBound();
961   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
962                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
963            "LowerBound must be signed constant or DIVariable or DIExpression",
964            &N);
965   auto *UBound = N.getRawUpperBound();
966   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
967                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
968            "UpperBound must be signed constant or DIVariable or DIExpression",
969            &N);
970   auto *Stride = N.getRawStride();
971   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
972                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
973            "Stride must be signed constant or DIVariable or DIExpression", &N);
974 }
975 
976 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
977   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
978   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
979            "GenericSubrange must contain count or upperBound", &N);
980   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
981            "GenericSubrange can have any one of count or upperBound", &N);
982   auto *CBound = N.getRawCountNode();
983   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
984            "Count must be signed constant or DIVariable or DIExpression", &N);
985   auto *LBound = N.getRawLowerBound();
986   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
987   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
988            "LowerBound must be signed constant or DIVariable or DIExpression",
989            &N);
990   auto *UBound = N.getRawUpperBound();
991   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
992            "UpperBound must be signed constant or DIVariable or DIExpression",
993            &N);
994   auto *Stride = N.getRawStride();
995   AssertDI(Stride, "GenericSubrange must contain stride", &N);
996   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
997            "Stride must be signed constant or DIVariable or DIExpression", &N);
998 }
999 
1000 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1001   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1002 }
1003 
1004 void Verifier::visitDIBasicType(const DIBasicType &N) {
1005   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1006                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1007                N.getTag() == dwarf::DW_TAG_string_type,
1008            "invalid tag", &N);
1009 }
1010 
1011 void Verifier::visitDIStringType(const DIStringType &N) {
1012   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1013   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1014             "has conflicting flags", &N);
1015 }
1016 
1017 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1018   // Common scope checks.
1019   visitDIScope(N);
1020 
1021   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1022                N.getTag() == dwarf::DW_TAG_pointer_type ||
1023                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1024                N.getTag() == dwarf::DW_TAG_reference_type ||
1025                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1026                N.getTag() == dwarf::DW_TAG_const_type ||
1027                N.getTag() == dwarf::DW_TAG_volatile_type ||
1028                N.getTag() == dwarf::DW_TAG_restrict_type ||
1029                N.getTag() == dwarf::DW_TAG_atomic_type ||
1030                N.getTag() == dwarf::DW_TAG_member ||
1031                N.getTag() == dwarf::DW_TAG_inheritance ||
1032                N.getTag() == dwarf::DW_TAG_friend ||
1033                N.getTag() == dwarf::DW_TAG_set_type,
1034            "invalid tag", &N);
1035   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1036     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1037              N.getRawExtraData());
1038   }
1039 
1040   if (N.getTag() == dwarf::DW_TAG_set_type) {
1041     if (auto *T = N.getRawBaseType()) {
1042       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1043       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1044       AssertDI(
1045           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1046               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1047                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1048                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1049                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1050                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1051           "invalid set base type", &N, T);
1052     }
1053   }
1054 
1055   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1056   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1057            N.getRawBaseType());
1058 
1059   if (N.getDWARFAddressSpace()) {
1060     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1061                  N.getTag() == dwarf::DW_TAG_reference_type ||
1062                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1063              "DWARF address space only applies to pointer or reference types",
1064              &N);
1065   }
1066 }
1067 
1068 /// Detect mutually exclusive flags.
1069 static bool hasConflictingReferenceFlags(unsigned Flags) {
1070   return ((Flags & DINode::FlagLValueReference) &&
1071           (Flags & DINode::FlagRValueReference)) ||
1072          ((Flags & DINode::FlagTypePassByValue) &&
1073           (Flags & DINode::FlagTypePassByReference));
1074 }
1075 
1076 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1077   auto *Params = dyn_cast<MDTuple>(&RawParams);
1078   AssertDI(Params, "invalid template params", &N, &RawParams);
1079   for (Metadata *Op : Params->operands()) {
1080     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1081              &N, Params, Op);
1082   }
1083 }
1084 
1085 void Verifier::visitDICompositeType(const DICompositeType &N) {
1086   // Common scope checks.
1087   visitDIScope(N);
1088 
1089   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1090                N.getTag() == dwarf::DW_TAG_structure_type ||
1091                N.getTag() == dwarf::DW_TAG_union_type ||
1092                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1093                N.getTag() == dwarf::DW_TAG_class_type ||
1094                N.getTag() == dwarf::DW_TAG_variant_part,
1095            "invalid tag", &N);
1096 
1097   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1098   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1099            N.getRawBaseType());
1100 
1101   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1102            "invalid composite elements", &N, N.getRawElements());
1103   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1104            N.getRawVTableHolder());
1105   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1106            "invalid reference flags", &N);
1107   unsigned DIBlockByRefStruct = 1 << 4;
1108   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1109            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1110 
1111   if (N.isVector()) {
1112     const DINodeArray Elements = N.getElements();
1113     AssertDI(Elements.size() == 1 &&
1114              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1115              "invalid vector, expected one element of type subrange", &N);
1116   }
1117 
1118   if (auto *Params = N.getRawTemplateParams())
1119     visitTemplateParams(N, *Params);
1120 
1121   if (auto *D = N.getRawDiscriminator()) {
1122     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1123              "discriminator can only appear on variant part");
1124   }
1125 
1126   if (N.getRawDataLocation()) {
1127     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1128              "dataLocation can only appear in array type");
1129   }
1130 
1131   if (N.getRawAssociated()) {
1132     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1133              "associated can only appear in array type");
1134   }
1135 
1136   if (N.getRawAllocated()) {
1137     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1138              "allocated can only appear in array type");
1139   }
1140 
1141   if (N.getRawRank()) {
1142     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1143              "rank can only appear in array type");
1144   }
1145 }
1146 
1147 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1148   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1149   if (auto *Types = N.getRawTypeArray()) {
1150     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1151     for (Metadata *Ty : N.getTypeArray()->operands()) {
1152       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1153     }
1154   }
1155   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1156            "invalid reference flags", &N);
1157 }
1158 
1159 void Verifier::visitDIFile(const DIFile &N) {
1160   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1161   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1162   if (Checksum) {
1163     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1164              "invalid checksum kind", &N);
1165     size_t Size;
1166     switch (Checksum->Kind) {
1167     case DIFile::CSK_MD5:
1168       Size = 32;
1169       break;
1170     case DIFile::CSK_SHA1:
1171       Size = 40;
1172       break;
1173     case DIFile::CSK_SHA256:
1174       Size = 64;
1175       break;
1176     }
1177     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1178     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1179              "invalid checksum", &N);
1180   }
1181 }
1182 
1183 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1184   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1185   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1186 
1187   // Don't bother verifying the compilation directory or producer string
1188   // as those could be empty.
1189   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1190            N.getRawFile());
1191   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1192            N.getFile());
1193 
1194   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1195 
1196   verifySourceDebugInfo(N, *N.getFile());
1197 
1198   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1199            "invalid emission kind", &N);
1200 
1201   if (auto *Array = N.getRawEnumTypes()) {
1202     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1203     for (Metadata *Op : N.getEnumTypes()->operands()) {
1204       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1205       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1206                "invalid enum type", &N, N.getEnumTypes(), Op);
1207     }
1208   }
1209   if (auto *Array = N.getRawRetainedTypes()) {
1210     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1211     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1212       AssertDI(Op && (isa<DIType>(Op) ||
1213                       (isa<DISubprogram>(Op) &&
1214                        !cast<DISubprogram>(Op)->isDefinition())),
1215                "invalid retained type", &N, Op);
1216     }
1217   }
1218   if (auto *Array = N.getRawGlobalVariables()) {
1219     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1220     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1221       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1222                "invalid global variable ref", &N, Op);
1223     }
1224   }
1225   if (auto *Array = N.getRawImportedEntities()) {
1226     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1227     for (Metadata *Op : N.getImportedEntities()->operands()) {
1228       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1229                &N, Op);
1230     }
1231   }
1232   if (auto *Array = N.getRawMacros()) {
1233     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1234     for (Metadata *Op : N.getMacros()->operands()) {
1235       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1236     }
1237   }
1238   CUVisited.insert(&N);
1239 }
1240 
1241 void Verifier::visitDISubprogram(const DISubprogram &N) {
1242   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1243   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1244   if (auto *F = N.getRawFile())
1245     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1246   else
1247     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1248   if (auto *T = N.getRawType())
1249     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1250   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1251            N.getRawContainingType());
1252   if (auto *Params = N.getRawTemplateParams())
1253     visitTemplateParams(N, *Params);
1254   if (auto *S = N.getRawDeclaration())
1255     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1256              "invalid subprogram declaration", &N, S);
1257   if (auto *RawNode = N.getRawRetainedNodes()) {
1258     auto *Node = dyn_cast<MDTuple>(RawNode);
1259     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1260     for (Metadata *Op : Node->operands()) {
1261       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1262                "invalid retained nodes, expected DILocalVariable or DILabel",
1263                &N, Node, Op);
1264     }
1265   }
1266   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1267            "invalid reference flags", &N);
1268 
1269   auto *Unit = N.getRawUnit();
1270   if (N.isDefinition()) {
1271     // Subprogram definitions (not part of the type hierarchy).
1272     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1273     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1274     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1275     if (N.getFile())
1276       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1277   } else {
1278     // Subprogram declarations (part of the type hierarchy).
1279     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1280   }
1281 
1282   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1283     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1284     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1285     for (Metadata *Op : ThrownTypes->operands())
1286       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1287                Op);
1288   }
1289 
1290   if (N.areAllCallsDescribed())
1291     AssertDI(N.isDefinition(),
1292              "DIFlagAllCallsDescribed must be attached to a definition");
1293 }
1294 
1295 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1296   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1297   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1298            "invalid local scope", &N, N.getRawScope());
1299   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1300     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1301 }
1302 
1303 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1304   visitDILexicalBlockBase(N);
1305 
1306   AssertDI(N.getLine() || !N.getColumn(),
1307            "cannot have column info without line info", &N);
1308 }
1309 
1310 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1311   visitDILexicalBlockBase(N);
1312 }
1313 
1314 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1315   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1316   if (auto *S = N.getRawScope())
1317     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1318   if (auto *S = N.getRawDecl())
1319     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1320 }
1321 
1322 void Verifier::visitDINamespace(const DINamespace &N) {
1323   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1324   if (auto *S = N.getRawScope())
1325     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1326 }
1327 
1328 void Verifier::visitDIMacro(const DIMacro &N) {
1329   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1330                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1331            "invalid macinfo type", &N);
1332   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1333   if (!N.getValue().empty()) {
1334     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1335   }
1336 }
1337 
1338 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1339   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1340            "invalid macinfo type", &N);
1341   if (auto *F = N.getRawFile())
1342     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1343 
1344   if (auto *Array = N.getRawElements()) {
1345     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1346     for (Metadata *Op : N.getElements()->operands()) {
1347       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1348     }
1349   }
1350 }
1351 
1352 void Verifier::visitDIArgList(const DIArgList &N) {
1353   AssertDI(!N.getNumOperands(),
1354            "DIArgList should have no operands other than a list of "
1355            "ValueAsMetadata",
1356            &N);
1357 }
1358 
1359 void Verifier::visitDIModule(const DIModule &N) {
1360   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1361   AssertDI(!N.getName().empty(), "anonymous module", &N);
1362 }
1363 
1364 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1365   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1366 }
1367 
1368 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1369   visitDITemplateParameter(N);
1370 
1371   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1372            &N);
1373 }
1374 
1375 void Verifier::visitDITemplateValueParameter(
1376     const DITemplateValueParameter &N) {
1377   visitDITemplateParameter(N);
1378 
1379   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1380                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1381                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1382            "invalid tag", &N);
1383 }
1384 
1385 void Verifier::visitDIVariable(const DIVariable &N) {
1386   if (auto *S = N.getRawScope())
1387     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1388   if (auto *F = N.getRawFile())
1389     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1390 }
1391 
1392 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1393   // Checks common to all variables.
1394   visitDIVariable(N);
1395 
1396   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1397   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1398   // Assert only if the global variable is not an extern
1399   if (N.isDefinition())
1400     AssertDI(N.getType(), "missing global variable type", &N);
1401   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1402     AssertDI(isa<DIDerivedType>(Member),
1403              "invalid static data member declaration", &N, Member);
1404   }
1405 }
1406 
1407 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1408   // Checks common to all variables.
1409   visitDIVariable(N);
1410 
1411   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1412   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1413   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1414            "local variable requires a valid scope", &N, N.getRawScope());
1415   if (auto Ty = N.getType())
1416     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1417 }
1418 
1419 void Verifier::visitDILabel(const DILabel &N) {
1420   if (auto *S = N.getRawScope())
1421     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1422   if (auto *F = N.getRawFile())
1423     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1424 
1425   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1426   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1427            "label requires a valid scope", &N, N.getRawScope());
1428 }
1429 
1430 void Verifier::visitDIExpression(const DIExpression &N) {
1431   AssertDI(N.isValid(), "invalid expression", &N);
1432 }
1433 
1434 void Verifier::visitDIGlobalVariableExpression(
1435     const DIGlobalVariableExpression &GVE) {
1436   AssertDI(GVE.getVariable(), "missing variable");
1437   if (auto *Var = GVE.getVariable())
1438     visitDIGlobalVariable(*Var);
1439   if (auto *Expr = GVE.getExpression()) {
1440     visitDIExpression(*Expr);
1441     if (auto Fragment = Expr->getFragmentInfo())
1442       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1443   }
1444 }
1445 
1446 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1447   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1448   if (auto *T = N.getRawType())
1449     AssertDI(isType(T), "invalid type ref", &N, T);
1450   if (auto *F = N.getRawFile())
1451     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1452 }
1453 
1454 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1455   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1456                N.getTag() == dwarf::DW_TAG_imported_declaration,
1457            "invalid tag", &N);
1458   if (auto *S = N.getRawScope())
1459     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1460   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1461            N.getRawEntity());
1462 }
1463 
1464 void Verifier::visitComdat(const Comdat &C) {
1465   // In COFF the Module is invalid if the GlobalValue has private linkage.
1466   // Entities with private linkage don't have entries in the symbol table.
1467   if (TT.isOSBinFormatCOFF())
1468     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1469       Assert(!GV->hasPrivateLinkage(),
1470              "comdat global value has private linkage", GV);
1471 }
1472 
1473 void Verifier::visitModuleIdents(const Module &M) {
1474   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1475   if (!Idents)
1476     return;
1477 
1478   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1479   // Scan each llvm.ident entry and make sure that this requirement is met.
1480   for (const MDNode *N : Idents->operands()) {
1481     Assert(N->getNumOperands() == 1,
1482            "incorrect number of operands in llvm.ident metadata", N);
1483     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1484            ("invalid value for llvm.ident metadata entry operand"
1485             "(the operand should be a string)"),
1486            N->getOperand(0));
1487   }
1488 }
1489 
1490 void Verifier::visitModuleCommandLines(const Module &M) {
1491   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1492   if (!CommandLines)
1493     return;
1494 
1495   // llvm.commandline takes a list of metadata entry. Each entry has only one
1496   // string. Scan each llvm.commandline entry and make sure that this
1497   // requirement is met.
1498   for (const MDNode *N : CommandLines->operands()) {
1499     Assert(N->getNumOperands() == 1,
1500            "incorrect number of operands in llvm.commandline metadata", N);
1501     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1502            ("invalid value for llvm.commandline metadata entry operand"
1503             "(the operand should be a string)"),
1504            N->getOperand(0));
1505   }
1506 }
1507 
1508 void Verifier::visitModuleFlags(const Module &M) {
1509   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1510   if (!Flags) return;
1511 
1512   // Scan each flag, and track the flags and requirements.
1513   DenseMap<const MDString*, const MDNode*> SeenIDs;
1514   SmallVector<const MDNode*, 16> Requirements;
1515   for (const MDNode *MDN : Flags->operands())
1516     visitModuleFlag(MDN, SeenIDs, Requirements);
1517 
1518   // Validate that the requirements in the module are valid.
1519   for (const MDNode *Requirement : Requirements) {
1520     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1521     const Metadata *ReqValue = Requirement->getOperand(1);
1522 
1523     const MDNode *Op = SeenIDs.lookup(Flag);
1524     if (!Op) {
1525       CheckFailed("invalid requirement on flag, flag is not present in module",
1526                   Flag);
1527       continue;
1528     }
1529 
1530     if (Op->getOperand(2) != ReqValue) {
1531       CheckFailed(("invalid requirement on flag, "
1532                    "flag does not have the required value"),
1533                   Flag);
1534       continue;
1535     }
1536   }
1537 }
1538 
1539 void
1540 Verifier::visitModuleFlag(const MDNode *Op,
1541                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1542                           SmallVectorImpl<const MDNode *> &Requirements) {
1543   // Each module flag should have three arguments, the merge behavior (a
1544   // constant int), the flag ID (an MDString), and the value.
1545   Assert(Op->getNumOperands() == 3,
1546          "incorrect number of operands in module flag", Op);
1547   Module::ModFlagBehavior MFB;
1548   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1549     Assert(
1550         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1551         "invalid behavior operand in module flag (expected constant integer)",
1552         Op->getOperand(0));
1553     Assert(false,
1554            "invalid behavior operand in module flag (unexpected constant)",
1555            Op->getOperand(0));
1556   }
1557   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1558   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1559          Op->getOperand(1));
1560 
1561   // Sanity check the values for behaviors with additional requirements.
1562   switch (MFB) {
1563   case Module::Error:
1564   case Module::Warning:
1565   case Module::Override:
1566     // These behavior types accept any value.
1567     break;
1568 
1569   case Module::Max: {
1570     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1571            "invalid value for 'max' module flag (expected constant integer)",
1572            Op->getOperand(2));
1573     break;
1574   }
1575 
1576   case Module::Require: {
1577     // The value should itself be an MDNode with two operands, a flag ID (an
1578     // MDString), and a value.
1579     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1580     Assert(Value && Value->getNumOperands() == 2,
1581            "invalid value for 'require' module flag (expected metadata pair)",
1582            Op->getOperand(2));
1583     Assert(isa<MDString>(Value->getOperand(0)),
1584            ("invalid value for 'require' module flag "
1585             "(first value operand should be a string)"),
1586            Value->getOperand(0));
1587 
1588     // Append it to the list of requirements, to check once all module flags are
1589     // scanned.
1590     Requirements.push_back(Value);
1591     break;
1592   }
1593 
1594   case Module::Append:
1595   case Module::AppendUnique: {
1596     // These behavior types require the operand be an MDNode.
1597     Assert(isa<MDNode>(Op->getOperand(2)),
1598            "invalid value for 'append'-type module flag "
1599            "(expected a metadata node)",
1600            Op->getOperand(2));
1601     break;
1602   }
1603   }
1604 
1605   // Unless this is a "requires" flag, check the ID is unique.
1606   if (MFB != Module::Require) {
1607     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1608     Assert(Inserted,
1609            "module flag identifiers must be unique (or of 'require' type)", ID);
1610   }
1611 
1612   if (ID->getString() == "wchar_size") {
1613     ConstantInt *Value
1614       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1615     Assert(Value, "wchar_size metadata requires constant integer argument");
1616   }
1617 
1618   if (ID->getString() == "Linker Options") {
1619     // If the llvm.linker.options named metadata exists, we assume that the
1620     // bitcode reader has upgraded the module flag. Otherwise the flag might
1621     // have been created by a client directly.
1622     Assert(M.getNamedMetadata("llvm.linker.options"),
1623            "'Linker Options' named metadata no longer supported");
1624   }
1625 
1626   if (ID->getString() == "SemanticInterposition") {
1627     ConstantInt *Value =
1628         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1629     Assert(Value,
1630            "SemanticInterposition metadata requires constant integer argument");
1631   }
1632 
1633   if (ID->getString() == "CG Profile") {
1634     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1635       visitModuleFlagCGProfileEntry(MDO);
1636   }
1637 }
1638 
1639 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1640   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1641     if (!FuncMDO)
1642       return;
1643     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1644     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1645            "expected a Function or null", FuncMDO);
1646   };
1647   auto Node = dyn_cast_or_null<MDNode>(MDO);
1648   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1649   CheckFunction(Node->getOperand(0));
1650   CheckFunction(Node->getOperand(1));
1651   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1652   Assert(Count && Count->getType()->isIntegerTy(),
1653          "expected an integer constant", Node->getOperand(2));
1654 }
1655 
1656 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1657   for (Attribute A : Attrs) {
1658 
1659     if (A.isStringAttribute()) {
1660 #define GET_ATTR_NAMES
1661 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1662 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1663   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1664     auto V = A.getValueAsString();                                             \
1665     if (!(V.empty() || V == "true" || V == "false"))                           \
1666       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1667                   "");                                                         \
1668   }
1669 
1670 #include "llvm/IR/Attributes.inc"
1671       continue;
1672     }
1673 
1674     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1675       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1676                   V);
1677       return;
1678     }
1679   }
1680 }
1681 
1682 // VerifyParameterAttrs - Check the given attributes for an argument or return
1683 // value of the specified type.  The value V is printed in error messages.
