1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 /// Whether a metadata node is allowed to be, or contain, a DILocation. 401 enum class AreDebugLocsAllowed { No, Yes }; 402 403 // Verification methods... 404 void visitGlobalValue(const GlobalValue &GV); 405 void visitGlobalVariable(const GlobalVariable &GV); 406 void visitGlobalAlias(const GlobalAlias &GA); 407 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 408 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 409 const GlobalAlias &A, const Constant &C); 410 void visitNamedMDNode(const NamedMDNode &NMD); 411 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 412 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 413 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 414 void visitComdat(const Comdat &C); 415 void visitModuleIdents(const Module &M); 416 void visitModuleCommandLines(const Module &M); 417 void visitModuleFlags(const Module &M); 418 void visitModuleFlag(const MDNode *Op, 419 DenseMap<const MDString *, const MDNode *> &SeenIDs, 420 SmallVectorImpl<const MDNode *> &Requirements); 421 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 422 void visitFunction(const Function &F); 423 void visitBasicBlock(BasicBlock &BB); 424 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 425 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 426 void visitProfMetadata(Instruction &I, MDNode *MD); 427 428 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 429 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 430 #include "llvm/IR/Metadata.def" 431 void visitDIScope(const DIScope &N); 432 void visitDIVariable(const DIVariable &N); 433 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 434 void visitDITemplateParameter(const DITemplateParameter &N); 435 436 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 437 438 // InstVisitor overrides... 439 using InstVisitor<Verifier>::visit; 440 void visit(Instruction &I); 441 442 void visitTruncInst(TruncInst &I); 443 void visitZExtInst(ZExtInst &I); 444 void visitSExtInst(SExtInst &I); 445 void visitFPTruncInst(FPTruncInst &I); 446 void visitFPExtInst(FPExtInst &I); 447 void visitFPToUIInst(FPToUIInst &I); 448 void visitFPToSIInst(FPToSIInst &I); 449 void visitUIToFPInst(UIToFPInst &I); 450 void visitSIToFPInst(SIToFPInst &I); 451 void visitIntToPtrInst(IntToPtrInst &I); 452 void visitPtrToIntInst(PtrToIntInst &I); 453 void visitBitCastInst(BitCastInst &I); 454 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 455 void visitPHINode(PHINode &PN); 456 void visitCallBase(CallBase &Call); 457 void visitUnaryOperator(UnaryOperator &U); 458 void visitBinaryOperator(BinaryOperator &B); 459 void visitICmpInst(ICmpInst &IC); 460 void visitFCmpInst(FCmpInst &FC); 461 void visitExtractElementInst(ExtractElementInst &EI); 462 void visitInsertElementInst(InsertElementInst &EI); 463 void visitShuffleVectorInst(ShuffleVectorInst &EI); 464 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 465 void visitCallInst(CallInst &CI); 466 void visitInvokeInst(InvokeInst &II); 467 void visitGetElementPtrInst(GetElementPtrInst &GEP); 468 void visitLoadInst(LoadInst &LI); 469 void visitStoreInst(StoreInst &SI); 470 void verifyDominatesUse(Instruction &I, unsigned i); 471 void visitInstruction(Instruction &I); 472 void visitTerminator(Instruction &I); 473 void visitBranchInst(BranchInst &BI); 474 void visitReturnInst(ReturnInst &RI); 475 void visitSwitchInst(SwitchInst &SI); 476 void visitIndirectBrInst(IndirectBrInst &BI); 477 void visitCallBrInst(CallBrInst &CBI); 478 void visitSelectInst(SelectInst &SI); 479 void visitUserOp1(Instruction &I); 480 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 481 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 482 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 483 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 484 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 485 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 486 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 487 void visitFenceInst(FenceInst &FI); 488 void visitAllocaInst(AllocaInst &AI); 489 void visitExtractValueInst(ExtractValueInst &EVI); 490 void visitInsertValueInst(InsertValueInst &IVI); 491 void visitEHPadPredecessors(Instruction &I); 492 void visitLandingPadInst(LandingPadInst &LPI); 493 void visitResumeInst(ResumeInst &RI); 494 void visitCatchPadInst(CatchPadInst &CPI); 495 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 496 void visitCleanupPadInst(CleanupPadInst &CPI); 497 void visitFuncletPadInst(FuncletPadInst &FPI); 498 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 499 void visitCleanupReturnInst(CleanupReturnInst &CRI); 500 501 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 502 void verifySwiftErrorValue(const Value *SwiftErrorVal); 503 void verifyMustTailCall(CallInst &CI); 504 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 505 unsigned ArgNo, std::string &Suffix); 506 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 507 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 508 const Value *V); 509 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 510 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 511 const Value *V, bool IsIntrinsic); 512 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 513 514 void visitConstantExprsRecursively(const Constant *EntryC); 515 void visitConstantExpr(const ConstantExpr *CE); 516 void verifyStatepoint(const CallBase &Call); 517 void verifyFrameRecoverIndices(); 518 void verifySiblingFuncletUnwinds(); 519 520 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 521 template <typename ValueOrMetadata> 522 void verifyFragmentExpression(const DIVariable &V, 523 DIExpression::FragmentInfo Fragment, 524 ValueOrMetadata *Desc); 525 void verifyFnArgs(const DbgVariableIntrinsic &I); 526 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 527 528 /// Module-level debug info verification... 529 void verifyCompileUnits(); 530 531 /// Module-level verification that all @llvm.experimental.deoptimize 532 /// declarations share the same calling convention. 533 void verifyDeoptimizeCallingConvs(); 534 535 /// Verify all-or-nothing property of DIFile source attribute within a CU. 536 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 537 }; 538 539 } // end anonymous namespace 540 541 /// We know that cond should be true, if not print an error message. 542 #define Assert(C, ...) \ 543 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 544 545 /// We know that a debug info condition should be true, if not print 546 /// an error message. 547 #define AssertDI(C, ...) \ 548 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 549 550 void Verifier::visit(Instruction &I) { 551 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 552 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 553 InstVisitor<Verifier>::visit(I); 554 } 555 556 // Helper to recursively iterate over indirect users. By 557 // returning false, the callback can ask to stop recursing 558 // further. 559 static void forEachUser(const Value *User, 560 SmallPtrSet<const Value *, 32> &Visited, 561 llvm::function_ref<bool(const Value *)> Callback) { 562 if (!Visited.insert(User).second) 563 return; 564 for (const Value *TheNextUser : User->materialized_users()) 565 if (Callback(TheNextUser)) 566 forEachUser(TheNextUser, Visited, Callback); 567 } 568 569 void Verifier::visitGlobalValue(const GlobalValue &GV) { 570 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 571 "Global is external, but doesn't have external or weak linkage!", &GV); 572 573 Assert(GV.getAlignment() <= Value::MaximumAlignment, 574 "huge alignment values are unsupported", &GV); 575 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 576 "Only global variables can have appending linkage!", &GV); 577 578 if (GV.hasAppendingLinkage()) { 579 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 580 Assert(GVar && GVar->getValueType()->isArrayTy(), 581 "Only global arrays can have appending linkage!", GVar); 582 } 583 584 if (GV.isDeclarationForLinker()) 585 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 586 587 if (GV.hasDLLImportStorageClass()) { 588 Assert(!GV.isDSOLocal(), 589 "GlobalValue with DLLImport Storage is dso_local!", &GV); 590 591 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 592 GV.hasAvailableExternallyLinkage(), 593 "Global is marked as dllimport, but not external", &GV); 594 } 595 596 if (GV.isImplicitDSOLocal()) 597 Assert(GV.isDSOLocal(), 598 "GlobalValue with local linkage or non-default " 599 "visibility must be dso_local!", 600 &GV); 601 602 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 603 if (const Instruction *I = dyn_cast<Instruction>(V)) { 604 if (!I->getParent() || !I->getParent()->getParent()) 605 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 606 I); 607 else if (I->getParent()->getParent()->getParent() != &M) 608 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 609 I->getParent()->getParent(), 610 I->getParent()->getParent()->getParent()); 611 return false; 612 } else if (const Function *F = dyn_cast<Function>(V)) { 613 if (F->getParent() != &M) 614 CheckFailed("Global is used by function in a different module", &GV, &M, 615 F, F->getParent()); 616 return false; 617 } 618 return true; 619 }); 620 } 621 622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 623 if (GV.hasInitializer()) { 624 Assert(GV.getInitializer()->getType() == GV.getValueType(), 625 "Global variable initializer type does not match global " 626 "variable type!", 627 &GV); 628 // If the global has common linkage, it must have a zero initializer and 629 // cannot be constant. 