1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/BinaryFormat/Dwarf.h"
62 #include "llvm/IR/Argument.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallingConv.h"
67 #include "llvm/IR/Comdat.h"
68 #include "llvm/IR/Constant.h"
69 #include "llvm/IR/ConstantRange.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include "llvm/IR/DebugLoc.h"
74 #include "llvm/IR/DerivedTypes.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/IR/GlobalAlias.h"
78 #include "llvm/IR/GlobalValue.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstVisitor.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/IntrinsicsAArch64.h"
88 #include "llvm/IR/IntrinsicsARM.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include <algorithm>
109 #include <cassert>
110 #include <cstdint>
111 #include <memory>
112 #include <string>
113 #include <utility>
114 
115 using namespace llvm;
116 
117 static cl::opt<bool> VerifyNoAliasScopeDomination(
118     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
119     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
120              "scopes are not dominating"));
121 
122 namespace llvm {
123 
124 struct VerifierSupport {
125   raw_ostream *OS;
126   const Module &M;
127   ModuleSlotTracker MST;
128   Triple TT;
129   const DataLayout &DL;
130   LLVMContext &Context;
131 
132   /// Track the brokenness of the module while recursively visiting.
133   bool Broken = false;
134   /// Broken debug info can be "recovered" from by stripping the debug info.
135   bool BrokenDebugInfo = false;
136   /// Whether to treat broken debug info as an error.
137   bool TreatBrokenDebugInfoAsError = true;
138 
139   explicit VerifierSupport(raw_ostream *OS, const Module &M)
140       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
141         Context(M.getContext()) {}
142 
143 private:
144   void Write(const Module *M) {
145     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
146   }
147 
148   void Write(const Value *V) {
149     if (V)
150       Write(*V);
151   }
152 
153   void Write(const Value &V) {
154     if (isa<Instruction>(V)) {
155       V.print(*OS, MST);
156       *OS << '\n';
157     } else {
158       V.printAsOperand(*OS, true, MST);
159       *OS << '\n';
160     }
161   }
162 
163   void Write(const Metadata *MD) {
164     if (!MD)
165       return;
166     MD->print(*OS, MST, &M);
167     *OS << '\n';
168   }
169 
170   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
171     Write(MD.get());
172   }
173 
174   void Write(const NamedMDNode *NMD) {
175     if (!NMD)
176       return;
177     NMD->print(*OS, MST);
178     *OS << '\n';
179   }
180 
181   void Write(Type *T) {
182     if (!T)
183       return;
184     *OS << ' ' << *T;
185   }
186 
187   void Write(const Comdat *C) {
188     if (!C)
189       return;
190     *OS << *C;
191   }
192 
193   void Write(const APInt *AI) {
194     if (!AI)
195       return;
196     *OS << *AI << '\n';
197   }
198 
199   void Write(const unsigned i) { *OS << i << '\n'; }
200 
201   // NOLINTNEXTLINE(readability-identifier-naming)
202   void Write(const Attribute *A) {
203     if (!A)
204       return;
205     *OS << A->getAsString() << '\n';
206   }
207 
208   // NOLINTNEXTLINE(readability-identifier-naming)
209   void Write(const AttributeSet *AS) {
210     if (!AS)
211       return;
212     *OS << AS->getAsString() << '\n';
213   }
214 
215   // NOLINTNEXTLINE(readability-identifier-naming)
216   void Write(const AttributeList *AL) {
217     if (!AL)
218       return;
219     AL->print(*OS);
220   }
221 
222   template <typename T> void Write(ArrayRef<T> Vs) {
223     for (const T &V : Vs)
224       Write(V);
225   }
226 
227   template <typename T1, typename... Ts>
228   void WriteTs(const T1 &V1, const Ts &... Vs) {
229     Write(V1);
230     WriteTs(Vs...);
231   }
232 
233   template <typename... Ts> void WriteTs() {}
234 
235 public:
236   /// A check failed, so printout out the condition and the message.
237   ///
238   /// This provides a nice place to put a breakpoint if you want to see why
239   /// something is not correct.
240   void CheckFailed(const Twine &Message) {
241     if (OS)
242       *OS << Message << '\n';
243     Broken = true;
244   }
245 
246   /// A check failed (with values to print).
247   ///
248   /// This calls the Message-only version so that the above is easier to set a
249   /// breakpoint on.
250   template <typename T1, typename... Ts>
251   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
252     CheckFailed(Message);
253     if (OS)
254       WriteTs(V1, Vs...);
255   }
256 
257   /// A debug info check failed.
258   void DebugInfoCheckFailed(const Twine &Message) {
259     if (OS)
260       *OS << Message << '\n';
261     Broken |= TreatBrokenDebugInfoAsError;
262     BrokenDebugInfo = true;
263   }
264 
265   /// A debug info check failed (with values to print).
266   template <typename T1, typename... Ts>
267   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
268                             const Ts &... Vs) {
269     DebugInfoCheckFailed(Message);
270     if (OS)
271       WriteTs(V1, Vs...);
272   }
273 };
274 
275 } // namespace llvm
276 
277 namespace {
278 
279 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
280   friend class InstVisitor<Verifier>;
281 
282   // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
283   // the alignment size should not exceed 2^15. Since encode(Align)
284   // would plus the shift value by 1, the alignment size should
285   // not exceed 2^14, otherwise it can NOT be properly lowered
286   // in backend.
287   static constexpr unsigned ParamMaxAlignment = 1 << 14;
288   DominatorTree DT;
289 
290   /// When verifying a basic block, keep track of all of the
291   /// instructions we have seen so far.
292   ///
293   /// This allows us to do efficient dominance checks for the case when an
294   /// instruction has an operand that is an instruction in the same block.
295   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
296 
297   /// Keep track of the metadata nodes that have been checked already.
298   SmallPtrSet<const Metadata *, 32> MDNodes;
299 
300   /// Keep track which DISubprogram is attached to which function.
301   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
302 
303   /// Track all DICompileUnits visited.
304   SmallPtrSet<const Metadata *, 2> CUVisited;
305 
306   /// The result type for a landingpad.
307   Type *LandingPadResultTy;
308 
309   /// Whether we've seen a call to @llvm.localescape in this function
310   /// already.
311   bool SawFrameEscape;
312 
313   /// Whether the current function has a DISubprogram attached to it.
314   bool HasDebugInfo = false;
315 
316   /// The current source language.
317   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
318 
319   /// Whether source was present on the first DIFile encountered in each CU.
320   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
321 
322   /// Stores the count of how many objects were passed to llvm.localescape for a
323   /// given function and the largest index passed to llvm.localrecover.
324   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
325 
326   // Maps catchswitches and cleanuppads that unwind to siblings to the
327   // terminators that indicate the unwind, used to detect cycles therein.
328   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
329 
330   /// Cache of constants visited in search of ConstantExprs.
331   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
332 
333   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
334   SmallVector<const Function *, 4> DeoptimizeDeclarations;
335 
336   /// Cache of attribute lists verified.
337   SmallPtrSet<const void *, 32> AttributeListsVisited;
338 
339   // Verify that this GlobalValue is only used in this module.
340   // This map is used to avoid visiting uses twice. We can arrive at a user
341   // twice, if they have multiple operands. In particular for very large
342   // constant expressions, we can arrive at a particular user many times.
343   SmallPtrSet<const Value *, 32> GlobalValueVisited;
344 
345   // Keeps track of duplicate function argument debug info.
346   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
347 
348   TBAAVerifier TBAAVerifyHelper;
349 
350   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
351 
352   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
353 
354 public:
355   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
356                     const Module &M)
357       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
358         SawFrameEscape(false), TBAAVerifyHelper(this) {
359     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
360   }
361 
362   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
363 
364   bool verify(const Function &F) {
365     assert(F.getParent() == &M &&
366            "An instance of this class only works with a specific module!");
367 
368     // First ensure the function is well-enough formed to compute dominance
369     // information, and directly compute a dominance tree. We don't rely on the
370     // pass manager to provide this as it isolates us from a potentially
371     // out-of-date dominator tree and makes it significantly more complex to run
372     // this code outside of a pass manager.
373     // FIXME: It's really gross that we have to cast away constness here.
374     if (!F.empty())
375       DT.recalculate(const_cast<Function &>(F));
376 
377     for (const BasicBlock &BB : F) {
378       if (!BB.empty() && BB.back().isTerminator())
379         continue;
380 
381       if (OS) {
382         *OS << "Basic Block in function '" << F.getName()
383             << "' does not have terminator!\n";
384         BB.printAsOperand(*OS, true, MST);
385         *OS << "\n";
386       }
387       return false;
388     }
389 
390     Broken = false;
391     // FIXME: We strip const here because the inst visitor strips const.
392     visit(const_cast<Function &>(F));
393     verifySiblingFuncletUnwinds();
394     InstsInThisBlock.clear();
395     DebugFnArgs.clear();
396     LandingPadResultTy = nullptr;
397     SawFrameEscape = false;
398     SiblingFuncletInfo.clear();
399     verifyNoAliasScopeDecl();
400     NoAliasScopeDecls.clear();
401 
402     return !Broken;
403   }
404 
405   /// Verify the module that this instance of \c Verifier was initialized with.
406   bool verify() {
407     Broken = false;
408 
409     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
410     for (const Function &F : M)
411       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
412         DeoptimizeDeclarations.push_back(&F);
413 
414     // Now that we've visited every function, verify that we never asked to
415     // recover a frame index that wasn't escaped.
416     verifyFrameRecoverIndices();
417     for (const GlobalVariable &GV : M.globals())
418       visitGlobalVariable(GV);
419 
420     for (const GlobalAlias &GA : M.aliases())
421       visitGlobalAlias(GA);
422 
423     for (const GlobalIFunc &GI : M.ifuncs())
424       visitGlobalIFunc(GI);
425 
426     for (const NamedMDNode &NMD : M.named_metadata())
427       visitNamedMDNode(NMD);
428 
429     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
430       visitComdat(SMEC.getValue());
431 
432     visitModuleFlags();
433     visitModuleIdents();
434     visitModuleCommandLines();
435 
436     verifyCompileUnits();
437 
438     verifyDeoptimizeCallingConvs();
439     DISubprogramAttachments.clear();
440     return !Broken;
441   }
442 
443 private:
444   /// Whether a metadata node is allowed to be, or contain, a DILocation.
445   enum class AreDebugLocsAllowed { No, Yes };
446 
447   // Verification methods...
448   void visitGlobalValue(const GlobalValue &GV);
449   void visitGlobalVariable(const GlobalVariable &GV);
450   void visitGlobalAlias(const GlobalAlias &GA);
451   void visitGlobalIFunc(const GlobalIFunc &GI);
452   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
453   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
454                            const GlobalAlias &A, const Constant &C);
455   void visitNamedMDNode(const NamedMDNode &NMD);
456   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
457   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
458   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
459   void visitComdat(const Comdat &C);
460   void visitModuleIdents();
461   void visitModuleCommandLines();
462   void visitModuleFlags();
463   void visitModuleFlag(const MDNode *Op,
464                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
465                        SmallVectorImpl<const MDNode *> &Requirements);
466   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
467   void visitFunction(const Function &F);
468   void visitBasicBlock(BasicBlock &BB);
469   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
470   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
471   void visitProfMetadata(Instruction &I, MDNode *MD);
472   void visitAnnotationMetadata(MDNode *Annotation);
473   void visitAliasScopeMetadata(const MDNode *MD);
474   void visitAliasScopeListMetadata(const MDNode *MD);
475   void visitAccessGroupMetadata(const MDNode *MD);
476 
477   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
478 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
479 #include "llvm/IR/Metadata.def"
480   void visitDIScope(const DIScope &N);
481   void visitDIVariable(const DIVariable &N);
482   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
483   void visitDITemplateParameter(const DITemplateParameter &N);
484 
485   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
486 
487   // InstVisitor overrides...
488   using InstVisitor<Verifier>::visit;
489   void visit(Instruction &I);
490 
491   void visitTruncInst(TruncInst &I);
492   void visitZExtInst(ZExtInst &I);
493   void visitSExtInst(SExtInst &I);
494   void visitFPTruncInst(FPTruncInst &I);
495   void visitFPExtInst(FPExtInst &I);
496   void visitFPToUIInst(FPToUIInst &I);
497   void visitFPToSIInst(FPToSIInst &I);
498   void visitUIToFPInst(UIToFPInst &I);
499   void visitSIToFPInst(SIToFPInst &I);
500   void visitIntToPtrInst(IntToPtrInst &I);
501   void visitPtrToIntInst(PtrToIntInst &I);
502   void visitBitCastInst(BitCastInst &I);
503   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
504   void visitPHINode(PHINode &PN);
505   void visitCallBase(CallBase &Call);
506   void visitUnaryOperator(UnaryOperator &U);
507   void visitBinaryOperator(BinaryOperator &B);
508   void visitICmpInst(ICmpInst &IC);
509   void visitFCmpInst(FCmpInst &FC);
510   void visitExtractElementInst(ExtractElementInst &EI);
511   void visitInsertElementInst(InsertElementInst &EI);
512   void visitShuffleVectorInst(ShuffleVectorInst &EI);
513   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
514   void visitCallInst(CallInst &CI);
515   void visitInvokeInst(InvokeInst &II);
516   void visitGetElementPtrInst(GetElementPtrInst &GEP);
517   void visitLoadInst(LoadInst &LI);
518   void visitStoreInst(StoreInst &SI);
519   void verifyDominatesUse(Instruction &I, unsigned i);
520   void visitInstruction(Instruction &I);
521   void visitTerminator(Instruction &I);
522   void visitBranchInst(BranchInst &BI);
523   void visitReturnInst(ReturnInst &RI);
524   void visitSwitchInst(SwitchInst &SI);
525   void visitIndirectBrInst(IndirectBrInst &BI);
526   void visitCallBrInst(CallBrInst &CBI);
527   void visitSelectInst(SelectInst &SI);
528   void visitUserOp1(Instruction &I);
529   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
530   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
531   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
532   void visitVPIntrinsic(VPIntrinsic &VPI);
533   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
534   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
535   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
536   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
537   void visitFenceInst(FenceInst &FI);
538   void visitAllocaInst(AllocaInst &AI);
539   void visitExtractValueInst(ExtractValueInst &EVI);
540   void visitInsertValueInst(InsertValueInst &IVI);
541   void visitEHPadPredecessors(Instruction &I);
542   void visitLandingPadInst(LandingPadInst &LPI);
543   void visitResumeInst(ResumeInst &RI);
544   void visitCatchPadInst(CatchPadInst &CPI);
545   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
546   void visitCleanupPadInst(CleanupPadInst &CPI);
547   void visitFuncletPadInst(FuncletPadInst &FPI);
548   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
549   void visitCleanupReturnInst(CleanupReturnInst &CRI);
550 
551   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
552   void verifySwiftErrorValue(const Value *SwiftErrorVal);
553   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
554   void verifyMustTailCall(CallInst &CI);
555   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
556   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
557   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
558   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
559                                     const Value *V);
560   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
561                            const Value *V, bool IsIntrinsic, bool IsInlineAsm);
562   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
563 
564   void visitConstantExprsRecursively(const Constant *EntryC);
565   void visitConstantExpr(const ConstantExpr *CE);
566   void verifyInlineAsmCall(const CallBase &Call);
567   void verifyStatepoint(const CallBase &Call);
568   void verifyFrameRecoverIndices();
569   void verifySiblingFuncletUnwinds();
570 
571   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
572   template <typename ValueOrMetadata>
573   void verifyFragmentExpression(const DIVariable &V,
574                                 DIExpression::FragmentInfo Fragment,
575                                 ValueOrMetadata *Desc);
576   void verifyFnArgs(const DbgVariableIntrinsic &I);
577   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
578 
579   /// Module-level debug info verification...
580   void verifyCompileUnits();
581 
582   /// Module-level verification that all @llvm.experimental.deoptimize
583   /// declarations share the same calling convention.
584   void verifyDeoptimizeCallingConvs();
585 
586   void verifyAttachedCallBundle(const CallBase &Call,
587                                 const OperandBundleUse &BU);
588 
589   /// Verify all-or-nothing property of DIFile source attribute within a CU.
590   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
591 
592   /// Verify the llvm.experimental.noalias.scope.decl declarations
593   void verifyNoAliasScopeDecl();
594 };
595 
596 } // end anonymous namespace
597 
598 /// We know that cond should be true, if not print an error message.
599 #define Check(C, ...)                                                          \
600   do {                                                                         \
601     if (!(C)) {                                                                \
602       CheckFailed(__VA_ARGS__);                                                \
603       return;                                                                  \
604     }                                                                          \
605   } while (false)
606 
607 /// We know that a debug info condition should be true, if not print
608 /// an error message.
609 #define CheckDI(C, ...)                                                        \
610   do {                                                                         \
611     if (!(C)) {                                                                \
612       DebugInfoCheckFailed(__VA_ARGS__);                                       \
613       return;                                                                  \
614     }                                                                          \
615   } while (false)
616 
617 void Verifier::visit(Instruction &I) {
618   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
619     Check(I.getOperand(i) != nullptr, "Operand is null", &I);
620   InstVisitor<Verifier>::visit(I);
621 }
622 
623 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
624 static void forEachUser(const Value *User,
625                         SmallPtrSet<const Value *, 32> &Visited,
626                         llvm::function_ref<bool(const Value *)> Callback) {
627   if (!Visited.insert(User).second)
628     return;
629 
630   SmallVector<const Value *> WorkList;
631   append_range(WorkList, User->materialized_users());
632   while (!WorkList.empty()) {
633    const Value *Cur = WorkList.pop_back_val();
634     if (!Visited.insert(Cur).second)
635       continue;
636     if (Callback(Cur))
637       append_range(WorkList, Cur->materialized_users());
638   }
639 }
640 
641 void Verifier::visitGlobalValue(const GlobalValue &GV) {
642   Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
643         "Global is external, but doesn't have external or weak linkage!", &GV);
644 
645   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
646 
647     if (MaybeAlign A = GO->getAlign()) {
648       Check(A->value() <= Value::MaximumAlignment,
649             "huge alignment values are unsupported", GO);
650     }
651   }
652   Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
653         "Only global variables can have appending linkage!", &GV);
654 
655   if (GV.hasAppendingLinkage()) {
656     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
657     Check(GVar && GVar->getValueType()->isArrayTy(),
658           "Only global arrays can have appending linkage!", GVar);
659   }
660 
661   if (GV.isDeclarationForLinker())
662     Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
663 
664   if (GV.hasDLLImportStorageClass()) {
665     Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
666           &GV);
667 
668     Check((GV.isDeclaration() &&
669            (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
670               GV.hasAvailableExternallyLinkage(),
671           "Global is marked as dllimport, but not external", &GV);
672   }
673 
674   if (GV.isImplicitDSOLocal())
675     Check(GV.isDSOLocal(),
676           "GlobalValue with local linkage or non-default "
677           "visibility must be dso_local!",
678           &GV);
679 
680   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
681     if (const Instruction *I = dyn_cast<Instruction>(V)) {
682       if (!I->getParent() || !I->getParent()->getParent())
683         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
684                     I);
685       else if (I->getParent()->getParent()->getParent() != &M)
686         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
687                     I->getParent()->getParent(),
688                     I->getParent()->getParent()->getParent());
689       return false;
690     } else if (const Function *F = dyn_cast<Function>(V)) {
691       if (F->getParent() != &M)
692         CheckFailed("Global is used by function in a different module", &GV, &M,
693                     F, F->getParent());
694       return false;
695     }
696     return true;
697   });
698 }
699 
700 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
701   if (GV.hasInitializer()) {
702     Check(GV.getInitializer()->getType() == GV.getValueType(),
703           "Global variable initializer type does not match global "
704           "variable type!",
705           &GV);
706     // If the global has common linkage, it must have a zero initializer and
707     // cannot be constant.
708     if (GV.hasCommonLinkage()) {
709       Check(GV.getInitializer()->isNullValue(),
710             "'common' global must have a zero initializer!", &GV);
711       Check(!GV.isConstant(), "'common' global may not be marked constant!",
712             &GV);
713       Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
714     }
715   }
716 
717   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
718                        GV.getName() == "llvm.global_dtors")) {
719     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
720           "invalid linkage for intrinsic global variable", &GV);
721     // Don't worry about emitting an error for it not being an array,
722     // visitGlobalValue will complain on appending non-array.
723     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
724       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
725       PointerType *FuncPtrTy =
726           FunctionType::get(Type::getVoidTy(Context), false)->
727           getPointerTo(DL.getProgramAddressSpace());
728       Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
729                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
730                 STy->getTypeAtIndex(1) == FuncPtrTy,
731             "wrong type for intrinsic global variable", &GV);
732       Check(STy->getNumElements() == 3,
733             "the third field of the element type is mandatory, "
734             "specify i8* null to migrate from the obsoleted 2-field form");
735       Type *ETy = STy->getTypeAtIndex(2);
736       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
737       Check(ETy->isPointerTy() &&
738                 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
739             "wrong type for intrinsic global variable", &GV);
740     }
741   }
742 
743   if (GV.hasName() && (GV.getName() == "llvm.used" ||
744                        GV.getName() == "llvm.compiler.used")) {
745     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
746           "invalid linkage for intrinsic global variable", &GV);
747     Type *GVType = GV.getValueType();
748     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
749       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
750       Check(PTy, "wrong type for intrinsic global variable", &GV);
751       if (GV.hasInitializer()) {
752         const Constant *Init = GV.getInitializer();
753         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
754         Check(InitArray, "wrong initalizer for intrinsic global variable",
755               Init);
756         for (Value *Op : InitArray->operands()) {
757           Value *V = Op->stripPointerCasts();
758           Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
759                     isa<GlobalAlias>(V),
760                 Twine("invalid ") + GV.getName() + " member", V);
761           Check(V->hasName(),
762                 Twine("members of ") + GV.getName() + " must be named", V);
763         }
764       }
765     }
766   }
767 
768   // Visit any debug info attachments.
769   SmallVector<MDNode *, 1> MDs;
770   GV.getMetadata(LLVMContext::MD_dbg, MDs);
771   for (auto *MD : MDs) {
772     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
773       visitDIGlobalVariableExpression(*GVE);
774     else
775       CheckDI(false, "!dbg attachment of global variable must be a "
776                      "DIGlobalVariableExpression");
777   }
778 
779   // Scalable vectors cannot be global variables, since we don't know
780   // the runtime size. If the global is an array containing scalable vectors,
781   // that will be caught by the isValidElementType methods in StructType or
782   // ArrayType instead.
783   Check(!isa<ScalableVectorType>(GV.getValueType()),
784         "Globals cannot contain scalable vectors", &GV);
785 
786   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
787     Check(!STy->containsScalableVectorType(),
788           "Globals cannot contain scalable vectors", &GV);
789 
790   if (!GV.hasInitializer()) {
791     visitGlobalValue(GV);
792     return;
793   }
794 
795   // Walk any aggregate initializers looking for bitcasts between address spaces
796   visitConstantExprsRecursively(GV.getInitializer());
797 
798   visitGlobalValue(GV);
799 }
800 
801 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
802   SmallPtrSet<const GlobalAlias*, 4> Visited;
803   Visited.insert(&GA);
804   visitAliaseeSubExpr(Visited, GA, C);
805 }
806 
807 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
808                                    const GlobalAlias &GA, const Constant &C) {
809   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
810     Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
811           &GA);
812 
813     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
814       Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
815 
816       Check(!GA2->isInterposable(),
817             "Alias cannot point to an interposable alias", &GA);
818     } else {
819       // Only continue verifying subexpressions of GlobalAliases.
820       // Do not recurse into global initializers.
821       return;
822     }
823   }
824 
825   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
826     visitConstantExprsRecursively(CE);
827 
828   for (const Use &U : C.operands()) {
829     Value *V = &*U;
830     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
831       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
832     else if (const auto *C2 = dyn_cast<Constant>(V))
833       visitAliaseeSubExpr(Visited, GA, *C2);
834   }
835 }
836 
837 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
838   Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
839         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
840         "weak_odr, or external linkage!",
841         &GA);
842   const Constant *Aliasee = GA.getAliasee();
843   Check(Aliasee, "Aliasee cannot be NULL!", &GA);
844   Check(GA.getType() == Aliasee->getType(),
845         "Alias and aliasee types should match!", &GA);
846 
847   Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
848         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
849 
850   visitAliaseeSubExpr(GA, *Aliasee);
851 
852   visitGlobalValue(GA);
853 }
854 
855 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
856   Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
857         "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
858         "weak_odr, or external linkage!",
859         &GI);
860   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
861   // is a Function definition.
862   const Function *Resolver = GI.getResolverFunction();
863   Check(Resolver, "IFunc must have a Function resolver", &GI);
864   Check(!Resolver->isDeclarationForLinker(),
865         "IFunc resolver must be a definition", &GI);
866 
867   // Check that the immediate resolver operand (prior to any bitcasts) has the
868   // correct type.
869   const Type *ResolverTy = GI.getResolver()->getType();
870   const Type *ResolverFuncTy =
871       GlobalIFunc::getResolverFunctionType(GI.getValueType());
872   Check(ResolverTy == ResolverFuncTy->getPointerTo(),
873         "IFunc resolver has incorrect type", &GI);
874 }
875 
876 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
877   // There used to be various other llvm.dbg.* nodes, but we don't support
878   // upgrading them and we want to reserve the namespace for future uses.
879   if (NMD.getName().startswith("llvm.dbg."))
880     CheckDI(NMD.getName() == "llvm.dbg.cu",
881             "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
882   for (const MDNode *MD : NMD.operands()) {
883     if (NMD.getName() == "llvm.dbg.cu")
884       CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
885 
886     if (!MD)
887       continue;
888 
889     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
890   }
891 }
892 
893 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
894   // Only visit each node once.  Metadata can be mutually recursive, so this
895   // avoids infinite recursion here, as well as being an optimization.
896   if (!MDNodes.insert(&MD).second)
897     return;
898 
899   Check(&MD.getContext() == &Context,
900         "MDNode context does not match Module context!", &MD);
901 
902   switch (MD.getMetadataID()) {
903   default:
904     llvm_unreachable("Invalid MDNode subclass");
905   case Metadata::MDTupleKind:
906     break;
907 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
908   case Metadata::CLASS##Kind:                                                  \
909     visit##CLASS(cast<CLASS>(MD));                                             \
910     break;
911 #include "llvm/IR/Metadata.def"
912   }
913 
914   for (const Metadata *Op : MD.operands()) {
915     if (!Op)
916       continue;
917     Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
918           &MD, Op);
919     CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
920             "DILocation not allowed within this metadata node", &MD, Op);
921     if (auto *N = dyn_cast<MDNode>(Op)) {
922       visitMDNode(*N, AllowLocs);
923       continue;
924     }
925     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
926       visitValueAsMetadata(*V, nullptr);
927       continue;
928     }
929   }
930 
931   // Check these last, so we diagnose problems in operands first.