1684 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1685                                     const Value *V) {
1686   if (!Attrs.hasAttributes())
1687     return;
1688 
1689   verifyAttributeTypes(Attrs, V);
1690 
1691   for (Attribute Attr : Attrs)
1692     Assert(Attr.isStringAttribute() ||
1693            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1694            "Attribute '" + Attr.getAsString() +
1695                "' does not apply to parameters",
1696            V);
1697 
1698   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1699     Assert(Attrs.getNumAttributes() == 1,
1700            "Attribute 'immarg' is incompatible with other attributes", V);
1701   }
1702 
1703   // Check for mutually incompatible attributes.  Only inreg is compatible with
1704   // sret.
1705   unsigned AttrCount = 0;
1706   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1707   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1708   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1709   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1710                Attrs.hasAttribute(Attribute::InReg);
1711   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1712   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1713   Assert(AttrCount <= 1,
1714          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1715          "'byref', and 'sret' are incompatible!",
1716          V);
1717 
1718   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1719            Attrs.hasAttribute(Attribute::ReadOnly)),
1720          "Attributes "
1721          "'inalloca and readonly' are incompatible!",
1722          V);
1723 
1724   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1725            Attrs.hasAttribute(Attribute::Returned)),
1726          "Attributes "
1727          "'sret and returned' are incompatible!",
1728          V);
1729 
1730   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1731            Attrs.hasAttribute(Attribute::SExt)),
1732          "Attributes "
1733          "'zeroext and signext' are incompatible!",
1734          V);
1735 
1736   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1737            Attrs.hasAttribute(Attribute::ReadOnly)),
1738          "Attributes "
1739          "'readnone and readonly' are incompatible!",
1740          V);
1741 
1742   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1743            Attrs.hasAttribute(Attribute::WriteOnly)),
1744          "Attributes "
1745          "'readnone and writeonly' are incompatible!",
1746          V);
1747 
1748   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1749            Attrs.hasAttribute(Attribute::WriteOnly)),
1750          "Attributes "
1751          "'readonly and writeonly' are incompatible!",
1752          V);
1753 
1754   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1755            Attrs.hasAttribute(Attribute::AlwaysInline)),
1756          "Attributes "
1757          "'noinline and alwaysinline' are incompatible!",
1758          V);
1759 
1760   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1761   for (Attribute Attr : Attrs) {
1762     if (!Attr.isStringAttribute() &&
1763         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1764       CheckFailed("Attribute '" + Attr.getAsString() +
1765                   "' applied to incompatible type!", V);
1766       return;
1767     }
1768   }
1769 
1770   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1771     if (Attrs.hasAttribute(Attribute::ByVal)) {
1772       SmallPtrSet<Type *, 4> Visited;
1773       Assert(Attrs.getByValType()->isSized(&Visited),
1774              "Attribute 'byval' does not support unsized types!", V);
1775     }
1776     if (Attrs.hasAttribute(Attribute::ByRef)) {
1777       SmallPtrSet<Type *, 4> Visited;
1778       Assert(Attrs.getByRefType()->isSized(&Visited),
1779              "Attribute 'byref' does not support unsized types!", V);
1780     }
1781     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1782       SmallPtrSet<Type *, 4> Visited;
1783       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1784              "Attribute 'inalloca' does not support unsized types!", V);
1785     }
1786     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1787       SmallPtrSet<Type *, 4> Visited;
1788       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1789              "Attribute 'preallocated' does not support unsized types!", V);
1790     }
1791     if (!PTy->isOpaque()) {
1792       if (!isa<PointerType>(PTy->getElementType()))
1793         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1794                "Attribute 'swifterror' only applies to parameters "
1795                "with pointer to pointer type!",
1796                V);
1797       if (Attrs.hasAttribute(Attribute::ByRef)) {
1798         Assert(Attrs.getByRefType() == PTy->getElementType(),
1799                "Attribute 'byref' type does not match parameter!", V);
1800       }
1801 
1802       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1803         Assert(Attrs.getByValType() == PTy->getElementType(),
1804                "Attribute 'byval' type does not match parameter!", V);
1805       }
1806 
1807       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1808         Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1809                "Attribute 'preallocated' type does not match parameter!", V);
1810       }
1811 
1812       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1813         Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1814                "Attribute 'inalloca' type does not match parameter!", V);
1815       }
1816 
1817       if (Attrs.hasAttribute(Attribute::ElementType)) {
1818         Assert(Attrs.getElementType() == PTy->getElementType(),
1819                "Attribute 'elementtype' type does not match parameter!", V);
1820       }
1821     }
1822   }
1823 }
1824 
1825 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1826                                             const Value *V) {
1827   if (Attrs.hasFnAttr(Attr)) {
1828     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1829     unsigned N;
1830     if (S.getAsInteger(10, N))
1831       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1832   }
1833 }
1834 
1835 // Check parameter attributes against a function type.
1836 // The value V is printed in error messages.
1837 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1838                                    const Value *V, bool IsIntrinsic) {
1839   if (Attrs.isEmpty())
1840     return;
1841 
1842   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1843     Assert(Attrs.hasParentContext(Context),
1844            "Attribute list does not match Module context!", &Attrs, V);
1845     for (const auto &AttrSet : Attrs) {
1846       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1847              "Attribute set does not match Module context!", &AttrSet, V);
1848       for (const auto &A : AttrSet) {
1849         Assert(A.hasParentContext(Context),
1850                "Attribute does not match Module context!", &A, V);
1851       }
1852     }
1853   }
1854 
1855   bool SawNest = false;
1856   bool SawReturned = false;
1857   bool SawSRet = false;
1858   bool SawSwiftSelf = false;
1859   bool SawSwiftAsync = false;
1860   bool SawSwiftError = false;
1861 
1862   // Verify return value attributes.
1863   AttributeSet RetAttrs = Attrs.getRetAttrs();
1864   for (Attribute RetAttr : RetAttrs)
1865     Assert(RetAttr.isStringAttribute() ||
1866            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1867            "Attribute '" + RetAttr.getAsString() +
1868                "' does not apply to function return values",
1869            V);
1870 
1871   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1872 
1873   // Verify parameter attributes.
1874   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1875     Type *Ty = FT->getParamType(i);
1876     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1877 
1878     if (!IsIntrinsic) {
1879       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1880              "immarg attribute only applies to intrinsics",V);
1881       Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1882              "Attribute 'elementtype' can only be applied to intrinsics.", V);
1883     }
1884 
1885     verifyParameterAttrs(ArgAttrs, Ty, V);
1886 
1887     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1888       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1889       SawNest = true;
1890     }
1891 
1892     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1893       Assert(!SawReturned, "More than one parameter has attribute returned!",
1894              V);
1895       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1896              "Incompatible argument and return types for 'returned' attribute",
1897              V);
1898       SawReturned = true;
1899     }
1900 
1901     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1902       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1903       Assert(i == 0 || i == 1,
1904              "Attribute 'sret' is not on first or second parameter!", V);
1905       SawSRet = true;
1906     }
1907 
1908     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1909       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1910       SawSwiftSelf = true;
1911     }
1912 
1913     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1914       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1915       SawSwiftAsync = true;
1916     }
1917 
1918     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1919       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1920              V);
1921       SawSwiftError = true;
1922     }
1923 
1924     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1925       Assert(i == FT->getNumParams() - 1,
1926              "inalloca isn't on the last parameter!", V);
1927     }
1928   }
1929 
1930   if (!Attrs.hasFnAttrs())
1931     return;
1932 
1933   verifyAttributeTypes(Attrs.getFnAttrs(), V);
1934   for (Attribute FnAttr : Attrs.getFnAttrs())
1935     Assert(FnAttr.isStringAttribute() ||
1936            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1937            "Attribute '" + FnAttr.getAsString() +
1938                "' does not apply to functions!",
1939            V);
1940 
1941   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1942            Attrs.hasFnAttr(Attribute::ReadOnly)),
1943          "Attributes 'readnone and readonly' are incompatible!", V);
1944 
1945   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1946            Attrs.hasFnAttr(Attribute::WriteOnly)),
1947          "Attributes 'readnone and writeonly' are incompatible!", V);
1948 
1949   Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
1950            Attrs.hasFnAttr(Attribute::WriteOnly)),
1951          "Attributes 'readonly and writeonly' are incompatible!", V);
1952 
1953   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1954            Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
1955          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1956          "incompatible!",
1957          V);
1958 
1959   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1960            Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
1961          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1962 
1963   Assert(!(Attrs.hasFnAttr(Attribute::NoInline) &&
1964            Attrs.hasFnAttr(Attribute::AlwaysInline)),
1965          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1966 
1967   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
1968     Assert(Attrs.hasFnAttr(Attribute::NoInline),
1969            "Attribute 'optnone' requires 'noinline'!", V);
1970 
1971     Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
1972            "Attributes 'optsize and optnone' are incompatible!", V);
1973 
1974     Assert(!Attrs.hasFnAttr(Attribute::MinSize),
1975            "Attributes 'minsize and optnone' are incompatible!", V);
1976   }
1977 
1978   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
1979     const GlobalValue *GV = cast<GlobalValue>(V);
1980     Assert(GV->hasGlobalUnnamedAddr(),
1981            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1982   }
1983 
1984   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
1985     std::pair<unsigned, Optional<unsigned>> Args =
1986         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1987 
1988     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1989       if (ParamNo >= FT->getNumParams()) {
1990         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1991         return false;
1992       }
1993 
1994       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1995         CheckFailed("'allocsize' " + Name +
1996                         " argument must refer to an integer parameter",
1997                     V);
1998         return false;
1999       }
2000 
2001       return true;
2002     };
2003 
2004     if (!CheckParam("element size", Args.first))
2005       return;
2006 
2007     if (Args.second && !CheckParam("number of elements", *Args.second))
2008       return;
2009   }
2010 
2011   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2012     std::pair<unsigned, unsigned> Args =
2013         Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex);
2014 
2015     if (Args.first > Args.second && Args.second != 0)
2016       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2017   }
2018 
2019   if (Attrs.hasFnAttr("frame-pointer")) {
2020     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2021     if (FP != "all" && FP != "non-leaf" && FP != "none")
2022       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2023   }
2024 
2025   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2026   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2027   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2028 }
2029 
2030 void Verifier::verifyFunctionMetadata(
2031     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2032   for (const auto &Pair : MDs) {
2033     if (Pair.first == LLVMContext::MD_prof) {
2034       MDNode *MD = Pair.second;
2035       Assert(MD->getNumOperands() >= 2,
2036              "!prof annotations should have no less than 2 operands", MD);
2037 
2038       // Check first operand.
2039       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2040              MD);
2041       Assert(isa<MDString>(MD->getOperand(0)),
2042              "expected string with name of the !prof annotation", MD);
2043       MDString *MDS = cast<MDString>(MD->getOperand(0));
2044       StringRef ProfName = MDS->getString();
2045       Assert(ProfName.equals("function_entry_count") ||
2046                  ProfName.equals("synthetic_function_entry_count"),
2047              "first operand should be 'function_entry_count'"
2048              " or 'synthetic_function_entry_count'",
2049              MD);
2050 
2051       // Check second operand.
2052       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2053              MD);
2054       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2055              "expected integer argument to function_entry_count", MD);
2056     }
2057   }
2058 }
2059 
2060 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2061   if (!ConstantExprVisited.insert(EntryC).second)
2062     return;
2063 
2064   SmallVector<const Constant *, 16> Stack;
2065   Stack.push_back(EntryC);
2066 
2067   while (!Stack.empty()) {
2068     const Constant *C = Stack.pop_back_val();
2069 
2070     // Check this constant expression.
2071     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2072       visitConstantExpr(CE);
2073 
2074     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2075       // Global Values get visited separately, but we do need to make sure
2076       // that the global value is in the correct module
2077       Assert(GV->getParent() == &M, "Referencing global in another module!",
2078              EntryC, &M, GV, GV->getParent());
2079       continue;
2080     }
2081 
2082     // Visit all sub-expressions.
2083     for (const Use &U : C->operands()) {
2084       const auto *OpC = dyn_cast<Constant>(U);
2085       if (!OpC)
2086         continue;
2087       if (!ConstantExprVisited.insert(OpC).second)
2088         continue;
2089       Stack.push_back(OpC);
2090     }
2091   }
2092 }
2093 
2094 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2095   if (CE->getOpcode() == Instruction::BitCast)
2096     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2097                                  CE->getType()),
2098            "Invalid bitcast", CE);
2099 }
2100 
2101 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2102   // There shouldn't be more attribute sets than there are parameters plus the
2103   // function and return value.
2104   return Attrs.getNumAttrSets() <= Params + 2;
2105 }
2106 
2107 /// Verify that statepoint intrinsic is well formed.
2108 void Verifier::verifyStatepoint(const CallBase &Call) {
2109   assert(Call.getCalledFunction() &&
2110          Call.getCalledFunction()->getIntrinsicID() ==
2111              Intrinsic::experimental_gc_statepoint);
2112 
2113   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2114              !Call.onlyAccessesArgMemory(),
2115          "gc.statepoint must read and write all memory to preserve "
2116          "reordering restrictions required by safepoint semantics",
2117          Call);
2118 
2119   const int64_t NumPatchBytes =
2120       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2121   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2122   Assert(NumPatchBytes >= 0,
2123          "gc.statepoint number of patchable bytes must be "
2124          "positive",
2125          Call);
2126 
2127   const Value *Target = Call.getArgOperand(2);
2128   auto *PT = dyn_cast<PointerType>(Target->getType());
2129   Assert(PT && PT->getElementType()->isFunctionTy(),
2130          "gc.statepoint callee must be of function pointer type", Call, Target);
2131   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2132 
2133   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2134   Assert(NumCallArgs >= 0,
2135          "gc.statepoint number of arguments to underlying call "
2136          "must be positive",
2137          Call);
2138   const int NumParams = (int)TargetFuncType->getNumParams();
2139   if (TargetFuncType->isVarArg()) {
2140     Assert(NumCallArgs >= NumParams,
2141            "gc.statepoint mismatch in number of vararg call args", Call);
2142 
2143     // TODO: Remove this limitation
2144     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2145            "gc.statepoint doesn't support wrapping non-void "
2146            "vararg functions yet",
2147            Call);
2148   } else
2149     Assert(NumCallArgs == NumParams,
2150            "gc.statepoint mismatch in number of call args", Call);
2151 
2152   const uint64_t Flags
2153     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2154   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2155          "unknown flag used in gc.statepoint flags argument", Call);
2156 
2157   // Verify that the types of the call parameter arguments match
2158   // the type of the wrapped callee.
2159   AttributeList Attrs = Call.getAttributes();
2160   for (int i = 0; i < NumParams; i++) {
2161     Type *ParamType = TargetFuncType->getParamType(i);
2162     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2163     Assert(ArgType == ParamType,
2164            "gc.statepoint call argument does not match wrapped "
2165            "function type",
2166            Call);
2167 
2168     if (TargetFuncType->isVarArg()) {
2169       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2170       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2171              "Attribute 'sret' cannot be used for vararg call arguments!",
2172              Call);
2173     }
2174   }
2175 
2176   const int EndCallArgsInx = 4 + NumCallArgs;
2177 
2178   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2179   Assert(isa<ConstantInt>(NumTransitionArgsV),
2180          "gc.statepoint number of transition arguments "
2181          "must be constant integer",
2182          Call);
2183   const int NumTransitionArgs =
2184       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2185   Assert(NumTransitionArgs == 0,
2186          "gc.statepoint w/inline transition bundle is deprecated", Call);
2187   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2188 
2189   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2190   Assert(isa<ConstantInt>(NumDeoptArgsV),
2191          "gc.statepoint number of deoptimization arguments "
2192          "must be constant integer",
2193          Call);
2194   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2195   Assert(NumDeoptArgs == 0,
2196          "gc.statepoint w/inline deopt operands is deprecated", Call);
2197 
2198   const int ExpectedNumArgs = 7 + NumCallArgs;
2199   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2200          "gc.statepoint too many arguments", Call);
2201 
2202   // Check that the only uses of this gc.statepoint are gc.result or
2203   // gc.relocate calls which are tied to this statepoint and thus part
2204   // of the same statepoint sequence
2205   for (const User *U : Call.users()) {
2206     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2207     Assert(UserCall, "illegal use of statepoint token", Call, U);
2208     if (!UserCall)
2209       continue;
2210     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2211            "gc.result or gc.relocate are the only value uses "
2212            "of a gc.statepoint",
2213            Call, U);
2214     if (isa<GCResultInst>(UserCall)) {
2215       Assert(UserCall->getArgOperand(0) == &Call,
2216              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2217     } else if (isa<GCRelocateInst>(Call)) {
2218       Assert(UserCall->getArgOperand(0) == &Call,
2219              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2220     }
2221   }
2222 
2223   // Note: It is legal for a single derived pointer to be listed multiple
2224   // times.  It's non-optimal, but it is legal.  It can also happen after
2225   // insertion if we strip a bitcast away.
2226   // Note: It is really tempting to check that each base is relocated and
2227   // that a derived pointer is never reused as a base pointer.  This turns
2228   // out to be problematic since optimizations run after safepoint insertion
2229   // can recognize equality properties that the insertion logic doesn't know
2230   // about.  See example statepoint.ll in the verifier subdirectory
2231 }
2232 
2233 void Verifier::verifyFrameRecoverIndices() {
2234   for (auto &Counts : FrameEscapeInfo) {
2235     Function *F = Counts.first;
2236     unsigned EscapedObjectCount = Counts.second.first;
2237     unsigned MaxRecoveredIndex = Counts.second.second;
2238     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2239            "all indices passed to llvm.localrecover must be less than the "
2240            "number of arguments passed to llvm.localescape in the parent "
2241            "function",
2242            F);
2243   }
2244 }
2245 
2246 static Instruction *getSuccPad(Instruction *Terminator) {
2247   BasicBlock *UnwindDest;
2248   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2249     UnwindDest = II->getUnwindDest();
2250   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2251     UnwindDest = CSI->getUnwindDest();
2252   else
2253     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2254   return UnwindDest->getFirstNonPHI();
2255 }
2256 
2257 void Verifier::verifySiblingFuncletUnwinds() {
2258   SmallPtrSet<Instruction *, 8> Visited;
2259   SmallPtrSet<Instruction *, 8> Active;
2260   for (const auto &Pair : SiblingFuncletInfo) {
2261     Instruction *PredPad = Pair.first;
2262     if (Visited.count(PredPad))
2263       continue;
2264     Active.insert(PredPad);
2265     Instruction *Terminator = Pair.second;
2266     do {
2267       Instruction *SuccPad = getSuccPad(Terminator);
2268       if (Active.count(SuccPad)) {
2269         // Found a cycle; report error
2270         Instruction *CyclePad = SuccPad;
2271         SmallVector<Instruction *, 8> CycleNodes;
2272         do {
2273           CycleNodes.push_back(CyclePad);
2274           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2275           if (CycleTerminator != CyclePad)
2276             CycleNodes.push_back(CycleTerminator);
2277           CyclePad = getSuccPad(CycleTerminator);
2278         } while (CyclePad != SuccPad);
2279         Assert(false, "EH pads can't handle each other's exceptions",
2280                ArrayRef<Instruction *>(CycleNodes));
2281       }
2282       // Don't re-walk a node we've already checked
2283       if (!Visited.insert(SuccPad).second)
2284         break;
2285       // Walk to this successor if it has a map entry.
2286       PredPad = SuccPad;
2287       auto TermI = SiblingFuncletInfo.find(PredPad);
2288       if (TermI == SiblingFuncletInfo.end())
2289         break;
2290       Terminator = TermI->second;
2291       Active.insert(PredPad);
2292     } while (true);
2293     // Each node only has one successor, so we've walked all the active
2294     // nodes' successors.
2295     Active.clear();
2296   }
2297 }
2298 
2299 // visitFunction - Verify that a function is ok.
2300 //
2301 void Verifier::visitFunction(const Function &F) {
2302   visitGlobalValue(F);
2303 
2304   // Check function arguments.
2305   FunctionType *FT = F.getFunctionType();
2306   unsigned NumArgs = F.arg_size();
2307 
2308   Assert(&Context == &F.getContext(),
2309          "Function context does not match Module context!", &F);
2310 
2311   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2312   Assert(FT->getNumParams() == NumArgs,
2313          "# formal arguments must match # of arguments for function type!", &F,
2314          FT);
2315   Assert(F.getReturnType()->isFirstClassType() ||
2316              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2317          "Functions cannot return aggregate values!", &F);
2318 
2319   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2320          "Invalid struct return type!", &F);
2321 
2322   AttributeList Attrs = F.getAttributes();
2323 
2324   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2325          "Attribute after last parameter!", &F);
2326 
2327   bool IsIntrinsic = F.isIntrinsic();
2328 
2329   // Check function attributes.
