1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// The current source language. 286 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 287 288 /// Whether source was present on the first DIFile encountered in each CU. 289 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 290 291 /// Stores the count of how many objects were passed to llvm.localescape for a 292 /// given function and the largest index passed to llvm.localrecover. 293 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 294 295 // Maps catchswitches and cleanuppads that unwind to siblings to the 296 // terminators that indicate the unwind, used to detect cycles therein. 297 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 298 299 /// Cache of constants visited in search of ConstantExprs. 300 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 301 302 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 303 SmallVector<const Function *, 4> DeoptimizeDeclarations; 304 305 // Verify that this GlobalValue is only used in this module. 306 // This map is used to avoid visiting uses twice. We can arrive at a user 307 // twice, if they have multiple operands. In particular for very large 308 // constant expressions, we can arrive at a particular user many times. 309 SmallPtrSet<const Value *, 32> GlobalValueVisited; 310 311 // Keeps track of duplicate function argument debug info. 312 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 313 314 TBAAVerifier TBAAVerifyHelper; 315 316 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 317 318 public: 319 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 320 const Module &M) 321 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 322 SawFrameEscape(false), TBAAVerifyHelper(this) { 323 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 324 } 325 326 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 327 328 bool verify(const Function &F) { 329 assert(F.getParent() == &M && 330 "An instance of this class only works with a specific module!"); 331 332 // First ensure the function is well-enough formed to compute dominance 333 // information, and directly compute a dominance tree. We don't rely on the 334 // pass manager to provide this as it isolates us from a potentially 335 // out-of-date dominator tree and makes it significantly more complex to run 336 // this code outside of a pass manager. 337 // FIXME: It's really gross that we have to cast away constness here. 338 if (!F.empty()) 339 DT.recalculate(const_cast<Function &>(F)); 340 341 for (const BasicBlock &BB : F) { 342 if (!BB.empty() && BB.back().isTerminator()) 343 continue; 344 345 if (OS) { 346 *OS << "Basic Block in function '" << F.getName() 347 << "' does not have terminator!\n"; 348 BB.printAsOperand(*OS, true, MST); 349 *OS << "\n"; 350 } 351 return false; 352 } 353 354 Broken = false; 355 // FIXME: We strip const here because the inst visitor strips const. 356 visit(const_cast<Function &>(F)); 357 verifySiblingFuncletUnwinds(); 358 InstsInThisBlock.clear(); 359 DebugFnArgs.clear(); 360 LandingPadResultTy = nullptr; 361 SawFrameEscape = false; 362 SiblingFuncletInfo.clear(); 363 364 return !Broken; 365 } 366 367 /// Verify the module that this instance of \c Verifier was initialized with. 368 bool verify() { 369 Broken = false; 370 371 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 372 for (const Function &F : M) 373 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 374 DeoptimizeDeclarations.push_back(&F); 375 376 // Now that we've visited every function, verify that we never asked to 377 // recover a frame index that wasn't escaped. 378 verifyFrameRecoverIndices(); 379 for (const GlobalVariable &GV : M.globals()) 380 visitGlobalVariable(GV); 381 382 for (const GlobalAlias &GA : M.aliases()) 383 visitGlobalAlias(GA); 384 385 for (const NamedMDNode &NMD : M.named_metadata()) 386 visitNamedMDNode(NMD); 387 388 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 389 visitComdat(SMEC.getValue()); 390 391 visitModuleFlags(M); 392 visitModuleIdents(M); 393 visitModuleCommandLines(M); 394 395 verifyCompileUnits(); 396 397 verifyDeoptimizeCallingConvs(); 398 DISubprogramAttachments.clear(); 399 return !Broken; 400 } 401 402 private: 403 /// Whether a metadata node is allowed to be, or contain, a DILocation. 404 enum class AreDebugLocsAllowed { No, Yes }; 405 406 // Verification methods... 407 void visitGlobalValue(const GlobalValue &GV); 408 void visitGlobalVariable(const GlobalVariable &GV); 409 void visitGlobalAlias(const GlobalAlias &GA); 410 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 411 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 412 const GlobalAlias &A, const Constant &C); 413 void visitNamedMDNode(const NamedMDNode &NMD); 414 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 415 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 416 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 417 void visitComdat(const Comdat &C); 418 void visitModuleIdents(const Module &M); 419 void visitModuleCommandLines(const Module &M); 420 void visitModuleFlags(const Module &M); 421 void visitModuleFlag(const MDNode *Op, 422 DenseMap<const MDString *, const MDNode *> &SeenIDs, 423 SmallVectorImpl<const MDNode *> &Requirements); 424 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 425 void visitFunction(const Function &F); 426 void visitBasicBlock(BasicBlock &BB); 427 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 428 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 429 void visitProfMetadata(Instruction &I, MDNode *MD); 430 431 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 432 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 433 #include "llvm/IR/Metadata.def" 434 void visitDIScope(const DIScope &N); 435 void visitDIVariable(const DIVariable &N); 436 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 437 void visitDITemplateParameter(const DITemplateParameter &N); 438 439 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 440 441 // InstVisitor overrides... 442 using InstVisitor<Verifier>::visit; 443 void visit(Instruction &I); 444 445 void visitTruncInst(TruncInst &I); 446 void visitZExtInst(ZExtInst &I); 447 void visitSExtInst(SExtInst &I); 448 void visitFPTruncInst(FPTruncInst &I); 449 void visitFPExtInst(FPExtInst &I); 450 void visitFPToUIInst(FPToUIInst &I); 451 void visitFPToSIInst(FPToSIInst &I); 452 void visitUIToFPInst(UIToFPInst &I); 453 void visitSIToFPInst(SIToFPInst &I); 454 void visitIntToPtrInst(IntToPtrInst &I); 455 void visitPtrToIntInst(PtrToIntInst &I); 456 void visitBitCastInst(BitCastInst &I); 457 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 458 void visitPHINode(PHINode &PN); 459 void visitCallBase(CallBase &Call); 460 void visitUnaryOperator(UnaryOperator &U); 461 void visitBinaryOperator(BinaryOperator &B); 462 void visitICmpInst(ICmpInst &IC); 463 void visitFCmpInst(FCmpInst &FC); 464 void visitExtractElementInst(ExtractElementInst &EI); 465 void visitInsertElementInst(InsertElementInst &EI); 466 void visitShuffleVectorInst(ShuffleVectorInst &EI); 467 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 468 void visitCallInst(CallInst &CI); 469 void visitInvokeInst(InvokeInst &II); 470 void visitGetElementPtrInst(GetElementPtrInst &GEP); 471 void visitLoadInst(LoadInst &LI); 472 void visitStoreInst(StoreInst &SI); 473 void verifyDominatesUse(Instruction &I, unsigned i); 474 void visitInstruction(Instruction &I); 475 void visitTerminator(Instruction &I); 476 void visitBranchInst(BranchInst &BI); 477 void visitReturnInst(ReturnInst &RI); 478 void visitSwitchInst(SwitchInst &SI); 479 void visitIndirectBrInst(IndirectBrInst &BI); 480 void visitCallBrInst(CallBrInst &CBI); 481 void visitSelectInst(SelectInst &SI); 482 void visitUserOp1(Instruction &I); 483 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 484 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 485 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 486 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 487 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 488 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 489 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 490 void visitFenceInst(FenceInst &FI); 491 void visitAllocaInst(AllocaInst &AI); 492 void visitExtractValueInst(ExtractValueInst &EVI); 493 void visitInsertValueInst(InsertValueInst &IVI); 494 void visitEHPadPredecessors(Instruction &I); 495 void visitLandingPadInst(LandingPadInst &LPI); 496 void visitResumeInst(ResumeInst &RI); 497 void visitCatchPadInst(CatchPadInst &CPI); 498 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 499 void visitCleanupPadInst(CleanupPadInst &CPI); 500 void visitFuncletPadInst(FuncletPadInst &FPI); 501 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 502 void visitCleanupReturnInst(CleanupReturnInst &CRI); 503 504 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 505 void verifySwiftErrorValue(const Value *SwiftErrorVal); 506 void verifyMustTailCall(CallInst &CI); 507 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 508 unsigned ArgNo, std::string &Suffix); 509 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 510 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 511 const Value *V); 512 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 513 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 514 const Value *V, bool IsIntrinsic); 515 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 516 517 void visitConstantExprsRecursively(const Constant *EntryC); 518 void visitConstantExpr(const ConstantExpr *CE); 519 void verifyStatepoint(const CallBase &Call); 520 void verifyFrameRecoverIndices(); 521 void verifySiblingFuncletUnwinds(); 522 523 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 524 template <typename ValueOrMetadata> 525 void verifyFragmentExpression(const DIVariable &V, 526 DIExpression::FragmentInfo Fragment, 527 ValueOrMetadata *Desc); 528 void verifyFnArgs(const DbgVariableIntrinsic &I); 529 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 530 531 /// Module-level debug info verification... 532 void verifyCompileUnits(); 533 534 /// Module-level verification that all @llvm.experimental.deoptimize 535 /// declarations share the same calling convention. 536 void verifyDeoptimizeCallingConvs(); 537 538 /// Verify all-or-nothing property of DIFile source attribute within a CU. 539 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 540 }; 541 542 } // end anonymous namespace 543 544 /// We know that cond should be true, if not print an error message. 545 #define Assert(C, ...) \ 546 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 547 548 /// We know that a debug info condition should be true, if not print 549 /// an error message. 550 #define AssertDI(C, ...) \ 551 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 552 553 void Verifier::visit(Instruction &I) { 554 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 555 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 556 InstVisitor<Verifier>::visit(I); 557 } 558 559 // Helper to recursively iterate over indirect users. By 560 // returning false, the callback can ask to stop recursing 561 // further. 562 static void forEachUser(const Value *User, 563 SmallPtrSet<const Value *, 32> &Visited, 564 llvm::function_ref<bool(const Value *)> Callback) { 565 if (!Visited.insert(User).second) 566 return; 567 for (const Value *TheNextUser : User->materialized_users()) 568 if (Callback(TheNextUser)) 569 forEachUser(TheNextUser, Visited, Callback); 570 } 571 572 void Verifier::visitGlobalValue(const GlobalValue &GV) { 573 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 574 "Global is external, but doesn't have external or weak linkage!", &GV); 575 576 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 577 Assert(GO->getAlignment() <= Value::MaximumAlignment, 578 "huge alignment values are unsupported", GO); 579 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 580 "Only global variables can have appending linkage!", &GV); 581 582 if (GV.hasAppendingLinkage()) { 583 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 584 Assert(GVar && GVar->getValueType()->isArrayTy(), 585 "Only global arrays can have appending linkage!", GVar); 586 } 587 588 if (GV.isDeclarationForLinker()) 589 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 590 591 if (GV.hasDLLImportStorageClass()) { 592 Assert(!GV.isDSOLocal(), 593 "GlobalValue with DLLImport Storage is dso_local!", &GV); 594 595 Assert((GV.isDeclaration() && 596 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 597 GV.hasAvailableExternallyLinkage(), 598 "Global is marked as dllimport, but not external", &GV); 599 } 600 601 if (GV.isImplicitDSOLocal()) 602 Assert(GV.isDSOLocal(), 603 "GlobalValue with local linkage or non-default " 604 "visibility must be dso_local!", 605 &GV); 606 607 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 608 if (const Instruction *I = dyn_cast<Instruction>(V)) { 609 if (!I->getParent() || !I->getParent()->getParent()) 610 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 611 I); 612 else if (I->getParent()->getParent()->getParent() != &M) 613 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 614 I->getParent()->getParent(), 615 I->getParent()->getParent()->getParent()); 616 return false; 617 } else if (const Function *F = dyn_cast<Function>(V)) { 618 if (F->getParent() != &M) 619 CheckFailed("Global is used by function in a different module", &GV, &M, 620 F, F->getParent()); 621 return false; 622 } 623 return true; 624 }); 625 } 626 627 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 628 if (GV.hasInitializer()) { 629 Assert(GV.getInitializer()->getType() == GV.getValueType(), 630 "Global variable initializer type does not match global " 631 "variable type!", 632 &GV); 633 // If the global has common linkage, it must have a zero initializer and 634 // cannot be constant. 635 if (GV.hasCommonLinkage()) { 636 Assert(GV.getInitializer()->isNullValue(), 637 "'common' global must have a zero initializer!", &GV); 638 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 639 &GV); 640 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 641 } 642 } 643 644 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 645 GV.getName() == "llvm.global_dtors")) { 646 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 647 "invalid linkage for intrinsic global variable", &GV); 648 // Don't worry about emitting an error for it not being an array, 649 // visitGlobalValue will complain on appending non-array. 650 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 651 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 652 PointerType *FuncPtrTy = 653 FunctionType::get(Type::getVoidTy(Context), false)-> 654 getPointerTo(DL.getProgramAddressSpace()); 655 Assert(STy && 656 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 657 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 658 STy->getTypeAtIndex(1) == FuncPtrTy, 659 "wrong type for intrinsic global variable", &GV); 660 Assert(STy->getNumElements() == 3, 661 "the third field of the element type is mandatory, " 662 "specify i8* null to migrate from the obsoleted 2-field form"); 663 Type *ETy = STy->getTypeAtIndex(2); 664 Assert(ETy->isPointerTy() && 665 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 666 "wrong type for intrinsic global variable", &GV); 667 } 668 } 669 670 if (GV.hasName() && (GV.getName() == "llvm.used" || 671 GV.getName() == "llvm.compiler.used")) { 672 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 673 "invalid linkage for intrinsic global variable", &GV); 674 Type *GVType = GV.getValueType(); 675 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 676 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 677 Assert(PTy, "wrong type for intrinsic global variable", &GV); 678 if (GV.hasInitializer()) { 679 const Constant *Init = GV.getInitializer(); 680 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 681 Assert(InitArray, "wrong initalizer for intrinsic global variable", 682 Init); 683 for (Value *Op : InitArray->operands()) { 684 Value *V = Op->stripPointerCasts(); 685 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 686 isa<GlobalAlias>(V), 687 "invalid llvm.used member", V); 688 Assert(V->hasName(), "members of llvm.used must be named", V); 689 } 690 } 691 } 692 } 693 694 // Visit any debug info attachments. 695 SmallVector<MDNode *, 1> MDs; 696 GV.getMetadata(LLVMContext::MD_dbg, MDs); 697 for (auto *MD : MDs) { 698 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 699 visitDIGlobalVariableExpression(*GVE); 700 else 701 AssertDI(false, "!dbg attachment of global variable must be a " 702 "DIGlobalVariableExpression"); 703 } 704 705 // Scalable vectors cannot be global variables, since we don't know 706 // the runtime size. If the global is a struct or an array containing 707 // scalable vectors, that will be caught by the isValidElementType methods 708 // in StructType or ArrayType instead. 709 Assert(!isa<ScalableVectorType>(GV.getValueType()), 710 "Globals cannot contain scalable vectors", &GV); 711 712 if (!GV.hasInitializer()) { 713 visitGlobalValue(GV); 714 return; 715 } 716 717 // Walk any aggregate initializers looking for bitcasts between address spaces 718 visitConstantExprsRecursively(GV.getInitializer()); 719 720 visitGlobalValue(GV); 721 } 722 723 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 724 SmallPtrSet<const GlobalAlias*, 4> Visited; 725 Visited.insert(&GA); 726 visitAliaseeSubExpr(Visited, GA, C); 727 } 728 729 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 730 const GlobalAlias &GA, const Constant &C) { 731 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 732 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 733 &GA); 734 735 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 736 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 737 738 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 739 &GA); 740 } else { 741 // Only continue verifying subexpressions of GlobalAliases. 742 // Do not recurse into global initializers. 743 return; 744 } 745 } 746 747 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 748 visitConstantExprsRecursively(CE); 749 750 for (const Use &U : C.operands()) { 751 Value *V = &*U; 752 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 753 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 754 else if (const auto *C2 = dyn_cast<Constant>(V)) 755 visitAliaseeSubExpr(Visited, GA, *C2); 756 } 757 } 758 759 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 760 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 761 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 762 "weak_odr, or external linkage!", 763 &GA); 764 const Constant *Aliasee = GA.getAliasee(); 765 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 766 Assert(GA.getType() == Aliasee->getType(), 767 "Alias and aliasee types should match!", &GA); 768 769 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 770 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 771 772 visitAliaseeSubExpr(GA, *Aliasee); 773 774 visitGlobalValue(GA); 775 } 776 777 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 778 // There used to be various other llvm.dbg.* nodes, but we don't support 779 // upgrading them and we want to reserve the namespace for future uses. 780 if (NMD.getName().startswith("llvm.dbg.")) 781 AssertDI(NMD.getName() == "llvm.dbg.cu", 782 "unrecognized named metadata node in the llvm.dbg namespace", 783 &NMD); 784 for (const MDNode *MD : NMD.operands()) { 785 if (NMD.getName() == "llvm.dbg.cu") 786 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 787 788 if (!MD) 789 continue; 790 791 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 792 } 793 } 794 795 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 796 // Only visit each node once. Metadata can be mutually recursive, so this 797 // avoids infinite recursion here, as well as being an optimization. 798 if (!MDNodes.insert(&MD).second) 799 return; 800 801 switch (MD.getMetadataID()) { 802 default: 803 llvm_unreachable("Invalid MDNode subclass"); 804 case Metadata::MDTupleKind: 805 break; 806 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 807 case Metadata::CLASS##Kind: \ 808 visit##CLASS(cast<CLASS>(MD)); \ 809 break; 810 #include "llvm/IR/Metadata.def" 811 } 812 813 for (const Metadata *Op : MD.operands()) { 814 if (!Op) 815 continue; 816 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 817 &MD, Op); 818 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 819 "DILocation not allowed within this metadata node", &MD, Op); 820 if (auto *N = dyn_cast<MDNode>(Op)) { 821 visitMDNode(*N, AllowLocs); 822 continue; 823 } 824 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 825 visitValueAsMetadata(*V, nullptr); 826 continue; 827 } 828 } 829 830 // Check these last, so we diagnose problems in operands first. 831 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 832 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 833 } 834 835 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 836 Assert(MD.getValue(), "Expected valid value", &MD); 837 Assert(!MD.getValue()->getType()->isMetadataTy(), 838 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 839 840 auto *L = dyn_cast<LocalAsMetadata>(&MD); 841 if (!L) 842 return; 843 844 Assert(F, "function-local metadata used outside a function", L); 845 846 // If this was an instruction, bb, or argument, verify that it is in the 847 // function that we expect. 848 Function *ActualF = nullptr; 849 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 850 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 851 ActualF = I->getParent()->getParent(); 852 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 853 ActualF = BB->getParent(); 854 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 855 ActualF = A->getParent(); 856 assert(ActualF && "Unimplemented function local metadata case!"); 857 858 Assert(ActualF == F, "function-local metadata used in wrong function", L); 859 } 860 861 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 862 Metadata *MD = MDV.getMetadata(); 863 if (auto *N = dyn_cast<MDNode>(MD)) { 864 visitMDNode(*N, AreDebugLocsAllowed::No); 865 return; 866 } 867 868 // Only visit each node once. Metadata can be mutually recursive, so this 869 // avoids infinite recursion here, as well as being an optimization. 870 if (!MDNodes.insert(MD).second) 871 return; 872 873 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 874 visitValueAsMetadata(*V, F); 875 } 876 877 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 878 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 879 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 880 881 void Verifier::visitDILocation(const DILocation &N) { 882 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 883 "location requires a valid scope", &N, N.getRawScope()); 884 if (auto *IA = N.getRawInlinedAt()) 885 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 886 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 887 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 888 } 889 890 void Verifier::visitGenericDINode(const GenericDINode &N) { 891 AssertDI(N.getTag(), "invalid tag", &N); 892 } 893 894 void Verifier::visitDIScope(const DIScope &N) { 895 if (auto *F = N.getRawFile()) 896 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 897 } 898 899 void Verifier::visitDISubrange(const DISubrange &N) { 900 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 901 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 902 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 903 N.getRawUpperBound(), 904 "Subrange must contain count or upperBound", &N); 905 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 906 "Subrange can have any one of count or upperBound", &N); 907 AssertDI(!N.getRawCountNode() || N.getCount(), 908 "Count must either be a signed constant or a DIVariable", &N); 909 auto Count = N.getCount(); 910 AssertDI(!Count || !Count.is<ConstantInt *>() || 911 Count.get<ConstantInt *>()->getSExtValue() >= -1, 912 "invalid subrange count", &N); 913 auto *LBound = N.getRawLowerBound(); 914 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 915 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 916 "LowerBound must be signed constant or DIVariable or DIExpression", 917 &N); 918 auto *UBound = N.getRawUpperBound(); 919 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 920 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 921 "UpperBound must be signed constant or DIVariable or DIExpression", 922 &N); 923 auto *Stride = N.getRawStride(); 924 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 925 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 926 "Stride must be signed constant or DIVariable or DIExpression", &N); 927 } 928 929 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 930 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 931 } 932 933 void Verifier::visitDIBasicType(const DIBasicType &N) { 934 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 935 N.getTag() == dwarf::DW_TAG_unspecified_type || 936 N.getTag() == dwarf::DW_TAG_string_type, 937 "invalid tag", &N); 938 } 939 940 void Verifier::visitDIStringType(const DIStringType &N) { 941 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 942 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 943 "has conflicting flags", &N); 944 } 945 946 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 947 // Common scope checks. 948 visitDIScope(N); 949 950 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 951 N.getTag() == dwarf::DW_TAG_pointer_type || 952 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 953 N.getTag() == dwarf::DW_TAG_reference_type || 954 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 955 N.getTag() == dwarf::DW_TAG_const_type || 956 N.getTag() == dwarf::DW_TAG_volatile_type || 957 N.getTag() == dwarf::DW_TAG_restrict_type || 958 N.getTag() == dwarf::DW_TAG_atomic_type || 959 N.getTag() == dwarf::DW_TAG_member || 960 N.getTag() == dwarf::DW_TAG_inheritance || 961 N.getTag() == dwarf::DW_TAG_friend, 962 "invalid tag", &N); 963 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 964 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 965 N.getRawExtraData()); 966 } 967 968 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 969 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 970 N.getRawBaseType()); 971 972 if (N.getDWARFAddressSpace()) { 973 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 974 N.getTag() == dwarf::DW_TAG_reference_type || 975 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 976 "DWARF address space only applies to pointer or reference types", 977 &N); 978 } 979 } 980 981 /// Detect mutually exclusive flags. 