1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * Landingpad instructions must be in a function with a personality function. 43 // * All other things that are tested by asserts spread about the code... 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/ADT/APFloat.h" 49 #include "llvm/ADT/APInt.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringMap.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/ADT/ilist.h" 63 #include "llvm/BinaryFormat/Dwarf.h" 64 #include "llvm/IR/Argument.h" 65 #include "llvm/IR/Attributes.h" 66 #include "llvm/IR/BasicBlock.h" 67 #include "llvm/IR/CFG.h" 68 #include "llvm/IR/CallSite.h" 69 #include "llvm/IR/CallingConv.h" 70 #include "llvm/IR/Comdat.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/GlobalVariable.h" 84 #include "llvm/IR/InlineAsm.h" 85 #include "llvm/IR/InstVisitor.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/ModuleSlotTracker.h" 95 #include "llvm/IR/PassManager.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Use.h" 99 #include "llvm/IR/User.h" 100 #include "llvm/IR/Value.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 const DataLayout &DL; 125 LLVMContext &Context; 126 127 /// Track the brokenness of the module while recursively visiting. 128 bool Broken = false; 129 /// Broken debug info can be "recovered" from by stripping the debug info. 130 bool BrokenDebugInfo = false; 131 /// Whether to treat broken debug info as an error. 132 bool TreatBrokenDebugInfoAsError = true; 133 134 explicit VerifierSupport(raw_ostream *OS, const Module &M) 135 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 136 137 private: 138 void Write(const Module *M) { 139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 140 } 141 142 void Write(const Value *V) { 143 if (!V) 144 return; 145 if (isa<Instruction>(V)) { 146 V->print(*OS, MST); 147 *OS << '\n'; 148 } else { 149 V->printAsOperand(*OS, true, MST); 150 *OS << '\n'; 151 } 152 } 153 154 void Write(ImmutableCallSite CS) { 155 Write(CS.getInstruction()); 156 } 157 158 void Write(const Metadata *MD) { 159 if (!MD) 160 return; 161 MD->print(*OS, MST, &M); 162 *OS << '\n'; 163 } 164 165 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 166 Write(MD.get()); 167 } 168 169 void Write(const NamedMDNode *NMD) { 170 if (!NMD) 171 return; 172 NMD->print(*OS, MST); 173 *OS << '\n'; 174 } 175 176 void Write(Type *T) { 177 if (!T) 178 return; 179 *OS << ' ' << *T; 180 } 181 182 void Write(const Comdat *C) { 183 if (!C) 184 return; 185 *OS << *C; 186 } 187 188 void Write(const APInt *AI) { 189 if (!AI) 190 return; 191 *OS << *AI << '\n'; 192 } 193 194 void Write(const unsigned i) { *OS << i << '\n'; } 195 196 template <typename T> void Write(ArrayRef<T> Vs) { 197 for (const T &V : Vs) 198 Write(V); 199 } 200 201 template <typename T1, typename... Ts> 202 void WriteTs(const T1 &V1, const Ts &... Vs) { 203 Write(V1); 204 WriteTs(Vs...); 205 } 206 207 template <typename... Ts> void WriteTs() {} 208 209 public: 210 /// A check failed, so printout out the condition and the message. 211 /// 212 /// This provides a nice place to put a breakpoint if you want to see why 213 /// something is not correct. 214 void CheckFailed(const Twine &Message) { 215 if (OS) 216 *OS << Message << '\n'; 217 Broken = true; 218 } 219 220 /// A check failed (with values to print). 221 /// 222 /// This calls the Message-only version so that the above is easier to set a 223 /// breakpoint on. 224 template <typename T1, typename... Ts> 225 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 226 CheckFailed(Message); 227 if (OS) 228 WriteTs(V1, Vs...); 229 } 230 231 /// A debug info check failed. 232 void DebugInfoCheckFailed(const Twine &Message) { 233 if (OS) 234 *OS << Message << '\n'; 235 Broken |= TreatBrokenDebugInfoAsError; 236 BrokenDebugInfo = true; 237 } 238 239 /// A debug info check failed (with values to print). 240 template <typename T1, typename... Ts> 241 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 242 const Ts &... Vs) { 243 DebugInfoCheckFailed(Message); 244 if (OS) 245 WriteTs(V1, Vs...); 246 } 247 }; 248 249 } // namespace llvm 250 251 namespace { 252 253 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 254 friend class InstVisitor<Verifier>; 255 256 DominatorTree DT; 257 258 /// When verifying a basic block, keep track of all of the 259 /// instructions we have seen so far. 260 /// 261 /// This allows us to do efficient dominance checks for the case when an 262 /// instruction has an operand that is an instruction in the same block. 263 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 264 265 /// Keep track of the metadata nodes that have been checked already. 266 SmallPtrSet<const Metadata *, 32> MDNodes; 267 268 /// Keep track which DISubprogram is attached to which function. 269 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 270 271 /// Track all DICompileUnits visited. 272 SmallPtrSet<const Metadata *, 2> CUVisited; 273 274 /// The result type for a landingpad. 275 Type *LandingPadResultTy; 276 277 /// Whether we've seen a call to @llvm.localescape in this function 278 /// already. 279 bool SawFrameEscape; 280 281 /// Whether the current function has a DISubprogram attached to it. 282 bool HasDebugInfo = false; 283 284 /// Stores the count of how many objects were passed to llvm.localescape for a 285 /// given function and the largest index passed to llvm.localrecover. 286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 287 288 // Maps catchswitches and cleanuppads that unwind to siblings to the 289 // terminators that indicate the unwind, used to detect cycles therein. 290 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo; 291 292 /// Cache of constants visited in search of ConstantExprs. 293 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 294 295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 296 SmallVector<const Function *, 4> DeoptimizeDeclarations; 297 298 // Verify that this GlobalValue is only used in this module. 299 // This map is used to avoid visiting uses twice. We can arrive at a user 300 // twice, if they have multiple operands. In particular for very large 301 // constant expressions, we can arrive at a particular user many times. 302 SmallPtrSet<const Value *, 32> GlobalValueVisited; 303 304 // Keeps track of duplicate function argument debug info. 305 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 306 307 TBAAVerifier TBAAVerifyHelper; 308 309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 310 311 public: 312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 313 const Module &M) 314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 315 SawFrameEscape(false), TBAAVerifyHelper(this) { 316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 317 } 318 319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 320 321 bool verify(const Function &F) { 322 assert(F.getParent() == &M && 323 "An instance of this class only works with a specific module!"); 324 325 // First ensure the function is well-enough formed to compute dominance 326 // information, and directly compute a dominance tree. We don't rely on the 327 // pass manager to provide this as it isolates us from a potentially 328 // out-of-date dominator tree and makes it significantly more complex to run 329 // this code outside of a pass manager. 330 // FIXME: It's really gross that we have to cast away constness here. 331 if (!F.empty()) 332 DT.recalculate(const_cast<Function &>(F)); 333 334 for (const BasicBlock &BB : F) { 335 if (!BB.empty() && BB.back().isTerminator()) 336 continue; 337 338 if (OS) { 339 *OS << "Basic Block in function '" << F.getName() 340 << "' does not have terminator!\n"; 341 BB.printAsOperand(*OS, true, MST); 342 *OS << "\n"; 343 } 344 return false; 345 } 346 347 Broken = false; 348 // FIXME: We strip const here because the inst visitor strips const. 349 visit(const_cast<Function &>(F)); 350 verifySiblingFuncletUnwinds(); 351 InstsInThisBlock.clear(); 352 DebugFnArgs.clear(); 353 LandingPadResultTy = nullptr; 354 SawFrameEscape = false; 355 SiblingFuncletInfo.clear(); 356 357 return !Broken; 358 } 359 360 /// Verify the module that this instance of \c Verifier was initialized with. 361 bool verify() { 362 Broken = false; 363 364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 365 for (const Function &F : M) 366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 367 DeoptimizeDeclarations.push_back(&F); 368 369 // Now that we've visited every function, verify that we never asked to 370 // recover a frame index that wasn't escaped. 371 verifyFrameRecoverIndices(); 372 for (const GlobalVariable &GV : M.globals()) 373 visitGlobalVariable(GV); 374 375 for (const GlobalAlias &GA : M.aliases()) 376 visitGlobalAlias(GA); 377 378 for (const NamedMDNode &NMD : M.named_metadata()) 379 visitNamedMDNode(NMD); 380 381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 382 visitComdat(SMEC.getValue()); 383 384 visitModuleFlags(M); 385 visitModuleIdents(M); 386 387 verifyCompileUnits(); 388 389 verifyDeoptimizeCallingConvs(); 390 DISubprogramAttachments.clear(); 391 return !Broken; 392 } 393 394 private: 395 // Verification methods... 396 void visitGlobalValue(const GlobalValue &GV); 397 void visitGlobalVariable(const GlobalVariable &GV); 398 void visitGlobalAlias(const GlobalAlias &GA); 399 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 400 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 401 const GlobalAlias &A, const Constant &C); 402 void visitNamedMDNode(const NamedMDNode &NMD); 403 void visitMDNode(const MDNode &MD); 404 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 405 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 406 void visitComdat(const Comdat &C); 407 void visitModuleIdents(const Module &M); 408 void visitModuleFlags(const Module &M); 409 void visitModuleFlag(const MDNode *Op, 410 DenseMap<const MDString *, const MDNode *> &SeenIDs, 411 SmallVectorImpl<const MDNode *> &Requirements); 412 void visitFunction(const Function &F); 413 void visitBasicBlock(BasicBlock &BB); 414 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 415 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 416 417 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 418 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 419 #include "llvm/IR/Metadata.def" 420 void visitDIScope(const DIScope &N); 421 void visitDIVariable(const DIVariable &N); 422 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 423 void visitDITemplateParameter(const DITemplateParameter &N); 424 425 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 426 427 // InstVisitor overrides... 428 using InstVisitor<Verifier>::visit; 429 void visit(Instruction &I); 430 431 void visitTruncInst(TruncInst &I); 432 void visitZExtInst(ZExtInst &I); 433 void visitSExtInst(SExtInst &I); 434 void visitFPTruncInst(FPTruncInst &I); 435 void visitFPExtInst(FPExtInst &I); 436 void visitFPToUIInst(FPToUIInst &I); 437 void visitFPToSIInst(FPToSIInst &I); 438 void visitUIToFPInst(UIToFPInst &I); 439 void visitSIToFPInst(SIToFPInst &I); 440 void visitIntToPtrInst(IntToPtrInst &I); 441 void visitPtrToIntInst(PtrToIntInst &I); 442 void visitBitCastInst(BitCastInst &I); 443 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 444 void visitPHINode(PHINode &PN); 445 void visitBinaryOperator(BinaryOperator &B); 446 void visitICmpInst(ICmpInst &IC); 447 void visitFCmpInst(FCmpInst &FC); 448 void visitExtractElementInst(ExtractElementInst &EI); 449 void visitInsertElementInst(InsertElementInst &EI); 450 void visitShuffleVectorInst(ShuffleVectorInst &EI); 451 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 452 void visitCallInst(CallInst &CI); 453 void visitInvokeInst(InvokeInst &II); 454 void visitGetElementPtrInst(GetElementPtrInst &GEP); 455 void visitLoadInst(LoadInst &LI); 456 void visitStoreInst(StoreInst &SI); 457 void verifyDominatesUse(Instruction &I, unsigned i); 458 void visitInstruction(Instruction &I); 459 void visitTerminatorInst(TerminatorInst &I); 460 void visitBranchInst(BranchInst &BI); 461 void visitReturnInst(ReturnInst &RI); 462 void visitSwitchInst(SwitchInst &SI); 463 void visitIndirectBrInst(IndirectBrInst &BI); 464 void visitSelectInst(SelectInst &SI); 465 void visitUserOp1(Instruction &I); 466 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 467 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); 468 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 469 void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII); 470 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 471 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 472 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 473 void visitFenceInst(FenceInst &FI); 474 void visitAllocaInst(AllocaInst &AI); 475 void visitExtractValueInst(ExtractValueInst &EVI); 476 void visitInsertValueInst(InsertValueInst &IVI); 477 void visitEHPadPredecessors(Instruction &I); 478 void visitLandingPadInst(LandingPadInst &LPI); 479 void visitResumeInst(ResumeInst &RI); 480 void visitCatchPadInst(CatchPadInst &CPI); 481 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 482 void visitCleanupPadInst(CleanupPadInst &CPI); 483 void visitFuncletPadInst(FuncletPadInst &FPI); 484 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 485 void visitCleanupReturnInst(CleanupReturnInst &CRI); 486 487 void verifyCallSite(CallSite CS); 488 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal); 489 void verifySwiftErrorValue(const Value *SwiftErrorVal); 490 void verifyMustTailCall(CallInst &CI); 491 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 492 unsigned ArgNo, std::string &Suffix); 493 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 494 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 495 const Value *V); 496 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 497 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 498 const Value *V); 499 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 500 501 void visitConstantExprsRecursively(const Constant *EntryC); 502 void visitConstantExpr(const ConstantExpr *CE); 503 void verifyStatepoint(ImmutableCallSite CS); 504 void verifyFrameRecoverIndices(); 505 void verifySiblingFuncletUnwinds(); 506 507 void verifyFragmentExpression(const DbgInfoIntrinsic &I); 508 template <typename ValueOrMetadata> 509 void verifyFragmentExpression(const DIVariable &V, 510 DIExpression::FragmentInfo Fragment, 511 ValueOrMetadata *Desc); 512 void verifyFnArgs(const DbgInfoIntrinsic &I); 513 514 /// Module-level debug info verification... 515 void verifyCompileUnits(); 516 517 /// Module-level verification that all @llvm.experimental.deoptimize 518 /// declarations share the same calling convention. 519 void verifyDeoptimizeCallingConvs(); 520 }; 521 522 } // end anonymous namespace 523 524 /// We know that cond should be true, if not print an error message. 525 #define Assert(C, ...) \ 526 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 527 528 /// We know that a debug info condition should be true, if not print 529 /// an error message. 530 #define AssertDI(C, ...) \ 531 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 532 533 void Verifier::visit(Instruction &I) { 534 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 535 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 536 InstVisitor<Verifier>::visit(I); 537 } 538 539 // Helper to recursively iterate over indirect users. By 540 // returning false, the callback can ask to stop recursing 541 // further. 542 static void forEachUser(const Value *User, 543 SmallPtrSet<const Value *, 32> &Visited, 544 llvm::function_ref<bool(const Value *)> Callback) { 545 if (!Visited.insert(User).second) 546 return; 547 for (const Value *TheNextUser : User->materialized_users()) 548 if (Callback(TheNextUser)) 549 forEachUser(TheNextUser, Visited, Callback); 550 } 551 552 void Verifier::visitGlobalValue(const GlobalValue &GV) { 553 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 554 "Global is external, but doesn't have external or weak linkage!", &GV); 555 556 Assert(GV.getAlignment() <= Value::MaximumAlignment, 557 "huge alignment values are unsupported", &GV); 558 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 559 "Only global variables can have appending linkage!", &GV); 560 561 if (GV.hasAppendingLinkage()) { 562 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 563 Assert(GVar && GVar->getValueType()->isArrayTy(), 564 "Only global arrays can have appending linkage!", GVar); 565 } 566 567 if (GV.isDeclarationForLinker()) 568 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 569 570 if (GV.hasDLLImportStorageClass()) { 571 Assert(!GV.isDSOLocal(), 572 "GlobalValue with DLLImport Storage is dso_local!", &GV); 573 574 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 575 GV.hasAvailableExternallyLinkage(), 576 "Global is marked as dllimport, but not external", &GV); 577 } 578 579 if (GV.hasLocalLinkage()) 580 Assert(GV.isDSOLocal(), 581 "GlobalValue with private or internal linkage must be dso_local!", 582 &GV); 583 584 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 585 Assert(GV.isDSOLocal(), 586 "GlobalValue with non default visibility must be dso_local!", &GV); 587 588 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 589 if (const Instruction *I = dyn_cast<Instruction>(V)) { 590 if (!I->getParent() || !I->getParent()->getParent()) 591 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 592 I); 593 else if (I->getParent()->getParent()->getParent() != &M) 594 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 595 I->getParent()->getParent(), 596 I->getParent()->getParent()->getParent()); 597 return false; 598 } else if (const Function *F = dyn_cast<Function>(V)) { 599 if (F->getParent() != &M) 600 CheckFailed("Global is used by function in a different module", &GV, &M, 601 F, F->getParent()); 602 return false; 603 } 604 return true; 605 }); 606 } 607 608 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 609 if (GV.hasInitializer()) { 610 Assert(GV.getInitializer()->getType() == GV.getValueType(), 611 "Global variable initializer type does not match global " 612 "variable type!", 613 &GV); 614 // If the global has common linkage, it must have a zero initializer and 615 // cannot be constant. 616 if (GV.hasCommonLinkage()) { 617 Assert(GV.getInitializer()->isNullValue(), 618 "'common' global must have a zero initializer!", &GV); 619 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 620 &GV); 621 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 622 } 623 } 624 625 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 626 GV.getName() == "llvm.global_dtors")) { 627 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 628 "invalid linkage for intrinsic global variable", &GV); 629 // Don't worry about emitting an error for it not being an array, 630 // visitGlobalValue will complain on appending non-array. 631 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 632 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 633 PointerType *FuncPtrTy = 634 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo(); 635 // FIXME: Reject the 2-field form in LLVM 4.0. 636 Assert(STy && 637 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 638 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 639 STy->getTypeAtIndex(1) == FuncPtrTy, 640 "wrong type for intrinsic global variable", &GV); 641 if (STy->getNumElements() == 3) { 642 Type *ETy = STy->getTypeAtIndex(2); 643 Assert(ETy->isPointerTy() && 644 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 645 "wrong type for intrinsic global variable", &GV); 646 } 647 } 648 } 649 650 if (GV.hasName() && (GV.getName() == "llvm.used" || 651 GV.getName() == "llvm.compiler.used")) { 652 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 653 "invalid linkage for intrinsic global variable", &GV); 654 Type *GVType = GV.getValueType(); 655 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 656 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 657 Assert(PTy, "wrong type for intrinsic global variable", &GV); 658 if (GV.hasInitializer()) { 659 const Constant *Init = GV.getInitializer(); 660 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 661 Assert(InitArray, "wrong initalizer for intrinsic global variable", 662 Init); 663 for (Value *Op : InitArray->operands()) { 664 Value *V = Op->stripPointerCastsNoFollowAliases(); 665 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 666 isa<GlobalAlias>(V), 667 "invalid llvm.used member", V); 668 Assert(V->hasName(), "members of llvm.used must be named", V); 669 } 670 } 671 } 672 } 673 674 // Visit any debug info attachments. 675 SmallVector<MDNode *, 1> MDs; 676 GV.getMetadata(LLVMContext::MD_dbg, MDs); 677 for (auto *MD : MDs) { 678 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 679 visitDIGlobalVariableExpression(*GVE); 680 else 681 AssertDI(false, "!dbg attachment of global variable must be a " 682 "DIGlobalVariableExpression"); 683 } 684 685 if (!GV.hasInitializer()) { 686 visitGlobalValue(GV); 687 return; 688 } 689 690 // Walk any aggregate initializers looking for bitcasts between address spaces 691 visitConstantExprsRecursively(GV.getInitializer()); 692 693 visitGlobalValue(GV); 694 } 695 696 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 697 SmallPtrSet<const GlobalAlias*, 4> Visited; 698 Visited.insert(&GA); 699 visitAliaseeSubExpr(Visited, GA, C); 700 } 701 702 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 703 const GlobalAlias &GA, const Constant &C) { 704 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 705 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 706 &GA); 707 708 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 709 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 710 711 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 712 &GA); 713 } else { 714 // Only continue verifying subexpressions of GlobalAliases. 715 // Do not recurse into global initializers. 716 return; 717 } 718 } 719 720 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 721 visitConstantExprsRecursively(CE); 722 723 for (const Use &U : C.operands()) { 724 Value *V = &*U; 725 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 726 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 727 else if (const auto *C2 = dyn_cast<Constant>(V)) 728 visitAliaseeSubExpr(Visited, GA, *C2); 729 } 730 } 731 732 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 733 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 734 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 735 "weak_odr, or external linkage!", 736 &GA); 737 const Constant *Aliasee = GA.getAliasee(); 738 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 739 Assert(GA.getType() == Aliasee->getType(), 740 "Alias and aliasee types should match!", &GA); 741 742 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 743 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 744 745 visitAliaseeSubExpr(GA, *Aliasee); 746 747 visitGlobalValue(GA); 748 } 749 750 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 751 // There used to be various other llvm.dbg.