932   Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
933   Check(MD.isResolved(), "All nodes should be resolved!", &MD);
934 }
935 
936 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
937   Check(MD.getValue(), "Expected valid value", &MD);
938   Check(!MD.getValue()->getType()->isMetadataTy(),
939         "Unexpected metadata round-trip through values", &MD, MD.getValue());
940 
941   auto *L = dyn_cast<LocalAsMetadata>(&MD);
942   if (!L)
943     return;
944 
945   Check(F, "function-local metadata used outside a function", L);
946 
947   // If this was an instruction, bb, or argument, verify that it is in the
948   // function that we expect.
949   Function *ActualF = nullptr;
950   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
951     Check(I->getParent(), "function-local metadata not in basic block", L, I);
952     ActualF = I->getParent()->getParent();
953   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
954     ActualF = BB->getParent();
955   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
956     ActualF = A->getParent();
957   assert(ActualF && "Unimplemented function local metadata case!");
958 
959   Check(ActualF == F, "function-local metadata used in wrong function", L);
960 }
961 
962 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
963   Metadata *MD = MDV.getMetadata();
964   if (auto *N = dyn_cast<MDNode>(MD)) {
965     visitMDNode(*N, AreDebugLocsAllowed::No);
966     return;
967   }
968 
969   // Only visit each node once.  Metadata can be mutually recursive, so this
970   // avoids infinite recursion here, as well as being an optimization.
971   if (!MDNodes.insert(MD).second)
972     return;
973 
974   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
975     visitValueAsMetadata(*V, F);
976 }
977 
978 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
979 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
980 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
981 
982 void Verifier::visitDILocation(const DILocation &N) {
983   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
984           "location requires a valid scope", &N, N.getRawScope());
985   if (auto *IA = N.getRawInlinedAt())
986     CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
987   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
988     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
989 }
990 
991 void Verifier::visitGenericDINode(const GenericDINode &N) {
992   CheckDI(N.getTag(), "invalid tag", &N);
993 }
994 
995 void Verifier::visitDIScope(const DIScope &N) {
996   if (auto *F = N.getRawFile())
997     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
998 }
999 
1000 void Verifier::visitDISubrange(const DISubrange &N) {
1001   CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1002   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1003   CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1004               N.getRawUpperBound(),
1005           "Subrange must contain count or upperBound", &N);
1006   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1007           "Subrange can have any one of count or upperBound", &N);
1008   auto *CBound = N.getRawCountNode();
1009   CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1010               isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1011           "Count must be signed constant or DIVariable or DIExpression", &N);
1012   auto Count = N.getCount();
1013   CheckDI(!Count || !Count.is<ConstantInt *>() ||
1014               Count.get<ConstantInt *>()->getSExtValue() >= -1,
1015           "invalid subrange count", &N);
1016   auto *LBound = N.getRawLowerBound();
1017   CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1018               isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1019           "LowerBound must be signed constant or DIVariable or DIExpression",
1020           &N);
1021   auto *UBound = N.getRawUpperBound();
1022   CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1023               isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1024           "UpperBound must be signed constant or DIVariable or DIExpression",
1025           &N);
1026   auto *Stride = N.getRawStride();
1027   CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1028               isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1029           "Stride must be signed constant or DIVariable or DIExpression", &N);
1030 }
1031 
1032 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1033   CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1034   CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1035           "GenericSubrange must contain count or upperBound", &N);
1036   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1037           "GenericSubrange can have any one of count or upperBound", &N);
1038   auto *CBound = N.getRawCountNode();
1039   CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1040           "Count must be signed constant or DIVariable or DIExpression", &N);
1041   auto *LBound = N.getRawLowerBound();
1042   CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1043   CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1044           "LowerBound must be signed constant or DIVariable or DIExpression",
1045           &N);
1046   auto *UBound = N.getRawUpperBound();
1047   CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1048           "UpperBound must be signed constant or DIVariable or DIExpression",
1049           &N);
1050   auto *Stride = N.getRawStride();
1051   CheckDI(Stride, "GenericSubrange must contain stride", &N);
1052   CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1053           "Stride must be signed constant or DIVariable or DIExpression", &N);
1054 }
1055 
1056 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1057   CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1058 }
1059 
1060 void Verifier::visitDIBasicType(const DIBasicType &N) {
1061   CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1062               N.getTag() == dwarf::DW_TAG_unspecified_type ||
1063               N.getTag() == dwarf::DW_TAG_string_type,
1064           "invalid tag", &N);
1065 }
1066 
1067 void Verifier::visitDIStringType(const DIStringType &N) {
1068   CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1069   CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1070           &N);
1071 }
1072 
1073 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1074   // Common scope checks.
1075   visitDIScope(N);
1076 
1077   CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1078               N.getTag() == dwarf::DW_TAG_pointer_type ||
1079               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1080               N.getTag() == dwarf::DW_TAG_reference_type ||
1081               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1082               N.getTag() == dwarf::DW_TAG_const_type ||
1083               N.getTag() == dwarf::DW_TAG_immutable_type ||
1084               N.getTag() == dwarf::DW_TAG_volatile_type ||
1085               N.getTag() == dwarf::DW_TAG_restrict_type ||
1086               N.getTag() == dwarf::DW_TAG_atomic_type ||
1087               N.getTag() == dwarf::DW_TAG_member ||
1088               N.getTag() == dwarf::DW_TAG_inheritance ||
1089               N.getTag() == dwarf::DW_TAG_friend ||
1090               N.getTag() == dwarf::DW_TAG_set_type,
1091           "invalid tag", &N);
1092   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1093     CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1094             N.getRawExtraData());
1095   }
1096 
1097   if (N.getTag() == dwarf::DW_TAG_set_type) {
1098     if (auto *T = N.getRawBaseType()) {
1099       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1100       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1101       CheckDI(
1102           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1103               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1104                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1105                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1106                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1107                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1108           "invalid set base type", &N, T);
1109     }
1110   }
1111 
1112   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1113   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1114           N.getRawBaseType());
1115 
1116   if (N.getDWARFAddressSpace()) {
1117     CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1118                 N.getTag() == dwarf::DW_TAG_reference_type ||
1119                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1120             "DWARF address space only applies to pointer or reference types",
1121             &N);
1122   }
1123 }
1124 
1125 /// Detect mutually exclusive flags.
1126 static bool hasConflictingReferenceFlags(unsigned Flags) {
1127   return ((Flags & DINode::FlagLValueReference) &&
1128           (Flags & DINode::FlagRValueReference)) ||
1129          ((Flags & DINode::FlagTypePassByValue) &&
1130           (Flags & DINode::FlagTypePassByReference));
1131 }
1132 
1133 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1134   auto *Params = dyn_cast<MDTuple>(&RawParams);
1135   CheckDI(Params, "invalid template params", &N, &RawParams);
1136   for (Metadata *Op : Params->operands()) {
1137     CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1138             &N, Params, Op);
1139   }
1140 }
1141 
1142 void Verifier::visitDICompositeType(const DICompositeType &N) {
1143   // Common scope checks.
1144   visitDIScope(N);
1145 
1146   CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1147               N.getTag() == dwarf::DW_TAG_structure_type ||
1148               N.getTag() == dwarf::DW_TAG_union_type ||
1149               N.getTag() == dwarf::DW_TAG_enumeration_type ||
1150               N.getTag() == dwarf::DW_TAG_class_type ||
1151               N.getTag() == dwarf::DW_TAG_variant_part ||
1152               N.getTag() == dwarf::DW_TAG_namelist,
1153           "invalid tag", &N);
1154 
1155   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1156   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1157           N.getRawBaseType());
1158 
1159   CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1160           "invalid composite elements", &N, N.getRawElements());
1161   CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1162           N.getRawVTableHolder());
1163   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1164           "invalid reference flags", &N);
1165   unsigned DIBlockByRefStruct = 1 << 4;
1166   CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1167           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1168 
1169   if (N.isVector()) {
1170     const DINodeArray Elements = N.getElements();
1171     CheckDI(Elements.size() == 1 &&
1172                 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1173             "invalid vector, expected one element of type subrange", &N);
1174   }
1175 
1176   if (auto *Params = N.getRawTemplateParams())
1177     visitTemplateParams(N, *Params);
1178 
1179   if (auto *D = N.getRawDiscriminator()) {
1180     CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1181             "discriminator can only appear on variant part");
1182   }
1183 
1184   if (N.getRawDataLocation()) {
1185     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1186             "dataLocation can only appear in array type");
1187   }
1188 
1189   if (N.getRawAssociated()) {
1190     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1191             "associated can only appear in array type");
1192   }
1193 
1194   if (N.getRawAllocated()) {
1195     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1196             "allocated can only appear in array type");
1197   }
1198 
1199   if (N.getRawRank()) {
1200     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1201             "rank can only appear in array type");
1202   }
1203 }
1204 
1205 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1206   CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1207   if (auto *Types = N.getRawTypeArray()) {
1208     CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1209     for (Metadata *Ty : N.getTypeArray()->operands()) {
1210       CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1211     }
1212   }
1213   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1214           "invalid reference flags", &N);
1215 }
1216 
1217 void Verifier::visitDIFile(const DIFile &N) {
1218   CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1219   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1220   if (Checksum) {
1221     CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1222             "invalid checksum kind", &N);
1223     size_t Size;
1224     switch (Checksum->Kind) {
1225     case DIFile::CSK_MD5:
1226       Size = 32;
1227       break;
1228     case DIFile::CSK_SHA1:
1229       Size = 40;
1230       break;
1231     case DIFile::CSK_SHA256:
1232       Size = 64;
1233       break;
1234     }
1235     CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1236     CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1237             "invalid checksum", &N);
1238   }
1239 }
1240 
1241 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1242   CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1243   CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1244 
1245   // Don't bother verifying the compilation directory or producer string
1246   // as those could be empty.
1247   CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1248           N.getRawFile());
1249   CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1250           N.getFile());
1251 
1252   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1253 
1254   verifySourceDebugInfo(N, *N.getFile());
1255 
1256   CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1257           "invalid emission kind", &N);
1258 
1259   if (auto *Array = N.getRawEnumTypes()) {
1260     CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1261     for (Metadata *Op : N.getEnumTypes()->operands()) {
1262       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1263       CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1264               "invalid enum type", &N, N.getEnumTypes(), Op);
1265     }
1266   }
1267   if (auto *Array = N.getRawRetainedTypes()) {
1268     CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1269     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1270       CheckDI(
1271           Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1272                                      !cast<DISubprogram>(Op)->isDefinition())),
1273           "invalid retained type", &N, Op);
1274     }
1275   }
1276   if (auto *Array = N.getRawGlobalVariables()) {
1277     CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1278     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1279       CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1280               "invalid global variable ref", &N, Op);
1281     }
1282   }
1283   if (auto *Array = N.getRawImportedEntities()) {
1284     CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1285     for (Metadata *Op : N.getImportedEntities()->operands()) {
1286       CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1287               &N, Op);
1288     }
1289   }
1290   if (auto *Array = N.getRawMacros()) {
1291     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1292     for (Metadata *Op : N.getMacros()->operands()) {
1293       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1294     }
1295   }
1296   CUVisited.insert(&N);
1297 }
1298 
1299 void Verifier::visitDISubprogram(const DISubprogram &N) {
1300   CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1301   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1302   if (auto *F = N.getRawFile())
1303     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1304   else
1305     CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1306   if (auto *T = N.getRawType())
1307     CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1308   CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1309           N.getRawContainingType());
1310   if (auto *Params = N.getRawTemplateParams())
1311     visitTemplateParams(N, *Params);
1312   if (auto *S = N.getRawDeclaration())
1313     CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1314             "invalid subprogram declaration", &N, S);
1315   if (auto *RawNode = N.getRawRetainedNodes()) {
1316     auto *Node = dyn_cast<MDTuple>(RawNode);
1317     CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1318     for (Metadata *Op : Node->operands()) {
1319       CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1320               "invalid retained nodes, expected DILocalVariable or DILabel", &N,
1321               Node, Op);
1322     }
1323   }
1324   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1325           "invalid reference flags", &N);
1326 
1327   auto *Unit = N.getRawUnit();
1328   if (N.isDefinition()) {
1329     // Subprogram definitions (not part of the type hierarchy).
1330     CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1331     CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1332     CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1333     if (N.getFile())
1334       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1335   } else {
1336     // Subprogram declarations (part of the type hierarchy).
1337     CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1338   }
1339 
1340   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1341     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1342     CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1343     for (Metadata *Op : ThrownTypes->operands())
1344       CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1345               Op);
1346   }
1347 
1348   if (N.areAllCallsDescribed())
1349     CheckDI(N.isDefinition(),
1350             "DIFlagAllCallsDescribed must be attached to a definition");
1351 }
1352 
1353 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1354   CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1355   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1356           "invalid local scope", &N, N.getRawScope());
1357   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1358     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1359 }
1360 
1361 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1362   visitDILexicalBlockBase(N);
1363 
1364   CheckDI(N.getLine() || !N.getColumn(),
1365           "cannot have column info without line info", &N);
1366 }
1367 
1368 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1369   visitDILexicalBlockBase(N);
1370 }
1371 
1372 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1373   CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1374   if (auto *S = N.getRawScope())
1375     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1376   if (auto *S = N.getRawDecl())
1377     CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1378 }
1379 
1380 void Verifier::visitDINamespace(const DINamespace &N) {
1381   CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1382   if (auto *S = N.getRawScope())
1383     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1384 }
1385 
1386 void Verifier::visitDIMacro(const DIMacro &N) {
1387   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1388               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1389           "invalid macinfo type", &N);
1390   CheckDI(!N.getName().empty(), "anonymous macro", &N);
1391   if (!N.getValue().empty()) {
1392     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1393   }
1394 }
1395 
1396 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1397   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1398           "invalid macinfo type", &N);
1399   if (auto *F = N.getRawFile())
1400     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1401 
1402   if (auto *Array = N.getRawElements()) {
1403     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1404     for (Metadata *Op : N.getElements()->operands()) {
1405       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1406     }
1407   }
1408 }
1409 
1410 void Verifier::visitDIArgList(const DIArgList &N) {
1411   CheckDI(!N.getNumOperands(),
1412           "DIArgList should have no operands other than a list of "
1413           "ValueAsMetadata",
1414           &N);
1415 }
1416 
1417 void Verifier::visitDIModule(const DIModule &N) {
1418   CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1419   CheckDI(!N.getName().empty(), "anonymous module", &N);
1420 }
1421 
1422 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1423   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1424 }
1425 
1426 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1427   visitDITemplateParameter(N);
1428 
1429   CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1430           &N);
1431 }
1432 
1433 void Verifier::visitDITemplateValueParameter(
1434     const DITemplateValueParameter &N) {
1435   visitDITemplateParameter(N);
1436 
1437   CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1438               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1439               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1440           "invalid tag", &N);
1441 }
1442 
1443 void Verifier::visitDIVariable(const DIVariable &N) {
1444   if (auto *S = N.getRawScope())
1445     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1446   if (auto *F = N.getRawFile())
1447     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1448 }
1449 
1450 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1451   // Checks common to all variables.
1452   visitDIVariable(N);
1453 
1454   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1455   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1456   // Check only if the global variable is not an extern
1457   if (N.isDefinition())
1458     CheckDI(N.getType(), "missing global variable type", &N);
1459   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1460     CheckDI(isa<DIDerivedType>(Member),
1461             "invalid static data member declaration", &N, Member);
1462   }
1463 }
1464 
1465 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1466   // Checks common to all variables.
1467   visitDIVariable(N);
1468 
1469   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1470   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1471   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1472           "local variable requires a valid scope", &N, N.getRawScope());
1473   if (auto Ty = N.getType())
1474     CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1475 }
1476 
1477 void Verifier::visitDILabel(const DILabel &N) {
1478   if (auto *S = N.getRawScope())
1479     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1480   if (auto *F = N.getRawFile())
1481     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1482 
1483   CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1484   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1485           "label requires a valid scope", &N, N.getRawScope());
1486 }
1487 
1488 void Verifier::visitDIExpression(const DIExpression &N) {
1489   CheckDI(N.isValid(), "invalid expression", &N);
1490 }
1491 
1492 void Verifier::visitDIGlobalVariableExpression(
1493     const DIGlobalVariableExpression &GVE) {
1494   CheckDI(GVE.getVariable(), "missing variable");
1495   if (auto *Var = GVE.getVariable())
1496     visitDIGlobalVariable(*Var);
1497   if (auto *Expr = GVE.getExpression()) {
1498     visitDIExpression(*Expr);
1499     if (auto Fragment = Expr->getFragmentInfo())
1500       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1501   }
1502 }
1503 
1504 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1505   CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1506   if (auto *T = N.getRawType())
1507     CheckDI(isType(T), "invalid type ref", &N, T);
1508   if (auto *F = N.getRawFile())
1509     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1510 }
1511 
1512 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1513   CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1514               N.getTag() == dwarf::DW_TAG_imported_declaration,
1515           "invalid tag", &N);
1516   if (auto *S = N.getRawScope())
1517     CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1518   CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1519           N.getRawEntity());
1520 }
1521 
1522 void Verifier::visitComdat(const Comdat &C) {
1523   // In COFF the Module is invalid if the GlobalValue has private linkage.
1524   // Entities with private linkage don't have entries in the symbol table.
1525   if (TT.isOSBinFormatCOFF())
1526     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1527       Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1528             GV);
1529 }
1530 
1531 void Verifier::visitModuleIdents() {
1532   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1533   if (!Idents)
1534     return;
1535 
1536   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1537   // Scan each llvm.ident entry and make sure that this requirement is met.
1538   for (const MDNode *N : Idents->operands()) {
1539     Check(N->getNumOperands() == 1,
1540           "incorrect number of operands in llvm.ident metadata", N);
1541     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1542           ("invalid value for llvm.ident metadata entry operand"
1543            "(the operand should be a string)"),
1544           N->getOperand(0));
1545   }
1546 }
1547 
1548 void Verifier::visitModuleCommandLines() {
1549   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1550   if (!CommandLines)
1551     return;
1552 
1553   // llvm.commandline takes a list of metadata entry. Each entry has only one
1554   // string. Scan each llvm.commandline entry and make sure that this
1555   // requirement is met.
1556   for (const MDNode *N : CommandLines->operands()) {
1557     Check(N->getNumOperands() == 1,
1558           "incorrect number of operands in llvm.commandline metadata", N);
1559     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1560           ("invalid value for llvm.commandline metadata entry operand"
1561            "(the operand should be a string)"),
1562           N->getOperand(0));
1563   }
1564 }
1565 
1566 void Verifier::visitModuleFlags() {
1567   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1568   if (!Flags) return;
1569 
1570   // Scan each flag, and track the flags and requirements.
1571   DenseMap<const MDString*, const MDNode*> SeenIDs;
1572   SmallVector<const MDNode*, 16> Requirements;
1573   for (const MDNode *MDN : Flags->operands())
1574     visitModuleFlag(MDN, SeenIDs, Requirements);
1575 
1576   // Validate that the requirements in the module are valid.
1577   for (const MDNode *Requirement : Requirements) {
1578     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1579     const Metadata *ReqValue = Requirement->getOperand(1);
1580 
1581     const MDNode *Op = SeenIDs.lookup(Flag);
1582     if (!Op) {
1583       CheckFailed("invalid requirement on flag, flag is not present in module",
1584                   Flag);
1585       continue;
1586     }
1587 
1588     if (Op->getOperand(2) != ReqValue) {
1589       CheckFailed(("invalid requirement on flag, "
1590                    "flag does not have the required value"),
1591                   Flag);
1592       continue;
1593     }
1594   }
1595 }
1596 
1597 void
1598 Verifier::visitModuleFlag(const MDNode *Op,
1599                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1600                           SmallVectorImpl<const MDNode *> &Requirements) {
1601   // Each module flag should have three arguments, the merge behavior (a
1602   // constant int), the flag ID (an MDString), and the value.
1603   Check(Op->getNumOperands() == 3,
1604         "incorrect number of operands in module flag", Op);
1605   Module::ModFlagBehavior MFB;
1606   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1607     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1608           "invalid behavior operand in module flag (expected constant integer)",
1609           Op->getOperand(0));
1610     Check(false,
1611           "invalid behavior operand in module flag (unexpected constant)",
1612           Op->getOperand(0));
1613   }
1614   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1615   Check(ID, "invalid ID operand in module flag (expected metadata string)",
1616         Op->getOperand(1));
1617 
1618   // Check the values for behaviors with additional requirements.
1619   switch (MFB) {
1620   case Module::Error:
1621   case Module::Warning:
1622   case Module::Override:
1623     // These behavior types accept any value.
1624     break;
1625 
1626   case Module::Max: {
1627     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1628           "invalid value for 'max' module flag (expected constant integer)",
1629           Op->getOperand(2));
1630     break;
1631   }
1632 
1633   case Module::Require: {
1634     // The value should itself be an MDNode with two operands, a flag ID (an
1635     // MDString), and a value.
1636     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1637     Check(Value && Value->getNumOperands() == 2,
1638           "invalid value for 'require' module flag (expected metadata pair)",
1639           Op->getOperand(2));
1640     Check(isa<MDString>(Value->getOperand(0)),
1641           ("invalid value for 'require' module flag "
1642            "(first value operand should be a string)"),
1643           Value->getOperand(0));
1644 
1645     // Append it to the list of requirements, to check once all module flags are
1646     // scanned.
1647     Requirements.push_back(Value);
1648     break;
1649   }
1650 
1651   case Module::Append:
1652   case Module::AppendUnique: {
1653     // These behavior types require the operand be an MDNode.
1654     Check(isa<MDNode>(Op->getOperand(2)),
1655           "invalid value for 'append'-type module flag "
1656           "(expected a metadata node)",
1657           Op->getOperand(2));
1658     break;
1659   }
1660   }
1661 
1662   // Unless this is a "requires" flag, check the ID is unique.
1663   if (MFB != Module::Require) {
1664     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1665     Check(Inserted,
1666           "module flag identifiers must be unique (or of 'require' type)", ID);
1667   }
1668 
1669   if (ID->getString() == "wchar_size") {
1670     ConstantInt *Value
1671       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1672     Check(Value, "wchar_size metadata requires constant integer argument");
1673   }
1674 
1675   if (ID->getString() == "Linker Options") {
1676     // If the llvm.linker.options named metadata exists, we assume that the
1677     // bitcode reader has upgraded the module flag. Otherwise the flag might
1678     // have been created by a client directly.
1679     Check(M.getNamedMetadata("llvm.linker.options"),
1680           "'Linker Options' named metadata no longer supported");
1681   }
1682 
1683   if (ID->getString() == "SemanticInterposition") {
1684     ConstantInt *Value =
1685         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1686     Check(Value,
1687           "SemanticInterposition metadata requires constant integer argument");
1688   }
1689 
1690   if (ID->getString() == "CG Profile") {
1691     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1692       visitModuleFlagCGProfileEntry(MDO);
1693   }
1694 }
1695 
1696 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1697   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1698     if (!FuncMDO)
1699       return;
1700     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1701     Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1702           "expected a Function or null", FuncMDO);
1703   };
1704   auto Node = dyn_cast_or_null<MDNode>(MDO);
1705   Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1706   CheckFunction(Node->getOperand(0));
1707   CheckFunction(Node->getOperand(1));
1708   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1709   Check(Count && Count->getType()->isIntegerTy(),
1710         "expected an integer constant", Node->getOperand(2));
1711 }
1712 
1713 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1714   for (Attribute A : Attrs) {
1715 
1716     if (A.isStringAttribute()) {
1717 #define GET_ATTR_NAMES
1718 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1719 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1720   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1721     auto V = A.getValueAsString();                                             \
1722     if (!(V.empty() || V == "true" || V == "false"))                           \
1723       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1724                   "");                                                         \
1725   }
1726 
1727 #include "llvm/IR/Attributes.inc"
1728       continue;
1729     }
1730 
1731     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1732       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1733                   V);
1734       return;
1735     }
1736   }
1737 }
1738 
1739 // VerifyParameterAttrs - Check the given attributes for an argument or return
1740 // value of the specified type.  The value V is printed in error messages.
1741 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1742                                     const Value *V) {
1743   if (!Attrs.hasAttributes())
1744     return;
1745 
1746   verifyAttributeTypes(Attrs, V);
1747 
1748   for (Attribute Attr : Attrs)
1749     Check(Attr.isStringAttribute() ||
1750               Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1751           "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1752           V);
1753 
1754   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1755     Check(Attrs.getNumAttributes() == 1,
1756           "Attribute 'immarg' is incompatible with other attributes", V);
1757   }
1758 
1759   // Check for mutually incompatible attributes.  Only inreg is compatible with
1760   // sret.