982 static bool hasConflictingReferenceFlags(unsigned Flags) { 983 return ((Flags & DINode::FlagLValueReference) && 984 (Flags & DINode::FlagRValueReference)) || 985 ((Flags & DINode::FlagTypePassByValue) && 986 (Flags & DINode::FlagTypePassByReference)); 987 } 988 989 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 990 auto *Params = dyn_cast<MDTuple>(&RawParams); 991 AssertDI(Params, "invalid template params", &N, &RawParams); 992 for (Metadata *Op : Params->operands()) { 993 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 994 &N, Params, Op); 995 } 996 } 997 998 void Verifier::visitDICompositeType(const DICompositeType &N) { 999 // Common scope checks. 1000 visitDIScope(N); 1001 1002 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1003 N.getTag() == dwarf::DW_TAG_structure_type || 1004 N.getTag() == dwarf::DW_TAG_union_type || 1005 N.getTag() == dwarf::DW_TAG_enumeration_type || 1006 N.getTag() == dwarf::DW_TAG_class_type || 1007 N.getTag() == dwarf::DW_TAG_variant_part, 1008 "invalid tag", &N); 1009 1010 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1011 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1012 N.getRawBaseType()); 1013 1014 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1015 "invalid composite elements", &N, N.getRawElements()); 1016 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1017 N.getRawVTableHolder()); 1018 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1019 "invalid reference flags", &N); 1020 unsigned DIBlockByRefStruct = 1 << 4; 1021 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1022 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1023 1024 if (N.isVector()) { 1025 const DINodeArray Elements = N.getElements(); 1026 AssertDI(Elements.size() == 1 && 1027 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1028 "invalid vector, expected one element of type subrange", &N); 1029 } 1030 1031 if (auto *Params = N.getRawTemplateParams()) 1032 visitTemplateParams(N, *Params); 1033 1034 if (N.getTag() == dwarf::DW_TAG_class_type || 1035 N.getTag() == dwarf::DW_TAG_union_type) { 1036 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1037 "class/union requires a filename", &N, N.getFile()); 1038 } 1039 1040 if (auto *D = N.getRawDiscriminator()) { 1041 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1042 "discriminator can only appear on variant part"); 1043 } 1044 1045 if (N.getRawDataLocation()) { 1046 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1047 "dataLocation can only appear in array type"); 1048 } 1049 1050 if (N.getRawAssociated()) { 1051 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1052 "associated can only appear in array type"); 1053 } 1054 1055 if (N.getRawAllocated()) { 1056 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1057 "allocated can only appear in array type"); 1058 } 1059 1060 if (N.getRawRank()) { 1061 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1062 "rank can only appear in array type"); 1063 } 1064 } 1065 1066 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1067 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1068 if (auto *Types = N.getRawTypeArray()) { 1069 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1070 for (Metadata *Ty : N.getTypeArray()->operands()) { 1071 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1072 } 1073 } 1074 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1075 "invalid reference flags", &N); 1076 } 1077 1078 void Verifier::visitDIFile(const DIFile &N) { 1079 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1080 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1081 if (Checksum) { 1082 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1083 "invalid checksum kind", &N); 1084 size_t Size; 1085 switch (Checksum->Kind) { 1086 case DIFile::CSK_MD5: 1087 Size = 32; 1088 break; 1089 case DIFile::CSK_SHA1: 1090 Size = 40; 1091 break; 1092 case DIFile::CSK_SHA256: 1093 Size = 64; 1094 break; 1095 } 1096 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1097 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1098 "invalid checksum", &N); 1099 } 1100 } 1101 1102 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1103 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1104 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1105 1106 // Don't bother verifying the compilation directory or producer string 1107 // as those could be empty. 1108 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1109 N.getRawFile()); 1110 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1111 N.getFile()); 1112 1113 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1114 1115 verifySourceDebugInfo(N, *N.getFile()); 1116 1117 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1118 "invalid emission kind", &N); 1119 1120 if (auto *Array = N.getRawEnumTypes()) { 1121 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1122 for (Metadata *Op : N.getEnumTypes()->operands()) { 1123 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1124 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1125 "invalid enum type", &N, N.getEnumTypes(), Op); 1126 } 1127 } 1128 if (auto *Array = N.getRawRetainedTypes()) { 1129 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1130 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1131 AssertDI(Op && (isa<DIType>(Op) || 1132 (isa<DISubprogram>(Op) && 1133 !cast<DISubprogram>(Op)->isDefinition())), 1134 "invalid retained type", &N, Op); 1135 } 1136 } 1137 if (auto *Array = N.getRawGlobalVariables()) { 1138 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1139 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1140 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1141 "invalid global variable ref", &N, Op); 1142 } 1143 } 1144 if (auto *Array = N.getRawImportedEntities()) { 1145 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1146 for (Metadata *Op : N.getImportedEntities()->operands()) { 1147 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1148 &N, Op); 1149 } 1150 } 1151 if (auto *Array = N.getRawMacros()) { 1152 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1153 for (Metadata *Op : N.getMacros()->operands()) { 1154 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1155 } 1156 } 1157 CUVisited.insert(&N); 1158 } 1159 1160 void Verifier::visitDISubprogram(const DISubprogram &N) { 1161 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1162 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1163 if (auto *F = N.getRawFile()) 1164 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1165 else 1166 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1167 if (auto *T = N.getRawType()) 1168 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1169 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1170 N.getRawContainingType()); 1171 if (auto *Params = N.getRawTemplateParams()) 1172 visitTemplateParams(N, *Params); 1173 if (auto *S = N.getRawDeclaration()) 1174 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1175 "invalid subprogram declaration", &N, S); 1176 if (auto *RawNode = N.getRawRetainedNodes()) { 1177 auto *Node = dyn_cast<MDTuple>(RawNode); 1178 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1179 for (Metadata *Op : Node->operands()) { 1180 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1181 "invalid retained nodes, expected DILocalVariable or DILabel", 1182 &N, Node, Op); 1183 } 1184 } 1185 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1186 "invalid reference flags", &N); 1187 1188 auto *Unit = N.getRawUnit(); 1189 if (N.isDefinition()) { 1190 // Subprogram definitions (not part of the type hierarchy). 1191 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1192 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1193 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1194 if (N.getFile()) 1195 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1196 } else { 1197 // Subprogram declarations (part of the type hierarchy). 1198 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1199 } 1200 1201 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1202 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1203 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1204 for (Metadata *Op : ThrownTypes->operands()) 1205 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1206 Op); 1207 } 1208 1209 if (N.areAllCallsDescribed()) 1210 AssertDI(N.isDefinition(), 1211 "DIFlagAllCallsDescribed must be attached to a definition"); 1212 } 1213 1214 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1215 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1216 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1217 "invalid local scope", &N, N.getRawScope()); 1218 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1219 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1220 } 1221 1222 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1223 visitDILexicalBlockBase(N); 1224 1225 AssertDI(N.getLine() || !N.getColumn(), 1226 "cannot have column info without line info", &N); 1227 } 1228 1229 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1230 visitDILexicalBlockBase(N); 1231 } 1232 1233 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1234 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1235 if (auto *S = N.getRawScope()) 1236 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1237 if (auto *S = N.getRawDecl()) 1238 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1239 } 1240 1241 void Verifier::visitDINamespace(const DINamespace &N) { 1242 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1243 if (auto *S = N.getRawScope()) 1244 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1245 } 1246 1247 void Verifier::visitDIMacro(const DIMacro &N) { 1248 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1249 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1250 "invalid macinfo type", &N); 1251 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1252 if (!N.getValue().empty()) { 1253 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1254 } 1255 } 1256 1257 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1258 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1259 "invalid macinfo type", &N); 1260 if (auto *F = N.getRawFile()) 1261 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1262 1263 if (auto *Array = N.getRawElements()) { 1264 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1265 for (Metadata *Op : N.getElements()->operands()) { 1266 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1267 } 1268 } 1269 } 1270 1271 void Verifier::visitDIModule(const DIModule &N) { 1272 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1273 AssertDI(!N.getName().empty(), "anonymous module", &N); 1274 } 1275 1276 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1277 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1278 } 1279 1280 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1281 visitDITemplateParameter(N); 1282 1283 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1284 &N); 1285 } 1286 1287 void Verifier::visitDITemplateValueParameter( 1288 const DITemplateValueParameter &N) { 1289 visitDITemplateParameter(N); 1290 1291 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1292 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1293 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1294 "invalid tag", &N); 1295 } 1296 1297 void Verifier::visitDIVariable(const DIVariable &N) { 1298 if (auto *S = N.getRawScope()) 1299 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1300 if (auto *F = N.getRawFile()) 1301 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1302 } 1303 1304 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1305 // Checks common to all variables. 1306 visitDIVariable(N); 1307 1308 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1309 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1310 // Assert only if the global variable is not an extern 1311 if (N.isDefinition()) 1312 AssertDI(N.getType(), "missing global variable type", &N); 1313 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1314 AssertDI(isa<DIDerivedType>(Member), 1315 "invalid static data member declaration", &N, Member); 1316 } 1317 } 1318 1319 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1320 // Checks common to all variables. 1321 visitDIVariable(N); 1322 1323 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1324 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1325 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1326 "local variable requires a valid scope", &N, N.getRawScope()); 1327 if (auto Ty = N.getType()) 1328 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1329 } 1330 1331 void Verifier::visitDILabel(const DILabel &N) { 1332 if (auto *S = N.getRawScope()) 1333 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1334 if (auto *F = N.getRawFile()) 1335 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1336 1337 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1338 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1339 "label requires a valid scope", &N, N.getRawScope()); 1340 } 1341 1342 void Verifier::visitDIExpression(const DIExpression &N) { 1343 AssertDI(N.isValid(), "invalid expression", &N); 1344 } 1345 1346 void Verifier::visitDIGlobalVariableExpression( 1347 const DIGlobalVariableExpression &GVE) { 1348 AssertDI(GVE.getVariable(), "missing variable"); 1349 if (auto *Var = GVE.getVariable()) 1350 visitDIGlobalVariable(*Var); 1351 if (auto *Expr = GVE.getExpression()) { 1352 visitDIExpression(*Expr); 1353 if (auto Fragment = Expr->getFragmentInfo()) 1354 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1355 } 1356 } 1357 1358 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1359 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1360 if (auto *T = N.getRawType()) 1361 AssertDI(isType(T), "invalid type ref", &N, T); 1362 if (auto *F = N.getRawFile()) 1363 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1364 } 1365 1366 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1367 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1368 N.getTag() == dwarf::DW_TAG_imported_declaration, 1369 "invalid tag", &N); 1370 if (auto *S = N.getRawScope()) 1371 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1372 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1373 N.getRawEntity()); 1374 } 1375 1376 void Verifier::visitComdat(const Comdat &C) { 1377 // In COFF the Module is invalid if the GlobalValue has private linkage. 1378 // Entities with private linkage don't have entries in the symbol table. 1379 if (TT.isOSBinFormatCOFF()) 1380 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1381 Assert(!GV->hasPrivateLinkage(), 1382 "comdat global value has private linkage", GV); 1383 } 1384 1385 void Verifier::visitModuleIdents(const Module &M) { 1386 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1387 if (!Idents) 1388 return; 1389 1390 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1391 // Scan each llvm.ident entry and make sure that this requirement is met. 1392 for (const MDNode *N : Idents->operands()) { 1393 Assert(N->getNumOperands() == 1, 1394 "incorrect number of operands in llvm.ident metadata", N); 1395 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1396 ("invalid value for llvm.ident metadata entry operand" 1397 "(the operand should be a string)"), 1398 N->getOperand(0)); 1399 } 1400 } 1401 1402 void Verifier::visitModuleCommandLines(const Module &M) { 1403 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1404 if (!CommandLines) 1405 return; 1406 1407 // llvm.commandline takes a list of metadata entry. Each entry has only one 1408 // string. Scan each llvm.commandline entry and make sure that this 1409 // requirement is met. 1410 for (const MDNode *N : CommandLines->operands()) { 1411 Assert(N->getNumOperands() == 1, 1412 "incorrect number of operands in llvm.commandline metadata", N); 1413 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1414 ("invalid value for llvm.commandline metadata entry operand" 1415 "(the operand should be a string)"), 1416 N->getOperand(0)); 1417 } 1418 } 1419 1420 void Verifier::visitModuleFlags(const Module &M) { 1421 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1422 if (!Flags) return; 1423 1424 // Scan each flag, and track the flags and requirements. 1425 DenseMap<const MDString*, const MDNode*> SeenIDs; 1426 SmallVector<const MDNode*, 16> Requirements; 1427 for (const MDNode *MDN : Flags->operands()) 1428 visitModuleFlag(MDN, SeenIDs, Requirements); 1429 1430 // Validate that the requirements in the module are valid. 1431 for (const MDNode *Requirement : Requirements) { 1432 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1433 const Metadata *ReqValue = Requirement->getOperand(1); 1434 1435 const MDNode *Op = SeenIDs.lookup(Flag); 1436 if (!Op) { 1437 CheckFailed("invalid requirement on flag, flag is not present in module", 1438 Flag); 1439 continue; 1440 } 1441 1442 if (Op->getOperand(2) != ReqValue) { 1443 CheckFailed(("invalid requirement on flag, " 1444 "flag does not have the required value"), 1445 Flag); 1446 continue; 1447 } 1448 } 1449 } 1450 1451 void 1452 Verifier::visitModuleFlag(const MDNode *Op, 1453 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1454 SmallVectorImpl<const MDNode *> &Requirements) { 1455 // Each module flag should have three arguments, the merge behavior (a 1456 // constant int), the flag ID (an MDString), and the value. 1457 Assert(Op->getNumOperands() == 3, 1458 "incorrect number of operands in module flag", Op); 1459 Module::ModFlagBehavior MFB; 1460 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1461 Assert( 1462 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1463 "invalid behavior operand in module flag (expected constant integer)", 1464 Op->getOperand(0)); 1465 Assert(false, 1466 "invalid behavior operand in module flag (unexpected constant)", 1467 Op->getOperand(0)); 1468 } 1469 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1470 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1471 Op->getOperand(1)); 1472 1473 // Sanity check the values for behaviors with additional requirements. 1474 switch (MFB) { 1475 case Module::Error: 1476 case Module::Warning: 1477 case Module::Override: 1478 // These behavior types accept any value. 1479 break; 1480 1481 case Module::Max: { 1482 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1483 "invalid value for 'max' module flag (expected constant integer)", 1484 Op->getOperand(2)); 1485 break; 1486 } 1487 1488 case Module::Require: { 1489 // The value should itself be an MDNode with two operands, a flag ID (an 1490 // MDString), and a value. 1491 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1492 Assert(Value && Value->getNumOperands() == 2, 1493 "invalid value for 'require' module flag (expected metadata pair)", 1494 Op->getOperand(2)); 1495 Assert(isa<MDString>(Value->getOperand(0)), 1496 ("invalid value for 'require' module flag " 1497 "(first value operand should be a string)"), 1498 Value->getOperand(0)); 1499 1500 // Append it to the list of requirements, to check once all module flags are 1501 // scanned. 1502 Requirements.push_back(Value); 1503 break; 1504 } 1505 1506 case Module::Append: 1507 case Module::AppendUnique: { 1508 // These behavior types require the operand be an MDNode. 1509 Assert(isa<MDNode>(Op->getOperand(2)), 1510 "invalid value for 'append'-type module flag " 1511 "(expected a metadata node)", 1512 Op->getOperand(2)); 1513 break; 1514 } 1515 } 1516 1517 // Unless this is a "requires" flag, check the ID is unique. 1518 if (MFB != Module::Require) { 1519 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1520 Assert(Inserted, 1521 "module flag identifiers must be unique (or of 'require' type)", ID); 1522 } 1523 1524 if (ID->getString() == "wchar_size") { 1525 ConstantInt *Value 1526 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1527 Assert(Value, "wchar_size metadata requires constant integer argument"); 1528 } 1529 1530 if (ID->getString() == "Linker Options") { 1531 // If the llvm.linker.options named metadata exists, we assume that the 1532 // bitcode reader has upgraded the module flag. Otherwise the flag might 1533 // have been created by a client directly. 1534 Assert(M.getNamedMetadata("llvm.linker.options"), 1535 "'Linker Options' named metadata no longer supported"); 1536 } 1537 1538 if (ID->getString() == "SemanticInterposition") { 1539 ConstantInt *Value = 1540 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1541 Assert(Value, 1542 "SemanticInterposition metadata requires constant integer argument"); 1543 } 1544 1545 if (ID->getString() == "CG Profile") { 1546 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1547 visitModuleFlagCGProfileEntry(MDO); 1548 } 1549 } 1550 1551 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1552 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1553 if (!FuncMDO) 1554 return; 1555 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1556 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1557 FuncMDO); 1558 }; 1559 auto Node = dyn_cast_or_null<MDNode>(MDO); 1560 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1561 CheckFunction(Node->getOperand(0)); 1562 CheckFunction(Node->getOperand(1)); 1563 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1564 Assert(Count && Count->getType()->isIntegerTy(), 1565 "expected an integer constant", Node->getOperand(2)); 1566 } 1567 1568 /// Return true if this attribute kind only applies to functions. 1569 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1570 switch (Kind) { 1571 case Attribute::NoMerge: 1572 case Attribute::NoReturn: 1573 case Attribute::NoSync: 1574 case Attribute::WillReturn: 1575 case Attribute::NoCfCheck: 1576 case Attribute::NoUnwind: 1577 case Attribute::NoInline: 1578 case Attribute::AlwaysInline: 1579 case Attribute::OptimizeForSize: 1580 case Attribute::StackProtect: 1581 case Attribute::StackProtectReq: 1582 case Attribute::StackProtectStrong: 1583 case Attribute::SafeStack: 1584 case Attribute::ShadowCallStack: 1585 case Attribute::NoRedZone: 1586 case Attribute::NoImplicitFloat: 1587 case Attribute::Naked: 1588 case Attribute::InlineHint: 1589 case Attribute::StackAlignment: 1590 case Attribute::UWTable: 1591 case Attribute::NonLazyBind: 1592 case Attribute::ReturnsTwice: 1593 case Attribute::SanitizeAddress: 1594 case Attribute::SanitizeHWAddress: 1595 case Attribute::SanitizeMemTag: 1596 case Attribute::SanitizeThread: 1597 case Attribute::SanitizeMemory: 1598 case Attribute::MinSize: 1599 case Attribute::NoDuplicate: 1600 case Attribute::Builtin: 1601 case Attribute::NoBuiltin: 1602 case Attribute::Cold: 1603 case Attribute::OptForFuzzing: 1604 case Attribute::OptimizeNone: 1605 case Attribute::JumpTable: 1606 case Attribute::Convergent: 1607 case Attribute::ArgMemOnly: 1608 case Attribute::NoRecurse: 1609 case Attribute::InaccessibleMemOnly: 1610 case Attribute::InaccessibleMemOrArgMemOnly: 1611 case Attribute::AllocSize: 1612 case Attribute::SpeculativeLoadHardening: 1613 case Attribute::Speculatable: 1614 case Attribute::StrictFP: 1615 case Attribute::NullPointerIsValid: 1616 case Attribute::MustProgress: 1617 return true; 1618 default: 1619 break; 1620 } 1621 return false; 1622 } 1623 1624 /// Return true if this is a function attribute that can also appear on 1625 /// arguments. 1626 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1627 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1628 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1629 Kind == Attribute::Preallocated; 1630 } 1631 1632 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1633 const Value *V) { 1634 for (Attribute A : Attrs) { 1635 if (A.isStringAttribute()) 1636 continue; 1637 1638 if (A.isIntAttribute() != 1639 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1640 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1641 V); 1642 return; 1643 } 1644 1645 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1646 if (!IsFunction) { 1647 CheckFailed("Attribute '" + A.getAsString() + 1648 "' only applies to functions!", 1649 V); 1650 return; 1651 } 1652 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1653 CheckFailed("Attribute '" + A.getAsString() + 1654 "' does not apply to functions!", 1655 V); 1656 return; 1657 } 1658 } 1659 } 1660 1661 // VerifyParameterAttrs - Check the given attributes for an argument or return 1662 // value of the specified type. The value V is printed in error messages. 