* nodes, but we don't support 752 // upgrading them and we want to reserve the namespace for future uses. 753 if (NMD.getName().startswith("llvm.dbg.")) 754 AssertDI(NMD.getName() == "llvm.dbg.cu", 755 "unrecognized named metadata node in the llvm.dbg namespace", 756 &NMD); 757 for (const MDNode *MD : NMD.operands()) { 758 if (NMD.getName() == "llvm.dbg.cu") 759 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 760 761 if (!MD) 762 continue; 763 764 visitMDNode(*MD); 765 } 766 } 767 768 void Verifier::visitMDNode(const MDNode &MD) { 769 // Only visit each node once. Metadata can be mutually recursive, so this 770 // avoids infinite recursion here, as well as being an optimization. 771 if (!MDNodes.insert(&MD).second) 772 return; 773 774 switch (MD.getMetadataID()) { 775 default: 776 llvm_unreachable("Invalid MDNode subclass"); 777 case Metadata::MDTupleKind: 778 break; 779 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 780 case Metadata::CLASS##Kind: \ 781 visit##CLASS(cast<CLASS>(MD)); \ 782 break; 783 #include "llvm/IR/Metadata.def" 784 } 785 786 for (const Metadata *Op : MD.operands()) { 787 if (!Op) 788 continue; 789 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 790 &MD, Op); 791 if (auto *N = dyn_cast<MDNode>(Op)) { 792 visitMDNode(*N); 793 continue; 794 } 795 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 796 visitValueAsMetadata(*V, nullptr); 797 continue; 798 } 799 } 800 801 // Check these last, so we diagnose problems in operands first. 802 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 803 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 804 } 805 806 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 807 Assert(MD.getValue(), "Expected valid value", &MD); 808 Assert(!MD.getValue()->getType()->isMetadataTy(), 809 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 810 811 auto *L = dyn_cast<LocalAsMetadata>(&MD); 812 if (!L) 813 return; 814 815 Assert(F, "function-local metadata used outside a function", L); 816 817 // If this was an instruction, bb, or argument, verify that it is in the 818 // function that we expect. 819 Function *ActualF = nullptr; 820 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 821 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 822 ActualF = I->getParent()->getParent(); 823 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 824 ActualF = BB->getParent(); 825 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 826 ActualF = A->getParent(); 827 assert(ActualF && "Unimplemented function local metadata case!"); 828 829 Assert(ActualF == F, "function-local metadata used in wrong function", L); 830 } 831 832 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 833 Metadata *MD = MDV.getMetadata(); 834 if (auto *N = dyn_cast<MDNode>(MD)) { 835 visitMDNode(*N); 836 return; 837 } 838 839 // Only visit each node once. Metadata can be mutually recursive, so this 840 // avoids infinite recursion here, as well as being an optimization. 841 if (!MDNodes.insert(MD).second) 842 return; 843 844 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 845 visitValueAsMetadata(*V, F); 846 } 847 848 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 849 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 850 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 851 852 void Verifier::visitDILocation(const DILocation &N) { 853 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 854 "location requires a valid scope", &N, N.getRawScope()); 855 if (auto *IA = N.getRawInlinedAt()) 856 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 857 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 858 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 859 } 860 861 void Verifier::visitGenericDINode(const GenericDINode &N) { 862 AssertDI(N.getTag(), "invalid tag", &N); 863 } 864 865 void Verifier::visitDIScope(const DIScope &N) { 866 if (auto *F = N.getRawFile()) 867 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 868 } 869 870 void Verifier::visitDISubrange(const DISubrange &N) { 871 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 872 auto Count = N.getCount(); 873 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 874 &N); 875 AssertDI(!Count.is<ConstantInt*>() || 876 Count.get<ConstantInt*>()->getSExtValue() >= -1, 877 "invalid subrange count", &N); 878 } 879 880 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 881 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 882 } 883 884 void Verifier::visitDIBasicType(const DIBasicType &N) { 885 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 886 N.getTag() == dwarf::DW_TAG_unspecified_type, 887 "invalid tag", &N); 888 } 889 890 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 891 // Common scope checks. 892 visitDIScope(N); 893 894 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 895 N.getTag() == dwarf::DW_TAG_pointer_type || 896 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 897 N.getTag() == dwarf::DW_TAG_reference_type || 898 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 899 N.getTag() == dwarf::DW_TAG_const_type || 900 N.getTag() == dwarf::DW_TAG_volatile_type || 901 N.getTag() == dwarf::DW_TAG_restrict_type || 902 N.getTag() == dwarf::DW_TAG_atomic_type || 903 N.getTag() == dwarf::DW_TAG_member || 904 N.getTag() == dwarf::DW_TAG_inheritance || 905 N.getTag() == dwarf::DW_TAG_friend, 906 "invalid tag", &N); 907 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 908 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 909 N.getRawExtraData()); 910 } 911 912 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 913 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 914 N.getRawBaseType()); 915 916 if (N.getDWARFAddressSpace()) { 917 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 918 N.getTag() == dwarf::DW_TAG_reference_type, 919 "DWARF address space only applies to pointer or reference types", 920 &N); 921 } 922 } 923 924 /// Detect mutually exclusive flags. 925 static bool hasConflictingReferenceFlags(unsigned Flags) { 926 return ((Flags & DINode::FlagLValueReference) && 927 (Flags & DINode::FlagRValueReference)) || 928 ((Flags & DINode::FlagTypePassByValue) && 929 (Flags & DINode::FlagTypePassByReference)); 930 } 931 932 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 933 auto *Params = dyn_cast<MDTuple>(&RawParams); 934 AssertDI(Params, "invalid template params", &N, &RawParams); 935 for (Metadata *Op : Params->operands()) { 936 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 937 &N, Params, Op); 938 } 939 } 940 941 void Verifier::visitDICompositeType(const DICompositeType &N) { 942 // Common scope checks. 943 visitDIScope(N); 944 945 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 946 N.getTag() == dwarf::DW_TAG_structure_type || 947 N.getTag() == dwarf::DW_TAG_union_type || 948 N.getTag() == dwarf::DW_TAG_enumeration_type || 949 N.getTag() == dwarf::DW_TAG_class_type || 950 N.getTag() == dwarf::DW_TAG_variant_part, 951 "invalid tag", &N); 952 953 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 954 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 955 N.getRawBaseType()); 956 957 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 958 "invalid composite elements", &N, N.getRawElements()); 959 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 960 N.getRawVTableHolder()); 961 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 962 "invalid reference flags", &N); 963 964 if (N.isVector()) { 965 const DINodeArray Elements = N.getElements(); 966 AssertDI(Elements.size() == 1 && 967 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 968 "invalid vector, expected one element of type subrange", &N); 969 } 970 971 if (auto *Params = N.getRawTemplateParams()) 972 visitTemplateParams(N, *Params); 973 974 if (N.getTag() == dwarf::DW_TAG_class_type || 975 N.getTag() == dwarf::DW_TAG_union_type) { 976 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 977 "class/union requires a filename", &N, N.getFile()); 978 } 979 980 if (auto *D = N.getRawDiscriminator()) { 981 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 982 "discriminator can only appear on variant part"); 983 } 984 } 985 986 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 987 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 988 if (auto *Types = N.getRawTypeArray()) { 989 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 990 for (Metadata *Ty : N.getTypeArray()->operands()) { 991 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 992 } 993 } 994 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 995 "invalid reference flags", &N); 996 } 997 998 void Verifier::visitDIFile(const DIFile &N) { 999 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1000 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1001 if (Checksum) { 1002 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1003 "invalid checksum kind", &N); 1004 size_t Size; 1005 switch (Checksum->Kind) { 1006 case DIFile::CSK_MD5: 1007 Size = 32; 1008 break; 1009 case DIFile::CSK_SHA1: 1010 Size = 40; 1011 break; 1012 } 1013 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1014 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1015 "invalid checksum", &N); 1016 } 1017 } 1018 1019 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1020 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1021 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1022 1023 // Don't bother verifying the compilation directory or producer string 1024 // as those could be empty. 1025 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1026 N.getRawFile()); 1027 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1028 N.getFile()); 1029 1030 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1031 "invalid emission kind", &N); 1032 1033 if (auto *Array = N.getRawEnumTypes()) { 1034 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1035 for (Metadata *Op : N.getEnumTypes()->operands()) { 1036 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1037 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1038 "invalid enum type", &N, N.getEnumTypes(), Op); 1039 } 1040 } 1041 if (auto *Array = N.getRawRetainedTypes()) { 1042 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1043 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1044 AssertDI(Op && (isa<DIType>(Op) || 1045 (isa<DISubprogram>(Op) && 1046 !cast<DISubprogram>(Op)->isDefinition())), 1047 "invalid retained type", &N, Op); 1048 } 1049 } 1050 if (auto *Array = N.getRawGlobalVariables()) { 1051 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1052 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1053 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1054 "invalid global variable ref", &N, Op); 1055 } 1056 } 1057 if (auto *Array = N.getRawImportedEntities()) { 1058 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1059 for (Metadata *Op : N.getImportedEntities()->operands()) { 1060 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1061 &N, Op); 1062 } 1063 } 1064 if (auto *Array = N.getRawMacros()) { 1065 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1066 for (Metadata *Op : N.getMacros()->operands()) { 1067 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1068 } 1069 } 1070 CUVisited.insert(&N); 1071 } 1072 1073 void Verifier::visitDISubprogram(const DISubprogram &N) { 1074 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1075 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1076 if (auto *F = N.getRawFile()) 1077 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1078 else 1079 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1080 if (auto *T = N.getRawType()) 1081 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1082 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1083 N.getRawContainingType()); 1084 if (auto *Params = N.getRawTemplateParams()) 1085 visitTemplateParams(N, *Params); 1086 if (auto *S = N.getRawDeclaration()) 1087 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1088 "invalid subprogram declaration", &N, S); 1089 if (auto *RawNode = N.getRawRetainedNodes()) { 1090 auto *Node = dyn_cast<MDTuple>(RawNode); 1091 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1092 for (Metadata *Op : Node->operands()) { 1093 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1094 "invalid retained nodes, expected DILocalVariable or DILabel", 1095 &N, Node, Op); 1096 } 1097 } 1098 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1099 "invalid reference flags", &N); 1100 1101 auto *Unit = N.getRawUnit(); 1102 if (N.isDefinition()) { 1103 // Subprogram definitions (not part of the type hierarchy). 1104 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1105 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1106 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1107 } else { 1108 // Subprogram declarations (part of the type hierarchy). 1109 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1110 } 1111 1112 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1113 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1114 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1115 for (Metadata *Op : ThrownTypes->operands()) 1116 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1117 Op); 1118 } 1119 } 1120 1121 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1122 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1123 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1124 "invalid local scope", &N, N.getRawScope()); 1125 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1126 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1127 } 1128 1129 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1130 visitDILexicalBlockBase(N); 1131 1132 AssertDI(N.getLine() || !N.getColumn(), 1133 "cannot have column info without line info", &N); 1134 } 1135 1136 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1137 visitDILexicalBlockBase(N); 1138 } 1139 1140 void Verifier::visitDINamespace(const DINamespace &N) { 1141 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1142 if (auto *S = N.getRawScope()) 1143 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1144 } 1145 1146 void Verifier::visitDIMacro(const DIMacro &N) { 1147 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1148 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1149 "invalid macinfo type", &N); 1150 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1151 if (!N.getValue().empty()) { 1152 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1153 } 1154 } 1155 1156 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1157 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1158 "invalid macinfo type", &N); 1159 if (auto *F = N.getRawFile()) 1160 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1161 1162 if (auto *Array = N.getRawElements()) { 1163 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1164 for (Metadata *Op : N.getElements()->operands()) { 1165 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1166 } 1167 } 1168 } 1169 1170 void Verifier::visitDIModule(const DIModule &N) { 1171 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1172 AssertDI(!N.getName().empty(), "anonymous module", &N); 1173 } 1174 1175 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1176 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1177 } 1178 1179 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1180 visitDITemplateParameter(N); 1181 1182 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1183 &N); 1184 } 1185 1186 void Verifier::visitDITemplateValueParameter( 1187 const DITemplateValueParameter &N) { 1188 visitDITemplateParameter(N); 1189 1190 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1191 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1192 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1193 "invalid tag", &N); 1194 } 1195 1196 void Verifier::visitDIVariable(const DIVariable &N) { 1197 if (auto *S = N.getRawScope()) 1198 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1199 if (auto *F = N.getRawFile()) 1200 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1201 } 1202 1203 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1204 // Checks common to all variables. 1205 visitDIVariable(N); 1206 1207 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1208 AssertDI(!N.getName().empty(), "missing global variable name", &N); 1209 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1210 AssertDI(N.getType(), "missing global variable type", &N); 1211 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1212 AssertDI(isa<DIDerivedType>(Member), 1213 "invalid static data member declaration", &N, Member); 1214 } 1215 } 1216 1217 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1218 // Checks common to all variables. 1219 visitDIVariable(N); 1220 1221 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1222 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1223 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1224 "local variable requires a valid scope", &N, N.getRawScope()); 1225 } 1226 1227 void Verifier::visitDILabel(const DILabel &N) { 1228 if (auto *S = N.getRawScope()) 1229 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1230 if (auto *F = N.getRawFile()) 1231 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1232 1233 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1234 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1235 "label requires a valid scope", &N, N.getRawScope()); 1236 } 1237 1238 void Verifier::visitDIExpression(const DIExpression &N) { 1239 AssertDI(N.isValid(), "invalid expression", &N); 1240 } 1241 1242 void Verifier::visitDIGlobalVariableExpression( 1243 const DIGlobalVariableExpression &GVE) { 1244 AssertDI(GVE.getVariable(), "missing variable"); 1245 if (auto *Var = GVE.getVariable()) 1246 visitDIGlobalVariable(*Var); 1247 if (auto *Expr = GVE.getExpression()) { 1248 visitDIExpression(*Expr); 1249 if (auto Fragment = Expr->getFragmentInfo()) 1250 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1251 } 1252 } 1253 1254 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1255 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1256 if (auto *T = N.getRawType()) 1257 AssertDI(isType(T), "invalid type ref", &N, T); 1258 if (auto *F = N.getRawFile()) 1259 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1260 } 1261 1262 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1263 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1264 N.getTag() == dwarf::DW_TAG_imported_declaration, 1265 "invalid tag", &N); 1266 if (auto *S = N.getRawScope()) 1267 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1268 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1269 N.getRawEntity()); 1270 } 1271 1272 void Verifier::visitComdat(const Comdat &C) { 1273 // The Module is invalid if the GlobalValue has private linkage. Entities 1274 // with private linkage don't have entries in the symbol table. 1275 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1276 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1277 GV); 1278 } 1279 1280 void Verifier::visitModuleIdents(const Module &M) { 1281 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1282 if (!Idents) 1283 return; 1284 1285 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1286 // Scan each llvm.ident entry and make sure that this requirement is met. 1287 for (const MDNode *N : Idents->operands()) { 1288 Assert(N->getNumOperands() == 1, 1289 "incorrect number of operands in llvm.ident metadata", N); 1290 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1291 ("invalid value for llvm.ident metadata entry operand" 1292 "(the operand should be a string)"), 1293 N->getOperand(0)); 1294 } 1295 } 1296 1297 void Verifier::visitModuleFlags(const Module &M) { 1298 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1299 if (!Flags) return; 1300 1301 // Scan each flag, and track the flags and requirements. 1302 DenseMap<const MDString*, const MDNode*> SeenIDs; 1303 SmallVector<const MDNode*, 16> Requirements; 1304 for (const MDNode *MDN : Flags->operands()) 1305 visitModuleFlag(MDN, SeenIDs, Requirements); 1306 1307 // Validate that the requirements in the module are valid. 1308 for (const MDNode *Requirement : Requirements) { 1309 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1310 const Metadata *ReqValue = Requirement->getOperand(1); 1311 1312 const MDNode *Op = SeenIDs.lookup(Flag); 1313 if (!Op) { 1314 CheckFailed("invalid requirement on flag, flag is not present in module", 1315 Flag); 1316 continue; 1317 } 1318 1319 if (Op->getOperand(2) != ReqValue) { 1320 CheckFailed(("invalid requirement on flag, " 1321 "flag does not have the required value"), 1322 Flag); 1323 continue; 1324 } 1325 } 1326 } 1327 1328 void 1329 Verifier::visitModuleFlag(const MDNode *Op, 1330 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1331 SmallVectorImpl<const MDNode *> &Requirements) { 1332 // Each module flag should have three arguments, the merge behavior (a 1333 // constant int), the flag ID (an MDString), and the value. 1334 Assert(Op->getNumOperands() == 3, 1335 "incorrect number of operands in module flag", Op); 1336 Module::ModFlagBehavior MFB; 1337 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1338 Assert( 1339 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1340 "invalid behavior operand in module flag (expected constant integer)", 1341 Op->getOperand(0)); 1342 Assert(false, 1343 "invalid behavior operand in module flag (unexpected constant)", 1344 Op->getOperand(0)); 1345 } 1346 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1347 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1348 Op->getOperand(1)); 1349 1350 // Sanity check the values for behaviors with additional requirements. 1351 switch (MFB) { 1352 case Module::Error: 1353 case Module::Warning: 1354 case Module::Override: 1355 // These behavior types accept any value. 1356 break; 1357 1358 case Module::Max: { 1359 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1360 "invalid value for 'max' module flag (expected constant integer)", 1361 Op->getOperand(2)); 1362 break; 1363 } 1364 1365 case Module::Require: { 1366 // The value should itself be an MDNode with two operands, a flag ID (an 1367 // MDString), and a value. 1368 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1369 Assert(Value && Value->getNumOperands() == 2, 1370 "invalid value for 'require' module flag (expected metadata pair)", 1371 Op->getOperand(2)); 1372 Assert(isa<MDString>(Value->getOperand(0)), 1373 ("invalid value for 'require' module flag " 1374 "(first value operand should be a string)"), 1375 Value->getOperand(0)); 1376 1377 // Append it to the list of requirements, to check once all module flags are 1378 // scanned. 1379 Requirements.push_back(Value); 1380 break; 1381 } 1382 1383 case Module::Append: 1384 case Module::AppendUnique: { 1385 // These behavior types require the operand be an MDNode. 1386 Assert(isa<MDNode>(Op->getOperand(2)), 1387 "invalid value for 'append'-type module flag " 1388 "(expected a metadata node)", 1389 Op->getOperand(2)); 1390 break; 1391 } 1392 } 1393 1394 // Unless this is a "requires" flag, check the ID is unique. 