630 if (GV.hasCommonLinkage()) { 631 Assert(GV.getInitializer()->isNullValue(), 632 "'common' global must have a zero initializer!", &GV); 633 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 634 &GV); 635 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 636 } 637 } 638 639 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 640 GV.getName() == "llvm.global_dtors")) { 641 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 642 "invalid linkage for intrinsic global variable", &GV); 643 // Don't worry about emitting an error for it not being an array, 644 // visitGlobalValue will complain on appending non-array. 645 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 646 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 647 PointerType *FuncPtrTy = 648 FunctionType::get(Type::getVoidTy(Context), false)-> 649 getPointerTo(DL.getProgramAddressSpace()); 650 Assert(STy && 651 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 652 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 653 STy->getTypeAtIndex(1) == FuncPtrTy, 654 "wrong type for intrinsic global variable", &GV); 655 Assert(STy->getNumElements() == 3, 656 "the third field of the element type is mandatory, " 657 "specify i8* null to migrate from the obsoleted 2-field form"); 658 Type *ETy = STy->getTypeAtIndex(2); 659 Assert(ETy->isPointerTy() && 660 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 661 "wrong type for intrinsic global variable", &GV); 662 } 663 } 664 665 if (GV.hasName() && (GV.getName() == "llvm.used" || 666 GV.getName() == "llvm.compiler.used")) { 667 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 668 "invalid linkage for intrinsic global variable", &GV); 669 Type *GVType = GV.getValueType(); 670 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 671 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 672 Assert(PTy, "wrong type for intrinsic global variable", &GV); 673 if (GV.hasInitializer()) { 674 const Constant *Init = GV.getInitializer(); 675 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 676 Assert(InitArray, "wrong initalizer for intrinsic global variable", 677 Init); 678 for (Value *Op : InitArray->operands()) { 679 Value *V = Op->stripPointerCasts(); 680 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 681 isa<GlobalAlias>(V), 682 "invalid llvm.used member", V); 683 Assert(V->hasName(), "members of llvm.used must be named", V); 684 } 685 } 686 } 687 } 688 689 // Visit any debug info attachments. 690 SmallVector<MDNode *, 1> MDs; 691 GV.getMetadata(LLVMContext::MD_dbg, MDs); 692 for (auto *MD : MDs) { 693 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 694 visitDIGlobalVariableExpression(*GVE); 695 else 696 AssertDI(false, "!dbg attachment of global variable must be a " 697 "DIGlobalVariableExpression"); 698 } 699 700 // Scalable vectors cannot be global variables, since we don't know 701 // the runtime size. If the global is a struct or an array containing 702 // scalable vectors, that will be caught by the isValidElementType methods 703 // in StructType or ArrayType instead. 704 Assert(!isa<ScalableVectorType>(GV.getValueType()), 705 "Globals cannot contain scalable vectors", &GV); 706 707 if (!GV.hasInitializer()) { 708 visitGlobalValue(GV); 709 return; 710 } 711 712 // Walk any aggregate initializers looking for bitcasts between address spaces 713 visitConstantExprsRecursively(GV.getInitializer()); 714 715 visitGlobalValue(GV); 716 } 717 718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 719 SmallPtrSet<const GlobalAlias*, 4> Visited; 720 Visited.insert(&GA); 721 visitAliaseeSubExpr(Visited, GA, C); 722 } 723 724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 725 const GlobalAlias &GA, const Constant &C) { 726 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 727 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 728 &GA); 729 730 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 731 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 732 733 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 734 &GA); 735 } else { 736 // Only continue verifying subexpressions of GlobalAliases. 737 // Do not recurse into global initializers. 738 return; 739 } 740 } 741 742 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 743 visitConstantExprsRecursively(CE); 744 745 for (const Use &U : C.operands()) { 746 Value *V = &*U; 747 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 748 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 749 else if (const auto *C2 = dyn_cast<Constant>(V)) 750 visitAliaseeSubExpr(Visited, GA, *C2); 751 } 752 } 753 754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 755 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 756 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 757 "weak_odr, or external linkage!", 758 &GA); 759 const Constant *Aliasee = GA.getAliasee(); 760 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 761 Assert(GA.getType() == Aliasee->getType(), 762 "Alias and aliasee types should match!", &GA); 763 764 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 765 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 766 767 visitAliaseeSubExpr(GA, *Aliasee); 768 769 visitGlobalValue(GA); 770 } 771 772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 773 // There used to be various other llvm.dbg.* nodes, but we don't support 774 // upgrading them and we want to reserve the namespace for future uses. 775 if (NMD.getName().startswith("llvm.dbg.")) 776 AssertDI(NMD.getName() == "llvm.dbg.cu", 777 "unrecognized named metadata node in the llvm.dbg namespace", 778 &NMD); 779 for (const MDNode *MD : NMD.operands()) { 780 if (NMD.getName() == "llvm.dbg.cu") 781 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 782 783 if (!MD) 784 continue; 785 786 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 787 } 788 } 789 790 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 791 // Only visit each node once. Metadata can be mutually recursive, so this 792 // avoids infinite recursion here, as well as being an optimization. 793 if (!MDNodes.insert(&MD).second) 794 return; 795 796 switch (MD.getMetadataID()) { 797 default: 798 llvm_unreachable("Invalid MDNode subclass"); 799 case Metadata::MDTupleKind: 800 break; 801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 802 case Metadata::CLASS##Kind: \ 803 visit##CLASS(cast<CLASS>(MD)); \ 804 break; 805 #include "llvm/IR/Metadata.def" 806 } 807 808 for (const Metadata *Op : MD.operands()) { 809 if (!Op) 810 continue; 811 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 812 &MD, Op); 813 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 814 "DILocation not allowed within this metadata node", &MD, Op); 815 if (auto *N = dyn_cast<MDNode>(Op)) { 816 visitMDNode(*N, AllowLocs); 817 continue; 818 } 819 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 820 visitValueAsMetadata(*V, nullptr); 821 continue; 822 } 823 } 824 825 // Check these last, so we diagnose problems in operands first. 826 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 827 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 828 } 829 830 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 831 Assert(MD.getValue(), "Expected valid value", &MD); 832 Assert(!MD.getValue()->getType()->isMetadataTy(), 833 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 834 835 auto *L = dyn_cast<LocalAsMetadata>(&MD); 836 if (!L) 837 return; 838 839 Assert(F, "function-local metadata used outside a function", L); 840 841 // If this was an instruction, bb, or argument, verify that it is in the 842 // function that we expect. 843 Function *ActualF = nullptr; 844 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 845 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 846 ActualF = I->getParent()->getParent(); 847 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 848 ActualF = BB->getParent(); 849 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 850 ActualF = A->getParent(); 851 assert(ActualF && "Unimplemented function local metadata case!"); 852 853 Assert(ActualF == F, "function-local metadata used in wrong function", L); 854 } 855 856 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 857 Metadata *MD = MDV.getMetadata(); 858 if (auto *N = dyn_cast<MDNode>(MD)) { 859 visitMDNode(*N, AreDebugLocsAllowed::No); 860 return; 861 } 862 863 // Only visit each node once. Metadata can be mutually recursive, so this 864 // avoids infinite recursion here, as well as being an optimization. 