1663 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1664 const Value *V) { 1665 if (!Attrs.hasAttributes()) 1666 return; 1667 1668 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1669 1670 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1671 Assert(Attrs.getNumAttributes() == 1, 1672 "Attribute 'immarg' is incompatible with other attributes", V); 1673 } 1674 1675 // Check for mutually incompatible attributes. Only inreg is compatible with 1676 // sret. 1677 unsigned AttrCount = 0; 1678 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1679 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1680 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1681 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1682 Attrs.hasAttribute(Attribute::InReg); 1683 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1684 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1685 Assert(AttrCount <= 1, 1686 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1687 "'byref', and 'sret' are incompatible!", 1688 V); 1689 1690 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1691 Attrs.hasAttribute(Attribute::ReadOnly)), 1692 "Attributes " 1693 "'inalloca and readonly' are incompatible!", 1694 V); 1695 1696 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1697 Attrs.hasAttribute(Attribute::Returned)), 1698 "Attributes " 1699 "'sret and returned' are incompatible!", 1700 V); 1701 1702 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1703 Attrs.hasAttribute(Attribute::SExt)), 1704 "Attributes " 1705 "'zeroext and signext' are incompatible!", 1706 V); 1707 1708 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1709 Attrs.hasAttribute(Attribute::ReadOnly)), 1710 "Attributes " 1711 "'readnone and readonly' are incompatible!", 1712 V); 1713 1714 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1715 Attrs.hasAttribute(Attribute::WriteOnly)), 1716 "Attributes " 1717 "'readnone and writeonly' are incompatible!", 1718 V); 1719 1720 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1721 Attrs.hasAttribute(Attribute::WriteOnly)), 1722 "Attributes " 1723 "'readonly and writeonly' are incompatible!", 1724 V); 1725 1726 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1727 Attrs.hasAttribute(Attribute::AlwaysInline)), 1728 "Attributes " 1729 "'noinline and alwaysinline' are incompatible!", 1730 V); 1731 1732 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1733 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1734 "Attribute 'byval' type does not match parameter!", V); 1735 } 1736 1737 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1738 Assert(Attrs.getPreallocatedType() == 1739 cast<PointerType>(Ty)->getElementType(), 1740 "Attribute 'preallocated' type does not match parameter!", V); 1741 } 1742 1743 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1744 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1745 "Wrong types for attribute: " + 1746 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1747 V); 1748 1749 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1750 SmallPtrSet<Type*, 4> Visited; 1751 if (!PTy->getElementType()->isSized(&Visited)) { 1752 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1753 !Attrs.hasAttribute(Attribute::ByRef) && 1754 !Attrs.hasAttribute(Attribute::InAlloca) && 1755 !Attrs.hasAttribute(Attribute::Preallocated), 1756 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not " 1757 "support unsized types!", 1758 V); 1759 } 1760 if (!isa<PointerType>(PTy->getElementType())) 1761 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1762 "Attribute 'swifterror' only applies to parameters " 1763 "with pointer to pointer type!", 1764 V); 1765 1766 if (Attrs.hasAttribute(Attribute::ByRef)) { 1767 Assert(Attrs.getByRefType() == PTy->getElementType(), 1768 "Attribute 'byref' type does not match parameter!", V); 1769 } 1770 } else { 1771 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1772 "Attribute 'byval' only applies to parameters with pointer type!", 1773 V); 1774 Assert(!Attrs.hasAttribute(Attribute::ByRef), 1775 "Attribute 'byref' only applies to parameters with pointer type!", 1776 V); 1777 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1778 "Attribute 'swifterror' only applies to parameters " 1779 "with pointer type!", 1780 V); 1781 } 1782 } 1783 1784 // Check parameter attributes against a function type. 1785 // The value V is printed in error messages. 1786 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1787 const Value *V, bool IsIntrinsic) { 1788 if (Attrs.isEmpty()) 1789 return; 1790 1791 bool SawNest = false; 1792 bool SawReturned = false; 1793 bool SawSRet = false; 1794 bool SawSwiftSelf = false; 1795 bool SawSwiftError = false; 1796 1797 // Verify return value attributes. 1798 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1799 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1800 !RetAttrs.hasAttribute(Attribute::Nest) && 1801 !RetAttrs.hasAttribute(Attribute::StructRet) && 1802 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1803 !RetAttrs.hasAttribute(Attribute::NoFree) && 1804 !RetAttrs.hasAttribute(Attribute::Returned) && 1805 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1806 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1807 !RetAttrs.hasAttribute(Attribute::ByRef) && 1808 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1809 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1810 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', " 1811 "'nest', 'sret', 'nocapture', 'nofree', " 1812 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1813 "values!", 1814 V); 1815 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1816 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1817 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1818 "Attribute '" + RetAttrs.getAsString() + 1819 "' does not apply to function returns", 1820 V); 1821 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1822 1823 // Verify parameter attributes. 1824 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1825 Type *Ty = FT->getParamType(i); 1826 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1827 1828 if (!IsIntrinsic) { 1829 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1830 "immarg attribute only applies to intrinsics",V); 1831 } 1832 1833 verifyParameterAttrs(ArgAttrs, Ty, V); 1834 1835 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1836 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1837 SawNest = true; 1838 } 1839 1840 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1841 Assert(!SawReturned, "More than one parameter has attribute returned!", 1842 V); 1843 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1844 "Incompatible argument and return types for 'returned' attribute", 1845 V); 1846 SawReturned = true; 1847 } 1848 1849 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1850 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1851 Assert(i == 0 || i == 1, 1852 "Attribute 'sret' is not on first or second parameter!", V); 1853 SawSRet = true; 1854 } 1855 1856 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1857 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1858 SawSwiftSelf = true; 1859 } 1860 1861 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1862 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1863 V); 1864 SawSwiftError = true; 1865 } 1866 1867 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1868 Assert(i == FT->getNumParams() - 1, 1869 "inalloca isn't on the last parameter!", V); 1870 } 1871 } 1872 1873 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1874 return; 1875 1876 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1877 1878 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1879 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1880 "Attributes 'readnone and readonly' are incompatible!", V); 1881 1882 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1883 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1884 "Attributes 'readnone and writeonly' are incompatible!", V); 1885 1886 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1887 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1888 "Attributes 'readonly and writeonly' are incompatible!", V); 1889 1890 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1891 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1892 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1893 "incompatible!", 1894 V); 1895 1896 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1897 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1898 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1899 1900 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1901 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1902 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1903 1904 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1905 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1906 "Attribute 'optnone' requires 'noinline'!", V); 1907 1908 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1909 "Attributes 'optsize and optnone' are incompatible!", V); 1910 1911 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1912 "Attributes 'minsize and optnone' are incompatible!", V); 1913 } 1914 1915 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1916 const GlobalValue *GV = cast<GlobalValue>(V); 1917 Assert(GV->hasGlobalUnnamedAddr(), 1918 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1919 } 1920 1921 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1922 std::pair<unsigned, Optional<unsigned>> Args = 1923 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1924 1925 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1926 if (ParamNo >= FT->getNumParams()) { 1927 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1928 return false; 1929 } 1930 1931 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1932 CheckFailed("'allocsize' " + Name + 1933 " argument must refer to an integer parameter", 1934 V); 1935 return false; 1936 } 1937 1938 return true; 1939 }; 1940 1941 if (!CheckParam("element size", Args.first)) 1942 return; 1943 1944 if (Args.second && !CheckParam("number of elements", *Args.second)) 1945 return; 1946 } 1947 1948 if (Attrs.hasFnAttribute("frame-pointer")) { 1949 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1950 "frame-pointer").getValueAsString(); 1951 if (FP != "all" && FP != "non-leaf" && FP != "none") 1952 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1953 } 1954 1955 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1956 StringRef S = Attrs 1957 .getAttribute(AttributeList::FunctionIndex, 1958 "patchable-function-prefix") 1959 .getValueAsString(); 1960 unsigned N; 1961 if (S.getAsInteger(10, N)) 1962 CheckFailed( 1963 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1964 } 1965 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1966 StringRef S = Attrs 1967 .getAttribute(AttributeList::FunctionIndex, 1968 "patchable-function-entry") 1969 .getValueAsString(); 1970 unsigned N; 1971 if (S.getAsInteger(10, N)) 1972 CheckFailed( 1973 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1974 } 1975 } 1976 1977 void Verifier::verifyFunctionMetadata( 1978 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1979 for (const auto &Pair : MDs) { 1980 if (Pair.first == LLVMContext::MD_prof) { 1981 MDNode *MD = Pair.second; 1982 Assert(MD->getNumOperands() >= 2, 1983 "!prof annotations should have no less than 2 operands", MD); 1984 1985 // Check first operand. 1986 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1987 MD); 1988 Assert(isa<MDString>(MD->getOperand(0)), 1989 "expected string with name of the !prof annotation", MD); 1990 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1991 StringRef ProfName = MDS->getString(); 1992 Assert(ProfName.equals("function_entry_count") || 1993 ProfName.equals("synthetic_function_entry_count"), 1994 "first operand should be 'function_entry_count'" 1995 " or 'synthetic_function_entry_count'", 1996 MD); 1997 1998 // Check second operand. 1999 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2000 MD); 2001 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2002 "expected integer argument to function_entry_count", MD); 2003 } 2004 } 2005 } 2006 2007 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2008 if (!ConstantExprVisited.insert(EntryC).second) 2009 return; 2010 2011 SmallVector<const Constant *, 16> Stack; 2012 Stack.push_back(EntryC); 2013 2014 while (!Stack.empty()) { 2015 const Constant *C = Stack.pop_back_val(); 2016 2017 // Check this constant expression. 2018 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2019 visitConstantExpr(CE); 2020 2021 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2022 // Global Values get visited separately, but we do need to make sure 2023 // that the global value is in the correct module 2024 Assert(GV->getParent() == &M, "Referencing global in another module!", 2025 EntryC, &M, GV, GV->getParent()); 2026 continue; 2027 } 2028 2029 // Visit all sub-expressions. 2030 for (const Use &U : C->operands()) { 2031 const auto *OpC = dyn_cast<Constant>(U); 2032 if (!OpC) 2033 continue; 2034 if (!ConstantExprVisited.insert(OpC).second) 2035 continue; 2036 Stack.push_back(OpC); 2037 } 2038 } 2039 } 2040 2041 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2042 if (CE->getOpcode() == Instruction::BitCast) 2043 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2044 CE->getType()), 2045 "Invalid bitcast", CE); 2046 2047 if (CE->getOpcode() == Instruction::IntToPtr || 2048 CE->getOpcode() == Instruction::PtrToInt) { 2049 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2050 ? CE->getType() 2051 : CE->getOperand(0)->getType(); 2052 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2053 ? "inttoptr not supported for non-integral pointers" 2054 : "ptrtoint not supported for non-integral pointers"; 2055 Assert( 2056 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2057 Msg); 2058 } 2059 } 2060 2061 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2062 // There shouldn't be more attribute sets than there are parameters plus the 2063 // function and return value. 2064 return Attrs.getNumAttrSets() <= Params + 2; 2065 } 2066 2067 /// Verify that statepoint intrinsic is well formed. 2068 void Verifier::verifyStatepoint(const CallBase &Call) { 2069 assert(Call.getCalledFunction() && 2070 Call.getCalledFunction()->getIntrinsicID() == 2071 Intrinsic::experimental_gc_statepoint); 2072 2073 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2074 !Call.onlyAccessesArgMemory(), 2075 "gc.statepoint must read and write all memory to preserve " 2076 "reordering restrictions required by safepoint semantics", 2077 Call); 2078 2079 const int64_t NumPatchBytes = 2080 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2081 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2082 Assert(NumPatchBytes >= 0, 2083 "gc.statepoint number of patchable bytes must be " 2084 "positive", 2085 Call); 2086 2087 const Value *Target = Call.getArgOperand(2); 2088 auto *PT = dyn_cast<PointerType>(Target->getType()); 2089 Assert(PT && PT->getElementType()->isFunctionTy(), 2090 "gc.statepoint callee must be of function pointer type", Call, Target); 2091 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2092 2093 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2094 Assert(NumCallArgs >= 0, 2095 "gc.statepoint number of arguments to underlying call " 2096 "must be positive", 2097 Call); 2098 const int NumParams = (int)TargetFuncType->getNumParams(); 2099 if (TargetFuncType->isVarArg()) { 2100 Assert(NumCallArgs >= NumParams, 2101 "gc.statepoint mismatch in number of vararg call args", Call); 2102 2103 // TODO: Remove this limitation 2104 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2105 "gc.statepoint doesn't support wrapping non-void " 2106 "vararg functions yet", 2107 Call); 2108 } else 2109 Assert(NumCallArgs == NumParams, 2110 "gc.statepoint mismatch in number of call args", Call); 2111 2112 const uint64_t Flags 2113 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2114 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2115 "unknown flag used in gc.statepoint flags argument", Call); 2116 2117 // Verify that the types of the call parameter arguments match 2118 // the type of the wrapped callee. 2119 AttributeList Attrs = Call.getAttributes(); 2120 for (int i = 0; i < NumParams; i++) { 2121 Type *ParamType = TargetFuncType->getParamType(i); 2122 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2123 Assert(ArgType == ParamType, 2124 "gc.statepoint call argument does not match wrapped " 2125 "function type", 2126 Call); 2127 2128 if (TargetFuncType->isVarArg()) { 2129 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2130 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2131 "Attribute 'sret' cannot be used for vararg call arguments!", 2132 Call); 2133 } 2134 } 2135 2136 const int EndCallArgsInx = 4 + NumCallArgs; 2137 2138 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2139 Assert(isa<ConstantInt>(NumTransitionArgsV), 2140 "gc.statepoint number of transition arguments " 2141 "must be constant integer", 2142 Call); 2143 const int NumTransitionArgs = 2144 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2145 Assert(NumTransitionArgs == 0, 2146 "gc.statepoint w/inline transition bundle is deprecated", Call); 2147 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2148 2149 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2150 Assert(isa<ConstantInt>(NumDeoptArgsV), 2151 "gc.statepoint number of deoptimization arguments " 2152 "must be constant integer", 2153 Call); 2154 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2155 Assert(NumDeoptArgs == 0, 2156 "gc.statepoint w/inline deopt operands is deprecated", Call); 2157 2158 const int ExpectedNumArgs = 7 + NumCallArgs; 2159 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2160 "gc.statepoint too many arguments", Call); 2161 2162 // Check that the only uses of this gc.statepoint are gc.result or 2163 // gc.relocate calls which are tied to this statepoint and thus part 2164 // of the same statepoint sequence 2165 for (const User *U : Call.users()) { 2166 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2167 Assert(UserCall, "illegal use of statepoint token", Call, U); 2168 if (!UserCall) 2169 continue; 2170 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2171 "gc.result or gc.relocate are the only value uses " 2172 "of a gc.statepoint", 2173 Call, U); 2174 if (isa<GCResultInst>(UserCall)) { 2175 Assert(UserCall->getArgOperand(0) == &Call, 2176 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2177 } else if (isa<GCRelocateInst>(Call)) { 2178 Assert(UserCall->getArgOperand(0) == &Call, 2179 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2180 } 2181 } 2182 2183 // Note: It is legal for a single derived pointer to be listed multiple 2184 // times. It's non-optimal, but it is legal. It can also happen after 2185 // insertion if we strip a bitcast away. 2186 // Note: It is really tempting to check that each base is relocated and 2187 // that a derived pointer is never reused as a base pointer. This turns 2188 // out to be problematic since optimizations run after safepoint insertion 2189 // can recognize equality properties that the insertion logic doesn't know 2190 // about. See example statepoint.ll in the verifier subdirectory 2191 } 2192 2193 void Verifier::verifyFrameRecoverIndices() { 2194 for (auto &Counts : FrameEscapeInfo) { 2195 Function *F = Counts.first; 2196 unsigned EscapedObjectCount = Counts.second.first; 2197 unsigned MaxRecoveredIndex = Counts.second.second; 2198 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2199 "all indices passed to llvm.localrecover must be less than the " 2200 "number of arguments passed to llvm.localescape in the parent " 2201 "function", 2202 F); 2203 } 2204 } 2205 2206 static Instruction *getSuccPad(Instruction *Terminator) { 2207 BasicBlock *UnwindDest; 2208 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2209 UnwindDest = II->getUnwindDest(); 2210 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2211 UnwindDest = CSI->getUnwindDest(); 2212 else 2213 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2214 return UnwindDest->getFirstNonPHI(); 2215 } 2216 2217 void Verifier::verifySiblingFuncletUnwinds() { 2218 SmallPtrSet<Instruction *, 8> Visited; 2219 SmallPtrSet<Instruction *, 8> Active; 2220 for (const auto &Pair : SiblingFuncletInfo) { 2221 Instruction *PredPad = Pair.first; 2222 if (Visited.count(PredPad)) 2223 continue; 2224 Active.insert(PredPad); 2225 Instruction *Terminator = Pair.second; 2226 do { 2227 Instruction *SuccPad = getSuccPad(Terminator); 2228 if (Active.count(SuccPad)) { 2229 // Found a cycle; report error 2230 Instruction *CyclePad = SuccPad; 2231 SmallVector<Instruction *, 8> CycleNodes; 2232 do { 2233 CycleNodes.push_back(CyclePad); 2234 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2235 if (CycleTerminator != CyclePad) 2236 CycleNodes.push_back(CycleTerminator); 2237 CyclePad = getSuccPad(CycleTerminator); 2238 } while (CyclePad != SuccPad); 2239 Assert(false, "EH pads can't handle each other's exceptions", 2240 ArrayRef<Instruction *>(CycleNodes)); 2241 } 2242 // Don't re-walk a node we've already checked 2243 if (!Visited.insert(SuccPad).second) 2244 break; 2245 // Walk to this successor if it has a map entry. 2246 PredPad = SuccPad; 2247 auto TermI = SiblingFuncletInfo.find(PredPad); 2248 if (TermI == SiblingFuncletInfo.end()) 2249 break; 2250 Terminator = TermI->second; 2251 Active.insert(PredPad); 2252 } while (true); 2253 // Each node only has one successor, so we've walked all the active 2254 // nodes' successors. 2255 Active.clear(); 2256 } 2257 } 2258 2259 // visitFunction - Verify that a function is ok. 2260 // 2261 void Verifier::visitFunction(const Function &F) { 2262 visitGlobalValue(F); 2263 2264 // Check function arguments. 2265 FunctionType *FT = F.getFunctionType(); 2266 unsigned NumArgs = F.arg_size(); 2267 2268 Assert(&Context == &F.getContext(), 2269 "Function context does not match Module context!", &F); 2270 2271 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2272 Assert(FT->getNumParams() == NumArgs, 2273 "# formal arguments must match # of arguments for function type!", &F, 2274 FT); 2275 Assert(F.getReturnType()->isFirstClassType() || 2276 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2277 "Functions cannot return aggregate values!", &F); 2278 2279 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2280 "Invalid struct return type!", &F); 2281 2282 AttributeList Attrs = F.getAttributes(); 2283 2284 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2285 "Attribute after last parameter!", &F); 2286 2287 bool isLLVMdotName = F.getName().size() >= 5 && 2288 F.getName().substr(0, 5) == "llvm."; 2289 2290 // Check function attributes. 2291 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2292 2293 // On function declarations/definitions, we do not support the builtin 2294 // attribute. We do not check this in VerifyFunctionAttrs since that is 2295 // checking for Attributes that can/can not ever be on functions. 2296 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2297 "Attribute 'builtin' can only be applied to a callsite.", &F); 2298 2299 // Check that this function meets the restrictions on this calling convention. 2300 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2301 // restrictions can be lifted. 2302 switch (F.getCallingConv()) { 2303 default: 2304 case CallingConv::C: 2305 break; 2306 case CallingConv::AMDGPU_KERNEL: 2307 case CallingConv::SPIR_KERNEL: 2308 Assert(F.getReturnType()->isVoidTy(), 2309 "Calling convention requires void return type", &F); 2310 LLVM_FALLTHROUGH; 2311 case CallingConv::AMDGPU_VS: 2312 case CallingConv::AMDGPU_HS: 2313 case CallingConv::AMDGPU_GS: 2314 case CallingConv::AMDGPU_PS: 2315 case CallingConv::AMDGPU_CS: 2316 Assert(!F.hasStructRetAttr(), 2317 "Calling convention does not allow sret", &F); 2318 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2319 const unsigned StackAS = DL.getAllocaAddrSpace(); 2320 unsigned i = 0; 2321 for (const Argument &Arg : F.args()) { 2322 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal), 2323 "Calling convention disallows byval", &F); 2324 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated), 2325 "Calling convention disallows preallocated", &F); 2326 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca), 2327 "Calling convention disallows inalloca", &F); 2328 2329 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { 2330 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2331 // value here. 2332 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2333 "Calling convention disallows stack byref", &F); 2334 } 2335 2336 ++i; 2337 } 2338 } 2339 2340 LLVM_FALLTHROUGH; 2341 case CallingConv::Fast: 2342 case CallingConv::Cold: 2343 case CallingConv::Intel_OCL_BI: 2344 case CallingConv::PTX_Kernel: 2345 case CallingConv::PTX_Device: 2346 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2347 "perfect forwarding!", 2348 &F); 2349 break; 2350 } 2351 2352 // Check that the argument values match the function type for this function... 2353 unsigned i = 0; 2354 for (const Argument &Arg : F.args()) { 2355 Assert(Arg.getType() == FT->getParamType(i), 2356 "Argument value does not match function argument type!", &Arg, 2357 FT->getParamType(i)); 2358 Assert(Arg.getType()->isFirstClassType(), 2359 "Function arguments must have first-class types!", &Arg); 2360 if (!isLLVMdotName) { 2361 Assert(!Arg.getType()->isMetadataTy(), 2362 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2363 Assert(!Arg.getType()->isTokenTy(), 2364 "Function takes token but isn't an intrinsic", &Arg, &F); 2365 } 2366 2367 // Check that swifterror argument is only used by loads and stores. 2368 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2369 verifySwiftErrorValue(&Arg); 2370 } 2371 ++i; 2372 } 2373 2374 if (!isLLVMdotName) 2375 Assert(!F.getReturnType()->isTokenTy(), 2376 "Functions returns a token but isn't an intrinsic", &F); 2377 2378 // Get the function metadata attachments. 2379 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2380 F.getAllMetadata(MDs); 2381 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2382 verifyFunctionMetadata(MDs); 2383 2384 // Check validity of the personality function 2385 if (F.hasPersonalityFn()) { 2386 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2387 if (Per) 2388 Assert(Per->getParent() == F.getParent(), 2389 "Referencing personality function in another module!", 2390 &F, F.getParent(), Per, Per->getParent()); 2391 } 2392 2393 if (F.isMaterializable()) { 2394 // Function has a body somewhere we can't see. 2395 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2396 MDs.empty() ? nullptr : MDs.front().second); 2397 } else if (F.isDeclaration()) { 2398 for (const auto &I : MDs) { 2399 // This is used for call site debug information. 2400 AssertDI(I.first != LLVMContext::MD_dbg || 2401 !cast<DISubprogram>(I.second)->isDistinct(), 2402 "function declaration may only have a unique !dbg attachment", 2403 &F); 2404 Assert(I.first != LLVMContext::MD_prof, 2405 "function declaration may not have a !prof attachment", &F); 2406 2407 // Verify the metadata itself. 2408 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2409 } 2410 Assert(!F.hasPersonalityFn(), 2411 "Function declaration shouldn't have a personality routine", &F); 2412 } else { 2413 // Verify that this function (which has a body) is not named "llvm.