2330   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic);
2331 
2332   // On function declarations/definitions, we do not support the builtin
2333   // attribute. We do not check this in VerifyFunctionAttrs since that is
2334   // checking for Attributes that can/can not ever be on functions.
2335   Assert(!Attrs.hasFnAttr(Attribute::Builtin),
2336          "Attribute 'builtin' can only be applied to a callsite.", &F);
2337 
2338   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2339          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2340 
2341   // Check that this function meets the restrictions on this calling convention.
2342   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2343   // restrictions can be lifted.
2344   switch (F.getCallingConv()) {
2345   default:
2346   case CallingConv::C:
2347     break;
2348   case CallingConv::X86_INTR: {
2349     Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2350            "Calling convention parameter requires byval", &F);
2351     break;
2352   }
2353   case CallingConv::AMDGPU_KERNEL:
2354   case CallingConv::SPIR_KERNEL:
2355     Assert(F.getReturnType()->isVoidTy(),
2356            "Calling convention requires void return type", &F);
2357     LLVM_FALLTHROUGH;
2358   case CallingConv::AMDGPU_VS:
2359   case CallingConv::AMDGPU_HS:
2360   case CallingConv::AMDGPU_GS:
2361   case CallingConv::AMDGPU_PS:
2362   case CallingConv::AMDGPU_CS:
2363     Assert(!F.hasStructRetAttr(),
2364            "Calling convention does not allow sret", &F);
2365     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2366       const unsigned StackAS = DL.getAllocaAddrSpace();
2367       unsigned i = 0;
2368       for (const Argument &Arg : F.args()) {
2369         Assert(!Attrs.hasParamAttr(i, Attribute::ByVal),
2370                "Calling convention disallows byval", &F);
2371         Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2372                "Calling convention disallows preallocated", &F);
2373         Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2374                "Calling convention disallows inalloca", &F);
2375 
2376         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2377           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2378           // value here.
2379           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2380                  "Calling convention disallows stack byref", &F);
2381         }
2382 
2383         ++i;
2384       }
2385     }
2386 
2387     LLVM_FALLTHROUGH;
2388   case CallingConv::Fast:
2389   case CallingConv::Cold:
2390   case CallingConv::Intel_OCL_BI:
2391   case CallingConv::PTX_Kernel:
2392   case CallingConv::PTX_Device:
2393     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2394                           "perfect forwarding!",
2395            &F);
2396     break;
2397   }
2398 
2399   // Check that the argument values match the function type for this function...
2400   unsigned i = 0;
2401   for (const Argument &Arg : F.args()) {
2402     Assert(Arg.getType() == FT->getParamType(i),
2403            "Argument value does not match function argument type!", &Arg,
2404            FT->getParamType(i));
2405     Assert(Arg.getType()->isFirstClassType(),
2406            "Function arguments must have first-class types!", &Arg);
2407     if (!IsIntrinsic) {
2408       Assert(!Arg.getType()->isMetadataTy(),
2409              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2410       Assert(!Arg.getType()->isTokenTy(),
2411              "Function takes token but isn't an intrinsic", &Arg, &F);
2412       Assert(!Arg.getType()->isX86_AMXTy(),
2413              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2414     }
2415 
2416     // Check that swifterror argument is only used by loads and stores.
2417     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2418       verifySwiftErrorValue(&Arg);
2419     }
2420     ++i;
2421   }
2422 
2423   if (!IsIntrinsic) {
2424     Assert(!F.getReturnType()->isTokenTy(),
2425            "Function returns a token but isn't an intrinsic", &F);
2426     Assert(!F.getReturnType()->isX86_AMXTy(),
2427            "Function returns a x86_amx but isn't an intrinsic", &F);
2428   }
2429 
2430   // Get the function metadata attachments.
2431   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2432   F.getAllMetadata(MDs);
2433   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2434   verifyFunctionMetadata(MDs);
2435 
2436   // Check validity of the personality function
2437   if (F.hasPersonalityFn()) {
2438     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2439     if (Per)
2440       Assert(Per->getParent() == F.getParent(),
2441              "Referencing personality function in another module!",
2442              &F, F.getParent(), Per, Per->getParent());
2443   }
2444 
2445   if (F.isMaterializable()) {
2446     // Function has a body somewhere we can't see.
2447     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2448            MDs.empty() ? nullptr : MDs.front().second);
2449   } else if (F.isDeclaration()) {
2450     for (const auto &I : MDs) {
2451       // This is used for call site debug information.
2452       AssertDI(I.first != LLVMContext::MD_dbg ||
2453                    !cast<DISubprogram>(I.second)->isDistinct(),
2454                "function declaration may only have a unique !dbg attachment",
2455                &F);
2456       Assert(I.first != LLVMContext::MD_prof,
2457              "function declaration may not have a !prof attachment", &F);
2458 
2459       // Verify the metadata itself.
2460       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2461     }
2462     Assert(!F.hasPersonalityFn(),
2463            "Function declaration shouldn't have a personality routine", &F);
2464   } else {
2465     // Verify that this function (which has a body) is not named "llvm.*".  It
2466     // is not legal to define intrinsics.
2467     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2468 
2469     // Check the entry node
2470     const BasicBlock *Entry = &F.getEntryBlock();
2471     Assert(pred_empty(Entry),
2472            "Entry block to function must not have predecessors!", Entry);
2473 
2474     // The address of the entry block cannot be taken, unless it is dead.
2475     if (Entry->hasAddressTaken()) {
2476       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2477              "blockaddress may not be used with the entry block!", Entry);
2478     }
2479 
2480     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2481     // Visit metadata attachments.
2482     for (const auto &I : MDs) {
2483       // Verify that the attachment is legal.
2484       auto AllowLocs = AreDebugLocsAllowed::No;
2485       switch (I.first) {
2486       default:
2487         break;
2488       case LLVMContext::MD_dbg: {
2489         ++NumDebugAttachments;
2490         AssertDI(NumDebugAttachments == 1,
2491                  "function must have a single !dbg attachment", &F, I.second);
2492         AssertDI(isa<DISubprogram>(I.second),
2493                  "function !dbg attachment must be a subprogram", &F, I.second);
2494         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2495                  "function definition may only have a distinct !dbg attachment",
2496                  &F);
2497 
2498         auto *SP = cast<DISubprogram>(I.second);
2499         const Function *&AttachedTo = DISubprogramAttachments[SP];
2500         AssertDI(!AttachedTo || AttachedTo == &F,
2501                  "DISubprogram attached to more than one function", SP, &F);
2502         AttachedTo = &F;
2503         AllowLocs = AreDebugLocsAllowed::Yes;
2504         break;
2505       }
2506       case LLVMContext::MD_prof:
2507         ++NumProfAttachments;
2508         Assert(NumProfAttachments == 1,
2509                "function must have a single !prof attachment", &F, I.second);
2510         break;
2511       }
2512 
2513       // Verify the metadata itself.
2514       visitMDNode(*I.second, AllowLocs);
2515     }
2516   }
2517 
2518   // If this function is actually an intrinsic, verify that it is only used in
2519   // direct call/invokes, never having its "address taken".
2520   // Only do this if the module is materialized, otherwise we don't have all the
2521   // uses.
2522   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2523     const User *U;
2524     if (F.hasAddressTaken(&U))
2525       Assert(false, "Invalid user of intrinsic instruction!", U);
2526   }
2527 
2528   // Check intrinsics' signatures.
2529   switch (F.getIntrinsicID()) {
2530   case Intrinsic::experimental_gc_get_pointer_base: {
2531     FunctionType *FT = F.getFunctionType();
2532     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2533     Assert(isa<PointerType>(F.getReturnType()),
2534            "gc.get.pointer.base must return a pointer", F);
2535     Assert(FT->getParamType(0) == F.getReturnType(),
2536            "gc.get.pointer.base operand and result must be of the same type",
2537            F);
2538     break;
2539   }
2540   case Intrinsic::experimental_gc_get_pointer_offset: {
2541     FunctionType *FT = F.getFunctionType();
2542     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2543     Assert(isa<PointerType>(FT->getParamType(0)),
2544            "gc.get.pointer.offset operand must be a pointer", F);
2545     Assert(F.getReturnType()->isIntegerTy(),
2546            "gc.get.pointer.offset must return integer", F);
2547     break;
2548   }
2549   }
2550 
2551   auto *N = F.getSubprogram();
2552   HasDebugInfo = (N != nullptr);
2553   if (!HasDebugInfo)
2554     return;
2555 
2556   // Check that all !dbg attachments lead to back to N.
2557   //
2558   // FIXME: Check this incrementally while visiting !dbg attachments.
2559   // FIXME: Only check when N is the canonical subprogram for F.
2560   SmallPtrSet<const MDNode *, 32> Seen;
2561   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2562     // Be careful about using DILocation here since we might be dealing with
2563     // broken code (this is the Verifier after all).
2564     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2565     if (!DL)
2566       return;
2567     if (!Seen.insert(DL).second)
2568       return;
2569 
2570     Metadata *Parent = DL->getRawScope();
2571     AssertDI(Parent && isa<DILocalScope>(Parent),
2572              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2573              Parent);
2574 
2575     DILocalScope *Scope = DL->getInlinedAtScope();
2576     Assert(Scope, "Failed to find DILocalScope", DL);
2577 
2578     if (!Seen.insert(Scope).second)
2579       return;
2580 
2581     DISubprogram *SP = Scope->getSubprogram();
2582 
2583     // Scope and SP could be the same MDNode and we don't want to skip
2584     // validation in that case
2585     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2586       return;
2587 
2588     AssertDI(SP->describes(&F),
2589              "!dbg attachment points at wrong subprogram for function", N, &F,
2590              &I, DL, Scope, SP);
2591   };
2592   for (auto &BB : F)
2593     for (auto &I : BB) {
2594       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2595       // The llvm.loop annotations also contain two DILocations.
2596       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2597         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2598           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2599       if (BrokenDebugInfo)
2600         return;
2601     }
2602 }
2603 
2604 // verifyBasicBlock - Verify that a basic block is well formed...
2605 //
2606 void Verifier::visitBasicBlock(BasicBlock &BB) {
2607   InstsInThisBlock.clear();
2608 
2609   // Ensure that basic blocks have terminators!
2610   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2611 
2612   // Check constraints that this basic block imposes on all of the PHI nodes in
2613   // it.
2614   if (isa<PHINode>(BB.front())) {
2615     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2616     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2617     llvm::sort(Preds);
2618     for (const PHINode &PN : BB.phis()) {
2619       Assert(PN.getNumIncomingValues() == Preds.size(),
2620              "PHINode should have one entry for each predecessor of its "
2621              "parent basic block!",
2622              &PN);
2623 
2624       // Get and sort all incoming values in the PHI node...
2625       Values.clear();
2626       Values.reserve(PN.getNumIncomingValues());
2627       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2628         Values.push_back(
2629             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2630       llvm::sort(Values);
2631 
2632       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2633         // Check to make sure that if there is more than one entry for a
2634         // particular basic block in this PHI node, that the incoming values are
2635         // all identical.
2636         //
2637         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2638                    Values[i].second == Values[i - 1].second,
2639                "PHI node has multiple entries for the same basic block with "
2640                "different incoming values!",
2641                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2642 
2643         // Check to make sure that the predecessors and PHI node entries are
2644         // matched up.
2645         Assert(Values[i].first == Preds[i],
2646                "PHI node entries do not match predecessors!", &PN,
2647                Values[i].first, Preds[i]);
2648       }
2649     }
2650   }
2651 
2652   // Check that all instructions have their parent pointers set up correctly.
2653   for (auto &I : BB)
2654   {
2655     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2656   }
2657 }
2658 
2659 void Verifier::visitTerminator(Instruction &I) {
2660   // Ensure that terminators only exist at the end of the basic block.
2661   Assert(&I == I.getParent()->getTerminator(),
2662          "Terminator found in the middle of a basic block!", I.getParent());
2663   visitInstruction(I);
2664 }
2665 
2666 void Verifier::visitBranchInst(BranchInst &BI) {
2667   if (BI.isConditional()) {
2668     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2669            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2670   }
2671   visitTerminator(BI);
2672 }
2673 
2674 void Verifier::visitReturnInst(ReturnInst &RI) {
2675   Function *F = RI.getParent()->getParent();
2676   unsigned N = RI.getNumOperands();
2677   if (F->getReturnType()->isVoidTy())
2678     Assert(N == 0,
2679            "Found return instr that returns non-void in Function of void "
2680            "return type!",
2681            &RI, F->getReturnType());
2682   else
2683     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2684            "Function return type does not match operand "
2685            "type of return inst!",
2686            &RI, F->getReturnType());
2687 
2688   // Check to make sure that the return value has necessary properties for
2689   // terminators...
2690   visitTerminator(RI);
2691 }
2692 
2693 void Verifier::visitSwitchInst(SwitchInst &SI) {
2694   Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2695   // Check to make sure that all of the constants in the switch instruction
2696   // have the same type as the switched-on value.
2697   Type *SwitchTy = SI.getCondition()->getType();
2698   SmallPtrSet<ConstantInt*, 32> Constants;
2699   for (auto &Case : SI.cases()) {
2700     Assert(Case.getCaseValue()->getType() == SwitchTy,
2701            "Switch constants must all be same type as switch value!", &SI);
2702     Assert(Constants.insert(Case.getCaseValue()).second,
2703            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2704   }
2705 
2706   visitTerminator(SI);
2707 }
2708 
2709 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2710   Assert(BI.getAddress()->getType()->isPointerTy(),
2711          "Indirectbr operand must have pointer type!", &BI);
2712   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2713     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2714            "Indirectbr destinations must all have pointer type!", &BI);
2715 
2716   visitTerminator(BI);
2717 }
2718 
2719 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2720   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2721          &CBI);
2722   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2723   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2724   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2725     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2726            "Callbr successors must all have pointer type!", &CBI);
2727   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2728     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2729            "Using an unescaped label as a callbr argument!", &CBI);
2730     if (isa<BasicBlock>(CBI.getOperand(i)))
2731       for (unsigned j = i + 1; j != e; ++j)
2732         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2733                "Duplicate callbr destination!", &CBI);
2734   }
2735   {
2736     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2737     for (Value *V : CBI.args())
2738       if (auto *BA = dyn_cast<BlockAddress>(V))
2739         ArgBBs.insert(BA->getBasicBlock());
2740     for (BasicBlock *BB : CBI.getIndirectDests())
2741       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2742   }
2743 
2744   visitTerminator(CBI);
2745 }
2746 
2747 void Verifier::visitSelectInst(SelectInst &SI) {
2748   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2749                                          SI.getOperand(2)),
2750          "Invalid operands for select instruction!", &SI);
2751 
2752   Assert(SI.getTrueValue()->getType() == SI.getType(),
2753          "Select values must have same type as select instruction!", &SI);
2754   visitInstruction(SI);
2755 }
2756 
2757 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2758 /// a pass, if any exist, it's an error.
2759 ///
2760 void Verifier::visitUserOp1(Instruction &I) {
2761   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2762 }
2763 
2764 void Verifier::visitTruncInst(TruncInst &I) {
2765   // Get the source and destination types
2766   Type *SrcTy = I.getOperand(0)->getType();
2767   Type *DestTy = I.getType();
2768 
2769   // Get the size of the types in bits, we'll need this later
2770   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2771   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2772 
2773   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2774   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2775   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2776          "trunc source and destination must both be a vector or neither", &I);
2777   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2778 
2779   visitInstruction(I);
2780 }
2781 
2782 void Verifier::visitZExtInst(ZExtInst &I) {
2783   // Get the source and destination types
2784   Type *SrcTy = I.getOperand(0)->getType();
2785   Type *DestTy = I.getType();
2786 
2787   // Get the size of the types in bits, we'll need this later
2788   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2789   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2790   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2791          "zext source and destination must both be a vector or neither", &I);
2792   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2793   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2794 
2795   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2796 
2797   visitInstruction(I);
2798 }
2799 
2800 void Verifier::visitSExtInst(SExtInst &I) {
2801   // Get the source and destination types
2802   Type *SrcTy = I.getOperand(0)->getType();
2803   Type *DestTy = I.getType();
2804 
2805   // Get the size of the types in bits, we'll need this later
2806   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2807   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2808 
2809   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2810   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2811   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2812          "sext source and destination must both be a vector or neither", &I);
2813   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2814 
2815   visitInstruction(I);
2816 }
2817 
2818 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2819   // Get the source and destination types
2820   Type *SrcTy = I.getOperand(0)->getType();
2821   Type *DestTy = I.getType();
2822   // Get the size of the types in bits, we'll need this later
2823   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2824   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2825 
2826   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2827   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2828   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2829          "fptrunc source and destination must both be a vector or neither", &I);
2830   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2831 
2832   visitInstruction(I);
2833 }
2834 
2835 void Verifier::visitFPExtInst(FPExtInst &I) {
2836   // Get the source and destination types
2837   Type *SrcTy = I.getOperand(0)->getType();
2838   Type *DestTy = I.getType();
2839 
2840   // Get the size of the types in bits, we'll need this later
2841   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2842   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2843 
2844   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2845   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2846   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2847          "fpext source and destination must both be a vector or neither", &I);
2848   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2849 
2850   visitInstruction(I);
2851 }
2852 
2853 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2854   // Get the source and destination types
2855   Type *SrcTy = I.getOperand(0)->getType();
2856   Type *DestTy = I.getType();
2857 
2858   bool SrcVec = SrcTy->isVectorTy();
2859   bool DstVec = DestTy->isVectorTy();
2860 
2861   Assert(SrcVec == DstVec,
2862          "UIToFP source and dest must both be vector or scalar", &I);
2863   Assert(SrcTy->isIntOrIntVectorTy(),
2864          "UIToFP source must be integer or integer vector", &I);
2865   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2866          &I);
2867 
2868   if (SrcVec && DstVec)
2869     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2870                cast<VectorType>(DestTy)->getElementCount(),
2871            "UIToFP source and dest vector length mismatch", &I);
2872 
2873   visitInstruction(I);
2874 }
2875 
2876 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2877   // Get the source and destination types
2878   Type *SrcTy = I.getOperand(0)->getType();
2879   Type *DestTy = I.getType();
2880 
2881   bool SrcVec = SrcTy->isVectorTy();
2882   bool DstVec = DestTy->isVectorTy();
2883 
2884   Assert(SrcVec == DstVec,
2885          "SIToFP source and dest must both be vector or scalar", &I);
2886   Assert(SrcTy->isIntOrIntVectorTy(),
2887          "SIToFP source must be integer or integer vector", &I);
2888   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2889          &I);
2890 
2891   if (SrcVec && DstVec)
2892     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2893                cast<VectorType>(DestTy)->getElementCount(),
2894            "SIToFP source and dest vector length mismatch", &I);
2895 
2896   visitInstruction(I);
2897 }
2898 
2899 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2900   // Get the source and destination types
2901   Type *SrcTy = I.getOperand(0)->getType();
2902   Type *DestTy = I.getType();
2903 
2904   bool SrcVec = SrcTy->isVectorTy();
2905   bool DstVec = DestTy->isVectorTy();
2906 
2907   Assert(SrcVec == DstVec,
2908          "FPToUI source and dest must both be vector or scalar", &I);
2909   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2910          &I);
2911   Assert(DestTy->isIntOrIntVectorTy(),
2912          "FPToUI result must be integer or integer vector", &I);
2913 
2914   if (SrcVec && DstVec)
2915     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2916                cast<VectorType>(DestTy)->getElementCount(),
2917            "FPToUI source and dest vector length mismatch", &I);
2918 
2919   visitInstruction(I);
2920 }
2921 
2922 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2923   // Get the source and destination types
2924   Type *SrcTy = I.getOperand(0)->getType();
2925   Type *DestTy = I.getType();
2926 
2927   bool SrcVec = SrcTy->isVectorTy();
2928   bool DstVec = DestTy->isVectorTy();
2929 
2930   Assert(SrcVec == DstVec,
2931          "FPToSI source and dest must both be vector or scalar", &I);
2932   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2933          &I);
2934   Assert(DestTy->isIntOrIntVectorTy(),
2935          "FPToSI result must be integer or integer vector", &I);
2936 
2937   if (SrcVec && DstVec)
2938     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2939                cast<VectorType>(DestTy)->getElementCount(),
2940            "FPToSI source and dest vector length mismatch", &I);
2941 
2942   visitInstruction(I);
2943 }
2944 
2945 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2946   // Get the source and destination types
2947   Type *SrcTy = I.getOperand(0)->getType();
2948   Type *DestTy = I.getType();
2949 
2950   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2951 
2952   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2953   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2954          &I);
2955 
2956   if (SrcTy->isVectorTy()) {
2957     auto *VSrc = cast<VectorType>(SrcTy);
2958     auto *VDest = cast<VectorType>(DestTy);
2959     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2960            "PtrToInt Vector width mismatch", &I);
2961   }
2962 
2963   visitInstruction(I);
2964 }
2965 
2966 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2967   // Get the source and destination types
2968   Type *SrcTy = I.getOperand(0)->getType();
2969   Type *DestTy = I.getType();
2970 
2971   Assert(SrcTy->isIntOrIntVectorTy(),
2972          "IntToPtr source must be an integral", &I);
2973   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2974 
2975   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2976          &I);
2977   if (SrcTy->isVectorTy()) {
2978     auto *VSrc = cast<VectorType>(SrcTy);
2979     auto *VDest = cast<VectorType>(DestTy);
2980     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2981            "IntToPtr Vector width mismatch", &I);
2982   }
2983   visitInstruction(I);
2984 }
2985 
2986 void Verifier::visitBitCastInst(BitCastInst &I) {
2987   Assert(
2988       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2989       "Invalid bitcast", &I);
2990   visitInstruction(I);
2991 }
2992 
2993 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2994   Type *SrcTy = I.getOperand(0)->getType();
2995   Type *DestTy = I.getType();
2996 
2997   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2998          &I);
2999   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3000          &I);
3001   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3002          "AddrSpaceCast must be between different address spaces", &I);
3003   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3004     Assert(SrcVTy->getElementCount() ==
3005                cast<VectorType>(DestTy)->getElementCount(),
3006            "AddrSpaceCast vector pointer number of elements mismatch", &I);
3007   visitInstruction(I);
3008 }
3009 
3010 /// visitPHINode - Ensure that a PHI node is well formed.