1761   unsigned AttrCount = 0;
1762   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1763   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1764   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1765   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1766                Attrs.hasAttribute(Attribute::InReg);
1767   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1768   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1769   Check(AttrCount <= 1,
1770         "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1771         "'byref', and 'sret' are incompatible!",
1772         V);
1773 
1774   Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1775           Attrs.hasAttribute(Attribute::ReadOnly)),
1776         "Attributes "
1777         "'inalloca and readonly' are incompatible!",
1778         V);
1779 
1780   Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1781           Attrs.hasAttribute(Attribute::Returned)),
1782         "Attributes "
1783         "'sret and returned' are incompatible!",
1784         V);
1785 
1786   Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1787           Attrs.hasAttribute(Attribute::SExt)),
1788         "Attributes "
1789         "'zeroext and signext' are incompatible!",
1790         V);
1791 
1792   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1793           Attrs.hasAttribute(Attribute::ReadOnly)),
1794         "Attributes "
1795         "'readnone and readonly' are incompatible!",
1796         V);
1797 
1798   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1799           Attrs.hasAttribute(Attribute::WriteOnly)),
1800         "Attributes "
1801         "'readnone and writeonly' are incompatible!",
1802         V);
1803 
1804   Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1805           Attrs.hasAttribute(Attribute::WriteOnly)),
1806         "Attributes "
1807         "'readonly and writeonly' are incompatible!",
1808         V);
1809 
1810   Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1811           Attrs.hasAttribute(Attribute::AlwaysInline)),
1812         "Attributes "
1813         "'noinline and alwaysinline' are incompatible!",
1814         V);
1815 
1816   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1817   for (Attribute Attr : Attrs) {
1818     if (!Attr.isStringAttribute() &&
1819         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1820       CheckFailed("Attribute '" + Attr.getAsString() +
1821                   "' applied to incompatible type!", V);
1822       return;
1823     }
1824   }
1825 
1826   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1827     if (Attrs.hasAttribute(Attribute::ByVal)) {
1828       if (Attrs.hasAttribute(Attribute::Alignment)) {
1829         Align AttrAlign = Attrs.getAlignment().valueOrOne();
1830         Align MaxAlign(ParamMaxAlignment);
1831         Check(AttrAlign <= MaxAlign,
1832               "Attribute 'align' exceed the max size 2^14", V);
1833       }
1834       SmallPtrSet<Type *, 4> Visited;
1835       Check(Attrs.getByValType()->isSized(&Visited),
1836             "Attribute 'byval' does not support unsized types!", V);
1837     }
1838     if (Attrs.hasAttribute(Attribute::ByRef)) {
1839       SmallPtrSet<Type *, 4> Visited;
1840       Check(Attrs.getByRefType()->isSized(&Visited),
1841             "Attribute 'byref' does not support unsized types!", V);
1842     }
1843     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1844       SmallPtrSet<Type *, 4> Visited;
1845       Check(Attrs.getInAllocaType()->isSized(&Visited),
1846             "Attribute 'inalloca' does not support unsized types!", V);
1847     }
1848     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1849       SmallPtrSet<Type *, 4> Visited;
1850       Check(Attrs.getPreallocatedType()->isSized(&Visited),
1851             "Attribute 'preallocated' does not support unsized types!", V);
1852     }
1853     if (!PTy->isOpaque()) {
1854       if (!isa<PointerType>(PTy->getNonOpaquePointerElementType()))
1855         Check(!Attrs.hasAttribute(Attribute::SwiftError),
1856               "Attribute 'swifterror' only applies to parameters "
1857               "with pointer to pointer type!",
1858               V);
1859       if (Attrs.hasAttribute(Attribute::ByRef)) {
1860         Check(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(),
1861               "Attribute 'byref' type does not match parameter!", V);
1862       }
1863 
1864       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1865         Check(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(),
1866               "Attribute 'byval' type does not match parameter!", V);
1867       }
1868 
1869       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1870         Check(Attrs.getPreallocatedType() ==
1871                   PTy->getNonOpaquePointerElementType(),
1872               "Attribute 'preallocated' type does not match parameter!", V);
1873       }
1874 
1875       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1876         Check(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(),
1877               "Attribute 'inalloca' type does not match parameter!", V);
1878       }
1879 
1880       if (Attrs.hasAttribute(Attribute::ElementType)) {
1881         Check(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(),
1882               "Attribute 'elementtype' type does not match parameter!", V);
1883       }
1884     }
1885   }
1886 }
1887 
1888 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1889                                             const Value *V) {
1890   if (Attrs.hasFnAttr(Attr)) {
1891     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1892     unsigned N;
1893     if (S.getAsInteger(10, N))
1894       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1895   }
1896 }
1897 
1898 // Check parameter attributes against a function type.
1899 // The value V is printed in error messages.
1900 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1901                                    const Value *V, bool IsIntrinsic,
1902                                    bool IsInlineAsm) {
1903   if (Attrs.isEmpty())
1904     return;
1905 
1906   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1907     Check(Attrs.hasParentContext(Context),
1908           "Attribute list does not match Module context!", &Attrs, V);
1909     for (const auto &AttrSet : Attrs) {
1910       Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1911             "Attribute set does not match Module context!", &AttrSet, V);
1912       for (const auto &A : AttrSet) {
1913         Check(A.hasParentContext(Context),
1914               "Attribute does not match Module context!", &A, V);
1915       }
1916     }
1917   }
1918 
1919   bool SawNest = false;
1920   bool SawReturned = false;
1921   bool SawSRet = false;
1922   bool SawSwiftSelf = false;
1923   bool SawSwiftAsync = false;
1924   bool SawSwiftError = false;
1925 
1926   // Verify return value attributes.
1927   AttributeSet RetAttrs = Attrs.getRetAttrs();
1928   for (Attribute RetAttr : RetAttrs)
1929     Check(RetAttr.isStringAttribute() ||
1930               Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1931           "Attribute '" + RetAttr.getAsString() +
1932               "' does not apply to function return values",
1933           V);
1934 
1935   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1936 
1937   // Verify parameter attributes.
1938   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1939     Type *Ty = FT->getParamType(i);
1940     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1941 
1942     if (!IsIntrinsic) {
1943       Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1944             "immarg attribute only applies to intrinsics", V);
1945       if (!IsInlineAsm)
1946         Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
1947               "Attribute 'elementtype' can only be applied to intrinsics"
1948               " and inline asm.",
1949               V);
1950     }
1951 
1952     verifyParameterAttrs(ArgAttrs, Ty, V);
1953 
1954     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1955       Check(!SawNest, "More than one parameter has attribute nest!", V);
1956       SawNest = true;
1957     }
1958 
1959     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1960       Check(!SawReturned, "More than one parameter has attribute returned!", V);
1961       Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1962             "Incompatible argument and return types for 'returned' attribute",
1963             V);
1964       SawReturned = true;
1965     }
1966 
1967     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1968       Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1969       Check(i == 0 || i == 1,
1970             "Attribute 'sret' is not on first or second parameter!", V);
1971       SawSRet = true;
1972     }
1973 
1974     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1975       Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1976       SawSwiftSelf = true;
1977     }
1978 
1979     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1980       Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1981       SawSwiftAsync = true;
1982     }
1983 
1984     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1985       Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
1986       SawSwiftError = true;
1987     }
1988 
1989     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1990       Check(i == FT->getNumParams() - 1,
1991             "inalloca isn't on the last parameter!", V);
1992     }
1993   }
1994 
1995   if (!Attrs.hasFnAttrs())
1996     return;
1997 
1998   verifyAttributeTypes(Attrs.getFnAttrs(), V);
1999   for (Attribute FnAttr : Attrs.getFnAttrs())
2000     Check(FnAttr.isStringAttribute() ||
2001               Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2002           "Attribute '" + FnAttr.getAsString() +
2003               "' does not apply to functions!",
2004           V);
2005 
2006   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2007           Attrs.hasFnAttr(Attribute::ReadOnly)),
2008         "Attributes 'readnone and readonly' are incompatible!", V);
2009 
2010   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2011           Attrs.hasFnAttr(Attribute::WriteOnly)),
2012         "Attributes 'readnone and writeonly' are incompatible!", V);
2013 
2014   Check(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
2015           Attrs.hasFnAttr(Attribute::WriteOnly)),
2016         "Attributes 'readonly and writeonly' are incompatible!", V);
2017 
2018   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2019           Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
2020         "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
2021         "incompatible!",
2022         V);
2023 
2024   Check(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
2025           Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
2026         "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
2027 
2028   Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2029           Attrs.hasFnAttr(Attribute::AlwaysInline)),
2030         "Attributes 'noinline and alwaysinline' are incompatible!", V);
2031 
2032   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2033     Check(Attrs.hasFnAttr(Attribute::NoInline),
2034           "Attribute 'optnone' requires 'noinline'!", V);
2035 
2036     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2037           "Attributes 'optsize and optnone' are incompatible!", V);
2038 
2039     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2040           "Attributes 'minsize and optnone' are incompatible!", V);
2041   }
2042 
2043   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2044     const GlobalValue *GV = cast<GlobalValue>(V);
2045     Check(GV->hasGlobalUnnamedAddr(),
2046           "Attribute 'jumptable' requires 'unnamed_addr'", V);
2047   }
2048 
2049   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
2050     std::pair<unsigned, Optional<unsigned>> Args =
2051         Attrs.getFnAttrs().getAllocSizeArgs();
2052 
2053     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2054       if (ParamNo >= FT->getNumParams()) {
2055         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2056         return false;
2057       }
2058 
2059       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2060         CheckFailed("'allocsize' " + Name +
2061                         " argument must refer to an integer parameter",
2062                     V);
2063         return false;
2064       }
2065 
2066       return true;
2067     };
2068 
2069     if (!CheckParam("element size", Args.first))
2070       return;
2071 
2072     if (Args.second && !CheckParam("number of elements", *Args.second))
2073       return;
2074   }
2075 
2076   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2077     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2078     if (VScaleMin == 0)
2079       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2080 
2081     Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2082     if (VScaleMax && VScaleMin > VScaleMax)
2083       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2084   }
2085 
2086   if (Attrs.hasFnAttr("frame-pointer")) {
2087     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2088     if (FP != "all" && FP != "non-leaf" && FP != "none")
2089       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2090   }
2091 
2092   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2093   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2094   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2095 }
2096 
2097 void Verifier::verifyFunctionMetadata(
2098     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2099   for (const auto &Pair : MDs) {
2100     if (Pair.first == LLVMContext::MD_prof) {
2101       MDNode *MD = Pair.second;
2102       Check(MD->getNumOperands() >= 2,
2103             "!prof annotations should have no less than 2 operands", MD);
2104 
2105       // Check first operand.
2106       Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2107             MD);
2108       Check(isa<MDString>(MD->getOperand(0)),
2109             "expected string with name of the !prof annotation", MD);
2110       MDString *MDS = cast<MDString>(MD->getOperand(0));
2111       StringRef ProfName = MDS->getString();
2112       Check(ProfName.equals("function_entry_count") ||
2113                 ProfName.equals("synthetic_function_entry_count"),
2114             "first operand should be 'function_entry_count'"
2115             " or 'synthetic_function_entry_count'",
2116             MD);
2117 
2118       // Check second operand.
2119       Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2120             MD);
2121       Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2122             "expected integer argument to function_entry_count", MD);
2123     }
2124   }
2125 }
2126 
2127 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2128   if (!ConstantExprVisited.insert(EntryC).second)
2129     return;
2130 
2131   SmallVector<const Constant *, 16> Stack;
2132   Stack.push_back(EntryC);
2133 
2134   while (!Stack.empty()) {
2135     const Constant *C = Stack.pop_back_val();
2136 
2137     // Check this constant expression.
2138     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2139       visitConstantExpr(CE);
2140 
2141     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2142       // Global Values get visited separately, but we do need to make sure
2143       // that the global value is in the correct module
2144       Check(GV->getParent() == &M, "Referencing global in another module!",
2145             EntryC, &M, GV, GV->getParent());
2146       continue;
2147     }
2148 
2149     // Visit all sub-expressions.
2150     for (const Use &U : C->operands()) {
2151       const auto *OpC = dyn_cast<Constant>(U);
2152       if (!OpC)
2153         continue;
2154       if (!ConstantExprVisited.insert(OpC).second)
2155         continue;
2156       Stack.push_back(OpC);
2157     }
2158   }
2159 }
2160 
2161 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2162   if (CE->getOpcode() == Instruction::BitCast)
2163     Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2164                                 CE->getType()),
2165           "Invalid bitcast", CE);
2166 }
2167 
2168 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2169   // There shouldn't be more attribute sets than there are parameters plus the
2170   // function and return value.
2171   return Attrs.getNumAttrSets() <= Params + 2;
2172 }
2173 
2174 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2175   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2176   unsigned ArgNo = 0;
2177   for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2178     // Only deal with constraints that correspond to call arguments.
2179     if (!CI.hasArg())
2180       continue;
2181 
2182     if (CI.isIndirect) {
2183       const Value *Arg = Call.getArgOperand(ArgNo);
2184       Check(Arg->getType()->isPointerTy(),
2185             "Operand for indirect constraint must have pointer type", &Call);
2186 
2187       Check(Call.getParamElementType(ArgNo),
2188             "Operand for indirect constraint must have elementtype attribute",
2189             &Call);
2190     } else {
2191       Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2192             "Elementtype attribute can only be applied for indirect "
2193             "constraints",
2194             &Call);
2195     }
2196 
2197     ArgNo++;
2198   }
2199 }
2200 
2201 /// Verify that statepoint intrinsic is well formed.
2202 void Verifier::verifyStatepoint(const CallBase &Call) {
2203   assert(Call.getCalledFunction() &&
2204          Call.getCalledFunction()->getIntrinsicID() ==
2205              Intrinsic::experimental_gc_statepoint);
2206 
2207   Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2208             !Call.onlyAccessesArgMemory(),
2209         "gc.statepoint must read and write all memory to preserve "
2210         "reordering restrictions required by safepoint semantics",
2211         Call);
2212 
2213   const int64_t NumPatchBytes =
2214       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2215   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2216   Check(NumPatchBytes >= 0,
2217         "gc.statepoint number of patchable bytes must be "
2218         "positive",
2219         Call);
2220 
2221   Type *TargetElemType = Call.getParamElementType(2);
2222   Check(TargetElemType,
2223         "gc.statepoint callee argument must have elementtype attribute", Call);
2224   FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2225   Check(TargetFuncType,
2226         "gc.statepoint callee elementtype must be function type", Call);
2227 
2228   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2229   Check(NumCallArgs >= 0,
2230         "gc.statepoint number of arguments to underlying call "
2231         "must be positive",
2232         Call);
2233   const int NumParams = (int)TargetFuncType->getNumParams();
2234   if (TargetFuncType->isVarArg()) {
2235     Check(NumCallArgs >= NumParams,
2236           "gc.statepoint mismatch in number of vararg call args", Call);
2237 
2238     // TODO: Remove this limitation
2239     Check(TargetFuncType->getReturnType()->isVoidTy(),
2240           "gc.statepoint doesn't support wrapping non-void "
2241           "vararg functions yet",
2242           Call);
2243   } else
2244     Check(NumCallArgs == NumParams,
2245           "gc.statepoint mismatch in number of call args", Call);
2246 
2247   const uint64_t Flags
2248     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2249   Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2250         "unknown flag used in gc.statepoint flags argument", Call);
2251 
2252   // Verify that the types of the call parameter arguments match
2253   // the type of the wrapped callee.
2254   AttributeList Attrs = Call.getAttributes();
2255   for (int i = 0; i < NumParams; i++) {
2256     Type *ParamType = TargetFuncType->getParamType(i);
2257     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2258     Check(ArgType == ParamType,
2259           "gc.statepoint call argument does not match wrapped "
2260           "function type",
2261           Call);
2262 
2263     if (TargetFuncType->isVarArg()) {
2264       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2265       Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2266             "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2267     }
2268   }
2269 
2270   const int EndCallArgsInx = 4 + NumCallArgs;
2271 
2272   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2273   Check(isa<ConstantInt>(NumTransitionArgsV),
2274         "gc.statepoint number of transition arguments "
2275         "must be constant integer",
2276         Call);
2277   const int NumTransitionArgs =
2278       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2279   Check(NumTransitionArgs == 0,
2280         "gc.statepoint w/inline transition bundle is deprecated", Call);
2281   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2282 
2283   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2284   Check(isa<ConstantInt>(NumDeoptArgsV),
2285         "gc.statepoint number of deoptimization arguments "
2286         "must be constant integer",
2287         Call);
2288   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2289   Check(NumDeoptArgs == 0,
2290         "gc.statepoint w/inline deopt operands is deprecated", Call);
2291 
2292   const int ExpectedNumArgs = 7 + NumCallArgs;
2293   Check(ExpectedNumArgs == (int)Call.arg_size(),
2294         "gc.statepoint too many arguments", Call);
2295 
2296   // Check that the only uses of this gc.statepoint are gc.result or
2297   // gc.relocate calls which are tied to this statepoint and thus part
2298   // of the same statepoint sequence
2299   for (const User *U : Call.users()) {
2300     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2301     Check(UserCall, "illegal use of statepoint token", Call, U);
2302     if (!UserCall)
2303       continue;
2304     Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2305           "gc.result or gc.relocate are the only value uses "
2306           "of a gc.statepoint",
2307           Call, U);
2308     if (isa<GCResultInst>(UserCall)) {
2309       Check(UserCall->getArgOperand(0) == &Call,
2310             "gc.result connected to wrong gc.statepoint", Call, UserCall);
2311     } else if (isa<GCRelocateInst>(Call)) {
2312       Check(UserCall->getArgOperand(0) == &Call,
2313             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2314     }
2315   }
2316 
2317   // Note: It is legal for a single derived pointer to be listed multiple
2318   // times.  It's non-optimal, but it is legal.  It can also happen after
2319   // insertion if we strip a bitcast away.
2320   // Note: It is really tempting to check that each base is relocated and
2321   // that a derived pointer is never reused as a base pointer.  This turns
2322   // out to be problematic since optimizations run after safepoint insertion
2323   // can recognize equality properties that the insertion logic doesn't know
2324   // about.  See example statepoint.ll in the verifier subdirectory
2325 }
2326 
2327 void Verifier::verifyFrameRecoverIndices() {
2328   for (auto &Counts : FrameEscapeInfo) {
2329     Function *F = Counts.first;
2330     unsigned EscapedObjectCount = Counts.second.first;
2331     unsigned MaxRecoveredIndex = Counts.second.second;
2332     Check(MaxRecoveredIndex <= EscapedObjectCount,
2333           "all indices passed to llvm.localrecover must be less than the "
2334           "number of arguments passed to llvm.localescape in the parent "
2335           "function",
2336           F);
2337   }
2338 }
2339 
2340 static Instruction *getSuccPad(Instruction *Terminator) {
2341   BasicBlock *UnwindDest;
2342   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2343     UnwindDest = II->getUnwindDest();
2344   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2345     UnwindDest = CSI->getUnwindDest();
2346   else
2347     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2348   return UnwindDest->getFirstNonPHI();
2349 }
2350 
2351 void Verifier::verifySiblingFuncletUnwinds() {
2352   SmallPtrSet<Instruction *, 8> Visited;
2353   SmallPtrSet<Instruction *, 8> Active;
2354   for (const auto &Pair : SiblingFuncletInfo) {
2355     Instruction *PredPad = Pair.first;
2356     if (Visited.count(PredPad))
2357       continue;
2358     Active.insert(PredPad);
2359     Instruction *Terminator = Pair.second;
2360     do {
2361       Instruction *SuccPad = getSuccPad(Terminator);
2362       if (Active.count(SuccPad)) {
2363         // Found a cycle; report error
2364         Instruction *CyclePad = SuccPad;
2365         SmallVector<Instruction *, 8> CycleNodes;
2366         do {
2367           CycleNodes.push_back(CyclePad);
2368           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2369           if (CycleTerminator != CyclePad)
2370             CycleNodes.push_back(CycleTerminator);
2371           CyclePad = getSuccPad(CycleTerminator);
2372         } while (CyclePad != SuccPad);
2373         Check(false, "EH pads can't handle each other's exceptions",
2374               ArrayRef<Instruction *>(CycleNodes));
2375       }
2376       // Don't re-walk a node we've already checked
2377       if (!Visited.insert(SuccPad).second)
2378         break;
2379       // Walk to this successor if it has a map entry.
2380       PredPad = SuccPad;
2381       auto TermI = SiblingFuncletInfo.find(PredPad);
2382       if (TermI == SiblingFuncletInfo.end())
2383         break;
2384       Terminator = TermI->second;
2385       Active.insert(PredPad);
2386     } while (true);
2387     // Each node only has one successor, so we've walked all the active
2388     // nodes' successors.
2389     Active.clear();
2390   }
2391 }
2392 
2393 // visitFunction - Verify that a function is ok.
2394 //
2395 void Verifier::visitFunction(const Function &F) {
2396   visitGlobalValue(F);
2397 
2398   // Check function arguments.
2399   FunctionType *FT = F.getFunctionType();
2400   unsigned NumArgs = F.arg_size();
2401 
2402   Check(&Context == &F.getContext(),
2403         "Function context does not match Module context!", &F);
2404 
2405   Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2406   Check(FT->getNumParams() == NumArgs,
2407         "# formal arguments must match # of arguments for function type!", &F,
2408         FT);
2409   Check(F.getReturnType()->isFirstClassType() ||
2410             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2411         "Functions cannot return aggregate values!", &F);
2412 
2413   Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2414         "Invalid struct return type!", &F);
2415 
2416   AttributeList Attrs = F.getAttributes();
2417 
2418   Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2419         "Attribute after last parameter!", &F);
2420 
2421   bool IsIntrinsic = F.isIntrinsic();
2422 
2423   // Check function attributes.
2424   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2425 
2426   // On function declarations/definitions, we do not support the builtin
2427   // attribute. We do not check this in VerifyFunctionAttrs since that is
2428   // checking for Attributes that can/can not ever be on functions.
2429   Check(!Attrs.hasFnAttr(Attribute::Builtin),
2430         "Attribute 'builtin' can only be applied to a callsite.", &F);
2431 
2432   Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2433         "Attribute 'elementtype' can only be applied to a callsite.", &F);
2434 
2435   // Check that this function meets the restrictions on this calling convention.
2436   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2437   // restrictions can be lifted.
2438   switch (F.getCallingConv()) {
2439   default:
2440   case CallingConv::C:
2441     break;
2442   case CallingConv::X86_INTR: {
2443     Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2444           "Calling convention parameter requires byval", &F);
2445     break;
2446   }
2447   case CallingConv::AMDGPU_KERNEL:
2448   case CallingConv::SPIR_KERNEL:
2449     Check(F.getReturnType()->isVoidTy(),
2450           "Calling convention requires void return type", &F);
2451     LLVM_FALLTHROUGH;
2452   case CallingConv::AMDGPU_VS:
2453   case CallingConv::AMDGPU_HS:
2454   case CallingConv::AMDGPU_GS:
2455   case CallingConv::AMDGPU_PS:
2456   case CallingConv::AMDGPU_CS:
2457     Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2458     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2459       const unsigned StackAS = DL.getAllocaAddrSpace();
2460       unsigned i = 0;
2461       for (const Argument &Arg : F.args()) {
2462         Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2463               "Calling convention disallows byval", &F);
2464         Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2465               "Calling convention disallows preallocated", &F);
2466         Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2467               "Calling convention disallows inalloca", &F);
2468 
2469         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2470           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2471           // value here.
2472           Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2473                 "Calling convention disallows stack byref", &F);
2474         }
2475 
2476         ++i;
2477       }
2478     }
2479 
2480     LLVM_FALLTHROUGH;
2481   case CallingConv::Fast:
2482   case CallingConv::Cold:
2483   case CallingConv::Intel_OCL_BI:
2484   case CallingConv::PTX_Kernel:
2485   case CallingConv::PTX_Device:
2486     Check(!F.isVarArg(),
2487           "Calling convention does not support varargs or "
2488           "perfect forwarding!",
2489           &F);
2490     break;
2491   }
2492 
2493   // Check that the argument values match the function type for this function...
2494   unsigned i = 0;
2495   for (const Argument &Arg : F.args()) {
2496     Check(Arg.getType() == FT->getParamType(i),
2497           "Argument value does not match function argument type!", &Arg,
2498           FT->getParamType(i));
2499     Check(Arg.getType()->isFirstClassType(),
2500           "Function arguments must have first-class types!", &Arg);
2501     if (!IsIntrinsic) {
2502       Check(!Arg.getType()->isMetadataTy(),
2503             "Function takes metadata but isn't an intrinsic", &Arg, &F);
2504       Check(!Arg.getType()->isTokenTy(),
2505             "Function takes token but isn't an intrinsic", &Arg, &F);
2506       Check(!Arg.getType()->isX86_AMXTy(),
2507             "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2508     }
2509 
2510     // Check that swifterror argument is only used by loads and stores.
2511     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2512       verifySwiftErrorValue(&Arg);
2513     }
2514     ++i;
2515   }
2516 
2517   if (!IsIntrinsic) {
2518     Check(!F.getReturnType()->isTokenTy(),
2519           "Function returns a token but isn't an intrinsic", &F);
2520     Check(!F.getReturnType()->isX86_AMXTy(),
2521           "Function returns a x86_amx but isn't an intrinsic", &F);
2522   }
2523 
2524   // Get the function metadata attachments.
2525   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2526   F.getAllMetadata(MDs);
2527   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2528   verifyFunctionMetadata(MDs);
2529 
2530   // Check validity of the personality function
2531   if (F.hasPersonalityFn()) {
2532     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2533     if (Per)
2534       Check(Per->getParent() == F.getParent(),
2535             "Referencing personality function in another module!", &F,
2536             F.getParent(), Per, Per->getParent());
2537   }
2538 
2539   if (F.isMaterializable()) {
2540     // Function has a body somewhere we can't see.
2541     Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2542           MDs.empty() ? nullptr : MDs.front().second);
2543   } else if (F.isDeclaration()) {
2544     for (const auto &I : MDs) {
2545       // This is used for call site debug information.
2546       CheckDI(I.first != LLVMContext::MD_dbg ||
2547                   !cast<DISubprogram>(I.second)->isDistinct(),
2548               "function declaration may only have a unique !dbg attachment",
2549               &F);
2550       Check(I.first != LLVMContext::MD_prof,
2551             "function declaration may not have a !prof attachment", &F);
2552 
2553       // Verify the metadata itself.
2554       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2555     }
2556     Check(!F.hasPersonalityFn(),
2557           "Function declaration shouldn't have a personality routine", &F);
2558   } else {
2559     // Verify that this function (which has a body) is not named "llvm.*".  It
2560     // is not legal to define intrinsics.
2561     Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2562 
2563     // Check the entry node
2564     const BasicBlock *Entry = &F.getEntryBlock();
2565     Check(pred_empty(Entry),
2566           "Entry block to function must not have predecessors!", Entry);
2567 
2568     // The address of the entry block cannot be taken, unless it is dead.
2569     if (Entry->hasAddressTaken()) {
2570       Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2571             "blockaddress may not be used with the entry block!", Entry);
2572     }
2573 
2574     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2575     // Visit metadata attachments.
2576     for (const auto &I : MDs) {
2577       // Verify that the attachment is legal.
2578       auto AllowLocs = AreDebugLocsAllowed::No;
2579       switch (I.first) {
2580       default:
2581         break;
2582       case LLVMContext::MD_dbg: {
2583         ++NumDebugAttachments;
2584         CheckDI(NumDebugAttachments == 1,
2585                 "function must have a single !dbg attachment", &F, I.second);
2586         CheckDI(isa<DISubprogram>(I.second),
2587                 "function !dbg attachment must be a subprogram", &F, I.second);
2588         CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2589                 "function definition may only have a distinct !dbg attachment",
2590                 &F);
2591 
2592         auto *SP = cast<DISubprogram>(I.second);
2593         const Function *&AttachedTo = DISubprogramAttachments[SP];
2594         CheckDI(!AttachedTo || AttachedTo == &F,
2595                 "DISubprogram attached to more than one function", SP, &F);
2596         AttachedTo = &F;
2597         AllowLocs = AreDebugLocsAllowed::Yes;
2598         break;
2599       }
2600       case LLVMContext::MD_prof:
2601         ++NumProfAttachments;
2602         Check(NumProfAttachments == 1,
2603               "function must have a single !prof attachment", &F, I.second);
2604         break;
2605       }
2606 
2607       // Verify the metadata itself.