1395 if (MFB != Module::Require) { 1396 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1397 Assert(Inserted, 1398 "module flag identifiers must be unique (or of 'require' type)", ID); 1399 } 1400 1401 if (ID->getString() == "wchar_size") { 1402 ConstantInt *Value 1403 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1404 Assert(Value, "wchar_size metadata requires constant integer argument"); 1405 } 1406 1407 if (ID->getString() == "Linker Options") { 1408 // If the llvm.linker.options named metadata exists, we assume that the 1409 // bitcode reader has upgraded the module flag. Otherwise the flag might 1410 // have been created by a client directly. 1411 Assert(M.getNamedMetadata("llvm.linker.options"), 1412 "'Linker Options' named metadata no longer supported"); 1413 } 1414 } 1415 1416 /// Return true if this attribute kind only applies to functions. 1417 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1418 switch (Kind) { 1419 case Attribute::NoReturn: 1420 case Attribute::NoCfCheck: 1421 case Attribute::NoUnwind: 1422 case Attribute::NoInline: 1423 case Attribute::AlwaysInline: 1424 case Attribute::OptimizeForSize: 1425 case Attribute::StackProtect: 1426 case Attribute::StackProtectReq: 1427 case Attribute::StackProtectStrong: 1428 case Attribute::SafeStack: 1429 case Attribute::ShadowCallStack: 1430 case Attribute::NoRedZone: 1431 case Attribute::NoImplicitFloat: 1432 case Attribute::Naked: 1433 case Attribute::InlineHint: 1434 case Attribute::StackAlignment: 1435 case Attribute::UWTable: 1436 case Attribute::NonLazyBind: 1437 case Attribute::ReturnsTwice: 1438 case Attribute::SanitizeAddress: 1439 case Attribute::SanitizeHWAddress: 1440 case Attribute::SanitizeThread: 1441 case Attribute::SanitizeMemory: 1442 case Attribute::MinSize: 1443 case Attribute::NoDuplicate: 1444 case Attribute::Builtin: 1445 case Attribute::NoBuiltin: 1446 case Attribute::Cold: 1447 case Attribute::OptForFuzzing: 1448 case Attribute::OptimizeNone: 1449 case Attribute::JumpTable: 1450 case Attribute::Convergent: 1451 case Attribute::ArgMemOnly: 1452 case Attribute::NoRecurse: 1453 case Attribute::InaccessibleMemOnly: 1454 case Attribute::InaccessibleMemOrArgMemOnly: 1455 case Attribute::AllocSize: 1456 case Attribute::Speculatable: 1457 case Attribute::StrictFP: 1458 return true; 1459 default: 1460 break; 1461 } 1462 return false; 1463 } 1464 1465 /// Return true if this is a function attribute that can also appear on 1466 /// arguments. 1467 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1468 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1469 Kind == Attribute::ReadNone; 1470 } 1471 1472 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1473 const Value *V) { 1474 for (Attribute A : Attrs) { 1475 if (A.isStringAttribute()) 1476 continue; 1477 1478 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1479 if (!IsFunction) { 1480 CheckFailed("Attribute '" + A.getAsString() + 1481 "' only applies to functions!", 1482 V); 1483 return; 1484 } 1485 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1486 CheckFailed("Attribute '" + A.getAsString() + 1487 "' does not apply to functions!", 1488 V); 1489 return; 1490 } 1491 } 1492 } 1493 1494 // VerifyParameterAttrs - Check the given attributes for an argument or return 1495 // value of the specified type. The value V is printed in error messages. 1496 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1497 const Value *V) { 1498 if (!Attrs.hasAttributes()) 1499 return; 1500 1501 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1502 1503 // Check for mutually incompatible attributes. Only inreg is compatible with 1504 // sret. 1505 unsigned AttrCount = 0; 1506 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1507 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1508 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1509 Attrs.hasAttribute(Attribute::InReg); 1510 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1511 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1512 "and 'sret' are incompatible!", 1513 V); 1514 1515 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1516 Attrs.hasAttribute(Attribute::ReadOnly)), 1517 "Attributes " 1518 "'inalloca and readonly' are incompatible!", 1519 V); 1520 1521 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1522 Attrs.hasAttribute(Attribute::Returned)), 1523 "Attributes " 1524 "'sret and returned' are incompatible!", 1525 V); 1526 1527 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1528 Attrs.hasAttribute(Attribute::SExt)), 1529 "Attributes " 1530 "'zeroext and signext' are incompatible!", 1531 V); 1532 1533 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1534 Attrs.hasAttribute(Attribute::ReadOnly)), 1535 "Attributes " 1536 "'readnone and readonly' are incompatible!", 1537 V); 1538 1539 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1540 Attrs.hasAttribute(Attribute::WriteOnly)), 1541 "Attributes " 1542 "'readnone and writeonly' are incompatible!", 1543 V); 1544 1545 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1546 Attrs.hasAttribute(Attribute::WriteOnly)), 1547 "Attributes " 1548 "'readonly and writeonly' are incompatible!", 1549 V); 1550 1551 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1552 Attrs.hasAttribute(Attribute::AlwaysInline)), 1553 "Attributes " 1554 "'noinline and alwaysinline' are incompatible!", 1555 V); 1556 1557 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1558 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1559 "Wrong types for attribute: " + 1560 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1561 V); 1562 1563 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1564 SmallPtrSet<Type*, 4> Visited; 1565 if (!PTy->getElementType()->isSized(&Visited)) { 1566 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1567 !Attrs.hasAttribute(Attribute::InAlloca), 1568 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1569 V); 1570 } 1571 if (!isa<PointerType>(PTy->getElementType())) 1572 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1573 "Attribute 'swifterror' only applies to parameters " 1574 "with pointer to pointer type!", 1575 V); 1576 } else { 1577 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1578 "Attribute 'byval' only applies to parameters with pointer type!", 1579 V); 1580 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1581 "Attribute 'swifterror' only applies to parameters " 1582 "with pointer type!", 1583 V); 1584 } 1585 } 1586 1587 // Check parameter attributes against a function type. 1588 // The value V is printed in error messages. 1589 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1590 const Value *V) { 1591 if (Attrs.isEmpty()) 1592 return; 1593 1594 bool SawNest = false; 1595 bool SawReturned = false; 1596 bool SawSRet = false; 1597 bool SawSwiftSelf = false; 1598 bool SawSwiftError = false; 1599 1600 // Verify return value attributes. 1601 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1602 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1603 !RetAttrs.hasAttribute(Attribute::Nest) && 1604 !RetAttrs.hasAttribute(Attribute::StructRet) && 1605 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1606 !RetAttrs.hasAttribute(Attribute::Returned) && 1607 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1608 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1609 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1610 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1611 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1612 "values!", 1613 V); 1614 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1615 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1616 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1617 "Attribute '" + RetAttrs.getAsString() + 1618 "' does not apply to function returns", 1619 V); 1620 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1621 1622 // Verify parameter attributes. 1623 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1624 Type *Ty = FT->getParamType(i); 1625 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1626 1627 verifyParameterAttrs(ArgAttrs, Ty, V); 1628 1629 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1630 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1631 SawNest = true; 1632 } 1633 1634 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1635 Assert(!SawReturned, "More than one parameter has attribute returned!", 1636 V); 1637 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1638 "Incompatible argument and return types for 'returned' attribute", 1639 V); 1640 SawReturned = true; 1641 } 1642 1643 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1644 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1645 Assert(i == 0 || i == 1, 1646 "Attribute 'sret' is not on first or second parameter!", V); 1647 SawSRet = true; 1648 } 1649 1650 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1651 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1652 SawSwiftSelf = true; 1653 } 1654 1655 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1656 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1657 V); 1658 SawSwiftError = true; 1659 } 1660 1661 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1662 Assert(i == FT->getNumParams() - 1, 1663 "inalloca isn't on the last parameter!", V); 1664 } 1665 } 1666 1667 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1668 return; 1669 1670 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1671 1672 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1673 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1674 "Attributes 'readnone and readonly' are incompatible!", V); 1675 1676 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1677 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1678 "Attributes 'readnone and writeonly' are incompatible!", V); 1679 1680 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1681 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1682 "Attributes 'readonly and writeonly' are incompatible!", V); 1683 1684 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1685 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1686 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1687 "incompatible!", 1688 V); 1689 1690 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1691 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1692 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1693 1694 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1695 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1696 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1697 1698 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1699 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1700 "Attribute 'optnone' requires 'noinline'!", V); 1701 1702 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1703 "Attributes 'optsize and optnone' are incompatible!", V); 1704 1705 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1706 "Attributes 'minsize and optnone' are incompatible!", V); 1707 } 1708 1709 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1710 const GlobalValue *GV = cast<GlobalValue>(V); 1711 Assert(GV->hasGlobalUnnamedAddr(), 1712 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1713 } 1714 1715 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1716 std::pair<unsigned, Optional<unsigned>> Args = 1717 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1718 1719 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1720 if (ParamNo >= FT->getNumParams()) { 1721 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1722 return false; 1723 } 1724 1725 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1726 CheckFailed("'allocsize' " + Name + 1727 " argument must refer to an integer parameter", 1728 V); 1729 return false; 1730 } 1731 1732 return true; 1733 }; 1734 1735 if (!CheckParam("element size", Args.first)) 1736 return; 1737 1738 if (Args.second && !CheckParam("number of elements", *Args.second)) 1739 return; 1740 } 1741 } 1742 1743 void Verifier::verifyFunctionMetadata( 1744 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1745 for (const auto &Pair : MDs) { 1746 if (Pair.first == LLVMContext::MD_prof) { 1747 MDNode *MD = Pair.second; 1748 Assert(MD->getNumOperands() >= 2, 1749 "!prof annotations should have no less than 2 operands", MD); 1750 1751 // Check first operand. 1752 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1753 MD); 1754 Assert(isa<MDString>(MD->getOperand(0)), 1755 "expected string with name of the !prof annotation", MD); 1756 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1757 StringRef ProfName = MDS->getString(); 1758 Assert(ProfName.equals("function_entry_count") || 1759 ProfName.equals("synthetic_function_entry_count"), 1760 "first operand should be 'function_entry_count'" 1761 " or 'synthetic_function_entry_count'", 1762 MD); 1763 1764 // Check second operand. 1765 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1766 MD); 1767 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1768 "expected integer argument to function_entry_count", MD); 1769 } 1770 } 1771 } 1772 1773 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1774 if (!ConstantExprVisited.insert(EntryC).second) 1775 return; 1776 1777 SmallVector<const Constant *, 16> Stack; 1778 Stack.push_back(EntryC); 1779 1780 while (!Stack.empty()) { 1781 const Constant *C = Stack.pop_back_val(); 1782 1783 // Check this constant expression. 1784 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1785 visitConstantExpr(CE); 1786 1787 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1788 // Global Values get visited separately, but we do need to make sure 1789 // that the global value is in the correct module 1790 Assert(GV->getParent() == &M, "Referencing global in another module!", 1791 EntryC, &M, GV, GV->getParent()); 1792 continue; 1793 } 1794 1795 // Visit all sub-expressions. 1796 for (const Use &U : C->operands()) { 1797 const auto *OpC = dyn_cast<Constant>(U); 1798 if (!OpC) 1799 continue; 1800 if (!ConstantExprVisited.insert(OpC).second) 1801 continue; 1802 Stack.push_back(OpC); 1803 } 1804 } 1805 } 1806 1807 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1808 if (CE->getOpcode() == Instruction::BitCast) 1809 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1810 CE->getType()), 1811 "Invalid bitcast", CE); 1812 1813 if (CE->getOpcode() == Instruction::IntToPtr || 1814 CE->getOpcode() == Instruction::PtrToInt) { 1815 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1816 ? CE->getType() 1817 : CE->getOperand(0)->getType(); 1818 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1819 ? "inttoptr not supported for non-integral pointers" 1820 : "ptrtoint not supported for non-integral pointers"; 1821 Assert( 1822 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1823 Msg); 1824 } 1825 } 1826 1827 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1828 // There shouldn't be more attribute sets than there are parameters plus the 1829 // function and return value. 1830 return Attrs.getNumAttrSets() <= Params + 2; 1831 } 1832 1833 /// Verify that statepoint intrinsic is well formed. 1834 void Verifier::verifyStatepoint(ImmutableCallSite CS) { 1835 assert(CS.getCalledFunction() && 1836 CS.getCalledFunction()->getIntrinsicID() == 1837 Intrinsic::experimental_gc_statepoint); 1838 1839 const Instruction &CI = *CS.getInstruction(); 1840 1841 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && 1842 !CS.onlyAccessesArgMemory(), 1843 "gc.statepoint must read and write all memory to preserve " 1844 "reordering restrictions required by safepoint semantics", 1845 &CI); 1846 1847 const Value *IDV = CS.getArgument(0); 1848 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", 1849 &CI); 1850 1851 const Value *NumPatchBytesV = CS.getArgument(1); 1852 Assert(isa<ConstantInt>(NumPatchBytesV), 1853 "gc.statepoint number of patchable bytes must be a constant integer", 1854 &CI); 1855 const int64_t NumPatchBytes = 1856 cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); 1857 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1858 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " 1859 "positive", 1860 &CI); 1861 1862 const Value *Target = CS.getArgument(2); 1863 auto *PT = dyn_cast<PointerType>(Target->getType()); 1864 Assert(PT && PT->getElementType()->isFunctionTy(), 1865 "gc.statepoint callee must be of function pointer type", &CI, Target); 1866 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1867 1868 const Value *NumCallArgsV = CS.getArgument(3); 1869 Assert(isa<ConstantInt>(NumCallArgsV), 1870 "gc.statepoint number of arguments to underlying call " 1871 "must be constant integer", 1872 &CI); 1873 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); 1874 Assert(NumCallArgs >= 0, 1875 "gc.statepoint number of arguments to underlying call " 1876 "must be positive", 1877 &CI); 1878 const int NumParams = (int)TargetFuncType->getNumParams(); 1879 if (TargetFuncType->isVarArg()) { 1880 Assert(NumCallArgs >= NumParams, 1881 "gc.statepoint mismatch in number of vararg call args", &CI); 1882 1883 // TODO: Remove this limitation 1884 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1885 "gc.statepoint doesn't support wrapping non-void " 1886 "vararg functions yet", 1887 &CI); 1888 } else 1889 Assert(NumCallArgs == NumParams, 1890 "gc.statepoint mismatch in number of call args", &CI); 1891 1892 const Value *FlagsV = CS.getArgument(4); 1893 Assert(isa<ConstantInt>(FlagsV), 1894 "gc.statepoint flags must be constant integer", &CI); 1895 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); 1896 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1897 "unknown flag used in gc.statepoint flags argument", &CI); 1898 1899 // Verify that the types of the call parameter arguments match 1900 // the type of the wrapped callee. 1901 for (int i = 0; i < NumParams; i++) { 1902 Type *ParamType = TargetFuncType->getParamType(i); 1903 Type *ArgType = CS.getArgument(5 + i)->getType(); 1904 Assert(ArgType == ParamType, 1905 "gc.statepoint call argument does not match wrapped " 1906 "function type", 1907 &CI); 1908 } 1909 1910 const int EndCallArgsInx = 4 + NumCallArgs; 1911 1912 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); 1913 Assert(isa<ConstantInt>(NumTransitionArgsV), 1914 "gc.statepoint number of transition arguments " 1915 "must be constant integer", 1916 &CI); 1917 const int NumTransitionArgs = 1918 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1919 Assert(NumTransitionArgs >= 0, 1920 "gc.statepoint number of transition arguments must be positive", &CI); 1921 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1922 1923 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); 1924 Assert(isa<ConstantInt>(NumDeoptArgsV), 1925 "gc.statepoint number of deoptimization arguments " 1926 "must be constant integer", 1927 &CI); 1928 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 1929 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " 1930 "must be positive", 1931 &CI); 1932 1933 const int ExpectedNumArgs = 1934 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 1935 Assert(ExpectedNumArgs <= (int)CS.arg_size(), 1936 "gc.statepoint too few arguments according to length fields", &CI); 1937 1938 // Check that the only uses of this gc.statepoint are gc.result or 1939 // gc.relocate calls which are tied to this statepoint and thus part 1940 // of the same statepoint sequence 1941 for (const User *U : CI.users()) { 1942 const CallInst *Call = dyn_cast<const CallInst>(U); 1943 Assert(Call, "illegal use of statepoint token", &CI, U); 1944 if (!Call) continue; 1945 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call), 1946 "gc.result or gc.relocate are the only value uses " 1947 "of a gc.statepoint", 1948 &CI, U); 1949 if (isa<GCResultInst>(Call)) { 1950 Assert(Call->getArgOperand(0) == &CI, 1951 "gc.result connected to wrong gc.statepoint", &CI, Call); 1952 } else if (isa<GCRelocateInst>(Call)) { 1953 Assert(Call->getArgOperand(0) == &CI, 1954 "gc.relocate connected to wrong gc.statepoint", &CI, Call); 1955 } 1956 } 1957 1958 // Note: It is legal for a single derived pointer to be listed multiple 1959 // times. It's non-optimal, but it is legal. It can also happen after 1960 // insertion if we strip a bitcast away. 1961 // Note: It is really tempting to check that each base is relocated and 1962 // that a derived pointer is never reused as a base pointer. This turns 1963 // out to be problematic since optimizations run after safepoint insertion 1964 // can recognize equality properties that the insertion logic doesn't know 1965 // about. See example statepoint.ll in the verifier subdirectory 1966 } 1967 1968 void Verifier::verifyFrameRecoverIndices() { 1969 for (auto &Counts : FrameEscapeInfo) { 1970 Function *F = Counts.first; 1971 unsigned EscapedObjectCount = Counts.second.first; 1972 unsigned MaxRecoveredIndex = Counts.second.second; 1973 Assert(MaxRecoveredIndex <= EscapedObjectCount, 1974 "all indices passed to llvm.localrecover must be less than the " 1975 "number of arguments passed ot llvm.localescape in the parent " 1976 "function", 1977 F); 1978 } 1979 } 1980 1981 static Instruction *getSuccPad(TerminatorInst *Terminator) { 1982 BasicBlock *UnwindDest; 1983 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 1984 UnwindDest = II->getUnwindDest(); 1985 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 1986 UnwindDest = CSI->getUnwindDest(); 1987 else 1988 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 1989 return UnwindDest->getFirstNonPHI(); 1990 } 1991 1992 void Verifier::verifySiblingFuncletUnwinds() { 1993 SmallPtrSet<Instruction *, 8> Visited; 1994 SmallPtrSet<Instruction *, 8> Active; 1995 for (const auto &Pair : SiblingFuncletInfo) { 1996 Instruction *PredPad = Pair.first; 1997 if (Visited.count(PredPad)) 1998 continue; 1999 Active.insert(PredPad); 2000 TerminatorInst *Terminator = Pair.second; 2001 do { 2002 Instruction *SuccPad = getSuccPad(Terminator); 2003 if (Active.count(SuccPad)) { 2004 // Found a cycle; report error 2005 Instruction *CyclePad = SuccPad; 2006 SmallVector<Instruction *, 8> CycleNodes; 2007 do { 2008 CycleNodes.push_back(CyclePad); 2009 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2010 if (CycleTerminator != CyclePad) 2011 CycleNodes.push_back(CycleTerminator); 2012 CyclePad = getSuccPad(CycleTerminator); 2013 } while (CyclePad != SuccPad); 2014 Assert(false, "EH pads can't handle each other's exceptions", 2015 ArrayRef<Instruction *>(CycleNodes)); 2016 } 2017 // Don't re-walk a node we've already checked 2018 if (!Visited.insert(SuccPad).second) 2019 break; 2020 // Walk to this successor if it has a map entry. 2021 PredPad = SuccPad; 2022 auto TermI = SiblingFuncletInfo.find(PredPad); 2023 if (TermI == SiblingFuncletInfo.end()) 2024 break; 2025 Terminator = TermI->second; 2026 Active.insert(PredPad); 2027 } while (true); 2028 // Each node only has one successor, so we've walked all the active 2029 // nodes' successors. 