3011 ///
3012 void Verifier::visitPHINode(PHINode &PN) {
3013   // Ensure that the PHI nodes are all grouped together at the top of the block.
3014   // This can be tested by checking whether the instruction before this is
3015   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3016   // then there is some other instruction before a PHI.
3017   Assert(&PN == &PN.getParent()->front() ||
3018              isa<PHINode>(--BasicBlock::iterator(&PN)),
3019          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3020 
3021   // Check that a PHI doesn't yield a Token.
3022   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3023 
3024   // Check that all of the values of the PHI node have the same type as the
3025   // result, and that the incoming blocks are really basic blocks.
3026   for (Value *IncValue : PN.incoming_values()) {
3027     Assert(PN.getType() == IncValue->getType(),
3028            "PHI node operands are not the same type as the result!", &PN);
3029   }
3030 
3031   // All other PHI node constraints are checked in the visitBasicBlock method.
3032 
3033   visitInstruction(PN);
3034 }
3035 
3036 void Verifier::visitCallBase(CallBase &Call) {
3037   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3038          "Called function must be a pointer!", Call);
3039   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3040 
3041   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3042          "Called function is not the same type as the call!", Call);
3043 
3044   FunctionType *FTy = Call.getFunctionType();
3045 
3046   // Verify that the correct number of arguments are being passed
3047   if (FTy->isVarArg())
3048     Assert(Call.arg_size() >= FTy->getNumParams(),
3049            "Called function requires more parameters than were provided!",
3050            Call);
3051   else
3052     Assert(Call.arg_size() == FTy->getNumParams(),
3053            "Incorrect number of arguments passed to called function!", Call);
3054 
3055   // Verify that all arguments to the call match the function type.
3056   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3057     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3058            "Call parameter type does not match function signature!",
3059            Call.getArgOperand(i), FTy->getParamType(i), Call);
3060 
3061   AttributeList Attrs = Call.getAttributes();
3062 
3063   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3064          "Attribute after last parameter!", Call);
3065 
3066   Function *Callee =
3067       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3068   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3069   if (IsIntrinsic)
3070     Assert(Callee->getValueType() == FTy,
3071            "Intrinsic called with incompatible signature", Call);
3072 
3073   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3074     // Don't allow speculatable on call sites, unless the underlying function
3075     // declaration is also speculatable.
3076     Assert(Callee && Callee->isSpeculatable(),
3077            "speculatable attribute may not apply to call sites", Call);
3078   }
3079 
3080   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3081     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3082                Intrinsic::call_preallocated_arg,
3083            "preallocated as a call site attribute can only be on "
3084            "llvm.call.preallocated.arg");
3085   }
3086 
3087   // Verify call attributes.
3088   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3089 
3090   // Conservatively check the inalloca argument.
3091   // We have a bug if we can find that there is an underlying alloca without
3092   // inalloca.
3093   if (Call.hasInAllocaArgument()) {
3094     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3095     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3096       Assert(AI->isUsedWithInAlloca(),
3097              "inalloca argument for call has mismatched alloca", AI, Call);
3098   }
3099 
3100   // For each argument of the callsite, if it has the swifterror argument,
3101   // make sure the underlying alloca/parameter it comes from has a swifterror as
3102   // well.
3103   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3104     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3105       Value *SwiftErrorArg = Call.getArgOperand(i);
3106       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3107         Assert(AI->isSwiftError(),
3108                "swifterror argument for call has mismatched alloca", AI, Call);
3109         continue;
3110       }
3111       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3112       Assert(ArgI,
3113              "swifterror argument should come from an alloca or parameter",
3114              SwiftErrorArg, Call);
3115       Assert(ArgI->hasSwiftErrorAttr(),
3116              "swifterror argument for call has mismatched parameter", ArgI,
3117              Call);
3118     }
3119 
3120     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3121       // Don't allow immarg on call sites, unless the underlying declaration
3122       // also has the matching immarg.
3123       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3124              "immarg may not apply only to call sites",
3125              Call.getArgOperand(i), Call);
3126     }
3127 
3128     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3129       Value *ArgVal = Call.getArgOperand(i);
3130       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3131              "immarg operand has non-immediate parameter", ArgVal, Call);
3132     }
3133 
3134     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3135       Value *ArgVal = Call.getArgOperand(i);
3136       bool hasOB =
3137           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3138       bool isMustTail = Call.isMustTailCall();
3139       Assert(hasOB != isMustTail,
3140              "preallocated operand either requires a preallocated bundle or "
3141              "the call to be musttail (but not both)",
3142              ArgVal, Call);
3143     }
3144   }
3145 
3146   if (FTy->isVarArg()) {
3147     // FIXME? is 'nest' even legal here?
3148     bool SawNest = false;
3149     bool SawReturned = false;
3150 
3151     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3152       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3153         SawNest = true;
3154       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3155         SawReturned = true;
3156     }
3157 
3158     // Check attributes on the varargs part.
3159     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3160       Type *Ty = Call.getArgOperand(Idx)->getType();
3161       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3162       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3163 
3164       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3165         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3166         SawNest = true;
3167       }
3168 
3169       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3170         Assert(!SawReturned, "More than one parameter has attribute returned!",
3171                Call);
3172         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3173                "Incompatible argument and return types for 'returned' "
3174                "attribute",
3175                Call);
3176         SawReturned = true;
3177       }
3178 
3179       // Statepoint intrinsic is vararg but the wrapped function may be not.
3180       // Allow sret here and check the wrapped function in verifyStatepoint.
3181       if (!Call.getCalledFunction() ||
3182           Call.getCalledFunction()->getIntrinsicID() !=
3183               Intrinsic::experimental_gc_statepoint)
3184         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3185                "Attribute 'sret' cannot be used for vararg call arguments!",
3186                Call);
3187 
3188       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3189         Assert(Idx == Call.arg_size() - 1,
3190                "inalloca isn't on the last argument!", Call);
3191     }
3192   }
3193 
3194   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3195   if (!IsIntrinsic) {
3196     for (Type *ParamTy : FTy->params()) {
3197       Assert(!ParamTy->isMetadataTy(),
3198              "Function has metadata parameter but isn't an intrinsic", Call);
3199       Assert(!ParamTy->isTokenTy(),
3200              "Function has token parameter but isn't an intrinsic", Call);
3201     }
3202   }
3203 
3204   // Verify that indirect calls don't return tokens.
3205   if (!Call.getCalledFunction()) {
3206     Assert(!FTy->getReturnType()->isTokenTy(),
3207            "Return type cannot be token for indirect call!");
3208     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3209            "Return type cannot be x86_amx for indirect call!");
3210   }
3211 
3212   if (Function *F = Call.getCalledFunction())
3213     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3214       visitIntrinsicCall(ID, Call);
3215 
3216   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3217   // most one "gc-transition", at most one "cfguardtarget",
3218   // and at most one "preallocated" operand bundle.
3219   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3220        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3221        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3222        FoundAttachedCallBundle = false;
3223   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3224     OperandBundleUse BU = Call.getOperandBundleAt(i);
3225     uint32_t Tag = BU.getTagID();
3226     if (Tag == LLVMContext::OB_deopt) {
3227       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3228       FoundDeoptBundle = true;
3229     } else if (Tag == LLVMContext::OB_gc_transition) {
3230       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3231              Call);
3232       FoundGCTransitionBundle = true;
3233     } else if (Tag == LLVMContext::OB_funclet) {
3234       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3235       FoundFuncletBundle = true;
3236       Assert(BU.Inputs.size() == 1,
3237              "Expected exactly one funclet bundle operand", Call);
3238       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3239              "Funclet bundle operands should correspond to a FuncletPadInst",
3240              Call);
3241     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3242       Assert(!FoundCFGuardTargetBundle,
3243              "Multiple CFGuardTarget operand bundles", Call);
3244       FoundCFGuardTargetBundle = true;
3245       Assert(BU.Inputs.size() == 1,
3246              "Expected exactly one cfguardtarget bundle operand", Call);
3247     } else if (Tag == LLVMContext::OB_preallocated) {
3248       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3249              Call);
3250       FoundPreallocatedBundle = true;
3251       Assert(BU.Inputs.size() == 1,
3252              "Expected exactly one preallocated bundle operand", Call);
3253       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3254       Assert(Input &&
3255                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3256              "\"preallocated\" argument must be a token from "
3257              "llvm.call.preallocated.setup",
3258              Call);
3259     } else if (Tag == LLVMContext::OB_gc_live) {
3260       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3261              Call);
3262       FoundGCLiveBundle = true;
3263     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3264       Assert(!FoundAttachedCallBundle,
3265              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3266       FoundAttachedCallBundle = true;
3267     }
3268   }
3269 
3270   if (FoundAttachedCallBundle)
3271     Assert((FTy->getReturnType()->isPointerTy() ||
3272             (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
3273            "a call with operand bundle \"clang.arc.attachedcall\" must call a "
3274            "function returning a pointer or a non-returning function that has "
3275            "a void return type",
3276            Call);
3277 
3278   // Verify that each inlinable callsite of a debug-info-bearing function in a
3279   // debug-info-bearing function has a debug location attached to it. Failure to
3280   // do so causes assertion failures when the inliner sets up inline scope info.
3281   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3282       Call.getCalledFunction()->getSubprogram())
3283     AssertDI(Call.getDebugLoc(),
3284              "inlinable function call in a function with "
3285              "debug info must have a !dbg location",
3286              Call);
3287 
3288   visitInstruction(Call);
3289 }
3290 
3291 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs,
3292                                          StringRef Context) {
3293   Assert(!Attrs.contains(Attribute::InAlloca),
3294          Twine("inalloca attribute not allowed in ") + Context);
3295   Assert(!Attrs.contains(Attribute::InReg),
3296          Twine("inreg attribute not allowed in ") + Context);
3297   Assert(!Attrs.contains(Attribute::SwiftError),
3298          Twine("swifterror attribute not allowed in ") + Context);
3299   Assert(!Attrs.contains(Attribute::Preallocated),
3300          Twine("preallocated attribute not allowed in ") + Context);
3301   Assert(!Attrs.contains(Attribute::ByRef),
3302          Twine("byref attribute not allowed in ") + Context);
3303 }
3304 
3305 /// Two types are "congruent" if they are identical, or if they are both pointer
3306 /// types with different pointee types and the same address space.
3307 static bool isTypeCongruent(Type *L, Type *R) {
3308   if (L == R)
3309     return true;
3310   PointerType *PL = dyn_cast<PointerType>(L);
3311   PointerType *PR = dyn_cast<PointerType>(R);
3312   if (!PL || !PR)
3313     return false;
3314   return PL->getAddressSpace() == PR->getAddressSpace();
3315 }
3316 
3317 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3318   static const Attribute::AttrKind ABIAttrs[] = {
3319       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3320       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3321       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3322       Attribute::ByRef};
3323   AttrBuilder Copy;
3324   for (auto AK : ABIAttrs) {
3325     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3326     if (Attr.isValid())
3327       Copy.addAttribute(Attr);
3328   }
3329 
3330   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3331   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3332       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3333        Attrs.hasParamAttr(I, Attribute::ByRef)))
3334     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3335   return Copy;
3336 }
3337 
3338 void Verifier::verifyMustTailCall(CallInst &CI) {
3339   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3340 
3341   Function *F = CI.getParent()->getParent();
3342   FunctionType *CallerTy = F->getFunctionType();
3343   FunctionType *CalleeTy = CI.getFunctionType();
3344   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3345          "cannot guarantee tail call due to mismatched varargs", &CI);
3346   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3347          "cannot guarantee tail call due to mismatched return types", &CI);
3348 
3349   // - The calling conventions of the caller and callee must match.
3350   Assert(F->getCallingConv() == CI.getCallingConv(),
3351          "cannot guarantee tail call due to mismatched calling conv", &CI);
3352 
3353   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3354   //   or a pointer bitcast followed by a ret instruction.
3355   // - The ret instruction must return the (possibly bitcasted) value
3356   //   produced by the call or void.
3357   Value *RetVal = &CI;
3358   Instruction *Next = CI.getNextNode();
3359 
3360   // Handle the optional bitcast.
3361   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3362     Assert(BI->getOperand(0) == RetVal,
3363            "bitcast following musttail call must use the call", BI);
3364     RetVal = BI;
3365     Next = BI->getNextNode();
3366   }
3367 
3368   // Check the return.
3369   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3370   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3371          &CI);
3372   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3373              isa<UndefValue>(Ret->getReturnValue()),
3374          "musttail call result must be returned", Ret);
3375 
3376   AttributeList CallerAttrs = F->getAttributes();
3377   AttributeList CalleeAttrs = CI.getAttributes();
3378   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3379       CI.getCallingConv() == CallingConv::Tail) {
3380     StringRef CCName =
3381         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3382 
3383     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3384     //   are allowed in swifttailcc call
3385     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3386       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3387       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3388       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3389     }
3390     for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3391       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3392       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3393       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3394     }
3395     // - Varargs functions are not allowed
3396     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3397                                       " tail call for varargs function");
3398     return;
3399   }
3400 
3401   // - The caller and callee prototypes must match.  Pointer types of
3402   //   parameters or return types may differ in pointee type, but not
3403   //   address space.
3404   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3405     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3406            "cannot guarantee tail call due to mismatched parameter counts",
3407            &CI);
3408     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3409       Assert(
3410           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3411           "cannot guarantee tail call due to mismatched parameter types", &CI);
3412     }
3413   }
3414 
3415   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3416   //   returned, preallocated, and inalloca, must match.
3417   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3418     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3419     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3420     Assert(CallerABIAttrs == CalleeABIAttrs,
3421            "cannot guarantee tail call due to mismatched ABI impacting "
3422            "function attributes",
3423            &CI, CI.getOperand(I));
3424   }
3425 }
3426 
3427 void Verifier::visitCallInst(CallInst &CI) {
3428   visitCallBase(CI);
3429 
3430   if (CI.isMustTailCall())
3431     verifyMustTailCall(CI);
3432 }
3433 
3434 void Verifier::visitInvokeInst(InvokeInst &II) {
3435   visitCallBase(II);
3436 
3437   // Verify that the first non-PHI instruction of the unwind destination is an
3438   // exception handling instruction.
3439   Assert(
3440       II.getUnwindDest()->isEHPad(),
3441       "The unwind destination does not have an exception handling instruction!",
3442       &II);
3443 
3444   visitTerminator(II);
3445 }
3446 
3447 /// visitUnaryOperator - Check the argument to the unary operator.
3448 ///
3449 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3450   Assert(U.getType() == U.getOperand(0)->getType(),
3451          "Unary operators must have same type for"
3452          "operands and result!",
3453          &U);
3454 
3455   switch (U.getOpcode()) {
3456   // Check that floating-point arithmetic operators are only used with
3457   // floating-point operands.
3458   case Instruction::FNeg:
3459     Assert(U.getType()->isFPOrFPVectorTy(),
3460            "FNeg operator only works with float types!", &U);
3461     break;
3462   default:
3463     llvm_unreachable("Unknown UnaryOperator opcode!");
3464   }
3465 
3466   visitInstruction(U);
3467 }
3468 
3469 /// visitBinaryOperator - Check that both arguments to the binary operator are
3470 /// of the same type!
3471 ///
3472 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3473   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3474          "Both operands to a binary operator are not of the same type!", &B);
3475 
3476   switch (B.getOpcode()) {
3477   // Check that integer arithmetic operators are only used with
3478   // integral operands.
3479   case Instruction::Add:
3480   case Instruction::Sub:
3481   case Instruction::Mul:
3482   case Instruction::SDiv:
3483   case Instruction::UDiv:
3484   case Instruction::SRem:
3485   case Instruction::URem:
3486     Assert(B.getType()->isIntOrIntVectorTy(),
3487            "Integer arithmetic operators only work with integral types!", &B);
3488     Assert(B.getType() == B.getOperand(0)->getType(),
3489            "Integer arithmetic operators must have same type "
3490            "for operands and result!",
3491            &B);
3492     break;
3493   // Check that floating-point arithmetic operators are only used with
3494   // floating-point operands.
3495   case Instruction::FAdd:
3496   case Instruction::FSub:
3497   case Instruction::FMul:
3498   case Instruction::FDiv:
3499   case Instruction::FRem:
3500     Assert(B.getType()->isFPOrFPVectorTy(),
3501            "Floating-point arithmetic operators only work with "
3502            "floating-point types!",
3503            &B);
3504     Assert(B.getType() == B.getOperand(0)->getType(),
3505            "Floating-point arithmetic operators must have same type "
3506            "for operands and result!",
3507            &B);
3508     break;
3509   // Check that logical operators are only used with integral operands.
3510   case Instruction::And:
3511   case Instruction::Or:
3512   case Instruction::Xor:
3513     Assert(B.getType()->isIntOrIntVectorTy(),
3514            "Logical operators only work with integral types!", &B);
3515     Assert(B.getType() == B.getOperand(0)->getType(),
3516            "Logical operators must have same type for operands and result!",
3517            &B);
3518     break;
3519   case Instruction::Shl:
3520   case Instruction::LShr:
3521   case Instruction::AShr:
3522     Assert(B.getType()->isIntOrIntVectorTy(),
3523            "Shifts only work with integral types!", &B);
3524     Assert(B.getType() == B.getOperand(0)->getType(),
3525            "Shift return type must be same as operands!", &B);
3526     break;
3527   default:
3528     llvm_unreachable("Unknown BinaryOperator opcode!");
3529   }
3530 
3531   visitInstruction(B);
3532 }
3533 
3534 void Verifier::visitICmpInst(ICmpInst &IC) {
3535   // Check that the operands are the same type
3536   Type *Op0Ty = IC.getOperand(0)->getType();
3537   Type *Op1Ty = IC.getOperand(1)->getType();
3538   Assert(Op0Ty == Op1Ty,
3539          "Both operands to ICmp instruction are not of the same type!", &IC);
3540   // Check that the operands are the right type
3541   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3542          "Invalid operand types for ICmp instruction", &IC);
3543   // Check that the predicate is valid.
3544   Assert(IC.isIntPredicate(),
3545          "Invalid predicate in ICmp instruction!", &IC);
3546 
3547   visitInstruction(IC);
3548 }
3549 
3550 void Verifier::visitFCmpInst(FCmpInst &FC) {
3551   // Check that the operands are the same type
3552   Type *Op0Ty = FC.getOperand(0)->getType();
3553   Type *Op1Ty = FC.getOperand(1)->getType();
3554   Assert(Op0Ty == Op1Ty,
3555          "Both operands to FCmp instruction are not of the same type!", &FC);
3556   // Check that the operands are the right type
3557   Assert(Op0Ty->isFPOrFPVectorTy(),
3558          "Invalid operand types for FCmp instruction", &FC);
3559   // Check that the predicate is valid.
3560   Assert(FC.isFPPredicate(),
3561          "Invalid predicate in FCmp instruction!", &FC);
3562 
3563   visitInstruction(FC);
3564 }
3565 
3566 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3567   Assert(
3568       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3569       "Invalid extractelement operands!", &EI);
3570   visitInstruction(EI);
3571 }
3572 
3573 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3574   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3575                                             IE.getOperand(2)),
3576          "Invalid insertelement operands!", &IE);
3577   visitInstruction(IE);
3578 }
3579 
3580 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3581   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3582                                             SV.getShuffleMask()),
3583          "Invalid shufflevector operands!", &SV);
3584   visitInstruction(SV);
3585 }
3586 
3587 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3588   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3589 
3590   Assert(isa<PointerType>(TargetTy),
3591          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3592   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3593 
3594   SmallVector<Value *, 16> Idxs(GEP.indices());
3595   Assert(all_of(
3596       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3597       "GEP indexes must be integers", &GEP);
3598   Type *ElTy =
3599       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3600   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3601 
3602   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3603              GEP.getResultElementType() == ElTy,
3604          "GEP is not of right type for indices!", &GEP, ElTy);
3605 
3606   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3607     // Additional checks for vector GEPs.