2608       visitMDNode(*I.second, AllowLocs);
2609     }
2610   }
2611 
2612   // If this function is actually an intrinsic, verify that it is only used in
2613   // direct call/invokes, never having its "address taken".
2614   // Only do this if the module is materialized, otherwise we don't have all the
2615   // uses.
2616   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2617     const User *U;
2618     if (F.hasAddressTaken(&U, false, true, false,
2619                           /*IgnoreARCAttachedCall=*/true))
2620       Check(false, "Invalid user of intrinsic instruction!", U);
2621   }
2622 
2623   // Check intrinsics' signatures.
2624   switch (F.getIntrinsicID()) {
2625   case Intrinsic::experimental_gc_get_pointer_base: {
2626     FunctionType *FT = F.getFunctionType();
2627     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2628     Check(isa<PointerType>(F.getReturnType()),
2629           "gc.get.pointer.base must return a pointer", F);
2630     Check(FT->getParamType(0) == F.getReturnType(),
2631           "gc.get.pointer.base operand and result must be of the same type", F);
2632     break;
2633   }
2634   case Intrinsic::experimental_gc_get_pointer_offset: {
2635     FunctionType *FT = F.getFunctionType();
2636     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2637     Check(isa<PointerType>(FT->getParamType(0)),
2638           "gc.get.pointer.offset operand must be a pointer", F);
2639     Check(F.getReturnType()->isIntegerTy(),
2640           "gc.get.pointer.offset must return integer", F);
2641     break;
2642   }
2643   }
2644 
2645   auto *N = F.getSubprogram();
2646   HasDebugInfo = (N != nullptr);
2647   if (!HasDebugInfo)
2648     return;
2649 
2650   // Check that all !dbg attachments lead to back to N.
2651   //
2652   // FIXME: Check this incrementally while visiting !dbg attachments.
2653   // FIXME: Only check when N is the canonical subprogram for F.
2654   SmallPtrSet<const MDNode *, 32> Seen;
2655   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2656     // Be careful about using DILocation here since we might be dealing with
2657     // broken code (this is the Verifier after all).
2658     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2659     if (!DL)
2660       return;
2661     if (!Seen.insert(DL).second)
2662       return;
2663 
2664     Metadata *Parent = DL->getRawScope();
2665     CheckDI(Parent && isa<DILocalScope>(Parent),
2666             "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2667 
2668     DILocalScope *Scope = DL->getInlinedAtScope();
2669     Check(Scope, "Failed to find DILocalScope", DL);
2670 
2671     if (!Seen.insert(Scope).second)
2672       return;
2673 
2674     DISubprogram *SP = Scope->getSubprogram();
2675 
2676     // Scope and SP could be the same MDNode and we don't want to skip
2677     // validation in that case
2678     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2679       return;
2680 
2681     CheckDI(SP->describes(&F),
2682             "!dbg attachment points at wrong subprogram for function", N, &F,
2683             &I, DL, Scope, SP);
2684   };
2685   for (auto &BB : F)
2686     for (auto &I : BB) {
2687       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2688       // The llvm.loop annotations also contain two DILocations.
2689       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2690         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2691           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2692       if (BrokenDebugInfo)
2693         return;
2694     }
2695 }
2696 
2697 // verifyBasicBlock - Verify that a basic block is well formed...
2698 //
2699 void Verifier::visitBasicBlock(BasicBlock &BB) {
2700   InstsInThisBlock.clear();
2701 
2702   // Ensure that basic blocks have terminators!
2703   Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2704 
2705   // Check constraints that this basic block imposes on all of the PHI nodes in
2706   // it.
2707   if (isa<PHINode>(BB.front())) {
2708     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2709     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2710     llvm::sort(Preds);
2711     for (const PHINode &PN : BB.phis()) {
2712       Check(PN.getNumIncomingValues() == Preds.size(),
2713             "PHINode should have one entry for each predecessor of its "
2714             "parent basic block!",
2715             &PN);
2716 
2717       // Get and sort all incoming values in the PHI node...
2718       Values.clear();
2719       Values.reserve(PN.getNumIncomingValues());
2720       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2721         Values.push_back(
2722             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2723       llvm::sort(Values);
2724 
2725       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2726         // Check to make sure that if there is more than one entry for a
2727         // particular basic block in this PHI node, that the incoming values are
2728         // all identical.
2729         //
2730         Check(i == 0 || Values[i].first != Values[i - 1].first ||
2731                   Values[i].second == Values[i - 1].second,
2732               "PHI node has multiple entries for the same basic block with "
2733               "different incoming values!",
2734               &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2735 
2736         // Check to make sure that the predecessors and PHI node entries are
2737         // matched up.
2738         Check(Values[i].first == Preds[i],
2739               "PHI node entries do not match predecessors!", &PN,
2740               Values[i].first, Preds[i]);
2741       }
2742     }
2743   }
2744 
2745   // Check that all instructions have their parent pointers set up correctly.
2746   for (auto &I : BB)
2747   {
2748     Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2749   }
2750 }
2751 
2752 void Verifier::visitTerminator(Instruction &I) {
2753   // Ensure that terminators only exist at the end of the basic block.
2754   Check(&I == I.getParent()->getTerminator(),
2755         "Terminator found in the middle of a basic block!", I.getParent());
2756   visitInstruction(I);
2757 }
2758 
2759 void Verifier::visitBranchInst(BranchInst &BI) {
2760   if (BI.isConditional()) {
2761     Check(BI.getCondition()->getType()->isIntegerTy(1),
2762           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2763   }
2764   visitTerminator(BI);
2765 }
2766 
2767 void Verifier::visitReturnInst(ReturnInst &RI) {
2768   Function *F = RI.getParent()->getParent();
2769   unsigned N = RI.getNumOperands();
2770   if (F->getReturnType()->isVoidTy())
2771     Check(N == 0,
2772           "Found return instr that returns non-void in Function of void "
2773           "return type!",
2774           &RI, F->getReturnType());
2775   else
2776     Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2777           "Function return type does not match operand "
2778           "type of return inst!",
2779           &RI, F->getReturnType());
2780 
2781   // Check to make sure that the return value has necessary properties for
2782   // terminators...
2783   visitTerminator(RI);
2784 }
2785 
2786 void Verifier::visitSwitchInst(SwitchInst &SI) {
2787   Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2788   // Check to make sure that all of the constants in the switch instruction
2789   // have the same type as the switched-on value.
2790   Type *SwitchTy = SI.getCondition()->getType();
2791   SmallPtrSet<ConstantInt*, 32> Constants;
2792   for (auto &Case : SI.cases()) {
2793     Check(Case.getCaseValue()->getType() == SwitchTy,
2794           "Switch constants must all be same type as switch value!", &SI);
2795     Check(Constants.insert(Case.getCaseValue()).second,
2796           "Duplicate integer as switch case", &SI, Case.getCaseValue());
2797   }
2798 
2799   visitTerminator(SI);
2800 }
2801 
2802 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2803   Check(BI.getAddress()->getType()->isPointerTy(),
2804         "Indirectbr operand must have pointer type!", &BI);
2805   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2806     Check(BI.getDestination(i)->getType()->isLabelTy(),
2807           "Indirectbr destinations must all have pointer type!", &BI);
2808 
2809   visitTerminator(BI);
2810 }
2811 
2812 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2813   Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
2814   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2815   Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2816   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2817     Check(CBI.getSuccessor(i)->getType()->isLabelTy(),
2818           "Callbr successors must all have pointer type!", &CBI);
2819   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2820     Check(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)),
2821           "Using an unescaped label as a callbr argument!", &CBI);
2822     if (isa<BasicBlock>(CBI.getOperand(i)))
2823       for (unsigned j = i + 1; j != e; ++j)
2824         Check(CBI.getOperand(i) != CBI.getOperand(j),
2825               "Duplicate callbr destination!", &CBI);
2826   }
2827   {
2828     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2829     for (Value *V : CBI.args())
2830       if (auto *BA = dyn_cast<BlockAddress>(V))
2831         ArgBBs.insert(BA->getBasicBlock());
2832     for (BasicBlock *BB : CBI.getIndirectDests())
2833       Check(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2834   }
2835 
2836   verifyInlineAsmCall(CBI);
2837   visitTerminator(CBI);
2838 }
2839 
2840 void Verifier::visitSelectInst(SelectInst &SI) {
2841   Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2842                                         SI.getOperand(2)),
2843         "Invalid operands for select instruction!", &SI);
2844 
2845   Check(SI.getTrueValue()->getType() == SI.getType(),
2846         "Select values must have same type as select instruction!", &SI);
2847   visitInstruction(SI);
2848 }
2849 
2850 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2851 /// a pass, if any exist, it's an error.
2852 ///
2853 void Verifier::visitUserOp1(Instruction &I) {
2854   Check(false, "User-defined operators should not live outside of a pass!", &I);
2855 }
2856 
2857 void Verifier::visitTruncInst(TruncInst &I) {
2858   // Get the source and destination types
2859   Type *SrcTy = I.getOperand(0)->getType();
2860   Type *DestTy = I.getType();
2861 
2862   // Get the size of the types in bits, we'll need this later
2863   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2864   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2865 
2866   Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2867   Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2868   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2869         "trunc source and destination must both be a vector or neither", &I);
2870   Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2871 
2872   visitInstruction(I);
2873 }
2874 
2875 void Verifier::visitZExtInst(ZExtInst &I) {
2876   // Get the source and destination types
2877   Type *SrcTy = I.getOperand(0)->getType();
2878   Type *DestTy = I.getType();
2879 
2880   // Get the size of the types in bits, we'll need this later
2881   Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2882   Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2883   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2884         "zext source and destination must both be a vector or neither", &I);
2885   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2886   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2887 
2888   Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2889 
2890   visitInstruction(I);
2891 }
2892 
2893 void Verifier::visitSExtInst(SExtInst &I) {
2894   // Get the source and destination types
2895   Type *SrcTy = I.getOperand(0)->getType();
2896   Type *DestTy = I.getType();
2897 
2898   // Get the size of the types in bits, we'll need this later
2899   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2900   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2901 
2902   Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2903   Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2904   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2905         "sext source and destination must both be a vector or neither", &I);
2906   Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2907 
2908   visitInstruction(I);
2909 }
2910 
2911 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2912   // Get the source and destination types
2913   Type *SrcTy = I.getOperand(0)->getType();
2914   Type *DestTy = I.getType();
2915   // Get the size of the types in bits, we'll need this later
2916   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2917   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2918 
2919   Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2920   Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2921   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2922         "fptrunc source and destination must both be a vector or neither", &I);
2923   Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2924 
2925   visitInstruction(I);
2926 }
2927 
2928 void Verifier::visitFPExtInst(FPExtInst &I) {
2929   // Get the source and destination types
2930   Type *SrcTy = I.getOperand(0)->getType();
2931   Type *DestTy = I.getType();
2932 
2933   // Get the size of the types in bits, we'll need this later
2934   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2935   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2936 
2937   Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2938   Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2939   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2940         "fpext source and destination must both be a vector or neither", &I);
2941   Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2942 
2943   visitInstruction(I);
2944 }
2945 
2946 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2947   // Get the source and destination types
2948   Type *SrcTy = I.getOperand(0)->getType();
2949   Type *DestTy = I.getType();
2950 
2951   bool SrcVec = SrcTy->isVectorTy();
2952   bool DstVec = DestTy->isVectorTy();
2953 
2954   Check(SrcVec == DstVec,
2955         "UIToFP source and dest must both be vector or scalar", &I);
2956   Check(SrcTy->isIntOrIntVectorTy(),
2957         "UIToFP source must be integer or integer vector", &I);
2958   Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2959         &I);
2960 
2961   if (SrcVec && DstVec)
2962     Check(cast<VectorType>(SrcTy)->getElementCount() ==
2963               cast<VectorType>(DestTy)->getElementCount(),
2964           "UIToFP source and dest vector length mismatch", &I);
2965 
2966   visitInstruction(I);
2967 }
2968 
2969 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2970   // Get the source and destination types
2971   Type *SrcTy = I.getOperand(0)->getType();
2972   Type *DestTy = I.getType();
2973 
2974   bool SrcVec = SrcTy->isVectorTy();
2975   bool DstVec = DestTy->isVectorTy();
2976 
2977   Check(SrcVec == DstVec,
2978         "SIToFP source and dest must both be vector or scalar", &I);
2979   Check(SrcTy->isIntOrIntVectorTy(),
2980         "SIToFP source must be integer or integer vector", &I);
2981   Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2982         &I);
2983 
2984   if (SrcVec && DstVec)
2985     Check(cast<VectorType>(SrcTy)->getElementCount() ==
2986               cast<VectorType>(DestTy)->getElementCount(),
2987           "SIToFP source and dest vector length mismatch", &I);
2988 
2989   visitInstruction(I);
2990 }
2991 
2992 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2993   // Get the source and destination types
2994   Type *SrcTy = I.getOperand(0)->getType();
2995   Type *DestTy = I.getType();
2996 
2997   bool SrcVec = SrcTy->isVectorTy();
2998   bool DstVec = DestTy->isVectorTy();
2999 
3000   Check(SrcVec == DstVec,
3001         "FPToUI source and dest must both be vector or scalar", &I);
3002   Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3003   Check(DestTy->isIntOrIntVectorTy(),
3004         "FPToUI result must be integer or integer vector", &I);
3005 
3006   if (SrcVec && DstVec)
3007     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3008               cast<VectorType>(DestTy)->getElementCount(),
3009           "FPToUI source and dest vector length mismatch", &I);
3010 
3011   visitInstruction(I);
3012 }
3013 
3014 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3015   // Get the source and destination types
3016   Type *SrcTy = I.getOperand(0)->getType();
3017   Type *DestTy = I.getType();
3018 
3019   bool SrcVec = SrcTy->isVectorTy();
3020   bool DstVec = DestTy->isVectorTy();
3021 
3022   Check(SrcVec == DstVec,
3023         "FPToSI source and dest must both be vector or scalar", &I);
3024   Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3025   Check(DestTy->isIntOrIntVectorTy(),
3026         "FPToSI result must be integer or integer vector", &I);
3027 
3028   if (SrcVec && DstVec)
3029     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3030               cast<VectorType>(DestTy)->getElementCount(),
3031           "FPToSI source and dest vector length mismatch", &I);
3032 
3033   visitInstruction(I);
3034 }
3035 
3036 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3037   // Get the source and destination types
3038   Type *SrcTy = I.getOperand(0)->getType();
3039   Type *DestTy = I.getType();
3040 
3041   Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3042 
3043   Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3044   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3045         &I);
3046 
3047   if (SrcTy->isVectorTy()) {
3048     auto *VSrc = cast<VectorType>(SrcTy);
3049     auto *VDest = cast<VectorType>(DestTy);
3050     Check(VSrc->getElementCount() == VDest->getElementCount(),
3051           "PtrToInt Vector width mismatch", &I);
3052   }
3053 
3054   visitInstruction(I);
3055 }
3056 
3057 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3058   // Get the source and destination types
3059   Type *SrcTy = I.getOperand(0)->getType();
3060   Type *DestTy = I.getType();
3061 
3062   Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3063   Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3064 
3065   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3066         &I);
3067   if (SrcTy->isVectorTy()) {
3068     auto *VSrc = cast<VectorType>(SrcTy);
3069     auto *VDest = cast<VectorType>(DestTy);
3070     Check(VSrc->getElementCount() == VDest->getElementCount(),
3071           "IntToPtr Vector width mismatch", &I);
3072   }
3073   visitInstruction(I);
3074 }
3075 
3076 void Verifier::visitBitCastInst(BitCastInst &I) {
3077   Check(
3078       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3079       "Invalid bitcast", &I);
3080   visitInstruction(I);
3081 }
3082 
3083 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3084   Type *SrcTy = I.getOperand(0)->getType();
3085   Type *DestTy = I.getType();
3086 
3087   Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3088         &I);
3089   Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3090         &I);
3091   Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3092         "AddrSpaceCast must be between different address spaces", &I);
3093   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3094     Check(SrcVTy->getElementCount() ==
3095               cast<VectorType>(DestTy)->getElementCount(),
3096           "AddrSpaceCast vector pointer number of elements mismatch", &I);
3097   visitInstruction(I);
3098 }
3099 
3100 /// visitPHINode - Ensure that a PHI node is well formed.
3101 ///
3102 void Verifier::visitPHINode(PHINode &PN) {
3103   // Ensure that the PHI nodes are all grouped together at the top of the block.
3104   // This can be tested by checking whether the instruction before this is
3105   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3106   // then there is some other instruction before a PHI.
3107   Check(&PN == &PN.getParent()->front() ||
3108             isa<PHINode>(--BasicBlock::iterator(&PN)),
3109         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3110 
3111   // Check that a PHI doesn't yield a Token.
3112   Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3113 
3114   // Check that all of the values of the PHI node have the same type as the
3115   // result, and that the incoming blocks are really basic blocks.
3116   for (Value *IncValue : PN.incoming_values()) {
3117     Check(PN.getType() == IncValue->getType(),
3118           "PHI node operands are not the same type as the result!", &PN);
3119   }
3120 
3121   // All other PHI node constraints are checked in the visitBasicBlock method.
3122 
3123   visitInstruction(PN);
3124 }
3125 
3126 void Verifier::visitCallBase(CallBase &Call) {
3127   Check(Call.getCalledOperand()->getType()->isPointerTy(),
3128         "Called function must be a pointer!", Call);
3129   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3130 
3131   Check(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3132         "Called function is not the same type as the call!", Call);
3133 
3134   FunctionType *FTy = Call.getFunctionType();
3135 
3136   // Verify that the correct number of arguments are being passed
3137   if (FTy->isVarArg())
3138     Check(Call.arg_size() >= FTy->getNumParams(),
3139           "Called function requires more parameters than were provided!", Call);
3140   else
3141     Check(Call.arg_size() == FTy->getNumParams(),
3142           "Incorrect number of arguments passed to called function!", Call);
3143 
3144   // Verify that all arguments to the call match the function type.
3145   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3146     Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3147           "Call parameter type does not match function signature!",
3148           Call.getArgOperand(i), FTy->getParamType(i), Call);
3149 
3150   AttributeList Attrs = Call.getAttributes();
3151 
3152   Check(verifyAttributeCount(Attrs, Call.arg_size()),
3153         "Attribute after last parameter!", Call);
3154 
3155   auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3156     if (!Ty->isSized())
3157       return;
3158     Align ABIAlign = DL.getABITypeAlign(Ty);
3159     Align MaxAlign(ParamMaxAlignment);
3160     Check(ABIAlign <= MaxAlign,
3161           "Incorrect alignment of " + Message + " to called function!", Call);
3162   };
3163 
3164   VerifyTypeAlign(FTy->getReturnType(), "return type");
3165   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3166     Type *Ty = FTy->getParamType(i);
3167     VerifyTypeAlign(Ty, "argument passed");
3168   }
3169 
3170   Function *Callee =
3171       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3172   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3173   if (IsIntrinsic)
3174     Check(Callee->getValueType() == FTy,
3175           "Intrinsic called with incompatible signature", Call);
3176 
3177   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3178     // Don't allow speculatable on call sites, unless the underlying function
3179     // declaration is also speculatable.
3180     Check(Callee && Callee->isSpeculatable(),
3181           "speculatable attribute may not apply to call sites", Call);
3182   }
3183 
3184   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3185     Check(Call.getCalledFunction()->getIntrinsicID() ==
3186               Intrinsic::call_preallocated_arg,
3187           "preallocated as a call site attribute can only be on "
3188           "llvm.call.preallocated.arg");
3189   }
3190 
3191   // Verify call attributes.
3192   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3193 
3194   // Conservatively check the inalloca argument.
3195   // We have a bug if we can find that there is an underlying alloca without
3196   // inalloca.
3197   if (Call.hasInAllocaArgument()) {
3198     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3199     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3200       Check(AI->isUsedWithInAlloca(),
3201             "inalloca argument for call has mismatched alloca", AI, Call);
3202   }
3203 
3204   // For each argument of the callsite, if it has the swifterror argument,
3205   // make sure the underlying alloca/parameter it comes from has a swifterror as
3206   // well.
3207   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3208     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3209       Value *SwiftErrorArg = Call.getArgOperand(i);
3210       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3211         Check(AI->isSwiftError(),
3212               "swifterror argument for call has mismatched alloca", AI, Call);
3213         continue;
3214       }
3215       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3216       Check(ArgI, "swifterror argument should come from an alloca or parameter",
3217             SwiftErrorArg, Call);
3218       Check(ArgI->hasSwiftErrorAttr(),
3219             "swifterror argument for call has mismatched parameter", ArgI,
3220             Call);
3221     }
3222 
3223     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3224       // Don't allow immarg on call sites, unless the underlying declaration
3225       // also has the matching immarg.
3226       Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3227             "immarg may not apply only to call sites", Call.getArgOperand(i),
3228             Call);
3229     }
3230 
3231     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3232       Value *ArgVal = Call.getArgOperand(i);
3233       Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3234             "immarg operand has non-immediate parameter", ArgVal, Call);
3235     }
3236 
3237     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3238       Value *ArgVal = Call.getArgOperand(i);
3239       bool hasOB =
3240           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3241       bool isMustTail = Call.isMustTailCall();
3242       Check(hasOB != isMustTail,
3243             "preallocated operand either requires a preallocated bundle or "
3244             "the call to be musttail (but not both)",
3245             ArgVal, Call);
3246     }
3247   }
3248 
3249   if (FTy->isVarArg()) {
3250     // FIXME? is 'nest' even legal here?
3251     bool SawNest = false;
3252     bool SawReturned = false;
3253 
3254     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3255       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3256         SawNest = true;
3257       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3258         SawReturned = true;
3259     }
3260 
3261     // Check attributes on the varargs part.
3262     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3263       Type *Ty = Call.getArgOperand(Idx)->getType();
3264       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3265       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3266 
3267       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3268         Check(!SawNest, "More than one parameter has attribute nest!", Call);
3269         SawNest = true;
3270       }
3271 
3272       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3273         Check(!SawReturned, "More than one parameter has attribute returned!",
3274               Call);
3275         Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3276               "Incompatible argument and return types for 'returned' "
3277               "attribute",
3278               Call);
3279         SawReturned = true;
3280       }
3281 
3282       // Statepoint intrinsic is vararg but the wrapped function may be not.
3283       // Allow sret here and check the wrapped function in verifyStatepoint.
3284       if (!Call.getCalledFunction() ||
3285           Call.getCalledFunction()->getIntrinsicID() !=
3286               Intrinsic::experimental_gc_statepoint)
3287         Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3288               "Attribute 'sret' cannot be used for vararg call arguments!",
3289               Call);
3290 
3291       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3292         Check(Idx == Call.arg_size() - 1,
3293               "inalloca isn't on the last argument!", Call);
3294     }
3295   }
3296 
3297   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3298   if (!IsIntrinsic) {
3299     for (Type *ParamTy : FTy->params()) {
3300       Check(!ParamTy->isMetadataTy(),
3301             "Function has metadata parameter but isn't an intrinsic", Call);
3302       Check(!ParamTy->isTokenTy(),
3303             "Function has token parameter but isn't an intrinsic", Call);
3304     }
3305   }
3306 
3307   // Verify that indirect calls don't return tokens.
3308   if (!Call.getCalledFunction()) {
3309     Check(!FTy->getReturnType()->isTokenTy(),
3310           "Return type cannot be token for indirect call!");
3311     Check(!FTy->getReturnType()->isX86_AMXTy(),
3312           "Return type cannot be x86_amx for indirect call!");
3313   }
3314 
3315   if (Function *F = Call.getCalledFunction())
3316     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3317       visitIntrinsicCall(ID, Call);
3318 
3319   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3320   // most one "gc-transition", at most one "cfguardtarget", at most one
3321   // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3322   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3323        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3324        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3325        FoundPtrauthBundle = false,
3326        FoundAttachedCallBundle = false;
3327   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3328     OperandBundleUse BU = Call.getOperandBundleAt(i);
3329     uint32_t Tag = BU.getTagID();
3330     if (Tag == LLVMContext::OB_deopt) {
3331       Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3332       FoundDeoptBundle = true;
3333     } else if (Tag == LLVMContext::OB_gc_transition) {
3334       Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3335             Call);
3336       FoundGCTransitionBundle = true;
3337     } else if (Tag == LLVMContext::OB_funclet) {
3338       Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3339       FoundFuncletBundle = true;
3340       Check(BU.Inputs.size() == 1,
3341             "Expected exactly one funclet bundle operand", Call);
3342       Check(isa<FuncletPadInst>(BU.Inputs.front()),
3343             "Funclet bundle operands should correspond to a FuncletPadInst",
3344             Call);
3345     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3346       Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3347             Call);
3348       FoundCFGuardTargetBundle = true;
3349       Check(BU.Inputs.size() == 1,
3350             "Expected exactly one cfguardtarget bundle operand", Call);
3351     } else if (Tag == LLVMContext::OB_ptrauth) {
3352       Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3353       FoundPtrauthBundle = true;
3354       Check(BU.Inputs.size() == 2,
3355             "Expected exactly two ptrauth bundle operands", Call);
3356       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3357                 BU.Inputs[0]->getType()->isIntegerTy(32),
3358             "Ptrauth bundle key operand must be an i32 constant", Call);
3359       Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3360             "Ptrauth bundle discriminator operand must be an i64", Call);
3361     } else if (Tag == LLVMContext::OB_preallocated) {
3362       Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3363             Call);
3364       FoundPreallocatedBundle = true;
3365       Check(BU.Inputs.size() == 1,
3366             "Expected exactly one preallocated bundle operand", Call);
3367       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3368       Check(Input &&
3369                 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3370             "\"preallocated\" argument must be a token from "
3371             "llvm.call.preallocated.setup",
3372             Call);
3373     } else if (Tag == LLVMContext::OB_gc_live) {
3374       Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3375       FoundGCLiveBundle = true;
3376     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3377       Check(!FoundAttachedCallBundle,
3378             "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3379       FoundAttachedCallBundle = true;
3380       verifyAttachedCallBundle(Call, BU);
3381     }
3382   }
3383 
3384   // Verify that callee and callsite agree on whether to use pointer auth.
3385   Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3386         "Direct call cannot have a ptrauth bundle", Call);
3387 
3388   // Verify that each inlinable callsite of a debug-info-bearing function in a
3389   // debug-info-bearing function has a debug location attached to it. Failure to
3390   // do so causes assertion failures when the inliner sets up inline scope info.