865 if (!MDNodes.insert(MD).second) 866 return; 867 868 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 869 visitValueAsMetadata(*V, F); 870 } 871 872 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 873 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 874 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 875 876 void Verifier::visitDILocation(const DILocation &N) { 877 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 878 "location requires a valid scope", &N, N.getRawScope()); 879 if (auto *IA = N.getRawInlinedAt()) 880 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 881 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 882 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 883 } 884 885 void Verifier::visitGenericDINode(const GenericDINode &N) { 886 AssertDI(N.getTag(), "invalid tag", &N); 887 } 888 889 void Verifier::visitDIScope(const DIScope &N) { 890 if (auto *F = N.getRawFile()) 891 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 892 } 893 894 void Verifier::visitDISubrange(const DISubrange &N) { 895 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 896 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 897 "Subrange must contain count or upperBound", &N); 898 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 899 "Subrange can have any one of count or upperBound", &N); 900 AssertDI(!N.getRawCountNode() || N.getCount(), 901 "Count must either be a signed constant or a DIVariable", &N); 902 auto Count = N.getCount(); 903 AssertDI(!Count || !Count.is<ConstantInt *>() || 904 Count.get<ConstantInt *>()->getSExtValue() >= -1, 905 "invalid subrange count", &N); 906 auto *LBound = N.getRawLowerBound(); 907 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 908 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 909 "LowerBound must be signed constant or DIVariable or DIExpression", 910 &N); 911 auto *UBound = N.getRawUpperBound(); 912 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 913 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 914 "UpperBound must be signed constant or DIVariable or DIExpression", 915 &N); 916 auto *Stride = N.getRawStride(); 917 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 918 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 919 "Stride must be signed constant or DIVariable or DIExpression", &N); 920 } 921 922 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 923 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 924 } 925 926 void Verifier::visitDIBasicType(const DIBasicType &N) { 927 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 928 N.getTag() == dwarf::DW_TAG_unspecified_type, 929 "invalid tag", &N); 930 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 931 "has conflicting flags", &N); 932 } 933 934 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 935 // Common scope checks. 936 visitDIScope(N); 937 938 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 939 N.getTag() == dwarf::DW_TAG_pointer_type || 940 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 941 N.getTag() == dwarf::DW_TAG_reference_type || 942 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 943 N.getTag() == dwarf::DW_TAG_const_type || 944 N.getTag() == dwarf::DW_TAG_volatile_type || 945 N.getTag() == dwarf::DW_TAG_restrict_type || 946 N.getTag() == dwarf::DW_TAG_atomic_type || 947 N.getTag() == dwarf::DW_TAG_member || 948 N.getTag() == dwarf::DW_TAG_inheritance || 949 N.getTag() == dwarf::DW_TAG_friend, 950 "invalid tag", &N); 951 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 952 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 953 N.getRawExtraData()); 954 } 955 956 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 957 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 958 N.getRawBaseType()); 959 960 if (N.getDWARFAddressSpace()) { 961 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 962 N.getTag() == dwarf::DW_TAG_reference_type || 963 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 964 "DWARF address space only applies to pointer or reference types", 965 &N); 966 } 967 } 968 969 /// Detect mutually exclusive flags. 970 static bool hasConflictingReferenceFlags(unsigned Flags) { 971 return ((Flags & DINode::FlagLValueReference) && 972 (Flags & DINode::FlagRValueReference)) || 973 ((Flags & DINode::FlagTypePassByValue) && 974 (Flags & DINode::FlagTypePassByReference)); 975 } 976 977 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 978 auto *Params = dyn_cast<MDTuple>(&RawParams); 979 AssertDI(Params, "invalid template params", &N, &RawParams); 980 for (Metadata *Op : Params->operands()) { 981 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 982 &N, Params, Op); 983 } 984 } 985 986 void Verifier::visitDICompositeType(const DICompositeType &N) { 987 // Common scope checks. 988 visitDIScope(N); 989 990 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 991 N.getTag() == dwarf::DW_TAG_structure_type || 992 N.getTag() == dwarf::DW_TAG_union_type || 993 N.getTag() == dwarf::DW_TAG_enumeration_type || 994 N.getTag() == dwarf::DW_TAG_class_type || 995 N.getTag() == dwarf::DW_TAG_variant_part, 996 "invalid tag", &N); 997 998 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 999 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1000 N.getRawBaseType()); 1001 1002 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1003 "invalid composite elements", &N, N.getRawElements()); 1004 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1005 N.getRawVTableHolder()); 1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1007 "invalid reference flags", &N); 1008 unsigned DIBlockByRefStruct = 1 << 4; 1009 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1010 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1011 1012 if (N.isVector()) { 1013 const DINodeArray Elements = N.getElements(); 1014 AssertDI(Elements.size() == 1 && 1015 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1016 "invalid vector, expected one element of type subrange", &N); 1017 } 1018 1019 if (auto *Params = N.getRawTemplateParams()) 1020 visitTemplateParams(N, *Params); 1021 1022 if (N.getTag() == dwarf::DW_TAG_class_type || 1023 N.getTag() == dwarf::DW_TAG_union_type) { 1024 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1025 "class/union requires a filename", &N, N.getFile()); 1026 } 1027 1028 if (auto *D = N.getRawDiscriminator()) { 1029 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1030 "discriminator can only appear on variant part"); 1031 } 1032 1033 if (N.getRawDataLocation()) { 1034 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1035 "dataLocation can only appear in array type"); 1036 } 1037 } 1038 1039 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1040 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1041 if (auto *Types = N.getRawTypeArray()) { 1042 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1043 for (Metadata *Ty : N.getTypeArray()->operands()) { 1044 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1045 } 1046 } 1047 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1048 "invalid reference flags", &N); 1049 } 1050 1051 void Verifier::visitDIFile(const DIFile &N) { 1052 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1053 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1054 if (Checksum) { 1055 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1056 "invalid checksum kind", &N); 1057 size_t Size; 1058 switch (Checksum->Kind) { 1059 case DIFile::CSK_MD5: 1060 Size = 32; 1061 break; 1062 case DIFile::CSK_SHA1: 1063 Size = 40; 1064 break; 1065 case DIFile::CSK_SHA256: 1066 Size = 64; 1067 break; 1068 } 1069 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1070 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1071 "invalid checksum", &N); 1072 } 1073 } 1074 1075 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1076 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1077 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1078 1079 // Don't bother verifying the compilation directory or producer string 1080 // as those could be empty. 