1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
120 struct VerifierSupport {
121   raw_ostream *OS;
122   const Module &M;
123   ModuleSlotTracker MST;
124   Triple TT;
125   const DataLayout &DL;
126   LLVMContext &Context;
127 
128   /// Track the brokenness of the module while recursively visiting.
129   bool Broken = false;
130   /// Broken debug info can be "recovered" from by stripping the debug info.
131   bool BrokenDebugInfo = false;
132   /// Whether to treat broken debug info as an error.
133   bool TreatBrokenDebugInfoAsError = true;
134 
135   explicit VerifierSupport(raw_ostream *OS, const Module &M)
136       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
137         Context(M.getContext()) {}
138 
139 private:
140   void Write(const Module *M) {
141     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142   }
143 
144   void Write(const Value *V) {
145     if (V)
146       Write(*V);
147   }
148 
149   void Write(const Value &V) {
150     if (isa<Instruction>(V)) {
151       V.print(*OS, MST);
152       *OS << '\n';
153     } else {
154       V.printAsOperand(*OS, true, MST);
155       *OS << '\n';
156     }
157   }
158 
159   void Write(const Metadata *MD) {
160     if (!MD)
161       return;
162     MD->print(*OS, MST, &M);
163     *OS << '\n';
164   }
165 
166   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
167     Write(MD.get());
168   }
169 
170   void Write(const NamedMDNode *NMD) {
171     if (!NMD)
172       return;
173     NMD->print(*OS, MST);
174     *OS << '\n';
175   }
176 
177   void Write(Type *T) {
178     if (!T)
179       return;
180     *OS << ' ' << *T;
181   }
182 
183   void Write(const Comdat *C) {
184     if (!C)
185       return;
186     *OS << *C;
187   }
188 
189   void Write(const APInt *AI) {
190     if (!AI)
191       return;
192     *OS << *AI << '\n';
193   }
194 
195   void Write(const unsigned i) { *OS << i << '\n'; }
196 
197   template <typename T> void Write(ArrayRef<T> Vs) {
198     for (const T &V : Vs)
199       Write(V);
200   }
201 
202   template <typename T1, typename... Ts>
203   void WriteTs(const T1 &V1, const Ts &... Vs) {
204     Write(V1);
205     WriteTs(Vs...);
206   }
207 
208   template <typename... Ts> void WriteTs() {}
209 
210 public:
211   /// A check failed, so printout out the condition and the message.
212   ///
213   /// This provides a nice place to put a breakpoint if you want to see why
214   /// something is not correct.
215   void CheckFailed(const Twine &Message) {
216     if (OS)
217       *OS << Message << '\n';
218     Broken = true;
219   }
220 
221   /// A check failed (with values to print).
222   ///
223   /// This calls the Message-only version so that the above is easier to set a
224   /// breakpoint on.
225   template <typename T1, typename... Ts>
226   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
227     CheckFailed(Message);
228     if (OS)
229       WriteTs(V1, Vs...);
230   }
231 
232   /// A debug info check failed.
233   void DebugInfoCheckFailed(const Twine &Message) {
234     if (OS)
235       *OS << Message << '\n';
236     Broken |= TreatBrokenDebugInfoAsError;
237     BrokenDebugInfo = true;
238   }
239 
240   /// A debug info check failed (with values to print).
241   template <typename T1, typename... Ts>
242   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
243                             const Ts &... Vs) {
244     DebugInfoCheckFailed(Message);
245     if (OS)
246       WriteTs(V1, Vs...);
247   }
248 };
249 
250 } // namespace llvm
251 
252 namespace {
253 
254 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
255   friend class InstVisitor<Verifier>;
256 
257   DominatorTree DT;
258 
259   /// When verifying a basic block, keep track of all of the
260   /// instructions we have seen so far.
261   ///
262   /// This allows us to do efficient dominance checks for the case when an
263   /// instruction has an operand that is an instruction in the same block.
264   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265 
266   /// Keep track of the metadata nodes that have been checked already.
267   SmallPtrSet<const Metadata *, 32> MDNodes;
268 
269   /// Keep track which DISubprogram is attached to which function.
270   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271 
272   /// Track all DICompileUnits visited.
273   SmallPtrSet<const Metadata *, 2> CUVisited;
274 
275   /// The result type for a landingpad.
276   Type *LandingPadResultTy;
277 
278   /// Whether we've seen a call to @llvm.localescape in this function
279   /// already.
280   bool SawFrameEscape;
281 
282   /// Whether the current function has a DISubprogram attached to it.
283   bool HasDebugInfo = false;
284 
285   /// Whether source was present on the first DIFile encountered in each CU.
286   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
287 
288   /// Stores the count of how many objects were passed to llvm.localescape for a
289   /// given function and the largest index passed to llvm.localrecover.
290   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
291 
292   // Maps catchswitches and cleanuppads that unwind to siblings to the
293   // terminators that indicate the unwind, used to detect cycles therein.
294   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
295 
296   /// Cache of constants visited in search of ConstantExprs.
297   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
298 
299   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
300   SmallVector<const Function *, 4> DeoptimizeDeclarations;
301 
302   // Verify that this GlobalValue is only used in this module.
303   // This map is used to avoid visiting uses twice. We can arrive at a user
304   // twice, if they have multiple operands. In particular for very large
305   // constant expressions, we can arrive at a particular user many times.
306   SmallPtrSet<const Value *, 32> GlobalValueVisited;
307 
308   // Keeps track of duplicate function argument debug info.
309   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
310 
311   TBAAVerifier TBAAVerifyHelper;
312 
313   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
314 
315 public:
316   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
317                     const Module &M)
318       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
319         SawFrameEscape(false), TBAAVerifyHelper(this) {
320     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
321   }
322 
323   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
324 
325   bool verify(const Function &F) {
326     assert(F.getParent() == &M &&
327            "An instance of this class only works with a specific module!");
328 
329     // First ensure the function is well-enough formed to compute dominance
330     // information, and directly compute a dominance tree. We don't rely on the
331     // pass manager to provide this as it isolates us from a potentially
332     // out-of-date dominator tree and makes it significantly more complex to run
333     // this code outside of a pass manager.
334     // FIXME: It's really gross that we have to cast away constness here.
335     if (!F.empty())
336       DT.recalculate(const_cast<Function &>(F));
337 
338     for (const BasicBlock &BB : F) {
339       if (!BB.empty() && BB.back().isTerminator())
340         continue;
341 
342       if (OS) {
343         *OS << "Basic Block in function '" << F.getName()
344             << "' does not have terminator!\n";
345         BB.printAsOperand(*OS, true, MST);
346         *OS << "\n";
347       }
348       return false;
349     }
350 
351     Broken = false;
352     // FIXME: We strip const here because the inst visitor strips const.
353     visit(const_cast<Function &>(F));
354     verifySiblingFuncletUnwinds();
355     InstsInThisBlock.clear();
356     DebugFnArgs.clear();
357     LandingPadResultTy = nullptr;
358     SawFrameEscape = false;
359     SiblingFuncletInfo.clear();
360 
361     return !Broken;
362   }
363 
364   /// Verify the module that this instance of \c Verifier was initialized with.
365   bool verify() {
366     Broken = false;
367 
368     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
369     for (const Function &F : M)
370       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
371         DeoptimizeDeclarations.push_back(&F);
372 
373     // Now that we've visited every function, verify that we never asked to
374     // recover a frame index that wasn't escaped.
375     verifyFrameRecoverIndices();
376     for (const GlobalVariable &GV : M.globals())
377       visitGlobalVariable(GV);
378 
379     for (const GlobalAlias &GA : M.aliases())
380       visitGlobalAlias(GA);
381 
382     for (const NamedMDNode &NMD : M.named_metadata())
383       visitNamedMDNode(NMD);
384 
385     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
386       visitComdat(SMEC.getValue());
387 
388     visitModuleFlags(M);
389     visitModuleIdents(M);
390     visitModuleCommandLines(M);
391 
392     verifyCompileUnits();
393 
394     verifyDeoptimizeCallingConvs();
395     DISubprogramAttachments.clear();
396     return !Broken;
397   }
398 
399 private:
400   /// Whether a metadata node is allowed to be, or contain, a DILocation.
401   enum class AreDebugLocsAllowed { No, Yes };
402 
403   // Verification methods...
404   void visitGlobalValue(const GlobalValue &GV);
405   void visitGlobalVariable(const GlobalVariable &GV);
406   void visitGlobalAlias(const GlobalAlias &GA);
407   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
408   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
409                            const GlobalAlias &A, const Constant &C);
410   void visitNamedMDNode(const NamedMDNode &NMD);
411   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
412   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
413   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
414   void visitComdat(const Comdat &C);
415   void visitModuleIdents(const Module &M);
416   void visitModuleCommandLines(const Module &M);
417   void visitModuleFlags(const Module &M);
418   void visitModuleFlag(const MDNode *Op,
419                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
420                        SmallVectorImpl<const MDNode *> &Requirements);
421   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
422   void visitFunction(const Function &F);
423   void visitBasicBlock(BasicBlock &BB);
424   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
425   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
426   void visitProfMetadata(Instruction &I, MDNode *MD);
427 
428   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
429 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
430 #include "llvm/IR/Metadata.def"
431   void visitDIScope(const DIScope &N);
432   void visitDIVariable(const DIVariable &N);
433   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
434   void visitDITemplateParameter(const DITemplateParameter &N);
435 
436   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
437 
438   // InstVisitor overrides...
439   using InstVisitor<Verifier>::visit;
440   void visit(Instruction &I);
441 
442   void visitTruncInst(TruncInst &I);
443   void visitZExtInst(ZExtInst &I);
444   void visitSExtInst(SExtInst &I);
445   void visitFPTruncInst(FPTruncInst &I);
446   void visitFPExtInst(FPExtInst &I);
447   void visitFPToUIInst(FPToUIInst &I);
448   void visitFPToSIInst(FPToSIInst &I);
449   void visitUIToFPInst(UIToFPInst &I);
450   void visitSIToFPInst(SIToFPInst &I);
451   void visitIntToPtrInst(IntToPtrInst &I);
452   void visitPtrToIntInst(PtrToIntInst &I);
453   void visitBitCastInst(BitCastInst &I);
454   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
455   void visitPHINode(PHINode &PN);
456   void visitCallBase(CallBase &Call);
457   void visitUnaryOperator(UnaryOperator &U);
458   void visitBinaryOperator(BinaryOperator &B);
459   void visitICmpInst(ICmpInst &IC);
460   void visitFCmpInst(FCmpInst &FC);
461   void visitExtractElementInst(ExtractElementInst &EI);
462   void visitInsertElementInst(InsertElementInst &EI);
463   void visitShuffleVectorInst(ShuffleVectorInst &EI);
464   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
465   void visitCallInst(CallInst &CI);
466   void visitInvokeInst(InvokeInst &II);
467   void visitGetElementPtrInst(GetElementPtrInst &GEP);
468   void visitLoadInst(LoadInst &LI);
469   void visitStoreInst(StoreInst &SI);
470   void verifyDominatesUse(Instruction &I, unsigned i);
471   void visitInstruction(Instruction &I);
472   void visitTerminator(Instruction &I);
473   void visitBranchInst(BranchInst &BI);
474   void visitReturnInst(ReturnInst &RI);
475   void visitSwitchInst(SwitchInst &SI);
476   void visitIndirectBrInst(IndirectBrInst &BI);
477   void visitCallBrInst(CallBrInst &CBI);
478   void visitSelectInst(SelectInst &SI);
479   void visitUserOp1(Instruction &I);
480   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
481   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
482   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
483   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
484   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
485   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
486   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
487   void visitFenceInst(FenceInst &FI);
488   void visitAllocaInst(AllocaInst &AI);
489   void visitExtractValueInst(ExtractValueInst &EVI);
490   void visitInsertValueInst(InsertValueInst &IVI);
491   void visitEHPadPredecessors(Instruction &I);
492   void visitLandingPadInst(LandingPadInst &LPI);
493   void visitResumeInst(ResumeInst &RI);
494   void visitCatchPadInst(CatchPadInst &CPI);
495   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
496   void visitCleanupPadInst(CleanupPadInst &CPI);
497   void visitFuncletPadInst(FuncletPadInst &FPI);
498   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
499   void visitCleanupReturnInst(CleanupReturnInst &CRI);
500 
501   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
502   void verifySwiftErrorValue(const Value *SwiftErrorVal);
503   void verifyMustTailCall(CallInst &CI);
504   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
505                         unsigned ArgNo, std::string &Suffix);
506   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
507   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
508                             const Value *V);
509   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
510   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
511                            const Value *V, bool IsIntrinsic);
512   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
513 
514   void visitConstantExprsRecursively(const Constant *EntryC);
515   void visitConstantExpr(const ConstantExpr *CE);
516   void verifyStatepoint(const CallBase &Call);
517   void verifyFrameRecoverIndices();
518   void verifySiblingFuncletUnwinds();
519 
520   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
521   template <typename ValueOrMetadata>
522   void verifyFragmentExpression(const DIVariable &V,
523                                 DIExpression::FragmentInfo Fragment,
524                                 ValueOrMetadata *Desc);
525   void verifyFnArgs(const DbgVariableIntrinsic &I);
526   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
527 
528   /// Module-level debug info verification...
529   void verifyCompileUnits();
530 
531   /// Module-level verification that all @llvm.experimental.deoptimize
532   /// declarations share the same calling convention.
533   void verifyDeoptimizeCallingConvs();
534 
535   /// Verify all-or-nothing property of DIFile source attribute within a CU.
536   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
537 };
538 
539 } // end anonymous namespace
540 
541 /// We know that cond should be true, if not print an error message.
542 #define Assert(C, ...) \
543   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
544 
545 /// We know that a debug info condition should be true, if not print
546 /// an error message.
547 #define AssertDI(C, ...) \
548   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
549 
550 void Verifier::visit(Instruction &I) {
551   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
552     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
553   InstVisitor<Verifier>::visit(I);
554 }
555 
556 // Helper to recursively iterate over indirect users. By
557 // returning false, the callback can ask to stop recursing
558 // further.
559 static void forEachUser(const Value *User,
560                         SmallPtrSet<const Value *, 32> &Visited,
561                         llvm::function_ref<bool(const Value *)> Callback) {
562   if (!Visited.insert(User).second)
563     return;
564   for (const Value *TheNextUser : User->materialized_users())
565     if (Callback(TheNextUser))
566       forEachUser(TheNextUser, Visited, Callback);
567 }
568 
569 void Verifier::visitGlobalValue(const GlobalValue &GV) {
570   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
571          "Global is external, but doesn't have external or weak linkage!", &GV);
572 
573   Assert(GV.getAlignment() <= Value::MaximumAlignment,
574          "huge alignment values are unsupported", &GV);
575   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
576          "Only global variables can have appending linkage!", &GV);
577 
578   if (GV.hasAppendingLinkage()) {
579     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
580     Assert(GVar && GVar->getValueType()->isArrayTy(),
581            "Only global arrays can have appending linkage!", GVar);
582   }
583 
584   if (GV.isDeclarationForLinker())
585     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
586 
587   if (GV.hasDLLImportStorageClass()) {
588     Assert(!GV.isDSOLocal(),
589            "GlobalValue with DLLImport Storage is dso_local!", &GV);
590 
591     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
592                GV.hasAvailableExternallyLinkage(),
593            "Global is marked as dllimport, but not external", &GV);
594   }
595 
596   if (GV.isImplicitDSOLocal())
597     Assert(GV.isDSOLocal(),
598            "GlobalValue with local linkage or non-default "
599            "visibility must be dso_local!",
600            &GV);
601 
602   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
603     if (const Instruction *I = dyn_cast<Instruction>(V)) {
604       if (!I->getParent() || !I->getParent()->getParent())
605         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
606                     I);
607       else if (I->getParent()->getParent()->getParent() != &M)
608         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
609                     I->getParent()->getParent(),
610                     I->getParent()->getParent()->getParent());
611       return false;
612     } else if (const Function *F = dyn_cast<Function>(V)) {
613       if (F->getParent() != &M)
614         CheckFailed("Global is used by function in a different module", &GV, &M,
615                     F, F->getParent());
616       return false;
617     }
618     return true;
619   });
620 }
621 
622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
623   if (GV.hasInitializer()) {
624     Assert(GV.getInitializer()->getType() == GV.getValueType(),
625            "Global variable initializer type does not match global "
626            "variable type!",
627            &GV);
628     // If the global has common linkage, it must have a zero initializer and
629     // cannot be constant.
630     if (GV.hasCommonLinkage()) {
631       Assert(GV.getInitializer()->isNullValue(),
632              "'common' global must have a zero initializer!", &GV);
633       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
634              &GV);
635       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
636     }
637   }
638 
639   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
640                        GV.getName() == "llvm.global_dtors")) {
641     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
642            "invalid linkage for intrinsic global variable", &GV);
643     // Don't worry about emitting an error for it not being an array,
644     // visitGlobalValue will complain on appending non-array.
645     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
646       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
647       PointerType *FuncPtrTy =
648           FunctionType::get(Type::getVoidTy(Context), false)->
649           getPointerTo(DL.getProgramAddressSpace());
650       Assert(STy &&
651                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
652                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
653                  STy->getTypeAtIndex(1) == FuncPtrTy,
654              "wrong type for intrinsic global variable", &GV);
655       Assert(STy->getNumElements() == 3,
656              "the third field of the element type is mandatory, "
657              "specify i8* null to migrate from the obsoleted 2-field form");
658       Type *ETy = STy->getTypeAtIndex(2);
659       Assert(ETy->isPointerTy() &&
660                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
661              "wrong type for intrinsic global variable", &GV);
662     }
663   }
664 
665   if (GV.hasName() && (GV.getName() == "llvm.used" ||
666                        GV.getName() == "llvm.compiler.used")) {
667     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
668            "invalid linkage for intrinsic global variable", &GV);
669     Type *GVType = GV.getValueType();
670     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
671       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
672       Assert(PTy, "wrong type for intrinsic global variable", &GV);
673       if (GV.hasInitializer()) {
674         const Constant *Init = GV.getInitializer();
675         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
676         Assert(InitArray, "wrong initalizer for intrinsic global variable",
677                Init);
678         for (Value *Op : InitArray->operands()) {
679           Value *V = Op->stripPointerCasts();
680           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
681                      isa<GlobalAlias>(V),
682                  "invalid llvm.used member", V);
683           Assert(V->hasName(), "members of llvm.used must be named", V);
684         }
685       }
686     }
687   }
688 
689   // Visit any debug info attachments.
690   SmallVector<MDNode *, 1> MDs;
691   GV.getMetadata(LLVMContext::MD_dbg, MDs);
692   for (auto *MD : MDs) {
693     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
694       visitDIGlobalVariableExpression(*GVE);
695     else
696       AssertDI(false, "!dbg attachment of global variable must be a "
697                       "DIGlobalVariableExpression");
698   }
699 
700   // Scalable vectors cannot be global variables, since we don't know
701   // the runtime size. If the global is a struct or an array containing
702   // scalable vectors, that will be caught by the isValidElementType methods
703   // in StructType or ArrayType instead.
704   Assert(!isa<ScalableVectorType>(GV.getValueType()),
705          "Globals cannot contain scalable vectors", &GV);
706 
707   if (!GV.hasInitializer()) {
708     visitGlobalValue(GV);
709     return;
710   }
711 
712   // Walk any aggregate initializers looking for bitcasts between address spaces
713   visitConstantExprsRecursively(GV.getInitializer());
714 
715   visitGlobalValue(GV);
716 }
717 
718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
719   SmallPtrSet<const GlobalAlias*, 4> Visited;
720   Visited.insert(&GA);
721   visitAliaseeSubExpr(Visited, GA, C);
722 }
723 
724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
725                                    const GlobalAlias &GA, const Constant &C) {
726   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
727     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
728            &GA);
729 
730     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
731       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
732 
733       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
734              &GA);
735     } else {
736       // Only continue verifying subexpressions of GlobalAliases.
737       // Do not recurse into global initializers.
738       return;
739     }
740   }
741 
742   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
743     visitConstantExprsRecursively(CE);
744 
745   for (const Use &U : C.operands()) {
746     Value *V = &*U;
747     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
748       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
749     else if (const auto *C2 = dyn_cast<Constant>(V))
750       visitAliaseeSubExpr(Visited, GA, *C2);
751   }
752 }
753 
754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
755   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
756          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
757          "weak_odr, or external linkage!",
758          &GA);
759   const Constant *Aliasee = GA.getAliasee();
760   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
761   Assert(GA.getType() == Aliasee->getType(),
762          "Alias and aliasee types should match!", &GA);
763 
764   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
765          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
766 
767   visitAliaseeSubExpr(GA, *Aliasee);
768 
769   visitGlobalValue(GA);
770 }
771 
772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
773   // There used to be various other llvm.dbg.* nodes, but we don't support
774   // upgrading them and we want to reserve the namespace for future uses.
775   if (NMD.getName().startswith("llvm.dbg."))
776     AssertDI(NMD.getName() == "llvm.dbg.cu",
777              "unrecognized named metadata node in the llvm.dbg namespace",
778              &NMD);
779   for (const MDNode *MD : NMD.operands()) {
780     if (NMD.getName() == "llvm.dbg.cu")
781       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
782 
783     if (!MD)
784       continue;
785 
786     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
787   }
788 }
789 
790 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
791   // Only visit each node once.  Metadata can be mutually recursive, so this
792   // avoids infinite recursion here, as well as being an optimization.
793   if (!MDNodes.insert(&MD).second)
794     return;
795 
796   switch (MD.getMetadataID()) {
797   default:
798     llvm_unreachable("Invalid MDNode subclass");
799   case Metadata::MDTupleKind:
800     break;
801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
802   case Metadata::CLASS##Kind:                                                  \
803     visit##CLASS(cast<CLASS>(MD));                                             \
804     break;
805 #include "llvm/IR/Metadata.def"
806   }
807 
808   for (const Metadata *Op : MD.operands()) {
809     if (!Op)
810       continue;
811     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
812            &MD, Op);
813     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
814              "DILocation not allowed within this metadata node", &MD, Op);
815     if (auto *N = dyn_cast<MDNode>(Op)) {
816       visitMDNode(*N, AllowLocs);
817       continue;
818     }
819     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
820       visitValueAsMetadata(*V, nullptr);
821       continue;
822     }
823   }
824 
825   // Check these last, so we diagnose problems in operands first.
826   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
827   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
828 }
829 
830 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
831   Assert(MD.getValue(), "Expected valid value", &MD);
832   Assert(!MD.getValue()->getType()->isMetadataTy(),
833          "Unexpected metadata round-trip through values", &MD, MD.getValue());
834 
835   auto *L = dyn_cast<LocalAsMetadata>(&MD);
836   if (!L)
837     return;
838 
839   Assert(F, "function-local metadata used outside a function", L);
840 
841   // If this was an instruction, bb, or argument, verify that it is in the
842   // function that we expect.