3391   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3392       Call.getCalledFunction()->getSubprogram())
3393     CheckDI(Call.getDebugLoc(),
3394             "inlinable function call in a function with "
3395             "debug info must have a !dbg location",
3396             Call);
3397 
3398   if (Call.isInlineAsm())
3399     verifyInlineAsmCall(Call);
3400 
3401   visitInstruction(Call);
3402 }
3403 
3404 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3405                                          StringRef Context) {
3406   Check(!Attrs.contains(Attribute::InAlloca),
3407         Twine("inalloca attribute not allowed in ") + Context);
3408   Check(!Attrs.contains(Attribute::InReg),
3409         Twine("inreg attribute not allowed in ") + Context);
3410   Check(!Attrs.contains(Attribute::SwiftError),
3411         Twine("swifterror attribute not allowed in ") + Context);
3412   Check(!Attrs.contains(Attribute::Preallocated),
3413         Twine("preallocated attribute not allowed in ") + Context);
3414   Check(!Attrs.contains(Attribute::ByRef),
3415         Twine("byref attribute not allowed in ") + Context);
3416 }
3417 
3418 /// Two types are "congruent" if they are identical, or if they are both pointer
3419 /// types with different pointee types and the same address space.
3420 static bool isTypeCongruent(Type *L, Type *R) {
3421   if (L == R)
3422     return true;
3423   PointerType *PL = dyn_cast<PointerType>(L);
3424   PointerType *PR = dyn_cast<PointerType>(R);
3425   if (!PL || !PR)
3426     return false;
3427   return PL->getAddressSpace() == PR->getAddressSpace();
3428 }
3429 
3430 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3431   static const Attribute::AttrKind ABIAttrs[] = {
3432       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3433       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3434       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3435       Attribute::ByRef};
3436   AttrBuilder Copy(C);
3437   for (auto AK : ABIAttrs) {
3438     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3439     if (Attr.isValid())
3440       Copy.addAttribute(Attr);
3441   }
3442 
3443   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3444   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3445       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3446        Attrs.hasParamAttr(I, Attribute::ByRef)))
3447     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3448   return Copy;
3449 }
3450 
3451 void Verifier::verifyMustTailCall(CallInst &CI) {
3452   Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3453 
3454   Function *F = CI.getParent()->getParent();
3455   FunctionType *CallerTy = F->getFunctionType();
3456   FunctionType *CalleeTy = CI.getFunctionType();
3457   Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3458         "cannot guarantee tail call due to mismatched varargs", &CI);
3459   Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3460         "cannot guarantee tail call due to mismatched return types", &CI);
3461 
3462   // - The calling conventions of the caller and callee must match.
3463   Check(F->getCallingConv() == CI.getCallingConv(),
3464         "cannot guarantee tail call due to mismatched calling conv", &CI);
3465 
3466   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3467   //   or a pointer bitcast followed by a ret instruction.
3468   // - The ret instruction must return the (possibly bitcasted) value
3469   //   produced by the call or void.
3470   Value *RetVal = &CI;
3471   Instruction *Next = CI.getNextNode();
3472 
3473   // Handle the optional bitcast.
3474   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3475     Check(BI->getOperand(0) == RetVal,
3476           "bitcast following musttail call must use the call", BI);
3477     RetVal = BI;
3478     Next = BI->getNextNode();
3479   }
3480 
3481   // Check the return.
3482   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3483   Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3484   Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3485             isa<UndefValue>(Ret->getReturnValue()),
3486         "musttail call result must be returned", Ret);
3487 
3488   AttributeList CallerAttrs = F->getAttributes();
3489   AttributeList CalleeAttrs = CI.getAttributes();
3490   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3491       CI.getCallingConv() == CallingConv::Tail) {
3492     StringRef CCName =
3493         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3494 
3495     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3496     //   are allowed in swifttailcc call
3497     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3498       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3499       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3500       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3501     }
3502     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3503       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3504       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3505       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3506     }
3507     // - Varargs functions are not allowed
3508     Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3509                                      " tail call for varargs function");
3510     return;
3511   }
3512 
3513   // - The caller and callee prototypes must match.  Pointer types of
3514   //   parameters or return types may differ in pointee type, but not
3515   //   address space.
3516   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3517     Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3518           "cannot guarantee tail call due to mismatched parameter counts", &CI);
3519     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3520       Check(
3521           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3522           "cannot guarantee tail call due to mismatched parameter types", &CI);
3523     }
3524   }
3525 
3526   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3527   //   returned, preallocated, and inalloca, must match.
3528   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3529     AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3530     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3531     Check(CallerABIAttrs == CalleeABIAttrs,
3532           "cannot guarantee tail call due to mismatched ABI impacting "
3533           "function attributes",
3534           &CI, CI.getOperand(I));
3535   }
3536 }
3537 
3538 void Verifier::visitCallInst(CallInst &CI) {
3539   visitCallBase(CI);
3540 
3541   if (CI.isMustTailCall())
3542     verifyMustTailCall(CI);
3543 }
3544 
3545 void Verifier::visitInvokeInst(InvokeInst &II) {
3546   visitCallBase(II);
3547 
3548   // Verify that the first non-PHI instruction of the unwind destination is an
3549   // exception handling instruction.
3550   Check(
3551       II.getUnwindDest()->isEHPad(),
3552       "The unwind destination does not have an exception handling instruction!",
3553       &II);
3554 
3555   visitTerminator(II);
3556 }
3557 
3558 /// visitUnaryOperator - Check the argument to the unary operator.
3559 ///
3560 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3561   Check(U.getType() == U.getOperand(0)->getType(),
3562         "Unary operators must have same type for"
3563         "operands and result!",
3564         &U);
3565 
3566   switch (U.getOpcode()) {
3567   // Check that floating-point arithmetic operators are only used with
3568   // floating-point operands.
3569   case Instruction::FNeg:
3570     Check(U.getType()->isFPOrFPVectorTy(),
3571           "FNeg operator only works with float types!", &U);
3572     break;
3573   default:
3574     llvm_unreachable("Unknown UnaryOperator opcode!");
3575   }
3576 
3577   visitInstruction(U);
3578 }
3579 
3580 /// visitBinaryOperator - Check that both arguments to the binary operator are
3581 /// of the same type!
3582 ///
3583 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3584   Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3585         "Both operands to a binary operator are not of the same type!", &B);
3586 
3587   switch (B.getOpcode()) {
3588   // Check that integer arithmetic operators are only used with
3589   // integral operands.
3590   case Instruction::Add:
3591   case Instruction::Sub:
3592   case Instruction::Mul:
3593   case Instruction::SDiv:
3594   case Instruction::UDiv:
3595   case Instruction::SRem:
3596   case Instruction::URem:
3597     Check(B.getType()->isIntOrIntVectorTy(),
3598           "Integer arithmetic operators only work with integral types!", &B);
3599     Check(B.getType() == B.getOperand(0)->getType(),
3600           "Integer arithmetic operators must have same type "
3601           "for operands and result!",
3602           &B);
3603     break;
3604   // Check that floating-point arithmetic operators are only used with
3605   // floating-point operands.
3606   case Instruction::FAdd:
3607   case Instruction::FSub:
3608   case Instruction::FMul:
3609   case Instruction::FDiv:
3610   case Instruction::FRem:
3611     Check(B.getType()->isFPOrFPVectorTy(),
3612           "Floating-point arithmetic operators only work with "
3613           "floating-point types!",
3614           &B);
3615     Check(B.getType() == B.getOperand(0)->getType(),
3616           "Floating-point arithmetic operators must have same type "
3617           "for operands and result!",
3618           &B);
3619     break;
3620   // Check that logical operators are only used with integral operands.
3621   case Instruction::And:
3622   case Instruction::Or:
3623   case Instruction::Xor:
3624     Check(B.getType()->isIntOrIntVectorTy(),
3625           "Logical operators only work with integral types!", &B);
3626     Check(B.getType() == B.getOperand(0)->getType(),
3627           "Logical operators must have same type for operands and result!", &B);
3628     break;
3629   case Instruction::Shl:
3630   case Instruction::LShr:
3631   case Instruction::AShr:
3632     Check(B.getType()->isIntOrIntVectorTy(),
3633           "Shifts only work with integral types!", &B);
3634     Check(B.getType() == B.getOperand(0)->getType(),
3635           "Shift return type must be same as operands!", &B);
3636     break;
3637   default:
3638     llvm_unreachable("Unknown BinaryOperator opcode!");
3639   }
3640 
3641   visitInstruction(B);
3642 }
3643 
3644 void Verifier::visitICmpInst(ICmpInst &IC) {
3645   // Check that the operands are the same type
3646   Type *Op0Ty = IC.getOperand(0)->getType();
3647   Type *Op1Ty = IC.getOperand(1)->getType();
3648   Check(Op0Ty == Op1Ty,
3649         "Both operands to ICmp instruction are not of the same type!", &IC);
3650   // Check that the operands are the right type
3651   Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3652         "Invalid operand types for ICmp instruction", &IC);
3653   // Check that the predicate is valid.
3654   Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3655 
3656   visitInstruction(IC);
3657 }
3658 
3659 void Verifier::visitFCmpInst(FCmpInst &FC) {
3660   // Check that the operands are the same type
3661   Type *Op0Ty = FC.getOperand(0)->getType();
3662   Type *Op1Ty = FC.getOperand(1)->getType();
3663   Check(Op0Ty == Op1Ty,
3664         "Both operands to FCmp instruction are not of the same type!", &FC);
3665   // Check that the operands are the right type
3666   Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3667         &FC);
3668   // Check that the predicate is valid.
3669   Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3670 
3671   visitInstruction(FC);
3672 }
3673 
3674 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3675   Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3676         "Invalid extractelement operands!", &EI);
3677   visitInstruction(EI);
3678 }
3679 
3680 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3681   Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3682                                            IE.getOperand(2)),
3683         "Invalid insertelement operands!", &IE);
3684   visitInstruction(IE);
3685 }
3686 
3687 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3688   Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3689                                            SV.getShuffleMask()),
3690         "Invalid shufflevector operands!", &SV);
3691   visitInstruction(SV);
3692 }
3693 
3694 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3695   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3696 
3697   Check(isa<PointerType>(TargetTy),
3698         "GEP base pointer is not a vector or a vector of pointers", &GEP);
3699   Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3700 
3701   SmallVector<Value *, 16> Idxs(GEP.indices());
3702   Check(
3703       all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3704       "GEP indexes must be integers", &GEP);
3705   Type *ElTy =
3706       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3707   Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3708 
3709   Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3710             GEP.getResultElementType() == ElTy,
3711         "GEP is not of right type for indices!", &GEP, ElTy);
3712 
3713   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3714     // Additional checks for vector GEPs.
3715     ElementCount GEPWidth = GEPVTy->getElementCount();
3716     if (GEP.getPointerOperandType()->isVectorTy())
3717       Check(
3718           GEPWidth ==
3719               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3720           "Vector GEP result width doesn't match operand's", &GEP);
3721     for (Value *Idx : Idxs) {
3722       Type *IndexTy = Idx->getType();
3723       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3724         ElementCount IndexWidth = IndexVTy->getElementCount();
3725         Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3726       }
3727       Check(IndexTy->isIntOrIntVectorTy(),
3728             "All GEP indices should be of integer type");
3729     }
3730   }
3731 
3732   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3733     Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3734           "GEP address space doesn't match type", &GEP);
3735   }
3736 
3737   visitInstruction(GEP);
3738 }
3739 
3740 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3741   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3742 }
3743 
3744 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3745   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3746          "precondition violation");
3747 
3748   unsigned NumOperands = Range->getNumOperands();
3749   Check(NumOperands % 2 == 0, "Unfinished range!", Range);
3750   unsigned NumRanges = NumOperands / 2;
3751   Check(NumRanges >= 1, "It should have at least one range!", Range);
3752 
3753   ConstantRange LastRange(1, true); // Dummy initial value
3754   for (unsigned i = 0; i < NumRanges; ++i) {
3755     ConstantInt *Low =
3756         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3757     Check(Low, "The lower limit must be an integer!", Low);
3758     ConstantInt *High =
3759         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3760     Check(High, "The upper limit must be an integer!", High);
3761     Check(High->getType() == Low->getType() && High->getType() == Ty,
3762           "Range types must match instruction type!", &I);
3763 
3764     APInt HighV = High->getValue();
3765     APInt LowV = Low->getValue();
3766     ConstantRange CurRange(LowV, HighV);
3767     Check(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3768           "Range must not be empty!", Range);
3769     if (i != 0) {
3770       Check(CurRange.intersectWith(LastRange).isEmptySet(),
3771             "Intervals are overlapping", Range);
3772       Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3773             Range);
3774       Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3775             Range);
3776     }
3777     LastRange = ConstantRange(LowV, HighV);
3778   }
3779   if (NumRanges > 2) {
3780     APInt FirstLow =
3781         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3782     APInt FirstHigh =
3783         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3784     ConstantRange FirstRange(FirstLow, FirstHigh);
3785     Check(FirstRange.intersectWith(LastRange).isEmptySet(),
3786           "Intervals are overlapping", Range);
3787     Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3788           Range);
3789   }
3790 }
3791 
3792 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3793   unsigned Size = DL.getTypeSizeInBits(Ty);
3794   Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3795   Check(!(Size & (Size - 1)),
3796         "atomic memory access' operand must have a power-of-two size", Ty, I);
3797 }
3798 
3799 void Verifier::visitLoadInst(LoadInst &LI) {
3800   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3801   Check(PTy, "Load operand must be a pointer.", &LI);
3802   Type *ElTy = LI.getType();
3803   if (MaybeAlign A = LI.getAlign()) {
3804     Check(A->value() <= Value::MaximumAlignment,
3805           "huge alignment values are unsupported", &LI);
3806   }
3807   Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3808   if (LI.isAtomic()) {
3809     Check(LI.getOrdering() != AtomicOrdering::Release &&
3810               LI.getOrdering() != AtomicOrdering::AcquireRelease,
3811           "Load cannot have Release ordering", &LI);
3812     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3813           "atomic load operand must have integer, pointer, or floating point "
3814           "type!",
3815           ElTy, &LI);
3816     checkAtomicMemAccessSize(ElTy, &LI);
3817   } else {
3818     Check(LI.getSyncScopeID() == SyncScope::System,
3819           "Non-atomic load cannot have SynchronizationScope specified", &LI);
3820   }
3821 
3822   visitInstruction(LI);
3823 }
3824 
3825 void Verifier::visitStoreInst(StoreInst &SI) {
3826   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3827   Check(PTy, "Store operand must be a pointer.", &SI);
3828   Type *ElTy = SI.getOperand(0)->getType();
3829   Check(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3830         "Stored value type does not match pointer operand type!", &SI, ElTy);
3831   if (MaybeAlign A = SI.getAlign()) {
3832     Check(A->value() <= Value::MaximumAlignment,
3833           "huge alignment values are unsupported", &SI);
3834   }
3835   Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3836   if (SI.isAtomic()) {
3837     Check(SI.getOrdering() != AtomicOrdering::Acquire &&
3838               SI.getOrdering() != AtomicOrdering::AcquireRelease,
3839           "Store cannot have Acquire ordering", &SI);
3840     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3841           "atomic store operand must have integer, pointer, or floating point "
3842           "type!",
3843           ElTy, &SI);
3844     checkAtomicMemAccessSize(ElTy, &SI);
3845   } else {
3846     Check(SI.getSyncScopeID() == SyncScope::System,
3847           "Non-atomic store cannot have SynchronizationScope specified", &SI);
3848   }
3849   visitInstruction(SI);
3850 }
3851 
3852 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3853 void Verifier::verifySwiftErrorCall(CallBase &Call,
3854                                     const Value *SwiftErrorVal) {
3855   for (const auto &I : llvm::enumerate(Call.args())) {
3856     if (I.value() == SwiftErrorVal) {
3857       Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3858             "swifterror value when used in a callsite should be marked "
3859             "with swifterror attribute",
3860             SwiftErrorVal, Call);
3861     }
3862   }
3863 }
3864 
3865 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3866   // Check that swifterror value is only used by loads, stores, or as
3867   // a swifterror argument.
3868   for (const User *U : SwiftErrorVal->users()) {
3869     Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3870               isa<InvokeInst>(U),
3871           "swifterror value can only be loaded and stored from, or "
3872           "as a swifterror argument!",
3873           SwiftErrorVal, U);
3874     // If it is used by a store, check it is the second operand.
3875     if (auto StoreI = dyn_cast<StoreInst>(U))
3876       Check(StoreI->getOperand(1) == SwiftErrorVal,
3877             "swifterror value should be the second operand when used "
3878             "by stores",
3879             SwiftErrorVal, U);
3880     if (auto *Call = dyn_cast<CallBase>(U))
3881       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3882   }
3883 }
3884 
3885 void Verifier::visitAllocaInst(AllocaInst &AI) {
3886   SmallPtrSet<Type*, 4> Visited;
3887   Check(AI.getAllocatedType()->isSized(&Visited),
3888         "Cannot allocate unsized type", &AI);
3889   Check(AI.getArraySize()->getType()->isIntegerTy(),
3890         "Alloca array size must have integer type", &AI);
3891   if (MaybeAlign A = AI.getAlign()) {
3892     Check(A->value() <= Value::MaximumAlignment,
3893           "huge alignment values are unsupported", &AI);
3894   }
3895 
3896   if (AI.isSwiftError()) {
3897     Check(AI.getAllocatedType()->isPointerTy(),
3898           "swifterror alloca must have pointer type", &AI);
3899     Check(!AI.isArrayAllocation(),
3900           "swifterror alloca must not be array allocation", &AI);
3901     verifySwiftErrorValue(&AI);
3902   }
3903 
3904   visitInstruction(AI);
3905 }
3906 
3907 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3908   Type *ElTy = CXI.getOperand(1)->getType();
3909   Check(ElTy->isIntOrPtrTy(),
3910         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3911   checkAtomicMemAccessSize(ElTy, &CXI);
3912   visitInstruction(CXI);
3913 }
3914 
3915 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3916   Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
3917         "atomicrmw instructions cannot be unordered.", &RMWI);
3918   auto Op = RMWI.getOperation();
3919   Type *ElTy = RMWI.getOperand(1)->getType();
3920   if (Op == AtomicRMWInst::Xchg) {
3921     Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(),
3922           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
3923               " operand must have integer or floating point type!",
3924           &RMWI, ElTy);
3925   } else if (AtomicRMWInst::isFPOperation(Op)) {
3926     Check(ElTy->isFloatingPointTy(),
3927           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
3928               " operand must have floating point type!",
3929           &RMWI, ElTy);
3930   } else {
3931     Check(ElTy->isIntegerTy(),
3932           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
3933               " operand must have integer type!",
3934           &RMWI, ElTy);
3935   }
3936   checkAtomicMemAccessSize(ElTy, &RMWI);
3937   Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3938         "Invalid binary operation!", &RMWI);
3939   visitInstruction(RMWI);
3940 }
3941 
3942 void Verifier::visitFenceInst(FenceInst &FI) {
3943   const AtomicOrdering Ordering = FI.getOrdering();
3944   Check(Ordering == AtomicOrdering::Acquire ||
3945             Ordering == AtomicOrdering::Release ||
3946             Ordering == AtomicOrdering::AcquireRelease ||
3947             Ordering == AtomicOrdering::SequentiallyConsistent,
3948         "fence instructions may only have acquire, release, acq_rel, or "
3949         "seq_cst ordering.",
3950         &FI);
3951   visitInstruction(FI);
3952 }
3953 
3954 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3955   Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3956                                          EVI.getIndices()) == EVI.getType(),
3957         "Invalid ExtractValueInst operands!", &EVI);
3958 
3959   visitInstruction(EVI);
3960 }
3961 
3962 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3963   Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3964                                          IVI.getIndices()) ==
3965             IVI.getOperand(1)->getType(),
3966         "Invalid InsertValueInst operands!", &IVI);
3967 
3968   visitInstruction(IVI);
3969 }
3970 
3971 static Value *getParentPad(Value *EHPad) {
3972   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3973     return FPI->getParentPad();
3974 
3975   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3976 }
3977 
3978 void Verifier::visitEHPadPredecessors(Instruction &I) {
3979   assert(I.isEHPad());
3980 
3981   BasicBlock *BB = I.getParent();
3982   Function *F = BB->getParent();
3983 
3984   Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3985 
3986   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3987     // The landingpad instruction defines its parent as a landing pad block. The
3988     // landing pad block may be branched to only by the unwind edge of an
3989     // invoke.
3990     for (BasicBlock *PredBB : predecessors(BB)) {
3991       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3992       Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3993             "Block containing LandingPadInst must be jumped to "
3994             "only by the unwind edge of an invoke.",
3995             LPI);
3996     }
3997     return;
3998   }
3999   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4000     if (!pred_empty(BB))
4001       Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4002             "Block containg CatchPadInst must be jumped to "
4003             "only by its catchswitch.",
4004             CPI);
4005     Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4006           "Catchswitch cannot unwind to one of its catchpads",
4007           CPI->getCatchSwitch(), CPI);
4008     return;
4009   }
4010 
4011   // Verify that each pred has a legal terminator with a legal to/from EH
4012   // pad relationship.
4013   Instruction *ToPad = &I;
4014   Value *ToPadParent = getParentPad(ToPad);
4015   for (BasicBlock *PredBB : predecessors(BB)) {
4016     Instruction *TI = PredBB->getTerminator();
4017     Value *FromPad;
4018     if (auto *II = dyn_cast<InvokeInst>(TI)) {
4019       Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4020             "EH pad must be jumped to via an unwind edge", ToPad, II);
4021       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4022         FromPad = Bundle->Inputs[0];
4023       else
4024         FromPad = ConstantTokenNone::get(II->getContext());
4025     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4026       FromPad = CRI->getOperand(0);
4027       Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4028     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4029       FromPad = CSI;
4030     } else {
4031       Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4032     }
4033 
4034     // The edge may exit from zero or more nested pads.
4035     SmallSet<Value *, 8> Seen;
4036     for (;; FromPad = getParentPad(FromPad)) {
4037       Check(FromPad != ToPad,
4038             "EH pad cannot handle exceptions raised within it", FromPad, TI);
4039       if (FromPad == ToPadParent) {
4040         // This is a legal unwind edge.
4041         break;
4042       }
4043       Check(!isa<ConstantTokenNone>(FromPad),
4044             "A single unwind edge may only enter one EH pad", TI);
4045       Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4046             FromPad);
4047 
4048       // This will be diagnosed on the corresponding instruction already. We
4049       // need the extra check here to make sure getParentPad() works.
4050       Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4051             "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4052     }
4053   }
4054 }
4055 
4056 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4057   // The landingpad instruction is ill-formed if it doesn't have any clauses and
4058   // isn't a cleanup.
4059   Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4060         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4061 
4062   visitEHPadPredecessors(LPI);
4063 
4064   if (!LandingPadResultTy)
4065     LandingPadResultTy = LPI.getType();
4066   else
4067     Check(LandingPadResultTy == LPI.getType(),
4068           "The landingpad instruction should have a consistent result type "
4069           "inside a function.",
4070           &LPI);
4071 
4072   Function *F = LPI.getParent()->getParent();
4073   Check(F->hasPersonalityFn(),
4074         "LandingPadInst needs to be in a function with a personality.", &LPI);
4075 
4076   // The landingpad instruction must be the first non-PHI instruction in the
4077   // block.
4078   Check(LPI.getParent()->getLandingPadInst() == &LPI,
4079         "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4080 
4081   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4082     Constant *Clause = LPI.getClause(i);
4083     if (LPI.isCatch(i)) {
4084       Check(isa<PointerType>(Clause->getType()),
4085             "Catch operand does not have pointer type!", &LPI);
4086     } else {
4087       Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4088       Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4089             "Filter operand is not an array of constants!", &LPI);
4090     }
4091   }
4092 
4093   visitInstruction(LPI);
4094 }
4095 
4096 void Verifier::visitResumeInst(ResumeInst &RI) {
4097   Check(RI.getFunction()->hasPersonalityFn(),
4098         "ResumeInst needs to be in a function with a personality.", &RI);
4099 
4100   if (!LandingPadResultTy)
4101     LandingPadResultTy = RI.getValue()->getType();
4102   else
4103     Check(LandingPadResultTy == RI.getValue()->getType(),
4104           "The resume instruction should have a consistent result type "
4105           "inside a function.",
4106           &RI);
4107 
4108   visitTerminator(RI);
4109 }
4110 
4111 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4112   BasicBlock *BB = CPI.getParent();
4113 
4114   Function *F = BB->getParent();
4115   Check(F->hasPersonalityFn(),
4116         "CatchPadInst needs to be in a function with a personality.", &CPI);
4117 
4118   Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4119         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4120         CPI.getParentPad());
4121 
4122   // The catchpad instruction must be the first non-PHI instruction in the
4123   // block.
4124   Check(BB->getFirstNonPHI() == &CPI,
4125         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4126 
4127   visitEHPadPredecessors(CPI);
4128   visitFuncletPadInst(CPI);
4129 }
4130 
4131 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4132   Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4133         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4134         CatchReturn.getOperand(0));
4135 
4136   visitTerminator(CatchReturn);
4137 }
4138 
4139 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4140   BasicBlock *BB = CPI.getParent();
4141 
4142   Function *F = BB->getParent();
4143   Check(F->hasPersonalityFn(),
4144         "CleanupPadInst needs to be in a function with a personality.", &CPI);
4145 
4146   // The cleanuppad instruction must be the first non-PHI instruction in the
4147   // block.
4148   Check(BB->getFirstNonPHI() == &CPI,
4149         "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4150 
4151   auto *ParentPad = CPI.getParentPad();
4152   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4153         "CleanupPadInst has an invalid parent.", &CPI);
4154 
4155   visitEHPadPredecessors(CPI);
4156   visitFuncletPadInst(CPI);
4157 }
4158 
4159 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4160   User *FirstUser = nullptr;
4161   Value *FirstUnwindPad = nullptr;
4162   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4163   SmallSet<FuncletPadInst *, 8> Seen;
4164 
4165   while (!Worklist.empty()) {
4166     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4167     Check(Seen.insert(CurrentPad).second,
4168           "FuncletPadInst must not be nested within itself", CurrentPad);
4169     Value *UnresolvedAncestorPad = nullptr;
4170     for (User *U : CurrentPad->users()) {
4171       BasicBlock *UnwindDest;
4172       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4173         UnwindDest = CRI->getUnwindDest();
4174       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4175         // We allow catchswitch unwind to caller to nest
4176         // within an outer pad that unwinds somewhere else,
4177         // because catchswitch doesn't have a nounwind variant.