*". It 2414 // is not legal to define intrinsics. 2415 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2416 2417 // Check the entry node 2418 const BasicBlock *Entry = &F.getEntryBlock(); 2419 Assert(pred_empty(Entry), 2420 "Entry block to function must not have predecessors!", Entry); 2421 2422 // The address of the entry block cannot be taken, unless it is dead. 2423 if (Entry->hasAddressTaken()) { 2424 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2425 "blockaddress may not be used with the entry block!", Entry); 2426 } 2427 2428 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2429 // Visit metadata attachments. 2430 for (const auto &I : MDs) { 2431 // Verify that the attachment is legal. 2432 auto AllowLocs = AreDebugLocsAllowed::No; 2433 switch (I.first) { 2434 default: 2435 break; 2436 case LLVMContext::MD_dbg: { 2437 ++NumDebugAttachments; 2438 AssertDI(NumDebugAttachments == 1, 2439 "function must have a single !dbg attachment", &F, I.second); 2440 AssertDI(isa<DISubprogram>(I.second), 2441 "function !dbg attachment must be a subprogram", &F, I.second); 2442 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2443 "function definition may only have a distinct !dbg attachment", 2444 &F); 2445 2446 auto *SP = cast<DISubprogram>(I.second); 2447 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2448 AssertDI(!AttachedTo || AttachedTo == &F, 2449 "DISubprogram attached to more than one function", SP, &F); 2450 AttachedTo = &F; 2451 AllowLocs = AreDebugLocsAllowed::Yes; 2452 break; 2453 } 2454 case LLVMContext::MD_prof: 2455 ++NumProfAttachments; 2456 Assert(NumProfAttachments == 1, 2457 "function must have a single !prof attachment", &F, I.second); 2458 break; 2459 } 2460 2461 // Verify the metadata itself. 2462 visitMDNode(*I.second, AllowLocs); 2463 } 2464 } 2465 2466 // If this function is actually an intrinsic, verify that it is only used in 2467 // direct call/invokes, never having its "address taken". 2468 // Only do this if the module is materialized, otherwise we don't have all the 2469 // uses. 2470 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2471 const User *U; 2472 if (F.hasAddressTaken(&U)) 2473 Assert(false, "Invalid user of intrinsic instruction!", U); 2474 } 2475 2476 auto *N = F.getSubprogram(); 2477 HasDebugInfo = (N != nullptr); 2478 if (!HasDebugInfo) 2479 return; 2480 2481 // Check that all !dbg attachments lead to back to N. 2482 // 2483 // FIXME: Check this incrementally while visiting !dbg attachments. 2484 // FIXME: Only check when N is the canonical subprogram for F. 2485 SmallPtrSet<const MDNode *, 32> Seen; 2486 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2487 // Be careful about using DILocation here since we might be dealing with 2488 // broken code (this is the Verifier after all). 2489 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2490 if (!DL) 2491 return; 2492 if (!Seen.insert(DL).second) 2493 return; 2494 2495 Metadata *Parent = DL->getRawScope(); 2496 AssertDI(Parent && isa<DILocalScope>(Parent), 2497 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2498 Parent); 2499 2500 DILocalScope *Scope = DL->getInlinedAtScope(); 2501 Assert(Scope, "Failed to find DILocalScope", DL); 2502 2503 if (!Seen.insert(Scope).second) 2504 return; 2505 2506 DISubprogram *SP = Scope->getSubprogram(); 2507 2508 // Scope and SP could be the same MDNode and we don't want to skip 2509 // validation in that case 2510 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2511 return; 2512 2513 AssertDI(SP->describes(&F), 2514 "!dbg attachment points at wrong subprogram for function", N, &F, 2515 &I, DL, Scope, SP); 2516 }; 2517 for (auto &BB : F) 2518 for (auto &I : BB) { 2519 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2520 // The llvm.loop annotations also contain two DILocations. 2521 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2522 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2523 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2524 if (BrokenDebugInfo) 2525 return; 2526 } 2527 } 2528 2529 // verifyBasicBlock - Verify that a basic block is well formed... 2530 // 2531 void Verifier::visitBasicBlock(BasicBlock &BB) { 2532 InstsInThisBlock.clear(); 2533 2534 // Ensure that basic blocks have terminators! 2535 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2536 2537 // Check constraints that this basic block imposes on all of the PHI nodes in 2538 // it. 2539 if (isa<PHINode>(BB.front())) { 2540 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2541 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2542 llvm::sort(Preds); 2543 for (const PHINode &PN : BB.phis()) { 2544 // Ensure that PHI nodes have at least one entry! 2545 Assert(PN.getNumIncomingValues() != 0, 2546 "PHI nodes must have at least one entry. If the block is dead, " 2547 "the PHI should be removed!", 2548 &PN); 2549 Assert(PN.getNumIncomingValues() == Preds.size(), 2550 "PHINode should have one entry for each predecessor of its " 2551 "parent basic block!", 2552 &PN); 2553 2554 // Get and sort all incoming values in the PHI node... 2555 Values.clear(); 2556 Values.reserve(PN.getNumIncomingValues()); 2557 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2558 Values.push_back( 2559 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2560 llvm::sort(Values); 2561 2562 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2563 // Check to make sure that if there is more than one entry for a 2564 // particular basic block in this PHI node, that the incoming values are 2565 // all identical. 2566 // 2567 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2568 Values[i].second == Values[i - 1].second, 2569 "PHI node has multiple entries for the same basic block with " 2570 "different incoming values!", 2571 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2572 2573 // Check to make sure that the predecessors and PHI node entries are 2574 // matched up. 2575 Assert(Values[i].first == Preds[i], 2576 "PHI node entries do not match predecessors!", &PN, 2577 Values[i].first, Preds[i]); 2578 } 2579 } 2580 } 2581 2582 // Check that all instructions have their parent pointers set up correctly. 2583 for (auto &I : BB) 2584 { 2585 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2586 } 2587 } 2588 2589 void Verifier::visitTerminator(Instruction &I) { 2590 // Ensure that terminators only exist at the end of the basic block. 2591 Assert(&I == I.getParent()->getTerminator(), 2592 "Terminator found in the middle of a basic block!", I.getParent()); 2593 visitInstruction(I); 2594 } 2595 2596 void Verifier::visitBranchInst(BranchInst &BI) { 2597 if (BI.isConditional()) { 2598 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2599 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2600 } 2601 visitTerminator(BI); 2602 } 2603 2604 void Verifier::visitReturnInst(ReturnInst &RI) { 2605 Function *F = RI.getParent()->getParent(); 2606 unsigned N = RI.getNumOperands(); 2607 if (F->getReturnType()->isVoidTy()) 2608 Assert(N == 0, 2609 "Found return instr that returns non-void in Function of void " 2610 "return type!", 2611 &RI, F->getReturnType()); 2612 else 2613 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2614 "Function return type does not match operand " 2615 "type of return inst!", 2616 &RI, F->getReturnType()); 2617 2618 // Check to make sure that the return value has necessary properties for 2619 // terminators... 2620 visitTerminator(RI); 2621 } 2622 2623 void Verifier::visitSwitchInst(SwitchInst &SI) { 2624 // Check to make sure that all of the constants in the switch instruction 2625 // have the same type as the switched-on value. 2626 Type *SwitchTy = SI.getCondition()->getType(); 2627 SmallPtrSet<ConstantInt*, 32> Constants; 2628 for (auto &Case : SI.cases()) { 2629 Assert(Case.getCaseValue()->getType() == SwitchTy, 2630 "Switch constants must all be same type as switch value!", &SI); 2631 Assert(Constants.insert(Case.getCaseValue()).second, 2632 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2633 } 2634 2635 visitTerminator(SI); 2636 } 2637 2638 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2639 Assert(BI.getAddress()->getType()->isPointerTy(), 2640 "Indirectbr operand must have pointer type!", &BI); 2641 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2642 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2643 "Indirectbr destinations must all have pointer type!", &BI); 2644 2645 visitTerminator(BI); 2646 } 2647 2648 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2649 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2650 &CBI); 2651 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2652 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2653 "Callbr successors must all have pointer type!", &CBI); 2654 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2655 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2656 "Using an unescaped label as a callbr argument!", &CBI); 2657 if (isa<BasicBlock>(CBI.getOperand(i))) 2658 for (unsigned j = i + 1; j != e; ++j) 2659 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2660 "Duplicate callbr destination!", &CBI); 2661 } 2662 { 2663 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2664 for (Value *V : CBI.args()) 2665 if (auto *BA = dyn_cast<BlockAddress>(V)) 2666 ArgBBs.insert(BA->getBasicBlock()); 2667 for (BasicBlock *BB : CBI.getIndirectDests()) 2668 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2669 } 2670 2671 visitTerminator(CBI); 2672 } 2673 2674 void Verifier::visitSelectInst(SelectInst &SI) { 2675 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2676 SI.getOperand(2)), 2677 "Invalid operands for select instruction!", &SI); 2678 2679 Assert(SI.getTrueValue()->getType() == SI.getType(), 2680 "Select values must have same type as select instruction!", &SI); 2681 visitInstruction(SI); 2682 } 2683 2684 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2685 /// a pass, if any exist, it's an error. 2686 /// 2687 void Verifier::visitUserOp1(Instruction &I) { 2688 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2689 } 2690 2691 void Verifier::visitTruncInst(TruncInst &I) { 2692 // Get the source and destination types 2693 Type *SrcTy = I.getOperand(0)->getType(); 2694 Type *DestTy = I.getType(); 2695 2696 // Get the size of the types in bits, we'll need this later 2697 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2698 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2699 2700 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2701 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2702 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2703 "trunc source and destination must both be a vector or neither", &I); 2704 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2705 2706 visitInstruction(I); 2707 } 2708 2709 void Verifier::visitZExtInst(ZExtInst &I) { 2710 // Get the source and destination types 2711 Type *SrcTy = I.getOperand(0)->getType(); 2712 Type *DestTy = I.getType(); 2713 2714 // Get the size of the types in bits, we'll need this later 2715 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2716 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2717 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2718 "zext source and destination must both be a vector or neither", &I); 2719 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2720 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2721 2722 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2723 2724 visitInstruction(I); 2725 } 2726 2727 void Verifier::visitSExtInst(SExtInst &I) { 2728 // Get the source and destination types 2729 Type *SrcTy = I.getOperand(0)->getType(); 2730 Type *DestTy = I.getType(); 2731 2732 // Get the size of the types in bits, we'll need this later 2733 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2734 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2735 2736 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2737 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2738 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2739 "sext source and destination must both be a vector or neither", &I); 2740 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2741 2742 visitInstruction(I); 2743 } 2744 2745 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2746 // Get the source and destination types 2747 Type *SrcTy = I.getOperand(0)->getType(); 2748 Type *DestTy = I.getType(); 2749 // Get the size of the types in bits, we'll need this later 2750 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2751 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2752 2753 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2754 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2755 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2756 "fptrunc source and destination must both be a vector or neither", &I); 2757 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2758 2759 visitInstruction(I); 2760 } 2761 2762 void Verifier::visitFPExtInst(FPExtInst &I) { 2763 // Get the source and destination types 2764 Type *SrcTy = I.getOperand(0)->getType(); 2765 Type *DestTy = I.getType(); 2766 2767 // Get the size of the types in bits, we'll need this later 2768 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2769 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2770 2771 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2772 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2773 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2774 "fpext source and destination must both be a vector or neither", &I); 2775 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2776 2777 visitInstruction(I); 2778 } 2779 2780 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2781 // Get the source and destination types 2782 Type *SrcTy = I.getOperand(0)->getType(); 2783 Type *DestTy = I.getType(); 2784 2785 bool SrcVec = SrcTy->isVectorTy(); 2786 bool DstVec = DestTy->isVectorTy(); 2787 2788 Assert(SrcVec == DstVec, 2789 "UIToFP source and dest must both be vector or scalar", &I); 2790 Assert(SrcTy->isIntOrIntVectorTy(), 2791 "UIToFP source must be integer or integer vector", &I); 2792 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2793 &I); 2794 2795 if (SrcVec && DstVec) 2796 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2797 cast<VectorType>(DestTy)->getElementCount(), 2798 "UIToFP source and dest vector length mismatch", &I); 2799 2800 visitInstruction(I); 2801 } 2802 2803 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2804 // Get the source and destination types 2805 Type *SrcTy = I.getOperand(0)->getType(); 2806 Type *DestTy = I.getType(); 2807 2808 bool SrcVec = SrcTy->isVectorTy(); 2809 bool DstVec = DestTy->isVectorTy(); 2810 2811 Assert(SrcVec == DstVec, 2812 "SIToFP source and dest must both be vector or scalar", &I); 2813 Assert(SrcTy->isIntOrIntVectorTy(), 2814 "SIToFP source must be integer or integer vector", &I); 2815 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2816 &I); 2817 2818 if (SrcVec && DstVec) 2819 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2820 cast<VectorType>(DestTy)->getElementCount(), 2821 "SIToFP source and dest vector length mismatch", &I); 2822 2823 visitInstruction(I); 2824 } 2825 2826 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2827 // Get the source and destination types 2828 Type *SrcTy = I.getOperand(0)->getType(); 2829 Type *DestTy = I.getType(); 2830 2831 bool SrcVec = SrcTy->isVectorTy(); 2832 bool DstVec = DestTy->isVectorTy(); 2833 2834 Assert(SrcVec == DstVec, 2835 "FPToUI source and dest must both be vector or scalar", &I); 2836 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2837 &I); 2838 Assert(DestTy->isIntOrIntVectorTy(), 2839 "FPToUI result must be integer or integer vector", &I); 2840 2841 if (SrcVec && DstVec) 2842 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2843 cast<VectorType>(DestTy)->getElementCount(), 2844 "FPToUI source and dest vector length mismatch", &I); 2845 2846 visitInstruction(I); 2847 } 2848 2849 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2850 // Get the source and destination types 2851 Type *SrcTy = I.getOperand(0)->getType(); 2852 Type *DestTy = I.getType(); 2853 2854 bool SrcVec = SrcTy->isVectorTy(); 2855 bool DstVec = DestTy->isVectorTy(); 2856 2857 Assert(SrcVec == DstVec, 2858 "FPToSI source and dest must both be vector or scalar", &I); 2859 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2860 &I); 2861 Assert(DestTy->isIntOrIntVectorTy(), 2862 "FPToSI result must be integer or integer vector", &I); 2863 2864 if (SrcVec && DstVec) 2865 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2866 cast<VectorType>(DestTy)->getElementCount(), 2867 "FPToSI source and dest vector length mismatch", &I); 2868 2869 visitInstruction(I); 2870 } 2871 2872 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2873 // Get the source and destination types 2874 Type *SrcTy = I.getOperand(0)->getType(); 2875 Type *DestTy = I.getType(); 2876 2877 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2878 2879 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2880 Assert(!DL.isNonIntegralPointerType(PTy), 2881 "ptrtoint not supported for non-integral pointers"); 2882 2883 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2884 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2885 &I); 2886 2887 if (SrcTy->isVectorTy()) { 2888 auto *VSrc = cast<VectorType>(SrcTy); 2889 auto *VDest = cast<VectorType>(DestTy); 2890 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2891 "PtrToInt Vector width mismatch", &I); 2892 } 2893 2894 visitInstruction(I); 2895 } 2896 2897 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2898 // Get the source and destination types 2899 Type *SrcTy = I.getOperand(0)->getType(); 2900 Type *DestTy = I.getType(); 2901 2902 Assert(SrcTy->isIntOrIntVectorTy(), 2903 "IntToPtr source must be an integral", &I); 2904 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2905 2906 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2907 Assert(!DL.isNonIntegralPointerType(PTy), 2908 "inttoptr not supported for non-integral pointers"); 2909 2910 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2911 &I); 2912 if (SrcTy->isVectorTy()) { 2913 auto *VSrc = cast<VectorType>(SrcTy); 2914 auto *VDest = cast<VectorType>(DestTy); 2915 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2916 "IntToPtr Vector width mismatch", &I); 2917 } 2918 visitInstruction(I); 2919 } 2920 2921 void Verifier::visitBitCastInst(BitCastInst &I) { 2922 Assert( 2923 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2924 "Invalid bitcast", &I); 2925 visitInstruction(I); 2926 } 2927 2928 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2929 Type *SrcTy = I.getOperand(0)->getType(); 2930 Type *DestTy = I.getType(); 2931 2932 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2933 &I); 2934 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2935 &I); 2936 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2937 "AddrSpaceCast must be between different address spaces", &I); 2938 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2939 Assert(cast<FixedVectorType>(SrcVTy)->getNumElements() == 2940 cast<FixedVectorType>(DestTy)->getNumElements(), 2941 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2942 visitInstruction(I); 2943 } 2944 2945 /// visitPHINode - Ensure that a PHI node is well formed. 2946 /// 2947 void Verifier::visitPHINode(PHINode &PN) { 2948 // Ensure that the PHI nodes are all grouped together at the top of the block. 2949 // This can be tested by checking whether the instruction before this is 2950 // either nonexistent (because this is begin()) or is a PHI node. If not, 2951 // then there is some other instruction before a PHI. 2952 Assert(&PN == &PN.getParent()->front() || 2953 isa<PHINode>(--BasicBlock::iterator(&PN)), 2954 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2955 2956 // Check that a PHI doesn't yield a Token. 2957 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2958 2959 // Check that all of the values of the PHI node have the same type as the 2960 // result, and that the incoming blocks are really basic blocks. 2961 for (Value *IncValue : PN.incoming_values()) { 2962 Assert(PN.getType() == IncValue->getType(), 2963 "PHI node operands are not the same type as the result!", &PN); 2964 } 2965 2966 // All other PHI node constraints are checked in the visitBasicBlock method. 2967 2968 visitInstruction(PN); 2969 } 2970 2971 void Verifier::visitCallBase(CallBase &Call) { 2972 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 2973 "Called function must be a pointer!", Call); 2974 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2975 2976 Assert(FPTy->getElementType()->isFunctionTy(), 2977 "Called function is not pointer to function type!", Call); 2978 2979 Assert(FPTy->getElementType() == Call.getFunctionType(), 2980 "Called function is not the same type as the call!", Call); 2981 2982 FunctionType *FTy = Call.getFunctionType(); 2983 2984 // Verify that the correct number of arguments are being passed 2985 if (FTy->isVarArg()) 2986 Assert(Call.arg_size() >= FTy->getNumParams(), 2987 "Called function requires more parameters than were provided!", 2988 Call); 2989 else 2990 Assert(Call.arg_size() == FTy->getNumParams(), 2991 "Incorrect number of arguments passed to called function!", Call); 2992 2993 // Verify that all arguments to the call match the function type. 2994 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2995 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2996 "Call parameter type does not match function signature!", 2997 Call.getArgOperand(i), FTy->getParamType(i), Call); 2998 2999 AttributeList Attrs = Call.getAttributes(); 3000 3001 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3002 "Attribute after last parameter!", Call); 3003 3004 bool IsIntrinsic = Call.getCalledFunction() && 3005 Call.getCalledFunction()->getName().startswith("llvm."); 3006 3007 Function *Callee = 3008 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3009 3010 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 3011 // Don't allow speculatable on call sites, unless the underlying function 3012 // declaration is also speculatable. 3013 Assert(Callee && Callee->isSpeculatable(), 3014 "speculatable attribute may not apply to call sites", Call); 3015 } 3016 3017 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 3018 Assert(Call.getCalledFunction()->getIntrinsicID() == 3019 Intrinsic::call_preallocated_arg, 3020 "preallocated as a call site attribute can only be on " 3021 "llvm.call.preallocated.arg"); 3022 } 3023 3024 // Verify call attributes. 3025 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3026 3027 // Conservatively check the inalloca argument. 3028 // We have a bug if we can find that there is an underlying alloca without 3029 // inalloca. 3030 if (Call.hasInAllocaArgument()) { 3031 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3032 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3033 Assert(AI->isUsedWithInAlloca(), 3034 "inalloca argument for call has mismatched alloca", AI, Call); 3035 } 3036 3037 // For each argument of the callsite, if it has the swifterror argument, 3038 // make sure the underlying alloca/parameter it comes from has a swifterror as 3039 // well. 3040 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3041 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3042 Value *SwiftErrorArg = Call.getArgOperand(i); 3043 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3044 Assert(AI->isSwiftError(), 3045 "swifterror argument for call has mismatched alloca", AI, Call); 3046 continue; 3047 } 3048 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3049 Assert(ArgI, 3050 "swifterror argument should come from an alloca or parameter", 3051 SwiftErrorArg, Call); 3052 Assert(ArgI->hasSwiftErrorAttr(), 3053 "swifterror argument for call has mismatched parameter", ArgI, 3054 Call); 3055 } 3056 3057 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3058 // Don't allow immarg on call sites, unless the underlying declaration 3059 // also has the matching immarg. 3060 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3061 "immarg may not apply only to call sites", 3062 Call.getArgOperand(i), Call); 3063 } 3064 3065 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3066 Value *ArgVal = Call.getArgOperand(i); 3067 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3068 "immarg operand has non-immediate parameter", ArgVal, Call); 3069 } 3070 3071 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3072 Value *ArgVal = Call.getArgOperand(i); 3073 bool hasOB = 3074 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3075 bool isMustTail = Call.isMustTailCall(); 3076 Assert(hasOB != isMustTail, 3077 "preallocated operand either requires a preallocated bundle or " 3078 "the call to be musttail (but not both)", 3079 ArgVal, Call); 3080 } 3081 } 3082 3083 if (FTy->isVarArg()) { 3084 // FIXME? is 'nest' even legal here? 3085 bool SawNest = false; 3086 bool SawReturned = false; 3087 3088 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3089 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3090 SawNest = true; 3091 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3092 SawReturned = true; 3093 } 3094 3095 // Check attributes on the varargs part. 3096 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3097 Type *Ty = Call.getArgOperand(Idx)->getType(); 3098 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3099 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3100 3101 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3102 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3103 SawNest = true; 3104 } 3105 3106 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3107 Assert(!SawReturned, "More than one parameter has attribute returned!", 3108 Call); 3109 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3110 "Incompatible argument and return types for 'returned' " 3111 "attribute", 3112 Call); 3113 SawReturned = true; 3114 } 3115 3116 // Statepoint intrinsic is vararg but the wrapped function may be not. 3117 // Allow sret here and check the wrapped function in verifyStatepoint. 