843   Function *ActualF = nullptr;
844   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
845     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
846     ActualF = I->getParent()->getParent();
847   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
848     ActualF = BB->getParent();
849   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
850     ActualF = A->getParent();
851   assert(ActualF && "Unimplemented function local metadata case!");
852 
853   Assert(ActualF == F, "function-local metadata used in wrong function", L);
854 }
855 
856 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
857   Metadata *MD = MDV.getMetadata();
858   if (auto *N = dyn_cast<MDNode>(MD)) {
859     visitMDNode(*N, AreDebugLocsAllowed::No);
860     return;
861   }
862 
863   // Only visit each node once.  Metadata can be mutually recursive, so this
864   // avoids infinite recursion here, as well as being an optimization.
865   if (!MDNodes.insert(MD).second)
866     return;
867 
868   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
869     visitValueAsMetadata(*V, F);
870 }
871 
872 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
873 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
874 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
875 
876 void Verifier::visitDILocation(const DILocation &N) {
877   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
878            "location requires a valid scope", &N, N.getRawScope());
879   if (auto *IA = N.getRawInlinedAt())
880     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
881   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
882     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
883 }
884 
885 void Verifier::visitGenericDINode(const GenericDINode &N) {
886   AssertDI(N.getTag(), "invalid tag", &N);
887 }
888 
889 void Verifier::visitDIScope(const DIScope &N) {
890   if (auto *F = N.getRawFile())
891     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
892 }
893 
894 void Verifier::visitDISubrange(const DISubrange &N) {
895   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
896   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
897            "Subrange must contain count or upperBound", &N);
898   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
899            "Subrange can have any one of count or upperBound", &N);
900   AssertDI(!N.getRawCountNode() || N.getCount(),
901            "Count must either be a signed constant or a DIVariable", &N);
902   auto Count = N.getCount();
903   AssertDI(!Count || !Count.is<ConstantInt *>() ||
904                Count.get<ConstantInt *>()->getSExtValue() >= -1,
905            "invalid subrange count", &N);
906   auto *LBound = N.getRawLowerBound();
907   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
908                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
909            "LowerBound must be signed constant or DIVariable or DIExpression",
910            &N);
911   auto *UBound = N.getRawUpperBound();
912   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
913                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
914            "UpperBound must be signed constant or DIVariable or DIExpression",
915            &N);
916   auto *Stride = N.getRawStride();
917   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
918                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
919            "Stride must be signed constant or DIVariable or DIExpression", &N);
920 }
921 
922 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
923   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
924 }
925 
926 void Verifier::visitDIBasicType(const DIBasicType &N) {
927   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
928                N.getTag() == dwarf::DW_TAG_unspecified_type,
929            "invalid tag", &N);
930   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
931             "has conflicting flags", &N);
932 }
933 
934 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
935   // Common scope checks.
936   visitDIScope(N);
937 
938   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
939                N.getTag() == dwarf::DW_TAG_pointer_type ||
940                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
941                N.getTag() == dwarf::DW_TAG_reference_type ||
942                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
943                N.getTag() == dwarf::DW_TAG_const_type ||
944                N.getTag() == dwarf::DW_TAG_volatile_type ||
945                N.getTag() == dwarf::DW_TAG_restrict_type ||
946                N.getTag() == dwarf::DW_TAG_atomic_type ||
947                N.getTag() == dwarf::DW_TAG_member ||
948                N.getTag() == dwarf::DW_TAG_inheritance ||
949                N.getTag() == dwarf::DW_TAG_friend,
950            "invalid tag", &N);
951   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
952     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
953              N.getRawExtraData());
954   }
955 
956   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
957   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
958            N.getRawBaseType());
959 
960   if (N.getDWARFAddressSpace()) {
961     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
962                  N.getTag() == dwarf::DW_TAG_reference_type ||
963                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
964              "DWARF address space only applies to pointer or reference types",
965              &N);
966   }
967 }
968 
969 /// Detect mutually exclusive flags.
970 static bool hasConflictingReferenceFlags(unsigned Flags) {
971   return ((Flags & DINode::FlagLValueReference) &&
972           (Flags & DINode::FlagRValueReference)) ||
973          ((Flags & DINode::FlagTypePassByValue) &&
974           (Flags & DINode::FlagTypePassByReference));
975 }
976 
977 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
978   auto *Params = dyn_cast<MDTuple>(&RawParams);
979   AssertDI(Params, "invalid template params", &N, &RawParams);
980   for (Metadata *Op : Params->operands()) {
981     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
982              &N, Params, Op);
983   }
984 }
985 
986 void Verifier::visitDICompositeType(const DICompositeType &N) {
987   // Common scope checks.
988   visitDIScope(N);
989 
990   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
991                N.getTag() == dwarf::DW_TAG_structure_type ||
992                N.getTag() == dwarf::DW_TAG_union_type ||
993                N.getTag() == dwarf::DW_TAG_enumeration_type ||
994                N.getTag() == dwarf::DW_TAG_class_type ||
995                N.getTag() == dwarf::DW_TAG_variant_part,
996            "invalid tag", &N);
997 
998   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
999   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1000            N.getRawBaseType());
1001 
1002   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1003            "invalid composite elements", &N, N.getRawElements());
1004   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1005            N.getRawVTableHolder());
1006   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1007            "invalid reference flags", &N);
1008   unsigned DIBlockByRefStruct = 1 << 4;
1009   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1010            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1011 
1012   if (N.isVector()) {
1013     const DINodeArray Elements = N.getElements();
1014     AssertDI(Elements.size() == 1 &&
1015              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1016              "invalid vector, expected one element of type subrange", &N);
1017   }
1018 
1019   if (auto *Params = N.getRawTemplateParams())
1020     visitTemplateParams(N, *Params);
1021 
1022   if (N.getTag() == dwarf::DW_TAG_class_type ||
1023       N.getTag() == dwarf::DW_TAG_union_type) {
1024     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1025              "class/union requires a filename", &N, N.getFile());
1026   }
1027 
1028   if (auto *D = N.getRawDiscriminator()) {
1029     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1030              "discriminator can only appear on variant part");
1031   }
1032 
1033   if (N.getRawDataLocation()) {
1034     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1035              "dataLocation can only appear in array type");
1036   }
1037 }
1038 
1039 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1040   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1041   if (auto *Types = N.getRawTypeArray()) {
1042     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1043     for (Metadata *Ty : N.getTypeArray()->operands()) {
1044       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1045     }
1046   }
1047   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1048            "invalid reference flags", &N);
1049 }
1050 
1051 void Verifier::visitDIFile(const DIFile &N) {
1052   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1053   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1054   if (Checksum) {
1055     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1056              "invalid checksum kind", &N);
1057     size_t Size;
1058     switch (Checksum->Kind) {
1059     case DIFile::CSK_MD5:
1060       Size = 32;
1061       break;
1062     case DIFile::CSK_SHA1:
1063       Size = 40;
1064       break;
1065     case DIFile::CSK_SHA256:
1066       Size = 64;
1067       break;
1068     }
1069     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1070     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1071              "invalid checksum", &N);
1072   }
1073 }
1074 
1075 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1076   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1077   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1078 
1079   // Don't bother verifying the compilation directory or producer string
1080   // as those could be empty.
1081   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1082            N.getRawFile());
1083   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1084            N.getFile());
1085 
1086   verifySourceDebugInfo(N, *N.getFile());
1087 
1088   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1089            "invalid emission kind", &N);
1090 
1091   if (auto *Array = N.getRawEnumTypes()) {
1092     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1093     for (Metadata *Op : N.getEnumTypes()->operands()) {
1094       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1095       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1096                "invalid enum type", &N, N.getEnumTypes(), Op);
1097     }
1098   }
1099   if (auto *Array = N.getRawRetainedTypes()) {
1100     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1101     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1102       AssertDI(Op && (isa<DIType>(Op) ||
1103                       (isa<DISubprogram>(Op) &&
1104                        !cast<DISubprogram>(Op)->isDefinition())),
1105                "invalid retained type", &N, Op);
1106     }
1107   }
1108   if (auto *Array = N.getRawGlobalVariables()) {
1109     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1110     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1111       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1112                "invalid global variable ref", &N, Op);
1113     }
1114   }
1115   if (auto *Array = N.getRawImportedEntities()) {
1116     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1117     for (Metadata *Op : N.getImportedEntities()->operands()) {
1118       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1119                &N, Op);
1120     }
1121   }
1122   if (auto *Array = N.getRawMacros()) {
1123     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1124     for (Metadata *Op : N.getMacros()->operands()) {
1125       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1126     }
1127   }
1128   CUVisited.insert(&N);
1129 }
1130 
1131 void Verifier::visitDISubprogram(const DISubprogram &N) {
1132   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1133   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1134   if (auto *F = N.getRawFile())
1135     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1136   else
1137     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1138   if (auto *T = N.getRawType())
1139     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1140   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1141            N.getRawContainingType());
1142   if (auto *Params = N.getRawTemplateParams())
1143     visitTemplateParams(N, *Params);
1144   if (auto *S = N.getRawDeclaration())
1145     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1146              "invalid subprogram declaration", &N, S);
1147   if (auto *RawNode = N.getRawRetainedNodes()) {
1148     auto *Node = dyn_cast<MDTuple>(RawNode);
1149     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1150     for (Metadata *Op : Node->operands()) {
1151       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1152                "invalid retained nodes, expected DILocalVariable or DILabel",
1153                &N, Node, Op);
1154     }
1155   }
1156   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1157            "invalid reference flags", &N);
1158 
1159   auto *Unit = N.getRawUnit();
1160   if (N.isDefinition()) {
1161     // Subprogram definitions (not part of the type hierarchy).
1162     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1163     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1164     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1165     if (N.getFile())
1166       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1167   } else {
1168     // Subprogram declarations (part of the type hierarchy).
1169     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1170   }
1171 
1172   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1173     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1174     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1175     for (Metadata *Op : ThrownTypes->operands())
1176       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1177                Op);
1178   }
1179 
1180   if (N.areAllCallsDescribed())
1181     AssertDI(N.isDefinition(),
1182              "DIFlagAllCallsDescribed must be attached to a definition");
1183 }
1184 
1185 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1186   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1187   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1188            "invalid local scope", &N, N.getRawScope());
1189   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1190     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1191 }
1192 
1193 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1194   visitDILexicalBlockBase(N);
1195 
1196   AssertDI(N.getLine() || !N.getColumn(),
1197            "cannot have column info without line info", &N);
1198 }
1199 
1200 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1201   visitDILexicalBlockBase(N);
1202 }
1203 
1204 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1205   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1206   if (auto *S = N.getRawScope())
1207     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1208   if (auto *S = N.getRawDecl())
1209     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1210 }
1211 
1212 void Verifier::visitDINamespace(const DINamespace &N) {
1213   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1214   if (auto *S = N.getRawScope())
1215     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1216 }
1217 
1218 void Verifier::visitDIMacro(const DIMacro &N) {
1219   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1220                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1221            "invalid macinfo type", &N);
1222   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1223   if (!N.getValue().empty()) {
1224     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1225   }
1226 }
1227 
1228 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1229   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1230            "invalid macinfo type", &N);
1231   if (auto *F = N.getRawFile())
1232     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1233 
1234   if (auto *Array = N.getRawElements()) {
1235     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1236     for (Metadata *Op : N.getElements()->operands()) {
1237       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1238     }
1239   }
1240 }
1241 
1242 void Verifier::visitDIModule(const DIModule &N) {
1243   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1244   AssertDI(!N.getName().empty(), "anonymous module", &N);
1245 }
1246 
1247 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1248   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1249 }
1250 
1251 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1252   visitDITemplateParameter(N);
1253 
1254   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1255            &N);
1256 }
1257 
1258 void Verifier::visitDITemplateValueParameter(
1259     const DITemplateValueParameter &N) {
1260   visitDITemplateParameter(N);
1261 
1262   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1263                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1264                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1265            "invalid tag", &N);
1266 }
1267 
1268 void Verifier::visitDIVariable(const DIVariable &N) {
1269   if (auto *S = N.getRawScope())
1270     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1271   if (auto *F = N.getRawFile())
1272     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1273 }
1274 
1275 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1276   // Checks common to all variables.
1277   visitDIVariable(N);
1278 
1279   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1280   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1281   AssertDI(N.getType(), "missing global variable type", &N);
1282   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1283     AssertDI(isa<DIDerivedType>(Member),
1284              "invalid static data member declaration", &N, Member);
1285   }
1286 }
1287 
1288 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1289   // Checks common to all variables.
1290   visitDIVariable(N);
1291 
1292   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1293   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1294   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1295            "local variable requires a valid scope", &N, N.getRawScope());
1296   if (auto Ty = N.getType())
1297     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1298 }
1299 
1300 void Verifier::visitDILabel(const DILabel &N) {
1301   if (auto *S = N.getRawScope())
1302     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1303   if (auto *F = N.getRawFile())
1304     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1305 
1306   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1307   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1308            "label requires a valid scope", &N, N.getRawScope());
1309 }
1310 
1311 void Verifier::visitDIExpression(const DIExpression &N) {
1312   AssertDI(N.isValid(), "invalid expression", &N);
1313 }
1314 
1315 void Verifier::visitDIGlobalVariableExpression(
1316     const DIGlobalVariableExpression &GVE) {
1317   AssertDI(GVE.getVariable(), "missing variable");
1318   if (auto *Var = GVE.getVariable())
1319     visitDIGlobalVariable(*Var);
1320   if (auto *Expr = GVE.getExpression()) {
1321     visitDIExpression(*Expr);
1322     if (auto Fragment = Expr->getFragmentInfo())
1323       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1324   }
1325 }
1326 
1327 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1328   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1329   if (auto *T = N.getRawType())
1330     AssertDI(isType(T), "invalid type ref", &N, T);
1331   if (auto *F = N.getRawFile())
1332     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1333 }
1334 
1335 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1336   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1337                N.getTag() == dwarf::DW_TAG_imported_declaration,
1338            "invalid tag", &N);
1339   if (auto *S = N.getRawScope())
1340     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1341   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1342            N.getRawEntity());
1343 }
1344 
1345 void Verifier::visitComdat(const Comdat &C) {
1346   // In COFF the Module is invalid if the GlobalValue has private linkage.
1347   // Entities with private linkage don't have entries in the symbol table.
1348   if (TT.isOSBinFormatCOFF())
1349     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1350       Assert(!GV->hasPrivateLinkage(),
1351              "comdat global value has private linkage", GV);
1352 }
1353 
1354 void Verifier::visitModuleIdents(const Module &M) {
1355   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1356   if (!Idents)
1357     return;
1358 
1359   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1360   // Scan each llvm.ident entry and make sure that this requirement is met.
1361   for (const MDNode *N : Idents->operands()) {
1362     Assert(N->getNumOperands() == 1,
1363            "incorrect number of operands in llvm.ident metadata", N);
1364     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1365            ("invalid value for llvm.ident metadata entry operand"
1366             "(the operand should be a string)"),
1367            N->getOperand(0));
1368   }
1369 }
1370 
1371 void Verifier::visitModuleCommandLines(const Module &M) {
1372   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1373   if (!CommandLines)
1374     return;
1375 
1376   // llvm.commandline takes a list of metadata entry. Each entry has only one
1377   // string. Scan each llvm.commandline entry and make sure that this
1378   // requirement is met.
1379   for (const MDNode *N : CommandLines->operands()) {
1380     Assert(N->getNumOperands() == 1,
1381            "incorrect number of operands in llvm.commandline metadata", N);
1382     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1383            ("invalid value for llvm.commandline metadata entry operand"
1384             "(the operand should be a string)"),
1385            N->getOperand(0));
1386   }
1387 }
1388 
1389 void Verifier::visitModuleFlags(const Module &M) {
1390   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1391   if (!Flags) return;
1392 
1393   // Scan each flag, and track the flags and requirements.
1394   DenseMap<const MDString*, const MDNode*> SeenIDs;
1395   SmallVector<const MDNode*, 16> Requirements;
1396   for (const MDNode *MDN : Flags->operands())
1397     visitModuleFlag(MDN, SeenIDs, Requirements);
1398 
1399   // Validate that the requirements in the module are valid.
1400   for (const MDNode *Requirement : Requirements) {
1401     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1402     const Metadata *ReqValue = Requirement->getOperand(1);
1403 
1404     const MDNode *Op = SeenIDs.lookup(Flag);
1405     if (!Op) {
1406       CheckFailed("invalid requirement on flag, flag is not present in module",
1407                   Flag);
1408       continue;
1409     }
1410 
1411     if (Op->getOperand(2) != ReqValue) {
1412       CheckFailed(("invalid requirement on flag, "
1413                    "flag does not have the required value"),
1414                   Flag);
1415       continue;
1416     }
1417   }
1418 }
1419 
1420 void
1421 Verifier::visitModuleFlag(const MDNode *Op,
1422                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1423                           SmallVectorImpl<const MDNode *> &Requirements) {
1424   // Each module flag should have three arguments, the merge behavior (a
1425   // constant int), the flag ID (an MDString), and the value.
1426   Assert(Op->getNumOperands() == 3,
1427          "incorrect number of operands in module flag", Op);
1428   Module::ModFlagBehavior MFB;
1429   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1430     Assert(
1431         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1432         "invalid behavior operand in module flag (expected constant integer)",
1433         Op->getOperand(0));
1434     Assert(false,
1435            "invalid behavior operand in module flag (unexpected constant)",
1436            Op->getOperand(0));
1437   }
1438   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1439   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1440          Op->getOperand(1));
1441 
1442   // Sanity check the values for behaviors with additional requirements.
1443   switch (MFB) {
1444   case Module::Error:
1445   case Module::Warning:
1446   case Module::Override:
1447     // These behavior types accept any value.
1448     break;
1449 
1450   case Module::Max: {
1451     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1452            "invalid value for 'max' module flag (expected constant integer)",
1453            Op->getOperand(2));
1454     break;
1455   }
1456 
1457   case Module::Require: {
1458     // The value should itself be an MDNode with two operands, a flag ID (an
1459     // MDString), and a value.
1460     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1461     Assert(Value && Value->getNumOperands() == 2,
1462            "invalid value for 'require' module flag (expected metadata pair)",
1463            Op->getOperand(2));
1464     Assert(isa<MDString>(Value->getOperand(0)),
1465            ("invalid value for 'require' module flag "
1466             "(first value operand should be a string)"),
1467            Value->getOperand(0));
1468 
1469     // Append it to the list of requirements, to check once all module flags are
1470     // scanned.
1471     Requirements.push_back(Value);
1472     break;
1473   }
1474 
1475   case Module::Append:
1476   case Module::AppendUnique: {
1477     // These behavior types require the operand be an MDNode.
1478     Assert(isa<MDNode>(Op->getOperand(2)),
1479            "invalid value for 'append'-type module flag "
1480            "(expected a metadata node)",
1481            Op->getOperand(2));
1482     break;
1483   }
1484   }
1485 
1486   // Unless this is a "requires" flag, check the ID is unique.
1487   if (MFB != Module::Require) {
1488     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1489     Assert(Inserted,
1490            "module flag identifiers must be unique (or of 'require' type)", ID);
1491   }
1492 
1493   if (ID->getString() == "wchar_size") {
1494     ConstantInt *Value
1495       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1496     Assert(Value, "wchar_size metadata requires constant integer argument");
1497   }
1498 
1499   if (ID->getString() == "Linker Options") {
1500     // If the llvm.linker.options named metadata exists, we assume that the
1501     // bitcode reader has upgraded the module flag. Otherwise the flag might
1502     // have been created by a client directly.
1503     Assert(M.getNamedMetadata("llvm.linker.options"),
1504            "'Linker Options' named metadata no longer supported");
1505   }
1506 
1507   if (ID->getString() == "SemanticInterposition") {
1508     ConstantInt *Value =
1509         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1510     Assert(Value,
1511            "SemanticInterposition metadata requires constant integer argument");
1512   }
1513 
1514   if (ID->getString() == "CG Profile") {
1515     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1516       visitModuleFlagCGProfileEntry(MDO);
1517   }
1518 }
1519 
1520 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1521   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1522     if (!FuncMDO)
1523       return;
1524     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1525     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1526            FuncMDO);
1527   };
1528   auto Node = dyn_cast_or_null<MDNode>(MDO);
1529   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1530   CheckFunction(Node->getOperand(0));
1531   CheckFunction(Node->getOperand(1));
1532   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1533   Assert(Count && Count->getType()->isIntegerTy(),
1534          "expected an integer constant", Node->getOperand(2));
1535 }
1536 
1537 /// Return true if this attribute kind only applies to functions.
1538 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1539   switch (Kind) {
1540   case Attribute::NoMerge:
1541   case Attribute::NoReturn:
1542   case Attribute::NoSync:
1543   case Attribute::WillReturn:
1544   case Attribute::NoCfCheck:
1545   case Attribute::NoUnwind:
1546   case Attribute::NoInline:
1547   case Attribute::AlwaysInline:
1548   case Attribute::OptimizeForSize:
1549   case Attribute::StackProtect:
1550   case Attribute::StackProtectReq:
1551   case Attribute::StackProtectStrong:
1552   case Attribute::SafeStack:
1553   case Attribute::ShadowCallStack:
1554   case Attribute::NoRedZone:
1555   case Attribute::NoImplicitFloat:
1556   case Attribute::Naked:
1557   case Attribute::InlineHint:
1558   case Attribute::StackAlignment:
1559   case Attribute::UWTable:
1560   case Attribute::NonLazyBind:
1561   case Attribute::ReturnsTwice:
1562   case Attribute::SanitizeAddress:
1563   case Attribute::SanitizeHWAddress:
1564   case Attribute::SanitizeMemTag:
1565   case Attribute::SanitizeThread:
1566   case Attribute::SanitizeMemory:
1567   case Attribute::MinSize:
1568   case Attribute::NoDuplicate:
1569   case Attribute::Builtin:
1570   case Attribute::NoBuiltin:
1571   case Attribute::Cold:
1572   case Attribute::OptForFuzzing:
1573   case Attribute::OptimizeNone:
1574   case Attribute::JumpTable:
1575   case Attribute::Convergent:
1576   case Attribute::ArgMemOnly:
1577   case Attribute::NoRecurse:
1578   case Attribute::InaccessibleMemOnly:
1579   case Attribute::InaccessibleMemOrArgMemOnly:
1580   case Attribute::AllocSize:
1581   case Attribute::SpeculativeLoadHardening:
1582   case Attribute::Speculatable:
1583   case Attribute::StrictFP:
1584   case Attribute::NullPointerIsValid:
1585     return true;
1586   default:
1587     break;
1588   }
1589   return false;
1590 }
1591 
1592 /// Return true if this is a function attribute that can also appear on
1593 /// arguments.