2030 Active.clear(); 2031 } 2032 } 2033 2034 // visitFunction - Verify that a function is ok. 2035 // 2036 void Verifier::visitFunction(const Function &F) { 2037 visitGlobalValue(F); 2038 2039 // Check function arguments. 2040 FunctionType *FT = F.getFunctionType(); 2041 unsigned NumArgs = F.arg_size(); 2042 2043 Assert(&Context == &F.getContext(), 2044 "Function context does not match Module context!", &F); 2045 2046 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2047 Assert(FT->getNumParams() == NumArgs, 2048 "# formal arguments must match # of arguments for function type!", &F, 2049 FT); 2050 Assert(F.getReturnType()->isFirstClassType() || 2051 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2052 "Functions cannot return aggregate values!", &F); 2053 2054 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2055 "Invalid struct return type!", &F); 2056 2057 AttributeList Attrs = F.getAttributes(); 2058 2059 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2060 "Attribute after last parameter!", &F); 2061 2062 // Check function attributes. 2063 verifyFunctionAttrs(FT, Attrs, &F); 2064 2065 // On function declarations/definitions, we do not support the builtin 2066 // attribute. We do not check this in VerifyFunctionAttrs since that is 2067 // checking for Attributes that can/can not ever be on functions. 2068 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2069 "Attribute 'builtin' can only be applied to a callsite.", &F); 2070 2071 // Check that this function meets the restrictions on this calling convention. 2072 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2073 // restrictions can be lifted. 2074 switch (F.getCallingConv()) { 2075 default: 2076 case CallingConv::C: 2077 break; 2078 case CallingConv::AMDGPU_KERNEL: 2079 case CallingConv::SPIR_KERNEL: 2080 Assert(F.getReturnType()->isVoidTy(), 2081 "Calling convention requires void return type", &F); 2082 LLVM_FALLTHROUGH; 2083 case CallingConv::AMDGPU_VS: 2084 case CallingConv::AMDGPU_HS: 2085 case CallingConv::AMDGPU_GS: 2086 case CallingConv::AMDGPU_PS: 2087 case CallingConv::AMDGPU_CS: 2088 Assert(!F.hasStructRetAttr(), 2089 "Calling convention does not allow sret", &F); 2090 LLVM_FALLTHROUGH; 2091 case CallingConv::Fast: 2092 case CallingConv::Cold: 2093 case CallingConv::Intel_OCL_BI: 2094 case CallingConv::PTX_Kernel: 2095 case CallingConv::PTX_Device: 2096 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2097 "perfect forwarding!", 2098 &F); 2099 break; 2100 } 2101 2102 bool isLLVMdotName = F.getName().size() >= 5 && 2103 F.getName().substr(0, 5) == "llvm."; 2104 2105 // Check that the argument values match the function type for this function... 2106 unsigned i = 0; 2107 for (const Argument &Arg : F.args()) { 2108 Assert(Arg.getType() == FT->getParamType(i), 2109 "Argument value does not match function argument type!", &Arg, 2110 FT->getParamType(i)); 2111 Assert(Arg.getType()->isFirstClassType(), 2112 "Function arguments must have first-class types!", &Arg); 2113 if (!isLLVMdotName) { 2114 Assert(!Arg.getType()->isMetadataTy(), 2115 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2116 Assert(!Arg.getType()->isTokenTy(), 2117 "Function takes token but isn't an intrinsic", &Arg, &F); 2118 } 2119 2120 // Check that swifterror argument is only used by loads and stores. 2121 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2122 verifySwiftErrorValue(&Arg); 2123 } 2124 ++i; 2125 } 2126 2127 if (!isLLVMdotName) 2128 Assert(!F.getReturnType()->isTokenTy(), 2129 "Functions returns a token but isn't an intrinsic", &F); 2130 2131 // Get the function metadata attachments. 2132 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2133 F.getAllMetadata(MDs); 2134 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2135 verifyFunctionMetadata(MDs); 2136 2137 // Check validity of the personality function 2138 if (F.hasPersonalityFn()) { 2139 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2140 if (Per) 2141 Assert(Per->getParent() == F.getParent(), 2142 "Referencing personality function in another module!", 2143 &F, F.getParent(), Per, Per->getParent()); 2144 } 2145 2146 if (F.isMaterializable()) { 2147 // Function has a body somewhere we can't see. 2148 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2149 MDs.empty() ? nullptr : MDs.front().second); 2150 } else if (F.isDeclaration()) { 2151 for (const auto &I : MDs) { 2152 AssertDI(I.first != LLVMContext::MD_dbg, 2153 "function declaration may not have a !dbg attachment", &F); 2154 Assert(I.first != LLVMContext::MD_prof, 2155 "function declaration may not have a !prof attachment", &F); 2156 2157 // Verify the metadata itself. 2158 visitMDNode(*I.second); 2159 } 2160 Assert(!F.hasPersonalityFn(), 2161 "Function declaration shouldn't have a personality routine", &F); 2162 } else { 2163 // Verify that this function (which has a body) is not named "llvm.*". It 2164 // is not legal to define intrinsics. 2165 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2166 2167 // Check the entry node 2168 const BasicBlock *Entry = &F.getEntryBlock(); 2169 Assert(pred_empty(Entry), 2170 "Entry block to function must not have predecessors!", Entry); 2171 2172 // The address of the entry block cannot be taken, unless it is dead. 2173 if (Entry->hasAddressTaken()) { 2174 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2175 "blockaddress may not be used with the entry block!", Entry); 2176 } 2177 2178 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2179 // Visit metadata attachments. 2180 for (const auto &I : MDs) { 2181 // Verify that the attachment is legal. 2182 switch (I.first) { 2183 default: 2184 break; 2185 case LLVMContext::MD_dbg: { 2186 ++NumDebugAttachments; 2187 AssertDI(NumDebugAttachments == 1, 2188 "function must have a single !dbg attachment", &F, I.second); 2189 AssertDI(isa<DISubprogram>(I.second), 2190 "function !dbg attachment must be a subprogram", &F, I.second); 2191 auto *SP = cast<DISubprogram>(I.second); 2192 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2193 AssertDI(!AttachedTo || AttachedTo == &F, 2194 "DISubprogram attached to more than one function", SP, &F); 2195 AttachedTo = &F; 2196 break; 2197 } 2198 case LLVMContext::MD_prof: 2199 ++NumProfAttachments; 2200 Assert(NumProfAttachments == 1, 2201 "function must have a single !prof attachment", &F, I.second); 2202 break; 2203 } 2204 2205 // Verify the metadata itself. 2206 visitMDNode(*I.second); 2207 } 2208 } 2209 2210 // If this function is actually an intrinsic, verify that it is only used in 2211 // direct call/invokes, never having its "address taken". 2212 // Only do this if the module is materialized, otherwise we don't have all the 2213 // uses. 2214 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2215 const User *U; 2216 if (F.hasAddressTaken(&U)) 2217 Assert(false, "Invalid user of intrinsic instruction!", U); 2218 } 2219 2220 auto *N = F.getSubprogram(); 2221 HasDebugInfo = (N != nullptr); 2222 if (!HasDebugInfo) 2223 return; 2224 2225 // Check that all !dbg attachments lead to back to N (or, at least, another 2226 // subprogram that describes the same function). 2227 // 2228 // FIXME: Check this incrementally while visiting !dbg attachments. 2229 // FIXME: Only check when N is the canonical subprogram for F. 2230 SmallPtrSet<const MDNode *, 32> Seen; 2231 for (auto &BB : F) 2232 for (auto &I : BB) { 2233 // Be careful about using DILocation here since we might be dealing with 2234 // broken code (this is the Verifier after all). 2235 DILocation *DL = 2236 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2237 if (!DL) 2238 continue; 2239 if (!Seen.insert(DL).second) 2240 continue; 2241 2242 DILocalScope *Scope = DL->getInlinedAtScope(); 2243 if (Scope && !Seen.insert(Scope).second) 2244 continue; 2245 2246 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2247 2248 // Scope and SP could be the same MDNode and we don't want to skip 2249 // validation in that case 2250 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2251 continue; 2252 2253 // FIXME: Once N is canonical, check "SP == &N". 2254 AssertDI(SP->describes(&F), 2255 "!dbg attachment points at wrong subprogram for function", N, &F, 2256 &I, DL, Scope, SP); 2257 } 2258 } 2259 2260 // verifyBasicBlock - Verify that a basic block is well formed... 2261 // 2262 void Verifier::visitBasicBlock(BasicBlock &BB) { 2263 InstsInThisBlock.clear(); 2264 2265 // Ensure that basic blocks have terminators! 2266 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2267 2268 // Check constraints that this basic block imposes on all of the PHI nodes in 2269 // it. 2270 if (isa<PHINode>(BB.front())) { 2271 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2272 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2273 llvm::sort(Preds.begin(), Preds.end()); 2274 for (const PHINode &PN : BB.phis()) { 2275 // Ensure that PHI nodes have at least one entry! 2276 Assert(PN.getNumIncomingValues() != 0, 2277 "PHI nodes must have at least one entry. If the block is dead, " 2278 "the PHI should be removed!", 2279 &PN); 2280 Assert(PN.getNumIncomingValues() == Preds.size(), 2281 "PHINode should have one entry for each predecessor of its " 2282 "parent basic block!", 2283 &PN); 2284 2285 // Get and sort all incoming values in the PHI node... 2286 Values.clear(); 2287 Values.reserve(PN.getNumIncomingValues()); 2288 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2289 Values.push_back( 2290 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2291 llvm::sort(Values.begin(), Values.end()); 2292 2293 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2294 // Check to make sure that if there is more than one entry for a 2295 // particular basic block in this PHI node, that the incoming values are 2296 // all identical. 2297 // 2298 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2299 Values[i].second == Values[i - 1].second, 2300 "PHI node has multiple entries for the same basic block with " 2301 "different incoming values!", 2302 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2303 2304 // Check to make sure that the predecessors and PHI node entries are 2305 // matched up. 2306 Assert(Values[i].first == Preds[i], 2307 "PHI node entries do not match predecessors!", &PN, 2308 Values[i].first, Preds[i]); 2309 } 2310 } 2311 } 2312 2313 // Check that all instructions have their parent pointers set up correctly. 2314 for (auto &I : BB) 2315 { 2316 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2317 } 2318 } 2319 2320 void Verifier::visitTerminatorInst(TerminatorInst &I) { 2321 // Ensure that terminators only exist at the end of the basic block. 2322 Assert(&I == I.getParent()->getTerminator(), 2323 "Terminator found in the middle of a basic block!", I.getParent()); 2324 visitInstruction(I); 2325 } 2326 2327 void Verifier::visitBranchInst(BranchInst &BI) { 2328 if (BI.isConditional()) { 2329 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2330 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2331 } 2332 visitTerminatorInst(BI); 2333 } 2334 2335 void Verifier::visitReturnInst(ReturnInst &RI) { 2336 Function *F = RI.getParent()->getParent(); 2337 unsigned N = RI.getNumOperands(); 2338 if (F->getReturnType()->isVoidTy()) 2339 Assert(N == 0, 2340 "Found return instr that returns non-void in Function of void " 2341 "return type!", 2342 &RI, F->getReturnType()); 2343 else 2344 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2345 "Function return type does not match operand " 2346 "type of return inst!", 2347 &RI, F->getReturnType()); 2348 2349 // Check to make sure that the return value has necessary properties for 2350 // terminators... 2351 visitTerminatorInst(RI); 2352 } 2353 2354 void Verifier::visitSwitchInst(SwitchInst &SI) { 2355 // Check to make sure that all of the constants in the switch instruction 2356 // have the same type as the switched-on value. 2357 Type *SwitchTy = SI.getCondition()->getType(); 2358 SmallPtrSet<ConstantInt*, 32> Constants; 2359 for (auto &Case : SI.cases()) { 2360 Assert(Case.getCaseValue()->getType() == SwitchTy, 2361 "Switch constants must all be same type as switch value!", &SI); 2362 Assert(Constants.insert(Case.getCaseValue()).second, 2363 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2364 } 2365 2366 visitTerminatorInst(SI); 2367 } 2368 2369 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2370 Assert(BI.getAddress()->getType()->isPointerTy(), 2371 "Indirectbr operand must have pointer type!", &BI); 2372 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2373 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2374 "Indirectbr destinations must all have pointer type!", &BI); 2375 2376 visitTerminatorInst(BI); 2377 } 2378 2379 void Verifier::visitSelectInst(SelectInst &SI) { 2380 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2381 SI.getOperand(2)), 2382 "Invalid operands for select instruction!", &SI); 2383 2384 Assert(SI.getTrueValue()->getType() == SI.getType(), 2385 "Select values must have same type as select instruction!", &SI); 2386 visitInstruction(SI); 2387 } 2388 2389 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2390 /// a pass, if any exist, it's an error. 2391 /// 2392 void Verifier::visitUserOp1(Instruction &I) { 2393 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2394 } 2395 2396 void Verifier::visitTruncInst(TruncInst &I) { 2397 // Get the source and destination types 2398 Type *SrcTy = I.getOperand(0)->getType(); 2399 Type *DestTy = I.getType(); 2400 2401 // Get the size of the types in bits, we'll need this later 2402 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2403 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2404 2405 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2406 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2407 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2408 "trunc source and destination must both be a vector or neither", &I); 2409 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2410 2411 visitInstruction(I); 2412 } 2413 2414 void Verifier::visitZExtInst(ZExtInst &I) { 2415 // Get the source and destination types 2416 Type *SrcTy = I.getOperand(0)->getType(); 2417 Type *DestTy = I.getType(); 2418 2419 // Get the size of the types in bits, we'll need this later 2420 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2421 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2422 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2423 "zext source and destination must both be a vector or neither", &I); 2424 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2425 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2426 2427 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2428 2429 visitInstruction(I); 2430 } 2431 2432 void Verifier::visitSExtInst(SExtInst &I) { 2433 // Get the source and destination types 2434 Type *SrcTy = I.getOperand(0)->getType(); 2435 Type *DestTy = I.getType(); 2436 2437 // Get the size of the types in bits, we'll need this later 2438 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2439 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2440 2441 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2442 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2443 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2444 "sext source and destination must both be a vector or neither", &I); 2445 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2446 2447 visitInstruction(I); 2448 } 2449 2450 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2451 // Get the source and destination types 2452 Type *SrcTy = I.getOperand(0)->getType(); 2453 Type *DestTy = I.getType(); 2454 // Get the size of the types in bits, we'll need this later 2455 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2456 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2457 2458 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2459 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2460 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2461 "fptrunc source and destination must both be a vector or neither", &I); 2462 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2463 2464 visitInstruction(I); 2465 } 2466 2467 void Verifier::visitFPExtInst(FPExtInst &I) { 2468 // Get the source and destination types 2469 Type *SrcTy = I.getOperand(0)->getType(); 2470 Type *DestTy = I.getType(); 2471 2472 // Get the size of the types in bits, we'll need this later 2473 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2474 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2475 2476 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2477 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2478 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2479 "fpext source and destination must both be a vector or neither", &I); 2480 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2481 2482 visitInstruction(I); 2483 } 2484 2485 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2486 // Get the source and destination types 2487 Type *SrcTy = I.getOperand(0)->getType(); 2488 Type *DestTy = I.getType(); 2489 2490 bool SrcVec = SrcTy->isVectorTy(); 2491 bool DstVec = DestTy->isVectorTy(); 2492 2493 Assert(SrcVec == DstVec, 2494 "UIToFP source and dest must both be vector or scalar", &I); 2495 Assert(SrcTy->isIntOrIntVectorTy(), 2496 "UIToFP source must be integer or integer vector", &I); 2497 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2498 &I); 2499 2500 if (SrcVec && DstVec) 2501 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2502 cast<VectorType>(DestTy)->getNumElements(), 2503 "UIToFP source and dest vector length mismatch", &I); 2504 2505 visitInstruction(I); 2506 } 2507 2508 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2509 // Get the source and destination types 2510 Type *SrcTy = I.getOperand(0)->getType(); 2511 Type *DestTy = I.getType(); 2512 2513 bool SrcVec = SrcTy->isVectorTy(); 2514 bool DstVec = DestTy->isVectorTy(); 2515 2516 Assert(SrcVec == DstVec, 2517 "SIToFP source and dest must both be vector or scalar", &I); 2518 Assert(SrcTy->isIntOrIntVectorTy(), 2519 "SIToFP source must be integer or integer vector", &I); 2520 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2521 &I); 2522 2523 if (SrcVec && DstVec) 2524 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2525 cast<VectorType>(DestTy)->getNumElements(), 2526 "SIToFP source and dest vector length mismatch", &I); 2527 2528 visitInstruction(I); 2529 } 2530 2531 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2532 // Get the source and destination types 2533 Type *SrcTy = I.getOperand(0)->getType(); 2534 Type *DestTy = I.getType(); 2535 2536 bool SrcVec = SrcTy->isVectorTy(); 2537 bool DstVec = DestTy->isVectorTy(); 2538 2539 Assert(SrcVec == DstVec, 2540 "FPToUI source and dest must both be vector or scalar", &I); 2541 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2542 &I); 2543 Assert(DestTy->isIntOrIntVectorTy(), 2544 "FPToUI result must be integer or integer vector", &I); 2545 2546 if (SrcVec && DstVec) 2547 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2548 cast<VectorType>(DestTy)->getNumElements(), 2549 "FPToUI source and dest vector length mismatch", &I); 2550 2551 visitInstruction(I); 2552 } 2553 2554 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2555 // Get the source and destination types 2556 Type *SrcTy = I.getOperand(0)->getType(); 2557 Type *DestTy = I.getType(); 2558 2559 bool SrcVec = SrcTy->isVectorTy(); 2560 bool DstVec = DestTy->isVectorTy(); 2561 2562 Assert(SrcVec == DstVec, 2563 "FPToSI source and dest must both be vector or scalar", &I); 2564 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2565 &I); 2566 Assert(DestTy->isIntOrIntVectorTy(), 2567 "FPToSI result must be integer or integer vector", &I); 2568 2569 if (SrcVec && DstVec) 2570 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2571 cast<VectorType>(DestTy)->getNumElements(), 2572 "FPToSI source and dest vector length mismatch", &I); 2573 2574 visitInstruction(I); 2575 } 2576 2577 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2578 // Get the source and destination types 2579 Type *SrcTy = I.getOperand(0)->getType(); 2580 Type *DestTy = I.getType(); 2581 2582 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2583 2584 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2585 Assert(!DL.isNonIntegralPointerType(PTy), 2586 "ptrtoint not supported for non-integral pointers"); 2587 2588 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2589 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2590 &I); 2591 2592 if (SrcTy->isVectorTy()) { 2593 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2594 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2595 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2596 "PtrToInt Vector width mismatch", &I); 2597 } 2598 2599 visitInstruction(I); 2600 } 2601 2602 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2603 // Get the source and destination types 2604 Type *SrcTy = I.getOperand(0)->getType(); 2605 Type *DestTy = I.getType(); 2606 2607 Assert(SrcTy->isIntOrIntVectorTy(), 2608 "IntToPtr source must be an integral", &I); 2609 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2610 2611 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2612 Assert(!DL.isNonIntegralPointerType(PTy), 2613 "inttoptr not supported for non-integral pointers"); 2614 2615 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2616 &I); 2617 if (SrcTy->isVectorTy()) { 2618 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2619 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2620 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2621 "IntToPtr Vector width mismatch", &I); 2622 } 2623 visitInstruction(I); 2624 } 2625 2626 void Verifier::visitBitCastInst(BitCastInst &I) { 2627 Assert( 2628 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2629 "Invalid bitcast", &I); 2630 visitInstruction(I); 2631 } 2632 2633 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2634 Type *SrcTy = I.getOperand(0)->getType(); 2635 Type *DestTy = I.getType(); 2636 2637 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2638 &I); 2639 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2640 &I); 2641 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2642 "AddrSpaceCast must be between different address spaces", &I); 2643 if (SrcTy->isVectorTy()) 2644 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2645 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2646 visitInstruction(I); 2647 } 2648 2649 /// visitPHINode - Ensure that a PHI node is well formed. 2650 /// 2651 void Verifier::visitPHINode(PHINode &PN) { 2652 // Ensure that the PHI nodes are all grouped together at the top of the block. 2653 // This can be tested by checking whether the instruction before this is 2654 // either nonexistent (because this is begin()) or is a PHI node. If not, 2655 // then there is some other instruction before a PHI. 2656 Assert(&PN == &PN.getParent()->front() || 2657 isa<PHINode>(--BasicBlock::iterator(&PN)), 2658 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2659 2660 // Check that a PHI doesn't yield a Token. 