3608     ElementCount GEPWidth = GEPVTy->getElementCount();
3609     if (GEP.getPointerOperandType()->isVectorTy())
3610       Assert(
3611           GEPWidth ==
3612               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3613           "Vector GEP result width doesn't match operand's", &GEP);
3614     for (Value *Idx : Idxs) {
3615       Type *IndexTy = Idx->getType();
3616       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3617         ElementCount IndexWidth = IndexVTy->getElementCount();
3618         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3619       }
3620       Assert(IndexTy->isIntOrIntVectorTy(),
3621              "All GEP indices should be of integer type");
3622     }
3623   }
3624 
3625   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3626     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3627            "GEP address space doesn't match type", &GEP);
3628   }
3629 
3630   visitInstruction(GEP);
3631 }
3632 
3633 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3634   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3635 }
3636 
3637 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3638   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3639          "precondition violation");
3640 
3641   unsigned NumOperands = Range->getNumOperands();
3642   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3643   unsigned NumRanges = NumOperands / 2;
3644   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3645 
3646   ConstantRange LastRange(1, true); // Dummy initial value
3647   for (unsigned i = 0; i < NumRanges; ++i) {
3648     ConstantInt *Low =
3649         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3650     Assert(Low, "The lower limit must be an integer!", Low);
3651     ConstantInt *High =
3652         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3653     Assert(High, "The upper limit must be an integer!", High);
3654     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3655            "Range types must match instruction type!", &I);
3656 
3657     APInt HighV = High->getValue();
3658     APInt LowV = Low->getValue();
3659     ConstantRange CurRange(LowV, HighV);
3660     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3661            "Range must not be empty!", Range);
3662     if (i != 0) {
3663       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3664              "Intervals are overlapping", Range);
3665       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3666              Range);
3667       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3668              Range);
3669     }
3670     LastRange = ConstantRange(LowV, HighV);
3671   }
3672   if (NumRanges > 2) {
3673     APInt FirstLow =
3674         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3675     APInt FirstHigh =
3676         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3677     ConstantRange FirstRange(FirstLow, FirstHigh);
3678     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3679            "Intervals are overlapping", Range);
3680     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3681            Range);
3682   }
3683 }
3684 
3685 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3686   unsigned Size = DL.getTypeSizeInBits(Ty);
3687   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3688   Assert(!(Size & (Size - 1)),
3689          "atomic memory access' operand must have a power-of-two size", Ty, I);
3690 }
3691 
3692 void Verifier::visitLoadInst(LoadInst &LI) {
3693   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3694   Assert(PTy, "Load operand must be a pointer.", &LI);
3695   Type *ElTy = LI.getType();
3696   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3697          "huge alignment values are unsupported", &LI);
3698   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3699   if (LI.isAtomic()) {
3700     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3701                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3702            "Load cannot have Release ordering", &LI);
3703     Assert(LI.getAlignment() != 0,
3704            "Atomic load must specify explicit alignment", &LI);
3705     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3706            "atomic load operand must have integer, pointer, or floating point "
3707            "type!",
3708            ElTy, &LI);
3709     checkAtomicMemAccessSize(ElTy, &LI);
3710   } else {
3711     Assert(LI.getSyncScopeID() == SyncScope::System,
3712            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3713   }
3714 
3715   visitInstruction(LI);
3716 }
3717 
3718 void Verifier::visitStoreInst(StoreInst &SI) {
3719   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3720   Assert(PTy, "Store operand must be a pointer.", &SI);
3721   Type *ElTy = SI.getOperand(0)->getType();
3722   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3723          "Stored value type does not match pointer operand type!", &SI, ElTy);
3724   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3725          "huge alignment values are unsupported", &SI);
3726   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3727   if (SI.isAtomic()) {
3728     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3729                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3730            "Store cannot have Acquire ordering", &SI);
3731     Assert(SI.getAlignment() != 0,
3732            "Atomic store must specify explicit alignment", &SI);
3733     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3734            "atomic store operand must have integer, pointer, or floating point "
3735            "type!",
3736            ElTy, &SI);
3737     checkAtomicMemAccessSize(ElTy, &SI);
3738   } else {
3739     Assert(SI.getSyncScopeID() == SyncScope::System,
3740            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3741   }
3742   visitInstruction(SI);
3743 }
3744 
3745 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3746 void Verifier::verifySwiftErrorCall(CallBase &Call,
3747                                     const Value *SwiftErrorVal) {
3748   for (const auto &I : llvm::enumerate(Call.args())) {
3749     if (I.value() == SwiftErrorVal) {
3750       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3751              "swifterror value when used in a callsite should be marked "
3752              "with swifterror attribute",
3753              SwiftErrorVal, Call);
3754     }
3755   }
3756 }
3757 
3758 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3759   // Check that swifterror value is only used by loads, stores, or as
3760   // a swifterror argument.
3761   for (const User *U : SwiftErrorVal->users()) {
3762     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3763            isa<InvokeInst>(U),
3764            "swifterror value can only be loaded and stored from, or "
3765            "as a swifterror argument!",
3766            SwiftErrorVal, U);
3767     // If it is used by a store, check it is the second operand.
3768     if (auto StoreI = dyn_cast<StoreInst>(U))
3769       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3770              "swifterror value should be the second operand when used "
3771              "by stores", SwiftErrorVal, U);
3772     if (auto *Call = dyn_cast<CallBase>(U))
3773       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3774   }
3775 }
3776 
3777 void Verifier::visitAllocaInst(AllocaInst &AI) {
3778   SmallPtrSet<Type*, 4> Visited;
3779   Assert(AI.getAllocatedType()->isSized(&Visited),
3780          "Cannot allocate unsized type", &AI);
3781   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3782          "Alloca array size must have integer type", &AI);
3783   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3784          "huge alignment values are unsupported", &AI);
3785 
3786   if (AI.isSwiftError()) {
3787     verifySwiftErrorValue(&AI);
3788   }
3789 
3790   visitInstruction(AI);
3791 }
3792 
3793 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3794   Type *ElTy = CXI.getOperand(1)->getType();
3795   Assert(ElTy->isIntOrPtrTy(),
3796          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3797   checkAtomicMemAccessSize(ElTy, &CXI);
3798   visitInstruction(CXI);
3799 }
3800 
3801 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3802   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3803          "atomicrmw instructions cannot be unordered.", &RMWI);
3804   auto Op = RMWI.getOperation();
3805   Type *ElTy = RMWI.getOperand(1)->getType();
3806   if (Op == AtomicRMWInst::Xchg) {
3807     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3808            AtomicRMWInst::getOperationName(Op) +
3809            " operand must have integer or floating point type!",
3810            &RMWI, ElTy);
3811   } else if (AtomicRMWInst::isFPOperation(Op)) {
3812     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3813            AtomicRMWInst::getOperationName(Op) +
3814            " operand must have floating point type!",
3815            &RMWI, ElTy);
3816   } else {
3817     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3818            AtomicRMWInst::getOperationName(Op) +
3819            " operand must have integer type!",
3820            &RMWI, ElTy);
3821   }
3822   checkAtomicMemAccessSize(ElTy, &RMWI);
3823   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3824          "Invalid binary operation!", &RMWI);
3825   visitInstruction(RMWI);
3826 }
3827 
3828 void Verifier::visitFenceInst(FenceInst &FI) {
3829   const AtomicOrdering Ordering = FI.getOrdering();
3830   Assert(Ordering == AtomicOrdering::Acquire ||
3831              Ordering == AtomicOrdering::Release ||
3832              Ordering == AtomicOrdering::AcquireRelease ||
3833              Ordering == AtomicOrdering::SequentiallyConsistent,
3834          "fence instructions may only have acquire, release, acq_rel, or "
3835          "seq_cst ordering.",
3836          &FI);
3837   visitInstruction(FI);
3838 }
3839 
3840 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3841   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3842                                           EVI.getIndices()) == EVI.getType(),
3843          "Invalid ExtractValueInst operands!", &EVI);
3844 
3845   visitInstruction(EVI);
3846 }
3847 
3848 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3849   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3850                                           IVI.getIndices()) ==
3851              IVI.getOperand(1)->getType(),
3852          "Invalid InsertValueInst operands!", &IVI);
3853 
3854   visitInstruction(IVI);
3855 }
3856 
3857 static Value *getParentPad(Value *EHPad) {
3858   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3859     return FPI->getParentPad();
3860 
3861   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3862 }
3863 
3864 void Verifier::visitEHPadPredecessors(Instruction &I) {
3865   assert(I.isEHPad());
3866 
3867   BasicBlock *BB = I.getParent();
3868   Function *F = BB->getParent();
3869 
3870   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3871 
3872   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3873     // The landingpad instruction defines its parent as a landing pad block. The
3874     // landing pad block may be branched to only by the unwind edge of an
3875     // invoke.
3876     for (BasicBlock *PredBB : predecessors(BB)) {
3877       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3878       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3879              "Block containing LandingPadInst must be jumped to "
3880              "only by the unwind edge of an invoke.",
3881              LPI);
3882     }
3883     return;
3884   }
3885   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3886     if (!pred_empty(BB))
3887       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3888              "Block containg CatchPadInst must be jumped to "
3889              "only by its catchswitch.",
3890              CPI);
3891     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3892            "Catchswitch cannot unwind to one of its catchpads",
3893            CPI->getCatchSwitch(), CPI);
3894     return;
3895   }
3896 
3897   // Verify that each pred has a legal terminator with a legal to/from EH
3898   // pad relationship.
3899   Instruction *ToPad = &I;
3900   Value *ToPadParent = getParentPad(ToPad);
3901   for (BasicBlock *PredBB : predecessors(BB)) {
3902     Instruction *TI = PredBB->getTerminator();
3903     Value *FromPad;
3904     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3905       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3906              "EH pad must be jumped to via an unwind edge", ToPad, II);
3907       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3908         FromPad = Bundle->Inputs[0];
3909       else
3910         FromPad = ConstantTokenNone::get(II->getContext());
3911     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3912       FromPad = CRI->getOperand(0);
3913       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3914     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3915       FromPad = CSI;
3916     } else {
3917       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3918     }
3919 
3920     // The edge may exit from zero or more nested pads.
3921     SmallSet<Value *, 8> Seen;
3922     for (;; FromPad = getParentPad(FromPad)) {
3923       Assert(FromPad != ToPad,
3924              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3925       if (FromPad == ToPadParent) {
3926         // This is a legal unwind edge.
3927         break;
3928       }
3929       Assert(!isa<ConstantTokenNone>(FromPad),
3930              "A single unwind edge may only enter one EH pad", TI);
3931       Assert(Seen.insert(FromPad).second,
3932              "EH pad jumps through a cycle of pads", FromPad);
3933     }
3934   }
3935 }
3936 
3937 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3938   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3939   // isn't a cleanup.
3940   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3941          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3942 
3943   visitEHPadPredecessors(LPI);
3944 
3945   if (!LandingPadResultTy)
3946     LandingPadResultTy = LPI.getType();
3947   else
3948     Assert(LandingPadResultTy == LPI.getType(),
3949            "The landingpad instruction should have a consistent result type "
3950            "inside a function.",
3951            &LPI);
3952 
3953   Function *F = LPI.getParent()->getParent();
3954   Assert(F->hasPersonalityFn(),
3955          "LandingPadInst needs to be in a function with a personality.", &LPI);
3956 
3957   // The landingpad instruction must be the first non-PHI instruction in the
3958   // block.
3959   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3960          "LandingPadInst not the first non-PHI instruction in the block.",
3961          &LPI);
3962 
3963   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3964     Constant *Clause = LPI.getClause(i);
3965     if (LPI.isCatch(i)) {
3966       Assert(isa<PointerType>(Clause->getType()),
3967              "Catch operand does not have pointer type!", &LPI);
3968     } else {
3969       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3970       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3971              "Filter operand is not an array of constants!", &LPI);
3972     }
3973   }
3974 
3975   visitInstruction(LPI);
3976 }
3977 
3978 void Verifier::visitResumeInst(ResumeInst &RI) {
3979   Assert(RI.getFunction()->hasPersonalityFn(),
3980          "ResumeInst needs to be in a function with a personality.", &RI);
3981 
3982   if (!LandingPadResultTy)
3983     LandingPadResultTy = RI.getValue()->getType();
3984   else
3985     Assert(LandingPadResultTy == RI.getValue()->getType(),
3986            "The resume instruction should have a consistent result type "
3987            "inside a function.",
3988            &RI);
3989 
3990   visitTerminator(RI);
3991 }
3992 
3993 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3994   BasicBlock *BB = CPI.getParent();
3995 
3996   Function *F = BB->getParent();
3997   Assert(F->hasPersonalityFn(),
3998          "CatchPadInst needs to be in a function with a personality.", &CPI);
3999 
4000   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4001          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4002          CPI.getParentPad());
4003 
4004   // The catchpad instruction must be the first non-PHI instruction in the
4005   // block.
4006   Assert(BB->getFirstNonPHI() == &CPI,
4007          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4008 
4009   visitEHPadPredecessors(CPI);
4010   visitFuncletPadInst(CPI);
4011 }
4012 
4013 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4014   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4015          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4016          CatchReturn.getOperand(0));
4017 
4018   visitTerminator(CatchReturn);
4019 }
4020 
4021 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4022   BasicBlock *BB = CPI.getParent();
4023 
4024   Function *F = BB->getParent();
4025   Assert(F->hasPersonalityFn(),
4026          "CleanupPadInst needs to be in a function with a personality.", &CPI);
4027 
4028   // The cleanuppad instruction must be the first non-PHI instruction in the
4029   // block.
4030   Assert(BB->getFirstNonPHI() == &CPI,
4031          "CleanupPadInst not the first non-PHI instruction in the block.",
4032          &CPI);
4033 
4034   auto *ParentPad = CPI.getParentPad();
4035   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4036          "CleanupPadInst has an invalid parent.", &CPI);
4037 
4038   visitEHPadPredecessors(CPI);
4039   visitFuncletPadInst(CPI);
4040 }
4041 
4042 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4043   User *FirstUser = nullptr;
4044   Value *FirstUnwindPad = nullptr;
4045   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4046   SmallSet<FuncletPadInst *, 8> Seen;
4047 
4048   while (!Worklist.empty()) {
4049     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4050     Assert(Seen.insert(CurrentPad).second,
4051            "FuncletPadInst must not be nested within itself", CurrentPad);
4052     Value *UnresolvedAncestorPad = nullptr;
4053     for (User *U : CurrentPad->users()) {
4054       BasicBlock *UnwindDest;
4055       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4056         UnwindDest = CRI->getUnwindDest();
4057       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4058         // We allow catchswitch unwind to caller to nest
4059         // within an outer pad that unwinds somewhere else,
4060         // because catchswitch doesn't have a nounwind variant.
4061         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4062         if (CSI->unwindsToCaller())
4063           continue;
4064         UnwindDest = CSI->getUnwindDest();
4065       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4066         UnwindDest = II->getUnwindDest();
4067       } else if (isa<CallInst>(U)) {
4068         // Calls which don't unwind may be found inside funclet
4069         // pads that unwind somewhere else.  We don't *require*
4070         // such calls to be annotated nounwind.
4071         continue;
4072       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4073         // The unwind dest for a cleanup can only be found by
4074         // recursive search.  Add it to the worklist, and we'll
4075         // search for its first use that determines where it unwinds.
4076         Worklist.push_back(CPI);
4077         continue;
4078       } else {
4079         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4080         continue;
4081       }
4082 
4083       Value *UnwindPad;
4084       bool ExitsFPI;
4085       if (UnwindDest) {
4086         UnwindPad = UnwindDest->getFirstNonPHI();
4087         if (!cast<Instruction>(UnwindPad)->isEHPad())
4088           continue;
4089         Value *UnwindParent = getParentPad(UnwindPad);
4090         // Ignore unwind edges that don't exit CurrentPad.
4091         if (UnwindParent == CurrentPad)
4092           continue;
4093         // Determine whether the original funclet pad is exited,
4094         // and if we are scanning nested pads determine how many
4095         // of them are exited so we can stop searching their
4096         // children.
4097         Value *ExitedPad = CurrentPad;
4098         ExitsFPI = false;
4099         do {
4100           if (ExitedPad == &FPI) {
4101             ExitsFPI = true;
4102             // Now we can resolve any ancestors of CurrentPad up to
4103             // FPI, but not including FPI since we need to make sure
4104             // to check all direct users of FPI for consistency.
4105             UnresolvedAncestorPad = &FPI;
4106             break;
4107           }
4108           Value *ExitedParent = getParentPad(ExitedPad);
4109           if (ExitedParent == UnwindParent) {
4110             // ExitedPad is the ancestor-most pad which this unwind
4111             // edge exits, so we can resolve up to it, meaning that
4112             // ExitedParent is the first ancestor still unresolved.
4113             UnresolvedAncestorPad = ExitedParent;
4114             break;
4115           }
4116           ExitedPad = ExitedParent;
4117         } while (!isa<ConstantTokenNone>(ExitedPad));
4118       } else {
4119         // Unwinding to caller exits all pads.
4120         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4121         ExitsFPI = true;
4122         UnresolvedAncestorPad = &FPI;
4123       }
4124 
4125       if (ExitsFPI) {
4126         // This unwind edge exits FPI.  Make sure it agrees with other
4127         // such edges.
4128         if (FirstUser) {
4129           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4130                                               "pad must have the same unwind "
4131                                               "dest",
4132                  &FPI, U, FirstUser);
4133         } else {
4134           FirstUser = U;
4135           FirstUnwindPad = UnwindPad;
4136           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4137           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4138               getParentPad(UnwindPad) == getParentPad(&FPI))
4139             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4140         }
4141       }
4142       // Make sure we visit all uses of FPI, but for nested pads stop as
4143       // soon as we know where they unwind to.
4144       if (CurrentPad != &FPI)
4145         break;
4146     }
4147     if (UnresolvedAncestorPad) {
4148       if (CurrentPad == UnresolvedAncestorPad) {
4149         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4150         // we've found an unwind edge that exits it, because we need to verify
4151         // all direct uses of FPI.
4152         assert(CurrentPad == &FPI);
4153         continue;
4154       }
4155       // Pop off the worklist any nested pads that we've found an unwind
4156       // destination for.  The pads on the worklist are the uncles,
4157       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4158       // for all ancestors of CurrentPad up to but not including
4159       // UnresolvedAncestorPad.
4160       Value *ResolvedPad = CurrentPad;
4161       while (!Worklist.empty()) {
4162         Value *UnclePad = Worklist.back();
4163         Value *AncestorPad = getParentPad(UnclePad);
4164         // Walk ResolvedPad up the ancestor list until we either find the
4165         // uncle's parent or the last resolved ancestor.
4166         while (ResolvedPad != AncestorPad) {
4167           Value *ResolvedParent = getParentPad(ResolvedPad);
4168           if (ResolvedParent == UnresolvedAncestorPad) {
4169             break;
4170           }
4171           ResolvedPad = ResolvedParent;
4172         }
4173         // If the resolved ancestor search didn't find the uncle's parent,
4174         // then the uncle is not yet resolved.
4175         if (ResolvedPad != AncestorPad)
4176           break;
4177         // This uncle is resolved, so pop it from the worklist.
4178         Worklist.pop_back();
4179       }
4180     }
4181   }
4182 
4183   if (FirstUnwindPad) {
4184     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4185       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4186       Value *SwitchUnwindPad;
4187       if (SwitchUnwindDest)
4188         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4189       else
4190         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4191       Assert(SwitchUnwindPad == FirstUnwindPad,
4192              "Unwind edges out of a catch must have the same unwind dest as "
4193              "the parent catchswitch",
4194              &FPI, FirstUser, CatchSwitch);
4195     }
4196   }
4197 
4198   visitInstruction(FPI);
4199 }
4200 
4201 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4202   BasicBlock *BB = CatchSwitch.getParent();
4203 
4204   Function *F = BB->getParent();
4205   Assert(F->hasPersonalityFn(),
4206          "CatchSwitchInst needs to be in a function with a personality.",
4207          &CatchSwitch);
4208 
4209   // The catchswitch instruction must be the first non-PHI instruction in the
4210   // block.