1594 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1595   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1596          Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
1597          Kind == Attribute::Preallocated;
1598 }
1599 
1600 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1601                                     const Value *V) {
1602   for (Attribute A : Attrs) {
1603     if (A.isStringAttribute())
1604       continue;
1605 
1606     if (A.isIntAttribute() !=
1607         Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1608       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1609                   V);
1610       return;
1611     }
1612 
1613     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1614       if (!IsFunction) {
1615         CheckFailed("Attribute '" + A.getAsString() +
1616                         "' only applies to functions!",
1617                     V);
1618         return;
1619       }
1620     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1621       CheckFailed("Attribute '" + A.getAsString() +
1622                       "' does not apply to functions!",
1623                   V);
1624       return;
1625     }
1626   }
1627 }
1628 
1629 // VerifyParameterAttrs - Check the given attributes for an argument or return
1630 // value of the specified type.  The value V is printed in error messages.
1631 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1632                                     const Value *V) {
1633   if (!Attrs.hasAttributes())
1634     return;
1635 
1636   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1637 
1638   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1639     Assert(Attrs.getNumAttributes() == 1,
1640            "Attribute 'immarg' is incompatible with other attributes", V);
1641   }
1642 
1643   // Check for mutually incompatible attributes.  Only inreg is compatible with
1644   // sret.
1645   unsigned AttrCount = 0;
1646   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1647   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1648   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1649   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1650                Attrs.hasAttribute(Attribute::InReg);
1651   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1652   Assert(AttrCount <= 1,
1653          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1654          "and 'sret' are incompatible!",
1655          V);
1656 
1657   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1658            Attrs.hasAttribute(Attribute::ReadOnly)),
1659          "Attributes "
1660          "'inalloca and readonly' are incompatible!",
1661          V);
1662 
1663   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1664            Attrs.hasAttribute(Attribute::Returned)),
1665          "Attributes "
1666          "'sret and returned' are incompatible!",
1667          V);
1668 
1669   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1670            Attrs.hasAttribute(Attribute::SExt)),
1671          "Attributes "
1672          "'zeroext and signext' are incompatible!",
1673          V);
1674 
1675   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1676            Attrs.hasAttribute(Attribute::ReadOnly)),
1677          "Attributes "
1678          "'readnone and readonly' are incompatible!",
1679          V);
1680 
1681   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1682            Attrs.hasAttribute(Attribute::WriteOnly)),
1683          "Attributes "
1684          "'readnone and writeonly' are incompatible!",
1685          V);
1686 
1687   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1688            Attrs.hasAttribute(Attribute::WriteOnly)),
1689          "Attributes "
1690          "'readonly and writeonly' are incompatible!",
1691          V);
1692 
1693   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1694            Attrs.hasAttribute(Attribute::AlwaysInline)),
1695          "Attributes "
1696          "'noinline and alwaysinline' are incompatible!",
1697          V);
1698 
1699   if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1700     Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1701            "Attribute 'byval' type does not match parameter!", V);
1702   }
1703 
1704   if (Attrs.hasAttribute(Attribute::Preallocated)) {
1705     Assert(Attrs.getPreallocatedType() ==
1706                cast<PointerType>(Ty)->getElementType(),
1707            "Attribute 'preallocated' type does not match parameter!", V);
1708   }
1709 
1710   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1711   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1712          "Wrong types for attribute: " +
1713              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1714          V);
1715 
1716   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1717     SmallPtrSet<Type*, 4> Visited;
1718     if (!PTy->getElementType()->isSized(&Visited)) {
1719       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1720                  !Attrs.hasAttribute(Attribute::InAlloca) &&
1721                  !Attrs.hasAttribute(Attribute::Preallocated),
1722              "Attributes 'byval', 'inalloca', and 'preallocated' do not "
1723              "support unsized types!",
1724              V);
1725     }
1726     if (!isa<PointerType>(PTy->getElementType()))
1727       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1728              "Attribute 'swifterror' only applies to parameters "
1729              "with pointer to pointer type!",
1730              V);
1731   } else {
1732     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1733            "Attribute 'byval' only applies to parameters with pointer type!",
1734            V);
1735     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1736            "Attribute 'swifterror' only applies to parameters "
1737            "with pointer type!",
1738            V);
1739   }
1740 }
1741 
1742 // Check parameter attributes against a function type.
1743 // The value V is printed in error messages.
1744 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1745                                    const Value *V, bool IsIntrinsic) {
1746   if (Attrs.isEmpty())
1747     return;
1748 
1749   bool SawNest = false;
1750   bool SawReturned = false;
1751   bool SawSRet = false;
1752   bool SawSwiftSelf = false;
1753   bool SawSwiftError = false;
1754 
1755   // Verify return value attributes.
1756   AttributeSet RetAttrs = Attrs.getRetAttributes();
1757   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1758           !RetAttrs.hasAttribute(Attribute::Nest) &&
1759           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1760           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1761           !RetAttrs.hasAttribute(Attribute::NoFree) &&
1762           !RetAttrs.hasAttribute(Attribute::Returned) &&
1763           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1764           !RetAttrs.hasAttribute(Attribute::Preallocated) &&
1765           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1766           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1767          "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', "
1768          "'nocapture', 'nofree', "
1769          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1770          "values!",
1771          V);
1772   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1773           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1774           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1775          "Attribute '" + RetAttrs.getAsString() +
1776              "' does not apply to function returns",
1777          V);
1778   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1779 
1780   // Verify parameter attributes.
1781   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1782     Type *Ty = FT->getParamType(i);
1783     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1784 
1785     if (!IsIntrinsic) {
1786       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1787              "immarg attribute only applies to intrinsics",V);
1788     }
1789 
1790     verifyParameterAttrs(ArgAttrs, Ty, V);
1791 
1792     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1793       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1794       SawNest = true;
1795     }
1796 
1797     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1798       Assert(!SawReturned, "More than one parameter has attribute returned!",
1799              V);
1800       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1801              "Incompatible argument and return types for 'returned' attribute",
1802              V);
1803       SawReturned = true;
1804     }
1805 
1806     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1807       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1808       Assert(i == 0 || i == 1,
1809              "Attribute 'sret' is not on first or second parameter!", V);
1810       SawSRet = true;
1811     }
1812 
1813     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1814       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1815       SawSwiftSelf = true;
1816     }
1817 
1818     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1819       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1820              V);
1821       SawSwiftError = true;
1822     }
1823 
1824     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1825       Assert(i == FT->getNumParams() - 1,
1826              "inalloca isn't on the last parameter!", V);
1827     }
1828   }
1829 
1830   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1831     return;
1832 
1833   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1834 
1835   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1836            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1837          "Attributes 'readnone and readonly' are incompatible!", V);
1838 
1839   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1840            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1841          "Attributes 'readnone and writeonly' are incompatible!", V);
1842 
1843   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1844            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1845          "Attributes 'readonly and writeonly' are incompatible!", V);
1846 
1847   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1848            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1849          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1850          "incompatible!",
1851          V);
1852 
1853   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1854            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1855          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1856 
1857   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1858            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1859          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1860 
1861   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1862     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1863            "Attribute 'optnone' requires 'noinline'!", V);
1864 
1865     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1866            "Attributes 'optsize and optnone' are incompatible!", V);
1867 
1868     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1869            "Attributes 'minsize and optnone' are incompatible!", V);
1870   }
1871 
1872   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1873     const GlobalValue *GV = cast<GlobalValue>(V);
1874     Assert(GV->hasGlobalUnnamedAddr(),
1875            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1876   }
1877 
1878   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1879     std::pair<unsigned, Optional<unsigned>> Args =
1880         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1881 
1882     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1883       if (ParamNo >= FT->getNumParams()) {
1884         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1885         return false;
1886       }
1887 
1888       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1889         CheckFailed("'allocsize' " + Name +
1890                         " argument must refer to an integer parameter",
1891                     V);
1892         return false;
1893       }
1894 
1895       return true;
1896     };
1897 
1898     if (!CheckParam("element size", Args.first))
1899       return;
1900 
1901     if (Args.second && !CheckParam("number of elements", *Args.second))
1902       return;
1903   }
1904 
1905   if (Attrs.hasFnAttribute("frame-pointer")) {
1906     StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1907                                       "frame-pointer").getValueAsString();
1908     if (FP != "all" && FP != "non-leaf" && FP != "none")
1909       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1910   }
1911 
1912   if (Attrs.hasFnAttribute("patchable-function-prefix")) {
1913     StringRef S = Attrs
1914                       .getAttribute(AttributeList::FunctionIndex,
1915                                     "patchable-function-prefix")
1916                       .getValueAsString();
1917     unsigned N;
1918     if (S.getAsInteger(10, N))
1919       CheckFailed(
1920           "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
1921   }
1922   if (Attrs.hasFnAttribute("patchable-function-entry")) {
1923     StringRef S = Attrs
1924                       .getAttribute(AttributeList::FunctionIndex,
1925                                     "patchable-function-entry")
1926                       .getValueAsString();
1927     unsigned N;
1928     if (S.getAsInteger(10, N))
1929       CheckFailed(
1930           "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
1931   }
1932 }
1933 
1934 void Verifier::verifyFunctionMetadata(
1935     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1936   for (const auto &Pair : MDs) {
1937     if (Pair.first == LLVMContext::MD_prof) {
1938       MDNode *MD = Pair.second;
1939       Assert(MD->getNumOperands() >= 2,
1940              "!prof annotations should have no less than 2 operands", MD);
1941 
1942       // Check first operand.
1943       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1944              MD);
1945       Assert(isa<MDString>(MD->getOperand(0)),
1946              "expected string with name of the !prof annotation", MD);
1947       MDString *MDS = cast<MDString>(MD->getOperand(0));
1948       StringRef ProfName = MDS->getString();
1949       Assert(ProfName.equals("function_entry_count") ||
1950                  ProfName.equals("synthetic_function_entry_count"),
1951              "first operand should be 'function_entry_count'"
1952              " or 'synthetic_function_entry_count'",
1953              MD);
1954 
1955       // Check second operand.
1956       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1957              MD);
1958       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1959              "expected integer argument to function_entry_count", MD);
1960     }
1961   }
1962 }
1963 
1964 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1965   if (!ConstantExprVisited.insert(EntryC).second)
1966     return;
1967 
1968   SmallVector<const Constant *, 16> Stack;
1969   Stack.push_back(EntryC);
1970 
1971   while (!Stack.empty()) {
1972     const Constant *C = Stack.pop_back_val();
1973 
1974     // Check this constant expression.
1975     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1976       visitConstantExpr(CE);
1977 
1978     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1979       // Global Values get visited separately, but we do need to make sure
1980       // that the global value is in the correct module
1981       Assert(GV->getParent() == &M, "Referencing global in another module!",
1982              EntryC, &M, GV, GV->getParent());
1983       continue;
1984     }
1985 
1986     // Visit all sub-expressions.
1987     for (const Use &U : C->operands()) {
1988       const auto *OpC = dyn_cast<Constant>(U);
1989       if (!OpC)
1990         continue;
1991       if (!ConstantExprVisited.insert(OpC).second)
1992         continue;
1993       Stack.push_back(OpC);
1994     }
1995   }
1996 }
1997 
1998 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1999   if (CE->getOpcode() == Instruction::BitCast)
2000     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2001                                  CE->getType()),
2002            "Invalid bitcast", CE);
2003 
2004   if (CE->getOpcode() == Instruction::IntToPtr ||
2005       CE->getOpcode() == Instruction::PtrToInt) {
2006     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
2007                       ? CE->getType()
2008                       : CE->getOperand(0)->getType();
2009     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
2010                         ? "inttoptr not supported for non-integral pointers"
2011                         : "ptrtoint not supported for non-integral pointers";
2012     Assert(
2013         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
2014         Msg);
2015   }
2016 }
2017 
2018 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2019   // There shouldn't be more attribute sets than there are parameters plus the
2020   // function and return value.
2021   return Attrs.getNumAttrSets() <= Params + 2;
2022 }
2023 
2024 /// Verify that statepoint intrinsic is well formed.
2025 void Verifier::verifyStatepoint(const CallBase &Call) {
2026   assert(Call.getCalledFunction() &&
2027          Call.getCalledFunction()->getIntrinsicID() ==
2028              Intrinsic::experimental_gc_statepoint);
2029 
2030   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2031              !Call.onlyAccessesArgMemory(),
2032          "gc.statepoint must read and write all memory to preserve "
2033          "reordering restrictions required by safepoint semantics",
2034          Call);
2035 
2036   const int64_t NumPatchBytes =
2037       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2038   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2039   Assert(NumPatchBytes >= 0,
2040          "gc.statepoint number of patchable bytes must be "
2041          "positive",
2042          Call);
2043 
2044   const Value *Target = Call.getArgOperand(2);
2045   auto *PT = dyn_cast<PointerType>(Target->getType());
2046   Assert(PT && PT->getElementType()->isFunctionTy(),
2047          "gc.statepoint callee must be of function pointer type", Call, Target);
2048   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2049 
2050   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2051   Assert(NumCallArgs >= 0,
2052          "gc.statepoint number of arguments to underlying call "
2053          "must be positive",
2054          Call);
2055   const int NumParams = (int)TargetFuncType->getNumParams();
2056   if (TargetFuncType->isVarArg()) {
2057     Assert(NumCallArgs >= NumParams,
2058            "gc.statepoint mismatch in number of vararg call args", Call);
2059 
2060     // TODO: Remove this limitation
2061     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2062            "gc.statepoint doesn't support wrapping non-void "
2063            "vararg functions yet",
2064            Call);
2065   } else
2066     Assert(NumCallArgs == NumParams,
2067            "gc.statepoint mismatch in number of call args", Call);
2068 
2069   const uint64_t Flags
2070     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2071   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2072          "unknown flag used in gc.statepoint flags argument", Call);
2073 
2074   // Verify that the types of the call parameter arguments match
2075   // the type of the wrapped callee.
2076   AttributeList Attrs = Call.getAttributes();
2077   for (int i = 0; i < NumParams; i++) {
2078     Type *ParamType = TargetFuncType->getParamType(i);
2079     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2080     Assert(ArgType == ParamType,
2081            "gc.statepoint call argument does not match wrapped "
2082            "function type",
2083            Call);
2084 
2085     if (TargetFuncType->isVarArg()) {
2086       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2087       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2088              "Attribute 'sret' cannot be used for vararg call arguments!",
2089              Call);
2090     }
2091   }
2092 
2093   const int EndCallArgsInx = 4 + NumCallArgs;
2094 
2095   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2096   Assert(isa<ConstantInt>(NumTransitionArgsV),
2097          "gc.statepoint number of transition arguments "
2098          "must be constant integer",
2099          Call);
2100   const int NumTransitionArgs =
2101       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2102   Assert(NumTransitionArgs >= 0,
2103          "gc.statepoint number of transition arguments must be positive", Call);
2104   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2105 
2106   // We're migrating away from inline operands to operand bundles, enforce
2107   // the either/or property during transition.
2108   if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) {
2109     Assert(NumTransitionArgs == 0,
2110            "can't use both deopt operands and deopt bundle on a statepoint");
2111   }
2112 
2113   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2114   Assert(isa<ConstantInt>(NumDeoptArgsV),
2115          "gc.statepoint number of deoptimization arguments "
2116          "must be constant integer",
2117          Call);
2118   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2119   Assert(NumDeoptArgs >= 0,
2120          "gc.statepoint number of deoptimization arguments "
2121          "must be positive",
2122          Call);
2123 
2124   // We're migrating away from inline operands to operand bundles, enforce
2125   // the either/or property during transition.
2126   if (Call.getOperandBundle(LLVMContext::OB_deopt)) {
2127     Assert(NumDeoptArgs == 0,
2128            "can't use both deopt operands and deopt bundle on a statepoint");
2129   }
2130 
2131   const int ExpectedNumArgs =
2132       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2133   Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2134          "gc.statepoint too few arguments according to length fields", Call);
2135 
2136   // Check that the only uses of this gc.statepoint are gc.result or
2137   // gc.relocate calls which are tied to this statepoint and thus part
2138   // of the same statepoint sequence
2139   for (const User *U : Call.users()) {
2140     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2141     Assert(UserCall, "illegal use of statepoint token", Call, U);
2142     if (!UserCall)
2143       continue;
2144     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2145            "gc.result or gc.relocate are the only value uses "
2146            "of a gc.statepoint",
2147            Call, U);
2148     if (isa<GCResultInst>(UserCall)) {
2149       Assert(UserCall->getArgOperand(0) == &Call,
2150              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2151     } else if (isa<GCRelocateInst>(Call)) {
2152       Assert(UserCall->getArgOperand(0) == &Call,
2153              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2154     }
2155   }
2156 
2157   // Note: It is legal for a single derived pointer to be listed multiple
2158   // times.  It's non-optimal, but it is legal.  It can also happen after
2159   // insertion if we strip a bitcast away.
2160   // Note: It is really tempting to check that each base is relocated and
2161   // that a derived pointer is never reused as a base pointer.  This turns
2162   // out to be problematic since optimizations run after safepoint insertion
2163   // can recognize equality properties that the insertion logic doesn't know
2164   // about.  See example statepoint.ll in the verifier subdirectory
2165 }
2166 
2167 void Verifier::verifyFrameRecoverIndices() {
2168   for (auto &Counts : FrameEscapeInfo) {
2169     Function *F = Counts.first;
2170     unsigned EscapedObjectCount = Counts.second.first;
2171     unsigned MaxRecoveredIndex = Counts.second.second;
2172     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2173            "all indices passed to llvm.localrecover must be less than the "
2174            "number of arguments passed to llvm.localescape in the parent "
2175            "function",
2176            F);
2177   }
2178 }
2179 
2180 static Instruction *getSuccPad(Instruction *Terminator) {
2181   BasicBlock *UnwindDest;
2182   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2183     UnwindDest = II->getUnwindDest();
2184   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2185     UnwindDest = CSI->getUnwindDest();
2186   else
2187     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2188   return UnwindDest->getFirstNonPHI();
2189 }
2190 
2191 void Verifier::verifySiblingFuncletUnwinds() {
2192   SmallPtrSet<Instruction *, 8> Visited;
2193   SmallPtrSet<Instruction *, 8> Active;
2194   for (const auto &Pair : SiblingFuncletInfo) {
2195     Instruction *PredPad = Pair.first;
2196     if (Visited.count(PredPad))
2197       continue;
2198     Active.insert(PredPad);
2199     Instruction *Terminator = Pair.second;
2200     do {
2201       Instruction *SuccPad = getSuccPad(Terminator);
2202       if (Active.count(SuccPad)) {
2203         // Found a cycle; report error
2204         Instruction *CyclePad = SuccPad;
2205         SmallVector<Instruction *, 8> CycleNodes;
2206         do {
2207           CycleNodes.push_back(CyclePad);
2208           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2209           if (CycleTerminator != CyclePad)
2210             CycleNodes.push_back(CycleTerminator);
2211           CyclePad = getSuccPad(CycleTerminator);
2212         } while (CyclePad != SuccPad);
2213         Assert(false, "EH pads can't handle each other's exceptions",
2214                ArrayRef<Instruction *>(CycleNodes));
2215       }
2216       // Don't re-walk a node we've already checked
2217       if (!Visited.insert(SuccPad).second)
2218         break;
2219       // Walk to this successor if it has a map entry.
2220       PredPad = SuccPad;
2221       auto TermI = SiblingFuncletInfo.find(PredPad);
2222       if (TermI == SiblingFuncletInfo.end())
2223         break;
2224       Terminator = TermI->second;
2225       Active.insert(PredPad);
2226     } while (true);
2227     // Each node only has one successor, so we've walked all the active
2228     // nodes' successors.
2229     Active.clear();
2230   }
2231 }
2232 
2233 // visitFunction - Verify that a function is ok.
2234 //
2235 void Verifier::visitFunction(const Function &F) {
2236   visitGlobalValue(F);
2237 
2238   // Check function arguments.
2239   FunctionType *FT = F.getFunctionType();
2240   unsigned NumArgs = F.arg_size();
2241 
2242   Assert(&Context == &F.getContext(),
2243          "Function context does not match Module context!", &F);
2244 
2245   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2246   Assert(FT->getNumParams() == NumArgs,
2247          "# formal arguments must match # of arguments for function type!", &F,
2248          FT);
2249   Assert(F.getReturnType()->isFirstClassType() ||
2250              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2251          "Functions cannot return aggregate values!", &F);
2252 
2253   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2254          "Invalid struct return type!", &F);
2255 
2256   AttributeList Attrs = F.getAttributes();
2257 
2258   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2259          "Attribute after last parameter!", &F);
2260 
2261   bool isLLVMdotName = F.getName().size() >= 5 &&
2262                        F.getName().substr(0, 5) == "llvm.";
2263 
2264   // Check function attributes.
2265   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2266 
2267   // On function declarations/definitions, we do not support the builtin
2268   // attribute. We do not check this in VerifyFunctionAttrs since that is
2269   // checking for Attributes that can/can not ever be on functions.
2270   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2271          "Attribute 'builtin' can only be applied to a callsite.", &F);
2272 
2273   // Check that this function meets the restrictions on this calling convention.
2274   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2275   // restrictions can be lifted.
2276   switch (F.getCallingConv()) {
2277   default:
2278   case CallingConv::C:
2279     break;
2280   case CallingConv::AMDGPU_KERNEL:
2281   case CallingConv::SPIR_KERNEL:
2282     Assert(F.getReturnType()->isVoidTy(),
2283            "Calling convention requires void return type", &F);
2284     LLVM_FALLTHROUGH;
2285   case CallingConv::AMDGPU_VS:
2286   case CallingConv::AMDGPU_HS:
2287   case CallingConv::AMDGPU_GS:
2288   case CallingConv::AMDGPU_PS:
2289   case CallingConv::AMDGPU_CS:
2290     Assert(!F.hasStructRetAttr(),
2291            "Calling convention does not allow sret", &F);
2292     LLVM_FALLTHROUGH;
2293   case CallingConv::Fast:
2294   case CallingConv::Cold:
2295   case CallingConv::Intel_OCL_BI:
2296   case CallingConv::PTX_Kernel:
2297   case CallingConv::PTX_Device:
2298     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2299                           "perfect forwarding!",
2300            &F);
2301     break;
2302   }
2303 
2304   // Check that the argument values match the function type for this function...
2305   unsigned i = 0;
2306   for (const Argument &Arg : F.args()) {
2307     Assert(Arg.getType() == FT->getParamType(i),
2308            "Argument value does not match function argument type!", &Arg,
2309            FT->getParamType(i));
2310     Assert(Arg.getType()->isFirstClassType(),
2311            "Function arguments must have first-class types!", &Arg);
2312     if (!isLLVMdotName) {
2313       Assert(!Arg.getType()->isMetadataTy(),
2314              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2315       Assert(!Arg.getType()->isTokenTy(),
2316              "Function takes token but isn't an intrinsic", &Arg, &F);
2317     }
2318 
2319     // Check that swifterror argument is only used by loads and stores.