1081 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1082 N.getRawFile()); 1083 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1084 N.getFile()); 1085 1086 verifySourceDebugInfo(N, *N.getFile()); 1087 1088 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1089 "invalid emission kind", &N); 1090 1091 if (auto *Array = N.getRawEnumTypes()) { 1092 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1093 for (Metadata *Op : N.getEnumTypes()->operands()) { 1094 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1095 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1096 "invalid enum type", &N, N.getEnumTypes(), Op); 1097 } 1098 } 1099 if (auto *Array = N.getRawRetainedTypes()) { 1100 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1101 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1102 AssertDI(Op && (isa<DIType>(Op) || 1103 (isa<DISubprogram>(Op) && 1104 !cast<DISubprogram>(Op)->isDefinition())), 1105 "invalid retained type", &N, Op); 1106 } 1107 } 1108 if (auto *Array = N.getRawGlobalVariables()) { 1109 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1110 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1111 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1112 "invalid global variable ref", &N, Op); 1113 } 1114 } 1115 if (auto *Array = N.getRawImportedEntities()) { 1116 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1117 for (Metadata *Op : N.getImportedEntities()->operands()) { 1118 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1119 &N, Op); 1120 } 1121 } 1122 if (auto *Array = N.getRawMacros()) { 1123 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1124 for (Metadata *Op : N.getMacros()->operands()) { 1125 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1126 } 1127 } 1128 CUVisited.insert(&N); 1129 } 1130 1131 void Verifier::visitDISubprogram(const DISubprogram &N) { 1132 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1133 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1134 if (auto *F = N.getRawFile()) 1135 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1136 else 1137 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1138 if (auto *T = N.getRawType()) 1139 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1140 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1141 N.getRawContainingType()); 1142 if (auto *Params = N.getRawTemplateParams()) 1143 visitTemplateParams(N, *Params); 1144 if (auto *S = N.getRawDeclaration()) 1145 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1146 "invalid subprogram declaration", &N, S); 1147 if (auto *RawNode = N.getRawRetainedNodes()) { 1148 auto *Node = dyn_cast<MDTuple>(RawNode); 1149 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1150 for (Metadata *Op : Node->operands()) { 1151 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1152 "invalid retained nodes, expected DILocalVariable or DILabel", 1153 &N, Node, Op); 1154 } 1155 } 1156 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1157 "invalid reference flags", &N); 1158 1159 auto *Unit = N.getRawUnit(); 1160 if (N.isDefinition()) { 1161 // Subprogram definitions (not part of the type hierarchy). 1162 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1163 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1164 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1165 if (N.getFile()) 1166 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1167 } else { 1168 // Subprogram declarations (part of the type hierarchy). 1169 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1170 } 1171 1172 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1173 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1174 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1175 for (Metadata *Op : ThrownTypes->operands()) 1176 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1177 Op); 1178 } 1179 1180 if (N.areAllCallsDescribed()) 1181 AssertDI(N.isDefinition(), 1182 "DIFlagAllCallsDescribed must be attached to a definition"); 1183 } 1184 1185 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1186 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1187 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1188 "invalid local scope", &N, N.getRawScope()); 1189 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1190 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1191 } 1192 1193 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1194 visitDILexicalBlockBase(N); 1195 1196 AssertDI(N.getLine() || !N.getColumn(), 1197 "cannot have column info without line info", &N); 1198 } 1199 1200 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1201 visitDILexicalBlockBase(N); 1202 } 1203 1204 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1205 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1206 if (auto *S = N.getRawScope()) 1207 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1208 if (auto *S = N.getRawDecl()) 1209 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1210 } 1211 1212 void Verifier::visitDINamespace(const DINamespace &N) { 1213 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1214 if (auto *S = N.getRawScope()) 1215 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1216 } 1217 1218 void Verifier::visitDIMacro(const DIMacro &N) { 1219 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1220 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1221 "invalid macinfo type", &N); 1222 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1223 if (!N.getValue().empty()) { 1224 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1225 } 1226 } 1227 1228 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1229 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1230 "invalid macinfo type", &N); 1231 if (auto *F = N.getRawFile()) 1232 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1233 1234 if (auto *Array = N.getRawElements()) { 1235 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1236 for (Metadata *Op : N.getElements()->operands()) { 1237 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1238 } 1239 } 1240 } 1241 1242 void Verifier::visitDIModule(const DIModule &N) { 1243 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1244 AssertDI(!N.getName().empty(), "anonymous module", &N); 1245 } 1246 1247 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1249 } 1250 1251 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1252 visitDITemplateParameter(N); 1253 1254 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1255 &N); 1256 } 1257 1258 void Verifier::visitDITemplateValueParameter( 1259 const DITemplateValueParameter &N) { 1260 visitDITemplateParameter(N); 1261 1262 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1263 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1264 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1265 "invalid tag", &N); 1266 } 1267 1268 void Verifier::visitDIVariable(const DIVariable &N) { 1269 if (auto *S = N.getRawScope()) 1270 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1271 if (auto *F = N.getRawFile()) 1272 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1273 } 1274 1275 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1276 // Checks common to all variables. 1277 visitDIVariable(N); 1278 1279 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1280 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1281 AssertDI(N.getType(), "missing global variable type", &N); 1282 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1283 AssertDI(isa<DIDerivedType>(Member), 1284 "invalid static data member declaration", &N, Member); 1285 } 1286 } 1287 1288 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1289 // Checks common to all variables. 1290 visitDIVariable(N); 1291 1292 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1293 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1294 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1295 "local variable requires a valid scope", &N, N.getRawScope()); 1296 if (auto Ty = N.getType()) 1297 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1298 } 1299 1300 void Verifier::visitDILabel(const DILabel &N) { 1301 if (auto *S = N.getRawScope()) 1302 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1303 if (auto *F = N.getRawFile()) 1304 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1305 1306 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1307 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1308 "label requires a valid scope", &N, N.getRawScope()); 1309 } 1310 1311 void Verifier::visitDIExpression(const DIExpression &N) { 1312 AssertDI(N.isValid(), "invalid expression", &N); 1313 } 1314 1315 void Verifier::visitDIGlobalVariableExpression( 1316 const DIGlobalVariableExpression &GVE) { 1317 AssertDI(GVE.getVariable(), "missing variable"); 1318 if (auto *Var = GVE.getVariable()) 1319 visitDIGlobalVariable(*Var); 1320 if (auto *Expr = GVE.getExpression()) { 1321 visitDIExpression(*Expr); 1322 if (auto Fragment = Expr->getFragmentInfo()) 1323 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1324 } 1325 } 1326 1327 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1328 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1329 if (auto *T = N.getRawType()) 1330 AssertDI(isType(T), "invalid type ref", &N, T); 1331 if (auto *F = N.getRawFile()) 1332 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1333 } 1334 1335 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1336 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1337 N.getTag() == dwarf::DW_TAG_imported_declaration, 1338 "invalid tag", &N); 1339 if (auto *S = N.getRawScope()) 1340 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1341 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1342 N.getRawEntity()); 1343 } 1344 1345 void Verifier::visitComdat(const Comdat &C) { 1346 // In COFF the Module is invalid if the GlobalValue has private linkage. 