3118 if (!Call.getCalledFunction() || 3119 Call.getCalledFunction()->getIntrinsicID() != 3120 Intrinsic::experimental_gc_statepoint) 3121 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3122 "Attribute 'sret' cannot be used for vararg call arguments!", 3123 Call); 3124 3125 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3126 Assert(Idx == Call.arg_size() - 1, 3127 "inalloca isn't on the last argument!", Call); 3128 } 3129 } 3130 3131 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3132 if (!IsIntrinsic) { 3133 for (Type *ParamTy : FTy->params()) { 3134 Assert(!ParamTy->isMetadataTy(), 3135 "Function has metadata parameter but isn't an intrinsic", Call); 3136 Assert(!ParamTy->isTokenTy(), 3137 "Function has token parameter but isn't an intrinsic", Call); 3138 } 3139 } 3140 3141 // Verify that indirect calls don't return tokens. 3142 if (!Call.getCalledFunction()) 3143 Assert(!FTy->getReturnType()->isTokenTy(), 3144 "Return type cannot be token for indirect call!"); 3145 3146 if (Function *F = Call.getCalledFunction()) 3147 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3148 visitIntrinsicCall(ID, Call); 3149 3150 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3151 // most one "gc-transition", at most one "cfguardtarget", 3152 // and at most one "preallocated" operand bundle. 3153 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3154 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3155 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;; 3156 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3157 OperandBundleUse BU = Call.getOperandBundleAt(i); 3158 uint32_t Tag = BU.getTagID(); 3159 if (Tag == LLVMContext::OB_deopt) { 3160 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3161 FoundDeoptBundle = true; 3162 } else if (Tag == LLVMContext::OB_gc_transition) { 3163 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3164 Call); 3165 FoundGCTransitionBundle = true; 3166 } else if (Tag == LLVMContext::OB_funclet) { 3167 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3168 FoundFuncletBundle = true; 3169 Assert(BU.Inputs.size() == 1, 3170 "Expected exactly one funclet bundle operand", Call); 3171 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3172 "Funclet bundle operands should correspond to a FuncletPadInst", 3173 Call); 3174 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3175 Assert(!FoundCFGuardTargetBundle, 3176 "Multiple CFGuardTarget operand bundles", Call); 3177 FoundCFGuardTargetBundle = true; 3178 Assert(BU.Inputs.size() == 1, 3179 "Expected exactly one cfguardtarget bundle operand", Call); 3180 } else if (Tag == LLVMContext::OB_preallocated) { 3181 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3182 Call); 3183 FoundPreallocatedBundle = true; 3184 Assert(BU.Inputs.size() == 1, 3185 "Expected exactly one preallocated bundle operand", Call); 3186 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3187 Assert(Input && 3188 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3189 "\"preallocated\" argument must be a token from " 3190 "llvm.call.preallocated.setup", 3191 Call); 3192 } else if (Tag == LLVMContext::OB_gc_live) { 3193 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3194 Call); 3195 FoundGCLiveBundle = true; 3196 } 3197 } 3198 3199 // Verify that each inlinable callsite of a debug-info-bearing function in a 3200 // debug-info-bearing function has a debug location attached to it. Failure to 3201 // do so causes assertion failures when the inliner sets up inline scope info. 3202 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3203 Call.getCalledFunction()->getSubprogram()) 3204 AssertDI(Call.getDebugLoc(), 3205 "inlinable function call in a function with " 3206 "debug info must have a !dbg location", 3207 Call); 3208 3209 visitInstruction(Call); 3210 } 3211 3212 /// Two types are "congruent" if they are identical, or if they are both pointer 3213 /// types with different pointee types and the same address space. 3214 static bool isTypeCongruent(Type *L, Type *R) { 3215 if (L == R) 3216 return true; 3217 PointerType *PL = dyn_cast<PointerType>(L); 3218 PointerType *PR = dyn_cast<PointerType>(R); 3219 if (!PL || !PR) 3220 return false; 3221 return PL->getAddressSpace() == PR->getAddressSpace(); 3222 } 3223 3224 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3225 static const Attribute::AttrKind ABIAttrs[] = { 3226 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3227 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3228 Attribute::Preallocated, Attribute::ByRef}; 3229 AttrBuilder Copy; 3230 for (auto AK : ABIAttrs) { 3231 if (Attrs.hasParamAttribute(I, AK)) 3232 Copy.addAttribute(AK); 3233 } 3234 3235 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3236 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3237 (Attrs.hasParamAttribute(I, Attribute::ByVal) || 3238 Attrs.hasParamAttribute(I, Attribute::ByRef))) 3239 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3240 return Copy; 3241 } 3242 3243 void Verifier::verifyMustTailCall(CallInst &CI) { 3244 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3245 3246 // - The caller and callee prototypes must match. Pointer types of 3247 // parameters or return types may differ in pointee type, but not 3248 // address space. 3249 Function *F = CI.getParent()->getParent(); 3250 FunctionType *CallerTy = F->getFunctionType(); 3251 FunctionType *CalleeTy = CI.getFunctionType(); 3252 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3253 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3254 "cannot guarantee tail call due to mismatched parameter counts", 3255 &CI); 3256 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3257 Assert( 3258 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3259 "cannot guarantee tail call due to mismatched parameter types", &CI); 3260 } 3261 } 3262 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3263 "cannot guarantee tail call due to mismatched varargs", &CI); 3264 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3265 "cannot guarantee tail call due to mismatched return types", &CI); 3266 3267 // - The calling conventions of the caller and callee must match. 3268 Assert(F->getCallingConv() == CI.getCallingConv(), 3269 "cannot guarantee tail call due to mismatched calling conv", &CI); 3270 3271 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3272 // returned, preallocated, and inalloca, must match. 3273 AttributeList CallerAttrs = F->getAttributes(); 3274 AttributeList CalleeAttrs = CI.getAttributes(); 3275 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3276 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3277 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3278 Assert(CallerABIAttrs == CalleeABIAttrs, 3279 "cannot guarantee tail call due to mismatched ABI impacting " 3280 "function attributes", 3281 &CI, CI.getOperand(I)); 3282 } 3283 3284 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3285 // or a pointer bitcast followed by a ret instruction. 3286 // - The ret instruction must return the (possibly bitcasted) value 3287 // produced by the call or void. 3288 Value *RetVal = &CI; 3289 Instruction *Next = CI.getNextNode(); 3290 3291 // Handle the optional bitcast. 3292 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3293 Assert(BI->getOperand(0) == RetVal, 3294 "bitcast following musttail call must use the call", BI); 3295 RetVal = BI; 3296 Next = BI->getNextNode(); 3297 } 3298 3299 // Check the return. 3300 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3301 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3302 &CI); 3303 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3304 "musttail call result must be returned", Ret); 3305 } 3306 3307 void Verifier::visitCallInst(CallInst &CI) { 3308 visitCallBase(CI); 3309 3310 if (CI.isMustTailCall()) 3311 verifyMustTailCall(CI); 3312 } 3313 3314 void Verifier::visitInvokeInst(InvokeInst &II) { 3315 visitCallBase(II); 3316 3317 // Verify that the first non-PHI instruction of the unwind destination is an 3318 // exception handling instruction. 3319 Assert( 3320 II.getUnwindDest()->isEHPad(), 3321 "The unwind destination does not have an exception handling instruction!", 3322 &II); 3323 3324 visitTerminator(II); 3325 } 3326 3327 /// visitUnaryOperator - Check the argument to the unary operator. 3328 /// 3329 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3330 Assert(U.getType() == U.getOperand(0)->getType(), 3331 "Unary operators must have same type for" 3332 "operands and result!", 3333 &U); 3334 3335 switch (U.getOpcode()) { 3336 // Check that floating-point arithmetic operators are only used with 3337 // floating-point operands. 3338 case Instruction::FNeg: 3339 Assert(U.getType()->isFPOrFPVectorTy(), 3340 "FNeg operator only works with float types!", &U); 3341 break; 3342 default: 3343 llvm_unreachable("Unknown UnaryOperator opcode!"); 3344 } 3345 3346 visitInstruction(U); 3347 } 3348 3349 /// visitBinaryOperator - Check that both arguments to the binary operator are 3350 /// of the same type! 3351 /// 3352 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3353 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3354 "Both operands to a binary operator are not of the same type!", &B); 3355 3356 switch (B.getOpcode()) { 3357 // Check that integer arithmetic operators are only used with 3358 // integral operands. 3359 case Instruction::Add: 3360 case Instruction::Sub: 3361 case Instruction::Mul: 3362 case Instruction::SDiv: 3363 case Instruction::UDiv: 3364 case Instruction::SRem: 3365 case Instruction::URem: 3366 Assert(B.getType()->isIntOrIntVectorTy(), 3367 "Integer arithmetic operators only work with integral types!", &B); 3368 Assert(B.getType() == B.getOperand(0)->getType(), 3369 "Integer arithmetic operators must have same type " 3370 "for operands and result!", 3371 &B); 3372 break; 3373 // Check that floating-point arithmetic operators are only used with 3374 // floating-point operands. 3375 case Instruction::FAdd: 3376 case Instruction::FSub: 3377 case Instruction::FMul: 3378 case Instruction::FDiv: 3379 case Instruction::FRem: 3380 Assert(B.getType()->isFPOrFPVectorTy(), 3381 "Floating-point arithmetic operators only work with " 3382 "floating-point types!", 3383 &B); 3384 Assert(B.getType() == B.getOperand(0)->getType(), 3385 "Floating-point arithmetic operators must have same type " 3386 "for operands and result!", 3387 &B); 3388 break; 3389 // Check that logical operators are only used with integral operands. 3390 case Instruction::And: 3391 case Instruction::Or: 3392 case Instruction::Xor: 3393 Assert(B.getType()->isIntOrIntVectorTy(), 3394 "Logical operators only work with integral types!", &B); 3395 Assert(B.getType() == B.getOperand(0)->getType(), 3396 "Logical operators must have same type for operands and result!", 3397 &B); 3398 break; 3399 case Instruction::Shl: 3400 case Instruction::LShr: 3401 case Instruction::AShr: 3402 Assert(B.getType()->isIntOrIntVectorTy(), 3403 "Shifts only work with integral types!", &B); 3404 Assert(B.getType() == B.getOperand(0)->getType(), 3405 "Shift return type must be same as operands!", &B); 3406 break; 3407 default: 3408 llvm_unreachable("Unknown BinaryOperator opcode!"); 3409 } 3410 3411 visitInstruction(B); 3412 } 3413 3414 void Verifier::visitICmpInst(ICmpInst &IC) { 3415 // Check that the operands are the same type 3416 Type *Op0Ty = IC.getOperand(0)->getType(); 3417 Type *Op1Ty = IC.getOperand(1)->getType(); 3418 Assert(Op0Ty == Op1Ty, 3419 "Both operands to ICmp instruction are not of the same type!", &IC); 3420 // Check that the operands are the right type 3421 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3422 "Invalid operand types for ICmp instruction", &IC); 3423 // Check that the predicate is valid. 3424 Assert(IC.isIntPredicate(), 3425 "Invalid predicate in ICmp instruction!", &IC); 3426 3427 visitInstruction(IC); 3428 } 3429 3430 void Verifier::visitFCmpInst(FCmpInst &FC) { 3431 // Check that the operands are the same type 3432 Type *Op0Ty = FC.getOperand(0)->getType(); 3433 Type *Op1Ty = FC.getOperand(1)->getType(); 3434 Assert(Op0Ty == Op1Ty, 3435 "Both operands to FCmp instruction are not of the same type!", &FC); 3436 // Check that the operands are the right type 3437 Assert(Op0Ty->isFPOrFPVectorTy(), 3438 "Invalid operand types for FCmp instruction", &FC); 3439 // Check that the predicate is valid. 3440 Assert(FC.isFPPredicate(), 3441 "Invalid predicate in FCmp instruction!", &FC); 3442 3443 visitInstruction(FC); 3444 } 3445 3446 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3447 Assert( 3448 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3449 "Invalid extractelement operands!", &EI); 3450 visitInstruction(EI); 3451 } 3452 3453 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3454 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3455 IE.getOperand(2)), 3456 "Invalid insertelement operands!", &IE); 3457 visitInstruction(IE); 3458 } 3459 3460 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3461 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3462 SV.getShuffleMask()), 3463 "Invalid shufflevector operands!", &SV); 3464 visitInstruction(SV); 3465 } 3466 3467 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3468 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3469 3470 Assert(isa<PointerType>(TargetTy), 3471 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3472 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3473 3474 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3475 Assert(all_of( 3476 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3477 "GEP indexes must be integers", &GEP); 3478 Type *ElTy = 3479 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3480 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3481 3482 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3483 GEP.getResultElementType() == ElTy, 3484 "GEP is not of right type for indices!", &GEP, ElTy); 3485 3486 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3487 // Additional checks for vector GEPs. 3488 ElementCount GEPWidth = GEPVTy->getElementCount(); 3489 if (GEP.getPointerOperandType()->isVectorTy()) 3490 Assert( 3491 GEPWidth == 3492 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3493 "Vector GEP result width doesn't match operand's", &GEP); 3494 for (Value *Idx : Idxs) { 3495 Type *IndexTy = Idx->getType(); 3496 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3497 ElementCount IndexWidth = IndexVTy->getElementCount(); 3498 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3499 } 3500 Assert(IndexTy->isIntOrIntVectorTy(), 3501 "All GEP indices should be of integer type"); 3502 } 3503 } 3504 3505 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3506 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3507 "GEP address space doesn't match type", &GEP); 3508 } 3509 3510 visitInstruction(GEP); 3511 } 3512 3513 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3514 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3515 } 3516 3517 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3518 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3519 "precondition violation"); 3520 3521 unsigned NumOperands = Range->getNumOperands(); 3522 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3523 unsigned NumRanges = NumOperands / 2; 3524 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3525 3526 ConstantRange LastRange(1, true); // Dummy initial value 3527 for (unsigned i = 0; i < NumRanges; ++i) { 3528 ConstantInt *Low = 3529 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3530 Assert(Low, "The lower limit must be an integer!", Low); 3531 ConstantInt *High = 3532 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3533 Assert(High, "The upper limit must be an integer!", High); 3534 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3535 "Range types must match instruction type!", &I); 3536 3537 APInt HighV = High->getValue(); 3538 APInt LowV = Low->getValue(); 3539 ConstantRange CurRange(LowV, HighV); 3540 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3541 "Range must not be empty!", Range); 3542 if (i != 0) { 3543 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3544 "Intervals are overlapping", Range); 3545 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3546 Range); 3547 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3548 Range); 3549 } 3550 LastRange = ConstantRange(LowV, HighV); 3551 } 3552 if (NumRanges > 2) { 3553 APInt FirstLow = 3554 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3555 APInt FirstHigh = 3556 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3557 ConstantRange FirstRange(FirstLow, FirstHigh); 3558 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3559 "Intervals are overlapping", Range); 3560 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3561 Range); 3562 } 3563 } 3564 3565 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3566 unsigned Size = DL.getTypeSizeInBits(Ty); 3567 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3568 Assert(!(Size & (Size - 1)), 3569 "atomic memory access' operand must have a power-of-two size", Ty, I); 3570 } 3571 3572 void Verifier::visitLoadInst(LoadInst &LI) { 3573 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3574 Assert(PTy, "Load operand must be a pointer.", &LI); 3575 Type *ElTy = LI.getType(); 3576 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3577 "huge alignment values are unsupported", &LI); 3578 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3579 if (LI.isAtomic()) { 3580 Assert(LI.getOrdering() != AtomicOrdering::Release && 3581 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3582 "Load cannot have Release ordering", &LI); 3583 Assert(LI.getAlignment() != 0, 3584 "Atomic load must specify explicit alignment", &LI); 3585 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3586 "atomic load operand must have integer, pointer, or floating point " 3587 "type!", 3588 ElTy, &LI); 3589 checkAtomicMemAccessSize(ElTy, &LI); 3590 } else { 3591 Assert(LI.getSyncScopeID() == SyncScope::System, 3592 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3593 } 3594 3595 visitInstruction(LI); 3596 } 3597 3598 void Verifier::visitStoreInst(StoreInst &SI) { 3599 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3600 Assert(PTy, "Store operand must be a pointer.", &SI); 3601 Type *ElTy = PTy->getElementType(); 3602 Assert(ElTy == SI.getOperand(0)->getType(), 3603 "Stored value type does not match pointer operand type!", &SI, ElTy); 3604 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3605 "huge alignment values are unsupported", &SI); 3606 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3607 if (SI.isAtomic()) { 3608 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3609 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3610 "Store cannot have Acquire ordering", &SI); 3611 Assert(SI.getAlignment() != 0, 3612 "Atomic store must specify explicit alignment", &SI); 3613 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3614 "atomic store operand must have integer, pointer, or floating point " 3615 "type!", 3616 ElTy, &SI); 3617 checkAtomicMemAccessSize(ElTy, &SI); 3618 } else { 3619 Assert(SI.getSyncScopeID() == SyncScope::System, 3620 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3621 } 3622 visitInstruction(SI); 3623 } 3624 3625 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3626 void Verifier::verifySwiftErrorCall(CallBase &Call, 3627 const Value *SwiftErrorVal) { 3628 unsigned Idx = 0; 3629 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3630 if (*I == SwiftErrorVal) { 3631 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3632 "swifterror value when used in a callsite should be marked " 3633 "with swifterror attribute", 3634 SwiftErrorVal, Call); 3635 } 3636 } 3637 } 3638 3639 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3640 // Check that swifterror value is only used by loads, stores, or as 3641 // a swifterror argument. 3642 for (const User *U : SwiftErrorVal->users()) { 3643 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3644 isa<InvokeInst>(U), 3645 "swifterror value can only be loaded and stored from, or " 3646 "as a swifterror argument!", 3647 SwiftErrorVal, U); 3648 // If it is used by a store, check it is the second operand. 3649 if (auto StoreI = dyn_cast<StoreInst>(U)) 3650 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3651 "swifterror value should be the second operand when used " 3652 "by stores", SwiftErrorVal, U); 3653 if (auto *Call = dyn_cast<CallBase>(U)) 3654 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3655 } 3656 } 3657 3658 void Verifier::visitAllocaInst(AllocaInst &AI) { 3659 SmallPtrSet<Type*, 4> Visited; 3660 PointerType *PTy = AI.getType(); 3661 // TODO: Relax this restriction? 3662 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3663 "Allocation instruction pointer not in the stack address space!", 3664 &AI); 3665 Assert(AI.getAllocatedType()->isSized(&Visited), 3666 "Cannot allocate unsized type", &AI); 3667 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3668 "Alloca array size must have integer type", &AI); 3669 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3670 "huge alignment values are unsupported", &AI); 3671 3672 if (AI.isSwiftError()) { 3673 verifySwiftErrorValue(&AI); 3674 } 3675 3676 visitInstruction(AI); 3677 } 3678 3679 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3680 3681 // FIXME: more conditions??? 3682 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3683 "cmpxchg instructions must be atomic.", &CXI); 3684 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3685 "cmpxchg instructions must be atomic.", &CXI); 3686 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3687 "cmpxchg instructions cannot be unordered.", &CXI); 3688 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3689 "cmpxchg instructions cannot be unordered.", &CXI); 3690 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3691 "cmpxchg instructions failure argument shall be no stronger than the " 3692 "success argument", 3693 &CXI); 3694 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3695 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3696 "cmpxchg failure ordering cannot include release semantics", &CXI); 3697 3698 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3699 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3700 Type *ElTy = PTy->getElementType(); 3701 Assert(ElTy->isIntOrPtrTy(), 3702 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3703 checkAtomicMemAccessSize(ElTy, &CXI); 3704 Assert(ElTy == CXI.getOperand(1)->getType(), 3705 "Expected value type does not match pointer operand type!", &CXI, 3706 ElTy); 3707 Assert(ElTy == CXI.getOperand(2)->getType(), 3708 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3709 visitInstruction(CXI); 3710 } 3711 3712 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3713 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3714 "atomicrmw instructions must be atomic.", &RMWI); 3715 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3716 "atomicrmw instructions cannot be unordered.", &RMWI); 3717 auto Op = RMWI.getOperation(); 3718 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3719 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3720 Type *ElTy = PTy->getElementType(); 3721 if (Op == AtomicRMWInst::Xchg) { 3722 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3723 AtomicRMWInst::getOperationName(Op) + 3724 " operand must have integer or floating point type!", 3725 &RMWI, ElTy); 3726 } else if (AtomicRMWInst::isFPOperation(Op)) { 3727 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3728 AtomicRMWInst::getOperationName(Op) + 3729 " operand must have floating point type!", 3730 &RMWI, ElTy); 3731 } else { 3732 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3733 AtomicRMWInst::getOperationName(Op) + 3734 " operand must have integer type!", 3735 &RMWI, ElTy); 3736 } 3737 checkAtomicMemAccessSize(ElTy, &RMWI); 3738 Assert(ElTy == RMWI.getOperand(1)->getType(), 3739 "Argument value type does not match pointer operand type!", &RMWI, 3740 ElTy); 3741 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3742 "Invalid binary operation!", &RMWI); 3743 visitInstruction(RMWI); 3744 } 3745 3746 void Verifier::visitFenceInst(FenceInst &FI) { 3747 const AtomicOrdering Ordering = FI.getOrdering(); 3748 Assert(Ordering == AtomicOrdering::Acquire || 3749 Ordering == AtomicOrdering::Release || 3750 Ordering == AtomicOrdering::AcquireRelease || 3751 Ordering == AtomicOrdering::SequentiallyConsistent, 3752 "fence instructions may only have acquire, release, acq_rel, or " 3753 "seq_cst ordering.", 3754 &FI); 3755 visitInstruction(FI); 3756 } 3757 3758 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3759 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3760 EVI.getIndices()) == EVI.getType(), 3761 "Invalid ExtractValueInst operands!", &EVI); 3762 3763 visitInstruction(EVI); 3764 } 3765 3766 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3767 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3768 IVI.getIndices()) == 3769 IVI.getOperand(1)->getType(), 3770 "Invalid InsertValueInst operands!", &IVI); 3771 3772 visitInstruction(IVI); 3773 } 3774 3775 static Value *getParentPad(Value *EHPad) { 3776 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3777 return FPI->getParentPad(); 3778 3779 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3780 } 3781 3782 void Verifier::visitEHPadPredecessors(Instruction &I) { 3783 assert(I.isEHPad()); 3784 3785 BasicBlock *BB = I.getParent(); 3786 Function *F = BB->getParent(); 3787 3788 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3789 3790 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3791 // The landingpad instruction defines its parent as a landing pad block. The 3792 // landing pad block may be branched to only by the unwind edge of an 3793 // invoke. 