2320     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2321       verifySwiftErrorValue(&Arg);
2322     }
2323     ++i;
2324   }
2325 
2326   if (!isLLVMdotName)
2327     Assert(!F.getReturnType()->isTokenTy(),
2328            "Functions returns a token but isn't an intrinsic", &F);
2329 
2330   // Get the function metadata attachments.
2331   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2332   F.getAllMetadata(MDs);
2333   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2334   verifyFunctionMetadata(MDs);
2335 
2336   // Check validity of the personality function
2337   if (F.hasPersonalityFn()) {
2338     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2339     if (Per)
2340       Assert(Per->getParent() == F.getParent(),
2341              "Referencing personality function in another module!",
2342              &F, F.getParent(), Per, Per->getParent());
2343   }
2344 
2345   if (F.isMaterializable()) {
2346     // Function has a body somewhere we can't see.
2347     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2348            MDs.empty() ? nullptr : MDs.front().second);
2349   } else if (F.isDeclaration()) {
2350     for (const auto &I : MDs) {
2351       // This is used for call site debug information.
2352       AssertDI(I.first != LLVMContext::MD_dbg ||
2353                    !cast<DISubprogram>(I.second)->isDistinct(),
2354                "function declaration may only have a unique !dbg attachment",
2355                &F);
2356       Assert(I.first != LLVMContext::MD_prof,
2357              "function declaration may not have a !prof attachment", &F);
2358 
2359       // Verify the metadata itself.
2360       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2361     }
2362     Assert(!F.hasPersonalityFn(),
2363            "Function declaration shouldn't have a personality routine", &F);
2364   } else {
2365     // Verify that this function (which has a body) is not named "llvm.*".  It
2366     // is not legal to define intrinsics.
2367     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2368 
2369     // Check the entry node
2370     const BasicBlock *Entry = &F.getEntryBlock();
2371     Assert(pred_empty(Entry),
2372            "Entry block to function must not have predecessors!", Entry);
2373 
2374     // The address of the entry block cannot be taken, unless it is dead.
2375     if (Entry->hasAddressTaken()) {
2376       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2377              "blockaddress may not be used with the entry block!", Entry);
2378     }
2379 
2380     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2381     // Visit metadata attachments.
2382     for (const auto &I : MDs) {
2383       // Verify that the attachment is legal.
2384       auto AllowLocs = AreDebugLocsAllowed::No;
2385       switch (I.first) {
2386       default:
2387         break;
2388       case LLVMContext::MD_dbg: {
2389         ++NumDebugAttachments;
2390         AssertDI(NumDebugAttachments == 1,
2391                  "function must have a single !dbg attachment", &F, I.second);
2392         AssertDI(isa<DISubprogram>(I.second),
2393                  "function !dbg attachment must be a subprogram", &F, I.second);
2394         auto *SP = cast<DISubprogram>(I.second);
2395         const Function *&AttachedTo = DISubprogramAttachments[SP];
2396         AssertDI(!AttachedTo || AttachedTo == &F,
2397                  "DISubprogram attached to more than one function", SP, &F);
2398         AttachedTo = &F;
2399         AllowLocs = AreDebugLocsAllowed::Yes;
2400         break;
2401       }
2402       case LLVMContext::MD_prof:
2403         ++NumProfAttachments;
2404         Assert(NumProfAttachments == 1,
2405                "function must have a single !prof attachment", &F, I.second);
2406         break;
2407       }
2408 
2409       // Verify the metadata itself.
2410       visitMDNode(*I.second, AllowLocs);
2411     }
2412   }
2413 
2414   // If this function is actually an intrinsic, verify that it is only used in
2415   // direct call/invokes, never having its "address taken".
2416   // Only do this if the module is materialized, otherwise we don't have all the
2417   // uses.
2418   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2419     const User *U;
2420     if (F.hasAddressTaken(&U))
2421       Assert(false, "Invalid user of intrinsic instruction!", U);
2422   }
2423 
2424   auto *N = F.getSubprogram();
2425   HasDebugInfo = (N != nullptr);
2426   if (!HasDebugInfo)
2427     return;
2428 
2429   // Check that all !dbg attachments lead to back to N.
2430   //
2431   // FIXME: Check this incrementally while visiting !dbg attachments.
2432   // FIXME: Only check when N is the canonical subprogram for F.
2433   SmallPtrSet<const MDNode *, 32> Seen;
2434   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2435     // Be careful about using DILocation here since we might be dealing with
2436     // broken code (this is the Verifier after all).
2437     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2438     if (!DL)
2439       return;
2440     if (!Seen.insert(DL).second)
2441       return;
2442 
2443     Metadata *Parent = DL->getRawScope();
2444     AssertDI(Parent && isa<DILocalScope>(Parent),
2445              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2446              Parent);
2447 
2448     DILocalScope *Scope = DL->getInlinedAtScope();
2449     Assert(Scope, "Failed to find DILocalScope", DL);
2450 
2451     if (!Seen.insert(Scope).second)
2452       return;
2453 
2454     DISubprogram *SP = Scope->getSubprogram();
2455 
2456     // Scope and SP could be the same MDNode and we don't want to skip
2457     // validation in that case
2458     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2459       return;
2460 
2461     AssertDI(SP->describes(&F),
2462              "!dbg attachment points at wrong subprogram for function", N, &F,
2463              &I, DL, Scope, SP);
2464   };
2465   for (auto &BB : F)
2466     for (auto &I : BB) {
2467       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2468       // The llvm.loop annotations also contain two DILocations.
2469       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2470         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2471           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2472       if (BrokenDebugInfo)
2473         return;
2474     }
2475 }
2476 
2477 // verifyBasicBlock - Verify that a basic block is well formed...
2478 //
2479 void Verifier::visitBasicBlock(BasicBlock &BB) {
2480   InstsInThisBlock.clear();
2481 
2482   // Ensure that basic blocks have terminators!
2483   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2484 
2485   // Check constraints that this basic block imposes on all of the PHI nodes in
2486   // it.
2487   if (isa<PHINode>(BB.front())) {
2488     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2489     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2490     llvm::sort(Preds);
2491     for (const PHINode &PN : BB.phis()) {
2492       // Ensure that PHI nodes have at least one entry!
2493       Assert(PN.getNumIncomingValues() != 0,
2494              "PHI nodes must have at least one entry.  If the block is dead, "
2495              "the PHI should be removed!",
2496              &PN);
2497       Assert(PN.getNumIncomingValues() == Preds.size(),
2498              "PHINode should have one entry for each predecessor of its "
2499              "parent basic block!",
2500              &PN);
2501 
2502       // Get and sort all incoming values in the PHI node...
2503       Values.clear();
2504       Values.reserve(PN.getNumIncomingValues());
2505       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2506         Values.push_back(
2507             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2508       llvm::sort(Values);
2509 
2510       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2511         // Check to make sure that if there is more than one entry for a
2512         // particular basic block in this PHI node, that the incoming values are
2513         // all identical.
2514         //
2515         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2516                    Values[i].second == Values[i - 1].second,
2517                "PHI node has multiple entries for the same basic block with "
2518                "different incoming values!",
2519                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2520 
2521         // Check to make sure that the predecessors and PHI node entries are
2522         // matched up.
2523         Assert(Values[i].first == Preds[i],
2524                "PHI node entries do not match predecessors!", &PN,
2525                Values[i].first, Preds[i]);
2526       }
2527     }
2528   }
2529 
2530   // Check that all instructions have their parent pointers set up correctly.
2531   for (auto &I : BB)
2532   {
2533     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2534   }
2535 }
2536 
2537 void Verifier::visitTerminator(Instruction &I) {
2538   // Ensure that terminators only exist at the end of the basic block.
2539   Assert(&I == I.getParent()->getTerminator(),
2540          "Terminator found in the middle of a basic block!", I.getParent());
2541   visitInstruction(I);
2542 }
2543 
2544 void Verifier::visitBranchInst(BranchInst &BI) {
2545   if (BI.isConditional()) {
2546     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2547            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2548   }
2549   visitTerminator(BI);
2550 }
2551 
2552 void Verifier::visitReturnInst(ReturnInst &RI) {
2553   Function *F = RI.getParent()->getParent();
2554   unsigned N = RI.getNumOperands();
2555   if (F->getReturnType()->isVoidTy())
2556     Assert(N == 0,
2557            "Found return instr that returns non-void in Function of void "
2558            "return type!",
2559            &RI, F->getReturnType());
2560   else
2561     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2562            "Function return type does not match operand "
2563            "type of return inst!",
2564            &RI, F->getReturnType());
2565 
2566   // Check to make sure that the return value has necessary properties for
2567   // terminators...
2568   visitTerminator(RI);
2569 }
2570 
2571 void Verifier::visitSwitchInst(SwitchInst &SI) {
2572   // Check to make sure that all of the constants in the switch instruction
2573   // have the same type as the switched-on value.
2574   Type *SwitchTy = SI.getCondition()->getType();
2575   SmallPtrSet<ConstantInt*, 32> Constants;
2576   for (auto &Case : SI.cases()) {
2577     Assert(Case.getCaseValue()->getType() == SwitchTy,
2578            "Switch constants must all be same type as switch value!", &SI);
2579     Assert(Constants.insert(Case.getCaseValue()).second,
2580            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2581   }
2582 
2583   visitTerminator(SI);
2584 }
2585 
2586 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2587   Assert(BI.getAddress()->getType()->isPointerTy(),
2588          "Indirectbr operand must have pointer type!", &BI);
2589   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2590     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2591            "Indirectbr destinations must all have pointer type!", &BI);
2592 
2593   visitTerminator(BI);
2594 }
2595 
2596 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2597   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2598          &CBI);
2599   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2600     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2601            "Callbr successors must all have pointer type!", &CBI);
2602   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2603     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2604            "Using an unescaped label as a callbr argument!", &CBI);
2605     if (isa<BasicBlock>(CBI.getOperand(i)))
2606       for (unsigned j = i + 1; j != e; ++j)
2607         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2608                "Duplicate callbr destination!", &CBI);
2609   }
2610   {
2611     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2612     for (Value *V : CBI.args())
2613       if (auto *BA = dyn_cast<BlockAddress>(V))
2614         ArgBBs.insert(BA->getBasicBlock());
2615     for (BasicBlock *BB : CBI.getIndirectDests())
2616       Assert(ArgBBs.find(BB) != ArgBBs.end(),
2617              "Indirect label missing from arglist.", &CBI);
2618   }
2619 
2620   visitTerminator(CBI);
2621 }
2622 
2623 void Verifier::visitSelectInst(SelectInst &SI) {
2624   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2625                                          SI.getOperand(2)),
2626          "Invalid operands for select instruction!", &SI);
2627 
2628   Assert(SI.getTrueValue()->getType() == SI.getType(),
2629          "Select values must have same type as select instruction!", &SI);
2630   visitInstruction(SI);
2631 }
2632 
2633 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2634 /// a pass, if any exist, it's an error.
2635 ///
2636 void Verifier::visitUserOp1(Instruction &I) {
2637   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2638 }
2639 
2640 void Verifier::visitTruncInst(TruncInst &I) {
2641   // Get the source and destination types
2642   Type *SrcTy = I.getOperand(0)->getType();
2643   Type *DestTy = I.getType();
2644 
2645   // Get the size of the types in bits, we'll need this later
2646   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2647   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2648 
2649   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2650   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2651   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2652          "trunc source and destination must both be a vector or neither", &I);
2653   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2654 
2655   visitInstruction(I);
2656 }
2657 
2658 void Verifier::visitZExtInst(ZExtInst &I) {
2659   // Get the source and destination types
2660   Type *SrcTy = I.getOperand(0)->getType();
2661   Type *DestTy = I.getType();
2662 
2663   // Get the size of the types in bits, we'll need this later
2664   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2665   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2666   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2667          "zext source and destination must both be a vector or neither", &I);
2668   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2669   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2670 
2671   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2672 
2673   visitInstruction(I);
2674 }
2675 
2676 void Verifier::visitSExtInst(SExtInst &I) {
2677   // Get the source and destination types
2678   Type *SrcTy = I.getOperand(0)->getType();
2679   Type *DestTy = I.getType();
2680 
2681   // Get the size of the types in bits, we'll need this later
2682   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2683   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2684 
2685   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2686   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2687   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2688          "sext source and destination must both be a vector or neither", &I);
2689   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2690 
2691   visitInstruction(I);
2692 }
2693 
2694 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2695   // Get the source and destination types
2696   Type *SrcTy = I.getOperand(0)->getType();
2697   Type *DestTy = I.getType();
2698   // Get the size of the types in bits, we'll need this later
2699   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2700   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2701 
2702   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2703   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2704   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2705          "fptrunc source and destination must both be a vector or neither", &I);
2706   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2707 
2708   visitInstruction(I);
2709 }
2710 
2711 void Verifier::visitFPExtInst(FPExtInst &I) {
2712   // Get the source and destination types
2713   Type *SrcTy = I.getOperand(0)->getType();
2714   Type *DestTy = I.getType();
2715 
2716   // Get the size of the types in bits, we'll need this later
2717   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2718   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2719 
2720   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2721   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2722   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2723          "fpext source and destination must both be a vector or neither", &I);
2724   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2725 
2726   visitInstruction(I);
2727 }
2728 
2729 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2730   // Get the source and destination types
2731   Type *SrcTy = I.getOperand(0)->getType();
2732   Type *DestTy = I.getType();
2733 
2734   bool SrcVec = SrcTy->isVectorTy();
2735   bool DstVec = DestTy->isVectorTy();
2736 
2737   Assert(SrcVec == DstVec,
2738          "UIToFP source and dest must both be vector or scalar", &I);
2739   Assert(SrcTy->isIntOrIntVectorTy(),
2740          "UIToFP source must be integer or integer vector", &I);
2741   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2742          &I);
2743 
2744   if (SrcVec && DstVec)
2745     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2746                cast<VectorType>(DestTy)->getNumElements(),
2747            "UIToFP source and dest vector length mismatch", &I);
2748 
2749   visitInstruction(I);
2750 }
2751 
2752 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2753   // Get the source and destination types
2754   Type *SrcTy = I.getOperand(0)->getType();
2755   Type *DestTy = I.getType();
2756 
2757   bool SrcVec = SrcTy->isVectorTy();
2758   bool DstVec = DestTy->isVectorTy();
2759 
2760   Assert(SrcVec == DstVec,
2761          "SIToFP source and dest must both be vector or scalar", &I);
2762   Assert(SrcTy->isIntOrIntVectorTy(),
2763          "SIToFP source must be integer or integer vector", &I);
2764   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2765          &I);
2766 
2767   if (SrcVec && DstVec)
2768     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2769                cast<VectorType>(DestTy)->getNumElements(),
2770            "SIToFP source and dest vector length mismatch", &I);
2771 
2772   visitInstruction(I);
2773 }
2774 
2775 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2776   // Get the source and destination types
2777   Type *SrcTy = I.getOperand(0)->getType();
2778   Type *DestTy = I.getType();
2779 
2780   bool SrcVec = SrcTy->isVectorTy();
2781   bool DstVec = DestTy->isVectorTy();
2782 
2783   Assert(SrcVec == DstVec,
2784          "FPToUI source and dest must both be vector or scalar", &I);
2785   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2786          &I);
2787   Assert(DestTy->isIntOrIntVectorTy(),
2788          "FPToUI result must be integer or integer vector", &I);
2789 
2790   if (SrcVec && DstVec)
2791     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2792                cast<VectorType>(DestTy)->getNumElements(),
2793            "FPToUI source and dest vector length mismatch", &I);
2794 
2795   visitInstruction(I);
2796 }
2797 
2798 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2799   // Get the source and destination types
2800   Type *SrcTy = I.getOperand(0)->getType();
2801   Type *DestTy = I.getType();
2802 
2803   bool SrcVec = SrcTy->isVectorTy();
2804   bool DstVec = DestTy->isVectorTy();
2805 
2806   Assert(SrcVec == DstVec,
2807          "FPToSI source and dest must both be vector or scalar", &I);
2808   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2809          &I);
2810   Assert(DestTy->isIntOrIntVectorTy(),
2811          "FPToSI result must be integer or integer vector", &I);
2812 
2813   if (SrcVec && DstVec)
2814     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2815                cast<VectorType>(DestTy)->getNumElements(),
2816            "FPToSI source and dest vector length mismatch", &I);
2817 
2818   visitInstruction(I);
2819 }
2820 
2821 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2822   // Get the source and destination types
2823   Type *SrcTy = I.getOperand(0)->getType();
2824   Type *DestTy = I.getType();
2825 
2826   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2827 
2828   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2829     Assert(!DL.isNonIntegralPointerType(PTy),
2830            "ptrtoint not supported for non-integral pointers");
2831 
2832   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2833   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2834          &I);
2835 
2836   if (SrcTy->isVectorTy()) {
2837     VectorType *VSrc = cast<VectorType>(SrcTy);
2838     VectorType *VDest = cast<VectorType>(DestTy);
2839     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2840            "PtrToInt Vector width mismatch", &I);
2841   }
2842 
2843   visitInstruction(I);
2844 }
2845 
2846 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2847   // Get the source and destination types
2848   Type *SrcTy = I.getOperand(0)->getType();
2849   Type *DestTy = I.getType();
2850 
2851   Assert(SrcTy->isIntOrIntVectorTy(),
2852          "IntToPtr source must be an integral", &I);
2853   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2854 
2855   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2856     Assert(!DL.isNonIntegralPointerType(PTy),
2857            "inttoptr not supported for non-integral pointers");
2858 
2859   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2860          &I);
2861   if (SrcTy->isVectorTy()) {
2862     VectorType *VSrc = cast<VectorType>(SrcTy);
2863     VectorType *VDest = cast<VectorType>(DestTy);
2864     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2865            "IntToPtr Vector width mismatch", &I);
2866   }
2867   visitInstruction(I);
2868 }
2869 
2870 void Verifier::visitBitCastInst(BitCastInst &I) {
2871   Assert(
2872       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2873       "Invalid bitcast", &I);
2874   visitInstruction(I);
2875 }
2876 
2877 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2878   Type *SrcTy = I.getOperand(0)->getType();
2879   Type *DestTy = I.getType();
2880 
2881   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2882          &I);
2883   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2884          &I);
2885   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2886          "AddrSpaceCast must be between different address spaces", &I);
2887   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
2888     Assert(SrcVTy->getNumElements() ==
2889                cast<VectorType>(DestTy)->getNumElements(),
2890            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2891   visitInstruction(I);
2892 }
2893 
2894 /// visitPHINode - Ensure that a PHI node is well formed.
2895 ///
2896 void Verifier::visitPHINode(PHINode &PN) {
2897   // Ensure that the PHI nodes are all grouped together at the top of the block.
2898   // This can be tested by checking whether the instruction before this is
2899   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2900   // then there is some other instruction before a PHI.
2901   Assert(&PN == &PN.getParent()->front() ||
2902              isa<PHINode>(--BasicBlock::iterator(&PN)),
2903          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2904 
2905   // Check that a PHI doesn't yield a Token.
2906   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2907 
2908   // Check that all of the values of the PHI node have the same type as the
2909   // result, and that the incoming blocks are really basic blocks.
2910   for (Value *IncValue : PN.incoming_values()) {
2911     Assert(PN.getType() == IncValue->getType(),
2912            "PHI node operands are not the same type as the result!", &PN);
2913   }
2914 
2915   // All other PHI node constraints are checked in the visitBasicBlock method.
2916 
2917   visitInstruction(PN);
2918 }
2919 
2920 void Verifier::visitCallBase(CallBase &Call) {
2921   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
2922          "Called function must be a pointer!", Call);
2923   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
2924 
2925   Assert(FPTy->getElementType()->isFunctionTy(),
2926          "Called function is not pointer to function type!", Call);
2927 
2928   Assert(FPTy->getElementType() == Call.getFunctionType(),
2929          "Called function is not the same type as the call!", Call);
2930 
2931   FunctionType *FTy = Call.getFunctionType();
2932 
2933   // Verify that the correct number of arguments are being passed
2934   if (FTy->isVarArg())
2935     Assert(Call.arg_size() >= FTy->getNumParams(),
2936            "Called function requires more parameters than were provided!",
2937            Call);
2938   else
2939     Assert(Call.arg_size() == FTy->getNumParams(),
2940            "Incorrect number of arguments passed to called function!", Call);
2941 
2942   // Verify that all arguments to the call match the function type.
2943   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2944     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2945            "Call parameter type does not match function signature!",
2946            Call.getArgOperand(i), FTy->getParamType(i), Call);
2947 
2948   AttributeList Attrs = Call.getAttributes();
2949 
2950   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2951          "Attribute after last parameter!", Call);
2952 
2953   bool IsIntrinsic = Call.getCalledFunction() &&
2954                      Call.getCalledFunction()->getName().startswith("llvm.");
2955 
2956   Function *Callee =
2957       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
2958 
2959   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2960     // Don't allow speculatable on call sites, unless the underlying function
2961     // declaration is also speculatable.
2962     Assert(Callee && Callee->isSpeculatable(),
2963            "speculatable attribute may not apply to call sites", Call);
2964   }
2965 
2966   if (Attrs.hasAttribute(AttributeList::FunctionIndex,
2967                          Attribute::Preallocated)) {
2968     Assert(Call.getCalledFunction()->getIntrinsicID() ==
2969                Intrinsic::call_preallocated_arg,
2970            "preallocated as a call site attribute can only be on "
2971            "llvm.call.preallocated.arg");
2972   }
2973 
2974   // Verify call attributes.
2975   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2976 
2977   // Conservatively check the inalloca argument.
2978   // We have a bug if we can find that there is an underlying alloca without
2979   // inalloca.
2980   if (Call.hasInAllocaArgument()) {
2981     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2982     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2983       Assert(AI->isUsedWithInAlloca(),
2984              "inalloca argument for call has mismatched alloca", AI, Call);
2985   }
2986 
2987   // For each argument of the callsite, if it has the swifterror argument,
2988   // make sure the underlying alloca/parameter it comes from has a swifterror as
2989   // well.
2990   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2991     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2992       Value *SwiftErrorArg = Call.getArgOperand(i);
2993       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2994         Assert(AI->isSwiftError(),
2995                "swifterror argument for call has mismatched alloca", AI, Call);
2996         continue;
2997       }
2998       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2999       Assert(ArgI,
3000              "swifterror argument should come from an alloca or parameter",
3001              SwiftErrorArg, Call);
3002       Assert(ArgI->hasSwiftErrorAttr(),
3003              "swifterror argument for call has mismatched parameter", ArgI,
3004              Call);
3005     }
3006 
3007     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3008       // Don't allow immarg on call sites, unless the underlying declaration
3009       // also has the matching immarg.