1347 // Entities with private linkage don't have entries in the symbol table. 1348 if (TT.isOSBinFormatCOFF()) 1349 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1350 Assert(!GV->hasPrivateLinkage(), 1351 "comdat global value has private linkage", GV); 1352 } 1353 1354 void Verifier::visitModuleIdents(const Module &M) { 1355 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1356 if (!Idents) 1357 return; 1358 1359 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1360 // Scan each llvm.ident entry and make sure that this requirement is met. 1361 for (const MDNode *N : Idents->operands()) { 1362 Assert(N->getNumOperands() == 1, 1363 "incorrect number of operands in llvm.ident metadata", N); 1364 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1365 ("invalid value for llvm.ident metadata entry operand" 1366 "(the operand should be a string)"), 1367 N->getOperand(0)); 1368 } 1369 } 1370 1371 void Verifier::visitModuleCommandLines(const Module &M) { 1372 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1373 if (!CommandLines) 1374 return; 1375 1376 // llvm.commandline takes a list of metadata entry. Each entry has only one 1377 // string. Scan each llvm.commandline entry and make sure that this 1378 // requirement is met. 1379 for (const MDNode *N : CommandLines->operands()) { 1380 Assert(N->getNumOperands() == 1, 1381 "incorrect number of operands in llvm.commandline metadata", N); 1382 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1383 ("invalid value for llvm.commandline metadata entry operand" 1384 "(the operand should be a string)"), 1385 N->getOperand(0)); 1386 } 1387 } 1388 1389 void Verifier::visitModuleFlags(const Module &M) { 1390 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1391 if (!Flags) return; 1392 1393 // Scan each flag, and track the flags and requirements. 1394 DenseMap<const MDString*, const MDNode*> SeenIDs; 1395 SmallVector<const MDNode*, 16> Requirements; 1396 for (const MDNode *MDN : Flags->operands()) 1397 visitModuleFlag(MDN, SeenIDs, Requirements); 1398 1399 // Validate that the requirements in the module are valid. 1400 for (const MDNode *Requirement : Requirements) { 1401 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1402 const Metadata *ReqValue = Requirement->getOperand(1); 1403 1404 const MDNode *Op = SeenIDs.lookup(Flag); 1405 if (!Op) { 1406 CheckFailed("invalid requirement on flag, flag is not present in module", 1407 Flag); 1408 continue; 1409 } 1410 1411 if (Op->getOperand(2) != ReqValue) { 1412 CheckFailed(("invalid requirement on flag, " 1413 "flag does not have the required value"), 1414 Flag); 1415 continue; 1416 } 1417 } 1418 } 1419 1420 void 1421 Verifier::visitModuleFlag(const MDNode *Op, 1422 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1423 SmallVectorImpl<const MDNode *> &Requirements) { 1424 // Each module flag should have three arguments, the merge behavior (a 1425 // constant int), the flag ID (an MDString), and the value. 1426 Assert(Op->getNumOperands() == 3, 1427 "incorrect number of operands in module flag", Op); 1428 Module::ModFlagBehavior MFB; 1429 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1430 Assert( 1431 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1432 "invalid behavior operand in module flag (expected constant integer)", 1433 Op->getOperand(0)); 1434 Assert(false, 1435 "invalid behavior operand in module flag (unexpected constant)", 1436 Op->getOperand(0)); 1437 } 1438 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1439 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1440 Op->getOperand(1)); 1441 1442 // Sanity check the values for behaviors with additional requirements. 1443 switch (MFB) { 1444 case Module::Error: 1445 case Module::Warning: 1446 case Module::Override: 1447 // These behavior types accept any value. 1448 break; 1449 1450 case Module::Max: { 1451 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1452 "invalid value for 'max' module flag (expected constant integer)", 1453 Op->getOperand(2)); 1454 break; 1455 } 1456 1457 case Module::Require: { 1458 // The value should itself be an MDNode with two operands, a flag ID (an 1459 // MDString), and a value. 1460 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1461 Assert(Value && Value->getNumOperands() == 2, 1462 "invalid value for 'require' module flag (expected metadata pair)", 1463 Op->getOperand(2)); 1464 Assert(isa<MDString>(Value->getOperand(0)), 1465 ("invalid value for 'require' module flag " 1466 "(first value operand should be a string)"), 1467 Value->getOperand(0)); 1468 1469 // Append it to the list of requirements, to check once all module flags are 1470 // scanned. 1471 Requirements.push_back(Value); 1472 break; 1473 } 1474 1475 case Module::Append: 1476 case Module::AppendUnique: { 1477 // These behavior types require the operand be an MDNode. 1478 Assert(isa<MDNode>(Op->getOperand(2)), 1479 "invalid value for 'append'-type module flag " 1480 "(expected a metadata node)", 1481 Op->getOperand(2)); 1482 break; 1483 } 1484 } 1485 1486 // Unless this is a "requires" flag, check the ID is unique. 1487 if (MFB != Module::Require) { 1488 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1489 Assert(Inserted, 1490 "module flag identifiers must be unique (or of 'require' type)", ID); 1491 } 1492 1493 if (ID->getString() == "wchar_size") { 1494 ConstantInt *Value 1495 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1496 Assert(Value, "wchar_size metadata requires constant integer argument"); 1497 } 1498 1499 if (ID->getString() == "Linker Options") { 1500 // If the llvm.linker.options named metadata exists, we assume that the 1501 // bitcode reader has upgraded the module flag. Otherwise the flag might 1502 // have been created by a client directly. 1503 Assert(M.getNamedMetadata("llvm.linker.options"), 1504 "'Linker Options' named metadata no longer supported"); 1505 } 1506 1507 if (ID->getString() == "SemanticInterposition") { 1508 ConstantInt *Value = 1509 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1510 Assert(Value, 1511 "SemanticInterposition metadata requires constant integer argument"); 1512 } 1513 1514 if (ID->getString() == "CG Profile") { 1515 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1516 visitModuleFlagCGProfileEntry(MDO); 1517 } 1518 } 1519 1520 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1521 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1522 if (!FuncMDO) 1523 return; 1524 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1525 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1526 FuncMDO); 1527 }; 1528 auto Node = dyn_cast_or_null<MDNode>(MDO); 1529 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1530 CheckFunction(Node->getOperand(0)); 1531 CheckFunction(Node->getOperand(1)); 1532 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1533 Assert(Count && Count->getType()->isIntegerTy(), 1534 "expected an integer constant", Node->getOperand(2)); 1535 } 1536 1537 /// Return true if this attribute kind only applies to functions. 1538 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1539 switch (Kind) { 1540 case Attribute::NoMerge: 1541 case Attribute::NoReturn: 1542 case Attribute::NoSync: 1543 case Attribute::WillReturn: 1544 case Attribute::NoCfCheck: 1545 case Attribute::NoUnwind: 1546 case Attribute::NoInline: 1547 case Attribute::AlwaysInline: 1548 case Attribute::OptimizeForSize: 1549 case Attribute::StackProtect: 1550 case Attribute::StackProtectReq: 1551 case Attribute::StackProtectStrong: 1552 case Attribute::SafeStack: 1553 case Attribute::ShadowCallStack: 1554 case Attribute::NoRedZone: 1555 case Attribute::NoImplicitFloat: 1556 case Attribute::Naked: 1557 case Attribute::InlineHint: 1558 case Attribute::StackAlignment: 1559 case Attribute::UWTable: 1560 case Attribute::NonLazyBind: 1561 case Attribute::ReturnsTwice: 1562 case Attribute::SanitizeAddress: 1563 case Attribute::SanitizeHWAddress: 1564 case Attribute::SanitizeMemTag: 1565 case Attribute::SanitizeThread: 1566 case Attribute::SanitizeMemory: 1567 case Attribute::MinSize: 1568 case Attribute::NoDuplicate: 1569 case Attribute::Builtin: 1570 case Attribute::NoBuiltin: 1571 case Attribute::Cold: 1572 case Attribute::OptForFuzzing: 1573 case Attribute::OptimizeNone: 1574 case Attribute::JumpTable: 1575 case Attribute::Convergent: 1576 case Attribute::ArgMemOnly: 1577 case Attribute::NoRecurse: 1578 case Attribute::InaccessibleMemOnly: 1579 case Attribute::InaccessibleMemOrArgMemOnly: 1580 case Attribute::AllocSize: 1581 case Attribute::SpeculativeLoadHardening: 1582 case Attribute::Speculatable: 1583 case Attribute::StrictFP: 1584 case Attribute::NullPointerIsValid: 1585 return true; 1586 default: 1587 break; 1588 } 1589 return false; 1590 } 1591 1592 /// Return true if this is a function attribute that can also appear on 1593 /// arguments. 