3794 for (BasicBlock *PredBB : predecessors(BB)) { 3795 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3796 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3797 "Block containing LandingPadInst must be jumped to " 3798 "only by the unwind edge of an invoke.", 3799 LPI); 3800 } 3801 return; 3802 } 3803 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3804 if (!pred_empty(BB)) 3805 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3806 "Block containg CatchPadInst must be jumped to " 3807 "only by its catchswitch.", 3808 CPI); 3809 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3810 "Catchswitch cannot unwind to one of its catchpads", 3811 CPI->getCatchSwitch(), CPI); 3812 return; 3813 } 3814 3815 // Verify that each pred has a legal terminator with a legal to/from EH 3816 // pad relationship. 3817 Instruction *ToPad = &I; 3818 Value *ToPadParent = getParentPad(ToPad); 3819 for (BasicBlock *PredBB : predecessors(BB)) { 3820 Instruction *TI = PredBB->getTerminator(); 3821 Value *FromPad; 3822 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3823 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3824 "EH pad must be jumped to via an unwind edge", ToPad, II); 3825 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3826 FromPad = Bundle->Inputs[0]; 3827 else 3828 FromPad = ConstantTokenNone::get(II->getContext()); 3829 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3830 FromPad = CRI->getOperand(0); 3831 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3832 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3833 FromPad = CSI; 3834 } else { 3835 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3836 } 3837 3838 // The edge may exit from zero or more nested pads. 3839 SmallSet<Value *, 8> Seen; 3840 for (;; FromPad = getParentPad(FromPad)) { 3841 Assert(FromPad != ToPad, 3842 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3843 if (FromPad == ToPadParent) { 3844 // This is a legal unwind edge. 3845 break; 3846 } 3847 Assert(!isa<ConstantTokenNone>(FromPad), 3848 "A single unwind edge may only enter one EH pad", TI); 3849 Assert(Seen.insert(FromPad).second, 3850 "EH pad jumps through a cycle of pads", FromPad); 3851 } 3852 } 3853 } 3854 3855 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3856 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3857 // isn't a cleanup. 3858 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3859 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3860 3861 visitEHPadPredecessors(LPI); 3862 3863 if (!LandingPadResultTy) 3864 LandingPadResultTy = LPI.getType(); 3865 else 3866 Assert(LandingPadResultTy == LPI.getType(), 3867 "The landingpad instruction should have a consistent result type " 3868 "inside a function.", 3869 &LPI); 3870 3871 Function *F = LPI.getParent()->getParent(); 3872 Assert(F->hasPersonalityFn(), 3873 "LandingPadInst needs to be in a function with a personality.", &LPI); 3874 3875 // The landingpad instruction must be the first non-PHI instruction in the 3876 // block. 3877 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3878 "LandingPadInst not the first non-PHI instruction in the block.", 3879 &LPI); 3880 3881 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3882 Constant *Clause = LPI.getClause(i); 3883 if (LPI.isCatch(i)) { 3884 Assert(isa<PointerType>(Clause->getType()), 3885 "Catch operand does not have pointer type!", &LPI); 3886 } else { 3887 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3888 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3889 "Filter operand is not an array of constants!", &LPI); 3890 } 3891 } 3892 3893 visitInstruction(LPI); 3894 } 3895 3896 void Verifier::visitResumeInst(ResumeInst &RI) { 3897 Assert(RI.getFunction()->hasPersonalityFn(), 3898 "ResumeInst needs to be in a function with a personality.", &RI); 3899 3900 if (!LandingPadResultTy) 3901 LandingPadResultTy = RI.getValue()->getType(); 3902 else 3903 Assert(LandingPadResultTy == RI.getValue()->getType(), 3904 "The resume instruction should have a consistent result type " 3905 "inside a function.", 3906 &RI); 3907 3908 visitTerminator(RI); 3909 } 3910 3911 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3912 BasicBlock *BB = CPI.getParent(); 3913 3914 Function *F = BB->getParent(); 3915 Assert(F->hasPersonalityFn(), 3916 "CatchPadInst needs to be in a function with a personality.", &CPI); 3917 3918 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3919 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3920 CPI.getParentPad()); 3921 3922 // The catchpad instruction must be the first non-PHI instruction in the 3923 // block. 3924 Assert(BB->getFirstNonPHI() == &CPI, 3925 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3926 3927 visitEHPadPredecessors(CPI); 3928 visitFuncletPadInst(CPI); 3929 } 3930 3931 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3932 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3933 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3934 CatchReturn.getOperand(0)); 3935 3936 visitTerminator(CatchReturn); 3937 } 3938 3939 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3940 BasicBlock *BB = CPI.getParent(); 3941 3942 Function *F = BB->getParent(); 3943 Assert(F->hasPersonalityFn(), 3944 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3945 3946 // The cleanuppad instruction must be the first non-PHI instruction in the 3947 // block. 3948 Assert(BB->getFirstNonPHI() == &CPI, 3949 "CleanupPadInst not the first non-PHI instruction in the block.", 3950 &CPI); 3951 3952 auto *ParentPad = CPI.getParentPad(); 3953 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3954 "CleanupPadInst has an invalid parent.", &CPI); 3955 3956 visitEHPadPredecessors(CPI); 3957 visitFuncletPadInst(CPI); 3958 } 3959 3960 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3961 User *FirstUser = nullptr; 3962 Value *FirstUnwindPad = nullptr; 3963 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3964 SmallSet<FuncletPadInst *, 8> Seen; 3965 3966 while (!Worklist.empty()) { 3967 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3968 Assert(Seen.insert(CurrentPad).second, 3969 "FuncletPadInst must not be nested within itself", CurrentPad); 3970 Value *UnresolvedAncestorPad = nullptr; 3971 for (User *U : CurrentPad->users()) { 3972 BasicBlock *UnwindDest; 3973 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3974 UnwindDest = CRI->getUnwindDest(); 3975 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3976 // We allow catchswitch unwind to caller to nest 3977 // within an outer pad that unwinds somewhere else, 3978 // because catchswitch doesn't have a nounwind variant. 3979 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3980 if (CSI->unwindsToCaller()) 3981 continue; 3982 UnwindDest = CSI->getUnwindDest(); 3983 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3984 UnwindDest = II->getUnwindDest(); 3985 } else if (isa<CallInst>(U)) { 3986 // Calls which don't unwind may be found inside funclet 3987 // pads that unwind somewhere else. We don't *require* 3988 // such calls to be annotated nounwind. 3989 continue; 3990 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3991 // The unwind dest for a cleanup can only be found by 3992 // recursive search. Add it to the worklist, and we'll 3993 // search for its first use that determines where it unwinds. 3994 Worklist.push_back(CPI); 3995 continue; 3996 } else { 3997 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3998 continue; 3999 } 4000 4001 Value *UnwindPad; 4002 bool ExitsFPI; 4003 if (UnwindDest) { 4004 UnwindPad = UnwindDest->getFirstNonPHI(); 4005 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4006 continue; 4007 Value *UnwindParent = getParentPad(UnwindPad); 4008 // Ignore unwind edges that don't exit CurrentPad. 4009 if (UnwindParent == CurrentPad) 4010 continue; 4011 // Determine whether the original funclet pad is exited, 4012 // and if we are scanning nested pads determine how many 4013 // of them are exited so we can stop searching their 4014 // children. 4015 Value *ExitedPad = CurrentPad; 4016 ExitsFPI = false; 4017 do { 4018 if (ExitedPad == &FPI) { 4019 ExitsFPI = true; 4020 // Now we can resolve any ancestors of CurrentPad up to 4021 // FPI, but not including FPI since we need to make sure 4022 // to check all direct users of FPI for consistency. 4023 UnresolvedAncestorPad = &FPI; 4024 break; 4025 } 4026 Value *ExitedParent = getParentPad(ExitedPad); 4027 if (ExitedParent == UnwindParent) { 4028 // ExitedPad is the ancestor-most pad which this unwind 4029 // edge exits, so we can resolve up to it, meaning that 4030 // ExitedParent is the first ancestor still unresolved. 4031 UnresolvedAncestorPad = ExitedParent; 4032 break; 4033 } 4034 ExitedPad = ExitedParent; 4035 } while (!isa<ConstantTokenNone>(ExitedPad)); 4036 } else { 4037 // Unwinding to caller exits all pads. 4038 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4039 ExitsFPI = true; 4040 UnresolvedAncestorPad = &FPI; 4041 } 4042 4043 if (ExitsFPI) { 4044 // This unwind edge exits FPI. Make sure it agrees with other 4045 // such edges. 4046 if (FirstUser) { 4047 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4048 "pad must have the same unwind " 4049 "dest", 4050 &FPI, U, FirstUser); 4051 } else { 4052 FirstUser = U; 4053 FirstUnwindPad = UnwindPad; 4054 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4055 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4056 getParentPad(UnwindPad) == getParentPad(&FPI)) 4057 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4058 } 4059 } 4060 // Make sure we visit all uses of FPI, but for nested pads stop as 4061 // soon as we know where they unwind to. 4062 if (CurrentPad != &FPI) 4063 break; 4064 } 4065 if (UnresolvedAncestorPad) { 4066 if (CurrentPad == UnresolvedAncestorPad) { 4067 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4068 // we've found an unwind edge that exits it, because we need to verify 4069 // all direct uses of FPI. 4070 assert(CurrentPad == &FPI); 4071 continue; 4072 } 4073 // Pop off the worklist any nested pads that we've found an unwind 4074 // destination for. The pads on the worklist are the uncles, 4075 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4076 // for all ancestors of CurrentPad up to but not including 4077 // UnresolvedAncestorPad. 4078 Value *ResolvedPad = CurrentPad; 4079 while (!Worklist.empty()) { 4080 Value *UnclePad = Worklist.back(); 4081 Value *AncestorPad = getParentPad(UnclePad); 4082 // Walk ResolvedPad up the ancestor list until we either find the 4083 // uncle's parent or the last resolved ancestor. 4084 while (ResolvedPad != AncestorPad) { 4085 Value *ResolvedParent = getParentPad(ResolvedPad); 4086 if (ResolvedParent == UnresolvedAncestorPad) { 4087 break; 4088 } 4089 ResolvedPad = ResolvedParent; 4090 } 4091 // If the resolved ancestor search didn't find the uncle's parent, 4092 // then the uncle is not yet resolved. 4093 if (ResolvedPad != AncestorPad) 4094 break; 4095 // This uncle is resolved, so pop it from the worklist. 4096 Worklist.pop_back(); 4097 } 4098 } 4099 } 4100 4101 if (FirstUnwindPad) { 4102 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4103 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4104 Value *SwitchUnwindPad; 4105 if (SwitchUnwindDest) 4106 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4107 else 4108 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4109 Assert(SwitchUnwindPad == FirstUnwindPad, 4110 "Unwind edges out of a catch must have the same unwind dest as " 4111 "the parent catchswitch", 4112 &FPI, FirstUser, CatchSwitch); 4113 } 4114 } 4115 4116 visitInstruction(FPI); 4117 } 4118 4119 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4120 BasicBlock *BB = CatchSwitch.getParent(); 4121 4122 Function *F = BB->getParent(); 4123 Assert(F->hasPersonalityFn(), 4124 "CatchSwitchInst needs to be in a function with a personality.", 4125 &CatchSwitch); 4126 4127 // The catchswitch instruction must be the first non-PHI instruction in the 4128 // block. 4129 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4130 "CatchSwitchInst not the first non-PHI instruction in the block.", 4131 &CatchSwitch); 4132 4133 auto *ParentPad = CatchSwitch.getParentPad(); 4134 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4135 "CatchSwitchInst has an invalid parent.", ParentPad); 4136 4137 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4138 Instruction *I = UnwindDest->getFirstNonPHI(); 4139 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4140 "CatchSwitchInst must unwind to an EH block which is not a " 4141 "landingpad.", 4142 &CatchSwitch); 4143 4144 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4145 if (getParentPad(I) == ParentPad) 4146 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4147 } 4148 4149 Assert(CatchSwitch.getNumHandlers() != 0, 4150 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4151 4152 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4153 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4154 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4155 } 4156 4157 visitEHPadPredecessors(CatchSwitch); 4158 visitTerminator(CatchSwitch); 4159 } 4160 4161 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4162 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4163 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4164 CRI.getOperand(0)); 4165 4166 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4167 Instruction *I = UnwindDest->getFirstNonPHI(); 4168 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4169 "CleanupReturnInst must unwind to an EH block which is not a " 4170 "landingpad.", 4171 &CRI); 4172 } 4173 4174 visitTerminator(CRI); 4175 } 4176 4177 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4178 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4179 // If the we have an invalid invoke, don't try to compute the dominance. 4180 // We already reject it in the invoke specific checks and the dominance 4181 // computation doesn't handle multiple edges. 4182 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4183 if (II->getNormalDest() == II->getUnwindDest()) 4184 return; 4185 } 4186 4187 // Quick check whether the def has already been encountered in the same block. 4188 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4189 // uses are defined to happen on the incoming edge, not at the instruction. 4190 // 4191 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4192 // wrapping an SSA value, assert that we've already encountered it. See 4193 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4194 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4195 return; 4196 4197 const Use &U = I.getOperandUse(i); 4198 Assert(DT.dominates(Op, U), 4199 "Instruction does not dominate all uses!", Op, &I); 4200 } 4201 4202 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4203 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4204 "apply only to pointer types", &I); 4205 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4206 "dereferenceable, dereferenceable_or_null apply only to load" 4207 " and inttoptr instructions, use attributes for calls or invokes", &I); 4208 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4209 "take one operand!", &I); 4210 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4211 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4212 "dereferenceable_or_null metadata value must be an i64!", &I); 4213 } 4214 4215 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4216 Assert(MD->getNumOperands() >= 2, 4217 "!prof annotations should have no less than 2 operands", MD); 4218 4219 // Check first operand. 4220 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4221 Assert(isa<MDString>(MD->getOperand(0)), 4222 "expected string with name of the !prof annotation", MD); 4223 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4224 StringRef ProfName = MDS->getString(); 4225 4226 // Check consistency of !prof branch_weights metadata. 4227 if (ProfName.equals("branch_weights")) { 4228 if (isa<InvokeInst>(&I)) { 4229 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4230 "Wrong number of InvokeInst branch_weights operands", MD); 4231 } else { 4232 unsigned ExpectedNumOperands = 0; 4233 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4234 ExpectedNumOperands = BI->getNumSuccessors(); 4235 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4236 ExpectedNumOperands = SI->getNumSuccessors(); 4237 else if (isa<CallInst>(&I)) 4238 ExpectedNumOperands = 1; 4239 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4240 ExpectedNumOperands = IBI->getNumDestinations(); 4241 else if (isa<SelectInst>(&I)) 4242 ExpectedNumOperands = 2; 4243 else 4244 CheckFailed("!prof branch_weights are not allowed for this instruction", 4245 MD); 4246 4247 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4248 "Wrong number of operands", MD); 4249 } 4250 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4251 auto &MDO = MD->getOperand(i); 4252 Assert(MDO, "second operand should not be null", MD); 4253 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4254 "!prof brunch_weights operand is not a const int"); 4255 } 4256 } 4257 } 4258 4259 /// verifyInstruction - Verify that an instruction is well formed. 4260 /// 4261 void Verifier::visitInstruction(Instruction &I) { 4262 BasicBlock *BB = I.getParent(); 4263 Assert(BB, "Instruction not embedded in basic block!", &I); 4264 4265 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4266 for (User *U : I.users()) { 4267 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4268 "Only PHI nodes may reference their own value!", &I); 4269 } 4270 } 4271 4272 // Check that void typed values don't have names 4273 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4274 "Instruction has a name, but provides a void value!", &I); 4275 4276 // Check that the return value of the instruction is either void or a legal 4277 // value type. 4278 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4279 "Instruction returns a non-scalar type!", &I); 4280 4281 // Check that the instruction doesn't produce metadata. Calls are already 4282 // checked against the callee type. 4283 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4284 "Invalid use of metadata!", &I); 4285 4286 // Check that all uses of the instruction, if they are instructions 4287 // themselves, actually have parent basic blocks. If the use is not an 4288 // instruction, it is an error! 4289 for (Use &U : I.uses()) { 4290 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4291 Assert(Used->getParent() != nullptr, 4292 "Instruction referencing" 4293 " instruction not embedded in a basic block!", 4294 &I, Used); 4295 else { 4296 CheckFailed("Use of instruction is not an instruction!", U); 4297 return; 4298 } 4299 } 4300 4301 // Get a pointer to the call base of the instruction if it is some form of 4302 // call. 4303 const CallBase *CBI = dyn_cast<CallBase>(&I); 4304 4305 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4306 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4307 4308 // Check to make sure that only first-class-values are operands to 4309 // instructions. 4310 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4311 Assert(false, "Instruction operands must be first-class values!", &I); 4312 } 4313 4314 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4315 // Check to make sure that the "address of" an intrinsic function is never 4316 // taken. 4317 Assert(!F->isIntrinsic() || 4318 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4319 "Cannot take the address of an intrinsic!", &I); 4320 Assert( 4321 !F->isIntrinsic() || isa<CallInst>(I) || 4322 F->getIntrinsicID() == Intrinsic::donothing || 4323 F->getIntrinsicID() == Intrinsic::coro_resume || 4324 F->getIntrinsicID() == Intrinsic::coro_destroy || 4325 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4326 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4327 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4328 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4329 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4330 "statepoint, coro_resume or coro_destroy", 4331 &I); 4332 Assert(F->getParent() == &M, "Referencing function in another module!", 4333 &I, &M, F, F->getParent()); 4334 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4335 Assert(OpBB->getParent() == BB->getParent(), 4336 "Referring to a basic block in another function!", &I); 4337 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4338 Assert(OpArg->getParent() == BB->getParent(), 4339 "Referring to an argument in another function!", &I); 4340 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4341 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4342 &M, GV, GV->getParent()); 4343 } else if (isa<Instruction>(I.getOperand(i))) { 4344 verifyDominatesUse(I, i); 4345 } else if (isa<InlineAsm>(I.getOperand(i))) { 4346 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4347 "Cannot take the address of an inline asm!", &I); 4348 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4349 if (CE->getType()->isPtrOrPtrVectorTy() || 4350 !DL.getNonIntegralAddressSpaces().empty()) { 4351 // If we have a ConstantExpr pointer, we need to see if it came from an 4352 // illegal bitcast. If the datalayout string specifies non-integral 4353 // address spaces then we also need to check for illegal ptrtoint and 4354 // inttoptr expressions. 4355 visitConstantExprsRecursively(CE); 4356 } 4357 } 4358 } 4359 4360 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4361 Assert(I.getType()->isFPOrFPVectorTy(), 4362 "fpmath requires a floating point result!", &I); 4363 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4364 if (ConstantFP *CFP0 = 4365 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4366 const APFloat &Accuracy = CFP0->getValueAPF(); 4367 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4368 "fpmath accuracy must have float type", &I); 4369 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4370 "fpmath accuracy not a positive number!", &I); 4371 } else { 4372 Assert(false, "invalid fpmath accuracy!", &I); 4373 } 4374 } 4375 4376 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4377 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4378 "Ranges are only for loads, calls and invokes!", &I); 4379 visitRangeMetadata(I, Range, I.getType()); 4380 } 4381 4382 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4383 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4384 &I); 4385 Assert(isa<LoadInst>(I), 4386 "nonnull applies only to load instructions, use attributes" 4387 " for calls or invokes", 4388 &I); 4389 } 4390 4391 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4392 visitDereferenceableMetadata(I, MD); 4393 4394 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4395 visitDereferenceableMetadata(I, MD); 4396 4397 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4398 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4399 4400 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4401 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4402 &I); 4403 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4404 "use attributes for calls or invokes", &I); 4405 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4406 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4407 Assert(CI && CI->getType()->isIntegerTy(64), 4408 "align metadata value must be an i64!", &I); 4409 uint64_t Align = CI->getZExtValue(); 4410 Assert(isPowerOf2_64(Align), 4411 "align metadata value must be a power of 2!", &I); 4412 Assert(Align <= Value::MaximumAlignment, 4413 "alignment is larger that implementation defined limit", &I); 4414 } 4415 4416 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4417 visitProfMetadata(I, MD); 4418 4419 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4420 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4421 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4422 } 4423 4424 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4425 verifyFragmentExpression(*DII); 4426 verifyNotEntryValue(*DII); 4427 } 4428 4429 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4430 I.getAllMetadata(MDs); 4431 for (auto Attachment : MDs) { 4432 unsigned Kind = Attachment.first; 4433 auto AllowLocs = 4434 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4435 ? AreDebugLocsAllowed::Yes 4436 : AreDebugLocsAllowed::No; 4437 visitMDNode(*Attachment.second, AllowLocs); 4438 } 4439 4440 InstsInThisBlock.insert(&I); 4441 } 4442 4443 /// Allow intrinsics to be verified in different ways. 4444 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4445 Function *IF = Call.getCalledFunction(); 4446 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4447 IF); 4448 4449 // Verify that the intrinsic prototype lines up with what the .td files 4450 // describe. 4451 FunctionType *IFTy = IF->getFunctionType(); 4452 bool IsVarArg = IFTy->isVarArg(); 4453 4454 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4455 getIntrinsicInfoTableEntries(ID, Table); 4456 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4457 4458 // Walk the descriptors to extract overloaded types. 4459 SmallVector<Type *, 4> ArgTys; 4460 Intrinsic::MatchIntrinsicTypesResult Res = 4461 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4462 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4463 "Intrinsic has incorrect return type!", IF); 4464 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4465 "Intrinsic has incorrect argument type!", IF); 4466 4467 // Verify if the intrinsic call matches the vararg property. 4468 if (IsVarArg) 4469 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4470 "Intrinsic was not defined with variable arguments!", IF); 4471 else 4472 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4473 "Callsite was not defined with variable arguments!", IF); 4474 4475 // All descriptors should be absorbed by now. 4476 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4477 4478 // Now that we have the intrinsic ID and the actual argument types (and we 4479 // know they are legal for the intrinsic!) get the intrinsic name through the 4480 // usual means. This allows us to verify the mangling of argument types into 4481 // the name. 4482 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4483 Assert(ExpectedName == IF->getName(), 4484 "Intrinsic name not mangled correctly for type arguments! " 4485 "Should be: " + 4486 ExpectedName, 4487 IF); 4488 4489 // If the intrinsic takes MDNode arguments, verify that they are either global 4490 // or are local to *this* function. 