3010       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3011              "immarg may not apply only to call sites",
3012              Call.getArgOperand(i), Call);
3013     }
3014 
3015     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3016       Value *ArgVal = Call.getArgOperand(i);
3017       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3018              "immarg operand has non-immediate parameter", ArgVal, Call);
3019     }
3020 
3021     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3022       Value *ArgVal = Call.getArgOperand(i);
3023       bool hasOB =
3024           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3025       bool isMustTail = Call.isMustTailCall();
3026       Assert(hasOB != isMustTail,
3027              "preallocated operand either requires a preallocated bundle or "
3028              "the call to be musttail (but not both)",
3029              ArgVal, Call);
3030     }
3031   }
3032 
3033   if (FTy->isVarArg()) {
3034     // FIXME? is 'nest' even legal here?
3035     bool SawNest = false;
3036     bool SawReturned = false;
3037 
3038     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3039       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3040         SawNest = true;
3041       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3042         SawReturned = true;
3043     }
3044 
3045     // Check attributes on the varargs part.
3046     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3047       Type *Ty = Call.getArgOperand(Idx)->getType();
3048       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3049       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3050 
3051       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3052         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3053         SawNest = true;
3054       }
3055 
3056       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3057         Assert(!SawReturned, "More than one parameter has attribute returned!",
3058                Call);
3059         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3060                "Incompatible argument and return types for 'returned' "
3061                "attribute",
3062                Call);
3063         SawReturned = true;
3064       }
3065 
3066       // Statepoint intrinsic is vararg but the wrapped function may be not.
3067       // Allow sret here and check the wrapped function in verifyStatepoint.
3068       if (!Call.getCalledFunction() ||
3069           Call.getCalledFunction()->getIntrinsicID() !=
3070               Intrinsic::experimental_gc_statepoint)
3071         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3072                "Attribute 'sret' cannot be used for vararg call arguments!",
3073                Call);
3074 
3075       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3076         Assert(Idx == Call.arg_size() - 1,
3077                "inalloca isn't on the last argument!", Call);
3078     }
3079   }
3080 
3081   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3082   if (!IsIntrinsic) {
3083     for (Type *ParamTy : FTy->params()) {
3084       Assert(!ParamTy->isMetadataTy(),
3085              "Function has metadata parameter but isn't an intrinsic", Call);
3086       Assert(!ParamTy->isTokenTy(),
3087              "Function has token parameter but isn't an intrinsic", Call);
3088     }
3089   }
3090 
3091   // Verify that indirect calls don't return tokens.
3092   if (!Call.getCalledFunction())
3093     Assert(!FTy->getReturnType()->isTokenTy(),
3094            "Return type cannot be token for indirect call!");
3095 
3096   if (Function *F = Call.getCalledFunction())
3097     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3098       visitIntrinsicCall(ID, Call);
3099 
3100   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3101   // most one "gc-transition", at most one "cfguardtarget",
3102   // and at most one "preallocated" operand bundle.
3103   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3104        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3105        FoundPreallocatedBundle = false;
3106   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3107     OperandBundleUse BU = Call.getOperandBundleAt(i);
3108     uint32_t Tag = BU.getTagID();
3109     if (Tag == LLVMContext::OB_deopt) {
3110       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3111       FoundDeoptBundle = true;
3112     } else if (Tag == LLVMContext::OB_gc_transition) {
3113       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3114              Call);
3115       FoundGCTransitionBundle = true;
3116     } else if (Tag == LLVMContext::OB_funclet) {
3117       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3118       FoundFuncletBundle = true;
3119       Assert(BU.Inputs.size() == 1,
3120              "Expected exactly one funclet bundle operand", Call);
3121       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3122              "Funclet bundle operands should correspond to a FuncletPadInst",
3123              Call);
3124     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3125       Assert(!FoundCFGuardTargetBundle,
3126              "Multiple CFGuardTarget operand bundles", Call);
3127       FoundCFGuardTargetBundle = true;
3128       Assert(BU.Inputs.size() == 1,
3129              "Expected exactly one cfguardtarget bundle operand", Call);
3130     } else if (Tag == LLVMContext::OB_preallocated) {
3131       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3132              Call);
3133       FoundPreallocatedBundle = true;
3134       Assert(BU.Inputs.size() == 1,
3135              "Expected exactly one preallocated bundle operand", Call);
3136       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3137       Assert(Input &&
3138                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3139              "\"preallocated\" argument must be a token from "
3140              "llvm.call.preallocated.setup",
3141              Call);
3142     }
3143   }
3144 
3145   // Verify that each inlinable callsite of a debug-info-bearing function in a
3146   // debug-info-bearing function has a debug location attached to it. Failure to
3147   // do so causes assertion failures when the inliner sets up inline scope info.
3148   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3149       Call.getCalledFunction()->getSubprogram())
3150     AssertDI(Call.getDebugLoc(),
3151              "inlinable function call in a function with "
3152              "debug info must have a !dbg location",
3153              Call);
3154 
3155   visitInstruction(Call);
3156 }
3157 
3158 /// Two types are "congruent" if they are identical, or if they are both pointer
3159 /// types with different pointee types and the same address space.
3160 static bool isTypeCongruent(Type *L, Type *R) {
3161   if (L == R)
3162     return true;
3163   PointerType *PL = dyn_cast<PointerType>(L);
3164   PointerType *PR = dyn_cast<PointerType>(R);
3165   if (!PL || !PR)
3166     return false;
3167   return PL->getAddressSpace() == PR->getAddressSpace();
3168 }
3169 
3170 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3171   static const Attribute::AttrKind ABIAttrs[] = {
3172       Attribute::StructRet,   Attribute::ByVal,     Attribute::InAlloca,
3173       Attribute::InReg,       Attribute::SwiftSelf, Attribute::SwiftError,
3174       Attribute::Preallocated};
3175   AttrBuilder Copy;
3176   for (auto AK : ABIAttrs) {
3177     if (Attrs.hasParamAttribute(I, AK))
3178       Copy.addAttribute(AK);
3179   }
3180   // `align` is ABI-affecting only in combination with `byval`.
3181   if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3182       Attrs.hasParamAttribute(I, Attribute::ByVal))
3183     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3184   return Copy;
3185 }
3186 
3187 void Verifier::verifyMustTailCall(CallInst &CI) {
3188   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3189 
3190   // - The caller and callee prototypes must match.  Pointer types of
3191   //   parameters or return types may differ in pointee type, but not
3192   //   address space.
3193   Function *F = CI.getParent()->getParent();
3194   FunctionType *CallerTy = F->getFunctionType();
3195   FunctionType *CalleeTy = CI.getFunctionType();
3196   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3197     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3198            "cannot guarantee tail call due to mismatched parameter counts",
3199            &CI);
3200     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3201       Assert(
3202           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3203           "cannot guarantee tail call due to mismatched parameter types", &CI);
3204     }
3205   }
3206   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3207          "cannot guarantee tail call due to mismatched varargs", &CI);
3208   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3209          "cannot guarantee tail call due to mismatched return types", &CI);
3210 
3211   // - The calling conventions of the caller and callee must match.
3212   Assert(F->getCallingConv() == CI.getCallingConv(),
3213          "cannot guarantee tail call due to mismatched calling conv", &CI);
3214 
3215   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3216   //   returned, preallocated, and inalloca, must match.
3217   AttributeList CallerAttrs = F->getAttributes();
3218   AttributeList CalleeAttrs = CI.getAttributes();
3219   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3220     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3221     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3222     Assert(CallerABIAttrs == CalleeABIAttrs,
3223            "cannot guarantee tail call due to mismatched ABI impacting "
3224            "function attributes",
3225            &CI, CI.getOperand(I));
3226   }
3227 
3228   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3229   //   or a pointer bitcast followed by a ret instruction.
3230   // - The ret instruction must return the (possibly bitcasted) value
3231   //   produced by the call or void.
3232   Value *RetVal = &CI;
3233   Instruction *Next = CI.getNextNode();
3234 
3235   // Handle the optional bitcast.
3236   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3237     Assert(BI->getOperand(0) == RetVal,
3238            "bitcast following musttail call must use the call", BI);
3239     RetVal = BI;
3240     Next = BI->getNextNode();
3241   }
3242 
3243   // Check the return.
3244   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3245   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3246          &CI);
3247   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3248          "musttail call result must be returned", Ret);
3249 }
3250 
3251 void Verifier::visitCallInst(CallInst &CI) {
3252   visitCallBase(CI);
3253 
3254   if (CI.isMustTailCall())
3255     verifyMustTailCall(CI);
3256 }
3257 
3258 void Verifier::visitInvokeInst(InvokeInst &II) {
3259   visitCallBase(II);
3260 
3261   // Verify that the first non-PHI instruction of the unwind destination is an
3262   // exception handling instruction.
3263   Assert(
3264       II.getUnwindDest()->isEHPad(),
3265       "The unwind destination does not have an exception handling instruction!",
3266       &II);
3267 
3268   visitTerminator(II);
3269 }
3270 
3271 /// visitUnaryOperator - Check the argument to the unary operator.
3272 ///
3273 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3274   Assert(U.getType() == U.getOperand(0)->getType(),
3275          "Unary operators must have same type for"
3276          "operands and result!",
3277          &U);
3278 
3279   switch (U.getOpcode()) {
3280   // Check that floating-point arithmetic operators are only used with
3281   // floating-point operands.
3282   case Instruction::FNeg:
3283     Assert(U.getType()->isFPOrFPVectorTy(),
3284            "FNeg operator only works with float types!", &U);
3285     break;
3286   default:
3287     llvm_unreachable("Unknown UnaryOperator opcode!");
3288   }
3289 
3290   visitInstruction(U);
3291 }
3292 
3293 /// visitBinaryOperator - Check that both arguments to the binary operator are
3294 /// of the same type!
3295 ///
3296 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3297   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3298          "Both operands to a binary operator are not of the same type!", &B);
3299 
3300   switch (B.getOpcode()) {
3301   // Check that integer arithmetic operators are only used with
3302   // integral operands.
3303   case Instruction::Add:
3304   case Instruction::Sub:
3305   case Instruction::Mul:
3306   case Instruction::SDiv:
3307   case Instruction::UDiv:
3308   case Instruction::SRem:
3309   case Instruction::URem:
3310     Assert(B.getType()->isIntOrIntVectorTy(),
3311            "Integer arithmetic operators only work with integral types!", &B);
3312     Assert(B.getType() == B.getOperand(0)->getType(),
3313            "Integer arithmetic operators must have same type "
3314            "for operands and result!",
3315            &B);
3316     break;
3317   // Check that floating-point arithmetic operators are only used with
3318   // floating-point operands.
3319   case Instruction::FAdd:
3320   case Instruction::FSub:
3321   case Instruction::FMul:
3322   case Instruction::FDiv:
3323   case Instruction::FRem:
3324     Assert(B.getType()->isFPOrFPVectorTy(),
3325            "Floating-point arithmetic operators only work with "
3326            "floating-point types!",
3327            &B);
3328     Assert(B.getType() == B.getOperand(0)->getType(),
3329            "Floating-point arithmetic operators must have same type "
3330            "for operands and result!",
3331            &B);
3332     break;
3333   // Check that logical operators are only used with integral operands.
3334   case Instruction::And:
3335   case Instruction::Or:
3336   case Instruction::Xor:
3337     Assert(B.getType()->isIntOrIntVectorTy(),
3338            "Logical operators only work with integral types!", &B);
3339     Assert(B.getType() == B.getOperand(0)->getType(),
3340            "Logical operators must have same type for operands and result!",
3341            &B);
3342     break;
3343   case Instruction::Shl:
3344   case Instruction::LShr:
3345   case Instruction::AShr:
3346     Assert(B.getType()->isIntOrIntVectorTy(),
3347            "Shifts only work with integral types!", &B);
3348     Assert(B.getType() == B.getOperand(0)->getType(),
3349            "Shift return type must be same as operands!", &B);
3350     break;
3351   default:
3352     llvm_unreachable("Unknown BinaryOperator opcode!");
3353   }
3354 
3355   visitInstruction(B);
3356 }
3357 
3358 void Verifier::visitICmpInst(ICmpInst &IC) {
3359   // Check that the operands are the same type
3360   Type *Op0Ty = IC.getOperand(0)->getType();
3361   Type *Op1Ty = IC.getOperand(1)->getType();
3362   Assert(Op0Ty == Op1Ty,
3363          "Both operands to ICmp instruction are not of the same type!", &IC);
3364   // Check that the operands are the right type
3365   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3366          "Invalid operand types for ICmp instruction", &IC);
3367   // Check that the predicate is valid.
3368   Assert(IC.isIntPredicate(),
3369          "Invalid predicate in ICmp instruction!", &IC);
3370 
3371   visitInstruction(IC);
3372 }
3373 
3374 void Verifier::visitFCmpInst(FCmpInst &FC) {
3375   // Check that the operands are the same type
3376   Type *Op0Ty = FC.getOperand(0)->getType();
3377   Type *Op1Ty = FC.getOperand(1)->getType();
3378   Assert(Op0Ty == Op1Ty,
3379          "Both operands to FCmp instruction are not of the same type!", &FC);
3380   // Check that the operands are the right type
3381   Assert(Op0Ty->isFPOrFPVectorTy(),
3382          "Invalid operand types for FCmp instruction", &FC);
3383   // Check that the predicate is valid.
3384   Assert(FC.isFPPredicate(),
3385          "Invalid predicate in FCmp instruction!", &FC);
3386 
3387   visitInstruction(FC);
3388 }
3389 
3390 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3391   Assert(
3392       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3393       "Invalid extractelement operands!", &EI);
3394   visitInstruction(EI);
3395 }
3396 
3397 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3398   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3399                                             IE.getOperand(2)),
3400          "Invalid insertelement operands!", &IE);
3401   visitInstruction(IE);
3402 }
3403 
3404 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3405   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3406                                             SV.getShuffleMask()),
3407          "Invalid shufflevector operands!", &SV);
3408   visitInstruction(SV);
3409 }
3410 
3411 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3412   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3413 
3414   Assert(isa<PointerType>(TargetTy),
3415          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3416   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3417 
3418   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3419   Assert(all_of(
3420       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3421       "GEP indexes must be integers", &GEP);
3422   Type *ElTy =
3423       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3424   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3425 
3426   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3427              GEP.getResultElementType() == ElTy,
3428          "GEP is not of right type for indices!", &GEP, ElTy);
3429 
3430   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3431     // Additional checks for vector GEPs.
3432     ElementCount GEPWidth = GEPVTy->getElementCount();
3433     if (GEP.getPointerOperandType()->isVectorTy())
3434       Assert(
3435           GEPWidth ==
3436               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3437           "Vector GEP result width doesn't match operand's", &GEP);
3438     for (Value *Idx : Idxs) {
3439       Type *IndexTy = Idx->getType();
3440       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3441         ElementCount IndexWidth = IndexVTy->getElementCount();
3442         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3443       }
3444       Assert(IndexTy->isIntOrIntVectorTy(),
3445              "All GEP indices should be of integer type");
3446     }
3447   }
3448 
3449   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3450     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3451            "GEP address space doesn't match type", &GEP);
3452   }
3453 
3454   visitInstruction(GEP);
3455 }
3456 
3457 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3458   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3459 }
3460 
3461 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3462   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3463          "precondition violation");
3464 
3465   unsigned NumOperands = Range->getNumOperands();
3466   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3467   unsigned NumRanges = NumOperands / 2;
3468   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3469 
3470   ConstantRange LastRange(1, true); // Dummy initial value
3471   for (unsigned i = 0; i < NumRanges; ++i) {
3472     ConstantInt *Low =
3473         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3474     Assert(Low, "The lower limit must be an integer!", Low);
3475     ConstantInt *High =
3476         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3477     Assert(High, "The upper limit must be an integer!", High);
3478     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3479            "Range types must match instruction type!", &I);
3480 
3481     APInt HighV = High->getValue();
3482     APInt LowV = Low->getValue();
3483     ConstantRange CurRange(LowV, HighV);
3484     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3485            "Range must not be empty!", Range);
3486     if (i != 0) {
3487       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3488              "Intervals are overlapping", Range);
3489       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3490              Range);
3491       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3492              Range);
3493     }
3494     LastRange = ConstantRange(LowV, HighV);
3495   }
3496   if (NumRanges > 2) {
3497     APInt FirstLow =
3498         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3499     APInt FirstHigh =
3500         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3501     ConstantRange FirstRange(FirstLow, FirstHigh);
3502     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3503            "Intervals are overlapping", Range);
3504     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3505            Range);
3506   }
3507 }
3508 
3509 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3510   unsigned Size = DL.getTypeSizeInBits(Ty);
3511   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3512   Assert(!(Size & (Size - 1)),
3513          "atomic memory access' operand must have a power-of-two size", Ty, I);
3514 }
3515 
3516 void Verifier::visitLoadInst(LoadInst &LI) {
3517   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3518   Assert(PTy, "Load operand must be a pointer.", &LI);
3519   Type *ElTy = LI.getType();
3520   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3521          "huge alignment values are unsupported", &LI);
3522   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3523   if (LI.isAtomic()) {
3524     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3525                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3526            "Load cannot have Release ordering", &LI);
3527     Assert(LI.getAlignment() != 0,
3528            "Atomic load must specify explicit alignment", &LI);
3529     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3530            "atomic load operand must have integer, pointer, or floating point "
3531            "type!",
3532            ElTy, &LI);
3533     checkAtomicMemAccessSize(ElTy, &LI);
3534   } else {
3535     Assert(LI.getSyncScopeID() == SyncScope::System,
3536            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3537   }
3538 
3539   visitInstruction(LI);
3540 }
3541 
3542 void Verifier::visitStoreInst(StoreInst &SI) {
3543   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3544   Assert(PTy, "Store operand must be a pointer.", &SI);
3545   Type *ElTy = PTy->getElementType();
3546   Assert(ElTy == SI.getOperand(0)->getType(),
3547          "Stored value type does not match pointer operand type!", &SI, ElTy);
3548   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3549          "huge alignment values are unsupported", &SI);
3550   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3551   if (SI.isAtomic()) {
3552     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3553                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3554            "Store cannot have Acquire ordering", &SI);
3555     Assert(SI.getAlignment() != 0,
3556            "Atomic store must specify explicit alignment", &SI);
3557     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3558            "atomic store operand must have integer, pointer, or floating point "
3559            "type!",
3560            ElTy, &SI);
3561     checkAtomicMemAccessSize(ElTy, &SI);
3562   } else {
3563     Assert(SI.getSyncScopeID() == SyncScope::System,
3564            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3565   }
3566   visitInstruction(SI);
3567 }
3568 
3569 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3570 void Verifier::verifySwiftErrorCall(CallBase &Call,
3571                                     const Value *SwiftErrorVal) {
3572   unsigned Idx = 0;
3573   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3574     if (*I == SwiftErrorVal) {
3575       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3576              "swifterror value when used in a callsite should be marked "
3577              "with swifterror attribute",
3578              SwiftErrorVal, Call);
3579     }
3580   }
3581 }
3582 
3583 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3584   // Check that swifterror value is only used by loads, stores, or as
3585   // a swifterror argument.
3586   for (const User *U : SwiftErrorVal->users()) {
3587     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3588            isa<InvokeInst>(U),
3589            "swifterror value can only be loaded and stored from, or "
3590            "as a swifterror argument!",
3591            SwiftErrorVal, U);
3592     // If it is used by a store, check it is the second operand.
3593     if (auto StoreI = dyn_cast<StoreInst>(U))
3594       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3595              "swifterror value should be the second operand when used "
3596              "by stores", SwiftErrorVal, U);
3597     if (auto *Call = dyn_cast<CallBase>(U))
3598       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3599   }
3600 }
3601 
3602 void Verifier::visitAllocaInst(AllocaInst &AI) {
3603   SmallPtrSet<Type*, 4> Visited;
3604   PointerType *PTy = AI.getType();
3605   // TODO: Relax this restriction?
3606   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3607          "Allocation instruction pointer not in the stack address space!",
3608          &AI);
3609   Assert(AI.getAllocatedType()->isSized(&Visited),
3610          "Cannot allocate unsized type", &AI);
3611   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3612          "Alloca array size must have integer type", &AI);
3613   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3614          "huge alignment values are unsupported", &AI);
3615 
3616   if (AI.isSwiftError()) {
3617     verifySwiftErrorValue(&AI);
3618   }
3619 
3620   visitInstruction(AI);
3621 }
3622 
3623 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3624 
3625   // FIXME: more conditions???
3626   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3627          "cmpxchg instructions must be atomic.", &CXI);
3628   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3629          "cmpxchg instructions must be atomic.", &CXI);
3630   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3631          "cmpxchg instructions cannot be unordered.", &CXI);
3632   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3633          "cmpxchg instructions cannot be unordered.", &CXI);
3634   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3635          "cmpxchg instructions failure argument shall be no stronger than the "
3636          "success argument",
3637          &CXI);
3638   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3639              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3640          "cmpxchg failure ordering cannot include release semantics", &CXI);
3641 
3642   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3643   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3644   Type *ElTy = PTy->getElementType();
3645   Assert(ElTy->isIntOrPtrTy(),
3646          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3647   checkAtomicMemAccessSize(ElTy, &CXI);
3648   Assert(ElTy == CXI.getOperand(1)->getType(),
3649          "Expected value type does not match pointer operand type!", &CXI,
3650          ElTy);
3651   Assert(ElTy == CXI.getOperand(2)->getType(),
3652          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3653   visitInstruction(CXI);
3654 }
3655 
3656 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3657   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3658          "atomicrmw instructions must be atomic.", &RMWI);
3659   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3660          "atomicrmw instructions cannot be unordered.", &RMWI);
3661   auto Op = RMWI.getOperation();
3662   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3663   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3664   Type *ElTy = PTy->getElementType();
3665   if (Op == AtomicRMWInst::Xchg) {
3666     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3667            AtomicRMWInst::getOperationName(Op) +
3668            " operand must have integer or floating point type!",
3669            &RMWI, ElTy);
3670   } else if (AtomicRMWInst::isFPOperation(Op)) {
3671     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3672            AtomicRMWInst::getOperationName(Op) +
3673            " operand must have floating point type!",
3674            &RMWI, ElTy);
3675   } else {
3676     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3677            AtomicRMWInst::getOperationName(Op) +
3678            " operand must have integer type!",
3679            &RMWI, ElTy);
3680   }
3681   checkAtomicMemAccessSize(ElTy, &RMWI);
3682   Assert(ElTy == RMWI.getOperand(1)->getType(),
3683          "Argument value type does not match pointer operand type!", &RMWI,
3684          ElTy);
3685   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3686          "Invalid binary operation!", &RMWI);
3687   visitInstruction(RMWI);
3688 }
3689 
3690 void Verifier::visitFenceInst(FenceInst &FI) {
3691   const AtomicOrdering Ordering = FI.getOrdering();
3692   Assert(Ordering == AtomicOrdering::Acquire ||
3693              Ordering == AtomicOrdering::Release ||
3694              Ordering == AtomicOrdering::AcquireRelease ||
3695              Ordering == AtomicOrdering::SequentiallyConsistent,
3696          "fence instructions may only have acquire, release, acq_rel, or "
3697          "seq_cst ordering.",
3698          &FI);
3699   visitInstruction(FI);
3700 }
3701 
3702 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3703   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3704                                           EVI.getIndices()) == EVI.getType(),
3705          "Invalid ExtractValueInst operands!", &EVI);
3706 
3707   visitInstruction(EVI);
3708 }
3709 
3710 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3711   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3712                                           IVI.getIndices()) ==
3713              IVI.getOperand(1)->getType(),
3714          "Invalid InsertValueInst operands!", &IVI);
3715 
3716   visitInstruction(IVI);
3717 }
3718 
3719 static Value *getParentPad(Value *EHPad) {
3720   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3721     return FPI->getParentPad();
3722 
3723   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3724 }
3725 
3726 void Verifier::visitEHPadPredecessors(Instruction &I) {
3727   assert(I.isEHPad());
3728 
3729   BasicBlock *BB = I.getParent();
3730   Function *F = BB->getParent();
3731 
3732   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3733 
3734   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3735     // The landingpad instruction defines its parent as a landing pad block. The
3736     // landing pad block may be branched to only by the unwind edge of an
3737     // invoke.