4211   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4212          "CatchSwitchInst not the first non-PHI instruction in the block.",
4213          &CatchSwitch);
4214 
4215   auto *ParentPad = CatchSwitch.getParentPad();
4216   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4217          "CatchSwitchInst has an invalid parent.", ParentPad);
4218 
4219   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4220     Instruction *I = UnwindDest->getFirstNonPHI();
4221     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4222            "CatchSwitchInst must unwind to an EH block which is not a "
4223            "landingpad.",
4224            &CatchSwitch);
4225 
4226     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4227     if (getParentPad(I) == ParentPad)
4228       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4229   }
4230 
4231   Assert(CatchSwitch.getNumHandlers() != 0,
4232          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4233 
4234   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4235     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4236            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4237   }
4238 
4239   visitEHPadPredecessors(CatchSwitch);
4240   visitTerminator(CatchSwitch);
4241 }
4242 
4243 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4244   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4245          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4246          CRI.getOperand(0));
4247 
4248   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4249     Instruction *I = UnwindDest->getFirstNonPHI();
4250     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4251            "CleanupReturnInst must unwind to an EH block which is not a "
4252            "landingpad.",
4253            &CRI);
4254   }
4255 
4256   visitTerminator(CRI);
4257 }
4258 
4259 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4260   Instruction *Op = cast<Instruction>(I.getOperand(i));
4261   // If the we have an invalid invoke, don't try to compute the dominance.
4262   // We already reject it in the invoke specific checks and the dominance
4263   // computation doesn't handle multiple edges.
4264   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4265     if (II->getNormalDest() == II->getUnwindDest())
4266       return;
4267   }
4268 
4269   // Quick check whether the def has already been encountered in the same block.
4270   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4271   // uses are defined to happen on the incoming edge, not at the instruction.
4272   //
4273   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4274   // wrapping an SSA value, assert that we've already encountered it.  See
4275   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4276   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4277     return;
4278 
4279   const Use &U = I.getOperandUse(i);
4280   Assert(DT.dominates(Op, U),
4281          "Instruction does not dominate all uses!", Op, &I);
4282 }
4283 
4284 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4285   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4286          "apply only to pointer types", &I);
4287   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4288          "dereferenceable, dereferenceable_or_null apply only to load"
4289          " and inttoptr instructions, use attributes for calls or invokes", &I);
4290   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4291          "take one operand!", &I);
4292   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4293   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4294          "dereferenceable_or_null metadata value must be an i64!", &I);
4295 }
4296 
4297 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4298   Assert(MD->getNumOperands() >= 2,
4299          "!prof annotations should have no less than 2 operands", MD);
4300 
4301   // Check first operand.
4302   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4303   Assert(isa<MDString>(MD->getOperand(0)),
4304          "expected string with name of the !prof annotation", MD);
4305   MDString *MDS = cast<MDString>(MD->getOperand(0));
4306   StringRef ProfName = MDS->getString();
4307 
4308   // Check consistency of !prof branch_weights metadata.
4309   if (ProfName.equals("branch_weights")) {
4310     if (isa<InvokeInst>(&I)) {
4311       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4312              "Wrong number of InvokeInst branch_weights operands", MD);
4313     } else {
4314       unsigned ExpectedNumOperands = 0;
4315       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4316         ExpectedNumOperands = BI->getNumSuccessors();
4317       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4318         ExpectedNumOperands = SI->getNumSuccessors();
4319       else if (isa<CallInst>(&I))
4320         ExpectedNumOperands = 1;
4321       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4322         ExpectedNumOperands = IBI->getNumDestinations();
4323       else if (isa<SelectInst>(&I))
4324         ExpectedNumOperands = 2;
4325       else
4326         CheckFailed("!prof branch_weights are not allowed for this instruction",
4327                     MD);
4328 
4329       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4330              "Wrong number of operands", MD);
4331     }
4332     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4333       auto &MDO = MD->getOperand(i);
4334       Assert(MDO, "second operand should not be null", MD);
4335       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4336              "!prof brunch_weights operand is not a const int");
4337     }
4338   }
4339 }
4340 
4341 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4342   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4343   Assert(Annotation->getNumOperands() >= 1,
4344          "annotation must have at least one operand");
4345   for (const MDOperand &Op : Annotation->operands())
4346     Assert(isa<MDString>(Op.get()), "operands must be strings");
4347 }
4348 
4349 /// verifyInstruction - Verify that an instruction is well formed.
4350 ///
4351 void Verifier::visitInstruction(Instruction &I) {
4352   BasicBlock *BB = I.getParent();
4353   Assert(BB, "Instruction not embedded in basic block!", &I);
4354 
4355   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4356     for (User *U : I.users()) {
4357       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4358              "Only PHI nodes may reference their own value!", &I);
4359     }
4360   }
4361 
4362   // Check that void typed values don't have names
4363   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4364          "Instruction has a name, but provides a void value!", &I);
4365 
4366   // Check that the return value of the instruction is either void or a legal
4367   // value type.
4368   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4369          "Instruction returns a non-scalar type!", &I);
4370 
4371   // Check that the instruction doesn't produce metadata. Calls are already
4372   // checked against the callee type.
4373   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4374          "Invalid use of metadata!", &I);
4375 
4376   // Check that all uses of the instruction, if they are instructions
4377   // themselves, actually have parent basic blocks.  If the use is not an
4378   // instruction, it is an error!
4379   for (Use &U : I.uses()) {
4380     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4381       Assert(Used->getParent() != nullptr,
4382              "Instruction referencing"
4383              " instruction not embedded in a basic block!",
4384              &I, Used);
4385     else {
4386       CheckFailed("Use of instruction is not an instruction!", U);
4387       return;
4388     }
4389   }
4390 
4391   // Get a pointer to the call base of the instruction if it is some form of
4392   // call.
4393   const CallBase *CBI = dyn_cast<CallBase>(&I);
4394 
4395   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4396     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4397 
4398     // Check to make sure that only first-class-values are operands to
4399     // instructions.
4400     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4401       Assert(false, "Instruction operands must be first-class values!", &I);
4402     }
4403 
4404     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4405       // Check to make sure that the "address of" an intrinsic function is never
4406       // taken.
4407       Assert(!F->isIntrinsic() ||
4408                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4409              "Cannot take the address of an intrinsic!", &I);
4410       Assert(
4411           !F->isIntrinsic() || isa<CallInst>(I) ||
4412               F->getIntrinsicID() == Intrinsic::donothing ||
4413               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4414               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4415               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4416               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4417               F->getIntrinsicID() == Intrinsic::coro_resume ||
4418               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4419               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4420               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4421               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4422               F->getIntrinsicID() == Intrinsic::wasm_rethrow,
4423           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4424           "statepoint, coro_resume or coro_destroy",
4425           &I);
4426       Assert(F->getParent() == &M, "Referencing function in another module!",
4427              &I, &M, F, F->getParent());
4428     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4429       Assert(OpBB->getParent() == BB->getParent(),
4430              "Referring to a basic block in another function!", &I);
4431     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4432       Assert(OpArg->getParent() == BB->getParent(),
4433              "Referring to an argument in another function!", &I);
4434     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4435       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4436              &M, GV, GV->getParent());
4437     } else if (isa<Instruction>(I.getOperand(i))) {
4438       verifyDominatesUse(I, i);
4439     } else if (isa<InlineAsm>(I.getOperand(i))) {
4440       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4441              "Cannot take the address of an inline asm!", &I);
4442     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4443       if (CE->getType()->isPtrOrPtrVectorTy()) {
4444         // If we have a ConstantExpr pointer, we need to see if it came from an
4445         // illegal bitcast.
4446         visitConstantExprsRecursively(CE);
4447       }
4448     }
4449   }
4450 
4451   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4452     Assert(I.getType()->isFPOrFPVectorTy(),
4453            "fpmath requires a floating point result!", &I);
4454     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4455     if (ConstantFP *CFP0 =
4456             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4457       const APFloat &Accuracy = CFP0->getValueAPF();
4458       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4459              "fpmath accuracy must have float type", &I);
4460       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4461              "fpmath accuracy not a positive number!", &I);
4462     } else {
4463       Assert(false, "invalid fpmath accuracy!", &I);
4464     }
4465   }
4466 
4467   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4468     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4469            "Ranges are only for loads, calls and invokes!", &I);
4470     visitRangeMetadata(I, Range, I.getType());
4471   }
4472 
4473   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4474     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4475            &I);
4476     Assert(isa<LoadInst>(I),
4477            "nonnull applies only to load instructions, use attributes"
4478            " for calls or invokes",
4479            &I);
4480   }
4481 
4482   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4483     visitDereferenceableMetadata(I, MD);
4484 
4485   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4486     visitDereferenceableMetadata(I, MD);
4487 
4488   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4489     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4490 
4491   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4492     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4493            &I);
4494     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4495            "use attributes for calls or invokes", &I);
4496     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4497     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4498     Assert(CI && CI->getType()->isIntegerTy(64),
4499            "align metadata value must be an i64!", &I);
4500     uint64_t Align = CI->getZExtValue();
4501     Assert(isPowerOf2_64(Align),
4502            "align metadata value must be a power of 2!", &I);
4503     Assert(Align <= Value::MaximumAlignment,
4504            "alignment is larger that implementation defined limit", &I);
4505   }
4506 
4507   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4508     visitProfMetadata(I, MD);
4509 
4510   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4511     visitAnnotationMetadata(Annotation);
4512 
4513   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4514     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4515     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4516   }
4517 
4518   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4519     verifyFragmentExpression(*DII);
4520     verifyNotEntryValue(*DII);
4521   }
4522 
4523   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4524   I.getAllMetadata(MDs);
4525   for (auto Attachment : MDs) {
4526     unsigned Kind = Attachment.first;
4527     auto AllowLocs =
4528         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4529             ? AreDebugLocsAllowed::Yes
4530             : AreDebugLocsAllowed::No;
4531     visitMDNode(*Attachment.second, AllowLocs);
4532   }
4533 
4534   InstsInThisBlock.insert(&I);
4535 }
4536 
4537 /// Allow intrinsics to be verified in different ways.
4538 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4539   Function *IF = Call.getCalledFunction();
4540   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4541          IF);
4542 
4543   // Verify that the intrinsic prototype lines up with what the .td files
4544   // describe.
4545   FunctionType *IFTy = IF->getFunctionType();
4546   bool IsVarArg = IFTy->isVarArg();
4547 
4548   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4549   getIntrinsicInfoTableEntries(ID, Table);
4550   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4551 
4552   // Walk the descriptors to extract overloaded types.
4553   SmallVector<Type *, 4> ArgTys;
4554   Intrinsic::MatchIntrinsicTypesResult Res =
4555       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4556   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4557          "Intrinsic has incorrect return type!", IF);
4558   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4559          "Intrinsic has incorrect argument type!", IF);
4560 
4561   // Verify if the intrinsic call matches the vararg property.
4562   if (IsVarArg)
4563     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4564            "Intrinsic was not defined with variable arguments!", IF);
4565   else
4566     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4567            "Callsite was not defined with variable arguments!", IF);
4568 
4569   // All descriptors should be absorbed by now.
4570   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4571 
4572   // Now that we have the intrinsic ID and the actual argument types (and we
4573   // know they are legal for the intrinsic!) get the intrinsic name through the
4574   // usual means.  This allows us to verify the mangling of argument types into
4575   // the name.
4576   const std::string ExpectedName =
4577       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4578   Assert(ExpectedName == IF->getName(),
4579          "Intrinsic name not mangled correctly for type arguments! "
4580          "Should be: " +
4581              ExpectedName,
4582          IF);
4583 
4584   // If the intrinsic takes MDNode arguments, verify that they are either global
4585   // or are local to *this* function.
4586   for (Value *V : Call.args()) {
4587     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4588       visitMetadataAsValue(*MD, Call.getCaller());
4589     if (auto *Const = dyn_cast<Constant>(V))
4590       Assert(!Const->getType()->isX86_AMXTy(),
4591              "const x86_amx is not allowed in argument!");
4592   }
4593 
4594   switch (ID) {
4595   default:
4596     break;
4597   case Intrinsic::assume: {
4598     for (auto &Elem : Call.bundle_op_infos()) {
4599       Assert(Elem.Tag->getKey() == "ignore" ||
4600                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4601              "tags must be valid attribute names");
4602       Attribute::AttrKind Kind =
4603           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4604       unsigned ArgCount = Elem.End - Elem.Begin;
4605       if (Kind == Attribute::Alignment) {
4606         Assert(ArgCount <= 3 && ArgCount >= 2,
4607                "alignment assumptions should have 2 or 3 arguments");
4608         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4609                "first argument should be a pointer");
4610         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4611                "second argument should be an integer");
4612         if (ArgCount == 3)
4613           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4614                  "third argument should be an integer if present");
4615         return;
4616       }
4617       Assert(ArgCount <= 2, "to many arguments");
4618       if (Kind == Attribute::None)
4619         break;
4620       if (Attribute::isIntAttrKind(Kind)) {
4621         Assert(ArgCount == 2, "this attribute should have 2 arguments");
4622         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4623                "the second argument should be a constant integral value");
4624       } else if (Attribute::canUseAsParamAttr(Kind)) {
4625         Assert((ArgCount) == 1, "this attribute should have one argument");
4626       } else if (Attribute::canUseAsFnAttr(Kind)) {
4627         Assert((ArgCount) == 0, "this attribute has no argument");
4628       }
4629     }
4630     break;
4631   }
4632   case Intrinsic::coro_id: {
4633     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4634     if (isa<ConstantPointerNull>(InfoArg))
4635       break;
4636     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4637     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4638            "info argument of llvm.coro.id must refer to an initialized "
4639            "constant");
4640     Constant *Init = GV->getInitializer();
4641     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4642            "info argument of llvm.coro.id must refer to either a struct or "
4643            "an array");
4644     break;
4645   }
4646 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4647   case Intrinsic::INTRINSIC:
4648 #include "llvm/IR/ConstrainedOps.def"
4649     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4650     break;
4651   case Intrinsic::dbg_declare: // llvm.dbg.declare
4652     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4653            "invalid llvm.dbg.declare intrinsic call 1", Call);
4654     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4655     break;
4656   case Intrinsic::dbg_addr: // llvm.dbg.addr
4657     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4658     break;
4659   case Intrinsic::dbg_value: // llvm.dbg.value
4660     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4661     break;
4662   case Intrinsic::dbg_label: // llvm.dbg.label
4663     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4664     break;
4665   case Intrinsic::memcpy:
4666   case Intrinsic::memcpy_inline:
4667   case Intrinsic::memmove:
4668   case Intrinsic::memset: {
4669     const auto *MI = cast<MemIntrinsic>(&Call);
4670     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4671       return Alignment == 0 || isPowerOf2_32(Alignment);
4672     };
4673     Assert(IsValidAlignment(MI->getDestAlignment()),
4674            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4675            Call);
4676     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4677       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4678              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4679              Call);
4680     }
4681 
4682     break;
4683   }
4684   case Intrinsic::memcpy_element_unordered_atomic:
4685   case Intrinsic::memmove_element_unordered_atomic:
4686   case Intrinsic::memset_element_unordered_atomic: {
4687     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4688 
4689     ConstantInt *ElementSizeCI =
4690         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4691     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4692     Assert(ElementSizeVal.isPowerOf2(),
4693            "element size of the element-wise atomic memory intrinsic "
4694            "must be a power of 2",
4695            Call);
4696 
4697     auto IsValidAlignment = [&](uint64_t Alignment) {
4698       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4699     };
4700     uint64_t DstAlignment = AMI->getDestAlignment();
4701     Assert(IsValidAlignment(DstAlignment),
4702            "incorrect alignment of the destination argument", Call);
4703     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4704       uint64_t SrcAlignment = AMT->getSourceAlignment();
4705       Assert(IsValidAlignment(SrcAlignment),
4706              "incorrect alignment of the source argument", Call);
4707     }
4708     break;
4709   }
4710   case Intrinsic::call_preallocated_setup: {
4711     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4712     Assert(NumArgs != nullptr,
4713            "llvm.call.preallocated.setup argument must be a constant");
4714     bool FoundCall = false;
4715     for (User *U : Call.users()) {
4716       auto *UseCall = dyn_cast<CallBase>(U);
4717       Assert(UseCall != nullptr,
4718              "Uses of llvm.call.preallocated.setup must be calls");
4719       const Function *Fn = UseCall->getCalledFunction();
4720       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4721         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4722         Assert(AllocArgIndex != nullptr,
4723                "llvm.call.preallocated.alloc arg index must be a constant");
4724         auto AllocArgIndexInt = AllocArgIndex->getValue();
4725         Assert(AllocArgIndexInt.sge(0) &&
4726                    AllocArgIndexInt.slt(NumArgs->getValue()),
4727                "llvm.call.preallocated.alloc arg index must be between 0 and "
4728                "corresponding "
4729                "llvm.call.preallocated.setup's argument count");
4730       } else if (Fn && Fn->getIntrinsicID() ==
4731                            Intrinsic::call_preallocated_teardown) {
4732         // nothing to do
4733       } else {
4734         Assert(!FoundCall, "Can have at most one call corresponding to a "
4735                            "llvm.call.preallocated.setup");
4736         FoundCall = true;
4737         size_t NumPreallocatedArgs = 0;
4738         for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
4739           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4740             ++NumPreallocatedArgs;
4741           }
4742         }
4743         Assert(NumPreallocatedArgs != 0,
4744                "cannot use preallocated intrinsics on a call without "
4745                "preallocated arguments");
4746         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4747                "llvm.call.preallocated.setup arg size must be equal to number "
4748                "of preallocated arguments "
4749                "at call site",
4750                Call, *UseCall);
4751         // getOperandBundle() cannot be called if more than one of the operand
4752         // bundle exists. There is already a check elsewhere for this, so skip
4753         // here if we see more than one.
4754         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4755             1) {
4756           return;
4757         }
4758         auto PreallocatedBundle =
4759             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4760         Assert(PreallocatedBundle,
4761                "Use of llvm.call.preallocated.setup outside intrinsics "
4762                "must be in \"preallocated\" operand bundle");
4763         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4764                "preallocated bundle must have token from corresponding "
4765                "llvm.call.preallocated.setup");
4766       }
4767     }
4768     break;
4769   }
4770   case Intrinsic::call_preallocated_arg: {
4771     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4772     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4773                         Intrinsic::call_preallocated_setup,
4774            "llvm.call.preallocated.arg token argument must be a "
4775            "llvm.call.preallocated.setup");
4776     Assert(Call.hasFnAttr(Attribute::Preallocated),
4777            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4778            "call site attribute");
4779     break;
4780   }
4781   case Intrinsic::call_preallocated_teardown: {
4782     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4783     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4784                         Intrinsic::call_preallocated_setup,
4785            "llvm.call.preallocated.teardown token argument must be a "
4786            "llvm.call.preallocated.setup");
4787     break;
4788   }
4789   case Intrinsic::gcroot:
4790   case Intrinsic::gcwrite:
4791   case Intrinsic::gcread:
4792     if (ID == Intrinsic::gcroot) {
4793       AllocaInst *AI =
4794           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4795       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4796       Assert(isa<Constant>(Call.getArgOperand(1)),
4797              "llvm.gcroot parameter #2 must be a constant.", Call);
4798       if (!AI->getAllocatedType()->isPointerTy()) {
4799         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4800                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4801                "or argument #2 must be a non-null constant.",
4802                Call);
4803       }
4804     }
4805 
4806     Assert(Call.getParent()->getParent()->hasGC(),
4807            "Enclosing function does not use GC.", Call);
4808     break;
4809   case Intrinsic::init_trampoline:
4810     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4811            "llvm.init_trampoline parameter #2 must resolve to a function.",
4812            Call);
4813     break;
4814   case Intrinsic::prefetch:
4815     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4816            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4817            "invalid arguments to llvm.prefetch", Call);
4818     break;
4819   case Intrinsic::stackprotector:
4820     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4821            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4822     break;
4823   case Intrinsic::localescape: {
4824     BasicBlock *BB = Call.getParent();
4825     Assert(BB == &BB->getParent()->front(),
4826            "llvm.localescape used outside of entry block", Call);
4827     Assert(!SawFrameEscape,
4828            "multiple calls to llvm.localescape in one function", Call);
4829     for (Value *Arg : Call.args()) {
4830       if (isa<ConstantPointerNull>(Arg))
4831         continue; // Null values are allowed as placeholders.
4832       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4833       Assert(AI && AI->isStaticAlloca(),
4834              "llvm.localescape only accepts static allocas", Call);
4835     }
4836     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4837     SawFrameEscape = true;
4838     break;
4839   }
4840   case Intrinsic::localrecover: {
4841     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4842     Function *Fn = dyn_cast<Function>(FnArg);
4843     Assert(Fn && !Fn->isDeclaration(),
4844            "llvm.localrecover first "
4845            "argument must be function defined in this module",
4846            Call);
4847     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4848     auto &Entry = FrameEscapeInfo[Fn];
4849     Entry.second = unsigned(
4850         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4851     break;
4852   }
4853 
4854   case Intrinsic::experimental_gc_statepoint:
4855     if (auto *CI = dyn_cast<CallInst>(&Call))
4856       Assert(!CI->isInlineAsm(),
4857              "gc.statepoint support for inline assembly unimplemented", CI);
4858     Assert(Call.getParent()->getParent()->hasGC(),
4859            "Enclosing function does not use GC.", Call);
4860 
4861     verifyStatepoint(Call);
4862     break;
4863   case Intrinsic::experimental_gc_result: {
4864     Assert(Call.getParent()->getParent()->hasGC(),
4865            "Enclosing function does not use GC.", Call);
4866     // Are we tied to a statepoint properly?