1594 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1595 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1596 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1597 Kind == Attribute::Preallocated; 1598 } 1599 1600 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1601 const Value *V) { 1602 for (Attribute A : Attrs) { 1603 if (A.isStringAttribute()) 1604 continue; 1605 1606 if (A.isIntAttribute() != 1607 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1608 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1609 V); 1610 return; 1611 } 1612 1613 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1614 if (!IsFunction) { 1615 CheckFailed("Attribute '" + A.getAsString() + 1616 "' only applies to functions!", 1617 V); 1618 return; 1619 } 1620 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1621 CheckFailed("Attribute '" + A.getAsString() + 1622 "' does not apply to functions!", 1623 V); 1624 return; 1625 } 1626 } 1627 } 1628 1629 // VerifyParameterAttrs - Check the given attributes for an argument or return 1630 // value of the specified type. The value V is printed in error messages. 1631 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1632 const Value *V) { 1633 if (!Attrs.hasAttributes()) 1634 return; 1635 1636 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1637 1638 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1639 Assert(Attrs.getNumAttributes() == 1, 1640 "Attribute 'immarg' is incompatible with other attributes", V); 1641 } 1642 1643 // Check for mutually incompatible attributes. Only inreg is compatible with 1644 // sret. 1645 unsigned AttrCount = 0; 1646 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1647 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1648 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1649 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1650 Attrs.hasAttribute(Attribute::InReg); 1651 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1652 Assert(AttrCount <= 1, 1653 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1654 "and 'sret' are incompatible!", 1655 V); 1656 1657 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1658 Attrs.hasAttribute(Attribute::ReadOnly)), 1659 "Attributes " 1660 "'inalloca and readonly' are incompatible!", 1661 V); 1662 1663 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1664 Attrs.hasAttribute(Attribute::Returned)), 1665 "Attributes " 1666 "'sret and returned' are incompatible!", 1667 V); 1668 1669 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1670 Attrs.hasAttribute(Attribute::SExt)), 1671 "Attributes " 1672 "'zeroext and signext' are incompatible!", 1673 V); 1674 1675 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1676 Attrs.hasAttribute(Attribute::ReadOnly)), 1677 "Attributes " 1678 "'readnone and readonly' are incompatible!", 1679 V); 1680 1681 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1682 Attrs.hasAttribute(Attribute::WriteOnly)), 1683 "Attributes " 1684 "'readnone and writeonly' are incompatible!", 1685 V); 1686 1687 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1688 Attrs.hasAttribute(Attribute::WriteOnly)), 1689 "Attributes " 1690 "'readonly and writeonly' are incompatible!", 1691 V); 1692 1693 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1694 Attrs.hasAttribute(Attribute::AlwaysInline)), 1695 "Attributes " 1696 "'noinline and alwaysinline' are incompatible!", 1697 V); 1698 1699 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1700 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1701 "Attribute 'byval' type does not match parameter!", V); 1702 } 1703 1704 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1705 Assert(Attrs.getPreallocatedType() == 1706 cast<PointerType>(Ty)->getElementType(), 1707 "Attribute 'preallocated' type does not match parameter!", V); 1708 } 1709 1710 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1711 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1712 "Wrong types for attribute: " + 1713 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1714 V); 1715 1716 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1717 SmallPtrSet<Type*, 4> Visited; 1718 if (!PTy->getElementType()->isSized(&Visited)) { 1719 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1720 !Attrs.hasAttribute(Attribute::InAlloca) && 1721 !Attrs.hasAttribute(Attribute::Preallocated), 1722 "Attributes 'byval', 'inalloca', and 'preallocated' do not " 1723 "support unsized types!", 1724 V); 1725 } 1726 if (!isa<PointerType>(PTy->getElementType())) 1727 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1728 "Attribute 'swifterror' only applies to parameters " 1729 "with pointer to pointer type!", 1730 V); 1731 } else { 1732 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1733 "Attribute 'byval' only applies to parameters with pointer type!", 1734 V); 1735 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1736 "Attribute 'swifterror' only applies to parameters " 1737 "with pointer type!", 1738 V); 1739 } 1740 } 1741 1742 // Check parameter attributes against a function type. 1743 // The value V is printed in error messages. 1744 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1745 const Value *V, bool IsIntrinsic) { 1746 if (Attrs.isEmpty()) 1747 return; 1748 1749 bool SawNest = false; 1750 bool SawReturned = false; 1751 bool SawSRet = false; 1752 bool SawSwiftSelf = false; 1753 bool SawSwiftError = false; 1754 1755 // Verify return value attributes. 1756 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1757 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1758 !RetAttrs.hasAttribute(Attribute::Nest) && 1759 !RetAttrs.hasAttribute(Attribute::StructRet) && 1760 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1761 !RetAttrs.hasAttribute(Attribute::NoFree) && 1762 !RetAttrs.hasAttribute(Attribute::Returned) && 1763 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1764 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1765 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1766 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1767 "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', " 1768 "'nocapture', 'nofree', " 1769 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1770 "values!", 1771 V); 1772 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1773 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1774 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1775 "Attribute '" + RetAttrs.getAsString() + 1776 "' does not apply to function returns", 1777 V); 1778 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1779 1780 // Verify parameter attributes. 1781 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1782 Type *Ty = FT->getParamType(i); 1783 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1784 1785 if (!IsIntrinsic) { 1786 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1787 "immarg attribute only applies to intrinsics",V); 1788 } 1789 1790 verifyParameterAttrs(ArgAttrs, Ty, V); 1791 1792 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1793 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1794 SawNest = true; 1795 } 1796 1797 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1798 Assert(!SawReturned, "More than one parameter has attribute returned!", 1799 V); 1800 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1801 "Incompatible argument and return types for 'returned' attribute", 1802 V); 1803 SawReturned = true; 1804 } 1805 1806 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1807 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1808 Assert(i == 0 || i == 1, 1809 "Attribute 'sret' is not on first or second parameter!", V); 1810 SawSRet = true; 1811 } 1812 1813 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1814 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1815 SawSwiftSelf = true; 1816 } 1817 1818 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1819 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1820 V); 1821 SawSwiftError = true; 1822 } 1823 1824 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1825 Assert(i == FT->getNumParams() - 1, 1826 "inalloca isn't on the last parameter!", V); 1827 } 1828 } 1829 1830 