3738     for (BasicBlock *PredBB : predecessors(BB)) {
3739       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3740       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3741              "Block containing LandingPadInst must be jumped to "
3742              "only by the unwind edge of an invoke.",
3743              LPI);
3744     }
3745     return;
3746   }
3747   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3748     if (!pred_empty(BB))
3749       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3750              "Block containg CatchPadInst must be jumped to "
3751              "only by its catchswitch.",
3752              CPI);
3753     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3754            "Catchswitch cannot unwind to one of its catchpads",
3755            CPI->getCatchSwitch(), CPI);
3756     return;
3757   }
3758 
3759   // Verify that each pred has a legal terminator with a legal to/from EH
3760   // pad relationship.
3761   Instruction *ToPad = &I;
3762   Value *ToPadParent = getParentPad(ToPad);
3763   for (BasicBlock *PredBB : predecessors(BB)) {
3764     Instruction *TI = PredBB->getTerminator();
3765     Value *FromPad;
3766     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3767       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3768              "EH pad must be jumped to via an unwind edge", ToPad, II);
3769       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3770         FromPad = Bundle->Inputs[0];
3771       else
3772         FromPad = ConstantTokenNone::get(II->getContext());
3773     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3774       FromPad = CRI->getOperand(0);
3775       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3776     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3777       FromPad = CSI;
3778     } else {
3779       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3780     }
3781 
3782     // The edge may exit from zero or more nested pads.
3783     SmallSet<Value *, 8> Seen;
3784     for (;; FromPad = getParentPad(FromPad)) {
3785       Assert(FromPad != ToPad,
3786              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3787       if (FromPad == ToPadParent) {
3788         // This is a legal unwind edge.
3789         break;
3790       }
3791       Assert(!isa<ConstantTokenNone>(FromPad),
3792              "A single unwind edge may only enter one EH pad", TI);
3793       Assert(Seen.insert(FromPad).second,
3794              "EH pad jumps through a cycle of pads", FromPad);
3795     }
3796   }
3797 }
3798 
3799 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3800   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3801   // isn't a cleanup.
3802   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3803          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3804 
3805   visitEHPadPredecessors(LPI);
3806 
3807   if (!LandingPadResultTy)
3808     LandingPadResultTy = LPI.getType();
3809   else
3810     Assert(LandingPadResultTy == LPI.getType(),
3811            "The landingpad instruction should have a consistent result type "
3812            "inside a function.",
3813            &LPI);
3814 
3815   Function *F = LPI.getParent()->getParent();
3816   Assert(F->hasPersonalityFn(),
3817          "LandingPadInst needs to be in a function with a personality.", &LPI);
3818 
3819   // The landingpad instruction must be the first non-PHI instruction in the
3820   // block.
3821   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3822          "LandingPadInst not the first non-PHI instruction in the block.",
3823          &LPI);
3824 
3825   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3826     Constant *Clause = LPI.getClause(i);
3827     if (LPI.isCatch(i)) {
3828       Assert(isa<PointerType>(Clause->getType()),
3829              "Catch operand does not have pointer type!", &LPI);
3830     } else {
3831       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3832       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3833              "Filter operand is not an array of constants!", &LPI);
3834     }
3835   }
3836 
3837   visitInstruction(LPI);
3838 }
3839 
3840 void Verifier::visitResumeInst(ResumeInst &RI) {
3841   Assert(RI.getFunction()->hasPersonalityFn(),
3842          "ResumeInst needs to be in a function with a personality.", &RI);
3843 
3844   if (!LandingPadResultTy)
3845     LandingPadResultTy = RI.getValue()->getType();
3846   else
3847     Assert(LandingPadResultTy == RI.getValue()->getType(),
3848            "The resume instruction should have a consistent result type "
3849            "inside a function.",
3850            &RI);
3851 
3852   visitTerminator(RI);
3853 }
3854 
3855 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3856   BasicBlock *BB = CPI.getParent();
3857 
3858   Function *F = BB->getParent();
3859   Assert(F->hasPersonalityFn(),
3860          "CatchPadInst needs to be in a function with a personality.", &CPI);
3861 
3862   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3863          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3864          CPI.getParentPad());
3865 
3866   // The catchpad instruction must be the first non-PHI instruction in the
3867   // block.
3868   Assert(BB->getFirstNonPHI() == &CPI,
3869          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3870 
3871   visitEHPadPredecessors(CPI);
3872   visitFuncletPadInst(CPI);
3873 }
3874 
3875 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3876   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3877          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3878          CatchReturn.getOperand(0));
3879 
3880   visitTerminator(CatchReturn);
3881 }
3882 
3883 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3884   BasicBlock *BB = CPI.getParent();
3885 
3886   Function *F = BB->getParent();
3887   Assert(F->hasPersonalityFn(),
3888          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3889 
3890   // The cleanuppad instruction must be the first non-PHI instruction in the
3891   // block.
3892   Assert(BB->getFirstNonPHI() == &CPI,
3893          "CleanupPadInst not the first non-PHI instruction in the block.",
3894          &CPI);
3895 
3896   auto *ParentPad = CPI.getParentPad();
3897   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3898          "CleanupPadInst has an invalid parent.", &CPI);
3899 
3900   visitEHPadPredecessors(CPI);
3901   visitFuncletPadInst(CPI);
3902 }
3903 
3904 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3905   User *FirstUser = nullptr;
3906   Value *FirstUnwindPad = nullptr;
3907   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3908   SmallSet<FuncletPadInst *, 8> Seen;
3909 
3910   while (!Worklist.empty()) {
3911     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3912     Assert(Seen.insert(CurrentPad).second,
3913            "FuncletPadInst must not be nested within itself", CurrentPad);
3914     Value *UnresolvedAncestorPad = nullptr;
3915     for (User *U : CurrentPad->users()) {
3916       BasicBlock *UnwindDest;
3917       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3918         UnwindDest = CRI->getUnwindDest();
3919       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3920         // We allow catchswitch unwind to caller to nest
3921         // within an outer pad that unwinds somewhere else,
3922         // because catchswitch doesn't have a nounwind variant.
3923         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3924         if (CSI->unwindsToCaller())
3925           continue;
3926         UnwindDest = CSI->getUnwindDest();
3927       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3928         UnwindDest = II->getUnwindDest();
3929       } else if (isa<CallInst>(U)) {
3930         // Calls which don't unwind may be found inside funclet
3931         // pads that unwind somewhere else.  We don't *require*
3932         // such calls to be annotated nounwind.
3933         continue;
3934       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3935         // The unwind dest for a cleanup can only be found by
3936         // recursive search.  Add it to the worklist, and we'll
3937         // search for its first use that determines where it unwinds.
3938         Worklist.push_back(CPI);
3939         continue;
3940       } else {
3941         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3942         continue;
3943       }
3944 
3945       Value *UnwindPad;
3946       bool ExitsFPI;
3947       if (UnwindDest) {
3948         UnwindPad = UnwindDest->getFirstNonPHI();
3949         if (!cast<Instruction>(UnwindPad)->isEHPad())
3950           continue;
3951         Value *UnwindParent = getParentPad(UnwindPad);
3952         // Ignore unwind edges that don't exit CurrentPad.
3953         if (UnwindParent == CurrentPad)
3954           continue;
3955         // Determine whether the original funclet pad is exited,
3956         // and if we are scanning nested pads determine how many
3957         // of them are exited so we can stop searching their
3958         // children.
3959         Value *ExitedPad = CurrentPad;
3960         ExitsFPI = false;
3961         do {
3962           if (ExitedPad == &FPI) {
3963             ExitsFPI = true;
3964             // Now we can resolve any ancestors of CurrentPad up to
3965             // FPI, but not including FPI since we need to make sure
3966             // to check all direct users of FPI for consistency.
3967             UnresolvedAncestorPad = &FPI;
3968             break;
3969           }
3970           Value *ExitedParent = getParentPad(ExitedPad);
3971           if (ExitedParent == UnwindParent) {
3972             // ExitedPad is the ancestor-most pad which this unwind
3973             // edge exits, so we can resolve up to it, meaning that
3974             // ExitedParent is the first ancestor still unresolved.
3975             UnresolvedAncestorPad = ExitedParent;
3976             break;
3977           }
3978           ExitedPad = ExitedParent;
3979         } while (!isa<ConstantTokenNone>(ExitedPad));
3980       } else {
3981         // Unwinding to caller exits all pads.
3982         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3983         ExitsFPI = true;
3984         UnresolvedAncestorPad = &FPI;
3985       }
3986 
3987       if (ExitsFPI) {
3988         // This unwind edge exits FPI.  Make sure it agrees with other
3989         // such edges.
3990         if (FirstUser) {
3991           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3992                                               "pad must have the same unwind "
3993                                               "dest",
3994                  &FPI, U, FirstUser);
3995         } else {
3996           FirstUser = U;
3997           FirstUnwindPad = UnwindPad;
3998           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3999           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4000               getParentPad(UnwindPad) == getParentPad(&FPI))
4001             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4002         }
4003       }
4004       // Make sure we visit all uses of FPI, but for nested pads stop as
4005       // soon as we know where they unwind to.
4006       if (CurrentPad != &FPI)
4007         break;
4008     }
4009     if (UnresolvedAncestorPad) {
4010       if (CurrentPad == UnresolvedAncestorPad) {
4011         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4012         // we've found an unwind edge that exits it, because we need to verify
4013         // all direct uses of FPI.
4014         assert(CurrentPad == &FPI);
4015         continue;
4016       }
4017       // Pop off the worklist any nested pads that we've found an unwind
4018       // destination for.  The pads on the worklist are the uncles,
4019       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4020       // for all ancestors of CurrentPad up to but not including
4021       // UnresolvedAncestorPad.
4022       Value *ResolvedPad = CurrentPad;
4023       while (!Worklist.empty()) {
4024         Value *UnclePad = Worklist.back();
4025         Value *AncestorPad = getParentPad(UnclePad);
4026         // Walk ResolvedPad up the ancestor list until we either find the
4027         // uncle's parent or the last resolved ancestor.
4028         while (ResolvedPad != AncestorPad) {
4029           Value *ResolvedParent = getParentPad(ResolvedPad);
4030           if (ResolvedParent == UnresolvedAncestorPad) {
4031             break;
4032           }
4033           ResolvedPad = ResolvedParent;
4034         }
4035         // If the resolved ancestor search didn't find the uncle's parent,
4036         // then the uncle is not yet resolved.
4037         if (ResolvedPad != AncestorPad)
4038           break;
4039         // This uncle is resolved, so pop it from the worklist.
4040         Worklist.pop_back();
4041       }
4042     }
4043   }
4044 
4045   if (FirstUnwindPad) {
4046     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4047       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4048       Value *SwitchUnwindPad;
4049       if (SwitchUnwindDest)
4050         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4051       else
4052         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4053       Assert(SwitchUnwindPad == FirstUnwindPad,
4054              "Unwind edges out of a catch must have the same unwind dest as "
4055              "the parent catchswitch",
4056              &FPI, FirstUser, CatchSwitch);
4057     }
4058   }
4059 
4060   visitInstruction(FPI);
4061 }
4062 
4063 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4064   BasicBlock *BB = CatchSwitch.getParent();
4065 
4066   Function *F = BB->getParent();
4067   Assert(F->hasPersonalityFn(),
4068          "CatchSwitchInst needs to be in a function with a personality.",
4069          &CatchSwitch);
4070 
4071   // The catchswitch instruction must be the first non-PHI instruction in the
4072   // block.
4073   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4074          "CatchSwitchInst not the first non-PHI instruction in the block.",
4075          &CatchSwitch);
4076 
4077   auto *ParentPad = CatchSwitch.getParentPad();
4078   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4079          "CatchSwitchInst has an invalid parent.", ParentPad);
4080 
4081   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4082     Instruction *I = UnwindDest->getFirstNonPHI();
4083     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4084            "CatchSwitchInst must unwind to an EH block which is not a "
4085            "landingpad.",
4086            &CatchSwitch);
4087 
4088     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4089     if (getParentPad(I) == ParentPad)
4090       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4091   }
4092 
4093   Assert(CatchSwitch.getNumHandlers() != 0,
4094          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4095 
4096   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4097     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4098            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4099   }
4100 
4101   visitEHPadPredecessors(CatchSwitch);
4102   visitTerminator(CatchSwitch);
4103 }
4104 
4105 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4106   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4107          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4108          CRI.getOperand(0));
4109 
4110   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4111     Instruction *I = UnwindDest->getFirstNonPHI();
4112     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4113            "CleanupReturnInst must unwind to an EH block which is not a "
4114            "landingpad.",
4115            &CRI);
4116   }
4117 
4118   visitTerminator(CRI);
4119 }
4120 
4121 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4122   Instruction *Op = cast<Instruction>(I.getOperand(i));
4123   // If the we have an invalid invoke, don't try to compute the dominance.
4124   // We already reject it in the invoke specific checks and the dominance
4125   // computation doesn't handle multiple edges.
4126   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4127     if (II->getNormalDest() == II->getUnwindDest())
4128       return;
4129   }
4130 
4131   // Quick check whether the def has already been encountered in the same block.
4132   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4133   // uses are defined to happen on the incoming edge, not at the instruction.
4134   //
4135   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4136   // wrapping an SSA value, assert that we've already encountered it.  See
4137   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4138   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4139     return;
4140 
4141   const Use &U = I.getOperandUse(i);
4142   Assert(DT.dominates(Op, U),
4143          "Instruction does not dominate all uses!", Op, &I);
4144 }
4145 
4146 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4147   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4148          "apply only to pointer types", &I);
4149   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4150          "dereferenceable, dereferenceable_or_null apply only to load"
4151          " and inttoptr instructions, use attributes for calls or invokes", &I);
4152   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4153          "take one operand!", &I);
4154   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4155   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4156          "dereferenceable_or_null metadata value must be an i64!", &I);
4157 }
4158 
4159 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4160   Assert(MD->getNumOperands() >= 2,
4161          "!prof annotations should have no less than 2 operands", MD);
4162 
4163   // Check first operand.
4164   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4165   Assert(isa<MDString>(MD->getOperand(0)),
4166          "expected string with name of the !prof annotation", MD);
4167   MDString *MDS = cast<MDString>(MD->getOperand(0));
4168   StringRef ProfName = MDS->getString();
4169 
4170   // Check consistency of !prof branch_weights metadata.
4171   if (ProfName.equals("branch_weights")) {
4172     unsigned ExpectedNumOperands = 0;
4173     if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4174       ExpectedNumOperands = BI->getNumSuccessors();
4175     else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4176       ExpectedNumOperands = SI->getNumSuccessors();
4177     else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
4178       ExpectedNumOperands = 1;
4179     else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4180       ExpectedNumOperands = IBI->getNumDestinations();
4181     else if (isa<SelectInst>(&I))
4182       ExpectedNumOperands = 2;
4183     else
4184       CheckFailed("!prof branch_weights are not allowed for this instruction",
4185                   MD);
4186 
4187     Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4188            "Wrong number of operands", MD);
4189     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4190       auto &MDO = MD->getOperand(i);
4191       Assert(MDO, "second operand should not be null", MD);
4192       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4193              "!prof brunch_weights operand is not a const int");
4194     }
4195   }
4196 }
4197 
4198 /// verifyInstruction - Verify that an instruction is well formed.
4199 ///
4200 void Verifier::visitInstruction(Instruction &I) {
4201   BasicBlock *BB = I.getParent();
4202   Assert(BB, "Instruction not embedded in basic block!", &I);
4203 
4204   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4205     for (User *U : I.users()) {
4206       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4207              "Only PHI nodes may reference their own value!", &I);
4208     }
4209   }
4210 
4211   // Check that void typed values don't have names
4212   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4213          "Instruction has a name, but provides a void value!", &I);
4214 
4215   // Check that the return value of the instruction is either void or a legal
4216   // value type.
4217   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4218          "Instruction returns a non-scalar type!", &I);
4219 
4220   // Check that the instruction doesn't produce metadata. Calls are already
4221   // checked against the callee type.
4222   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4223          "Invalid use of metadata!", &I);
4224 
4225   // Check that all uses of the instruction, if they are instructions
4226   // themselves, actually have parent basic blocks.  If the use is not an
4227   // instruction, it is an error!
4228   for (Use &U : I.uses()) {
4229     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4230       Assert(Used->getParent() != nullptr,
4231              "Instruction referencing"
4232              " instruction not embedded in a basic block!",
4233              &I, Used);
4234     else {
4235       CheckFailed("Use of instruction is not an instruction!", U);
4236       return;
4237     }
4238   }
4239 
4240   // Get a pointer to the call base of the instruction if it is some form of
4241   // call.
4242   const CallBase *CBI = dyn_cast<CallBase>(&I);
4243 
4244   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4245     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4246 
4247     // Check to make sure that only first-class-values are operands to
4248     // instructions.
4249     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4250       Assert(false, "Instruction operands must be first-class values!", &I);
4251     }
4252 
4253     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4254       // Check to make sure that the "address of" an intrinsic function is never
4255       // taken.
4256       Assert(!F->isIntrinsic() ||
4257                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4258              "Cannot take the address of an intrinsic!", &I);
4259       Assert(
4260           !F->isIntrinsic() || isa<CallInst>(I) ||
4261               F->getIntrinsicID() == Intrinsic::donothing ||
4262               F->getIntrinsicID() == Intrinsic::coro_resume ||
4263               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4264               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4265               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4266               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4267               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4268           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4269           "statepoint, coro_resume or coro_destroy",
4270           &I);
4271       Assert(F->getParent() == &M, "Referencing function in another module!",
4272              &I, &M, F, F->getParent());
4273     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4274       Assert(OpBB->getParent() == BB->getParent(),
4275              "Referring to a basic block in another function!", &I);
4276     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4277       Assert(OpArg->getParent() == BB->getParent(),
4278              "Referring to an argument in another function!", &I);
4279     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4280       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4281              &M, GV, GV->getParent());
4282     } else if (isa<Instruction>(I.getOperand(i))) {
4283       verifyDominatesUse(I, i);
4284     } else if (isa<InlineAsm>(I.getOperand(i))) {
4285       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4286              "Cannot take the address of an inline asm!", &I);
4287     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4288       if (CE->getType()->isPtrOrPtrVectorTy() ||
4289           !DL.getNonIntegralAddressSpaces().empty()) {
4290         // If we have a ConstantExpr pointer, we need to see if it came from an
4291         // illegal bitcast.  If the datalayout string specifies non-integral
4292         // address spaces then we also need to check for illegal ptrtoint and
4293         // inttoptr expressions.
4294         visitConstantExprsRecursively(CE);
4295       }
4296     }
4297   }
4298 
4299   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4300     Assert(I.getType()->isFPOrFPVectorTy(),
4301            "fpmath requires a floating point result!", &I);
4302     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4303     if (ConstantFP *CFP0 =
4304             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4305       const APFloat &Accuracy = CFP0->getValueAPF();
4306       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4307              "fpmath accuracy must have float type", &I);
4308       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4309              "fpmath accuracy not a positive number!", &I);
4310     } else {
4311       Assert(false, "invalid fpmath accuracy!", &I);
4312     }
4313   }
4314 
4315   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4316     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4317            "Ranges are only for loads, calls and invokes!", &I);
4318     visitRangeMetadata(I, Range, I.getType());
4319   }
4320 
4321   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4322     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4323            &I);
4324     Assert(isa<LoadInst>(I),
4325            "nonnull applies only to load instructions, use attributes"
4326            " for calls or invokes",
4327            &I);
4328   }
4329 
4330   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4331     visitDereferenceableMetadata(I, MD);
4332 
4333   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4334     visitDereferenceableMetadata(I, MD);
4335 
4336   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4337     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4338 
4339   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4340     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4341            &I);
4342     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4343            "use attributes for calls or invokes", &I);
4344     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4345     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4346     Assert(CI && CI->getType()->isIntegerTy(64),
4347            "align metadata value must be an i64!", &I);
4348     uint64_t Align = CI->getZExtValue();
4349     Assert(isPowerOf2_64(Align),
4350            "align metadata value must be a power of 2!", &I);
4351     Assert(Align <= Value::MaximumAlignment,
4352            "alignment is larger that implementation defined limit", &I);
4353   }
4354 
4355   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4356     visitProfMetadata(I, MD);
4357 
4358   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4359     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4360     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4361   }
4362 
4363   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4364     verifyFragmentExpression(*DII);
4365     verifyNotEntryValue(*DII);
4366   }
4367 
4368   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4369   I.getAllMetadata(MDs);
4370   for (auto Attachment : MDs) {
4371     unsigned Kind = Attachment.first;
4372     auto AllowLocs =
4373         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4374             ? AreDebugLocsAllowed::Yes
4375             : AreDebugLocsAllowed::No;
4376     visitMDNode(*Attachment.second, AllowLocs);
4377   }
4378 
4379   InstsInThisBlock.insert(&I);
4380 }
4381 
4382 /// Allow intrinsics to be verified in different ways.
4383 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4384   Function *IF = Call.getCalledFunction();
4385   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4386          IF);
4387 
4388   // Verify that the intrinsic prototype lines up with what the .td files
4389   // describe.
4390   FunctionType *IFTy = IF->getFunctionType();
4391   bool IsVarArg = IFTy->isVarArg();
4392 
4393   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4394   getIntrinsicInfoTableEntries(ID, Table);
4395   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4396 
4397   // Walk the descriptors to extract overloaded types.
4398   SmallVector<Type *, 4> ArgTys;
4399   Intrinsic::MatchIntrinsicTypesResult Res =
4400       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4401   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4402          "Intrinsic has incorrect return type!", IF);
4403   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4404          "Intrinsic has incorrect argument type!", IF);
4405 
4406   // Verify if the intrinsic call matches the vararg property.