4178         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4179         if (CSI->unwindsToCaller())
4180           continue;
4181         UnwindDest = CSI->getUnwindDest();
4182       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4183         UnwindDest = II->getUnwindDest();
4184       } else if (isa<CallInst>(U)) {
4185         // Calls which don't unwind may be found inside funclet
4186         // pads that unwind somewhere else.  We don't *require*
4187         // such calls to be annotated nounwind.
4188         continue;
4189       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4190         // The unwind dest for a cleanup can only be found by
4191         // recursive search.  Add it to the worklist, and we'll
4192         // search for its first use that determines where it unwinds.
4193         Worklist.push_back(CPI);
4194         continue;
4195       } else {
4196         Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4197         continue;
4198       }
4199 
4200       Value *UnwindPad;
4201       bool ExitsFPI;
4202       if (UnwindDest) {
4203         UnwindPad = UnwindDest->getFirstNonPHI();
4204         if (!cast<Instruction>(UnwindPad)->isEHPad())
4205           continue;
4206         Value *UnwindParent = getParentPad(UnwindPad);
4207         // Ignore unwind edges that don't exit CurrentPad.
4208         if (UnwindParent == CurrentPad)
4209           continue;
4210         // Determine whether the original funclet pad is exited,
4211         // and if we are scanning nested pads determine how many
4212         // of them are exited so we can stop searching their
4213         // children.
4214         Value *ExitedPad = CurrentPad;
4215         ExitsFPI = false;
4216         do {
4217           if (ExitedPad == &FPI) {
4218             ExitsFPI = true;
4219             // Now we can resolve any ancestors of CurrentPad up to
4220             // FPI, but not including FPI since we need to make sure
4221             // to check all direct users of FPI for consistency.
4222             UnresolvedAncestorPad = &FPI;
4223             break;
4224           }
4225           Value *ExitedParent = getParentPad(ExitedPad);
4226           if (ExitedParent == UnwindParent) {
4227             // ExitedPad is the ancestor-most pad which this unwind
4228             // edge exits, so we can resolve up to it, meaning that
4229             // ExitedParent is the first ancestor still unresolved.
4230             UnresolvedAncestorPad = ExitedParent;
4231             break;
4232           }
4233           ExitedPad = ExitedParent;
4234         } while (!isa<ConstantTokenNone>(ExitedPad));
4235       } else {
4236         // Unwinding to caller exits all pads.
4237         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4238         ExitsFPI = true;
4239         UnresolvedAncestorPad = &FPI;
4240       }
4241 
4242       if (ExitsFPI) {
4243         // This unwind edge exits FPI.  Make sure it agrees with other
4244         // such edges.
4245         if (FirstUser) {
4246           Check(UnwindPad == FirstUnwindPad,
4247                 "Unwind edges out of a funclet "
4248                 "pad must have the same unwind "
4249                 "dest",
4250                 &FPI, U, FirstUser);
4251         } else {
4252           FirstUser = U;
4253           FirstUnwindPad = UnwindPad;
4254           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4255           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4256               getParentPad(UnwindPad) == getParentPad(&FPI))
4257             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4258         }
4259       }
4260       // Make sure we visit all uses of FPI, but for nested pads stop as
4261       // soon as we know where they unwind to.
4262       if (CurrentPad != &FPI)
4263         break;
4264     }
4265     if (UnresolvedAncestorPad) {
4266       if (CurrentPad == UnresolvedAncestorPad) {
4267         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4268         // we've found an unwind edge that exits it, because we need to verify
4269         // all direct uses of FPI.
4270         assert(CurrentPad == &FPI);
4271         continue;
4272       }
4273       // Pop off the worklist any nested pads that we've found an unwind
4274       // destination for.  The pads on the worklist are the uncles,
4275       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4276       // for all ancestors of CurrentPad up to but not including
4277       // UnresolvedAncestorPad.
4278       Value *ResolvedPad = CurrentPad;
4279       while (!Worklist.empty()) {
4280         Value *UnclePad = Worklist.back();
4281         Value *AncestorPad = getParentPad(UnclePad);
4282         // Walk ResolvedPad up the ancestor list until we either find the
4283         // uncle's parent or the last resolved ancestor.
4284         while (ResolvedPad != AncestorPad) {
4285           Value *ResolvedParent = getParentPad(ResolvedPad);
4286           if (ResolvedParent == UnresolvedAncestorPad) {
4287             break;
4288           }
4289           ResolvedPad = ResolvedParent;
4290         }
4291         // If the resolved ancestor search didn't find the uncle's parent,
4292         // then the uncle is not yet resolved.
4293         if (ResolvedPad != AncestorPad)
4294           break;
4295         // This uncle is resolved, so pop it from the worklist.
4296         Worklist.pop_back();
4297       }
4298     }
4299   }
4300 
4301   if (FirstUnwindPad) {
4302     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4303       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4304       Value *SwitchUnwindPad;
4305       if (SwitchUnwindDest)
4306         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4307       else
4308         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4309       Check(SwitchUnwindPad == FirstUnwindPad,
4310             "Unwind edges out of a catch must have the same unwind dest as "
4311             "the parent catchswitch",
4312             &FPI, FirstUser, CatchSwitch);
4313     }
4314   }
4315 
4316   visitInstruction(FPI);
4317 }
4318 
4319 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4320   BasicBlock *BB = CatchSwitch.getParent();
4321 
4322   Function *F = BB->getParent();
4323   Check(F->hasPersonalityFn(),
4324         "CatchSwitchInst needs to be in a function with a personality.",
4325         &CatchSwitch);
4326 
4327   // The catchswitch instruction must be the first non-PHI instruction in the
4328   // block.
4329   Check(BB->getFirstNonPHI() == &CatchSwitch,
4330         "CatchSwitchInst not the first non-PHI instruction in the block.",
4331         &CatchSwitch);
4332 
4333   auto *ParentPad = CatchSwitch.getParentPad();
4334   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4335         "CatchSwitchInst has an invalid parent.", ParentPad);
4336 
4337   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4338     Instruction *I = UnwindDest->getFirstNonPHI();
4339     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4340           "CatchSwitchInst must unwind to an EH block which is not a "
4341           "landingpad.",
4342           &CatchSwitch);
4343 
4344     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4345     if (getParentPad(I) == ParentPad)
4346       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4347   }
4348 
4349   Check(CatchSwitch.getNumHandlers() != 0,
4350         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4351 
4352   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4353     Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4354           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4355   }
4356 
4357   visitEHPadPredecessors(CatchSwitch);
4358   visitTerminator(CatchSwitch);
4359 }
4360 
4361 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4362   Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4363         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4364         CRI.getOperand(0));
4365 
4366   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4367     Instruction *I = UnwindDest->getFirstNonPHI();
4368     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4369           "CleanupReturnInst must unwind to an EH block which is not a "
4370           "landingpad.",
4371           &CRI);
4372   }
4373 
4374   visitTerminator(CRI);
4375 }
4376 
4377 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4378   Instruction *Op = cast<Instruction>(I.getOperand(i));
4379   // If the we have an invalid invoke, don't try to compute the dominance.
4380   // We already reject it in the invoke specific checks and the dominance
4381   // computation doesn't handle multiple edges.
4382   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4383     if (II->getNormalDest() == II->getUnwindDest())
4384       return;
4385   }
4386 
4387   // Quick check whether the def has already been encountered in the same block.
4388   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4389   // uses are defined to happen on the incoming edge, not at the instruction.
4390   //
4391   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4392   // wrapping an SSA value, assert that we've already encountered it.  See
4393   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4394   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4395     return;
4396 
4397   const Use &U = I.getOperandUse(i);
4398   Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4399 }
4400 
4401 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4402   Check(I.getType()->isPointerTy(),
4403         "dereferenceable, dereferenceable_or_null "
4404         "apply only to pointer types",
4405         &I);
4406   Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4407         "dereferenceable, dereferenceable_or_null apply only to load"
4408         " and inttoptr instructions, use attributes for calls or invokes",
4409         &I);
4410   Check(MD->getNumOperands() == 1,
4411         "dereferenceable, dereferenceable_or_null "
4412         "take one operand!",
4413         &I);
4414   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4415   Check(CI && CI->getType()->isIntegerTy(64),
4416         "dereferenceable, "
4417         "dereferenceable_or_null metadata value must be an i64!",
4418         &I);
4419 }
4420 
4421 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4422   Check(MD->getNumOperands() >= 2,
4423         "!prof annotations should have no less than 2 operands", MD);
4424 
4425   // Check first operand.
4426   Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4427   Check(isa<MDString>(MD->getOperand(0)),
4428         "expected string with name of the !prof annotation", MD);
4429   MDString *MDS = cast<MDString>(MD->getOperand(0));
4430   StringRef ProfName = MDS->getString();
4431 
4432   // Check consistency of !prof branch_weights metadata.
4433   if (ProfName.equals("branch_weights")) {
4434     if (isa<InvokeInst>(&I)) {
4435       Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4436             "Wrong number of InvokeInst branch_weights operands", MD);
4437     } else {
4438       unsigned ExpectedNumOperands = 0;
4439       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4440         ExpectedNumOperands = BI->getNumSuccessors();
4441       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4442         ExpectedNumOperands = SI->getNumSuccessors();
4443       else if (isa<CallInst>(&I))
4444         ExpectedNumOperands = 1;
4445       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4446         ExpectedNumOperands = IBI->getNumDestinations();
4447       else if (isa<SelectInst>(&I))
4448         ExpectedNumOperands = 2;
4449       else
4450         CheckFailed("!prof branch_weights are not allowed for this instruction",
4451                     MD);
4452 
4453       Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4454             "Wrong number of operands", MD);
4455     }
4456     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4457       auto &MDO = MD->getOperand(i);
4458       Check(MDO, "second operand should not be null", MD);
4459       Check(mdconst::dyn_extract<ConstantInt>(MDO),
4460             "!prof brunch_weights operand is not a const int");
4461     }
4462   }
4463 }
4464 
4465 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4466   Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4467   Check(Annotation->getNumOperands() >= 1,
4468         "annotation must have at least one operand");
4469   for (const MDOperand &Op : Annotation->operands())
4470     Check(isa<MDString>(Op.get()), "operands must be strings");
4471 }
4472 
4473 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4474   unsigned NumOps = MD->getNumOperands();
4475   Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4476         MD);
4477   Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4478         "first scope operand must be self-referential or string", MD);
4479   if (NumOps == 3)
4480     Check(isa<MDString>(MD->getOperand(2)),
4481           "third scope operand must be string (if used)", MD);
4482 
4483   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4484   Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4485 
4486   unsigned NumDomainOps = Domain->getNumOperands();
4487   Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4488         "domain must have one or two operands", Domain);
4489   Check(Domain->getOperand(0).get() == Domain ||
4490             isa<MDString>(Domain->getOperand(0)),
4491         "first domain operand must be self-referential or string", Domain);
4492   if (NumDomainOps == 2)
4493     Check(isa<MDString>(Domain->getOperand(1)),
4494           "second domain operand must be string (if used)", Domain);
4495 }
4496 
4497 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4498   for (const MDOperand &Op : MD->operands()) {
4499     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4500     Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4501     visitAliasScopeMetadata(OpMD);
4502   }
4503 }
4504 
4505 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4506   auto IsValidAccessScope = [](const MDNode *MD) {
4507     return MD->getNumOperands() == 0 && MD->isDistinct();
4508   };
4509 
4510   // It must be either an access scope itself...
4511   if (IsValidAccessScope(MD))
4512     return;
4513 
4514   // ...or a list of access scopes.
4515   for (const MDOperand &Op : MD->operands()) {
4516     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4517     Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4518     Check(IsValidAccessScope(OpMD),
4519           "Access scope list contains invalid access scope", MD);
4520   }
4521 }
4522 
4523 /// verifyInstruction - Verify that an instruction is well formed.
4524 ///
4525 void Verifier::visitInstruction(Instruction &I) {
4526   BasicBlock *BB = I.getParent();
4527   Check(BB, "Instruction not embedded in basic block!", &I);
4528 
4529   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4530     for (User *U : I.users()) {
4531       Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4532             "Only PHI nodes may reference their own value!", &I);
4533     }
4534   }
4535 
4536   // Check that void typed values don't have names
4537   Check(!I.getType()->isVoidTy() || !I.hasName(),
4538         "Instruction has a name, but provides a void value!", &I);
4539 
4540   // Check that the return value of the instruction is either void or a legal
4541   // value type.
4542   Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4543         "Instruction returns a non-scalar type!", &I);
4544 
4545   // Check that the instruction doesn't produce metadata. Calls are already
4546   // checked against the callee type.
4547   Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4548         "Invalid use of metadata!", &I);
4549 
4550   // Check that all uses of the instruction, if they are instructions
4551   // themselves, actually have parent basic blocks.  If the use is not an
4552   // instruction, it is an error!
4553   for (Use &U : I.uses()) {
4554     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4555       Check(Used->getParent() != nullptr,
4556             "Instruction referencing"
4557             " instruction not embedded in a basic block!",
4558             &I, Used);
4559     else {
4560       CheckFailed("Use of instruction is not an instruction!", U);
4561       return;
4562     }
4563   }
4564 
4565   // Get a pointer to the call base of the instruction if it is some form of
4566   // call.
4567   const CallBase *CBI = dyn_cast<CallBase>(&I);
4568 
4569   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4570     Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4571 
4572     // Check to make sure that only first-class-values are operands to
4573     // instructions.
4574     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4575       Check(false, "Instruction operands must be first-class values!", &I);
4576     }
4577 
4578     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4579       // This code checks whether the function is used as the operand of a
4580       // clang_arc_attachedcall operand bundle.
4581       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4582                                       int Idx) {
4583         return CBI && CBI->isOperandBundleOfType(
4584                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4585       };
4586 
4587       // Check to make sure that the "address of" an intrinsic function is never
4588       // taken. Ignore cases where the address of the intrinsic function is used
4589       // as the argument of operand bundle "clang.arc.attachedcall" as those
4590       // cases are handled in verifyAttachedCallBundle.
4591       Check((!F->isIntrinsic() ||
4592              (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4593              IsAttachedCallOperand(F, CBI, i)),
4594             "Cannot take the address of an intrinsic!", &I);
4595       Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4596                 F->getIntrinsicID() == Intrinsic::donothing ||
4597                 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4598                 F->getIntrinsicID() == Intrinsic::seh_try_end ||
4599                 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4600                 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4601                 F->getIntrinsicID() == Intrinsic::coro_resume ||
4602                 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4603                 F->getIntrinsicID() ==
4604                     Intrinsic::experimental_patchpoint_void ||
4605                 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4606                 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4607                 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4608                 IsAttachedCallOperand(F, CBI, i),
4609             "Cannot invoke an intrinsic other than donothing, patchpoint, "
4610             "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4611             &I);
4612       Check(F->getParent() == &M, "Referencing function in another module!", &I,
4613             &M, F, F->getParent());
4614     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4615       Check(OpBB->getParent() == BB->getParent(),
4616             "Referring to a basic block in another function!", &I);
4617     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4618       Check(OpArg->getParent() == BB->getParent(),
4619             "Referring to an argument in another function!", &I);
4620     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4621       Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4622             &M, GV, GV->getParent());
4623     } else if (isa<Instruction>(I.getOperand(i))) {
4624       verifyDominatesUse(I, i);
4625     } else if (isa<InlineAsm>(I.getOperand(i))) {
4626       Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4627             "Cannot take the address of an inline asm!", &I);
4628     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4629       if (CE->getType()->isPtrOrPtrVectorTy()) {
4630         // If we have a ConstantExpr pointer, we need to see if it came from an
4631         // illegal bitcast.
4632         visitConstantExprsRecursively(CE);
4633       }
4634     }
4635   }
4636 
4637   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4638     Check(I.getType()->isFPOrFPVectorTy(),
4639           "fpmath requires a floating point result!", &I);
4640     Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4641     if (ConstantFP *CFP0 =
4642             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4643       const APFloat &Accuracy = CFP0->getValueAPF();
4644       Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4645             "fpmath accuracy must have float type", &I);
4646       Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4647             "fpmath accuracy not a positive number!", &I);
4648     } else {
4649       Check(false, "invalid fpmath accuracy!", &I);
4650     }
4651   }
4652 
4653   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4654     Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4655           "Ranges are only for loads, calls and invokes!", &I);
4656     visitRangeMetadata(I, Range, I.getType());
4657   }
4658 
4659   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4660     Check(isa<LoadInst>(I) || isa<StoreInst>(I),
4661           "invariant.group metadata is only for loads and stores", &I);
4662   }
4663 
4664   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4665     Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4666           &I);
4667     Check(isa<LoadInst>(I),
4668           "nonnull applies only to load instructions, use attributes"
4669           " for calls or invokes",
4670           &I);
4671   }
4672 
4673   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4674     visitDereferenceableMetadata(I, MD);
4675 
4676   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4677     visitDereferenceableMetadata(I, MD);
4678 
4679   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4680     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4681 
4682   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4683     visitAliasScopeListMetadata(MD);
4684   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4685     visitAliasScopeListMetadata(MD);
4686 
4687   if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
4688     visitAccessGroupMetadata(MD);
4689 
4690   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4691     Check(I.getType()->isPointerTy(), "align applies only to pointer types",
4692           &I);
4693     Check(isa<LoadInst>(I),
4694           "align applies only to load instructions, "
4695           "use attributes for calls or invokes",
4696           &I);
4697     Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4698     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4699     Check(CI && CI->getType()->isIntegerTy(64),
4700           "align metadata value must be an i64!", &I);
4701     uint64_t Align = CI->getZExtValue();
4702     Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
4703           &I);
4704     Check(Align <= Value::MaximumAlignment,
4705           "alignment is larger that implementation defined limit", &I);
4706   }
4707 
4708   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4709     visitProfMetadata(I, MD);
4710 
4711   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4712     visitAnnotationMetadata(Annotation);
4713 
4714   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4715     CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4716     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4717   }
4718 
4719   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4720     verifyFragmentExpression(*DII);
4721     verifyNotEntryValue(*DII);
4722   }
4723 
4724   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4725   I.getAllMetadata(MDs);
4726   for (auto Attachment : MDs) {
4727     unsigned Kind = Attachment.first;
4728     auto AllowLocs =
4729         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4730             ? AreDebugLocsAllowed::Yes
4731             : AreDebugLocsAllowed::No;
4732     visitMDNode(*Attachment.second, AllowLocs);
4733   }
4734 
4735   InstsInThisBlock.insert(&I);
4736 }
4737 
4738 /// Allow intrinsics to be verified in different ways.
4739 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4740   Function *IF = Call.getCalledFunction();
4741   Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4742         IF);
4743 
4744   // Verify that the intrinsic prototype lines up with what the .td files
4745   // describe.
4746   FunctionType *IFTy = IF->getFunctionType();
4747   bool IsVarArg = IFTy->isVarArg();
4748 
4749   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4750   getIntrinsicInfoTableEntries(ID, Table);
4751   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4752 
4753   // Walk the descriptors to extract overloaded types.
4754   SmallVector<Type *, 4> ArgTys;
4755   Intrinsic::MatchIntrinsicTypesResult Res =
4756       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4757   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4758         "Intrinsic has incorrect return type!", IF);
4759   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4760         "Intrinsic has incorrect argument type!", IF);
4761 
4762   // Verify if the intrinsic call matches the vararg property.
4763   if (IsVarArg)
4764     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4765           "Intrinsic was not defined with variable arguments!", IF);
4766   else
4767     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4768           "Callsite was not defined with variable arguments!", IF);
4769 
4770   // All descriptors should be absorbed by now.
4771   Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4772 
4773   // Now that we have the intrinsic ID and the actual argument types (and we
4774   // know they are legal for the intrinsic!) get the intrinsic name through the
4775   // usual means.  This allows us to verify the mangling of argument types into
4776   // the name.
4777   const std::string ExpectedName =
4778       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4779   Check(ExpectedName == IF->getName(),
4780         "Intrinsic name not mangled correctly for type arguments! "
4781         "Should be: " +
4782             ExpectedName,
4783         IF);
4784 
4785   // If the intrinsic takes MDNode arguments, verify that they are either global
4786   // or are local to *this* function.
4787   for (Value *V : Call.args()) {
4788     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4789       visitMetadataAsValue(*MD, Call.getCaller());
4790     if (auto *Const = dyn_cast<Constant>(V))
4791       Check(!Const->getType()->isX86_AMXTy(),
4792             "const x86_amx is not allowed in argument!");
4793   }
4794 
4795   switch (ID) {
4796   default:
4797     break;
4798   case Intrinsic::assume: {
4799     for (auto &Elem : Call.bundle_op_infos()) {
4800       Check(Elem.Tag->getKey() == "ignore" ||
4801                 Attribute::isExistingAttribute(Elem.Tag->getKey()),
4802             "tags must be valid attribute names", Call);
4803       Attribute::AttrKind Kind =
4804           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4805       unsigned ArgCount = Elem.End - Elem.Begin;
4806       if (Kind == Attribute::Alignment) {
4807         Check(ArgCount <= 3 && ArgCount >= 2,
4808               "alignment assumptions should have 2 or 3 arguments", Call);
4809         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4810               "first argument should be a pointer", Call);
4811         Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4812               "second argument should be an integer", Call);
4813         if (ArgCount == 3)
4814           Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4815                 "third argument should be an integer if present", Call);
4816         return;
4817       }
4818       Check(ArgCount <= 2, "too many arguments", Call);
4819       if (Kind == Attribute::None)
4820         break;
4821       if (Attribute::isIntAttrKind(Kind)) {
4822         Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
4823         Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4824               "the second argument should be a constant integral value", Call);
4825       } else if (Attribute::canUseAsParamAttr(Kind)) {
4826         Check((ArgCount) == 1, "this attribute should have one argument", Call);
4827       } else if (Attribute::canUseAsFnAttr(Kind)) {
4828         Check((ArgCount) == 0, "this attribute has no argument", Call);
4829       }
4830     }
4831     break;
4832   }
4833   case Intrinsic::coro_id: {
4834     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4835     if (isa<ConstantPointerNull>(InfoArg))
4836       break;
4837     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4838     Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4839           "info argument of llvm.coro.id must refer to an initialized "
4840           "constant");
4841     Constant *Init = GV->getInitializer();
4842     Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4843           "info argument of llvm.coro.id must refer to either a struct or "
4844           "an array");
4845     break;
4846   }
4847   case Intrinsic::fptrunc_round: {
4848     // Check the rounding mode
4849     Metadata *MD = nullptr;
4850     auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
4851     if (MAV)
4852       MD = MAV->getMetadata();
4853 
4854     Check(MD != nullptr, "missing rounding mode argument", Call);
4855 
4856     Check(isa<MDString>(MD),
4857           ("invalid value for llvm.fptrunc.round metadata operand"
4858            " (the operand should be a string)"),
4859           MD);
4860 
4861     Optional<RoundingMode> RoundMode =
4862         convertStrToRoundingMode(cast<MDString>(MD)->getString());
4863     Check(RoundMode.hasValue() && RoundMode.getValue() != RoundingMode::Dynamic,
4864           "unsupported rounding mode argument", Call);
4865     break;
4866   }
4867 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
4868 #include "llvm/IR/VPIntrinsics.def"
4869     visitVPIntrinsic(cast<VPIntrinsic>(Call));
4870     break;
4871 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4872   case Intrinsic::INTRINSIC:
4873 #include "llvm/IR/ConstrainedOps.def"
4874     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4875     break;
4876   case Intrinsic::dbg_declare: // llvm.dbg.declare
4877     Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
4878           "invalid llvm.dbg.declare intrinsic call 1", Call);
4879     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4880     break;
4881   case Intrinsic::dbg_addr: // llvm.dbg.addr
4882     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4883     break;
4884   case Intrinsic::dbg_value: // llvm.dbg.value
4885     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4886     break;
4887   case Intrinsic::dbg_label: // llvm.dbg.label
4888     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4889     break;
4890   case Intrinsic::memcpy:
4891   case Intrinsic::memcpy_inline:
4892   case Intrinsic::memmove:
4893   case Intrinsic::memset: {
4894     const auto *MI = cast<MemIntrinsic>(&Call);
4895     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4896       return Alignment == 0 || isPowerOf2_32(Alignment);
4897     };
4898     Check(IsValidAlignment(MI->getDestAlignment()),
4899           "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4900           Call);
4901     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4902       Check(IsValidAlignment(MTI->getSourceAlignment()),
4903             "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4904             Call);
4905     }
4906 
4907     break;
4908   }
4909   case Intrinsic::memcpy_element_unordered_atomic:
4910   case Intrinsic::memmove_element_unordered_atomic:
4911   case Intrinsic::memset_element_unordered_atomic: {
4912     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4913 
4914     ConstantInt *ElementSizeCI =
4915         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4916     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4917     Check(ElementSizeVal.isPowerOf2(),
4918           "element size of the element-wise atomic memory intrinsic "
4919           "must be a power of 2",
4920           Call);
4921 
4922     auto IsValidAlignment = [&](uint64_t Alignment) {
4923       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4924     };
4925     uint64_t DstAlignment = AMI->getDestAlignment();
4926     Check(IsValidAlignment(DstAlignment),
4927           "incorrect alignment of the destination argument", Call);
4928     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4929       uint64_t SrcAlignment = AMT->getSourceAlignment();
4930       Check(IsValidAlignment(SrcAlignment),
4931             "incorrect alignment of the source argument", Call);
4932     }
4933     break;
4934   }
4935   case Intrinsic::call_preallocated_setup: {
4936     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4937     Check(NumArgs != nullptr,
4938           "llvm.call.preallocated.setup argument must be a constant");
4939     bool FoundCall = false;
4940     for (User *U : Call.users()) {
4941       auto *UseCall = dyn_cast<CallBase>(U);
4942       Check(UseCall != nullptr,
4943             "Uses of llvm.call.preallocated.setup must be calls");
4944       const Function *Fn = UseCall->getCalledFunction();
4945       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4946         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4947         Check(AllocArgIndex != nullptr,
4948               "llvm.call.preallocated.alloc arg index must be a constant");
4949         auto AllocArgIndexInt = AllocArgIndex->getValue();
4950         Check(AllocArgIndexInt.sge(0) &&
4951                   AllocArgIndexInt.slt(NumArgs->getValue()),
4952               "llvm.call.preallocated.alloc arg index must be between 0 and "
4953               "corresponding "
4954               "llvm.call.preallocated.setup's argument count");
4955       } else if (Fn && Fn->getIntrinsicID() ==
4956                            Intrinsic::call_preallocated_teardown) {
4957         // nothing to do
4958       } else {
4959         Check(!FoundCall, "Can have at most one call corresponding to a "
4960                           "llvm.call.preallocated.setup");
4961         FoundCall = true;
4962         size_t NumPreallocatedArgs = 0;
4963         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
4964           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4965             ++NumPreallocatedArgs;
4966           }
4967         }
4968         Check(NumPreallocatedArgs != 0,
4969               "cannot use preallocated intrinsics on a call without "
4970               "preallocated arguments");
4971         Check(NumArgs->equalsInt(NumPreallocatedArgs),
4972               "llvm.call.preallocated.setup arg size must be equal to number "
4973               "of preallocated arguments "
4974               "at call site",
4975               Call, *UseCall);
4976         // getOperandBundle() cannot be called if more than one of the operand
4977         // bundle exists. There is already a check elsewhere for this, so skip
4978         // here if we see more than one.