2661 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2662 2663 // Check that all of the values of the PHI node have the same type as the 2664 // result, and that the incoming blocks are really basic blocks. 2665 for (Value *IncValue : PN.incoming_values()) { 2666 Assert(PN.getType() == IncValue->getType(), 2667 "PHI node operands are not the same type as the result!", &PN); 2668 } 2669 2670 // All other PHI node constraints are checked in the visitBasicBlock method. 2671 2672 visitInstruction(PN); 2673 } 2674 2675 void Verifier::verifyCallSite(CallSite CS) { 2676 Instruction *I = CS.getInstruction(); 2677 2678 Assert(CS.getCalledValue()->getType()->isPointerTy(), 2679 "Called function must be a pointer!", I); 2680 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 2681 2682 Assert(FPTy->getElementType()->isFunctionTy(), 2683 "Called function is not pointer to function type!", I); 2684 2685 Assert(FPTy->getElementType() == CS.getFunctionType(), 2686 "Called function is not the same type as the call!", I); 2687 2688 FunctionType *FTy = CS.getFunctionType(); 2689 2690 // Verify that the correct number of arguments are being passed 2691 if (FTy->isVarArg()) 2692 Assert(CS.arg_size() >= FTy->getNumParams(), 2693 "Called function requires more parameters than were provided!", I); 2694 else 2695 Assert(CS.arg_size() == FTy->getNumParams(), 2696 "Incorrect number of arguments passed to called function!", I); 2697 2698 // Verify that all arguments to the call match the function type. 2699 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2700 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), 2701 "Call parameter type does not match function signature!", 2702 CS.getArgument(i), FTy->getParamType(i), I); 2703 2704 AttributeList Attrs = CS.getAttributes(); 2705 2706 Assert(verifyAttributeCount(Attrs, CS.arg_size()), 2707 "Attribute after last parameter!", I); 2708 2709 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2710 // Don't allow speculatable on call sites, unless the underlying function 2711 // declaration is also speculatable. 2712 Function *Callee 2713 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2714 Assert(Callee && Callee->isSpeculatable(), 2715 "speculatable attribute may not apply to call sites", I); 2716 } 2717 2718 // Verify call attributes. 2719 verifyFunctionAttrs(FTy, Attrs, I); 2720 2721 // Conservatively check the inalloca argument. 2722 // We have a bug if we can find that there is an underlying alloca without 2723 // inalloca. 2724 if (CS.hasInAllocaArgument()) { 2725 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 2726 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2727 Assert(AI->isUsedWithInAlloca(), 2728 "inalloca argument for call has mismatched alloca", AI, I); 2729 } 2730 2731 // For each argument of the callsite, if it has the swifterror argument, 2732 // make sure the underlying alloca/parameter it comes from has a swifterror as 2733 // well. 2734 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2735 if (CS.paramHasAttr(i, Attribute::SwiftError)) { 2736 Value *SwiftErrorArg = CS.getArgument(i); 2737 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2738 Assert(AI->isSwiftError(), 2739 "swifterror argument for call has mismatched alloca", AI, I); 2740 continue; 2741 } 2742 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2743 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I); 2744 Assert(ArgI->hasSwiftErrorAttr(), 2745 "swifterror argument for call has mismatched parameter", ArgI, I); 2746 } 2747 2748 if (FTy->isVarArg()) { 2749 // FIXME? is 'nest' even legal here? 2750 bool SawNest = false; 2751 bool SawReturned = false; 2752 2753 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2754 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2755 SawNest = true; 2756 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2757 SawReturned = true; 2758 } 2759 2760 // Check attributes on the varargs part. 2761 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) { 2762 Type *Ty = CS.getArgument(Idx)->getType(); 2763 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2764 verifyParameterAttrs(ArgAttrs, Ty, I); 2765 2766 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2767 Assert(!SawNest, "More than one parameter has attribute nest!", I); 2768 SawNest = true; 2769 } 2770 2771 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2772 Assert(!SawReturned, "More than one parameter has attribute returned!", 2773 I); 2774 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2775 "Incompatible argument and return types for 'returned' " 2776 "attribute", 2777 I); 2778 SawReturned = true; 2779 } 2780 2781 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2782 "Attribute 'sret' cannot be used for vararg call arguments!", I); 2783 2784 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2785 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!", 2786 I); 2787 } 2788 } 2789 2790 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2791 if (CS.getCalledFunction() == nullptr || 2792 !CS.getCalledFunction()->getName().startswith("llvm.")) { 2793 for (Type *ParamTy : FTy->params()) { 2794 Assert(!ParamTy->isMetadataTy(), 2795 "Function has metadata parameter but isn't an intrinsic", I); 2796 Assert(!ParamTy->isTokenTy(), 2797 "Function has token parameter but isn't an intrinsic", I); 2798 } 2799 } 2800 2801 // Verify that indirect calls don't return tokens. 2802 if (CS.getCalledFunction() == nullptr) 2803 Assert(!FTy->getReturnType()->isTokenTy(), 2804 "Return type cannot be token for indirect call!"); 2805 2806 if (Function *F = CS.getCalledFunction()) 2807 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2808 visitIntrinsicCallSite(ID, CS); 2809 2810 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2811 // at most one "gc-transition" operand bundle. 2812 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2813 FoundGCTransitionBundle = false; 2814 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { 2815 OperandBundleUse BU = CS.getOperandBundleAt(i); 2816 uint32_t Tag = BU.getTagID(); 2817 if (Tag == LLVMContext::OB_deopt) { 2818 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); 2819 FoundDeoptBundle = true; 2820 } else if (Tag == LLVMContext::OB_gc_transition) { 2821 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2822 I); 2823 FoundGCTransitionBundle = true; 2824 } else if (Tag == LLVMContext::OB_funclet) { 2825 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); 2826 FoundFuncletBundle = true; 2827 Assert(BU.Inputs.size() == 1, 2828 "Expected exactly one funclet bundle operand", I); 2829 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2830 "Funclet bundle operands should correspond to a FuncletPadInst", 2831 I); 2832 } 2833 } 2834 2835 // Verify that each inlinable callsite of a debug-info-bearing function in a 2836 // debug-info-bearing function has a debug location attached to it. Failure to 2837 // do so causes assertion failures when the inliner sets up inline scope info. 2838 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() && 2839 CS.getCalledFunction()->getSubprogram()) 2840 AssertDI(I->getDebugLoc(), "inlinable function call in a function with " 2841 "debug info must have a !dbg location", 2842 I); 2843 2844 visitInstruction(*I); 2845 } 2846 2847 /// Two types are "congruent" if they are identical, or if they are both pointer 2848 /// types with different pointee types and the same address space. 2849 static bool isTypeCongruent(Type *L, Type *R) { 2850 if (L == R) 2851 return true; 2852 PointerType *PL = dyn_cast<PointerType>(L); 2853 PointerType *PR = dyn_cast<PointerType>(R); 2854 if (!PL || !PR) 2855 return false; 2856 return PL->getAddressSpace() == PR->getAddressSpace(); 2857 } 2858 2859 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 2860 static const Attribute::AttrKind ABIAttrs[] = { 2861 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2862 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2863 Attribute::SwiftError}; 2864 AttrBuilder Copy; 2865 for (auto AK : ABIAttrs) { 2866 if (Attrs.hasParamAttribute(I, AK)) 2867 Copy.addAttribute(AK); 2868 } 2869 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 2870 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 2871 return Copy; 2872 } 2873 2874 void Verifier::verifyMustTailCall(CallInst &CI) { 2875 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 2876 2877 // - The caller and callee prototypes must match. Pointer types of 2878 // parameters or return types may differ in pointee type, but not 2879 // address space. 2880 Function *F = CI.getParent()->getParent(); 2881 FunctionType *CallerTy = F->getFunctionType(); 2882 FunctionType *CalleeTy = CI.getFunctionType(); 2883 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 2884 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 2885 "cannot guarantee tail call due to mismatched parameter counts", 2886 &CI); 2887 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2888 Assert( 2889 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 2890 "cannot guarantee tail call due to mismatched parameter types", &CI); 2891 } 2892 } 2893 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 2894 "cannot guarantee tail call due to mismatched varargs", &CI); 2895 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 2896 "cannot guarantee tail call due to mismatched return types", &CI); 2897 2898 // - The calling conventions of the caller and callee must match. 2899 Assert(F->getCallingConv() == CI.getCallingConv(), 2900 "cannot guarantee tail call due to mismatched calling conv", &CI); 2901 2902 // - All ABI-impacting function attributes, such as sret, byval, inreg, 2903 // returned, and inalloca, must match. 2904 AttributeList CallerAttrs = F->getAttributes(); 2905 AttributeList CalleeAttrs = CI.getAttributes(); 2906 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2907 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 2908 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 2909 Assert(CallerABIAttrs == CalleeABIAttrs, 2910 "cannot guarantee tail call due to mismatched ABI impacting " 2911 "function attributes", 2912 &CI, CI.getOperand(I)); 2913 } 2914 2915 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 2916 // or a pointer bitcast followed by a ret instruction. 2917 // - The ret instruction must return the (possibly bitcasted) value 2918 // produced by the call or void. 2919 Value *RetVal = &CI; 2920 Instruction *Next = CI.getNextNode(); 2921 2922 // Handle the optional bitcast. 2923 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 2924 Assert(BI->getOperand(0) == RetVal, 2925 "bitcast following musttail call must use the call", BI); 2926 RetVal = BI; 2927 Next = BI->getNextNode(); 2928 } 2929 2930 // Check the return. 2931 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 2932 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 2933 &CI); 2934 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 2935 "musttail call result must be returned", Ret); 2936 } 2937 2938 void Verifier::visitCallInst(CallInst &CI) { 2939 verifyCallSite(&CI); 2940 2941 if (CI.isMustTailCall()) 2942 verifyMustTailCall(CI); 2943 } 2944 2945 void Verifier::visitInvokeInst(InvokeInst &II) { 2946 verifyCallSite(&II); 2947 2948 // Verify that the first non-PHI instruction of the unwind destination is an 2949 // exception handling instruction. 2950 Assert( 2951 II.getUnwindDest()->isEHPad(), 2952 "The unwind destination does not have an exception handling instruction!", 2953 &II); 2954 2955 visitTerminatorInst(II); 2956 } 2957 2958 /// visitBinaryOperator - Check that both arguments to the binary operator are 2959 /// of the same type! 2960 /// 2961 void Verifier::visitBinaryOperator(BinaryOperator &B) { 2962 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 2963 "Both operands to a binary operator are not of the same type!", &B); 2964 2965 switch (B.getOpcode()) { 2966 // Check that integer arithmetic operators are only used with 2967 // integral operands. 2968 case Instruction::Add: 2969 case Instruction::Sub: 2970 case Instruction::Mul: 2971 case Instruction::SDiv: 2972 case Instruction::UDiv: 2973 case Instruction::SRem: 2974 case Instruction::URem: 2975 Assert(B.getType()->isIntOrIntVectorTy(), 2976 "Integer arithmetic operators only work with integral types!", &B); 2977 Assert(B.getType() == B.getOperand(0)->getType(), 2978 "Integer arithmetic operators must have same type " 2979 "for operands and result!", 2980 &B); 2981 break; 2982 // Check that floating-point arithmetic operators are only used with 2983 // floating-point operands. 2984 case Instruction::FAdd: 2985 case Instruction::FSub: 2986 case Instruction::FMul: 2987 case Instruction::FDiv: 2988 case Instruction::FRem: 2989 Assert(B.getType()->isFPOrFPVectorTy(), 2990 "Floating-point arithmetic operators only work with " 2991 "floating-point types!", 2992 &B); 2993 Assert(B.getType() == B.getOperand(0)->getType(), 2994 "Floating-point arithmetic operators must have same type " 2995 "for operands and result!", 2996 &B); 2997 break; 2998 // Check that logical operators are only used with integral operands. 2999 case Instruction::And: 3000 case Instruction::Or: 3001 case Instruction::Xor: 3002 Assert(B.getType()->isIntOrIntVectorTy(), 3003 "Logical operators only work with integral types!", &B); 3004 Assert(B.getType() == B.getOperand(0)->getType(), 3005 "Logical operators must have same type for operands and result!", 3006 &B); 3007 break; 3008 case Instruction::Shl: 3009 case Instruction::LShr: 3010 case Instruction::AShr: 3011 Assert(B.getType()->isIntOrIntVectorTy(), 3012 "Shifts only work with integral types!", &B); 3013 Assert(B.getType() == B.getOperand(0)->getType(), 3014 "Shift return type must be same as operands!", &B); 3015 break; 3016 default: 3017 llvm_unreachable("Unknown BinaryOperator opcode!"); 3018 } 3019 3020 visitInstruction(B); 3021 } 3022 3023 void Verifier::visitICmpInst(ICmpInst &IC) { 3024 // Check that the operands are the same type 3025 Type *Op0Ty = IC.getOperand(0)->getType(); 3026 Type *Op1Ty = IC.getOperand(1)->getType(); 3027 Assert(Op0Ty == Op1Ty, 3028 "Both operands to ICmp instruction are not of the same type!", &IC); 3029 // Check that the operands are the right type 3030 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3031 "Invalid operand types for ICmp instruction", &IC); 3032 // Check that the predicate is valid. 3033 Assert(IC.isIntPredicate(), 3034 "Invalid predicate in ICmp instruction!", &IC); 3035 3036 visitInstruction(IC); 3037 } 3038 3039 void Verifier::visitFCmpInst(FCmpInst &FC) { 3040 // Check that the operands are the same type 3041 Type *Op0Ty = FC.getOperand(0)->getType(); 3042 Type *Op1Ty = FC.getOperand(1)->getType(); 3043 Assert(Op0Ty == Op1Ty, 3044 "Both operands to FCmp instruction are not of the same type!", &FC); 3045 // Check that the operands are the right type 3046 Assert(Op0Ty->isFPOrFPVectorTy(), 3047 "Invalid operand types for FCmp instruction", &FC); 3048 // Check that the predicate is valid. 3049 Assert(FC.isFPPredicate(), 3050 "Invalid predicate in FCmp instruction!", &FC); 3051 3052 visitInstruction(FC); 3053 } 3054 3055 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3056 Assert( 3057 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3058 "Invalid extractelement operands!", &EI); 3059 visitInstruction(EI); 3060 } 3061 3062 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3063 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3064 IE.getOperand(2)), 3065 "Invalid insertelement operands!", &IE); 3066 visitInstruction(IE); 3067 } 3068 3069 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3070 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3071 SV.getOperand(2)), 3072 "Invalid shufflevector operands!", &SV); 3073 visitInstruction(SV); 3074 } 3075 3076 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3077 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3078 3079 Assert(isa<PointerType>(TargetTy), 3080 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3081 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3082 3083 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3084 Assert(all_of( 3085 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3086 "GEP indexes must be integers", &GEP); 3087 Type *ElTy = 3088 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3089 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3090 3091 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3092 GEP.getResultElementType() == ElTy, 3093 "GEP is not of right type for indices!", &GEP, ElTy); 3094 3095 if (GEP.getType()->isVectorTy()) { 3096 // Additional checks for vector GEPs. 3097 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3098 if (GEP.getPointerOperandType()->isVectorTy()) 3099 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3100 "Vector GEP result width doesn't match operand's", &GEP); 3101 for (Value *Idx : Idxs) { 3102 Type *IndexTy = Idx->getType(); 3103 if (IndexTy->isVectorTy()) { 3104 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3105 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3106 } 3107 Assert(IndexTy->isIntOrIntVectorTy(), 3108 "All GEP indices should be of integer type"); 3109 } 3110 } 3111 visitInstruction(GEP); 3112 } 3113 3114 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3115 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3116 } 3117 3118 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3119 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3120 "precondition violation"); 3121 3122 unsigned NumOperands = Range->getNumOperands(); 3123 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3124 unsigned NumRanges = NumOperands / 2; 3125 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3126 3127 ConstantRange LastRange(1); // Dummy initial value 3128 for (unsigned i = 0; i < NumRanges; ++i) { 3129 ConstantInt *Low = 3130 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3131 Assert(Low, "The lower limit must be an integer!", Low); 3132 ConstantInt *High = 3133 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3134 Assert(High, "The upper limit must be an integer!", High); 3135 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3136 "Range types must match instruction type!", &I); 3137 3138 APInt HighV = High->getValue(); 3139 APInt LowV = Low->getValue(); 3140 ConstantRange CurRange(LowV, HighV); 3141 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3142 "Range must not be empty!", Range); 3143 if (i != 0) { 3144 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3145 "Intervals are overlapping", Range); 3146 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3147 Range); 3148 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3149 Range); 3150 } 3151 LastRange = ConstantRange(LowV, HighV); 3152 } 3153 if (NumRanges > 2) { 3154 APInt FirstLow = 3155 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3156 APInt FirstHigh = 3157 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3158 ConstantRange FirstRange(FirstLow, FirstHigh); 3159 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3160 "Intervals are overlapping", Range); 3161 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3162 Range); 3163 } 3164 } 3165 3166 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3167 unsigned Size = DL.getTypeSizeInBits(Ty); 3168 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3169 Assert(!(Size & (Size - 1)), 3170 "atomic memory access' operand must have a power-of-two size", Ty, I); 3171 } 3172 3173 void Verifier::visitLoadInst(LoadInst &LI) { 3174 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3175 Assert(PTy, "Load operand must be a pointer.", &LI); 3176 Type *ElTy = LI.getType(); 3177 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3178 "huge alignment values are unsupported", &LI); 3179 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3180 if (LI.isAtomic()) { 3181 Assert(LI.getOrdering() != AtomicOrdering::Release && 3182 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3183 "Load cannot have Release ordering", &LI); 3184 Assert(LI.getAlignment() != 0, 3185 "Atomic load must specify explicit alignment", &LI); 3186 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3187 ElTy->isFloatingPointTy(), 3188 "atomic load operand must have integer, pointer, or floating point " 3189 "type!", 3190 ElTy, &LI); 3191 checkAtomicMemAccessSize(ElTy, &LI); 3192 } else { 3193 Assert(LI.getSyncScopeID() == SyncScope::System, 3194 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3195 } 3196 3197 visitInstruction(LI); 3198 } 3199 3200 void Verifier::visitStoreInst(StoreInst &SI) { 3201 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3202 Assert(PTy, "Store operand must be a pointer.", &SI); 3203 Type *ElTy = PTy->getElementType(); 3204 Assert(ElTy == SI.getOperand(0)->getType(), 3205 "Stored value type does not match pointer operand type!", &SI, ElTy); 3206 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3207 "huge alignment values are unsupported", &SI); 3208 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3209 if (SI.isAtomic()) { 3210 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3211 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3212 "Store cannot have Acquire ordering", &SI); 3213 Assert(SI.getAlignment() != 0, 3214 "Atomic store must specify explicit alignment", &SI); 3215 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 3216 ElTy->isFloatingPointTy(), 3217 "atomic store operand must have integer, pointer, or floating point " 3218 "type!", 3219 ElTy, &SI); 3220 checkAtomicMemAccessSize(ElTy, &SI); 3221 } else { 3222 Assert(SI.getSyncScopeID() == SyncScope::System, 3223 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3224 } 3225 visitInstruction(SI); 3226 } 3227 3228 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3229 void Verifier::verifySwiftErrorCallSite(CallSite CS, 3230 const Value *SwiftErrorVal) { 3231 unsigned Idx = 0; 3232 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 3233 I != E; ++I, ++Idx) { 3234 if (*I == SwiftErrorVal) { 3235 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError), 3236 "swifterror value when used in a callsite should be marked " 3237 "with swifterror attribute", 3238 SwiftErrorVal, CS); 3239 } 3240 } 3241 } 3242 3243 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3244 // Check that swifterror value is only used by loads, stores, or as 3245 // a swifterror argument. 3246 for (const User *U : SwiftErrorVal->users()) { 3247 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3248 isa<InvokeInst>(U), 3249 "swifterror value can only be loaded and stored from, or " 3250 "as a swifterror argument!", 3251 SwiftErrorVal, U); 3252 // If it is used by a store, check it is the second operand. 