4407   if (IsVarArg)
4408     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4409            "Intrinsic was not defined with variable arguments!", IF);
4410   else
4411     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4412            "Callsite was not defined with variable arguments!", IF);
4413 
4414   // All descriptors should be absorbed by now.
4415   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4416 
4417   // Now that we have the intrinsic ID and the actual argument types (and we
4418   // know they are legal for the intrinsic!) get the intrinsic name through the
4419   // usual means.  This allows us to verify the mangling of argument types into
4420   // the name.
4421   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4422   Assert(ExpectedName == IF->getName(),
4423          "Intrinsic name not mangled correctly for type arguments! "
4424          "Should be: " +
4425              ExpectedName,
4426          IF);
4427 
4428   // If the intrinsic takes MDNode arguments, verify that they are either global
4429   // or are local to *this* function.
4430   for (Value *V : Call.args())
4431     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4432       visitMetadataAsValue(*MD, Call.getCaller());
4433 
4434   switch (ID) {
4435   default:
4436     break;
4437   case Intrinsic::assume: {
4438     for (auto &Elem : Call.bundle_op_infos()) {
4439       Assert(Elem.Tag->getKey() == "ignore" ||
4440                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4441              "tags must be valid attribute names");
4442       Assert(Elem.End - Elem.Begin <= 2, "to many arguments");
4443       Attribute::AttrKind Kind =
4444           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4445       if (Kind == Attribute::None)
4446         break;
4447       if (Attribute::doesAttrKindHaveArgument(Kind)) {
4448         Assert(Elem.End - Elem.Begin == 2,
4449                "this attribute should have 2 arguments");
4450         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4451                "the second argument should be a constant integral value");
4452       } else if (isFuncOnlyAttr(Kind)) {
4453         Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument");
4454       } else if (!isFuncOrArgAttr(Kind)) {
4455         Assert((Elem.End - Elem.Begin) == 1,
4456                "this attribute should have one argument");
4457       }
4458     }
4459     break;
4460   }
4461   case Intrinsic::coro_id: {
4462     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4463     if (isa<ConstantPointerNull>(InfoArg))
4464       break;
4465     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4466     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4467       "info argument of llvm.coro.begin must refer to an initialized "
4468       "constant");
4469     Constant *Init = GV->getInitializer();
4470     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4471       "info argument of llvm.coro.begin must refer to either a struct or "
4472       "an array");
4473     break;
4474   }
4475 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4476   case Intrinsic::INTRINSIC:
4477 #include "llvm/IR/ConstrainedOps.def"
4478     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4479     break;
4480   case Intrinsic::dbg_declare: // llvm.dbg.declare
4481     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4482            "invalid llvm.dbg.declare intrinsic call 1", Call);
4483     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4484     break;
4485   case Intrinsic::dbg_addr: // llvm.dbg.addr
4486     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4487     break;
4488   case Intrinsic::dbg_value: // llvm.dbg.value
4489     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4490     break;
4491   case Intrinsic::dbg_label: // llvm.dbg.label
4492     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4493     break;
4494   case Intrinsic::memcpy:
4495   case Intrinsic::memcpy_inline:
4496   case Intrinsic::memmove:
4497   case Intrinsic::memset: {
4498     const auto *MI = cast<MemIntrinsic>(&Call);
4499     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4500       return Alignment == 0 || isPowerOf2_32(Alignment);
4501     };
4502     Assert(IsValidAlignment(MI->getDestAlignment()),
4503            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4504            Call);
4505     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4506       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4507              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4508              Call);
4509     }
4510 
4511     break;
4512   }
4513   case Intrinsic::memcpy_element_unordered_atomic:
4514   case Intrinsic::memmove_element_unordered_atomic:
4515   case Intrinsic::memset_element_unordered_atomic: {
4516     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4517 
4518     ConstantInt *ElementSizeCI =
4519         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4520     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4521     Assert(ElementSizeVal.isPowerOf2(),
4522            "element size of the element-wise atomic memory intrinsic "
4523            "must be a power of 2",
4524            Call);
4525 
4526     auto IsValidAlignment = [&](uint64_t Alignment) {
4527       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4528     };
4529     uint64_t DstAlignment = AMI->getDestAlignment();
4530     Assert(IsValidAlignment(DstAlignment),
4531            "incorrect alignment of the destination argument", Call);
4532     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4533       uint64_t SrcAlignment = AMT->getSourceAlignment();
4534       Assert(IsValidAlignment(SrcAlignment),
4535              "incorrect alignment of the source argument", Call);
4536     }
4537     break;
4538   }
4539   case Intrinsic::call_preallocated_setup: {
4540     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4541     Assert(NumArgs != nullptr,
4542            "llvm.call.preallocated.setup argument must be a constant");
4543     bool FoundCall = false;
4544     for (User *U : Call.users()) {
4545       auto *UseCall = dyn_cast<CallBase>(U);
4546       Assert(UseCall != nullptr,
4547              "Uses of llvm.call.preallocated.setup must be calls");
4548       const Function *Fn = UseCall->getCalledFunction();
4549       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4550         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4551         Assert(AllocArgIndex != nullptr,
4552                "llvm.call.preallocated.alloc arg index must be a constant");
4553         auto AllocArgIndexInt = AllocArgIndex->getValue();
4554         Assert(AllocArgIndexInt.sge(0) &&
4555                    AllocArgIndexInt.slt(NumArgs->getValue()),
4556                "llvm.call.preallocated.alloc arg index must be between 0 and "
4557                "corresponding "
4558                "llvm.call.preallocated.setup's argument count");
4559       } else {
4560         Assert(!FoundCall, "Can have at most one call corresponding to a "
4561                            "llvm.call.preallocated.setup");
4562         FoundCall = true;
4563         size_t NumPreallocatedArgs = 0;
4564         for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
4565           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4566             ++NumPreallocatedArgs;
4567           }
4568         }
4569         Assert(NumPreallocatedArgs != 0,
4570                "cannot use preallocated intrinsics on a call without "
4571                "preallocated arguments");
4572         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4573                "llvm.call.preallocated.setup arg size must be equal to number "
4574                "of preallocated arguments "
4575                "at call site",
4576                Call, *UseCall);
4577         // getOperandBundle() cannot be called if more than one of the operand
4578         // bundle exists. There is already a check elsewhere for this, so skip
4579         // here if we see more than one.
4580         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4581             1) {
4582           return;
4583         }
4584         auto PreallocatedBundle =
4585             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4586         Assert(PreallocatedBundle,
4587                "Use of llvm.call.preallocated.setup outside intrinsics "
4588                "must be in \"preallocated\" operand bundle");
4589         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4590                "preallocated bundle must have token from corresponding "
4591                "llvm.call.preallocated.setup");
4592       }
4593     }
4594     break;
4595   }
4596   case Intrinsic::call_preallocated_arg: {
4597     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4598     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4599                         Intrinsic::call_preallocated_setup,
4600            "llvm.call.preallocated.arg token argument must be a "
4601            "llvm.call.preallocated.setup");
4602     Assert(Call.hasFnAttr(Attribute::Preallocated),
4603            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4604            "call site attribute");
4605     break;
4606   }
4607   case Intrinsic::gcroot:
4608   case Intrinsic::gcwrite:
4609   case Intrinsic::gcread:
4610     if (ID == Intrinsic::gcroot) {
4611       AllocaInst *AI =
4612           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4613       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4614       Assert(isa<Constant>(Call.getArgOperand(1)),
4615              "llvm.gcroot parameter #2 must be a constant.", Call);
4616       if (!AI->getAllocatedType()->isPointerTy()) {
4617         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4618                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4619                "or argument #2 must be a non-null constant.",
4620                Call);
4621       }
4622     }
4623 
4624     Assert(Call.getParent()->getParent()->hasGC(),
4625            "Enclosing function does not use GC.", Call);
4626     break;
4627   case Intrinsic::init_trampoline:
4628     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4629            "llvm.init_trampoline parameter #2 must resolve to a function.",
4630            Call);
4631     break;
4632   case Intrinsic::prefetch:
4633     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4634            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4635            "invalid arguments to llvm.prefetch", Call);
4636     break;
4637   case Intrinsic::stackprotector:
4638     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4639            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4640     break;
4641   case Intrinsic::localescape: {
4642     BasicBlock *BB = Call.getParent();
4643     Assert(BB == &BB->getParent()->front(),
4644            "llvm.localescape used outside of entry block", Call);
4645     Assert(!SawFrameEscape,
4646            "multiple calls to llvm.localescape in one function", Call);
4647     for (Value *Arg : Call.args()) {
4648       if (isa<ConstantPointerNull>(Arg))
4649         continue; // Null values are allowed as placeholders.
4650       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4651       Assert(AI && AI->isStaticAlloca(),
4652              "llvm.localescape only accepts static allocas", Call);
4653     }
4654     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4655     SawFrameEscape = true;
4656     break;
4657   }
4658   case Intrinsic::localrecover: {
4659     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4660     Function *Fn = dyn_cast<Function>(FnArg);
4661     Assert(Fn && !Fn->isDeclaration(),
4662            "llvm.localrecover first "
4663            "argument must be function defined in this module",
4664            Call);
4665     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4666     auto &Entry = FrameEscapeInfo[Fn];
4667     Entry.second = unsigned(
4668         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4669     break;
4670   }
4671 
4672   case Intrinsic::experimental_gc_statepoint:
4673     if (auto *CI = dyn_cast<CallInst>(&Call))
4674       Assert(!CI->isInlineAsm(),
4675              "gc.statepoint support for inline assembly unimplemented", CI);
4676     Assert(Call.getParent()->getParent()->hasGC(),
4677            "Enclosing function does not use GC.", Call);
4678 
4679     verifyStatepoint(Call);
4680     break;
4681   case Intrinsic::experimental_gc_result: {
4682     Assert(Call.getParent()->getParent()->hasGC(),
4683            "Enclosing function does not use GC.", Call);
4684     // Are we tied to a statepoint properly?
4685     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4686     const Function *StatepointFn =
4687         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4688     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4689                StatepointFn->getIntrinsicID() ==
4690                    Intrinsic::experimental_gc_statepoint,
4691            "gc.result operand #1 must be from a statepoint", Call,
4692            Call.getArgOperand(0));
4693 
4694     // Assert that result type matches wrapped callee.
4695     const Value *Target = StatepointCall->getArgOperand(2);
4696     auto *PT = cast<PointerType>(Target->getType());
4697     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4698     Assert(Call.getType() == TargetFuncType->getReturnType(),
4699            "gc.result result type does not match wrapped callee", Call);
4700     break;
4701   }
4702   case Intrinsic::experimental_gc_relocate: {
4703     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4704 
4705     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4706            "gc.relocate must return a pointer or a vector of pointers", Call);
4707 
4708     // Check that this relocate is correctly tied to the statepoint
4709 
4710     // This is case for relocate on the unwinding path of an invoke statepoint
4711     if (LandingPadInst *LandingPad =
4712             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4713 
4714       const BasicBlock *InvokeBB =
4715           LandingPad->getParent()->getUniquePredecessor();
4716 
4717       // Landingpad relocates should have only one predecessor with invoke
4718       // statepoint terminator
4719       Assert(InvokeBB, "safepoints should have unique landingpads",
4720              LandingPad->getParent());
4721       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4722              InvokeBB);
4723       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4724              "gc relocate should be linked to a statepoint", InvokeBB);
4725     } else {
4726       // In all other cases relocate should be tied to the statepoint directly.
4727       // This covers relocates on a normal return path of invoke statepoint and
4728       // relocates of a call statepoint.
4729       auto Token = Call.getArgOperand(0);
4730       Assert(isa<GCStatepointInst>(Token),
4731              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4732     }
4733 
4734     // Verify rest of the relocate arguments.
4735     const CallBase &StatepointCall =
4736       *cast<GCRelocateInst>(Call).getStatepoint();
4737 
4738     // Both the base and derived must be piped through the safepoint.
4739     Value *Base = Call.getArgOperand(1);
4740     Assert(isa<ConstantInt>(Base),
4741            "gc.relocate operand #2 must be integer offset", Call);
4742 
4743     Value *Derived = Call.getArgOperand(2);
4744     Assert(isa<ConstantInt>(Derived),
4745            "gc.relocate operand #3 must be integer offset", Call);
4746 
4747     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4748     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4749     // Check the bounds
4750     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4751            "gc.relocate: statepoint base index out of bounds", Call);
4752     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4753            "gc.relocate: statepoint derived index out of bounds", Call);
4754 
4755     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4756     // section of the statepoint's argument.
4757     Assert(StatepointCall.arg_size() > 0,
4758            "gc.statepoint: insufficient arguments");
4759     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4760            "gc.statement: number of call arguments must be constant integer");
4761     const unsigned NumCallArgs =
4762         cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4763     Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4764            "gc.statepoint: mismatch in number of call arguments");
4765     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4766            "gc.statepoint: number of transition arguments must be "
4767            "a constant integer");
4768     const int NumTransitionArgs =
4769         cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4770             ->getZExtValue();
4771     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4772     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4773            "gc.statepoint: number of deoptimization arguments must be "
4774            "a constant integer");
4775     const int NumDeoptArgs =
4776         cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4777             ->getZExtValue();
4778     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4779     const int GCParamArgsEnd = StatepointCall.arg_size();
4780     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4781            "gc.relocate: statepoint base index doesn't fall within the "
4782            "'gc parameters' section of the statepoint call",
4783            Call);
4784     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4785            "gc.relocate: statepoint derived index doesn't fall within the "
4786            "'gc parameters' section of the statepoint call",
4787            Call);
4788 
4789     // Relocated value must be either a pointer type or vector-of-pointer type,
4790     // but gc_relocate does not need to return the same pointer type as the
4791     // relocated pointer. It can be casted to the correct type later if it's
4792     // desired. However, they must have the same address space and 'vectorness'
4793     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4794     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4795            "gc.relocate: relocated value must be a gc pointer", Call);
4796 
4797     auto ResultType = Call.getType();
4798     auto DerivedType = Relocate.getDerivedPtr()->getType();
4799     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4800            "gc.relocate: vector relocates to vector and pointer to pointer",
4801            Call);
4802     Assert(
4803         ResultType->getPointerAddressSpace() ==
4804             DerivedType->getPointerAddressSpace(),
4805         "gc.relocate: relocating a pointer shouldn't change its address space",
4806         Call);
4807     break;
4808   }
4809   case Intrinsic::eh_exceptioncode:
4810   case Intrinsic::eh_exceptionpointer: {
4811     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4812            "eh.exceptionpointer argument must be a catchpad", Call);
4813     break;
4814   }
4815   case Intrinsic::get_active_lane_mask: {
4816     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
4817            "vector", Call);
4818     auto *ElemTy = Call.getType()->getScalarType();
4819     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
4820            "i1", Call);
4821     break;
4822   }
4823   case Intrinsic::masked_load: {
4824     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4825            Call);
4826 
4827     Value *Ptr = Call.getArgOperand(0);
4828     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4829     Value *Mask = Call.getArgOperand(2);
4830     Value *PassThru = Call.getArgOperand(3);
4831     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4832            Call);
4833     Assert(Alignment->getValue().isPowerOf2(),
4834            "masked_load: alignment must be a power of 2", Call);
4835 
4836     // DataTy is the overloaded type
4837     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4838     Assert(DataTy == Call.getType(),
4839            "masked_load: return must match pointer type", Call);
4840     Assert(PassThru->getType() == DataTy,
4841            "masked_load: pass through and data type must match", Call);
4842     Assert(cast<VectorType>(Mask->getType())->getNumElements() ==
4843                cast<VectorType>(DataTy)->getNumElements(),
4844            "masked_load: vector mask must be same length as data", Call);
4845     break;
4846   }
4847   case Intrinsic::masked_store: {
4848     Value *Val = Call.getArgOperand(0);
4849     Value *Ptr = Call.getArgOperand(1);
4850     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4851     Value *Mask = Call.getArgOperand(3);
4852     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4853            Call);
4854     Assert(Alignment->getValue().isPowerOf2(),
4855            "masked_store: alignment must be a power of 2", Call);
4856 
4857     // DataTy is the overloaded type
4858     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4859     Assert(DataTy == Val->getType(),
4860            "masked_store: storee must match pointer type", Call);
4861     Assert(cast<VectorType>(Mask->getType())->getNumElements() ==
4862                cast<VectorType>(DataTy)->getNumElements(),
4863            "masked_store: vector mask must be same length as data", Call);
4864     break;
4865   }
4866 
4867   case Intrinsic::masked_gather: {
4868     const APInt &Alignment =
4869         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
4870     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
4871            "masked_gather: alignment must be 0 or a power of 2", Call);
4872     break;
4873   }
4874   case Intrinsic::masked_scatter: {
4875     const APInt &Alignment =
4876         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
4877     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
4878            "masked_scatter: alignment must be 0 or a power of 2", Call);
4879     break;
4880   }
4881 
4882   case Intrinsic::experimental_guard: {
4883     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4884     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4885            "experimental_guard must have exactly one "
4886            "\"deopt\" operand bundle");
4887     break;
4888   }
4889 
4890   case Intrinsic::experimental_deoptimize: {
4891     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4892            Call);
4893     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4894            "experimental_deoptimize must have exactly one "
4895            "\"deopt\" operand bundle");
4896     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4897            "experimental_deoptimize return type must match caller return type");
4898 
4899     if (isa<CallInst>(Call)) {
4900       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4901       Assert(RI,
4902              "calls to experimental_deoptimize must be followed by a return");
4903 
4904       if (!Call.getType()->isVoidTy() && RI)
4905         Assert(RI->getReturnValue() == &Call,
4906                "calls to experimental_deoptimize must be followed by a return "
4907                "of the value computed by experimental_deoptimize");
4908     }
4909 
4910     break;
4911   }
4912   case Intrinsic::sadd_sat:
4913   case Intrinsic::uadd_sat:
4914   case Intrinsic::ssub_sat:
4915   case Intrinsic::usub_sat: {
4916     Value *Op1 = Call.getArgOperand(0);
4917     Value *Op2 = Call.getArgOperand(1);
4918     Assert(Op1->getType()->isIntOrIntVectorTy(),
4919            "first operand of [us][add|sub]_sat must be an int type or vector "
4920            "of ints");
4921     Assert(Op2->getType()->isIntOrIntVectorTy(),
4922            "second operand of [us][add|sub]_sat must be an int type or vector "
4923            "of ints");
4924     break;
4925   }
4926   case Intrinsic::smul_fix:
4927   case Intrinsic::smul_fix_sat:
4928   case Intrinsic::umul_fix:
4929   case Intrinsic::umul_fix_sat:
4930   case Intrinsic::sdiv_fix:
4931   case Intrinsic::sdiv_fix_sat:
4932   case Intrinsic::udiv_fix:
4933   case Intrinsic::udiv_fix_sat: {
4934     Value *Op1 = Call.getArgOperand(0);
4935     Value *Op2 = Call.getArgOperand(1);
4936     Assert(Op1->getType()->isIntOrIntVectorTy(),
4937            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
4938            "vector of ints");
4939     Assert(Op2->getType()->isIntOrIntVectorTy(),
4940            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
4941            "vector of ints");
4942 
4943     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4944     Assert(Op3->getType()->getBitWidth() <= 32,
4945            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
4946 
4947     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
4948         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
4949       Assert(
4950           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4951           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
4952           "the operands");
4953     } else {
4954       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4955              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
4956              "to the width of the operands");
4957     }
4958     break;
4959   }
4960   case Intrinsic::lround:
4961   case Intrinsic::llround:
4962   case Intrinsic::lrint:
4963   case Intrinsic::llrint: {
4964     Type *ValTy = Call.getArgOperand(0)->getType();
4965     Type *ResultTy = Call.getType();
4966     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4967            "Intrinsic does not support vectors", &Call);
4968     break;
4969   }
4970   case Intrinsic::bswap: {
4971     Type *Ty = Call.getType();
4972     unsigned Size = Ty->getScalarSizeInBits();
4973     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
4974     break;
4975   }
4976   case Intrinsic::matrix_multiply:
4977   case Intrinsic::matrix_transpose:
4978   case Intrinsic::matrix_columnwise_load:
4979   case Intrinsic::matrix_columnwise_store: {
4980     ConstantInt *NumRows;
4981     ConstantInt *NumColumns;
4982     VectorType *TypeToCheck;
4983     switch (ID) {
4984     case Intrinsic::matrix_multiply:
4985       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
4986       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
4987       TypeToCheck = cast<VectorType>(Call.getType());
4988       break;
4989     case Intrinsic::matrix_transpose:
4990       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
4991       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
4992       TypeToCheck = cast<VectorType>(Call.getType());
4993       break;
4994     case Intrinsic::matrix_columnwise_load:
4995       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
4996       NumColumns = cast<ConstantInt>(Call.getArgOperand(3));
4997       TypeToCheck = cast<VectorType>(Call.getType());
4998       break;
4999     case Intrinsic::matrix_columnwise_store:
5000       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5001       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5002       TypeToCheck = cast<VectorType>(Call.getArgOperand(0)->getType());
5003       break;
5004     default:
5005       llvm_unreachable("unexpected intrinsic");
5006     }
5007     Assert(TypeToCheck->getNumElements() ==
5008                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5009            "result of a matrix operation does not fit in the returned vector");
5010     break;
5011   }
5012   };
5013 }
5014 
5015 /// Carefully grab the subprogram from a local scope.
5016 ///
5017 /// This carefully grabs the subprogram from a local scope, avoiding the
5018 /// built-in assertions that would typically fire.
5019 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5020   if (!LocalScope)
5021     return nullptr;
5022 
5023   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5024     return SP;
5025 
5026   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5027     return getSubprogram(LB->getRawScope());
5028 
5029   // Just return null; broken scope chains are checked elsewhere.
5030   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5031   return nullptr;
5032 }
5033 
5034 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5035   unsigned NumOperands;
5036   bool HasRoundingMD;
5037   switch (FPI.getIntrinsicID()) {
5038 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5039   case Intrinsic::INTRINSIC:                                                   \
5040     NumOperands = NARG;                                                        \
5041     HasRoundingMD = ROUND_MODE;                                                \
5042     break;
5043 #include "llvm/IR/ConstrainedOps.def"
5044   default:
5045     llvm_unreachable("Invalid constrained FP intrinsic!");
5046   }
5047   NumOperands += (1 + HasRoundingMD);
5048   // Compare intrinsics carry an extra predicate metadata operand.