4979         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4980             1) {
4981           return;
4982         }
4983         auto PreallocatedBundle =
4984             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4985         Check(PreallocatedBundle,
4986               "Use of llvm.call.preallocated.setup outside intrinsics "
4987               "must be in \"preallocated\" operand bundle");
4988         Check(PreallocatedBundle->Inputs.front().get() == &Call,
4989               "preallocated bundle must have token from corresponding "
4990               "llvm.call.preallocated.setup");
4991       }
4992     }
4993     break;
4994   }
4995   case Intrinsic::call_preallocated_arg: {
4996     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4997     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
4998                        Intrinsic::call_preallocated_setup,
4999           "llvm.call.preallocated.arg token argument must be a "
5000           "llvm.call.preallocated.setup");
5001     Check(Call.hasFnAttr(Attribute::Preallocated),
5002           "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5003           "call site attribute");
5004     break;
5005   }
5006   case Intrinsic::call_preallocated_teardown: {
5007     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5008     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5009                        Intrinsic::call_preallocated_setup,
5010           "llvm.call.preallocated.teardown token argument must be a "
5011           "llvm.call.preallocated.setup");
5012     break;
5013   }
5014   case Intrinsic::gcroot:
5015   case Intrinsic::gcwrite:
5016   case Intrinsic::gcread:
5017     if (ID == Intrinsic::gcroot) {
5018       AllocaInst *AI =
5019           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5020       Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5021       Check(isa<Constant>(Call.getArgOperand(1)),
5022             "llvm.gcroot parameter #2 must be a constant.", Call);
5023       if (!AI->getAllocatedType()->isPointerTy()) {
5024         Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5025               "llvm.gcroot parameter #1 must either be a pointer alloca, "
5026               "or argument #2 must be a non-null constant.",
5027               Call);
5028       }
5029     }
5030 
5031     Check(Call.getParent()->getParent()->hasGC(),
5032           "Enclosing function does not use GC.", Call);
5033     break;
5034   case Intrinsic::init_trampoline:
5035     Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5036           "llvm.init_trampoline parameter #2 must resolve to a function.",
5037           Call);
5038     break;
5039   case Intrinsic::prefetch:
5040     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
5041               cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5042           "invalid arguments to llvm.prefetch", Call);
5043     break;
5044   case Intrinsic::stackprotector:
5045     Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5046           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5047     break;
5048   case Intrinsic::localescape: {
5049     BasicBlock *BB = Call.getParent();
5050     Check(BB == &BB->getParent()->front(),
5051           "llvm.localescape used outside of entry block", Call);
5052     Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5053           Call);
5054     for (Value *Arg : Call.args()) {
5055       if (isa<ConstantPointerNull>(Arg))
5056         continue; // Null values are allowed as placeholders.
5057       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5058       Check(AI && AI->isStaticAlloca(),
5059             "llvm.localescape only accepts static allocas", Call);
5060     }
5061     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5062     SawFrameEscape = true;
5063     break;
5064   }
5065   case Intrinsic::localrecover: {
5066     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5067     Function *Fn = dyn_cast<Function>(FnArg);
5068     Check(Fn && !Fn->isDeclaration(),
5069           "llvm.localrecover first "
5070           "argument must be function defined in this module",
5071           Call);
5072     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5073     auto &Entry = FrameEscapeInfo[Fn];
5074     Entry.second = unsigned(
5075         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5076     break;
5077   }
5078 
5079   case Intrinsic::experimental_gc_statepoint:
5080     if (auto *CI = dyn_cast<CallInst>(&Call))
5081       Check(!CI->isInlineAsm(),
5082             "gc.statepoint support for inline assembly unimplemented", CI);
5083     Check(Call.getParent()->getParent()->hasGC(),
5084           "Enclosing function does not use GC.", Call);
5085 
5086     verifyStatepoint(Call);
5087     break;
5088   case Intrinsic::experimental_gc_result: {
5089     Check(Call.getParent()->getParent()->hasGC(),
5090           "Enclosing function does not use GC.", Call);
5091     // Are we tied to a statepoint properly?
5092     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
5093     const Function *StatepointFn =
5094         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5095     Check(StatepointFn && StatepointFn->isDeclaration() &&
5096               StatepointFn->getIntrinsicID() ==
5097                   Intrinsic::experimental_gc_statepoint,
5098           "gc.result operand #1 must be from a statepoint", Call,
5099           Call.getArgOperand(0));
5100 
5101     // Check that result type matches wrapped callee.
5102     auto *TargetFuncType =
5103         cast<FunctionType>(StatepointCall->getParamElementType(2));
5104     Check(Call.getType() == TargetFuncType->getReturnType(),
5105           "gc.result result type does not match wrapped callee", Call);
5106     break;
5107   }
5108   case Intrinsic::experimental_gc_relocate: {
5109     Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5110 
5111     Check(isa<PointerType>(Call.getType()->getScalarType()),
5112           "gc.relocate must return a pointer or a vector of pointers", Call);
5113 
5114     // Check that this relocate is correctly tied to the statepoint
5115 
5116     // This is case for relocate on the unwinding path of an invoke statepoint
5117     if (LandingPadInst *LandingPad =
5118             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5119 
5120       const BasicBlock *InvokeBB =
5121           LandingPad->getParent()->getUniquePredecessor();
5122 
5123       // Landingpad relocates should have only one predecessor with invoke
5124       // statepoint terminator
5125       Check(InvokeBB, "safepoints should have unique landingpads",
5126             LandingPad->getParent());
5127       Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5128             InvokeBB);
5129       Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5130             "gc relocate should be linked to a statepoint", InvokeBB);
5131     } else {
5132       // In all other cases relocate should be tied to the statepoint directly.
5133       // This covers relocates on a normal return path of invoke statepoint and
5134       // relocates of a call statepoint.
5135       auto Token = Call.getArgOperand(0);
5136       Check(isa<GCStatepointInst>(Token),
5137             "gc relocate is incorrectly tied to the statepoint", Call, Token);
5138     }
5139 
5140     // Verify rest of the relocate arguments.
5141     const CallBase &StatepointCall =
5142       *cast<GCRelocateInst>(Call).getStatepoint();
5143 
5144     // Both the base and derived must be piped through the safepoint.
5145     Value *Base = Call.getArgOperand(1);
5146     Check(isa<ConstantInt>(Base),
5147           "gc.relocate operand #2 must be integer offset", Call);
5148 
5149     Value *Derived = Call.getArgOperand(2);
5150     Check(isa<ConstantInt>(Derived),
5151           "gc.relocate operand #3 must be integer offset", Call);
5152 
5153     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5154     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5155 
5156     // Check the bounds
5157     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
5158       Check(BaseIndex < Opt->Inputs.size(),
5159             "gc.relocate: statepoint base index out of bounds", Call);
5160       Check(DerivedIndex < Opt->Inputs.size(),
5161             "gc.relocate: statepoint derived index out of bounds", Call);
5162     }
5163 
5164     // Relocated value must be either a pointer type or vector-of-pointer type,
5165     // but gc_relocate does not need to return the same pointer type as the
5166     // relocated pointer. It can be casted to the correct type later if it's
5167     // desired. However, they must have the same address space and 'vectorness'
5168     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5169     Check(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
5170           "gc.relocate: relocated value must be a gc pointer", Call);
5171 
5172     auto ResultType = Call.getType();
5173     auto DerivedType = Relocate.getDerivedPtr()->getType();
5174     Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5175           "gc.relocate: vector relocates to vector and pointer to pointer",
5176           Call);
5177     Check(
5178         ResultType->getPointerAddressSpace() ==
5179             DerivedType->getPointerAddressSpace(),
5180         "gc.relocate: relocating a pointer shouldn't change its address space",
5181         Call);
5182     break;
5183   }
5184   case Intrinsic::eh_exceptioncode:
5185   case Intrinsic::eh_exceptionpointer: {
5186     Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5187           "eh.exceptionpointer argument must be a catchpad", Call);
5188     break;
5189   }
5190   case Intrinsic::get_active_lane_mask: {
5191     Check(Call.getType()->isVectorTy(),
5192           "get_active_lane_mask: must return a "
5193           "vector",
5194           Call);
5195     auto *ElemTy = Call.getType()->getScalarType();
5196     Check(ElemTy->isIntegerTy(1),
5197           "get_active_lane_mask: element type is not "
5198           "i1",
5199           Call);
5200     break;
5201   }
5202   case Intrinsic::masked_load: {
5203     Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5204           Call);
5205 
5206     Value *Ptr = Call.getArgOperand(0);
5207     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5208     Value *Mask = Call.getArgOperand(2);
5209     Value *PassThru = Call.getArgOperand(3);
5210     Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5211           Call);
5212     Check(Alignment->getValue().isPowerOf2(),
5213           "masked_load: alignment must be a power of 2", Call);
5214 
5215     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5216     Check(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5217           "masked_load: return must match pointer type", Call);
5218     Check(PassThru->getType() == Call.getType(),
5219           "masked_load: pass through and return type must match", Call);
5220     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5221               cast<VectorType>(Call.getType())->getElementCount(),
5222           "masked_load: vector mask must be same length as return", Call);
5223     break;
5224   }
5225   case Intrinsic::masked_store: {
5226     Value *Val = Call.getArgOperand(0);
5227     Value *Ptr = Call.getArgOperand(1);
5228     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5229     Value *Mask = Call.getArgOperand(3);
5230     Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5231           Call);
5232     Check(Alignment->getValue().isPowerOf2(),
5233           "masked_store: alignment must be a power of 2", Call);
5234 
5235     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5236     Check(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5237           "masked_store: storee must match pointer type", Call);
5238     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5239               cast<VectorType>(Val->getType())->getElementCount(),
5240           "masked_store: vector mask must be same length as value", Call);
5241     break;
5242   }
5243 
5244   case Intrinsic::masked_gather: {
5245     const APInt &Alignment =
5246         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5247     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5248           "masked_gather: alignment must be 0 or a power of 2", Call);
5249     break;
5250   }
5251   case Intrinsic::masked_scatter: {
5252     const APInt &Alignment =
5253         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5254     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5255           "masked_scatter: alignment must be 0 or a power of 2", Call);
5256     break;
5257   }
5258 
5259   case Intrinsic::experimental_guard: {
5260     Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5261     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5262           "experimental_guard must have exactly one "
5263           "\"deopt\" operand bundle");
5264     break;
5265   }
5266 
5267   case Intrinsic::experimental_deoptimize: {
5268     Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5269           Call);
5270     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5271           "experimental_deoptimize must have exactly one "
5272           "\"deopt\" operand bundle");
5273     Check(Call.getType() == Call.getFunction()->getReturnType(),
5274           "experimental_deoptimize return type must match caller return type");
5275 
5276     if (isa<CallInst>(Call)) {
5277       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5278       Check(RI,
5279             "calls to experimental_deoptimize must be followed by a return");
5280 
5281       if (!Call.getType()->isVoidTy() && RI)
5282         Check(RI->getReturnValue() == &Call,
5283               "calls to experimental_deoptimize must be followed by a return "
5284               "of the value computed by experimental_deoptimize");
5285     }
5286 
5287     break;
5288   }
5289   case Intrinsic::vector_reduce_and:
5290   case Intrinsic::vector_reduce_or:
5291   case Intrinsic::vector_reduce_xor:
5292   case Intrinsic::vector_reduce_add:
5293   case Intrinsic::vector_reduce_mul:
5294   case Intrinsic::vector_reduce_smax:
5295   case Intrinsic::vector_reduce_smin:
5296   case Intrinsic::vector_reduce_umax:
5297   case Intrinsic::vector_reduce_umin: {
5298     Type *ArgTy = Call.getArgOperand(0)->getType();
5299     Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5300           "Intrinsic has incorrect argument type!");
5301     break;
5302   }
5303   case Intrinsic::vector_reduce_fmax:
5304   case Intrinsic::vector_reduce_fmin: {
5305     Type *ArgTy = Call.getArgOperand(0)->getType();
5306     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5307           "Intrinsic has incorrect argument type!");
5308     break;
5309   }
5310   case Intrinsic::vector_reduce_fadd:
5311   case Intrinsic::vector_reduce_fmul: {
5312     // Unlike the other reductions, the first argument is a start value. The
5313     // second argument is the vector to be reduced.
5314     Type *ArgTy = Call.getArgOperand(1)->getType();
5315     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5316           "Intrinsic has incorrect argument type!");
5317     break;
5318   }
5319   case Intrinsic::smul_fix:
5320   case Intrinsic::smul_fix_sat:
5321   case Intrinsic::umul_fix:
5322   case Intrinsic::umul_fix_sat:
5323   case Intrinsic::sdiv_fix:
5324   case Intrinsic::sdiv_fix_sat:
5325   case Intrinsic::udiv_fix:
5326   case Intrinsic::udiv_fix_sat: {
5327     Value *Op1 = Call.getArgOperand(0);
5328     Value *Op2 = Call.getArgOperand(1);
5329     Check(Op1->getType()->isIntOrIntVectorTy(),
5330           "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5331           "vector of ints");
5332     Check(Op2->getType()->isIntOrIntVectorTy(),
5333           "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5334           "vector of ints");
5335 
5336     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5337     Check(Op3->getType()->getBitWidth() <= 32,
5338           "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5339 
5340     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5341         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5342       Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5343             "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5344             "the operands");
5345     } else {
5346       Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5347             "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5348             "to the width of the operands");
5349     }
5350     break;
5351   }
5352   case Intrinsic::lround:
5353   case Intrinsic::llround:
5354   case Intrinsic::lrint:
5355   case Intrinsic::llrint: {
5356     Type *ValTy = Call.getArgOperand(0)->getType();
5357     Type *ResultTy = Call.getType();
5358     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5359           "Intrinsic does not support vectors", &Call);
5360     break;
5361   }
5362   case Intrinsic::bswap: {
5363     Type *Ty = Call.getType();
5364     unsigned Size = Ty->getScalarSizeInBits();
5365     Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5366     break;
5367   }
5368   case Intrinsic::invariant_start: {
5369     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5370     Check(InvariantSize &&
5371               (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5372           "invariant_start parameter must be -1, 0 or a positive number",
5373           &Call);
5374     break;
5375   }
5376   case Intrinsic::matrix_multiply:
5377   case Intrinsic::matrix_transpose:
5378   case Intrinsic::matrix_column_major_load:
5379   case Intrinsic::matrix_column_major_store: {
5380     Function *IF = Call.getCalledFunction();
5381     ConstantInt *Stride = nullptr;
5382     ConstantInt *NumRows;
5383     ConstantInt *NumColumns;
5384     VectorType *ResultTy;
5385     Type *Op0ElemTy = nullptr;
5386     Type *Op1ElemTy = nullptr;
5387     switch (ID) {
5388     case Intrinsic::matrix_multiply:
5389       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5390       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5391       ResultTy = cast<VectorType>(Call.getType());
5392       Op0ElemTy =
5393           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5394       Op1ElemTy =
5395           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5396       break;
5397     case Intrinsic::matrix_transpose:
5398       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5399       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5400       ResultTy = cast<VectorType>(Call.getType());
5401       Op0ElemTy =
5402           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5403       break;
5404     case Intrinsic::matrix_column_major_load: {
5405       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5406       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5407       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5408       ResultTy = cast<VectorType>(Call.getType());
5409 
5410       PointerType *Op0PtrTy =
5411           cast<PointerType>(Call.getArgOperand(0)->getType());
5412       if (!Op0PtrTy->isOpaque())
5413         Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType();
5414       break;
5415     }
5416     case Intrinsic::matrix_column_major_store: {
5417       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5418       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5419       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5420       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5421       Op0ElemTy =
5422           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5423 
5424       PointerType *Op1PtrTy =
5425           cast<PointerType>(Call.getArgOperand(1)->getType());
5426       if (!Op1PtrTy->isOpaque())
5427         Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType();
5428       break;
5429     }
5430     default:
5431       llvm_unreachable("unexpected intrinsic");
5432     }
5433 
5434     Check(ResultTy->getElementType()->isIntegerTy() ||
5435               ResultTy->getElementType()->isFloatingPointTy(),
5436           "Result type must be an integer or floating-point type!", IF);
5437 
5438     if (Op0ElemTy)
5439       Check(ResultTy->getElementType() == Op0ElemTy,
5440             "Vector element type mismatch of the result and first operand "
5441             "vector!",
5442             IF);
5443 
5444     if (Op1ElemTy)
5445       Check(ResultTy->getElementType() == Op1ElemTy,
5446             "Vector element type mismatch of the result and second operand "
5447             "vector!",
5448             IF);
5449 
5450     Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5451               NumRows->getZExtValue() * NumColumns->getZExtValue(),
5452           "Result of a matrix operation does not fit in the returned vector!");
5453 
5454     if (Stride)
5455       Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5456             "Stride must be greater or equal than the number of rows!", IF);
5457 
5458     break;
5459   }
5460   case Intrinsic::experimental_vector_splice: {
5461     VectorType *VecTy = cast<VectorType>(Call.getType());
5462     int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5463     int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5464     if (Call.getParent() && Call.getParent()->getParent()) {
5465       AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5466       if (Attrs.hasFnAttr(Attribute::VScaleRange))
5467         KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5468     }
5469     Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5470               (Idx >= 0 && Idx < KnownMinNumElements),
5471           "The splice index exceeds the range [-VL, VL-1] where VL is the "
5472           "known minimum number of elements in the vector. For scalable "
5473           "vectors the minimum number of elements is determined from "
5474           "vscale_range.",
5475           &Call);
5476     break;
5477   }
5478   case Intrinsic::experimental_stepvector: {
5479     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5480     Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5481               VecTy->getScalarSizeInBits() >= 8,
5482           "experimental_stepvector only supported for vectors of integers "
5483           "with a bitwidth of at least 8.",
5484           &Call);
5485     break;
5486   }
5487   case Intrinsic::experimental_vector_insert: {
5488     Value *Vec = Call.getArgOperand(0);
5489     Value *SubVec = Call.getArgOperand(1);
5490     Value *Idx = Call.getArgOperand(2);
5491     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5492 
5493     VectorType *VecTy = cast<VectorType>(Vec->getType());
5494     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5495 
5496     ElementCount VecEC = VecTy->getElementCount();
5497     ElementCount SubVecEC = SubVecTy->getElementCount();
5498     Check(VecTy->getElementType() == SubVecTy->getElementType(),
5499           "experimental_vector_insert parameters must have the same element "
5500           "type.",
5501           &Call);
5502     Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5503           "experimental_vector_insert index must be a constant multiple of "
5504           "the subvector's known minimum vector length.");
5505 
5506     // If this insertion is not the 'mixed' case where a fixed vector is
5507     // inserted into a scalable vector, ensure that the insertion of the
5508     // subvector does not overrun the parent vector.
5509     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5510       Check(IdxN < VecEC.getKnownMinValue() &&
5511                 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5512             "subvector operand of experimental_vector_insert would overrun the "
5513             "vector being inserted into.");
5514     }
5515     break;
5516   }
5517   case Intrinsic::experimental_vector_extract: {
5518     Value *Vec = Call.getArgOperand(0);
5519     Value *Idx = Call.getArgOperand(1);
5520     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5521 
5522     VectorType *ResultTy = cast<VectorType>(Call.getType());
5523     VectorType *VecTy = cast<VectorType>(Vec->getType());
5524 
5525     ElementCount VecEC = VecTy->getElementCount();
5526     ElementCount ResultEC = ResultTy->getElementCount();
5527 
5528     Check(ResultTy->getElementType() == VecTy->getElementType(),
5529           "experimental_vector_extract result must have the same element "
5530           "type as the input vector.",
5531           &Call);
5532     Check(IdxN % ResultEC.getKnownMinValue() == 0,
5533           "experimental_vector_extract index must be a constant multiple of "
5534           "the result type's known minimum vector length.");
5535 
5536     // If this extraction is not the 'mixed' case where a fixed vector is is
5537     // extracted from a scalable vector, ensure that the extraction does not
5538     // overrun the parent vector.
5539     if (VecEC.isScalable() == ResultEC.isScalable()) {
5540       Check(IdxN < VecEC.getKnownMinValue() &&
5541                 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5542             "experimental_vector_extract would overrun.");
5543     }
5544     break;
5545   }
5546   case Intrinsic::experimental_noalias_scope_decl: {
5547     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5548     break;
5549   }
5550   case Intrinsic::preserve_array_access_index:
5551   case Intrinsic::preserve_struct_access_index:
5552   case Intrinsic::aarch64_ldaxr:
5553   case Intrinsic::aarch64_ldxr:
5554   case Intrinsic::arm_ldaex:
5555   case Intrinsic::arm_ldrex: {
5556     Type *ElemTy = Call.getParamElementType(0);
5557     Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5558           &Call);
5559     break;
5560   }
5561   case Intrinsic::aarch64_stlxr:
5562   case Intrinsic::aarch64_stxr:
5563   case Intrinsic::arm_stlex:
5564   case Intrinsic::arm_strex: {
5565     Type *ElemTy = Call.getAttributes().getParamElementType(1);
5566     Check(ElemTy,
5567           "Intrinsic requires elementtype attribute on second argument.",
5568           &Call);
5569     break;
5570   }
5571   };
5572 }
5573 
5574 /// Carefully grab the subprogram from a local scope.
5575 ///
5576 /// This carefully grabs the subprogram from a local scope, avoiding the
5577 /// built-in assertions that would typically fire.
5578 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5579   if (!LocalScope)
5580     return nullptr;
5581 
5582   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5583     return SP;
5584 
5585   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5586     return getSubprogram(LB->getRawScope());
5587 
5588   // Just return null; broken scope chains are checked elsewhere.
5589   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5590   return nullptr;
5591 }
5592 
5593 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
5594   if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
5595     auto *RetTy = cast<VectorType>(VPCast->getType());
5596     auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
5597     Check(RetTy->getElementCount() == ValTy->getElementCount(),
5598           "VP cast intrinsic first argument and result vector lengths must be "
5599           "equal",
5600           *VPCast);
5601 
5602     switch (VPCast->getIntrinsicID()) {
5603     default:
5604       llvm_unreachable("Unknown VP cast intrinsic");
5605     case Intrinsic::vp_trunc:
5606       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5607             "llvm.vp.trunc intrinsic first argument and result element type "
5608             "must be integer",
5609             *VPCast);
5610       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5611             "llvm.vp.trunc intrinsic the bit size of first argument must be "
5612             "larger than the bit size of the return type",
5613             *VPCast);
5614       break;
5615     case Intrinsic::vp_zext:
5616     case Intrinsic::vp_sext:
5617       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
5618             "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
5619             "element type must be integer",
5620             *VPCast);
5621       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5622             "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
5623             "argument must be smaller than the bit size of the return type",
5624             *VPCast);
5625       break;
5626     case Intrinsic::vp_fptoui:
5627     case Intrinsic::vp_fptosi:
5628       Check(
5629           RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
5630           "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
5631           "type must be floating-point and result element type must be integer",
5632           *VPCast);
5633       break;
5634     case Intrinsic::vp_uitofp:
5635     case Intrinsic::vp_sitofp:
5636       Check(
5637           RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
5638           "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
5639           "type must be integer and result element type must be floating-point",
5640           *VPCast);
5641       break;
5642     case Intrinsic::vp_fptrunc:
5643       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5644             "llvm.vp.fptrunc intrinsic first argument and result element type "
5645             "must be floating-point",
5646             *VPCast);
5647       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
5648             "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
5649             "larger than the bit size of the return type",
5650             *VPCast);
5651       break;
5652     case Intrinsic::vp_fpext:
5653       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
5654             "llvm.vp.fpext intrinsic first argument and result element type "
5655             "must be floating-point",
5656             *VPCast);
5657       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
5658             "llvm.vp.fpext intrinsic the bit size of first argument must be "
5659             "smaller than the bit size of the return type",
5660             *VPCast);
5661       break;
5662     case Intrinsic::vp_ptrtoint:
5663       Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
5664             "llvm.vp.ptrtoint intrinsic first argument element type must be "
5665             "pointer and result element type must be integer",
5666             *VPCast);
5667       break;
5668     case Intrinsic::vp_inttoptr:
5669       Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
5670             "llvm.vp.inttoptr intrinsic first argument element type must be "
5671             "integer and result element type must be pointer",
5672             *VPCast);
5673       break;
5674     }
5675   }
5676   if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
5677     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5678     Check(CmpInst::isFPPredicate(Pred),
5679           "invalid predicate for VP FP comparison intrinsic", &VPI);
5680   }
5681   if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
5682     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
5683     Check(CmpInst::isIntPredicate(Pred),
5684           "invalid predicate for VP integer comparison intrinsic", &VPI);
5685   }
5686 }
5687 
5688 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5689   unsigned NumOperands;
5690   bool HasRoundingMD;
5691   switch (FPI.getIntrinsicID()) {
5692 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5693   case Intrinsic::INTRINSIC:                                                   \
5694     NumOperands = NARG;                                                        \
5695     HasRoundingMD = ROUND_MODE;                                                \
5696     break;
5697 #include "llvm/IR/ConstrainedOps.def"
5698   default:
5699     llvm_unreachable("Invalid constrained FP intrinsic!");
5700   }
5701   NumOperands += (1 + HasRoundingMD);
5702   // Compare intrinsics carry an extra predicate metadata operand.