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1831 return; 1832 1833 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1834 1835 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1836 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1837 "Attributes 'readnone and readonly' are incompatible!", V); 1838 1839 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1840 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1841 "Attributes 'readnone and writeonly' are incompatible!", V); 1842 1843 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1844 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1845 "Attributes 'readonly and writeonly' are incompatible!", V); 1846 1847 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1848 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1849 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1850 "incompatible!", 1851 V); 1852 1853 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1854 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1855 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1856 1857 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1858 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1859 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1860 1861 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1862 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1863 "Attribute 'optnone' requires 'noinline'!", V); 1864 1865 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1866 "Attributes 'optsize and optnone' are incompatible!", V); 1867 1868 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1869 "Attributes 'minsize and optnone' are incompatible!", V); 1870 } 1871 1872 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1873 const GlobalValue *GV = cast<GlobalValue>(V); 1874 Assert(GV->hasGlobalUnnamedAddr(), 1875 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1876 } 1877 1878 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1879 std::pair<unsigned, Optional<unsigned>> Args = 1880 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1881 1882 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1883 if (ParamNo >= FT->getNumParams()) { 1884 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1885 return false; 1886 } 1887 1888 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1889 CheckFailed("'allocsize' " + Name + 1890 " argument must refer to an integer parameter", 1891 V); 1892 return false; 1893 } 1894 1895 return true; 1896 }; 1897 1898 if (!CheckParam("element size", Args.first)) 1899 return; 1900 1901 if (Args.second && !CheckParam("number of elements", *Args.second)) 1902 return; 1903 } 1904 1905 if (Attrs.hasFnAttribute("frame-pointer")) { 1906 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1907 "frame-pointer").getValueAsString(); 1908 if (FP != "all" && FP != "non-leaf" && FP != "none") 1909 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1910 } 1911 1912 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1913 StringRef S = Attrs 1914 .getAttribute(AttributeList::FunctionIndex, 1915 "patchable-function-prefix") 1916 .getValueAsString(); 1917 unsigned N; 1918 if (S.getAsInteger(10, N)) 1919 CheckFailed( 1920 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1921 } 1922 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1923 StringRef S = Attrs 1924 .getAttribute(AttributeList::FunctionIndex, 1925 "patchable-function-entry") 1926 .getValueAsString(); 1927 unsigned N; 1928 if (S.getAsInteger(10, N)) 1929 CheckFailed( 1930 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1931 } 1932 } 1933 1934 void Verifier::verifyFunctionMetadata( 1935 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1936 for (const auto &Pair : MDs) { 1937 if (Pair.first == LLVMContext::MD_prof) { 1938 MDNode *MD = Pair.second; 1939 Assert(MD->getNumOperands() >= 2, 1940 "!prof annotations should have no less than 2 operands", MD); 1941 1942 // Check first operand. 1943 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1944 MD); 1945 Assert(isa<MDString>(MD->getOperand(0)), 1946 "expected string with name of the !prof annotation", MD); 1947 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1948 StringRef ProfName = MDS->getString(); 1949 Assert(ProfName.equals("function_entry_count") || 1950 ProfName.equals("synthetic_function_entry_count"), 1951 "first operand should be 'function_entry_count'" 1952 " or 'synthetic_function_entry_count'", 1953 MD); 1954 1955 // Check second operand. 1956 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1957 MD); 1958 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1959 "expected integer argument to function_entry_count", MD); 1960 } 1961 } 1962 } 1963 1964 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1965 if (!ConstantExprVisited.insert(EntryC).second) 1966 return; 1967 1968 SmallVector<const Constant *, 16> Stack; 1969 Stack.push_back(EntryC); 1970 1971 while (!Stack.empty()) { 1972 const Constant *C = Stack.pop_back_val(); 1973 1974 // Check this constant expression. 1975 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1976 visitConstantExpr(CE); 1977 1978 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1979 // Global Values get visited separately, but we do need to make sure 1980 // that the global value is in the correct module 1981 Assert(GV->getParent() == &M, "Referencing global in another module!", 1982 EntryC, &M, GV, GV->getParent()); 1983 continue; 1984 } 1985 1986 // Visit all sub-expressions. 1987 for (const Use &U : C->operands()) { 1988 const auto *OpC = dyn_cast<Constant>(U); 1989 if (!OpC) 1990 continue; 1991 if (!ConstantExprVisited.insert(OpC).second) 1992 continue; 1993 Stack.push_back(OpC); 1994 } 1995 } 1996 } 1997 1998 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1999 if (CE->getOpcode() == Instruction::BitCast) 2000 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2001 CE->getType()), 2002 "Invalid bitcast", CE); 2003 2004 if (CE->getOpcode() == Instruction::IntToPtr || 2005 CE->getOpcode() == Instruction::PtrToInt) { 2006 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2007 ? CE->getType() 2008 : CE->getOperand(0)->getType(); 2009 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2010 ? "inttoptr not supported for non-integral pointers" 2011 : "ptrtoint not supported for non-integral pointers"; 2012 Assert( 2013 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2014 Msg); 2015 } 2016 } 2017 2018 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2019 // There shouldn't be more attribute sets than there are parameters plus the 2020 // function and return value. 2021 return Attrs.getNumAttrSets() <= Params + 2; 2022 } 2023 2024 /// Verify that statepoint intrinsic is well formed. 2025 void Verifier::verifyStatepoint(const CallBase &Call) { 2026 assert(Call.getCalledFunction() && 2027 Call.getCalledFunction()->getIntrinsicID() == 2028 Intrinsic::experimental_gc_statepoint); 2029 2030 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2031 !Call.onlyAccessesArgMemory(), 2032 "gc.statepoint must read and write all memory to preserve " 2033 "reordering restrictions required by safepoint semantics", 2034 Call); 2035 2036 const int64_t NumPatchBytes = 2037 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2038 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2039 Assert(NumPatchBytes >= 0, 2040 "gc.statepoint number of patchable bytes must be " 2041 "positive", 2042 Call); 2043 2044 const Value *Target = Call.getArgOperand(2); 2045 auto *PT = dyn_cast<PointerType>(Target->getType()); 2046 Assert(PT && PT->getElementType()->isFunctionTy(), 2047 "gc.statepoint callee must be of function pointer type", Call, Target); 2048 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2049 2050 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2051 Assert(NumCallArgs >= 0, 2052 "gc.statepoint number of arguments to underlying call " 2053 "must be positive", 2054 Call); 2055 const int NumParams = (int)TargetFuncType->getNumParams(); 2056 if (TargetFuncType->isVarArg()) { 2057 Assert(NumCallArgs >= NumParams, 2058 "gc.statepoint mismatch in number of vararg call args", Call); 2059 2060 // TODO: Remove this limitation 2061 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2062 "gc.statepoint doesn't support wrapping non-void " 2063 "vararg functions yet", 2064 Call); 2065 } else 2066 Assert(NumCallArgs == NumParams, 2067 "gc.statepoint mismatch in number of call args", Call); 2068 2069 const uint64_t Flags 2070 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2071 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2072 "unknown flag used in gc.statepoint flags argument", Call); 2073 2074 // Verify that the types of the call parameter arguments match 2075 // the type of the wrapped callee. 