4491 for (Value *V : Call.args()) 4492 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4493 visitMetadataAsValue(*MD, Call.getCaller()); 4494 4495 switch (ID) { 4496 default: 4497 break; 4498 case Intrinsic::assume: { 4499 for (auto &Elem : Call.bundle_op_infos()) { 4500 Assert(Elem.Tag->getKey() == "ignore" || 4501 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4502 "tags must be valid attribute names"); 4503 Attribute::AttrKind Kind = 4504 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4505 unsigned ArgCount = Elem.End - Elem.Begin; 4506 if (Kind == Attribute::Alignment) { 4507 Assert(ArgCount <= 3 && ArgCount >= 2, 4508 "alignment assumptions should have 2 or 3 arguments"); 4509 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4510 "first argument should be a pointer"); 4511 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4512 "second argument should be an integer"); 4513 if (ArgCount == 3) 4514 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4515 "third argument should be an integer if present"); 4516 return; 4517 } 4518 Assert(ArgCount <= 2, "to many arguments"); 4519 if (Kind == Attribute::None) 4520 break; 4521 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4522 Assert(ArgCount == 2, "this attribute should have 2 arguments"); 4523 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4524 "the second argument should be a constant integral value"); 4525 } else if (isFuncOnlyAttr(Kind)) { 4526 Assert((ArgCount) == 0, "this attribute has no argument"); 4527 } else if (!isFuncOrArgAttr(Kind)) { 4528 Assert((ArgCount) == 1, "this attribute should have one argument"); 4529 } 4530 } 4531 break; 4532 } 4533 case Intrinsic::coro_id: { 4534 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4535 if (isa<ConstantPointerNull>(InfoArg)) 4536 break; 4537 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4538 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4539 "info argument of llvm.coro.begin must refer to an initialized " 4540 "constant"); 4541 Constant *Init = GV->getInitializer(); 4542 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4543 "info argument of llvm.coro.begin must refer to either a struct or " 4544 "an array"); 4545 break; 4546 } 4547 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4548 case Intrinsic::INTRINSIC: 4549 #include "llvm/IR/ConstrainedOps.def" 4550 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4551 break; 4552 case Intrinsic::dbg_declare: // llvm.dbg.declare 4553 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4554 "invalid llvm.dbg.declare intrinsic call 1", Call); 4555 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4556 break; 4557 case Intrinsic::dbg_addr: // llvm.dbg.addr 4558 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4559 break; 4560 case Intrinsic::dbg_value: // llvm.dbg.value 4561 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4562 break; 4563 case Intrinsic::dbg_label: // llvm.dbg.label 4564 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4565 break; 4566 case Intrinsic::memcpy: 4567 case Intrinsic::memcpy_inline: 4568 case Intrinsic::memmove: 4569 case Intrinsic::memset: { 4570 const auto *MI = cast<MemIntrinsic>(&Call); 4571 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4572 return Alignment == 0 || isPowerOf2_32(Alignment); 4573 }; 4574 Assert(IsValidAlignment(MI->getDestAlignment()), 4575 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4576 Call); 4577 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4578 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4579 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4580 Call); 4581 } 4582 4583 break; 4584 } 4585 case Intrinsic::memcpy_element_unordered_atomic: 4586 case Intrinsic::memmove_element_unordered_atomic: 4587 case Intrinsic::memset_element_unordered_atomic: { 4588 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4589 4590 ConstantInt *ElementSizeCI = 4591 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4592 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4593 Assert(ElementSizeVal.isPowerOf2(), 4594 "element size of the element-wise atomic memory intrinsic " 4595 "must be a power of 2", 4596 Call); 4597 4598 auto IsValidAlignment = [&](uint64_t Alignment) { 4599 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4600 }; 4601 uint64_t DstAlignment = AMI->getDestAlignment(); 4602 Assert(IsValidAlignment(DstAlignment), 4603 "incorrect alignment of the destination argument", Call); 4604 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4605 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4606 Assert(IsValidAlignment(SrcAlignment), 4607 "incorrect alignment of the source argument", Call); 4608 } 4609 break; 4610 } 4611 case Intrinsic::call_preallocated_setup: { 4612 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4613 Assert(NumArgs != nullptr, 4614 "llvm.call.preallocated.setup argument must be a constant"); 4615 bool FoundCall = false; 4616 for (User *U : Call.users()) { 4617 auto *UseCall = dyn_cast<CallBase>(U); 4618 Assert(UseCall != nullptr, 4619 "Uses of llvm.call.preallocated.setup must be calls"); 4620 const Function *Fn = UseCall->getCalledFunction(); 4621 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4622 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4623 Assert(AllocArgIndex != nullptr, 4624 "llvm.call.preallocated.alloc arg index must be a constant"); 4625 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4626 Assert(AllocArgIndexInt.sge(0) && 4627 AllocArgIndexInt.slt(NumArgs->getValue()), 4628 "llvm.call.preallocated.alloc arg index must be between 0 and " 4629 "corresponding " 4630 "llvm.call.preallocated.setup's argument count"); 4631 } else if (Fn && Fn->getIntrinsicID() == 4632 Intrinsic::call_preallocated_teardown) { 4633 // nothing to do 4634 } else { 4635 Assert(!FoundCall, "Can have at most one call corresponding to a " 4636 "llvm.call.preallocated.setup"); 4637 FoundCall = true; 4638 size_t NumPreallocatedArgs = 0; 4639 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4640 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4641 ++NumPreallocatedArgs; 4642 } 4643 } 4644 Assert(NumPreallocatedArgs != 0, 4645 "cannot use preallocated intrinsics on a call without " 4646 "preallocated arguments"); 4647 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4648 "llvm.call.preallocated.setup arg size must be equal to number " 4649 "of preallocated arguments " 4650 "at call site", 4651 Call, *UseCall); 4652 // getOperandBundle() cannot be called if more than one of the operand 4653 // bundle exists. There is already a check elsewhere for this, so skip 4654 // here if we see more than one. 4655 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4656 1) { 4657 return; 4658 } 4659 auto PreallocatedBundle = 4660 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4661 Assert(PreallocatedBundle, 4662 "Use of llvm.call.preallocated.setup outside intrinsics " 4663 "must be in \"preallocated\" operand bundle"); 4664 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4665 "preallocated bundle must have token from corresponding " 4666 "llvm.call.preallocated.setup"); 4667 } 4668 } 4669 break; 4670 } 4671 case Intrinsic::call_preallocated_arg: { 4672 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4673 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4674 Intrinsic::call_preallocated_setup, 4675 "llvm.call.preallocated.arg token argument must be a " 4676 "llvm.call.preallocated.setup"); 4677 Assert(Call.hasFnAttr(Attribute::Preallocated), 4678 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4679 "call site attribute"); 4680 break; 4681 } 4682 case Intrinsic::call_preallocated_teardown: { 4683 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4684 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4685 Intrinsic::call_preallocated_setup, 4686 "llvm.call.preallocated.teardown token argument must be a " 4687 "llvm.call.preallocated.setup"); 4688 break; 4689 } 4690 case Intrinsic::gcroot: 4691 case Intrinsic::gcwrite: 4692 case Intrinsic::gcread: 4693 if (ID == Intrinsic::gcroot) { 4694 AllocaInst *AI = 4695 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4696 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4697 Assert(isa<Constant>(Call.getArgOperand(1)), 4698 "llvm.gcroot parameter #2 must be a constant.", Call); 4699 if (!AI->getAllocatedType()->isPointerTy()) { 4700 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4701 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4702 "or argument #2 must be a non-null constant.", 4703 Call); 4704 } 4705 } 4706 4707 Assert(Call.getParent()->getParent()->hasGC(), 4708 "Enclosing function does not use GC.", Call); 4709 break; 4710 case Intrinsic::init_trampoline: 4711 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4712 "llvm.init_trampoline parameter #2 must resolve to a function.", 4713 Call); 4714 break; 4715 case Intrinsic::prefetch: 4716 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4717 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4718 "invalid arguments to llvm.prefetch", Call); 4719 break; 4720 case Intrinsic::stackprotector: 4721 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4722 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4723 break; 4724 case Intrinsic::localescape: { 4725 BasicBlock *BB = Call.getParent(); 4726 Assert(BB == &BB->getParent()->front(), 4727 "llvm.localescape used outside of entry block", Call); 4728 Assert(!SawFrameEscape, 4729 "multiple calls to llvm.localescape in one function", Call); 4730 for (Value *Arg : Call.args()) { 4731 if (isa<ConstantPointerNull>(Arg)) 4732 continue; // Null values are allowed as placeholders. 4733 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4734 Assert(AI && AI->isStaticAlloca(), 4735 "llvm.localescape only accepts static allocas", Call); 4736 } 4737 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4738 SawFrameEscape = true; 4739 break; 4740 } 4741 case Intrinsic::localrecover: { 4742 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4743 Function *Fn = dyn_cast<Function>(FnArg); 4744 Assert(Fn && !Fn->isDeclaration(), 4745 "llvm.localrecover first " 4746 "argument must be function defined in this module", 4747 Call); 4748 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4749 auto &Entry = FrameEscapeInfo[Fn]; 4750 Entry.second = unsigned( 4751 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4752 break; 4753 } 4754 4755 case Intrinsic::experimental_gc_statepoint: 4756 if (auto *CI = dyn_cast<CallInst>(&Call)) 4757 Assert(!CI->isInlineAsm(), 4758 "gc.statepoint support for inline assembly unimplemented", CI); 4759 Assert(Call.getParent()->getParent()->hasGC(), 4760 "Enclosing function does not use GC.", Call); 4761 4762 verifyStatepoint(Call); 4763 break; 4764 case Intrinsic::experimental_gc_result: { 4765 Assert(Call.getParent()->getParent()->hasGC(), 4766 "Enclosing function does not use GC.", Call); 4767 // Are we tied to a statepoint properly? 4768 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4769 const Function *StatepointFn = 4770 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4771 Assert(StatepointFn && StatepointFn->isDeclaration() && 4772 StatepointFn->getIntrinsicID() == 4773 Intrinsic::experimental_gc_statepoint, 4774 "gc.result operand #1 must be from a statepoint", Call, 4775 Call.getArgOperand(0)); 4776 4777 // Assert that result type matches wrapped callee. 4778 const Value *Target = StatepointCall->getArgOperand(2); 4779 auto *PT = cast<PointerType>(Target->getType()); 4780 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4781 Assert(Call.getType() == TargetFuncType->getReturnType(), 4782 "gc.result result type does not match wrapped callee", Call); 4783 break; 4784 } 4785 case Intrinsic::experimental_gc_relocate: { 4786 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4787 4788 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4789 "gc.relocate must return a pointer or a vector of pointers", Call); 4790 4791 // Check that this relocate is correctly tied to the statepoint 4792 4793 // This is case for relocate on the unwinding path of an invoke statepoint 4794 if (LandingPadInst *LandingPad = 4795 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4796 4797 const BasicBlock *InvokeBB = 4798 LandingPad->getParent()->getUniquePredecessor(); 4799 4800 // Landingpad relocates should have only one predecessor with invoke 4801 // statepoint terminator 4802 Assert(InvokeBB, "safepoints should have unique landingpads", 4803 LandingPad->getParent()); 4804 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4805 InvokeBB); 4806 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4807 "gc relocate should be linked to a statepoint", InvokeBB); 4808 } else { 4809 // In all other cases relocate should be tied to the statepoint directly. 4810 // This covers relocates on a normal return path of invoke statepoint and 4811 // relocates of a call statepoint. 4812 auto Token = Call.getArgOperand(0); 4813 Assert(isa<GCStatepointInst>(Token), 4814 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4815 } 4816 4817 // Verify rest of the relocate arguments. 4818 const CallBase &StatepointCall = 4819 *cast<GCRelocateInst>(Call).getStatepoint(); 4820 4821 // Both the base and derived must be piped through the safepoint. 4822 Value *Base = Call.getArgOperand(1); 4823 Assert(isa<ConstantInt>(Base), 4824 "gc.relocate operand #2 must be integer offset", Call); 4825 4826 Value *Derived = Call.getArgOperand(2); 4827 Assert(isa<ConstantInt>(Derived), 4828 "gc.relocate operand #3 must be integer offset", Call); 4829 4830 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4831 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4832 4833 // Check the bounds 4834 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4835 Assert(BaseIndex < Opt->Inputs.size(), 4836 "gc.relocate: statepoint base index out of bounds", Call); 4837 Assert(DerivedIndex < Opt->Inputs.size(), 4838 "gc.relocate: statepoint derived index out of bounds", Call); 4839 } 4840 4841 // Relocated value must be either a pointer type or vector-of-pointer type, 4842 // but gc_relocate does not need to return the same pointer type as the 4843 // relocated pointer. It can be casted to the correct type later if it's 4844 // desired. However, they must have the same address space and 'vectorness' 4845 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4846 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4847 "gc.relocate: relocated value must be a gc pointer", Call); 4848 4849 auto ResultType = Call.getType(); 4850 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4851 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4852 "gc.relocate: vector relocates to vector and pointer to pointer", 4853 Call); 4854 Assert( 4855 ResultType->getPointerAddressSpace() == 4856 DerivedType->getPointerAddressSpace(), 4857 "gc.relocate: relocating a pointer shouldn't change its address space", 4858 Call); 4859 break; 4860 } 4861 case Intrinsic::eh_exceptioncode: 4862 case Intrinsic::eh_exceptionpointer: { 4863 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4864 "eh.exceptionpointer argument must be a catchpad", Call); 4865 break; 4866 } 4867 case Intrinsic::get_active_lane_mask: { 4868 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4869 "vector", Call); 4870 auto *ElemTy = Call.getType()->getScalarType(); 4871 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4872 "i1", Call); 4873 break; 4874 } 4875 case Intrinsic::masked_load: { 4876 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4877 Call); 4878 4879 Value *Ptr = Call.getArgOperand(0); 4880 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4881 Value *Mask = Call.getArgOperand(2); 4882 Value *PassThru = Call.getArgOperand(3); 4883 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4884 Call); 4885 Assert(Alignment->getValue().isPowerOf2(), 4886 "masked_load: alignment must be a power of 2", Call); 4887 4888 // DataTy is the overloaded type 4889 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4890 Assert(DataTy == Call.getType(), 4891 "masked_load: return must match pointer type", Call); 4892 Assert(PassThru->getType() == DataTy, 4893 "masked_load: pass through and data type must match", Call); 4894 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4895 cast<VectorType>(DataTy)->getElementCount(), 4896 "masked_load: vector mask must be same length as data", Call); 4897 break; 4898 } 4899 case Intrinsic::masked_store: { 4900 Value *Val = Call.getArgOperand(0); 4901 Value *Ptr = Call.getArgOperand(1); 4902 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4903 Value *Mask = Call.getArgOperand(3); 4904 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4905 Call); 4906 Assert(Alignment->getValue().isPowerOf2(), 4907 "masked_store: alignment must be a power of 2", Call); 4908 4909 // DataTy is the overloaded type 4910 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4911 Assert(DataTy == Val->getType(), 4912 "masked_store: storee must match pointer type", Call); 4913 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4914 cast<VectorType>(DataTy)->getElementCount(), 4915 "masked_store: vector mask must be same length as data", Call); 4916 break; 4917 } 4918 4919 case Intrinsic::masked_gather: { 4920 const APInt &Alignment = 4921 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4922 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4923 "masked_gather: alignment must be 0 or a power of 2", Call); 4924 break; 4925 } 4926 case Intrinsic::masked_scatter: { 4927 const APInt &Alignment = 4928 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4929 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4930 "masked_scatter: alignment must be 0 or a power of 2", Call); 4931 break; 4932 } 4933 4934 case Intrinsic::experimental_guard: { 4935 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4936 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4937 "experimental_guard must have exactly one " 4938 "\"deopt\" operand bundle"); 4939 break; 4940 } 4941 4942 case Intrinsic::experimental_deoptimize: { 4943 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4944 Call); 4945 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4946 "experimental_deoptimize must have exactly one " 4947 "\"deopt\" operand bundle"); 4948 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4949 "experimental_deoptimize return type must match caller return type"); 4950 4951 if (isa<CallInst>(Call)) { 4952 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4953 Assert(RI, 4954 "calls to experimental_deoptimize must be followed by a return"); 4955 4956 if (!Call.getType()->isVoidTy() && RI) 4957 Assert(RI->getReturnValue() == &Call, 4958 "calls to experimental_deoptimize must be followed by a return " 4959 "of the value computed by experimental_deoptimize"); 4960 } 4961 4962 break; 4963 } 4964 case Intrinsic::sadd_sat: 4965 case Intrinsic::uadd_sat: 4966 case Intrinsic::ssub_sat: 4967 case Intrinsic::usub_sat: 4968 case Intrinsic::sshl_sat: 4969 case Intrinsic::ushl_sat: { 4970 Value *Op1 = Call.getArgOperand(0); 4971 Value *Op2 = Call.getArgOperand(1); 4972 Assert(Op1->getType()->isIntOrIntVectorTy(), 4973 "first operand of [us][add|sub|shl]_sat must be an int type or " 4974 "vector of ints"); 4975 Assert(Op2->getType()->isIntOrIntVectorTy(), 4976 "second operand of [us][add|sub|shl]_sat must be an int type or " 4977 "vector of ints"); 4978 break; 4979 } 4980 case Intrinsic::smul_fix: 4981 case Intrinsic::smul_fix_sat: 4982 case Intrinsic::umul_fix: 4983 case Intrinsic::umul_fix_sat: 4984 case Intrinsic::sdiv_fix: 4985 case Intrinsic::sdiv_fix_sat: 4986 case Intrinsic::udiv_fix: 4987 case Intrinsic::udiv_fix_sat: { 4988 Value *Op1 = Call.getArgOperand(0); 4989 Value *Op2 = Call.getArgOperand(1); 4990 Assert(Op1->getType()->isIntOrIntVectorTy(), 4991 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4992 "vector of ints"); 4993 Assert(Op2->getType()->isIntOrIntVectorTy(), 4994 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4995 "vector of ints"); 4996 4997 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4998 Assert(Op3->getType()->getBitWidth() <= 32, 4999 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5000 5001 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5002 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5003 Assert( 5004 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5005 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5006 "the operands"); 5007 } else { 5008 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5009 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5010 "to the width of the operands"); 5011 } 5012 break; 5013 } 5014 case Intrinsic::lround: 5015 case Intrinsic::llround: 5016 case Intrinsic::lrint: 5017 case Intrinsic::llrint: { 5018 Type *ValTy = Call.getArgOperand(0)->getType(); 5019 Type *ResultTy = Call.getType(); 5020 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5021 "Intrinsic does not support vectors", &Call); 5022 break; 5023 } 5024 case Intrinsic::bswap: { 5025 Type *Ty = Call.getType(); 5026 unsigned Size = Ty->getScalarSizeInBits(); 5027 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5028 break; 5029 } 5030 case Intrinsic::invariant_start: { 5031 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5032 Assert(InvariantSize && 5033 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5034 "invariant_start parameter must be -1, 0 or a positive number", 5035 &Call); 5036 break; 5037 } 5038 case Intrinsic::matrix_multiply: 5039 case Intrinsic::matrix_transpose: 5040 case Intrinsic::matrix_column_major_load: 5041 case Intrinsic::matrix_column_major_store: { 5042 Function *IF = Call.getCalledFunction(); 5043 ConstantInt *Stride = nullptr; 5044 ConstantInt *NumRows; 5045 ConstantInt *NumColumns; 5046 VectorType *ResultTy; 5047 Type *Op0ElemTy = nullptr; 5048 Type *Op1ElemTy = nullptr; 5049 switch (ID) { 5050 case Intrinsic::matrix_multiply: 5051 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5052 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5053 ResultTy = cast<VectorType>(Call.getType()); 5054 Op0ElemTy = 5055 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5056 Op1ElemTy = 5057 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5058 break; 5059 case Intrinsic::matrix_transpose: 5060 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5061 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5062 ResultTy = cast<VectorType>(Call.getType()); 5063 Op0ElemTy = 5064 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5065 break; 5066 case Intrinsic::matrix_column_major_load: 5067 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5068 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5069 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5070 ResultTy = cast<VectorType>(Call.getType()); 5071 Op0ElemTy = 5072 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5073 break; 5074 case Intrinsic::matrix_column_major_store: 5075 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5076 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5077 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5078 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5079 Op0ElemTy = 5080 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5081 Op1ElemTy = 5082 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5083 break; 5084 default: 5085 llvm_unreachable("unexpected intrinsic"); 5086 } 5087 5088 Assert(ResultTy->getElementType()->isIntegerTy() || 5089 ResultTy->getElementType()->isFloatingPointTy(), 5090 "Result type must be an integer or floating-point type!", IF); 5091 5092 Assert(ResultTy->getElementType() == Op0ElemTy, 5093 "Vector element type mismatch of the result and first operand " 5094 "vector!", IF); 5095 5096 if (Op1ElemTy) 5097 Assert(ResultTy->getElementType() == Op1ElemTy, 5098 "Vector element type mismatch of the result and second operand " 5099 "vector!", IF); 5100 5101 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5102 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5103 "Result of a matrix operation does not fit in the returned vector!"); 5104 5105 if (Stride) 5106 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5107 "Stride must be greater or equal than the number of rows!", IF); 5108 5109 break; 5110 } 5111 }; 5112 } 5113 5114 /// Carefully grab the subprogram from a local scope. 5115 /// 5116 /// This carefully grabs the subprogram from a local scope, avoiding the 5117 /// built-in assertions that would typically fire. 5118 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5119 if (!LocalScope) 5120 return nullptr; 5121 5122 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5123 return SP; 5124 5125 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5126 return getSubprogram(LB->getRawScope()); 5127 5128 // Just return null; broken scope chains are checked elsewhere. 5129 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5130 return nullptr; 5131 } 5132 5133 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5134 unsigned NumOperands; 5135 bool HasRoundingMD; 5136 switch (FPI.getIntrinsicID()) { 5137 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5138 case Intrinsic::INTRINSIC: \ 5139 NumOperands = NARG; \ 5140 HasRoundingMD = ROUND_MODE; \ 5141 break; 5142 #include "llvm/IR/ConstrainedOps.def" 5143 default: 5144 llvm_unreachable("Invalid constrained FP intrinsic!"); 5145 } 5146 NumOperands += (1 + HasRoundingMD); 5147 // Compare intrinsics carry an extra predicate metadata operand. 