4867     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4868     const Function *StatepointFn =
4869         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4870     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4871                StatepointFn->getIntrinsicID() ==
4872                    Intrinsic::experimental_gc_statepoint,
4873            "gc.result operand #1 must be from a statepoint", Call,
4874            Call.getArgOperand(0));
4875 
4876     // Assert that result type matches wrapped callee.
4877     const Value *Target = StatepointCall->getArgOperand(2);
4878     auto *PT = cast<PointerType>(Target->getType());
4879     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4880     Assert(Call.getType() == TargetFuncType->getReturnType(),
4881            "gc.result result type does not match wrapped callee", Call);
4882     break;
4883   }
4884   case Intrinsic::experimental_gc_relocate: {
4885     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4886 
4887     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4888            "gc.relocate must return a pointer or a vector of pointers", Call);
4889 
4890     // Check that this relocate is correctly tied to the statepoint
4891 
4892     // This is case for relocate on the unwinding path of an invoke statepoint
4893     if (LandingPadInst *LandingPad =
4894             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4895 
4896       const BasicBlock *InvokeBB =
4897           LandingPad->getParent()->getUniquePredecessor();
4898 
4899       // Landingpad relocates should have only one predecessor with invoke
4900       // statepoint terminator
4901       Assert(InvokeBB, "safepoints should have unique landingpads",
4902              LandingPad->getParent());
4903       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4904              InvokeBB);
4905       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4906              "gc relocate should be linked to a statepoint", InvokeBB);
4907     } else {
4908       // In all other cases relocate should be tied to the statepoint directly.
4909       // This covers relocates on a normal return path of invoke statepoint and
4910       // relocates of a call statepoint.
4911       auto Token = Call.getArgOperand(0);
4912       Assert(isa<GCStatepointInst>(Token),
4913              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4914     }
4915 
4916     // Verify rest of the relocate arguments.
4917     const CallBase &StatepointCall =
4918       *cast<GCRelocateInst>(Call).getStatepoint();
4919 
4920     // Both the base and derived must be piped through the safepoint.
4921     Value *Base = Call.getArgOperand(1);
4922     Assert(isa<ConstantInt>(Base),
4923            "gc.relocate operand #2 must be integer offset", Call);
4924 
4925     Value *Derived = Call.getArgOperand(2);
4926     Assert(isa<ConstantInt>(Derived),
4927            "gc.relocate operand #3 must be integer offset", Call);
4928 
4929     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4930     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4931 
4932     // Check the bounds
4933     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
4934       Assert(BaseIndex < Opt->Inputs.size(),
4935              "gc.relocate: statepoint base index out of bounds", Call);
4936       Assert(DerivedIndex < Opt->Inputs.size(),
4937              "gc.relocate: statepoint derived index out of bounds", Call);
4938     }
4939 
4940     // Relocated value must be either a pointer type or vector-of-pointer type,
4941     // but gc_relocate does not need to return the same pointer type as the
4942     // relocated pointer. It can be casted to the correct type later if it's
4943     // desired. However, they must have the same address space and 'vectorness'
4944     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4945     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4946            "gc.relocate: relocated value must be a gc pointer", Call);
4947 
4948     auto ResultType = Call.getType();
4949     auto DerivedType = Relocate.getDerivedPtr()->getType();
4950     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4951            "gc.relocate: vector relocates to vector and pointer to pointer",
4952            Call);
4953     Assert(
4954         ResultType->getPointerAddressSpace() ==
4955             DerivedType->getPointerAddressSpace(),
4956         "gc.relocate: relocating a pointer shouldn't change its address space",
4957         Call);
4958     break;
4959   }
4960   case Intrinsic::eh_exceptioncode:
4961   case Intrinsic::eh_exceptionpointer: {
4962     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4963            "eh.exceptionpointer argument must be a catchpad", Call);
4964     break;
4965   }
4966   case Intrinsic::get_active_lane_mask: {
4967     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
4968            "vector", Call);
4969     auto *ElemTy = Call.getType()->getScalarType();
4970     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
4971            "i1", Call);
4972     break;
4973   }
4974   case Intrinsic::masked_load: {
4975     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4976            Call);
4977 
4978     Value *Ptr = Call.getArgOperand(0);
4979     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4980     Value *Mask = Call.getArgOperand(2);
4981     Value *PassThru = Call.getArgOperand(3);
4982     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4983            Call);
4984     Assert(Alignment->getValue().isPowerOf2(),
4985            "masked_load: alignment must be a power of 2", Call);
4986 
4987     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
4988     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
4989            "masked_load: return must match pointer type", Call);
4990     Assert(PassThru->getType() == Call.getType(),
4991            "masked_load: pass through and return type must match", Call);
4992     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
4993                cast<VectorType>(Call.getType())->getElementCount(),
4994            "masked_load: vector mask must be same length as return", Call);
4995     break;
4996   }
4997   case Intrinsic::masked_store: {
4998     Value *Val = Call.getArgOperand(0);
4999     Value *Ptr = Call.getArgOperand(1);
5000     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5001     Value *Mask = Call.getArgOperand(3);
5002     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5003            Call);
5004     Assert(Alignment->getValue().isPowerOf2(),
5005            "masked_store: alignment must be a power of 2", Call);
5006 
5007     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5008     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5009            "masked_store: storee must match pointer type", Call);
5010     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5011                cast<VectorType>(Val->getType())->getElementCount(),
5012            "masked_store: vector mask must be same length as value", Call);
5013     break;
5014   }
5015 
5016   case Intrinsic::masked_gather: {
5017     const APInt &Alignment =
5018         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5019     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
5020            "masked_gather: alignment must be 0 or a power of 2", Call);
5021     break;
5022   }
5023   case Intrinsic::masked_scatter: {
5024     const APInt &Alignment =
5025         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5026     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
5027            "masked_scatter: alignment must be 0 or a power of 2", Call);
5028     break;
5029   }
5030 
5031   case Intrinsic::experimental_guard: {
5032     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5033     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5034            "experimental_guard must have exactly one "
5035            "\"deopt\" operand bundle");
5036     break;
5037   }
5038 
5039   case Intrinsic::experimental_deoptimize: {
5040     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5041            Call);
5042     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5043            "experimental_deoptimize must have exactly one "
5044            "\"deopt\" operand bundle");
5045     Assert(Call.getType() == Call.getFunction()->getReturnType(),
5046            "experimental_deoptimize return type must match caller return type");
5047 
5048     if (isa<CallInst>(Call)) {
5049       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5050       Assert(RI,
5051              "calls to experimental_deoptimize must be followed by a return");
5052 
5053       if (!Call.getType()->isVoidTy() && RI)
5054         Assert(RI->getReturnValue() == &Call,
5055                "calls to experimental_deoptimize must be followed by a return "
5056                "of the value computed by experimental_deoptimize");
5057     }
5058 
5059     break;
5060   }
5061   case Intrinsic::vector_reduce_and:
5062   case Intrinsic::vector_reduce_or:
5063   case Intrinsic::vector_reduce_xor:
5064   case Intrinsic::vector_reduce_add:
5065   case Intrinsic::vector_reduce_mul:
5066   case Intrinsic::vector_reduce_smax:
5067   case Intrinsic::vector_reduce_smin:
5068   case Intrinsic::vector_reduce_umax:
5069   case Intrinsic::vector_reduce_umin: {
5070     Type *ArgTy = Call.getArgOperand(0)->getType();
5071     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5072            "Intrinsic has incorrect argument type!");
5073     break;
5074   }
5075   case Intrinsic::vector_reduce_fmax:
5076   case Intrinsic::vector_reduce_fmin: {
5077     Type *ArgTy = Call.getArgOperand(0)->getType();
5078     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5079            "Intrinsic has incorrect argument type!");
5080     break;
5081   }
5082   case Intrinsic::vector_reduce_fadd:
5083   case Intrinsic::vector_reduce_fmul: {
5084     // Unlike the other reductions, the first argument is a start value. The
5085     // second argument is the vector to be reduced.
5086     Type *ArgTy = Call.getArgOperand(1)->getType();
5087     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5088            "Intrinsic has incorrect argument type!");
5089     break;
5090   }
5091   case Intrinsic::smul_fix:
5092   case Intrinsic::smul_fix_sat:
5093   case Intrinsic::umul_fix:
5094   case Intrinsic::umul_fix_sat:
5095   case Intrinsic::sdiv_fix:
5096   case Intrinsic::sdiv_fix_sat:
5097   case Intrinsic::udiv_fix:
5098   case Intrinsic::udiv_fix_sat: {
5099     Value *Op1 = Call.getArgOperand(0);
5100     Value *Op2 = Call.getArgOperand(1);
5101     Assert(Op1->getType()->isIntOrIntVectorTy(),
5102            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5103            "vector of ints");
5104     Assert(Op2->getType()->isIntOrIntVectorTy(),
5105            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5106            "vector of ints");
5107 
5108     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5109     Assert(Op3->getType()->getBitWidth() <= 32,
5110            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5111 
5112     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5113         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5114       Assert(
5115           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5116           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5117           "the operands");
5118     } else {
5119       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5120              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5121              "to the width of the operands");
5122     }
5123     break;
5124   }
5125   case Intrinsic::lround:
5126   case Intrinsic::llround:
5127   case Intrinsic::lrint:
5128   case Intrinsic::llrint: {
5129     Type *ValTy = Call.getArgOperand(0)->getType();
5130     Type *ResultTy = Call.getType();
5131     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5132            "Intrinsic does not support vectors", &Call);
5133     break;
5134   }
5135   case Intrinsic::bswap: {
5136     Type *Ty = Call.getType();
5137     unsigned Size = Ty->getScalarSizeInBits();
5138     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5139     break;
5140   }
5141   case Intrinsic::invariant_start: {
5142     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5143     Assert(InvariantSize &&
5144                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5145            "invariant_start parameter must be -1, 0 or a positive number",
5146            &Call);
5147     break;
5148   }
5149   case Intrinsic::matrix_multiply:
5150   case Intrinsic::matrix_transpose:
5151   case Intrinsic::matrix_column_major_load:
5152   case Intrinsic::matrix_column_major_store: {
5153     Function *IF = Call.getCalledFunction();
5154     ConstantInt *Stride = nullptr;
5155     ConstantInt *NumRows;
5156     ConstantInt *NumColumns;
5157     VectorType *ResultTy;
5158     Type *Op0ElemTy = nullptr;
5159     Type *Op1ElemTy = nullptr;
5160     switch (ID) {
5161     case Intrinsic::matrix_multiply:
5162       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5163       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5164       ResultTy = cast<VectorType>(Call.getType());
5165       Op0ElemTy =
5166           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5167       Op1ElemTy =
5168           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5169       break;
5170     case Intrinsic::matrix_transpose:
5171       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5172       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5173       ResultTy = cast<VectorType>(Call.getType());
5174       Op0ElemTy =
5175           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5176       break;
5177     case Intrinsic::matrix_column_major_load:
5178       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5179       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5180       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5181       ResultTy = cast<VectorType>(Call.getType());
5182       Op0ElemTy =
5183           cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
5184       break;
5185     case Intrinsic::matrix_column_major_store:
5186       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5187       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5188       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5189       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5190       Op0ElemTy =
5191           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5192       Op1ElemTy =
5193           cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
5194       break;
5195     default:
5196       llvm_unreachable("unexpected intrinsic");
5197     }
5198 
5199     Assert(ResultTy->getElementType()->isIntegerTy() ||
5200            ResultTy->getElementType()->isFloatingPointTy(),
5201            "Result type must be an integer or floating-point type!", IF);
5202 
5203     Assert(ResultTy->getElementType() == Op0ElemTy,
5204            "Vector element type mismatch of the result and first operand "
5205            "vector!", IF);
5206 
5207     if (Op1ElemTy)
5208       Assert(ResultTy->getElementType() == Op1ElemTy,
5209              "Vector element type mismatch of the result and second operand "
5210              "vector!", IF);
5211 
5212     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5213                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5214            "Result of a matrix operation does not fit in the returned vector!");
5215 
5216     if (Stride)
5217       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5218              "Stride must be greater or equal than the number of rows!", IF);
5219 
5220     break;
5221   }
5222   case Intrinsic::experimental_stepvector: {
5223     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5224     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5225                VecTy->getScalarSizeInBits() >= 8,
5226            "experimental_stepvector only supported for vectors of integers "
5227            "with a bitwidth of at least 8.",
5228            &Call);
5229     break;
5230   }
5231   case Intrinsic::experimental_vector_insert: {
5232     Value *Vec = Call.getArgOperand(0);
5233     Value *SubVec = Call.getArgOperand(1);
5234     Value *Idx = Call.getArgOperand(2);
5235     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5236 
5237     VectorType *VecTy = cast<VectorType>(Vec->getType());
5238     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5239 
5240     ElementCount VecEC = VecTy->getElementCount();
5241     ElementCount SubVecEC = SubVecTy->getElementCount();
5242     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5243            "experimental_vector_insert parameters must have the same element "
5244            "type.",
5245            &Call);
5246     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5247            "experimental_vector_insert index must be a constant multiple of "
5248            "the subvector's known minimum vector length.");
5249 
5250     // If this insertion is not the 'mixed' case where a fixed vector is
5251     // inserted into a scalable vector, ensure that the insertion of the
5252     // subvector does not overrun the parent vector.
5253     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5254       Assert(
5255           IdxN < VecEC.getKnownMinValue() &&
5256               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5257           "subvector operand of experimental_vector_insert would overrun the "
5258           "vector being inserted into.");
5259     }
5260     break;
5261   }
5262   case Intrinsic::experimental_vector_extract: {
5263     Value *Vec = Call.getArgOperand(0);
5264     Value *Idx = Call.getArgOperand(1);
5265     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5266 
5267     VectorType *ResultTy = cast<VectorType>(Call.getType());
5268     VectorType *VecTy = cast<VectorType>(Vec->getType());
5269 
5270     ElementCount VecEC = VecTy->getElementCount();
5271     ElementCount ResultEC = ResultTy->getElementCount();
5272 
5273     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5274            "experimental_vector_extract result must have the same element "
5275            "type as the input vector.",
5276            &Call);
5277     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5278            "experimental_vector_extract index must be a constant multiple of "
5279            "the result type's known minimum vector length.");
5280 
5281     // If this extraction is not the 'mixed' case where a fixed vector is is
5282     // extracted from a scalable vector, ensure that the extraction does not
5283     // overrun the parent vector.
5284     if (VecEC.isScalable() == ResultEC.isScalable()) {
5285       Assert(IdxN < VecEC.getKnownMinValue() &&
5286                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5287              "experimental_vector_extract would overrun.");
5288     }
5289     break;
5290   }
5291   case Intrinsic::experimental_noalias_scope_decl: {
5292     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5293     break;
5294   }
5295   case Intrinsic::preserve_array_access_index:
5296   case Intrinsic::preserve_struct_access_index: {
5297     Type *ElemTy = Call.getAttributes().getParamElementType(0);
5298     Assert(ElemTy,
5299            "Intrinsic requires elementtype attribute on first argument.",
5300            &Call);
5301     break;
5302   }
5303   };
5304 }
5305 
5306 /// Carefully grab the subprogram from a local scope.
5307 ///
5308 /// This carefully grabs the subprogram from a local scope, avoiding the
5309 /// built-in assertions that would typically fire.
5310 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5311   if (!LocalScope)
5312     return nullptr;
5313 
5314   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5315     return SP;
5316 
5317   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5318     return getSubprogram(LB->getRawScope());
5319 
5320   // Just return null; broken scope chains are checked elsewhere.
5321   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5322   return nullptr;
5323 }
5324 
5325 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5326   unsigned NumOperands;
5327   bool HasRoundingMD;
5328   switch (FPI.getIntrinsicID()) {
5329 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5330   case Intrinsic::INTRINSIC:                                                   \
5331     NumOperands = NARG;                                                        \
5332     HasRoundingMD = ROUND_MODE;                                                \
5333     break;
5334 #include "llvm/IR/ConstrainedOps.def"
5335   default:
5336     llvm_unreachable("Invalid constrained FP intrinsic!");
5337   }
5338   NumOperands += (1 + HasRoundingMD);
5339   // Compare intrinsics carry an extra predicate metadata operand.
5340   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5341     NumOperands += 1;
5342   Assert((FPI.getNumArgOperands() == NumOperands),
5343          "invalid arguments for constrained FP intrinsic", &FPI);
5344 
5345   switch (FPI.getIntrinsicID()) {
5346   case Intrinsic::experimental_constrained_lrint:
5347   case Intrinsic::experimental_constrained_llrint: {
5348     Type *ValTy = FPI.getArgOperand(0)->getType();
5349     Type *ResultTy = FPI.getType();
5350     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5351            "Intrinsic does not support vectors", &FPI);
5352   }
5353     break;
5354 
5355   case Intrinsic::experimental_constrained_lround:
5356   case Intrinsic::experimental_constrained_llround: {
5357     Type *ValTy = FPI.getArgOperand(0)->getType();
5358     Type *ResultTy = FPI.getType();
5359     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5360            "Intrinsic does not support vectors", &FPI);
5361     break;
5362   }
5363 
5364   case Intrinsic::experimental_constrained_fcmp:
5365   case Intrinsic::experimental_constrained_fcmps: {
5366     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5367     Assert(CmpInst::isFPPredicate(Pred),
5368            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5369     break;
5370   }
5371 
5372   case Intrinsic::experimental_constrained_fptosi:
5373   case Intrinsic::experimental_constrained_fptoui: {
5374     Value *Operand = FPI.getArgOperand(0);
5375     uint64_t NumSrcElem = 0;
5376     Assert(Operand->getType()->isFPOrFPVectorTy(),
5377            "Intrinsic first argument must be floating point", &FPI);
5378     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5379       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5380     }
5381 
5382     Operand = &FPI;
5383     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5384            "Intrinsic first argument and result disagree on vector use", &FPI);
5385     Assert(Operand->getType()->isIntOrIntVectorTy(),
5386            "Intrinsic result must be an integer", &FPI);
5387     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5388       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5389              "Intrinsic first argument and result vector lengths must be equal",
5390              &FPI);
5391     }
5392   }
5393     break;
5394 
5395   case Intrinsic::experimental_constrained_sitofp:
5396   case Intrinsic::experimental_constrained_uitofp: {
5397     Value *Operand = FPI.getArgOperand(0);
5398     uint64_t NumSrcElem = 0;
5399     Assert(Operand->getType()->isIntOrIntVectorTy(),
5400            "Intrinsic first argument must be integer", &FPI);
5401     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5402       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5403     }
5404 
5405     Operand = &FPI;
5406     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5407            "Intrinsic first argument and result disagree on vector use", &FPI);
5408     Assert(Operand->getType()->isFPOrFPVectorTy(),
5409            "Intrinsic result must be a floating point", &FPI);
5410     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5411       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5412              "Intrinsic first argument and result vector lengths must be equal",
5413              &FPI);
5414     }
5415   } break;
5416 
5417   case Intrinsic::experimental_constrained_fptrunc:
5418   case Intrinsic::experimental_constrained_fpext: {
5419     Value *Operand = FPI.getArgOperand(0);
5420     Type *OperandTy = Operand->getType();
5421     Value *Result = &FPI;
5422     Type *ResultTy = Result->getType();
5423     Assert(OperandTy->isFPOrFPVectorTy(),
5424            "Intrinsic first argument must be FP or FP vector", &FPI);
5425     Assert(ResultTy->isFPOrFPVectorTy(),
5426            "Intrinsic result must be FP or FP vector", &FPI);
5427     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5428            "Intrinsic first argument and result disagree on vector use", &FPI);
5429     if (OperandTy->isVectorTy()) {
5430       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5431                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5432              "Intrinsic first argument and result vector lengths must be equal",
5433              &FPI);
5434     }
5435     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5436       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5437              "Intrinsic first argument's type must be larger than result type",
5438              &FPI);
5439     } else {
5440       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5441              "Intrinsic first argument's type must be smaller than result type",
5442              &FPI);
5443     }
5444   }
5445     break;
5446 
5447   default:
5448     break;
5449   }
5450 
5451   // If a non-metadata argument is passed in a metadata slot then the
5452   // error will be caught earlier when the incorrect argument doesn't
5453   // match the specification in the intrinsic call table. Thus, no
5454   // argument type check is needed here.
5455 
5456   Assert(FPI.getExceptionBehavior().hasValue(),
5457          "invalid exception behavior argument", &FPI);
5458   if (HasRoundingMD) {
5459     Assert(FPI.getRoundingMode().hasValue(),
5460            "invalid rounding mode argument", &FPI);
5461   }
5462 }
5463 
5464 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5465   auto *MD = DII.getRawLocation();
5466   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5467                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5468            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5469   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5470          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5471          DII.getRawVariable());
5472   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5473          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5474          DII.getRawExpression());
5475 
5476   // Ignore broken !dbg attachments; they're checked elsewhere.