3253 if (auto StoreI = dyn_cast<StoreInst>(U)) 3254 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3255 "swifterror value should be the second operand when used " 3256 "by stores", SwiftErrorVal, U); 3257 if (auto CallI = dyn_cast<CallInst>(U)) 3258 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal); 3259 if (auto II = dyn_cast<InvokeInst>(U)) 3260 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal); 3261 } 3262 } 3263 3264 void Verifier::visitAllocaInst(AllocaInst &AI) { 3265 SmallPtrSet<Type*, 4> Visited; 3266 PointerType *PTy = AI.getType(); 3267 // TODO: Relax this restriction? 3268 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3269 "Allocation instruction pointer not in the stack address space!", 3270 &AI); 3271 Assert(AI.getAllocatedType()->isSized(&Visited), 3272 "Cannot allocate unsized type", &AI); 3273 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3274 "Alloca array size must have integer type", &AI); 3275 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3276 "huge alignment values are unsupported", &AI); 3277 3278 if (AI.isSwiftError()) { 3279 verifySwiftErrorValue(&AI); 3280 } 3281 3282 visitInstruction(AI); 3283 } 3284 3285 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3286 3287 // FIXME: more conditions??? 3288 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3289 "cmpxchg instructions must be atomic.", &CXI); 3290 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3291 "cmpxchg instructions must be atomic.", &CXI); 3292 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3293 "cmpxchg instructions cannot be unordered.", &CXI); 3294 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3295 "cmpxchg instructions cannot be unordered.", &CXI); 3296 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3297 "cmpxchg instructions failure argument shall be no stronger than the " 3298 "success argument", 3299 &CXI); 3300 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3301 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3302 "cmpxchg failure ordering cannot include release semantics", &CXI); 3303 3304 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3305 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3306 Type *ElTy = PTy->getElementType(); 3307 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(), 3308 "cmpxchg operand must have integer or pointer type", 3309 ElTy, &CXI); 3310 checkAtomicMemAccessSize(ElTy, &CXI); 3311 Assert(ElTy == CXI.getOperand(1)->getType(), 3312 "Expected value type does not match pointer operand type!", &CXI, 3313 ElTy); 3314 Assert(ElTy == CXI.getOperand(2)->getType(), 3315 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3316 visitInstruction(CXI); 3317 } 3318 3319 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3320 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3321 "atomicrmw instructions must be atomic.", &RMWI); 3322 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3323 "atomicrmw instructions cannot be unordered.", &RMWI); 3324 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3325 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3326 Type *ElTy = PTy->getElementType(); 3327 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", 3328 &RMWI, ElTy); 3329 checkAtomicMemAccessSize(ElTy, &RMWI); 3330 Assert(ElTy == RMWI.getOperand(1)->getType(), 3331 "Argument value type does not match pointer operand type!", &RMWI, 3332 ElTy); 3333 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 3334 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 3335 "Invalid binary operation!", &RMWI); 3336 visitInstruction(RMWI); 3337 } 3338 3339 void Verifier::visitFenceInst(FenceInst &FI) { 3340 const AtomicOrdering Ordering = FI.getOrdering(); 3341 Assert(Ordering == AtomicOrdering::Acquire || 3342 Ordering == AtomicOrdering::Release || 3343 Ordering == AtomicOrdering::AcquireRelease || 3344 Ordering == AtomicOrdering::SequentiallyConsistent, 3345 "fence instructions may only have acquire, release, acq_rel, or " 3346 "seq_cst ordering.", 3347 &FI); 3348 visitInstruction(FI); 3349 } 3350 3351 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3352 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3353 EVI.getIndices()) == EVI.getType(), 3354 "Invalid ExtractValueInst operands!", &EVI); 3355 3356 visitInstruction(EVI); 3357 } 3358 3359 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3360 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3361 IVI.getIndices()) == 3362 IVI.getOperand(1)->getType(), 3363 "Invalid InsertValueInst operands!", &IVI); 3364 3365 visitInstruction(IVI); 3366 } 3367 3368 static Value *getParentPad(Value *EHPad) { 3369 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3370 return FPI->getParentPad(); 3371 3372 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3373 } 3374 3375 void Verifier::visitEHPadPredecessors(Instruction &I) { 3376 assert(I.isEHPad()); 3377 3378 BasicBlock *BB = I.getParent(); 3379 Function *F = BB->getParent(); 3380 3381 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3382 3383 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3384 // The landingpad instruction defines its parent as a landing pad block. The 3385 // landing pad block may be branched to only by the unwind edge of an 3386 // invoke. 3387 for (BasicBlock *PredBB : predecessors(BB)) { 3388 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3389 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3390 "Block containing LandingPadInst must be jumped to " 3391 "only by the unwind edge of an invoke.", 3392 LPI); 3393 } 3394 return; 3395 } 3396 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3397 if (!pred_empty(BB)) 3398 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3399 "Block containg CatchPadInst must be jumped to " 3400 "only by its catchswitch.", 3401 CPI); 3402 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3403 "Catchswitch cannot unwind to one of its catchpads", 3404 CPI->getCatchSwitch(), CPI); 3405 return; 3406 } 3407 3408 // Verify that each pred has a legal terminator with a legal to/from EH 3409 // pad relationship. 3410 Instruction *ToPad = &I; 3411 Value *ToPadParent = getParentPad(ToPad); 3412 for (BasicBlock *PredBB : predecessors(BB)) { 3413 TerminatorInst *TI = PredBB->getTerminator(); 3414 Value *FromPad; 3415 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3416 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3417 "EH pad must be jumped to via an unwind edge", ToPad, II); 3418 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3419 FromPad = Bundle->Inputs[0]; 3420 else 3421 FromPad = ConstantTokenNone::get(II->getContext()); 3422 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3423 FromPad = CRI->getOperand(0); 3424 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3425 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3426 FromPad = CSI; 3427 } else { 3428 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3429 } 3430 3431 // The edge may exit from zero or more nested pads. 3432 SmallSet<Value *, 8> Seen; 3433 for (;; FromPad = getParentPad(FromPad)) { 3434 Assert(FromPad != ToPad, 3435 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3436 if (FromPad == ToPadParent) { 3437 // This is a legal unwind edge. 3438 break; 3439 } 3440 Assert(!isa<ConstantTokenNone>(FromPad), 3441 "A single unwind edge may only enter one EH pad", TI); 3442 Assert(Seen.insert(FromPad).second, 3443 "EH pad jumps through a cycle of pads", FromPad); 3444 } 3445 } 3446 } 3447 3448 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3449 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3450 // isn't a cleanup. 3451 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3452 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3453 3454 visitEHPadPredecessors(LPI); 3455 3456 if (!LandingPadResultTy) 3457 LandingPadResultTy = LPI.getType(); 3458 else 3459 Assert(LandingPadResultTy == LPI.getType(), 3460 "The landingpad instruction should have a consistent result type " 3461 "inside a function.", 3462 &LPI); 3463 3464 Function *F = LPI.getParent()->getParent(); 3465 Assert(F->hasPersonalityFn(), 3466 "LandingPadInst needs to be in a function with a personality.", &LPI); 3467 3468 // The landingpad instruction must be the first non-PHI instruction in the 3469 // block. 3470 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3471 "LandingPadInst not the first non-PHI instruction in the block.", 3472 &LPI); 3473 3474 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3475 Constant *Clause = LPI.getClause(i); 3476 if (LPI.isCatch(i)) { 3477 Assert(isa<PointerType>(Clause->getType()), 3478 "Catch operand does not have pointer type!", &LPI); 3479 } else { 3480 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3481 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3482 "Filter operand is not an array of constants!", &LPI); 3483 } 3484 } 3485 3486 visitInstruction(LPI); 3487 } 3488 3489 void Verifier::visitResumeInst(ResumeInst &RI) { 3490 Assert(RI.getFunction()->hasPersonalityFn(), 3491 "ResumeInst needs to be in a function with a personality.", &RI); 3492 3493 if (!LandingPadResultTy) 3494 LandingPadResultTy = RI.getValue()->getType(); 3495 else 3496 Assert(LandingPadResultTy == RI.getValue()->getType(), 3497 "The resume instruction should have a consistent result type " 3498 "inside a function.", 3499 &RI); 3500 3501 visitTerminatorInst(RI); 3502 } 3503 3504 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3505 BasicBlock *BB = CPI.getParent(); 3506 3507 Function *F = BB->getParent(); 3508 Assert(F->hasPersonalityFn(), 3509 "CatchPadInst needs to be in a function with a personality.", &CPI); 3510 3511 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3512 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3513 CPI.getParentPad()); 3514 3515 // The catchpad instruction must be the first non-PHI instruction in the 3516 // block. 3517 Assert(BB->getFirstNonPHI() == &CPI, 3518 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3519 3520 visitEHPadPredecessors(CPI); 3521 visitFuncletPadInst(CPI); 3522 } 3523 3524 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3525 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3526 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3527 CatchReturn.getOperand(0)); 3528 3529 visitTerminatorInst(CatchReturn); 3530 } 3531 3532 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3533 BasicBlock *BB = CPI.getParent(); 3534 3535 Function *F = BB->getParent(); 3536 Assert(F->hasPersonalityFn(), 3537 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3538 3539 // The cleanuppad instruction must be the first non-PHI instruction in the 3540 // block. 3541 Assert(BB->getFirstNonPHI() == &CPI, 3542 "CleanupPadInst not the first non-PHI instruction in the block.", 3543 &CPI); 3544 3545 auto *ParentPad = CPI.getParentPad(); 3546 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3547 "CleanupPadInst has an invalid parent.", &CPI); 3548 3549 visitEHPadPredecessors(CPI); 3550 visitFuncletPadInst(CPI); 3551 } 3552 3553 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3554 User *FirstUser = nullptr; 3555 Value *FirstUnwindPad = nullptr; 3556 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3557 SmallSet<FuncletPadInst *, 8> Seen; 3558 3559 while (!Worklist.empty()) { 3560 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3561 Assert(Seen.insert(CurrentPad).second, 3562 "FuncletPadInst must not be nested within itself", CurrentPad); 3563 Value *UnresolvedAncestorPad = nullptr; 3564 for (User *U : CurrentPad->users()) { 3565 BasicBlock *UnwindDest; 3566 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3567 UnwindDest = CRI->getUnwindDest(); 3568 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3569 // We allow catchswitch unwind to caller to nest 3570 // within an outer pad that unwinds somewhere else, 3571 // because catchswitch doesn't have a nounwind variant. 3572 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3573 if (CSI->unwindsToCaller()) 3574 continue; 3575 UnwindDest = CSI->getUnwindDest(); 3576 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3577 UnwindDest = II->getUnwindDest(); 3578 } else if (isa<CallInst>(U)) { 3579 // Calls which don't unwind may be found inside funclet 3580 // pads that unwind somewhere else. We don't *require* 3581 // such calls to be annotated nounwind. 3582 continue; 3583 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3584 // The unwind dest for a cleanup can only be found by 3585 // recursive search. Add it to the worklist, and we'll 3586 // search for its first use that determines where it unwinds. 3587 Worklist.push_back(CPI); 3588 continue; 3589 } else { 3590 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3591 continue; 3592 } 3593 3594 Value *UnwindPad; 3595 bool ExitsFPI; 3596 if (UnwindDest) { 3597 UnwindPad = UnwindDest->getFirstNonPHI(); 3598 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3599 continue; 3600 Value *UnwindParent = getParentPad(UnwindPad); 3601 // Ignore unwind edges that don't exit CurrentPad. 3602 if (UnwindParent == CurrentPad) 3603 continue; 3604 // Determine whether the original funclet pad is exited, 3605 // and if we are scanning nested pads determine how many 3606 // of them are exited so we can stop searching their 3607 // children. 3608 Value *ExitedPad = CurrentPad; 3609 ExitsFPI = false; 3610 do { 3611 if (ExitedPad == &FPI) { 3612 ExitsFPI = true; 3613 // Now we can resolve any ancestors of CurrentPad up to 3614 // FPI, but not including FPI since we need to make sure 3615 // to check all direct users of FPI for consistency. 3616 UnresolvedAncestorPad = &FPI; 3617 break; 3618 } 3619 Value *ExitedParent = getParentPad(ExitedPad); 3620 if (ExitedParent == UnwindParent) { 3621 // ExitedPad is the ancestor-most pad which this unwind 3622 // edge exits, so we can resolve up to it, meaning that 3623 // ExitedParent is the first ancestor still unresolved. 3624 UnresolvedAncestorPad = ExitedParent; 3625 break; 3626 } 3627 ExitedPad = ExitedParent; 3628 } while (!isa<ConstantTokenNone>(ExitedPad)); 3629 } else { 3630 // Unwinding to caller exits all pads. 3631 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3632 ExitsFPI = true; 3633 UnresolvedAncestorPad = &FPI; 3634 } 3635 3636 if (ExitsFPI) { 3637 // This unwind edge exits FPI. Make sure it agrees with other 3638 // such edges. 3639 if (FirstUser) { 3640 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3641 "pad must have the same unwind " 3642 "dest", 3643 &FPI, U, FirstUser); 3644 } else { 3645 FirstUser = U; 3646 FirstUnwindPad = UnwindPad; 3647 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3648 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3649 getParentPad(UnwindPad) == getParentPad(&FPI)) 3650 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U); 3651 } 3652 } 3653 // Make sure we visit all uses of FPI, but for nested pads stop as 3654 // soon as we know where they unwind to. 3655 if (CurrentPad != &FPI) 3656 break; 3657 } 3658 if (UnresolvedAncestorPad) { 3659 if (CurrentPad == UnresolvedAncestorPad) { 3660 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3661 // we've found an unwind edge that exits it, because we need to verify 3662 // all direct uses of FPI. 3663 assert(CurrentPad == &FPI); 3664 continue; 3665 } 3666 // Pop off the worklist any nested pads that we've found an unwind 3667 // destination for. The pads on the worklist are the uncles, 3668 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3669 // for all ancestors of CurrentPad up to but not including 3670 // UnresolvedAncestorPad. 3671 Value *ResolvedPad = CurrentPad; 3672 while (!Worklist.empty()) { 3673 Value *UnclePad = Worklist.back(); 3674 Value *AncestorPad = getParentPad(UnclePad); 3675 // Walk ResolvedPad up the ancestor list until we either find the 3676 // uncle's parent or the last resolved ancestor. 3677 while (ResolvedPad != AncestorPad) { 3678 Value *ResolvedParent = getParentPad(ResolvedPad); 3679 if (ResolvedParent == UnresolvedAncestorPad) { 3680 break; 3681 } 3682 ResolvedPad = ResolvedParent; 3683 } 3684 // If the resolved ancestor search didn't find the uncle's parent, 3685 // then the uncle is not yet resolved. 3686 if (ResolvedPad != AncestorPad) 3687 break; 3688 // This uncle is resolved, so pop it from the worklist. 3689 Worklist.pop_back(); 3690 } 3691 } 3692 } 3693 3694 if (FirstUnwindPad) { 3695 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3696 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3697 Value *SwitchUnwindPad; 3698 if (SwitchUnwindDest) 3699 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3700 else 3701 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3702 Assert(SwitchUnwindPad == FirstUnwindPad, 3703 "Unwind edges out of a catch must have the same unwind dest as " 3704 "the parent catchswitch", 3705 &FPI, FirstUser, CatchSwitch); 3706 } 3707 } 3708 3709 visitInstruction(FPI); 3710 } 3711 3712 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3713 BasicBlock *BB = CatchSwitch.getParent(); 3714 3715 Function *F = BB->getParent(); 3716 Assert(F->hasPersonalityFn(), 3717 "CatchSwitchInst needs to be in a function with a personality.", 3718 &CatchSwitch); 3719 3720 // The catchswitch instruction must be the first non-PHI instruction in the 3721 // block. 3722 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3723 "CatchSwitchInst not the first non-PHI instruction in the block.", 3724 &CatchSwitch); 3725 3726 auto *ParentPad = CatchSwitch.getParentPad(); 3727 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3728 "CatchSwitchInst has an invalid parent.", ParentPad); 3729 3730 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3731 Instruction *I = UnwindDest->getFirstNonPHI(); 3732 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3733 "CatchSwitchInst must unwind to an EH block which is not a " 3734 "landingpad.", 3735 &CatchSwitch); 3736 3737 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3738 if (getParentPad(I) == ParentPad) 3739 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3740 } 3741 3742 Assert(CatchSwitch.getNumHandlers() != 0, 3743 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3744 3745 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3746 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3747 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3748 } 3749 3750 visitEHPadPredecessors(CatchSwitch); 3751 visitTerminatorInst(CatchSwitch); 3752 } 3753 3754 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3755 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3756 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3757 CRI.getOperand(0)); 3758 3759 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3760 Instruction *I = UnwindDest->getFirstNonPHI(); 3761 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3762 "CleanupReturnInst must unwind to an EH block which is not a " 3763 "landingpad.", 3764 &CRI); 3765 } 3766 3767 visitTerminatorInst(CRI); 3768 } 3769 3770 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3771 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3772 // If the we have an invalid invoke, don't try to compute the dominance. 3773 // We already reject it in the invoke specific checks and the dominance 3774 // computation doesn't handle multiple edges. 3775 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3776 if (II->getNormalDest() == II->getUnwindDest()) 3777 return; 3778 } 3779 3780 // Quick check whether the def has already been encountered in the same block. 3781 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI 3782 // uses are defined to happen on the incoming edge, not at the instruction. 3783 // 3784 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3785 // wrapping an SSA value, assert that we've already encountered it. See 3786 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3787 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3788 return; 3789 3790 const Use &U = I.getOperandUse(i); 3791 Assert(DT.dominates(Op, U), 3792 "Instruction does not dominate all uses!", Op, &I); 3793 } 3794 3795 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3796 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3797 "apply only to pointer types", &I); 3798 Assert(isa<LoadInst>(I), 3799 "dereferenceable, dereferenceable_or_null apply only to load" 3800 " instructions, use attributes for calls or invokes", &I); 3801 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3802 "take one operand!", &I); 3803 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3804 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3805 "dereferenceable_or_null metadata value must be an i64!", &I); 3806 } 3807 3808 /// verifyInstruction - Verify that an instruction is well formed. 3809 /// 3810 void Verifier::visitInstruction(Instruction &I) { 3811 BasicBlock *BB = I.getParent(); 3812 Assert(BB, "Instruction not embedded in basic block!", &I); 3813 3814 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3815 for (User *U : I.users()) { 3816 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3817 "Only PHI nodes may reference their own value!", &I); 3818 } 3819 } 3820 3821 // Check that void typed values don't have names 3822 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3823 "Instruction has a name, but provides a void value!", &I); 3824 3825 // Check that the return value of the instruction is either void or a legal 3826 // value type. 3827 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3828 "Instruction returns a non-scalar type!", &I); 3829 3830 // Check that the instruction doesn't produce metadata. Calls are already 3831 // checked against the callee type. 3832 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3833 "Invalid use of metadata!", &I); 3834 3835 // Check that all uses of the instruction, if they are instructions 3836 // themselves, actually have parent basic blocks. If the use is not an 3837 // instruction, it is an error! 3838 for (Use &U : I.uses()) { 3839 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 3840 Assert(Used->getParent() != nullptr, 3841 "Instruction referencing" 3842 " instruction not embedded in a basic block!", 3843 &I, Used); 3844 else { 3845 CheckFailed("Use of instruction is not an instruction!", U); 3846 return; 3847 } 3848 } 3849 3850 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 3851 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 3852 3853 // Check to make sure that only first-class-values are operands to 3854 // instructions. 3855 if (!I.getOperand(i)->getType()->isFirstClassType()) { 3856 Assert(false, "Instruction operands must be first-class values!", &I); 3857 } 3858 3859 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 3860 // Check to make sure that the "address of" an intrinsic function is never 3861 // taken. 