5148 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5149 NumOperands += 1; 5150 Assert((FPI.getNumArgOperands() == NumOperands), 5151 "invalid arguments for constrained FP intrinsic", &FPI); 5152 5153 switch (FPI.getIntrinsicID()) { 5154 case Intrinsic::experimental_constrained_lrint: 5155 case Intrinsic::experimental_constrained_llrint: { 5156 Type *ValTy = FPI.getArgOperand(0)->getType(); 5157 Type *ResultTy = FPI.getType(); 5158 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5159 "Intrinsic does not support vectors", &FPI); 5160 } 5161 break; 5162 5163 case Intrinsic::experimental_constrained_lround: 5164 case Intrinsic::experimental_constrained_llround: { 5165 Type *ValTy = FPI.getArgOperand(0)->getType(); 5166 Type *ResultTy = FPI.getType(); 5167 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5168 "Intrinsic does not support vectors", &FPI); 5169 break; 5170 } 5171 5172 case Intrinsic::experimental_constrained_fcmp: 5173 case Intrinsic::experimental_constrained_fcmps: { 5174 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5175 Assert(CmpInst::isFPPredicate(Pred), 5176 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5177 break; 5178 } 5179 5180 case Intrinsic::experimental_constrained_fptosi: 5181 case Intrinsic::experimental_constrained_fptoui: { 5182 Value *Operand = FPI.getArgOperand(0); 5183 uint64_t NumSrcElem = 0; 5184 Assert(Operand->getType()->isFPOrFPVectorTy(), 5185 "Intrinsic first argument must be floating point", &FPI); 5186 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5187 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5188 } 5189 5190 Operand = &FPI; 5191 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5192 "Intrinsic first argument and result disagree on vector use", &FPI); 5193 Assert(Operand->getType()->isIntOrIntVectorTy(), 5194 "Intrinsic result must be an integer", &FPI); 5195 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5196 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5197 "Intrinsic first argument and result vector lengths must be equal", 5198 &FPI); 5199 } 5200 } 5201 break; 5202 5203 case Intrinsic::experimental_constrained_sitofp: 5204 case Intrinsic::experimental_constrained_uitofp: { 5205 Value *Operand = FPI.getArgOperand(0); 5206 uint64_t NumSrcElem = 0; 5207 Assert(Operand->getType()->isIntOrIntVectorTy(), 5208 "Intrinsic first argument must be integer", &FPI); 5209 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5210 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5211 } 5212 5213 Operand = &FPI; 5214 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5215 "Intrinsic first argument and result disagree on vector use", &FPI); 5216 Assert(Operand->getType()->isFPOrFPVectorTy(), 5217 "Intrinsic result must be a floating point", &FPI); 5218 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5219 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5220 "Intrinsic first argument and result vector lengths must be equal", 5221 &FPI); 5222 } 5223 } break; 5224 5225 case Intrinsic::experimental_constrained_fptrunc: 5226 case Intrinsic::experimental_constrained_fpext: { 5227 Value *Operand = FPI.getArgOperand(0); 5228 Type *OperandTy = Operand->getType(); 5229 Value *Result = &FPI; 5230 Type *ResultTy = Result->getType(); 5231 Assert(OperandTy->isFPOrFPVectorTy(), 5232 "Intrinsic first argument must be FP or FP vector", &FPI); 5233 Assert(ResultTy->isFPOrFPVectorTy(), 5234 "Intrinsic result must be FP or FP vector", &FPI); 5235 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5236 "Intrinsic first argument and result disagree on vector use", &FPI); 5237 if (OperandTy->isVectorTy()) { 5238 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5239 cast<FixedVectorType>(ResultTy)->getNumElements(), 5240 "Intrinsic first argument and result vector lengths must be equal", 5241 &FPI); 5242 } 5243 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5244 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5245 "Intrinsic first argument's type must be larger than result type", 5246 &FPI); 5247 } else { 5248 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5249 "Intrinsic first argument's type must be smaller than result type", 5250 &FPI); 5251 } 5252 } 5253 break; 5254 5255 default: 5256 break; 5257 } 5258 5259 // If a non-metadata argument is passed in a metadata slot then the 5260 // error will be caught earlier when the incorrect argument doesn't 5261 // match the specification in the intrinsic call table. Thus, no 5262 // argument type check is needed here. 5263 5264 Assert(FPI.getExceptionBehavior().hasValue(), 5265 "invalid exception behavior argument", &FPI); 5266 if (HasRoundingMD) { 5267 Assert(FPI.getRoundingMode().hasValue(), 5268 "invalid rounding mode argument", &FPI); 5269 } 5270 } 5271 5272 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5273 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5274 AssertDI(isa<ValueAsMetadata>(MD) || 5275 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5276 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5277 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5278 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5279 DII.getRawVariable()); 5280 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5281 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5282 DII.getRawExpression()); 5283 5284 // Ignore broken !dbg attachments; they're checked elsewhere. 5285 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5286 if (!isa<DILocation>(N)) 5287 return; 5288 5289 BasicBlock *BB = DII.getParent(); 5290 Function *F = BB ? BB->getParent() : nullptr; 5291 5292 // The scopes for variables and !dbg attachments must agree. 5293 DILocalVariable *Var = DII.getVariable(); 5294 DILocation *Loc = DII.getDebugLoc(); 5295 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5296 &DII, BB, F); 5297 5298 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5299 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5300 if (!VarSP || !LocSP) 5301 return; // Broken scope chains are checked elsewhere. 5302 5303 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5304 " variable and !dbg attachment", 5305 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5306 Loc->getScope()->getSubprogram()); 5307 5308 // This check is redundant with one in visitLocalVariable(). 5309 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5310 Var->getRawType()); 5311 verifyFnArgs(DII); 5312 } 5313 5314 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5315 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5316 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5317 DLI.getRawLabel()); 5318 5319 // Ignore broken !dbg attachments; they're checked elsewhere. 5320 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5321 if (!isa<DILocation>(N)) 5322 return; 5323 5324 BasicBlock *BB = DLI.getParent(); 5325 Function *F = BB ? BB->getParent() : nullptr; 5326 5327 // The scopes for variables and !dbg attachments must agree. 5328 DILabel *Label = DLI.getLabel(); 5329 DILocation *Loc = DLI.getDebugLoc(); 5330 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5331 &DLI, BB, F); 5332 5333 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5334 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5335 if (!LabelSP || !LocSP) 5336 return; 5337 5338 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5339 " label and !dbg attachment", 5340 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5341 Loc->getScope()->getSubprogram()); 5342 } 5343 5344 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5345 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5346 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5347 5348 // We don't know whether this intrinsic verified correctly. 5349 if (!V || !E || !E->isValid()) 5350 return; 5351 5352 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5353 auto Fragment = E->getFragmentInfo(); 5354 if (!Fragment) 5355 return; 5356 5357 // The frontend helps out GDB by emitting the members of local anonymous 5358 // unions as artificial local variables with shared storage. When SROA splits 5359 // the storage for artificial local variables that are smaller than the entire 5360 // union, the overhang piece will be outside of the allotted space for the 5361 // variable and this check fails. 5362 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5363 if (V->isArtificial()) 5364 return; 5365 5366 verifyFragmentExpression(*V, *Fragment, &I); 5367 } 5368 5369 template <typename ValueOrMetadata> 5370 void Verifier::verifyFragmentExpression(const DIVariable &V, 5371 DIExpression::FragmentInfo Fragment, 5372 ValueOrMetadata *Desc) { 5373 // If there's no size, the type is broken, but that should be checked 5374 // elsewhere. 5375 auto VarSize = V.getSizeInBits(); 5376 if (!VarSize) 5377 return; 5378 5379 unsigned FragSize = Fragment.SizeInBits; 5380 unsigned FragOffset = Fragment.OffsetInBits; 5381 AssertDI(FragSize + FragOffset <= *VarSize, 5382 "fragment is larger than or outside of variable", Desc, &V); 5383 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5384 } 5385 5386 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5387 // This function does not take the scope of noninlined function arguments into 5388 // account. Don't run it if current function is nodebug, because it may 5389 // contain inlined debug intrinsics. 5390 if (!HasDebugInfo) 5391 return; 5392 5393 // For performance reasons only check non-inlined ones. 5394 if (I.getDebugLoc()->getInlinedAt()) 5395 return; 5396 5397 DILocalVariable *Var = I.getVariable(); 5398 AssertDI(Var, "dbg intrinsic without variable"); 5399 5400 unsigned ArgNo = Var->getArg(); 5401 if (!ArgNo) 5402 return; 5403 5404 // Verify there are no duplicate function argument debug info entries. 5405 // These will cause hard-to-debug assertions in the DWARF backend. 5406 if (DebugFnArgs.size() < ArgNo) 5407 DebugFnArgs.resize(ArgNo, nullptr); 5408 5409 auto *Prev = DebugFnArgs[ArgNo - 1]; 5410 DebugFnArgs[ArgNo - 1] = Var; 5411 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5412 Prev, Var); 5413 } 5414 5415 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5416 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5417 5418 // We don't know whether this intrinsic verified correctly. 5419 if (!E || !E->isValid()) 5420 return; 5421 5422 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5423 } 5424 5425 void Verifier::verifyCompileUnits() { 5426 // When more than one Module is imported into the same context, such as during 5427 // an LTO build before linking the modules, ODR type uniquing may cause types 5428 // to point to a different CU. This check does not make sense in this case. 5429 if (M.getContext().isODRUniquingDebugTypes()) 5430 return; 5431 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5432 SmallPtrSet<const Metadata *, 2> Listed; 5433 if (CUs) 5434 Listed.insert(CUs->op_begin(), CUs->op_end()); 5435 for (auto *CU : CUVisited) 5436 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5437 CUVisited.clear(); 5438 } 5439 5440 void Verifier::verifyDeoptimizeCallingConvs() { 5441 if (DeoptimizeDeclarations.empty()) 5442 return; 5443 5444 const Function *First = DeoptimizeDeclarations[0]; 5445 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5446 Assert(First->getCallingConv() == F->getCallingConv(), 5447 "All llvm.experimental.deoptimize declarations must have the same " 5448 "calling convention", 5449 First, F); 5450 } 5451 } 5452 5453 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5454 bool HasSource = F.getSource().hasValue(); 5455 if (!HasSourceDebugInfo.count(&U)) 5456 HasSourceDebugInfo[&U] = HasSource; 5457 AssertDI(HasSource == HasSourceDebugInfo[&U], 5458 "inconsistent use of embedded source"); 5459 } 5460 5461 //===----------------------------------------------------------------------===// 5462 // Implement the public interfaces to this file... 5463 //===----------------------------------------------------------------------===// 5464 5465 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5466 Function &F = const_cast<Function &>(f); 5467 5468 // Don't use a raw_null_ostream. Printing IR is expensive. 5469 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5470 5471 // Note that this function's return value is inverted from what you would 5472 // expect of a function called "verify". 5473 return !V.verify(F); 5474 } 5475 5476 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5477 bool *BrokenDebugInfo) { 5478 // Don't use a raw_null_ostream. Printing IR is expensive. 5479 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5480 5481 bool Broken = false; 5482 for (const Function &F : M) 5483 Broken |= !V.verify(F); 5484 5485 Broken |= !V.verify(); 5486 if (BrokenDebugInfo) 5487 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5488 // Note that this function's return value is inverted from what you would 5489 // expect of a function called "verify". 5490 return Broken; 5491 } 5492 5493 namespace { 5494 5495 struct VerifierLegacyPass : public FunctionPass { 5496 static char ID; 5497 5498 std::unique_ptr<Verifier> V; 5499 bool FatalErrors = true; 5500 5501 VerifierLegacyPass() : FunctionPass(ID) { 5502 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5503 } 5504 explicit VerifierLegacyPass(bool FatalErrors) 5505 : FunctionPass(ID), 5506 FatalErrors(FatalErrors) { 5507 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5508 } 5509 5510 bool doInitialization(Module &M) override { 5511 V = std::make_unique<Verifier>( 5512 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5513 return false; 5514 } 5515 5516 bool runOnFunction(Function &F) override { 5517 if (!V->verify(F) && FatalErrors) { 5518 errs() << "in function " << F.getName() << '\n'; 5519 report_fatal_error("Broken function found, compilation aborted!"); 5520 } 5521 return false; 5522 } 5523 5524 bool doFinalization(Module &M) override { 5525 bool HasErrors = false; 5526 for (Function &F : M) 5527 if (F.isDeclaration()) 5528 HasErrors |= !V->verify(F); 5529 5530 HasErrors |= !V->verify(); 5531 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5532 report_fatal_error("Broken module found, compilation aborted!"); 5533 return false; 5534 } 5535 5536 void getAnalysisUsage(AnalysisUsage &AU) const override { 5537 AU.setPreservesAll(); 5538 } 5539 }; 5540 5541 } // end anonymous namespace 5542 5543 /// Helper to issue failure from the TBAA verification 5544 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5545 if (Diagnostic) 5546 return Diagnostic->CheckFailed(Args...); 5547 } 5548 5549 #define AssertTBAA(C, ...) \ 5550 do { \ 5551 if (!(C)) { \ 5552 CheckFailed(__VA_ARGS__); \ 5553 return false; \ 5554 } \ 5555 } while (false) 5556 5557 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5558 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5559 /// struct-type node describing an aggregate data structure (like a struct). 5560 TBAAVerifier::TBAABaseNodeSummary 5561 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5562 bool IsNewFormat) { 5563 if (BaseNode->getNumOperands() < 2) { 5564 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5565 return {true, ~0u}; 5566 } 5567 5568 auto Itr = TBAABaseNodes.find(BaseNode); 5569 if (Itr != TBAABaseNodes.end()) 5570 return Itr->second; 5571 5572 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5573 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5574 (void)InsertResult; 5575 assert(InsertResult.second && "We just checked!"); 5576 return Result; 5577 } 5578 5579 TBAAVerifier::TBAABaseNodeSummary 5580 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5581 bool IsNewFormat) { 5582 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5583 5584 if (BaseNode->getNumOperands() == 2) { 5585 // Scalar nodes can only be accessed at offset 0. 5586 return isValidScalarTBAANode(BaseNode) 5587 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5588 : InvalidNode; 5589 } 5590 5591 if (IsNewFormat) { 5592 if (BaseNode->getNumOperands() % 3 != 0) { 5593 CheckFailed("Access tag nodes must have the number of operands that is a " 5594 "multiple of 3!", BaseNode); 5595 return InvalidNode; 5596 } 5597 } else { 5598 if (BaseNode->getNumOperands() % 2 != 1) { 5599 CheckFailed("Struct tag nodes must have an odd number of operands!", 5600 BaseNode); 5601 return InvalidNode; 5602 } 5603 } 5604 5605 // Check the type size field. 5606 if (IsNewFormat) { 5607 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5608 BaseNode->getOperand(1)); 5609 if (!TypeSizeNode) { 5610 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5611 return InvalidNode; 5612 } 5613 } 5614 5615 // Check the type name field. In the new format it can be anything. 5616 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5617 CheckFailed("Struct tag nodes have a string as their first operand", 5618 BaseNode); 5619 return InvalidNode; 5620 } 5621 5622 bool Failed = false; 5623 5624 Optional<APInt> PrevOffset; 5625 unsigned BitWidth = ~0u; 5626 5627 // We've already checked that BaseNode is not a degenerate root node with one 5628 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5629 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5630 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5631 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5632 Idx += NumOpsPerField) { 5633 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5634 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5635 if (!isa<MDNode>(FieldTy)) { 5636 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5637 Failed = true; 5638 continue; 5639 } 5640 5641 auto *OffsetEntryCI = 5642 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5643 if (!OffsetEntryCI) { 5644 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5645 Failed = true; 5646 continue; 5647 } 5648 5649 if (BitWidth == ~0u) 5650 BitWidth = OffsetEntryCI->getBitWidth(); 5651 5652 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5653 CheckFailed( 5654 "Bitwidth between the offsets and struct type entries must match", &I, 5655 BaseNode); 5656 Failed = true; 5657 continue; 5658 } 5659 5660 // NB! As far as I can tell, we generate a non-strictly increasing offset 5661 // sequence only from structs that have zero size bit fields. When 5662 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5663 // pick the field lexically the latest in struct type metadata node. This 5664 // mirrors the actual behavior of the alias analysis implementation. 5665 bool IsAscending = 5666 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5667 5668 if (!IsAscending) { 5669 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5670 Failed = true; 5671 } 5672 5673 PrevOffset = OffsetEntryCI->getValue(); 5674 5675 if (IsNewFormat) { 5676 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5677 BaseNode->getOperand(Idx + 2)); 5678 if (!MemberSizeNode) { 5679 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5680 Failed = true; 5681 continue; 5682 } 5683 } 5684 } 5685 5686 return Failed ? InvalidNode 5687 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5688 } 5689 5690 static bool IsRootTBAANode(const MDNode *MD) { 5691 return MD->getNumOperands() < 2; 5692 } 5693 5694 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5695 SmallPtrSetImpl<const MDNode *> &Visited) { 5696 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5697 return false; 5698 5699 if (!isa<MDString>(MD->getOperand(0))) 5700 return false; 5701 5702 if (MD->getNumOperands() == 3) { 5703 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5704 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5705 return false; 5706 } 5707 5708 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5709 return Parent && Visited.insert(Parent).second && 5710 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5711 } 5712 5713 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5714 auto ResultIt = TBAAScalarNodes.find(MD); 5715 if (ResultIt != TBAAScalarNodes.end()) 5716 return ResultIt->second; 5717 5718 SmallPtrSet<const MDNode *, 4> Visited; 5719 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5720 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5721 (void)InsertResult; 5722 assert(InsertResult.second && "Just checked!"); 5723 5724 return Result; 5725 } 5726 5727 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5728 /// Offset in place to be the offset within the field node returned. 5729 /// 5730 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5731 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5732 const MDNode *BaseNode, 5733 APInt &Offset, 5734 bool IsNewFormat) { 5735 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5736 5737 // Scalar nodes have only one possible "field" -- their parent in the access 5738 // hierarchy. Offset must be zero at this point, but our caller is supposed 5739 // to Assert that. 5740 if (BaseNode->getNumOperands() == 2) 5741 return cast<MDNode>(BaseNode->getOperand(1)); 5742 5743 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5744 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5745 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5746 Idx += NumOpsPerField) { 5747 auto *OffsetEntryCI = 5748 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5749 if (OffsetEntryCI->getValue().ugt(Offset)) { 5750 if (Idx == FirstFieldOpNo) { 5751 CheckFailed("Could not find TBAA parent in struct type node", &I, 5752 BaseNode, &Offset); 5753 return nullptr; 5754 } 5755 5756 unsigned PrevIdx = Idx - NumOpsPerField; 5757 auto *PrevOffsetEntryCI = 5758 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5759 Offset -= PrevOffsetEntryCI->getValue(); 5760 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5761 } 5762 } 5763 5764 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5765 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5766 BaseNode->getOperand(LastIdx + 1)); 5767 Offset -= LastOffsetEntryCI->getValue(); 5768 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5769 } 5770 5771 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5772 if (!Type || Type->getNumOperands() < 3) 5773 return false; 5774 5775 // In the new format type nodes shall have a reference to the parent type as 5776 // its first operand. 5777 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5778 if (!Parent) 5779 return false; 5780 5781 return true; 5782 } 5783 5784 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5785 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5786 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5787 isa<AtomicCmpXchgInst>(I), 5788 "This instruction shall not have a TBAA access tag!", &I); 5789 5790 bool IsStructPathTBAA = 5791 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5792 5793 AssertTBAA( 5794 IsStructPathTBAA, 5795 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5796 5797 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5798 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5799 5800 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5801 5802 if (IsNewFormat) { 5803 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5804 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5805 } else { 5806 AssertTBAA(MD->getNumOperands() < 5, 5807 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5808 } 5809 5810 // Check the access size field. 5811 if (IsNewFormat) { 5812 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5813 MD->getOperand(3)); 5814 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5815 } 5816 5817 // Check the immutability flag. 5818 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5819 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5820 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5821 MD->getOperand(ImmutabilityFlagOpNo)); 5822 AssertTBAA(IsImmutableCI, 5823 "Immutability tag on struct tag metadata must be a constant", 5824 &I, MD); 5825 AssertTBAA( 5826 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5827 "Immutability part of the struct tag metadata must be either 0 or 1", 5828 &I, MD); 5829 } 5830 5831 AssertTBAA(BaseNode && AccessType, 5832 "Malformed struct tag metadata: base and access-type " 5833 "should be non-null and point to Metadata nodes", 5834 &I, MD, BaseNode, AccessType); 5835 5836 if (!IsNewFormat) { 5837 AssertTBAA(isValidScalarTBAANode(AccessType), 5838 "Access type node must be a valid scalar type", &I, MD, 5839 AccessType); 5840 } 5841 5842 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5843 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5844 5845 APInt Offset = OffsetCI->getValue(); 5846 bool SeenAccessTypeInPath = false; 5847 5848 SmallPtrSet<MDNode *, 4> StructPath; 5849 5850 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5851 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5852 IsNewFormat)) { 5853 if (!StructPath.insert(BaseNode).second) { 5854 CheckFailed("Cycle detected in struct path", &I, MD); 5855 return false; 5856 } 5857 5858 bool Invalid; 5859 unsigned BaseNodeBitWidth; 5860 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5861 IsNewFormat); 5862 5863 // If the base node is invalid in itself, then we've already printed all the 5864 // errors we wanted to print. 5865 if (Invalid) 5866 return false; 5867 5868 SeenAccessTypeInPath |= BaseNode == AccessType; 5869 5870 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5871 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5872 &I, MD, &Offset); 5873 5874 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5875 (BaseNodeBitWidth == 0 && Offset == 0) || 5876 (IsNewFormat && BaseNodeBitWidth == ~0u), 5877 "Access bit-width not the same as description bit-width", &I, MD, 5878 BaseNodeBitWidth, Offset.getBitWidth()); 5879 5880 if (IsNewFormat && SeenAccessTypeInPath) 5881 break; 5882 } 5883 5884 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5885 &I, MD); 5886 return true; 5887 } 5888 5889 char VerifierLegacyPass::ID = 0; 5890 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5891 5892 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5893 return new VerifierLegacyPass(FatalErrors); 5894 } 5895 5896 AnalysisKey VerifierAnalysis::Key; 5897 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5898 ModuleAnalysisManager &) { 5899 Result Res; 5900 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5901 return Res; 5902 } 5903 5904 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5905 FunctionAnalysisManager &) { 5906 return { llvm::verifyFunction(F, &dbgs()), false }; 5907 } 5908 5909 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5910 auto Res = AM.getResult<VerifierAnalysis>(M); 5911 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5912 report_fatal_error("Broken module found, compilation aborted!"); 5913 5914 return PreservedAnalyses::all(); 5915 } 5916 5917 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5918 auto res = AM.getResult<VerifierAnalysis>(F); 5919 if (res.IRBroken && FatalErrors) 5920 report_fatal_error("Broken function found, compilation aborted!"); 5921 5922 return PreservedAnalyses::all(); 5923 } 5924