5477   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5478     if (!isa<DILocation>(N))
5479       return;
5480 
5481   BasicBlock *BB = DII.getParent();
5482   Function *F = BB ? BB->getParent() : nullptr;
5483 
5484   // The scopes for variables and !dbg attachments must agree.
5485   DILocalVariable *Var = DII.getVariable();
5486   DILocation *Loc = DII.getDebugLoc();
5487   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5488            &DII, BB, F);
5489 
5490   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5491   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5492   if (!VarSP || !LocSP)
5493     return; // Broken scope chains are checked elsewhere.
5494 
5495   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5496                                " variable and !dbg attachment",
5497            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5498            Loc->getScope()->getSubprogram());
5499 
5500   // This check is redundant with one in visitLocalVariable().
5501   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5502            Var->getRawType());
5503   verifyFnArgs(DII);
5504 }
5505 
5506 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5507   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5508          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5509          DLI.getRawLabel());
5510 
5511   // Ignore broken !dbg attachments; they're checked elsewhere.
5512   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5513     if (!isa<DILocation>(N))
5514       return;
5515 
5516   BasicBlock *BB = DLI.getParent();
5517   Function *F = BB ? BB->getParent() : nullptr;
5518 
5519   // The scopes for variables and !dbg attachments must agree.
5520   DILabel *Label = DLI.getLabel();
5521   DILocation *Loc = DLI.getDebugLoc();
5522   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5523          &DLI, BB, F);
5524 
5525   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5526   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5527   if (!LabelSP || !LocSP)
5528     return;
5529 
5530   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5531                              " label and !dbg attachment",
5532            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5533            Loc->getScope()->getSubprogram());
5534 }
5535 
5536 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5537   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5538   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5539 
5540   // We don't know whether this intrinsic verified correctly.
5541   if (!V || !E || !E->isValid())
5542     return;
5543 
5544   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5545   auto Fragment = E->getFragmentInfo();
5546   if (!Fragment)
5547     return;
5548 
5549   // The frontend helps out GDB by emitting the members of local anonymous
5550   // unions as artificial local variables with shared storage. When SROA splits
5551   // the storage for artificial local variables that are smaller than the entire
5552   // union, the overhang piece will be outside of the allotted space for the
5553   // variable and this check fails.
5554   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5555   if (V->isArtificial())
5556     return;
5557 
5558   verifyFragmentExpression(*V, *Fragment, &I);
5559 }
5560 
5561 template <typename ValueOrMetadata>
5562 void Verifier::verifyFragmentExpression(const DIVariable &V,
5563                                         DIExpression::FragmentInfo Fragment,
5564                                         ValueOrMetadata *Desc) {
5565   // If there's no size, the type is broken, but that should be checked
5566   // elsewhere.
5567   auto VarSize = V.getSizeInBits();
5568   if (!VarSize)
5569     return;
5570 
5571   unsigned FragSize = Fragment.SizeInBits;
5572   unsigned FragOffset = Fragment.OffsetInBits;
5573   AssertDI(FragSize + FragOffset <= *VarSize,
5574          "fragment is larger than or outside of variable", Desc, &V);
5575   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5576 }
5577 
5578 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5579   // This function does not take the scope of noninlined function arguments into
5580   // account. Don't run it if current function is nodebug, because it may
5581   // contain inlined debug intrinsics.
5582   if (!HasDebugInfo)
5583     return;
5584 
5585   // For performance reasons only check non-inlined ones.
5586   if (I.getDebugLoc()->getInlinedAt())
5587     return;
5588 
5589   DILocalVariable *Var = I.getVariable();
5590   AssertDI(Var, "dbg intrinsic without variable");
5591 
5592   unsigned ArgNo = Var->getArg();
5593   if (!ArgNo)
5594     return;
5595 
5596   // Verify there are no duplicate function argument debug info entries.
5597   // These will cause hard-to-debug assertions in the DWARF backend.
5598   if (DebugFnArgs.size() < ArgNo)
5599     DebugFnArgs.resize(ArgNo, nullptr);
5600 
5601   auto *Prev = DebugFnArgs[ArgNo - 1];
5602   DebugFnArgs[ArgNo - 1] = Var;
5603   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5604            Prev, Var);
5605 }
5606 
5607 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5608   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5609 
5610   // We don't know whether this intrinsic verified correctly.
5611   if (!E || !E->isValid())
5612     return;
5613 
5614   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5615 }
5616 
5617 void Verifier::verifyCompileUnits() {
5618   // When more than one Module is imported into the same context, such as during
5619   // an LTO build before linking the modules, ODR type uniquing may cause types
5620   // to point to a different CU. This check does not make sense in this case.
5621   if (M.getContext().isODRUniquingDebugTypes())
5622     return;
5623   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5624   SmallPtrSet<const Metadata *, 2> Listed;
5625   if (CUs)
5626     Listed.insert(CUs->op_begin(), CUs->op_end());
5627   for (auto *CU : CUVisited)
5628     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5629   CUVisited.clear();
5630 }
5631 
5632 void Verifier::verifyDeoptimizeCallingConvs() {
5633   if (DeoptimizeDeclarations.empty())
5634     return;
5635 
5636   const Function *First = DeoptimizeDeclarations[0];
5637   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5638     Assert(First->getCallingConv() == F->getCallingConv(),
5639            "All llvm.experimental.deoptimize declarations must have the same "
5640            "calling convention",
5641            First, F);
5642   }
5643 }
5644 
5645 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5646   bool HasSource = F.getSource().hasValue();
5647   if (!HasSourceDebugInfo.count(&U))
5648     HasSourceDebugInfo[&U] = HasSource;
5649   AssertDI(HasSource == HasSourceDebugInfo[&U],
5650            "inconsistent use of embedded source");
5651 }
5652 
5653 void Verifier::verifyNoAliasScopeDecl() {
5654   if (NoAliasScopeDecls.empty())
5655     return;
5656 
5657   // only a single scope must be declared at a time.
5658   for (auto *II : NoAliasScopeDecls) {
5659     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5660            "Not a llvm.experimental.noalias.scope.decl ?");
5661     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5662         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5663     Assert(ScopeListMV != nullptr,
5664            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5665            "argument",
5666            II);
5667 
5668     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5669     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5670            II);
5671     Assert(ScopeListMD->getNumOperands() == 1,
5672            "!id.scope.list must point to a list with a single scope", II);
5673   }
5674 
5675   // Only check the domination rule when requested. Once all passes have been
5676   // adapted this option can go away.
5677   if (!VerifyNoAliasScopeDomination)
5678     return;
5679 
5680   // Now sort the intrinsics based on the scope MDNode so that declarations of
5681   // the same scopes are next to each other.
5682   auto GetScope = [](IntrinsicInst *II) {
5683     const auto *ScopeListMV = cast<MetadataAsValue>(
5684         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5685     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5686   };
5687 
5688   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5689   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5690   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5691     return GetScope(Lhs) < GetScope(Rhs);
5692   };
5693 
5694   llvm::sort(NoAliasScopeDecls, Compare);
5695 
5696   // Go over the intrinsics and check that for the same scope, they are not
5697   // dominating each other.
5698   auto ItCurrent = NoAliasScopeDecls.begin();
5699   while (ItCurrent != NoAliasScopeDecls.end()) {
5700     auto CurScope = GetScope(*ItCurrent);
5701     auto ItNext = ItCurrent;
5702     do {
5703       ++ItNext;
5704     } while (ItNext != NoAliasScopeDecls.end() &&
5705              GetScope(*ItNext) == CurScope);
5706 
5707     // [ItCurrent, ItNext) represents the declarations for the same scope.
5708     // Ensure they are not dominating each other.. but only if it is not too
5709     // expensive.
5710     if (ItNext - ItCurrent < 32)
5711       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5712         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5713           if (I != J)
5714             Assert(!DT.dominates(I, J),
5715                    "llvm.experimental.noalias.scope.decl dominates another one "
5716                    "with the same scope",
5717                    I);
5718     ItCurrent = ItNext;
5719   }
5720 }
5721 
5722 //===----------------------------------------------------------------------===//
5723 //  Implement the public interfaces to this file...
5724 //===----------------------------------------------------------------------===//
5725 
5726 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5727   Function &F = const_cast<Function &>(f);
5728 
5729   // Don't use a raw_null_ostream.  Printing IR is expensive.
5730   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5731 
5732   // Note that this function's return value is inverted from what you would
5733   // expect of a function called "verify".
5734   return !V.verify(F);
5735 }
5736 
5737 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5738                         bool *BrokenDebugInfo) {
5739   // Don't use a raw_null_ostream.  Printing IR is expensive.
5740   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5741 
5742   bool Broken = false;
5743   for (const Function &F : M)
5744     Broken |= !V.verify(F);
5745 
5746   Broken |= !V.verify();
5747   if (BrokenDebugInfo)
5748     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5749   // Note that this function's return value is inverted from what you would
5750   // expect of a function called "verify".
5751   return Broken;
5752 }
5753 
5754 namespace {
5755 
5756 struct VerifierLegacyPass : public FunctionPass {
5757   static char ID;
5758 
5759   std::unique_ptr<Verifier> V;
5760   bool FatalErrors = true;
5761 
5762   VerifierLegacyPass() : FunctionPass(ID) {
5763     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5764   }
5765   explicit VerifierLegacyPass(bool FatalErrors)
5766       : FunctionPass(ID),
5767         FatalErrors(FatalErrors) {
5768     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5769   }
5770 
5771   bool doInitialization(Module &M) override {
5772     V = std::make_unique<Verifier>(
5773         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5774     return false;
5775   }
5776 
5777   bool runOnFunction(Function &F) override {
5778     if (!V->verify(F) && FatalErrors) {
5779       errs() << "in function " << F.getName() << '\n';
5780       report_fatal_error("Broken function found, compilation aborted!");
5781     }
5782     return false;
5783   }
5784 
5785   bool doFinalization(Module &M) override {
5786     bool HasErrors = false;
5787     for (Function &F : M)
5788       if (F.isDeclaration())
5789         HasErrors |= !V->verify(F);
5790 
5791     HasErrors |= !V->verify();
5792     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5793       report_fatal_error("Broken module found, compilation aborted!");
5794     return false;
5795   }
5796 
5797   void getAnalysisUsage(AnalysisUsage &AU) const override {
5798     AU.setPreservesAll();
5799   }
5800 };
5801 
5802 } // end anonymous namespace
5803 
5804 /// Helper to issue failure from the TBAA verification
5805 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5806   if (Diagnostic)
5807     return Diagnostic->CheckFailed(Args...);
5808 }
5809 
5810 #define AssertTBAA(C, ...)                                                     \
5811   do {                                                                         \
5812     if (!(C)) {                                                                \
5813       CheckFailed(__VA_ARGS__);                                                \
5814       return false;                                                            \
5815     }                                                                          \
5816   } while (false)
5817 
5818 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5819 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5820 /// struct-type node describing an aggregate data structure (like a struct).
5821 TBAAVerifier::TBAABaseNodeSummary
5822 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5823                                  bool IsNewFormat) {
5824   if (BaseNode->getNumOperands() < 2) {
5825     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5826     return {true, ~0u};
5827   }
5828 
5829   auto Itr = TBAABaseNodes.find(BaseNode);
5830   if (Itr != TBAABaseNodes.end())
5831     return Itr->second;
5832 
5833   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5834   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5835   (void)InsertResult;
5836   assert(InsertResult.second && "We just checked!");
5837   return Result;
5838 }
5839 
5840 TBAAVerifier::TBAABaseNodeSummary
5841 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5842                                      bool IsNewFormat) {
5843   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5844 
5845   if (BaseNode->getNumOperands() == 2) {
5846     // Scalar nodes can only be accessed at offset 0.
5847     return isValidScalarTBAANode(BaseNode)
5848                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5849                : InvalidNode;
5850   }
5851 
5852   if (IsNewFormat) {
5853     if (BaseNode->getNumOperands() % 3 != 0) {
5854       CheckFailed("Access tag nodes must have the number of operands that is a "
5855                   "multiple of 3!", BaseNode);
5856       return InvalidNode;
5857     }
5858   } else {
5859     if (BaseNode->getNumOperands() % 2 != 1) {
5860       CheckFailed("Struct tag nodes must have an odd number of operands!",
5861                   BaseNode);
5862       return InvalidNode;
5863     }
5864   }
5865 
5866   // Check the type size field.
5867   if (IsNewFormat) {
5868     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5869         BaseNode->getOperand(1));
5870     if (!TypeSizeNode) {
5871       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5872       return InvalidNode;
5873     }
5874   }
5875 
5876   // Check the type name field. In the new format it can be anything.
5877   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5878     CheckFailed("Struct tag nodes have a string as their first operand",
5879                 BaseNode);
5880     return InvalidNode;
5881   }
5882 
5883   bool Failed = false;
5884 
5885   Optional<APInt> PrevOffset;
5886   unsigned BitWidth = ~0u;
5887 
5888   // We've already checked that BaseNode is not a degenerate root node with one
5889   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5890   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5891   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5892   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5893            Idx += NumOpsPerField) {
5894     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5895     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5896     if (!isa<MDNode>(FieldTy)) {
5897       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5898       Failed = true;
5899       continue;
5900     }
5901 
5902     auto *OffsetEntryCI =
5903         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5904     if (!OffsetEntryCI) {
5905       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5906       Failed = true;
5907       continue;
5908     }
5909 
5910     if (BitWidth == ~0u)
5911       BitWidth = OffsetEntryCI->getBitWidth();
5912 
5913     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5914       CheckFailed(
5915           "Bitwidth between the offsets and struct type entries must match", &I,
5916           BaseNode);
5917       Failed = true;
5918       continue;
5919     }
5920 
5921     // NB! As far as I can tell, we generate a non-strictly increasing offset
5922     // sequence only from structs that have zero size bit fields.  When
5923     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5924     // pick the field lexically the latest in struct type metadata node.  This
5925     // mirrors the actual behavior of the alias analysis implementation.
5926     bool IsAscending =
5927         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5928 
5929     if (!IsAscending) {
5930       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5931       Failed = true;
5932     }
5933 
5934     PrevOffset = OffsetEntryCI->getValue();
5935 
5936     if (IsNewFormat) {
5937       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5938           BaseNode->getOperand(Idx + 2));
5939       if (!MemberSizeNode) {
5940         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5941         Failed = true;
5942         continue;
5943       }
5944     }
5945   }
5946 
5947   return Failed ? InvalidNode
5948                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5949 }
5950 
5951 static bool IsRootTBAANode(const MDNode *MD) {
5952   return MD->getNumOperands() < 2;
5953 }
5954 
5955 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5956                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5957   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5958     return false;
5959 
5960   if (!isa<MDString>(MD->getOperand(0)))
5961     return false;
5962 
5963   if (MD->getNumOperands() == 3) {
5964     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5965     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5966       return false;
5967   }
5968 
5969   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5970   return Parent && Visited.insert(Parent).second &&
5971          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5972 }
5973 
5974 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5975   auto ResultIt = TBAAScalarNodes.find(MD);
5976   if (ResultIt != TBAAScalarNodes.end())
5977     return ResultIt->second;
5978 
5979   SmallPtrSet<const MDNode *, 4> Visited;
5980   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5981   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5982   (void)InsertResult;
5983   assert(InsertResult.second && "Just checked!");
5984 
5985   return Result;
5986 }
5987 
5988 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5989 /// Offset in place to be the offset within the field node returned.
5990 ///
5991 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5992 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5993                                                    const MDNode *BaseNode,
5994                                                    APInt &Offset,
5995                                                    bool IsNewFormat) {
5996   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5997 
5998   // Scalar nodes have only one possible "field" -- their parent in the access
5999   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6000   // to Assert that.
6001   if (BaseNode->getNumOperands() == 2)
6002     return cast<MDNode>(BaseNode->getOperand(1));
6003 
6004   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6005   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6006   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6007            Idx += NumOpsPerField) {
6008     auto *OffsetEntryCI =
6009         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6010     if (OffsetEntryCI->getValue().ugt(Offset)) {
6011       if (Idx == FirstFieldOpNo) {
6012         CheckFailed("Could not find TBAA parent in struct type node", &I,
6013                     BaseNode, &Offset);
6014         return nullptr;
6015       }
6016 
6017       unsigned PrevIdx = Idx - NumOpsPerField;
6018       auto *PrevOffsetEntryCI =
6019           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6020       Offset -= PrevOffsetEntryCI->getValue();
6021       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6022     }
6023   }
6024 
6025   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6026   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6027       BaseNode->getOperand(LastIdx + 1));
6028   Offset -= LastOffsetEntryCI->getValue();
6029   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6030 }
6031 
6032 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6033   if (!Type || Type->getNumOperands() < 3)
6034     return false;
6035 
6036   // In the new format type nodes shall have a reference to the parent type as
6037   // its first operand.
6038   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
6039   if (!Parent)
6040     return false;
6041 
6042   return true;
6043 }
6044 
6045 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6046   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6047                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6048                  isa<AtomicCmpXchgInst>(I),
6049              "This instruction shall not have a TBAA access tag!", &I);
6050 
6051   bool IsStructPathTBAA =
6052       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6053 
6054   AssertTBAA(
6055       IsStructPathTBAA,
6056       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
6057 
6058   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6059   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6060 
6061   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6062 
6063   if (IsNewFormat) {
6064     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6065                "Access tag metadata must have either 4 or 5 operands", &I, MD);
6066   } else {
6067     AssertTBAA(MD->getNumOperands() < 5,
6068                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6069   }
6070 
6071   // Check the access size field.
6072   if (IsNewFormat) {
6073     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6074         MD->getOperand(3));
6075     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6076   }
6077 
6078   // Check the immutability flag.
6079   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6080   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6081     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6082         MD->getOperand(ImmutabilityFlagOpNo));
6083     AssertTBAA(IsImmutableCI,
6084                "Immutability tag on struct tag metadata must be a constant",
6085                &I, MD);
6086     AssertTBAA(
6087         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6088         "Immutability part of the struct tag metadata must be either 0 or 1",
6089         &I, MD);
6090   }
6091 
6092   AssertTBAA(BaseNode && AccessType,
6093              "Malformed struct tag metadata: base and access-type "
6094              "should be non-null and point to Metadata nodes",
6095              &I, MD, BaseNode, AccessType);
6096 
6097   if (!IsNewFormat) {
6098     AssertTBAA(isValidScalarTBAANode(AccessType),
6099                "Access type node must be a valid scalar type", &I, MD,
6100                AccessType);
6101   }
6102 
6103   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6104   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6105 
6106   APInt Offset = OffsetCI->getValue();
6107   bool SeenAccessTypeInPath = false;
6108 
6109   SmallPtrSet<MDNode *, 4> StructPath;
6110 
6111   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6112        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6113                                                IsNewFormat)) {
6114     if (!StructPath.insert(BaseNode).second) {
6115       CheckFailed("Cycle detected in struct path", &I, MD);
6116       return false;
6117     }
6118 
6119     bool Invalid;
6120     unsigned BaseNodeBitWidth;
6121     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6122                                                              IsNewFormat);
6123 
6124     // If the base node is invalid in itself, then we've already printed all the
6125     // errors we wanted to print.
6126     if (Invalid)
6127       return false;
6128 
6129     SeenAccessTypeInPath |= BaseNode == AccessType;
6130 
6131     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6132       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6133                  &I, MD, &Offset);
6134 
6135     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6136                    (BaseNodeBitWidth == 0 && Offset == 0) ||
6137                    (IsNewFormat && BaseNodeBitWidth == ~0u),
6138                "Access bit-width not the same as description bit-width", &I, MD,
6139                BaseNodeBitWidth, Offset.getBitWidth());
6140 
6141     if (IsNewFormat && SeenAccessTypeInPath)
6142       break;
6143   }
6144 
6145   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
6146              &I, MD);
6147   return true;
6148 }
6149 
6150 char VerifierLegacyPass::ID = 0;
6151 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6152 
6153 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6154   return new VerifierLegacyPass(FatalErrors);
6155 }
6156 
6157 AnalysisKey VerifierAnalysis::Key;
6158 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6159                                                ModuleAnalysisManager &) {
6160   Result Res;
6161   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6162   return Res;
6163 }
6164 
6165 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6166                                                FunctionAnalysisManager &) {
6167   return { llvm::verifyFunction(F, &dbgs()), false };
6168 }
6169 
6170 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6171   auto Res = AM.getResult<VerifierAnalysis>(M);
6172   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6173     report_fatal_error("Broken module found, compilation aborted!");
6174 
6175   return PreservedAnalyses::all();
6176 }
6177 
6178 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6179   auto res = AM.getResult<VerifierAnalysis>(F);
6180   if (res.IRBroken && FatalErrors)
6181     report_fatal_error("Broken function found, compilation aborted!");
6182 
6183   return PreservedAnalyses::all();
6184 }
6185