3862 Assert( 3863 !F->isIntrinsic() || 3864 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), 3865 "Cannot take the address of an intrinsic!", &I); 3866 Assert( 3867 !F->isIntrinsic() || isa<CallInst>(I) || 3868 F->getIntrinsicID() == Intrinsic::donothing || 3869 F->getIntrinsicID() == Intrinsic::coro_resume || 3870 F->getIntrinsicID() == Intrinsic::coro_destroy || 3871 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 3872 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 3873 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, 3874 "Cannot invoke an intrinsic other than donothing, patchpoint, " 3875 "statepoint, coro_resume or coro_destroy", 3876 &I); 3877 Assert(F->getParent() == &M, "Referencing function in another module!", 3878 &I, &M, F, F->getParent()); 3879 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 3880 Assert(OpBB->getParent() == BB->getParent(), 3881 "Referring to a basic block in another function!", &I); 3882 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 3883 Assert(OpArg->getParent() == BB->getParent(), 3884 "Referring to an argument in another function!", &I); 3885 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 3886 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 3887 &M, GV, GV->getParent()); 3888 } else if (isa<Instruction>(I.getOperand(i))) { 3889 verifyDominatesUse(I, i); 3890 } else if (isa<InlineAsm>(I.getOperand(i))) { 3891 Assert((i + 1 == e && isa<CallInst>(I)) || 3892 (i + 3 == e && isa<InvokeInst>(I)), 3893 "Cannot take the address of an inline asm!", &I); 3894 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 3895 if (CE->getType()->isPtrOrPtrVectorTy() || 3896 !DL.getNonIntegralAddressSpaces().empty()) { 3897 // If we have a ConstantExpr pointer, we need to see if it came from an 3898 // illegal bitcast. If the datalayout string specifies non-integral 3899 // address spaces then we also need to check for illegal ptrtoint and 3900 // inttoptr expressions. 3901 visitConstantExprsRecursively(CE); 3902 } 3903 } 3904 } 3905 3906 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 3907 Assert(I.getType()->isFPOrFPVectorTy(), 3908 "fpmath requires a floating point result!", &I); 3909 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 3910 if (ConstantFP *CFP0 = 3911 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 3912 const APFloat &Accuracy = CFP0->getValueAPF(); 3913 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 3914 "fpmath accuracy must have float type", &I); 3915 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 3916 "fpmath accuracy not a positive number!", &I); 3917 } else { 3918 Assert(false, "invalid fpmath accuracy!", &I); 3919 } 3920 } 3921 3922 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 3923 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 3924 "Ranges are only for loads, calls and invokes!", &I); 3925 visitRangeMetadata(I, Range, I.getType()); 3926 } 3927 3928 if (I.getMetadata(LLVMContext::MD_nonnull)) { 3929 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 3930 &I); 3931 Assert(isa<LoadInst>(I), 3932 "nonnull applies only to load instructions, use attributes" 3933 " for calls or invokes", 3934 &I); 3935 } 3936 3937 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 3938 visitDereferenceableMetadata(I, MD); 3939 3940 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 3941 visitDereferenceableMetadata(I, MD); 3942 3943 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 3944 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 3945 3946 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 3947 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 3948 &I); 3949 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 3950 "use attributes for calls or invokes", &I); 3951 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 3952 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 3953 Assert(CI && CI->getType()->isIntegerTy(64), 3954 "align metadata value must be an i64!", &I); 3955 uint64_t Align = CI->getZExtValue(); 3956 Assert(isPowerOf2_64(Align), 3957 "align metadata value must be a power of 2!", &I); 3958 Assert(Align <= Value::MaximumAlignment, 3959 "alignment is larger that implementation defined limit", &I); 3960 } 3961 3962 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 3963 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 3964 visitMDNode(*N); 3965 } 3966 3967 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) 3968 verifyFragmentExpression(*DII); 3969 3970 InstsInThisBlock.insert(&I); 3971 } 3972 3973 /// Allow intrinsics to be verified in different ways. 3974 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { 3975 Function *IF = CS.getCalledFunction(); 3976 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 3977 IF); 3978 3979 // Verify that the intrinsic prototype lines up with what the .td files 3980 // describe. 3981 FunctionType *IFTy = IF->getFunctionType(); 3982 bool IsVarArg = IFTy->isVarArg(); 3983 3984 SmallVector<Intrinsic::IITDescriptor, 8> Table; 3985 getIntrinsicInfoTableEntries(ID, Table); 3986 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 3987 3988 SmallVector<Type *, 4> ArgTys; 3989 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(), 3990 TableRef, ArgTys), 3991 "Intrinsic has incorrect return type!", IF); 3992 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 3993 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i), 3994 TableRef, ArgTys), 3995 "Intrinsic has incorrect argument type!", IF); 3996 3997 // Verify if the intrinsic call matches the vararg property. 3998 if (IsVarArg) 3999 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4000 "Intrinsic was not defined with variable arguments!", IF); 4001 else 4002 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4003 "Callsite was not defined with variable arguments!", IF); 4004 4005 // All descriptors should be absorbed by now. 4006 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4007 4008 // Now that we have the intrinsic ID and the actual argument types (and we 4009 // know they are legal for the intrinsic!) get the intrinsic name through the 4010 // usual means. This allows us to verify the mangling of argument types into 4011 // the name. 4012 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4013 Assert(ExpectedName == IF->getName(), 4014 "Intrinsic name not mangled correctly for type arguments! " 4015 "Should be: " + 4016 ExpectedName, 4017 IF); 4018 4019 // If the intrinsic takes MDNode arguments, verify that they are either global 4020 // or are local to *this* function. 4021 for (Value *V : CS.args()) 4022 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4023 visitMetadataAsValue(*MD, CS.getCaller()); 4024 4025 switch (ID) { 4026 default: 4027 break; 4028 case Intrinsic::coro_id: { 4029 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts(); 4030 if (isa<ConstantPointerNull>(InfoArg)) 4031 break; 4032 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4033 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4034 "info argument of llvm.coro.begin must refer to an initialized " 4035 "constant"); 4036 Constant *Init = GV->getInitializer(); 4037 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4038 "info argument of llvm.coro.begin must refer to either a struct or " 4039 "an array"); 4040 break; 4041 } 4042 case Intrinsic::ctlz: // llvm.ctlz 4043 case Intrinsic::cttz: // llvm.cttz 4044 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4045 "is_zero_undef argument of bit counting intrinsics must be a " 4046 "constant int", 4047 CS); 4048 break; 4049 case Intrinsic::experimental_constrained_fadd: 4050 case Intrinsic::experimental_constrained_fsub: 4051 case Intrinsic::experimental_constrained_fmul: 4052 case Intrinsic::experimental_constrained_fdiv: 4053 case Intrinsic::experimental_constrained_frem: 4054 case Intrinsic::experimental_constrained_fma: 4055 case Intrinsic::experimental_constrained_sqrt: 4056 case Intrinsic::experimental_constrained_pow: 4057 case Intrinsic::experimental_constrained_powi: 4058 case Intrinsic::experimental_constrained_sin: 4059 case Intrinsic::experimental_constrained_cos: 4060 case Intrinsic::experimental_constrained_exp: 4061 case Intrinsic::experimental_constrained_exp2: 4062 case Intrinsic::experimental_constrained_log: 4063 case Intrinsic::experimental_constrained_log10: 4064 case Intrinsic::experimental_constrained_log2: 4065 case Intrinsic::experimental_constrained_rint: 4066 case Intrinsic::experimental_constrained_nearbyint: 4067 visitConstrainedFPIntrinsic( 4068 cast<ConstrainedFPIntrinsic>(*CS.getInstruction())); 4069 break; 4070 case Intrinsic::dbg_declare: // llvm.dbg.declare 4071 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), 4072 "invalid llvm.dbg.declare intrinsic call 1", CS); 4073 visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction())); 4074 break; 4075 case Intrinsic::dbg_addr: // llvm.dbg.addr 4076 visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction())); 4077 break; 4078 case Intrinsic::dbg_value: // llvm.dbg.value 4079 visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction())); 4080 break; 4081 case Intrinsic::dbg_label: // llvm.dbg.label 4082 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction())); 4083 break; 4084 case Intrinsic::memcpy: 4085 case Intrinsic::memmove: 4086 case Intrinsic::memset: { 4087 const auto *MI = cast<MemIntrinsic>(CS.getInstruction()); 4088 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4089 return Alignment == 0 || isPowerOf2_32(Alignment); 4090 }; 4091 Assert(IsValidAlignment(MI->getDestAlignment()), 4092 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4093 CS); 4094 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4095 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4096 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4097 CS); 4098 } 4099 Assert(isa<ConstantInt>(CS.getArgOperand(3)), 4100 "isvolatile argument of memory intrinsics must be a constant int", 4101 CS); 4102 break; 4103 } 4104 case Intrinsic::memcpy_element_unordered_atomic: 4105 case Intrinsic::memmove_element_unordered_atomic: 4106 case Intrinsic::memset_element_unordered_atomic: { 4107 const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction()); 4108 4109 ConstantInt *ElementSizeCI = 4110 dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4111 Assert(ElementSizeCI, 4112 "element size of the element-wise unordered atomic memory " 4113 "intrinsic must be a constant int", 4114 CS); 4115 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4116 Assert(ElementSizeVal.isPowerOf2(), 4117 "element size of the element-wise atomic memory intrinsic " 4118 "must be a power of 2", 4119 CS); 4120 4121 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4122 uint64_t Length = LengthCI->getZExtValue(); 4123 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4124 Assert((Length % ElementSize) == 0, 4125 "constant length must be a multiple of the element size in the " 4126 "element-wise atomic memory intrinsic", 4127 CS); 4128 } 4129 4130 auto IsValidAlignment = [&](uint64_t Alignment) { 4131 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4132 }; 4133 uint64_t DstAlignment = AMI->getDestAlignment(); 4134 Assert(IsValidAlignment(DstAlignment), 4135 "incorrect alignment of the destination argument", CS); 4136 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4137 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4138 Assert(IsValidAlignment(SrcAlignment), 4139 "incorrect alignment of the source argument", CS); 4140 } 4141 break; 4142 } 4143 case Intrinsic::gcroot: 4144 case Intrinsic::gcwrite: 4145 case Intrinsic::gcread: 4146 if (ID == Intrinsic::gcroot) { 4147 AllocaInst *AI = 4148 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); 4149 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); 4150 Assert(isa<Constant>(CS.getArgOperand(1)), 4151 "llvm.gcroot parameter #2 must be a constant.", CS); 4152 if (!AI->getAllocatedType()->isPointerTy()) { 4153 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), 4154 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4155 "or argument #2 must be a non-null constant.", 4156 CS); 4157 } 4158 } 4159 4160 Assert(CS.getParent()->getParent()->hasGC(), 4161 "Enclosing function does not use GC.", CS); 4162 break; 4163 case Intrinsic::init_trampoline: 4164 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), 4165 "llvm.init_trampoline parameter #2 must resolve to a function.", 4166 CS); 4167 break; 4168 case Intrinsic::prefetch: 4169 Assert(isa<ConstantInt>(CS.getArgOperand(1)) && 4170 isa<ConstantInt>(CS.getArgOperand(2)) && 4171 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && 4172 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, 4173 "invalid arguments to llvm.prefetch", CS); 4174 break; 4175 case Intrinsic::stackprotector: 4176 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), 4177 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); 4178 break; 4179 case Intrinsic::lifetime_start: 4180 case Intrinsic::lifetime_end: 4181 case Intrinsic::invariant_start: 4182 Assert(isa<ConstantInt>(CS.getArgOperand(0)), 4183 "size argument of memory use markers must be a constant integer", 4184 CS); 4185 break; 4186 case Intrinsic::invariant_end: 4187 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4188 "llvm.invariant.end parameter #2 must be a constant integer", CS); 4189 break; 4190 4191 case Intrinsic::localescape: { 4192 BasicBlock *BB = CS.getParent(); 4193 Assert(BB == &BB->getParent()->front(), 4194 "llvm.localescape used outside of entry block", CS); 4195 Assert(!SawFrameEscape, 4196 "multiple calls to llvm.localescape in one function", CS); 4197 for (Value *Arg : CS.args()) { 4198 if (isa<ConstantPointerNull>(Arg)) 4199 continue; // Null values are allowed as placeholders. 4200 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4201 Assert(AI && AI->isStaticAlloca(), 4202 "llvm.localescape only accepts static allocas", CS); 4203 } 4204 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); 4205 SawFrameEscape = true; 4206 break; 4207 } 4208 case Intrinsic::localrecover: { 4209 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); 4210 Function *Fn = dyn_cast<Function>(FnArg); 4211 Assert(Fn && !Fn->isDeclaration(), 4212 "llvm.localrecover first " 4213 "argument must be function defined in this module", 4214 CS); 4215 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); 4216 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", 4217 CS); 4218 auto &Entry = FrameEscapeInfo[Fn]; 4219 Entry.second = unsigned( 4220 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4221 break; 4222 } 4223 4224 case Intrinsic::experimental_gc_statepoint: 4225 Assert(!CS.isInlineAsm(), 4226 "gc.statepoint support for inline assembly unimplemented", CS); 4227 Assert(CS.getParent()->getParent()->hasGC(), 4228 "Enclosing function does not use GC.", CS); 4229 4230 verifyStatepoint(CS); 4231 break; 4232 case Intrinsic::experimental_gc_result: { 4233 Assert(CS.getParent()->getParent()->hasGC(), 4234 "Enclosing function does not use GC.", CS); 4235 // Are we tied to a statepoint properly? 4236 CallSite StatepointCS(CS.getArgOperand(0)); 4237 const Function *StatepointFn = 4238 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; 4239 Assert(StatepointFn && StatepointFn->isDeclaration() && 4240 StatepointFn->getIntrinsicID() == 4241 Intrinsic::experimental_gc_statepoint, 4242 "gc.result operand #1 must be from a statepoint", CS, 4243 CS.getArgOperand(0)); 4244 4245 // Assert that result type matches wrapped callee. 4246 const Value *Target = StatepointCS.getArgument(2); 4247 auto *PT = cast<PointerType>(Target->getType()); 4248 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4249 Assert(CS.getType() == TargetFuncType->getReturnType(), 4250 "gc.result result type does not match wrapped callee", CS); 4251 break; 4252 } 4253 case Intrinsic::experimental_gc_relocate: { 4254 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); 4255 4256 Assert(isa<PointerType>(CS.getType()->getScalarType()), 4257 "gc.relocate must return a pointer or a vector of pointers", CS); 4258 4259 // Check that this relocate is correctly tied to the statepoint 4260 4261 // This is case for relocate on the unwinding path of an invoke statepoint 4262 if (LandingPadInst *LandingPad = 4263 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) { 4264 4265 const BasicBlock *InvokeBB = 4266 LandingPad->getParent()->getUniquePredecessor(); 4267 4268 // Landingpad relocates should have only one predecessor with invoke 4269 // statepoint terminator 4270 Assert(InvokeBB, "safepoints should have unique landingpads", 4271 LandingPad->getParent()); 4272 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4273 InvokeBB); 4274 Assert(isStatepoint(InvokeBB->getTerminator()), 4275 "gc relocate should be linked to a statepoint", InvokeBB); 4276 } 4277 else { 4278 // In all other cases relocate should be tied to the statepoint directly. 4279 // This covers relocates on a normal return path of invoke statepoint and 4280 // relocates of a call statepoint. 4281 auto Token = CS.getArgOperand(0); 4282 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4283 "gc relocate is incorrectly tied to the statepoint", CS, Token); 4284 } 4285 4286 // Verify rest of the relocate arguments. 4287 4288 ImmutableCallSite StatepointCS( 4289 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint()); 4290 4291 // Both the base and derived must be piped through the safepoint. 4292 Value* Base = CS.getArgOperand(1); 4293 Assert(isa<ConstantInt>(Base), 4294 "gc.relocate operand #2 must be integer offset", CS); 4295 4296 Value* Derived = CS.getArgOperand(2); 4297 Assert(isa<ConstantInt>(Derived), 4298 "gc.relocate operand #3 must be integer offset", CS); 4299 4300 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4301 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4302 // Check the bounds 4303 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), 4304 "gc.relocate: statepoint base index out of bounds", CS); 4305 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), 4306 "gc.relocate: statepoint derived index out of bounds", CS); 4307 4308 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4309 // section of the statepoint's argument. 4310 Assert(StatepointCS.arg_size() > 0, 4311 "gc.statepoint: insufficient arguments"); 4312 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), 4313 "gc.statement: number of call arguments must be constant integer"); 4314 const unsigned NumCallArgs = 4315 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); 4316 Assert(StatepointCS.arg_size() > NumCallArgs + 5, 4317 "gc.statepoint: mismatch in number of call arguments"); 4318 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), 4319 "gc.statepoint: number of transition arguments must be " 4320 "a constant integer"); 4321 const int NumTransitionArgs = 4322 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) 4323 ->getZExtValue(); 4324 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4325 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), 4326 "gc.statepoint: number of deoptimization arguments must be " 4327 "a constant integer"); 4328 const int NumDeoptArgs = 4329 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)) 4330 ->getZExtValue(); 4331 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4332 const int GCParamArgsEnd = StatepointCS.arg_size(); 4333 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4334 "gc.relocate: statepoint base index doesn't fall within the " 4335 "'gc parameters' section of the statepoint call", 4336 CS); 4337 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4338 "gc.relocate: statepoint derived index doesn't fall within the " 4339 "'gc parameters' section of the statepoint call", 4340 CS); 4341 4342 // Relocated value must be either a pointer type or vector-of-pointer type, 4343 // but gc_relocate does not need to return the same pointer type as the 4344 // relocated pointer. It can be casted to the correct type later if it's 4345 // desired. However, they must have the same address space and 'vectorness' 4346 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); 4347 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4348 "gc.relocate: relocated value must be a gc pointer", CS); 4349 4350 auto ResultType = CS.getType(); 4351 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4352 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4353 "gc.relocate: vector relocates to vector and pointer to pointer", 4354 CS); 4355 Assert( 4356 ResultType->getPointerAddressSpace() == 4357 DerivedType->getPointerAddressSpace(), 4358 "gc.relocate: relocating a pointer shouldn't change its address space", 4359 CS); 4360 break; 4361 } 4362 case Intrinsic::eh_exceptioncode: 4363 case Intrinsic::eh_exceptionpointer: { 4364 Assert(isa<CatchPadInst>(CS.getArgOperand(0)), 4365 "eh.exceptionpointer argument must be a catchpad", CS); 4366 break; 4367 } 4368 case Intrinsic::masked_load: { 4369 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS); 4370 4371 Value *Ptr = CS.getArgOperand(0); 4372 //Value *Alignment = CS.getArgOperand(1); 4373 Value *Mask = CS.getArgOperand(2); 4374 Value *PassThru = CS.getArgOperand(3); 4375 Assert(Mask->getType()->isVectorTy(), 4376 "masked_load: mask must be vector", CS); 4377 4378 // DataTy is the overloaded type 4379 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4380 Assert(DataTy == CS.getType(), 4381 "masked_load: return must match pointer type", CS); 4382 Assert(PassThru->getType() == DataTy, 4383 "masked_load: pass through and data type must match", CS); 4384 Assert(Mask->getType()->getVectorNumElements() == 4385 DataTy->getVectorNumElements(), 4386 "masked_load: vector mask must be same length as data", CS); 4387 break; 4388 } 4389 case Intrinsic::masked_store: { 4390 Value *Val = CS.getArgOperand(0); 4391 Value *Ptr = CS.getArgOperand(1); 4392 //Value *Alignment = CS.getArgOperand(2); 4393 Value *Mask = CS.getArgOperand(3); 4394 Assert(Mask->getType()->isVectorTy(), 4395 "masked_store: mask must be vector", CS); 4396 4397 // DataTy is the overloaded type 4398 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4399 Assert(DataTy == Val->getType(), 4400 "masked_store: storee must match pointer type", CS); 4401 Assert(Mask->getType()->getVectorNumElements() == 4402 DataTy->getVectorNumElements(), 4403 "masked_store: vector mask must be same length as data", CS); 4404 break; 4405 } 4406 4407 case Intrinsic::experimental_guard: { 4408 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS); 4409 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4410 "experimental_guard must have exactly one " 4411 "\"deopt\" operand bundle"); 4412 break; 4413 } 4414 4415 case Intrinsic::experimental_deoptimize: { 4416 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS); 4417 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4418 "experimental_deoptimize must have exactly one " 4419 "\"deopt\" operand bundle"); 4420 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(), 4421 "experimental_deoptimize return type must match caller return type"); 4422 4423 if (CS.isCall()) { 4424 auto *DeoptCI = CS.getInstruction(); 4425 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode()); 4426 Assert(RI, 4427 "calls to experimental_deoptimize must be followed by a return"); 4428 4429 if (!CS.getType()->isVoidTy() && RI) 4430 Assert(RI->getReturnValue() == DeoptCI, 4431 "calls to experimental_deoptimize must be followed by a return " 4432 "of the value computed by experimental_deoptimize"); 4433 } 4434 4435 break; 4436 } 4437 }; 4438 } 4439 4440 /// Carefully grab the subprogram from a local scope. 