5049   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5050     NumOperands += 1;
5051   Assert((FPI.getNumArgOperands() == NumOperands),
5052          "invalid arguments for constrained FP intrinsic", &FPI);
5053 
5054   switch (FPI.getIntrinsicID()) {
5055   case Intrinsic::experimental_constrained_lrint:
5056   case Intrinsic::experimental_constrained_llrint: {
5057     Type *ValTy = FPI.getArgOperand(0)->getType();
5058     Type *ResultTy = FPI.getType();
5059     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5060            "Intrinsic does not support vectors", &FPI);
5061   }
5062     break;
5063 
5064   case Intrinsic::experimental_constrained_lround:
5065   case Intrinsic::experimental_constrained_llround: {
5066     Type *ValTy = FPI.getArgOperand(0)->getType();
5067     Type *ResultTy = FPI.getType();
5068     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5069            "Intrinsic does not support vectors", &FPI);
5070     break;
5071   }
5072 
5073   case Intrinsic::experimental_constrained_fcmp:
5074   case Intrinsic::experimental_constrained_fcmps: {
5075     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5076     Assert(CmpInst::isFPPredicate(Pred),
5077            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5078     break;
5079   }
5080 
5081   case Intrinsic::experimental_constrained_fptosi:
5082   case Intrinsic::experimental_constrained_fptoui: {
5083     Value *Operand = FPI.getArgOperand(0);
5084     uint64_t NumSrcElem = 0;
5085     Assert(Operand->getType()->isFPOrFPVectorTy(),
5086            "Intrinsic first argument must be floating point", &FPI);
5087     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5088       NumSrcElem = OperandT->getNumElements();
5089     }
5090 
5091     Operand = &FPI;
5092     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5093            "Intrinsic first argument and result disagree on vector use", &FPI);
5094     Assert(Operand->getType()->isIntOrIntVectorTy(),
5095            "Intrinsic result must be an integer", &FPI);
5096     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5097       Assert(NumSrcElem == OperandT->getNumElements(),
5098              "Intrinsic first argument and result vector lengths must be equal",
5099              &FPI);
5100     }
5101   }
5102     break;
5103 
5104   case Intrinsic::experimental_constrained_sitofp:
5105   case Intrinsic::experimental_constrained_uitofp: {
5106     Value *Operand = FPI.getArgOperand(0);
5107     uint64_t NumSrcElem = 0;
5108     Assert(Operand->getType()->isIntOrIntVectorTy(),
5109            "Intrinsic first argument must be integer", &FPI);
5110     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5111       NumSrcElem = OperandT->getNumElements();
5112     }
5113 
5114     Operand = &FPI;
5115     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5116            "Intrinsic first argument and result disagree on vector use", &FPI);
5117     Assert(Operand->getType()->isFPOrFPVectorTy(),
5118            "Intrinsic result must be a floating point", &FPI);
5119     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5120       Assert(NumSrcElem == OperandT->getNumElements(),
5121              "Intrinsic first argument and result vector lengths must be equal",
5122              &FPI);
5123     }
5124   } break;
5125 
5126   case Intrinsic::experimental_constrained_fptrunc:
5127   case Intrinsic::experimental_constrained_fpext: {
5128     Value *Operand = FPI.getArgOperand(0);
5129     Type *OperandTy = Operand->getType();
5130     Value *Result = &FPI;
5131     Type *ResultTy = Result->getType();
5132     Assert(OperandTy->isFPOrFPVectorTy(),
5133            "Intrinsic first argument must be FP or FP vector", &FPI);
5134     Assert(ResultTy->isFPOrFPVectorTy(),
5135            "Intrinsic result must be FP or FP vector", &FPI);
5136     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5137            "Intrinsic first argument and result disagree on vector use", &FPI);
5138     if (OperandTy->isVectorTy()) {
5139       auto *OperandVecTy = cast<VectorType>(OperandTy);
5140       auto *ResultVecTy = cast<VectorType>(ResultTy);
5141       Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
5142              "Intrinsic first argument and result vector lengths must be equal",
5143              &FPI);
5144     }
5145     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5146       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5147              "Intrinsic first argument's type must be larger than result type",
5148              &FPI);
5149     } else {
5150       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5151              "Intrinsic first argument's type must be smaller than result type",
5152              &FPI);
5153     }
5154   }
5155     break;
5156 
5157   default:
5158     break;
5159   }
5160 
5161   // If a non-metadata argument is passed in a metadata slot then the
5162   // error will be caught earlier when the incorrect argument doesn't
5163   // match the specification in the intrinsic call table. Thus, no
5164   // argument type check is needed here.
5165 
5166   Assert(FPI.getExceptionBehavior().hasValue(),
5167          "invalid exception behavior argument", &FPI);
5168   if (HasRoundingMD) {
5169     Assert(FPI.getRoundingMode().hasValue(),
5170            "invalid rounding mode argument", &FPI);
5171   }
5172 }
5173 
5174 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5175   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
5176   AssertDI(isa<ValueAsMetadata>(MD) ||
5177              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5178          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5179   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5180          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5181          DII.getRawVariable());
5182   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5183          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5184          DII.getRawExpression());
5185 
5186   // Ignore broken !dbg attachments; they're checked elsewhere.
5187   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5188     if (!isa<DILocation>(N))
5189       return;
5190 
5191   BasicBlock *BB = DII.getParent();
5192   Function *F = BB ? BB->getParent() : nullptr;
5193 
5194   // The scopes for variables and !dbg attachments must agree.
5195   DILocalVariable *Var = DII.getVariable();
5196   DILocation *Loc = DII.getDebugLoc();
5197   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5198            &DII, BB, F);
5199 
5200   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5201   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5202   if (!VarSP || !LocSP)
5203     return; // Broken scope chains are checked elsewhere.
5204 
5205   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5206                                " variable and !dbg attachment",
5207            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5208            Loc->getScope()->getSubprogram());
5209 
5210   // This check is redundant with one in visitLocalVariable().
5211   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5212            Var->getRawType());
5213   verifyFnArgs(DII);
5214 }
5215 
5216 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5217   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5218          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5219          DLI.getRawLabel());
5220 
5221   // Ignore broken !dbg attachments; they're checked elsewhere.
5222   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5223     if (!isa<DILocation>(N))
5224       return;
5225 
5226   BasicBlock *BB = DLI.getParent();
5227   Function *F = BB ? BB->getParent() : nullptr;
5228 
5229   // The scopes for variables and !dbg attachments must agree.
5230   DILabel *Label = DLI.getLabel();
5231   DILocation *Loc = DLI.getDebugLoc();
5232   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5233          &DLI, BB, F);
5234 
5235   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5236   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5237   if (!LabelSP || !LocSP)
5238     return;
5239 
5240   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5241                              " label and !dbg attachment",
5242            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5243            Loc->getScope()->getSubprogram());
5244 }
5245 
5246 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5247   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5248   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5249 
5250   // We don't know whether this intrinsic verified correctly.
5251   if (!V || !E || !E->isValid())
5252     return;
5253 
5254   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5255   auto Fragment = E->getFragmentInfo();
5256   if (!Fragment)
5257     return;
5258 
5259   // The frontend helps out GDB by emitting the members of local anonymous
5260   // unions as artificial local variables with shared storage. When SROA splits
5261   // the storage for artificial local variables that are smaller than the entire
5262   // union, the overhang piece will be outside of the allotted space for the
5263   // variable and this check fails.
5264   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5265   if (V->isArtificial())
5266     return;
5267 
5268   verifyFragmentExpression(*V, *Fragment, &I);
5269 }
5270 
5271 template <typename ValueOrMetadata>
5272 void Verifier::verifyFragmentExpression(const DIVariable &V,
5273                                         DIExpression::FragmentInfo Fragment,
5274                                         ValueOrMetadata *Desc) {
5275   // If there's no size, the type is broken, but that should be checked
5276   // elsewhere.
5277   auto VarSize = V.getSizeInBits();
5278   if (!VarSize)
5279     return;
5280 
5281   unsigned FragSize = Fragment.SizeInBits;
5282   unsigned FragOffset = Fragment.OffsetInBits;
5283   AssertDI(FragSize + FragOffset <= *VarSize,
5284          "fragment is larger than or outside of variable", Desc, &V);
5285   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5286 }
5287 
5288 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5289   // This function does not take the scope of noninlined function arguments into
5290   // account. Don't run it if current function is nodebug, because it may
5291   // contain inlined debug intrinsics.
5292   if (!HasDebugInfo)
5293     return;
5294 
5295   // For performance reasons only check non-inlined ones.
5296   if (I.getDebugLoc()->getInlinedAt())
5297     return;
5298 
5299   DILocalVariable *Var = I.getVariable();
5300   AssertDI(Var, "dbg intrinsic without variable");
5301 
5302   unsigned ArgNo = Var->getArg();
5303   if (!ArgNo)
5304     return;
5305 
5306   // Verify there are no duplicate function argument debug info entries.
5307   // These will cause hard-to-debug assertions in the DWARF backend.
5308   if (DebugFnArgs.size() < ArgNo)
5309     DebugFnArgs.resize(ArgNo, nullptr);
5310 
5311   auto *Prev = DebugFnArgs[ArgNo - 1];
5312   DebugFnArgs[ArgNo - 1] = Var;
5313   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5314            Prev, Var);
5315 }
5316 
5317 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5318   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5319 
5320   // We don't know whether this intrinsic verified correctly.
5321   if (!E || !E->isValid())
5322     return;
5323 
5324   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5325 }
5326 
5327 void Verifier::verifyCompileUnits() {
5328   // When more than one Module is imported into the same context, such as during
5329   // an LTO build before linking the modules, ODR type uniquing may cause types
5330   // to point to a different CU. This check does not make sense in this case.
5331   if (M.getContext().isODRUniquingDebugTypes())
5332     return;
5333   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5334   SmallPtrSet<const Metadata *, 2> Listed;
5335   if (CUs)
5336     Listed.insert(CUs->op_begin(), CUs->op_end());
5337   for (auto *CU : CUVisited)
5338     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5339   CUVisited.clear();
5340 }
5341 
5342 void Verifier::verifyDeoptimizeCallingConvs() {
5343   if (DeoptimizeDeclarations.empty())
5344     return;
5345 
5346   const Function *First = DeoptimizeDeclarations[0];
5347   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5348     Assert(First->getCallingConv() == F->getCallingConv(),
5349            "All llvm.experimental.deoptimize declarations must have the same "
5350            "calling convention",
5351            First, F);
5352   }
5353 }
5354 
5355 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5356   bool HasSource = F.getSource().hasValue();
5357   if (!HasSourceDebugInfo.count(&U))
5358     HasSourceDebugInfo[&U] = HasSource;
5359   AssertDI(HasSource == HasSourceDebugInfo[&U],
5360            "inconsistent use of embedded source");
5361 }
5362 
5363 //===----------------------------------------------------------------------===//
5364 //  Implement the public interfaces to this file...
5365 //===----------------------------------------------------------------------===//
5366 
5367 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5368   Function &F = const_cast<Function &>(f);
5369 
5370   // Don't use a raw_null_ostream.  Printing IR is expensive.
5371   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5372 
5373   // Note that this function's return value is inverted from what you would
5374   // expect of a function called "verify".
5375   return !V.verify(F);
5376 }
5377 
5378 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5379                         bool *BrokenDebugInfo) {
5380   // Don't use a raw_null_ostream.  Printing IR is expensive.
5381   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5382 
5383   bool Broken = false;
5384   for (const Function &F : M)
5385     Broken |= !V.verify(F);
5386 
5387   Broken |= !V.verify();
5388   if (BrokenDebugInfo)
5389     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5390   // Note that this function's return value is inverted from what you would
5391   // expect of a function called "verify".
5392   return Broken;
5393 }
5394 
5395 namespace {
5396 
5397 struct VerifierLegacyPass : public FunctionPass {
5398   static char ID;
5399 
5400   std::unique_ptr<Verifier> V;
5401   bool FatalErrors = true;
5402 
5403   VerifierLegacyPass() : FunctionPass(ID) {
5404     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5405   }
5406   explicit VerifierLegacyPass(bool FatalErrors)
5407       : FunctionPass(ID),
5408         FatalErrors(FatalErrors) {
5409     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5410   }
5411 
5412   bool doInitialization(Module &M) override {
5413     V = std::make_unique<Verifier>(
5414         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5415     return false;
5416   }
5417 
5418   bool runOnFunction(Function &F) override {
5419     if (!V->verify(F) && FatalErrors) {
5420       errs() << "in function " << F.getName() << '\n';
5421       report_fatal_error("Broken function found, compilation aborted!");
5422     }
5423     return false;
5424   }
5425 
5426   bool doFinalization(Module &M) override {
5427     bool HasErrors = false;
5428     for (Function &F : M)
5429       if (F.isDeclaration())
5430         HasErrors |= !V->verify(F);
5431 
5432     HasErrors |= !V->verify();
5433     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5434       report_fatal_error("Broken module found, compilation aborted!");
5435     return false;
5436   }
5437 
5438   void getAnalysisUsage(AnalysisUsage &AU) const override {
5439     AU.setPreservesAll();
5440   }
5441 };
5442 
5443 } // end anonymous namespace
5444 
5445 /// Helper to issue failure from the TBAA verification
5446 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5447   if (Diagnostic)
5448     return Diagnostic->CheckFailed(Args...);
5449 }
5450 
5451 #define AssertTBAA(C, ...)                                                     \
5452   do {                                                                         \
5453     if (!(C)) {                                                                \
5454       CheckFailed(__VA_ARGS__);                                                \
5455       return false;                                                            \
5456     }                                                                          \
5457   } while (false)
5458 
5459 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5460 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5461 /// struct-type node describing an aggregate data structure (like a struct).
5462 TBAAVerifier::TBAABaseNodeSummary
5463 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5464                                  bool IsNewFormat) {
5465   if (BaseNode->getNumOperands() < 2) {
5466     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5467     return {true, ~0u};
5468   }
5469 
5470   auto Itr = TBAABaseNodes.find(BaseNode);
5471   if (Itr != TBAABaseNodes.end())
5472     return Itr->second;
5473 
5474   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5475   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5476   (void)InsertResult;
5477   assert(InsertResult.second && "We just checked!");
5478   return Result;
5479 }
5480 
5481 TBAAVerifier::TBAABaseNodeSummary
5482 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5483                                      bool IsNewFormat) {
5484   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5485 
5486   if (BaseNode->getNumOperands() == 2) {
5487     // Scalar nodes can only be accessed at offset 0.
5488     return isValidScalarTBAANode(BaseNode)
5489                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5490                : InvalidNode;
5491   }
5492 
5493   if (IsNewFormat) {
5494     if (BaseNode->getNumOperands() % 3 != 0) {
5495       CheckFailed("Access tag nodes must have the number of operands that is a "
5496                   "multiple of 3!", BaseNode);
5497       return InvalidNode;
5498     }
5499   } else {
5500     if (BaseNode->getNumOperands() % 2 != 1) {
5501       CheckFailed("Struct tag nodes must have an odd number of operands!",
5502                   BaseNode);
5503       return InvalidNode;
5504     }
5505   }
5506 
5507   // Check the type size field.
5508   if (IsNewFormat) {
5509     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5510         BaseNode->getOperand(1));
5511     if (!TypeSizeNode) {
5512       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5513       return InvalidNode;
5514     }
5515   }
5516 
5517   // Check the type name field. In the new format it can be anything.
5518   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5519     CheckFailed("Struct tag nodes have a string as their first operand",
5520                 BaseNode);
5521     return InvalidNode;
5522   }
5523 
5524   bool Failed = false;
5525 
5526   Optional<APInt> PrevOffset;
5527   unsigned BitWidth = ~0u;
5528 
5529   // We've already checked that BaseNode is not a degenerate root node with one
5530   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5531   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5532   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5533   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5534            Idx += NumOpsPerField) {
5535     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5536     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5537     if (!isa<MDNode>(FieldTy)) {
5538       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5539       Failed = true;
5540       continue;
5541     }
5542 
5543     auto *OffsetEntryCI =
5544         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5545     if (!OffsetEntryCI) {
5546       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5547       Failed = true;
5548       continue;
5549     }
5550 
5551     if (BitWidth == ~0u)
5552       BitWidth = OffsetEntryCI->getBitWidth();
5553 
5554     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5555       CheckFailed(
5556           "Bitwidth between the offsets and struct type entries must match", &I,
5557           BaseNode);
5558       Failed = true;
5559       continue;
5560     }
5561 
5562     // NB! As far as I can tell, we generate a non-strictly increasing offset
5563     // sequence only from structs that have zero size bit fields.  When
5564     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5565     // pick the field lexically the latest in struct type metadata node.  This
5566     // mirrors the actual behavior of the alias analysis implementation.
5567     bool IsAscending =
5568         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5569 
5570     if (!IsAscending) {
5571       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5572       Failed = true;
5573     }
5574 
5575     PrevOffset = OffsetEntryCI->getValue();
5576 
5577     if (IsNewFormat) {
5578       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5579           BaseNode->getOperand(Idx + 2));
5580       if (!MemberSizeNode) {
5581         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5582         Failed = true;
5583         continue;
5584       }
5585     }
5586   }
5587 
5588   return Failed ? InvalidNode
5589                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5590 }
5591 
5592 static bool IsRootTBAANode(const MDNode *MD) {
5593   return MD->getNumOperands() < 2;
5594 }
5595 
5596 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5597                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5598   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5599     return false;
5600 
5601   if (!isa<MDString>(MD->getOperand(0)))
5602     return false;
5603 
5604   if (MD->getNumOperands() == 3) {
5605     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5606     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5607       return false;
5608   }
5609 
5610   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5611   return Parent && Visited.insert(Parent).second &&
5612          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5613 }
5614 
5615 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5616   auto ResultIt = TBAAScalarNodes.find(MD);
5617   if (ResultIt != TBAAScalarNodes.end())
5618     return ResultIt->second;
5619 
5620   SmallPtrSet<const MDNode *, 4> Visited;
5621   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5622   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5623   (void)InsertResult;
5624   assert(InsertResult.second && "Just checked!");
5625 
5626   return Result;
5627 }
5628 
5629 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5630 /// Offset in place to be the offset within the field node returned.
5631 ///
5632 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5633 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5634                                                    const MDNode *BaseNode,
5635                                                    APInt &Offset,
5636                                                    bool IsNewFormat) {
5637   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5638 
5639   // Scalar nodes have only one possible "field" -- their parent in the access
5640   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5641   // to Assert that.
5642   if (BaseNode->getNumOperands() == 2)
5643     return cast<MDNode>(BaseNode->getOperand(1));
5644 
5645   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5646   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5647   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5648            Idx += NumOpsPerField) {
5649     auto *OffsetEntryCI =
5650         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5651     if (OffsetEntryCI->getValue().ugt(Offset)) {
5652       if (Idx == FirstFieldOpNo) {
5653         CheckFailed("Could not find TBAA parent in struct type node", &I,
5654                     BaseNode, &Offset);
5655         return nullptr;
5656       }
5657 
5658       unsigned PrevIdx = Idx - NumOpsPerField;
5659       auto *PrevOffsetEntryCI =
5660           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5661       Offset -= PrevOffsetEntryCI->getValue();
5662       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5663     }
5664   }
5665 
5666   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5667   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5668       BaseNode->getOperand(LastIdx + 1));
5669   Offset -= LastOffsetEntryCI->getValue();
5670   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5671 }
5672 
5673 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5674   if (!Type || Type->getNumOperands() < 3)
5675     return false;
5676 
5677   // In the new format type nodes shall have a reference to the parent type as
5678   // its first operand.
5679   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5680   if (!Parent)
5681     return false;
5682 
5683   return true;
5684 }
5685 
5686 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5687   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5688                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5689                  isa<AtomicCmpXchgInst>(I),
5690              "This instruction shall not have a TBAA access tag!", &I);
5691 
5692   bool IsStructPathTBAA =
5693       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5694 
5695   AssertTBAA(
5696       IsStructPathTBAA,
5697       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5698 
5699   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5700   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5701 
5702   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5703 
5704   if (IsNewFormat) {
5705     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5706                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5707   } else {
5708     AssertTBAA(MD->getNumOperands() < 5,
5709                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5710   }
5711 
5712   // Check the access size field.
5713   if (IsNewFormat) {
5714     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5715         MD->getOperand(3));
5716     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5717   }
5718 
5719   // Check the immutability flag.
5720   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5721   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5722     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5723         MD->getOperand(ImmutabilityFlagOpNo));
5724     AssertTBAA(IsImmutableCI,
5725                "Immutability tag on struct tag metadata must be a constant",
5726                &I, MD);
5727     AssertTBAA(
5728         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5729         "Immutability part of the struct tag metadata must be either 0 or 1",
5730         &I, MD);
5731   }
5732 
5733   AssertTBAA(BaseNode && AccessType,
5734              "Malformed struct tag metadata: base and access-type "
5735              "should be non-null and point to Metadata nodes",
5736              &I, MD, BaseNode, AccessType);
5737 
5738   if (!IsNewFormat) {
5739     AssertTBAA(isValidScalarTBAANode(AccessType),
5740                "Access type node must be a valid scalar type", &I, MD,
5741                AccessType);
5742   }
5743 
5744   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5745   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5746 
5747   APInt Offset = OffsetCI->getValue();
5748   bool SeenAccessTypeInPath = false;
5749 
5750   SmallPtrSet<MDNode *, 4> StructPath;
5751 
5752   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5753        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5754                                                IsNewFormat)) {
5755     if (!StructPath.insert(BaseNode).second) {
5756       CheckFailed("Cycle detected in struct path", &I, MD);
5757       return false;
5758     }
5759 
5760     bool Invalid;
5761     unsigned BaseNodeBitWidth;
5762     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5763                                                              IsNewFormat);
5764 
5765     // If the base node is invalid in itself, then we've already printed all the
5766     // errors we wanted to print.
5767     if (Invalid)
5768       return false;
5769 
5770     SeenAccessTypeInPath |= BaseNode == AccessType;
5771 
5772     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5773       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5774                  &I, MD, &Offset);
5775 
5776     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5777                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5778                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5779                "Access bit-width not the same as description bit-width", &I, MD,
5780                BaseNodeBitWidth, Offset.getBitWidth());
5781 
5782     if (IsNewFormat && SeenAccessTypeInPath)
5783       break;
5784   }
5785 
5786   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5787              &I, MD);
5788   return true;
5789 }
5790 
5791 char VerifierLegacyPass::ID = 0;
5792 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5793 
5794 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5795   return new VerifierLegacyPass(FatalErrors);
5796 }
5797 
5798 AnalysisKey VerifierAnalysis::Key;
5799 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5800                                                ModuleAnalysisManager &) {
5801   Result Res;
5802   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5803   return Res;
5804 }
5805 
5806 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5807                                                FunctionAnalysisManager &) {
5808   return { llvm::verifyFunction(F, &dbgs()), false };
5809 }
5810 
5811 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5812   auto Res = AM.getResult<VerifierAnalysis>(M);
5813   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5814     report_fatal_error("Broken module found, compilation aborted!");
5815 
5816   return PreservedAnalyses::all();
5817 }
5818 
5819 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5820   auto res = AM.getResult<VerifierAnalysis>(F);
5821   if (res.IRBroken && FatalErrors)
5822     report_fatal_error("Broken function found, compilation aborted!");
5823 
5824   return PreservedAnalyses::all();
5825 }
5826