5703   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5704     NumOperands += 1;
5705   Check((FPI.arg_size() == NumOperands),
5706         "invalid arguments for constrained FP intrinsic", &FPI);
5707 
5708   switch (FPI.getIntrinsicID()) {
5709   case Intrinsic::experimental_constrained_lrint:
5710   case Intrinsic::experimental_constrained_llrint: {
5711     Type *ValTy = FPI.getArgOperand(0)->getType();
5712     Type *ResultTy = FPI.getType();
5713     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5714           "Intrinsic does not support vectors", &FPI);
5715   }
5716     break;
5717 
5718   case Intrinsic::experimental_constrained_lround:
5719   case Intrinsic::experimental_constrained_llround: {
5720     Type *ValTy = FPI.getArgOperand(0)->getType();
5721     Type *ResultTy = FPI.getType();
5722     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5723           "Intrinsic does not support vectors", &FPI);
5724     break;
5725   }
5726 
5727   case Intrinsic::experimental_constrained_fcmp:
5728   case Intrinsic::experimental_constrained_fcmps: {
5729     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5730     Check(CmpInst::isFPPredicate(Pred),
5731           "invalid predicate for constrained FP comparison intrinsic", &FPI);
5732     break;
5733   }
5734 
5735   case Intrinsic::experimental_constrained_fptosi:
5736   case Intrinsic::experimental_constrained_fptoui: {
5737     Value *Operand = FPI.getArgOperand(0);
5738     uint64_t NumSrcElem = 0;
5739     Check(Operand->getType()->isFPOrFPVectorTy(),
5740           "Intrinsic first argument must be floating point", &FPI);
5741     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5742       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5743     }
5744 
5745     Operand = &FPI;
5746     Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5747           "Intrinsic first argument and result disagree on vector use", &FPI);
5748     Check(Operand->getType()->isIntOrIntVectorTy(),
5749           "Intrinsic result must be an integer", &FPI);
5750     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5751       Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5752             "Intrinsic first argument and result vector lengths must be equal",
5753             &FPI);
5754     }
5755   }
5756     break;
5757 
5758   case Intrinsic::experimental_constrained_sitofp:
5759   case Intrinsic::experimental_constrained_uitofp: {
5760     Value *Operand = FPI.getArgOperand(0);
5761     uint64_t NumSrcElem = 0;
5762     Check(Operand->getType()->isIntOrIntVectorTy(),
5763           "Intrinsic first argument must be integer", &FPI);
5764     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5765       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5766     }
5767 
5768     Operand = &FPI;
5769     Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5770           "Intrinsic first argument and result disagree on vector use", &FPI);
5771     Check(Operand->getType()->isFPOrFPVectorTy(),
5772           "Intrinsic result must be a floating point", &FPI);
5773     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5774       Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5775             "Intrinsic first argument and result vector lengths must be equal",
5776             &FPI);
5777     }
5778   } break;
5779 
5780   case Intrinsic::experimental_constrained_fptrunc:
5781   case Intrinsic::experimental_constrained_fpext: {
5782     Value *Operand = FPI.getArgOperand(0);
5783     Type *OperandTy = Operand->getType();
5784     Value *Result = &FPI;
5785     Type *ResultTy = Result->getType();
5786     Check(OperandTy->isFPOrFPVectorTy(),
5787           "Intrinsic first argument must be FP or FP vector", &FPI);
5788     Check(ResultTy->isFPOrFPVectorTy(),
5789           "Intrinsic result must be FP or FP vector", &FPI);
5790     Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5791           "Intrinsic first argument and result disagree on vector use", &FPI);
5792     if (OperandTy->isVectorTy()) {
5793       Check(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5794                 cast<FixedVectorType>(ResultTy)->getNumElements(),
5795             "Intrinsic first argument and result vector lengths must be equal",
5796             &FPI);
5797     }
5798     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5799       Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5800             "Intrinsic first argument's type must be larger than result type",
5801             &FPI);
5802     } else {
5803       Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5804             "Intrinsic first argument's type must be smaller than result type",
5805             &FPI);
5806     }
5807   }
5808     break;
5809 
5810   default:
5811     break;
5812   }
5813 
5814   // If a non-metadata argument is passed in a metadata slot then the
5815   // error will be caught earlier when the incorrect argument doesn't
5816   // match the specification in the intrinsic call table. Thus, no
5817   // argument type check is needed here.
5818 
5819   Check(FPI.getExceptionBehavior().hasValue(),
5820         "invalid exception behavior argument", &FPI);
5821   if (HasRoundingMD) {
5822     Check(FPI.getRoundingMode().hasValue(), "invalid rounding mode argument",
5823           &FPI);
5824   }
5825 }
5826 
5827 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5828   auto *MD = DII.getRawLocation();
5829   CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5830               (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5831           "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5832   CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
5833           "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5834           DII.getRawVariable());
5835   CheckDI(isa<DIExpression>(DII.getRawExpression()),
5836           "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5837           DII.getRawExpression());
5838 
5839   // Ignore broken !dbg attachments; they're checked elsewhere.
5840   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5841     if (!isa<DILocation>(N))
5842       return;
5843 
5844   BasicBlock *BB = DII.getParent();
5845   Function *F = BB ? BB->getParent() : nullptr;
5846 
5847   // The scopes for variables and !dbg attachments must agree.
5848   DILocalVariable *Var = DII.getVariable();
5849   DILocation *Loc = DII.getDebugLoc();
5850   CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5851           &DII, BB, F);
5852 
5853   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5854   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5855   if (!VarSP || !LocSP)
5856     return; // Broken scope chains are checked elsewhere.
5857 
5858   CheckDI(VarSP == LocSP,
5859           "mismatched subprogram between llvm.dbg." + Kind +
5860               " variable and !dbg attachment",
5861           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5862           Loc->getScope()->getSubprogram());
5863 
5864   // This check is redundant with one in visitLocalVariable().
5865   CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
5866           Var->getRawType());
5867   verifyFnArgs(DII);
5868 }
5869 
5870 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5871   CheckDI(isa<DILabel>(DLI.getRawLabel()),
5872           "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5873           DLI.getRawLabel());
5874 
5875   // Ignore broken !dbg attachments; they're checked elsewhere.
5876   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5877     if (!isa<DILocation>(N))
5878       return;
5879 
5880   BasicBlock *BB = DLI.getParent();
5881   Function *F = BB ? BB->getParent() : nullptr;
5882 
5883   // The scopes for variables and !dbg attachments must agree.
5884   DILabel *Label = DLI.getLabel();
5885   DILocation *Loc = DLI.getDebugLoc();
5886   Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
5887         BB, F);
5888 
5889   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5890   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5891   if (!LabelSP || !LocSP)
5892     return;
5893 
5894   CheckDI(LabelSP == LocSP,
5895           "mismatched subprogram between llvm.dbg." + Kind +
5896               " label and !dbg attachment",
5897           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5898           Loc->getScope()->getSubprogram());
5899 }
5900 
5901 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5902   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5903   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5904 
5905   // We don't know whether this intrinsic verified correctly.
5906   if (!V || !E || !E->isValid())
5907     return;
5908 
5909   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5910   auto Fragment = E->getFragmentInfo();
5911   if (!Fragment)
5912     return;
5913 
5914   // The frontend helps out GDB by emitting the members of local anonymous
5915   // unions as artificial local variables with shared storage. When SROA splits
5916   // the storage for artificial local variables that are smaller than the entire
5917   // union, the overhang piece will be outside of the allotted space for the
5918   // variable and this check fails.
5919   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5920   if (V->isArtificial())
5921     return;
5922 
5923   verifyFragmentExpression(*V, *Fragment, &I);
5924 }
5925 
5926 template <typename ValueOrMetadata>
5927 void Verifier::verifyFragmentExpression(const DIVariable &V,
5928                                         DIExpression::FragmentInfo Fragment,
5929                                         ValueOrMetadata *Desc) {
5930   // If there's no size, the type is broken, but that should be checked
5931   // elsewhere.
5932   auto VarSize = V.getSizeInBits();
5933   if (!VarSize)
5934     return;
5935 
5936   unsigned FragSize = Fragment.SizeInBits;
5937   unsigned FragOffset = Fragment.OffsetInBits;
5938   CheckDI(FragSize + FragOffset <= *VarSize,
5939           "fragment is larger than or outside of variable", Desc, &V);
5940   CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5941 }
5942 
5943 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5944   // This function does not take the scope of noninlined function arguments into
5945   // account. Don't run it if current function is nodebug, because it may
5946   // contain inlined debug intrinsics.
5947   if (!HasDebugInfo)
5948     return;
5949 
5950   // For performance reasons only check non-inlined ones.
5951   if (I.getDebugLoc()->getInlinedAt())
5952     return;
5953 
5954   DILocalVariable *Var = I.getVariable();
5955   CheckDI(Var, "dbg intrinsic without variable");
5956 
5957   unsigned ArgNo = Var->getArg();
5958   if (!ArgNo)
5959     return;
5960 
5961   // Verify there are no duplicate function argument debug info entries.
5962   // These will cause hard-to-debug assertions in the DWARF backend.
5963   if (DebugFnArgs.size() < ArgNo)
5964     DebugFnArgs.resize(ArgNo, nullptr);
5965 
5966   auto *Prev = DebugFnArgs[ArgNo - 1];
5967   DebugFnArgs[ArgNo - 1] = Var;
5968   CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5969           Prev, Var);
5970 }
5971 
5972 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5973   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5974 
5975   // We don't know whether this intrinsic verified correctly.
5976   if (!E || !E->isValid())
5977     return;
5978 
5979   CheckDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5980 }
5981 
5982 void Verifier::verifyCompileUnits() {
5983   // When more than one Module is imported into the same context, such as during
5984   // an LTO build before linking the modules, ODR type uniquing may cause types
5985   // to point to a different CU. This check does not make sense in this case.
5986   if (M.getContext().isODRUniquingDebugTypes())
5987     return;
5988   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5989   SmallPtrSet<const Metadata *, 2> Listed;
5990   if (CUs)
5991     Listed.insert(CUs->op_begin(), CUs->op_end());
5992   for (auto *CU : CUVisited)
5993     CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5994   CUVisited.clear();
5995 }
5996 
5997 void Verifier::verifyDeoptimizeCallingConvs() {
5998   if (DeoptimizeDeclarations.empty())
5999     return;
6000 
6001   const Function *First = DeoptimizeDeclarations[0];
6002   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
6003     Check(First->getCallingConv() == F->getCallingConv(),
6004           "All llvm.experimental.deoptimize declarations must have the same "
6005           "calling convention",
6006           First, F);
6007   }
6008 }
6009 
6010 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6011                                         const OperandBundleUse &BU) {
6012   FunctionType *FTy = Call.getFunctionType();
6013 
6014   Check((FTy->getReturnType()->isPointerTy() ||
6015          (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6016         "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6017         "function returning a pointer or a non-returning function that has a "
6018         "void return type",
6019         Call);
6020 
6021   Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6022         "operand bundle \"clang.arc.attachedcall\" requires one function as "
6023         "an argument",
6024         Call);
6025 
6026   auto *Fn = cast<Function>(BU.Inputs.front());
6027   Intrinsic::ID IID = Fn->getIntrinsicID();
6028 
6029   if (IID) {
6030     Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6031            IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6032           "invalid function argument", Call);
6033   } else {
6034     StringRef FnName = Fn->getName();
6035     Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6036            FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6037           "invalid function argument", Call);
6038   }
6039 }
6040 
6041 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
6042   bool HasSource = F.getSource().hasValue();
6043   if (!HasSourceDebugInfo.count(&U))
6044     HasSourceDebugInfo[&U] = HasSource;
6045   CheckDI(HasSource == HasSourceDebugInfo[&U],
6046           "inconsistent use of embedded source");
6047 }
6048 
6049 void Verifier::verifyNoAliasScopeDecl() {
6050   if (NoAliasScopeDecls.empty())
6051     return;
6052 
6053   // only a single scope must be declared at a time.
6054   for (auto *II : NoAliasScopeDecls) {
6055     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6056            "Not a llvm.experimental.noalias.scope.decl ?");
6057     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6058         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6059     Check(ScopeListMV != nullptr,
6060           "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6061           "argument",
6062           II);
6063 
6064     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6065     Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6066     Check(ScopeListMD->getNumOperands() == 1,
6067           "!id.scope.list must point to a list with a single scope", II);
6068     visitAliasScopeListMetadata(ScopeListMD);
6069   }
6070 
6071   // Only check the domination rule when requested. Once all passes have been
6072   // adapted this option can go away.
6073   if (!VerifyNoAliasScopeDomination)
6074     return;
6075 
6076   // Now sort the intrinsics based on the scope MDNode so that declarations of
6077   // the same scopes are next to each other.
6078   auto GetScope = [](IntrinsicInst *II) {
6079     const auto *ScopeListMV = cast<MetadataAsValue>(
6080         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6081     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6082   };
6083 
6084   // We are sorting on MDNode pointers here. For valid input IR this is ok.
6085   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6086   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6087     return GetScope(Lhs) < GetScope(Rhs);
6088   };
6089 
6090   llvm::sort(NoAliasScopeDecls, Compare);
6091 
6092   // Go over the intrinsics and check that for the same scope, they are not
6093   // dominating each other.
6094   auto ItCurrent = NoAliasScopeDecls.begin();
6095   while (ItCurrent != NoAliasScopeDecls.end()) {
6096     auto CurScope = GetScope(*ItCurrent);
6097     auto ItNext = ItCurrent;
6098     do {
6099       ++ItNext;
6100     } while (ItNext != NoAliasScopeDecls.end() &&
6101              GetScope(*ItNext) == CurScope);
6102 
6103     // [ItCurrent, ItNext) represents the declarations for the same scope.
6104     // Ensure they are not dominating each other.. but only if it is not too
6105     // expensive.
6106     if (ItNext - ItCurrent < 32)
6107       for (auto *I : llvm::make_range(ItCurrent, ItNext))
6108         for (auto *J : llvm::make_range(ItCurrent, ItNext))
6109           if (I != J)
6110             Check(!DT.dominates(I, J),
6111                   "llvm.experimental.noalias.scope.decl dominates another one "
6112                   "with the same scope",
6113                   I);
6114     ItCurrent = ItNext;
6115   }
6116 }
6117 
6118 //===----------------------------------------------------------------------===//
6119 //  Implement the public interfaces to this file...
6120 //===----------------------------------------------------------------------===//
6121 
6122 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6123   Function &F = const_cast<Function &>(f);
6124 
6125   // Don't use a raw_null_ostream.  Printing IR is expensive.
6126   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6127 
6128   // Note that this function's return value is inverted from what you would
6129   // expect of a function called "verify".
6130   return !V.verify(F);
6131 }
6132 
6133 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6134                         bool *BrokenDebugInfo) {
6135   // Don't use a raw_null_ostream.  Printing IR is expensive.
6136   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6137 
6138   bool Broken = false;
6139   for (const Function &F : M)
6140     Broken |= !V.verify(F);
6141 
6142   Broken |= !V.verify();
6143   if (BrokenDebugInfo)
6144     *BrokenDebugInfo = V.hasBrokenDebugInfo();
6145   // Note that this function's return value is inverted from what you would
6146   // expect of a function called "verify".
6147   return Broken;
6148 }
6149 
6150 namespace {
6151 
6152 struct VerifierLegacyPass : public FunctionPass {
6153   static char ID;
6154 
6155   std::unique_ptr<Verifier> V;
6156   bool FatalErrors = true;
6157 
6158   VerifierLegacyPass() : FunctionPass(ID) {
6159     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6160   }
6161   explicit VerifierLegacyPass(bool FatalErrors)
6162       : FunctionPass(ID),
6163         FatalErrors(FatalErrors) {
6164     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6165   }
6166 
6167   bool doInitialization(Module &M) override {
6168     V = std::make_unique<Verifier>(
6169         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6170     return false;
6171   }
6172 
6173   bool runOnFunction(Function &F) override {
6174     if (!V->verify(F) && FatalErrors) {
6175       errs() << "in function " << F.getName() << '\n';
6176       report_fatal_error("Broken function found, compilation aborted!");
6177     }
6178     return false;
6179   }
6180 
6181   bool doFinalization(Module &M) override {
6182     bool HasErrors = false;
6183     for (Function &F : M)
6184       if (F.isDeclaration())
6185         HasErrors |= !V->verify(F);
6186 
6187     HasErrors |= !V->verify();
6188     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6189       report_fatal_error("Broken module found, compilation aborted!");
6190     return false;
6191   }
6192 
6193   void getAnalysisUsage(AnalysisUsage &AU) const override {
6194     AU.setPreservesAll();
6195   }
6196 };
6197 
6198 } // end anonymous namespace
6199 
6200 /// Helper to issue failure from the TBAA verification
6201 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6202   if (Diagnostic)
6203     return Diagnostic->CheckFailed(Args...);
6204 }
6205 
6206 #define CheckTBAA(C, ...)                                                      \
6207   do {                                                                         \
6208     if (!(C)) {                                                                \
6209       CheckFailed(__VA_ARGS__);                                                \
6210       return false;                                                            \
6211     }                                                                          \
6212   } while (false)
6213 
6214 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6215 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6216 /// struct-type node describing an aggregate data structure (like a struct).
6217 TBAAVerifier::TBAABaseNodeSummary
6218 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6219                                  bool IsNewFormat) {
6220   if (BaseNode->getNumOperands() < 2) {
6221     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6222     return {true, ~0u};
6223   }
6224 
6225   auto Itr = TBAABaseNodes.find(BaseNode);
6226   if (Itr != TBAABaseNodes.end())
6227     return Itr->second;
6228 
6229   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6230   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6231   (void)InsertResult;
6232   assert(InsertResult.second && "We just checked!");
6233   return Result;
6234 }
6235 
6236 TBAAVerifier::TBAABaseNodeSummary
6237 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6238                                      bool IsNewFormat) {
6239   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6240 
6241   if (BaseNode->getNumOperands() == 2) {
6242     // Scalar nodes can only be accessed at offset 0.
6243     return isValidScalarTBAANode(BaseNode)
6244                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6245                : InvalidNode;
6246   }
6247 
6248   if (IsNewFormat) {
6249     if (BaseNode->getNumOperands() % 3 != 0) {
6250       CheckFailed("Access tag nodes must have the number of operands that is a "
6251                   "multiple of 3!", BaseNode);
6252       return InvalidNode;
6253     }
6254   } else {
6255     if (BaseNode->getNumOperands() % 2 != 1) {
6256       CheckFailed("Struct tag nodes must have an odd number of operands!",
6257                   BaseNode);
6258       return InvalidNode;
6259     }
6260   }
6261 
6262   // Check the type size field.
6263   if (IsNewFormat) {
6264     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6265         BaseNode->getOperand(1));
6266     if (!TypeSizeNode) {
6267       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6268       return InvalidNode;
6269     }
6270   }
6271 
6272   // Check the type name field. In the new format it can be anything.
6273   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6274     CheckFailed("Struct tag nodes have a string as their first operand",
6275                 BaseNode);
6276     return InvalidNode;
6277   }
6278 
6279   bool Failed = false;
6280 
6281   Optional<APInt> PrevOffset;
6282   unsigned BitWidth = ~0u;
6283 
6284   // We've already checked that BaseNode is not a degenerate root node with one
6285   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6286   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6287   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6288   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6289            Idx += NumOpsPerField) {
6290     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6291     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6292     if (!isa<MDNode>(FieldTy)) {
6293       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6294       Failed = true;
6295       continue;
6296     }
6297 
6298     auto *OffsetEntryCI =
6299         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6300     if (!OffsetEntryCI) {
6301       CheckFailed("Offset entries must be constants!", &I, BaseNode);
6302       Failed = true;
6303       continue;
6304     }
6305 
6306     if (BitWidth == ~0u)
6307       BitWidth = OffsetEntryCI->getBitWidth();
6308 
6309     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6310       CheckFailed(
6311           "Bitwidth between the offsets and struct type entries must match", &I,
6312           BaseNode);
6313       Failed = true;
6314       continue;
6315     }
6316 
6317     // NB! As far as I can tell, we generate a non-strictly increasing offset
6318     // sequence only from structs that have zero size bit fields.  When
6319     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6320     // pick the field lexically the latest in struct type metadata node.  This
6321     // mirrors the actual behavior of the alias analysis implementation.
6322     bool IsAscending =
6323         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6324 
6325     if (!IsAscending) {
6326       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6327       Failed = true;
6328     }
6329 
6330     PrevOffset = OffsetEntryCI->getValue();
6331 
6332     if (IsNewFormat) {
6333       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6334           BaseNode->getOperand(Idx + 2));
6335       if (!MemberSizeNode) {
6336         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6337         Failed = true;
6338         continue;
6339       }
6340     }
6341   }
6342 
6343   return Failed ? InvalidNode
6344                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6345 }
6346 
6347 static bool IsRootTBAANode(const MDNode *MD) {
6348   return MD->getNumOperands() < 2;
6349 }
6350 
6351 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6352                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6353   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6354     return false;
6355 
6356   if (!isa<MDString>(MD->getOperand(0)))
6357     return false;
6358 
6359   if (MD->getNumOperands() == 3) {
6360     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6361     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6362       return false;
6363   }
6364 
6365   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6366   return Parent && Visited.insert(Parent).second &&
6367          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6368 }
6369 
6370 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6371   auto ResultIt = TBAAScalarNodes.find(MD);
6372   if (ResultIt != TBAAScalarNodes.end())
6373     return ResultIt->second;
6374 
6375   SmallPtrSet<const MDNode *, 4> Visited;
6376   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6377   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6378   (void)InsertResult;
6379   assert(InsertResult.second && "Just checked!");
6380 
6381   return Result;
6382 }
6383 
6384 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6385 /// Offset in place to be the offset within the field node returned.
6386 ///
6387 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6388 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6389                                                    const MDNode *BaseNode,
6390                                                    APInt &Offset,
6391                                                    bool IsNewFormat) {
6392   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6393 
6394   // Scalar nodes have only one possible "field" -- their parent in the access
6395   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6396   // to check that.
6397   if (BaseNode->getNumOperands() == 2)
6398     return cast<MDNode>(BaseNode->getOperand(1));
6399 
6400   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6401   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6402   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6403            Idx += NumOpsPerField) {
6404     auto *OffsetEntryCI =
6405         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6406     if (OffsetEntryCI->getValue().ugt(Offset)) {
6407       if (Idx == FirstFieldOpNo) {
6408         CheckFailed("Could not find TBAA parent in struct type node", &I,
6409                     BaseNode, &Offset);
6410         return nullptr;
6411       }
6412 
6413       unsigned PrevIdx = Idx - NumOpsPerField;
6414       auto *PrevOffsetEntryCI =
6415           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6416       Offset -= PrevOffsetEntryCI->getValue();
6417       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6418     }
6419   }
6420 
6421   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6422   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6423       BaseNode->getOperand(LastIdx + 1));
6424   Offset -= LastOffsetEntryCI->getValue();
6425   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6426 }
6427 
6428 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6429   if (!Type || Type->getNumOperands() < 3)
6430     return false;
6431 
6432   // In the new format type nodes shall have a reference to the parent type as
6433   // its first operand.
6434   return isa_and_nonnull<MDNode>(Type->getOperand(0));
6435 }
6436 
6437 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6438   CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6439                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6440                 isa<AtomicCmpXchgInst>(I),
6441             "This instruction shall not have a TBAA access tag!", &I);
6442 
6443   bool IsStructPathTBAA =
6444       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6445 
6446   CheckTBAA(IsStructPathTBAA,
6447             "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
6448             &I);
6449 
6450   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6451   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6452 
6453   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6454 
6455   if (IsNewFormat) {
6456     CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6457               "Access tag metadata must have either 4 or 5 operands", &I, MD);
6458   } else {
6459     CheckTBAA(MD->getNumOperands() < 5,
6460               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6461   }
6462 
6463   // Check the access size field.
6464   if (IsNewFormat) {
6465     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6466         MD->getOperand(3));
6467     CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6468   }
6469 
6470   // Check the immutability flag.
6471   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6472   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6473     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6474         MD->getOperand(ImmutabilityFlagOpNo));
6475     CheckTBAA(IsImmutableCI,
6476               "Immutability tag on struct tag metadata must be a constant", &I,
6477               MD);
6478     CheckTBAA(
6479         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6480         "Immutability part of the struct tag metadata must be either 0 or 1",
6481         &I, MD);
6482   }
6483 
6484   CheckTBAA(BaseNode && AccessType,
6485             "Malformed struct tag metadata: base and access-type "
6486             "should be non-null and point to Metadata nodes",
6487             &I, MD, BaseNode, AccessType);
6488 
6489   if (!IsNewFormat) {
6490     CheckTBAA(isValidScalarTBAANode(AccessType),
6491               "Access type node must be a valid scalar type", &I, MD,
6492               AccessType);
6493   }
6494 
6495   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6496   CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6497 
6498   APInt Offset = OffsetCI->getValue();
6499   bool SeenAccessTypeInPath = false;
6500 
6501   SmallPtrSet<MDNode *, 4> StructPath;
6502 
6503   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6504        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6505                                                IsNewFormat)) {
6506     if (!StructPath.insert(BaseNode).second) {
6507       CheckFailed("Cycle detected in struct path", &I, MD);
6508       return false;
6509     }
6510 
6511     bool Invalid;
6512     unsigned BaseNodeBitWidth;
6513     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6514                                                              IsNewFormat);
6515 
6516     // If the base node is invalid in itself, then we've already printed all the
6517     // errors we wanted to print.
6518     if (Invalid)
6519       return false;
6520 
6521     SeenAccessTypeInPath |= BaseNode == AccessType;
6522 
6523     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6524       CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6525                 &I, MD, &Offset);
6526 
6527     CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6528                   (BaseNodeBitWidth == 0 && Offset == 0) ||
6529                   (IsNewFormat && BaseNodeBitWidth == ~0u),
6530               "Access bit-width not the same as description bit-width", &I, MD,
6531               BaseNodeBitWidth, Offset.getBitWidth());
6532 
6533     if (IsNewFormat && SeenAccessTypeInPath)
6534       break;
6535   }
6536 
6537   CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
6538             MD);
6539   return true;
6540 }
6541 
6542 char VerifierLegacyPass::ID = 0;
6543 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6544 
6545 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6546   return new VerifierLegacyPass(FatalErrors);
6547 }
6548 
6549 AnalysisKey VerifierAnalysis::Key;
6550 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6551                                                ModuleAnalysisManager &) {
6552   Result Res;
6553   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6554   return Res;
6555 }
6556 
6557 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6558                                                FunctionAnalysisManager &) {
6559   return { llvm::verifyFunction(F, &dbgs()), false };
6560 }
6561 
6562 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6563   auto Res = AM.getResult<VerifierAnalysis>(M);
6564   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6565     report_fatal_error("Broken module found, compilation aborted!");
6566 
6567   return PreservedAnalyses::all();
6568 }
6569 
6570 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6571   auto res = AM.getResult<VerifierAnalysis>(F);
6572   if (res.IRBroken && FatalErrors)
6573     report_fatal_error("Broken function found, compilation aborted!");
6574 
6575   return PreservedAnalyses::all();
6576 }
6577