4441 /// 4442 /// This carefully grabs the subprogram from a local scope, avoiding the 4443 /// built-in assertions that would typically fire. 4444 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4445 if (!LocalScope) 4446 return nullptr; 4447 4448 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4449 return SP; 4450 4451 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4452 return getSubprogram(LB->getRawScope()); 4453 4454 // Just return null; broken scope chains are checked elsewhere. 4455 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4456 return nullptr; 4457 } 4458 4459 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4460 unsigned NumOperands = FPI.getNumArgOperands(); 4461 Assert(((NumOperands == 5 && FPI.isTernaryOp()) || 4462 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)), 4463 "invalid arguments for constrained FP intrinsic", &FPI); 4464 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)), 4465 "invalid exception behavior argument", &FPI); 4466 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)), 4467 "invalid rounding mode argument", &FPI); 4468 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid, 4469 "invalid rounding mode argument", &FPI); 4470 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid, 4471 "invalid exception behavior argument", &FPI); 4472 } 4473 4474 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) { 4475 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4476 AssertDI(isa<ValueAsMetadata>(MD) || 4477 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4478 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4479 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4480 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4481 DII.getRawVariable()); 4482 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4483 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4484 DII.getRawExpression()); 4485 4486 // Ignore broken !dbg attachments; they're checked elsewhere. 4487 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4488 if (!isa<DILocation>(N)) 4489 return; 4490 4491 BasicBlock *BB = DII.getParent(); 4492 Function *F = BB ? BB->getParent() : nullptr; 4493 4494 // The scopes for variables and !dbg attachments must agree. 4495 DILocalVariable *Var = DII.getVariable(); 4496 DILocation *Loc = DII.getDebugLoc(); 4497 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4498 &DII, BB, F); 4499 4500 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4501 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4502 if (!VarSP || !LocSP) 4503 return; // Broken scope chains are checked elsewhere. 4504 4505 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4506 " variable and !dbg attachment", 4507 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4508 Loc->getScope()->getSubprogram()); 4509 4510 verifyFnArgs(DII); 4511 } 4512 4513 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4514 AssertDI(isa<DILabel>(DLI.getRawVariable()), 4515 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4516 DLI.getRawVariable()); 4517 4518 // Ignore broken !dbg attachments; they're checked elsewhere. 4519 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4520 if (!isa<DILocation>(N)) 4521 return; 4522 4523 BasicBlock *BB = DLI.getParent(); 4524 Function *F = BB ? BB->getParent() : nullptr; 4525 4526 // The scopes for variables and !dbg attachments must agree. 4527 DILabel *Label = DLI.getLabel(); 4528 DILocation *Loc = DLI.getDebugLoc(); 4529 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4530 &DLI, BB, F); 4531 4532 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4533 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4534 if (!LabelSP || !LocSP) 4535 return; 4536 4537 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4538 " label and !dbg attachment", 4539 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4540 Loc->getScope()->getSubprogram()); 4541 } 4542 4543 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) { 4544 if (dyn_cast<DbgLabelInst>(&I)) 4545 return; 4546 4547 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4548 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4549 4550 // We don't know whether this intrinsic verified correctly. 4551 if (!V || !E || !E->isValid()) 4552 return; 4553 4554 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4555 auto Fragment = E->getFragmentInfo(); 4556 if (!Fragment) 4557 return; 4558 4559 // The frontend helps out GDB by emitting the members of local anonymous 4560 // unions as artificial local variables with shared storage. When SROA splits 4561 // the storage for artificial local variables that are smaller than the entire 4562 // union, the overhang piece will be outside of the allotted space for the 4563 // variable and this check fails. 4564 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4565 if (V->isArtificial()) 4566 return; 4567 4568 verifyFragmentExpression(*V, *Fragment, &I); 4569 } 4570 4571 template <typename ValueOrMetadata> 4572 void Verifier::verifyFragmentExpression(const DIVariable &V, 4573 DIExpression::FragmentInfo Fragment, 4574 ValueOrMetadata *Desc) { 4575 // If there's no size, the type is broken, but that should be checked 4576 // elsewhere. 4577 auto VarSize = V.getSizeInBits(); 4578 if (!VarSize) 4579 return; 4580 4581 unsigned FragSize = Fragment.SizeInBits; 4582 unsigned FragOffset = Fragment.OffsetInBits; 4583 AssertDI(FragSize + FragOffset <= *VarSize, 4584 "fragment is larger than or outside of variable", Desc, &V); 4585 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4586 } 4587 4588 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) { 4589 // This function does not take the scope of noninlined function arguments into 4590 // account. Don't run it if current function is nodebug, because it may 4591 // contain inlined debug intrinsics. 4592 if (!HasDebugInfo) 4593 return; 4594 4595 // For performance reasons only check non-inlined ones. 4596 if (I.getDebugLoc()->getInlinedAt()) 4597 return; 4598 4599 DILocalVariable *Var = I.getVariable(); 4600 AssertDI(Var, "dbg intrinsic without variable"); 4601 4602 unsigned ArgNo = Var->getArg(); 4603 if (!ArgNo) 4604 return; 4605 4606 // Verify there are no duplicate function argument debug info entries. 4607 // These will cause hard-to-debug assertions in the DWARF backend. 4608 if (DebugFnArgs.size() < ArgNo) 4609 DebugFnArgs.resize(ArgNo, nullptr); 4610 4611 auto *Prev = DebugFnArgs[ArgNo - 1]; 4612 DebugFnArgs[ArgNo - 1] = Var; 4613 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4614 Prev, Var); 4615 } 4616 4617 void Verifier::verifyCompileUnits() { 4618 // When more than one Module is imported into the same context, such as during 4619 // an LTO build before linking the modules, ODR type uniquing may cause types 4620 // to point to a different CU. This check does not make sense in this case. 4621 if (M.getContext().isODRUniquingDebugTypes()) 4622 return; 4623 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4624 SmallPtrSet<const Metadata *, 2> Listed; 4625 if (CUs) 4626 Listed.insert(CUs->op_begin(), CUs->op_end()); 4627 for (auto *CU : CUVisited) 4628 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4629 CUVisited.clear(); 4630 } 4631 4632 void Verifier::verifyDeoptimizeCallingConvs() { 4633 if (DeoptimizeDeclarations.empty()) 4634 return; 4635 4636 const Function *First = DeoptimizeDeclarations[0]; 4637 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4638 Assert(First->getCallingConv() == F->getCallingConv(), 4639 "All llvm.experimental.deoptimize declarations must have the same " 4640 "calling convention", 4641 First, F); 4642 } 4643 } 4644 4645 //===----------------------------------------------------------------------===// 4646 // Implement the public interfaces to this file... 4647 //===----------------------------------------------------------------------===// 4648 4649 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4650 Function &F = const_cast<Function &>(f); 4651 4652 // Don't use a raw_null_ostream. Printing IR is expensive. 4653 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4654 4655 // Note that this function's return value is inverted from what you would 4656 // expect of a function called "verify". 4657 return !V.verify(F); 4658 } 4659 4660 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4661 bool *BrokenDebugInfo) { 4662 // Don't use a raw_null_ostream. Printing IR is expensive. 4663 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4664 4665 bool Broken = false; 4666 for (const Function &F : M) 4667 Broken |= !V.verify(F); 4668 4669 Broken |= !V.verify(); 4670 if (BrokenDebugInfo) 4671 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4672 // Note that this function's return value is inverted from what you would 4673 // expect of a function called "verify". 4674 return Broken; 4675 } 4676 4677 namespace { 4678 4679 struct VerifierLegacyPass : public FunctionPass { 4680 static char ID; 4681 4682 std::unique_ptr<Verifier> V; 4683 bool FatalErrors = true; 4684 4685 VerifierLegacyPass() : FunctionPass(ID) { 4686 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4687 } 4688 explicit VerifierLegacyPass(bool FatalErrors) 4689 : FunctionPass(ID), 4690 FatalErrors(FatalErrors) { 4691 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4692 } 4693 4694 bool doInitialization(Module &M) override { 4695 V = llvm::make_unique<Verifier>( 4696 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 4697 return false; 4698 } 4699 4700 bool runOnFunction(Function &F) override { 4701 if (!V->verify(F) && FatalErrors) 4702 report_fatal_error("Broken function found, compilation aborted!"); 4703 4704 return false; 4705 } 4706 4707 bool doFinalization(Module &M) override { 4708 bool HasErrors = false; 4709 for (Function &F : M) 4710 if (F.isDeclaration()) 4711 HasErrors |= !V->verify(F); 4712 4713 HasErrors |= !V->verify(); 4714 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 4715 report_fatal_error("Broken module found, compilation aborted!"); 4716 return false; 4717 } 4718 4719 void getAnalysisUsage(AnalysisUsage &AU) const override { 4720 AU.setPreservesAll(); 4721 } 4722 }; 4723 4724 } // end anonymous namespace 4725 4726 /// Helper to issue failure from the TBAA verification 4727 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 4728 if (Diagnostic) 4729 return Diagnostic->CheckFailed(Args...); 4730 } 4731 4732 #define AssertTBAA(C, ...) \ 4733 do { \ 4734 if (!(C)) { \ 4735 CheckFailed(__VA_ARGS__); \ 4736 return false; \ 4737 } \ 4738 } while (false) 4739 4740 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 4741 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 4742 /// struct-type node describing an aggregate data structure (like a struct). 4743 TBAAVerifier::TBAABaseNodeSummary 4744 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 4745 bool IsNewFormat) { 4746 if (BaseNode->getNumOperands() < 2) { 4747 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 4748 return {true, ~0u}; 4749 } 4750 4751 auto Itr = TBAABaseNodes.find(BaseNode); 4752 if (Itr != TBAABaseNodes.end()) 4753 return Itr->second; 4754 4755 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 4756 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 4757 (void)InsertResult; 4758 assert(InsertResult.second && "We just checked!"); 4759 return Result; 4760 } 4761 4762 TBAAVerifier::TBAABaseNodeSummary 4763 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 4764 bool IsNewFormat) { 4765 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 4766 4767 if (BaseNode->getNumOperands() == 2) { 4768 // Scalar nodes can only be accessed at offset 0. 4769 return isValidScalarTBAANode(BaseNode) 4770 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 4771 : InvalidNode; 4772 } 4773 4774 if (IsNewFormat) { 4775 if (BaseNode->getNumOperands() % 3 != 0) { 4776 CheckFailed("Access tag nodes must have the number of operands that is a " 4777 "multiple of 3!", BaseNode); 4778 return InvalidNode; 4779 } 4780 } else { 4781 if (BaseNode->getNumOperands() % 2 != 1) { 4782 CheckFailed("Struct tag nodes must have an odd number of operands!", 4783 BaseNode); 4784 return InvalidNode; 4785 } 4786 } 4787 4788 // Check the type size field. 4789 if (IsNewFormat) { 4790 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4791 BaseNode->getOperand(1)); 4792 if (!TypeSizeNode) { 4793 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 4794 return InvalidNode; 4795 } 4796 } 4797 4798 // Check the type name field. In the new format it can be anything. 4799 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 4800 CheckFailed("Struct tag nodes have a string as their first operand", 4801 BaseNode); 4802 return InvalidNode; 4803 } 4804 4805 bool Failed = false; 4806 4807 Optional<APInt> PrevOffset; 4808 unsigned BitWidth = ~0u; 4809 4810 // We've already checked that BaseNode is not a degenerate root node with one 4811 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 4812 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 4813 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 4814 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 4815 Idx += NumOpsPerField) { 4816 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 4817 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 4818 if (!isa<MDNode>(FieldTy)) { 4819 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 4820 Failed = true; 4821 continue; 4822 } 4823 4824 auto *OffsetEntryCI = 4825 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 4826 if (!OffsetEntryCI) { 4827 CheckFailed("Offset entries must be constants!", &I, BaseNode); 4828 Failed = true; 4829 continue; 4830 } 4831 4832 if (BitWidth == ~0u) 4833 BitWidth = OffsetEntryCI->getBitWidth(); 4834 4835 if (OffsetEntryCI->getBitWidth() != BitWidth) { 4836 CheckFailed( 4837 "Bitwidth between the offsets and struct type entries must match", &I, 4838 BaseNode); 4839 Failed = true; 4840 continue; 4841 } 4842 4843 // NB! As far as I can tell, we generate a non-strictly increasing offset 4844 // sequence only from structs that have zero size bit fields. When 4845 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 4846 // pick the field lexically the latest in struct type metadata node. This 4847 // mirrors the actual behavior of the alias analysis implementation. 4848 bool IsAscending = 4849 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 4850 4851 if (!IsAscending) { 4852 CheckFailed("Offsets must be increasing!", &I, BaseNode); 4853 Failed = true; 4854 } 4855 4856 PrevOffset = OffsetEntryCI->getValue(); 4857 4858 if (IsNewFormat) { 4859 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4860 BaseNode->getOperand(Idx + 2)); 4861 if (!MemberSizeNode) { 4862 CheckFailed("Member size entries must be constants!", &I, BaseNode); 4863 Failed = true; 4864 continue; 4865 } 4866 } 4867 } 4868 4869 return Failed ? InvalidNode 4870 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 4871 } 4872 4873 static bool IsRootTBAANode(const MDNode *MD) { 4874 return MD->getNumOperands() < 2; 4875 } 4876 4877 static bool IsScalarTBAANodeImpl(const MDNode *MD, 4878 SmallPtrSetImpl<const MDNode *> &Visited) { 4879 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 4880 return false; 4881 4882 if (!isa<MDString>(MD->getOperand(0))) 4883 return false; 4884 4885 if (MD->getNumOperands() == 3) { 4886 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 4887 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 4888 return false; 4889 } 4890 4891 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 4892 return Parent && Visited.insert(Parent).second && 4893 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 4894 } 4895 4896 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 4897 auto ResultIt = TBAAScalarNodes.find(MD); 4898 if (ResultIt != TBAAScalarNodes.end()) 4899 return ResultIt->second; 4900 4901 SmallPtrSet<const MDNode *, 4> Visited; 4902 bool Result = IsScalarTBAANodeImpl(MD, Visited); 4903 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 4904 (void)InsertResult; 4905 assert(InsertResult.second && "Just checked!"); 4906 4907 return Result; 4908 } 4909 4910 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 4911 /// Offset in place to be the offset within the field node returned. 4912 /// 4913 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 4914 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 4915 const MDNode *BaseNode, 4916 APInt &Offset, 4917 bool IsNewFormat) { 4918 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 4919 4920 // Scalar nodes have only one possible "field" -- their parent in the access 4921 // hierarchy. Offset must be zero at this point, but our caller is supposed 4922 // to Assert that. 4923 if (BaseNode->getNumOperands() == 2) 4924 return cast<MDNode>(BaseNode->getOperand(1)); 4925 4926 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 4927 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 4928 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 4929 Idx += NumOpsPerField) { 4930 auto *OffsetEntryCI = 4931 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 4932 if (OffsetEntryCI->getValue().ugt(Offset)) { 4933 if (Idx == FirstFieldOpNo) { 4934 CheckFailed("Could not find TBAA parent in struct type node", &I, 4935 BaseNode, &Offset); 4936 return nullptr; 4937 } 4938 4939 unsigned PrevIdx = Idx - NumOpsPerField; 4940 auto *PrevOffsetEntryCI = 4941 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 4942 Offset -= PrevOffsetEntryCI->getValue(); 4943 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 4944 } 4945 } 4946 4947 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 4948 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 4949 BaseNode->getOperand(LastIdx + 1)); 4950 Offset -= LastOffsetEntryCI->getValue(); 4951 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 4952 } 4953 4954 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 4955 if (!Type || Type->getNumOperands() < 3) 4956 return false; 4957 4958 // In the new format type nodes shall have a reference to the parent type as 4959 // its first operand. 4960 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 4961 if (!Parent) 4962 return false; 4963 4964 return true; 4965 } 4966 4967 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 4968 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 4969 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 4970 isa<AtomicCmpXchgInst>(I), 4971 "This instruction shall not have a TBAA access tag!", &I); 4972 4973 bool IsStructPathTBAA = 4974 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 4975 4976 AssertTBAA( 4977 IsStructPathTBAA, 4978 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 4979 4980 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 4981 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 4982 4983 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 4984 4985 if (IsNewFormat) { 4986 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 4987 "Access tag metadata must have either 4 or 5 operands", &I, MD); 4988 } else { 4989 AssertTBAA(MD->getNumOperands() < 5, 4990 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 4991 } 4992 4993 // Check the access size field. 4994 if (IsNewFormat) { 4995 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4996 MD->getOperand(3)); 4997 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 4998 } 4999 5000 // Check the immutability flag. 5001 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5002 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5003 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5004 MD->getOperand(ImmutabilityFlagOpNo)); 5005 AssertTBAA(IsImmutableCI, 5006 "Immutability tag on struct tag metadata must be a constant", 5007 &I, MD); 5008 AssertTBAA( 5009 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5010 "Immutability part of the struct tag metadata must be either 0 or 1", 5011 &I, MD); 5012 } 5013 5014 AssertTBAA(BaseNode && AccessType, 5015 "Malformed struct tag metadata: base and access-type " 5016 "should be non-null and point to Metadata nodes", 5017 &I, MD, BaseNode, AccessType); 5018 5019 if (!IsNewFormat) { 5020 AssertTBAA(isValidScalarTBAANode(AccessType), 5021 "Access type node must be a valid scalar type", &I, MD, 5022 AccessType); 5023 } 5024 5025 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5026 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5027 5028 APInt Offset = OffsetCI->getValue(); 5029 bool SeenAccessTypeInPath = false; 5030 5031 SmallPtrSet<MDNode *, 4> StructPath; 5032 5033 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5034 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5035 IsNewFormat)) { 5036 if (!StructPath.insert(BaseNode).second) { 5037 CheckFailed("Cycle detected in struct path", &I, MD); 5038 return false; 5039 } 5040 5041 bool Invalid; 5042 unsigned BaseNodeBitWidth; 5043 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5044 IsNewFormat); 5045 5046 // If the base node is invalid in itself, then we've already printed all the 5047 // errors we wanted to print. 5048 if (Invalid) 5049 return false; 5050 5051 SeenAccessTypeInPath |= BaseNode == AccessType; 5052 5053 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5054 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5055 &I, MD, &Offset); 5056 5057 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5058 (BaseNodeBitWidth == 0 && Offset == 0) || 5059 (IsNewFormat && BaseNodeBitWidth == ~0u), 5060 "Access bit-width not the same as description bit-width", &I, MD, 5061 BaseNodeBitWidth, Offset.getBitWidth()); 5062 5063 if (IsNewFormat && SeenAccessTypeInPath) 5064 break; 5065 } 5066 5067 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5068 &I, MD); 5069 return true; 5070 } 5071 5072 char VerifierLegacyPass::ID = 0; 5073 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5074 5075 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5076 return new VerifierLegacyPass(FatalErrors); 5077 } 5078 5079 AnalysisKey VerifierAnalysis::Key; 5080 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5081 ModuleAnalysisManager &) { 5082 Result Res; 5083 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5084 return Res; 5085 } 5086 5087 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5088 FunctionAnalysisManager &) { 5089 return { llvm::verifyFunction(F, &dbgs()), false }; 5090 } 5091 5092 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5093 auto Res = AM.getResult<VerifierAnalysis>(M); 5094 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5095 report_fatal_error("Broken module found, compilation aborted!"); 5096 5097 return PreservedAnalyses::all(); 5098 } 5099 5100 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5101 auto res = AM.getResult<VerifierAnalysis>(F); 5102 if (res.IRBroken && FatalErrors) 5103 report_fatal_error("Broken function found, compilation aborted!"); 5104 5105 return PreservedAnalyses::all(); 5106 } 5107