2076 AttributeList Attrs = Call.getAttributes(); 2077 for (int i = 0; i < NumParams; i++) { 2078 Type *ParamType = TargetFuncType->getParamType(i); 2079 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2080 Assert(ArgType == ParamType, 2081 "gc.statepoint call argument does not match wrapped " 2082 "function type", 2083 Call); 2084 2085 if (TargetFuncType->isVarArg()) { 2086 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2087 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2088 "Attribute 'sret' cannot be used for vararg call arguments!", 2089 Call); 2090 } 2091 } 2092 2093 const int EndCallArgsInx = 4 + NumCallArgs; 2094 2095 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2096 Assert(isa<ConstantInt>(NumTransitionArgsV), 2097 "gc.statepoint number of transition arguments " 2098 "must be constant integer", 2099 Call); 2100 const int NumTransitionArgs = 2101 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2102 Assert(NumTransitionArgs >= 0, 2103 "gc.statepoint number of transition arguments must be positive", Call); 2104 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2105 2106 // We're migrating away from inline operands to operand bundles, enforce 2107 // the either/or property during transition. 2108 if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) { 2109 Assert(NumTransitionArgs == 0, 2110 "can't use both deopt operands and deopt bundle on a statepoint"); 2111 } 2112 2113 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2114 Assert(isa<ConstantInt>(NumDeoptArgsV), 2115 "gc.statepoint number of deoptimization arguments " 2116 "must be constant integer", 2117 Call); 2118 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2119 Assert(NumDeoptArgs >= 0, 2120 "gc.statepoint number of deoptimization arguments " 2121 "must be positive", 2122 Call); 2123 2124 // We're migrating away from inline operands to operand bundles, enforce 2125 // the either/or property during transition. 2126 if (Call.getOperandBundle(LLVMContext::OB_deopt)) { 2127 Assert(NumDeoptArgs == 0, 2128 "can't use both deopt operands and deopt bundle on a statepoint"); 2129 } 2130 2131 const int ExpectedNumArgs = 2132 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2133 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2134 "gc.statepoint too few arguments according to length fields", Call); 2135 2136 // Check that the only uses of this gc.statepoint are gc.result or 2137 // gc.relocate calls which are tied to this statepoint and thus part 2138 // of the same statepoint sequence 2139 for (const User *U : Call.users()) { 2140 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2141 Assert(UserCall, "illegal use of statepoint token", Call, U); 2142 if (!UserCall) 2143 continue; 2144 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2145 "gc.result or gc.relocate are the only value uses " 2146 "of a gc.statepoint", 2147 Call, U); 2148 if (isa<GCResultInst>(UserCall)) { 2149 Assert(UserCall->getArgOperand(0) == &Call, 2150 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2151 } else if (isa<GCRelocateInst>(Call)) { 2152 Assert(UserCall->getArgOperand(0) == &Call, 2153 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2154 } 2155 } 2156 2157 // Note: It is legal for a single derived pointer to be listed multiple 2158 // times. It's non-optimal, but it is legal. It can also happen after 2159 // insertion if we strip a bitcast away. 2160 // Note: It is really tempting to check that each base is relocated and 2161 // that a derived pointer is never reused as a base pointer. This turns 2162 // out to be problematic since optimizations run after safepoint insertion 2163 // can recognize equality properties that the insertion logic doesn't know 2164 // about. See example statepoint.ll in the verifier subdirectory 2165 } 2166 2167 void Verifier::verifyFrameRecoverIndices() { 2168 for (auto &Counts : FrameEscapeInfo) { 2169 Function *F = Counts.first; 2170 unsigned EscapedObjectCount = Counts.second.first; 2171 unsigned MaxRecoveredIndex = Counts.second.second; 2172 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2173 "all indices passed to llvm.localrecover must be less than the " 2174 "number of arguments passed to llvm.localescape in the parent " 2175 "function", 2176 F); 2177 } 2178 } 2179 2180 static Instruction *getSuccPad(Instruction *Terminator) { 2181 BasicBlock *UnwindDest; 2182 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2183 UnwindDest = II->getUnwindDest(); 2184 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2185 UnwindDest = CSI->getUnwindDest(); 2186 else 2187 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2188 return UnwindDest->getFirstNonPHI(); 2189 } 2190 2191 void Verifier::verifySiblingFuncletUnwinds() { 2192 SmallPtrSet<Instruction *, 8> Visited; 2193 SmallPtrSet<Instruction *, 8> Active; 2194 for (const auto &Pair : SiblingFuncletInfo) { 2195 Instruction *PredPad = Pair.first; 2196 if (Visited.count(PredPad)) 2197 continue; 2198 Active.insert(PredPad); 2199 Instruction *Terminator = Pair.second; 2200 do { 2201 Instruction *SuccPad = getSuccPad(Terminator); 2202 if (Active.count(SuccPad)) { 2203 // Found a cycle; report error 2204 Instruction *CyclePad = SuccPad; 2205 SmallVector<Instruction *, 8> CycleNodes; 2206 do { 2207 CycleNodes.push_back(CyclePad); 2208 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2209 if (CycleTerminator != CyclePad) 2210 CycleNodes.push_back(CycleTerminator); 2211 CyclePad = getSuccPad(CycleTerminator); 2212 } while (CyclePad != SuccPad); 2213 Assert(false, "EH pads can't handle each other's exceptions", 2214 ArrayRef<Instruction *>(CycleNodes)); 2215 } 2216 // Don't re-walk a node we've already checked 2217 if (!Visited.insert(SuccPad).second) 2218 break; 2219 // Walk to this successor if it has a map entry. 2220 PredPad = SuccPad; 2221 auto TermI = SiblingFuncletInfo.find(PredPad); 2222 if (TermI == SiblingFuncletInfo.end()) 2223 break; 2224 Terminator = TermI->second; 2225 Active.insert(PredPad); 2226 } while (true); 2227 // Each node only has one successor, so we've walked all the active 2228 // nodes' successors. 2229 Active.clear(); 2230 } 2231 } 2232 2233 // visitFunction - Verify that a function is ok. 2234 // 2235 void Verifier::visitFunction(const Function &F) { 2236 visitGlobalValue(F); 2237 2238 // Check function arguments. 2239 FunctionType *FT = F.getFunctionType(); 2240 unsigned NumArgs = F.arg_size(); 2241 2242 Assert(&Context == &F.getContext(), 2243 "Function context does not match Module context!", &F); 2244 2245 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2246 Assert(FT->getNumParams() == NumArgs, 2247 "# formal arguments must match # of arguments for function type!", &F, 2248 FT); 2249 Assert(F.getReturnType()->isFirstClassType() || 2250 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2251 "Functions cannot return aggregate values!", &F); 2252 2253 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2254 "Invalid struct return type!", &F); 2255 2256 AttributeList Attrs = F.getAttributes(); 2257 2258 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2259 "Attribute after last parameter!", &F); 2260 2261 bool isLLVMdotName = F.getName().size() >= 5 && 2262 F.getName().substr(0, 5) == "llvm."; 2263 2264 // Check function attributes. 2265 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2266 2267 // On function declarations/definitions, we do not support the builtin 2268 // attribute. We do not check this in VerifyFunctionAttrs since that is 2269 // checking for Attributes that can/can not ever be on functions. 2270 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2271 "Attribute 'builtin' can only be applied to a callsite.", &F); 2272 2273 // Check that this function meets the restrictions on this calling convention. 2274 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2275 // restrictions can be lifted. 2276 switch (F.getCallingConv()) { 2277 default: 2278 case CallingConv::C: 2279 break; 2280 case CallingConv::AMDGPU_KERNEL: 2281 case CallingConv::SPIR_KERNEL: 2282 Assert(F.getReturnType()->isVoidTy(), 2283 "Calling convention requires void return type", &F); 2284 LLVM_FALLTHROUGH; 2285 case CallingConv::AMDGPU_VS: 2286 case CallingConv::AMDGPU_HS: 2287 case CallingConv::AMDGPU_GS: 2288 case CallingConv::AMDGPU_PS: 2289 case CallingConv::AMDGPU_CS: 2290 Assert(!F.hasStructRetAttr(), 2291 "Calling convention does not allow sret", &F); 2292 LLVM_FALLTHROUGH; 2293 case CallingConv::Fast: 2294 case CallingConv::Cold: 2295 case CallingConv::Intel_OCL_BI: 2296 case CallingConv::PTX_Kernel: 2297 case CallingConv::PTX_Device: 2298 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2299 "perfect forwarding!", 2300 &F); 2301 break; 2302 } 2303 2304 // Check that the argument values match the function type for this function... 2305 unsigned i = 0; 2306 for (const Argument &Arg : F.args()) { 2307 Assert(Arg.getType() == FT->getParamType(i), 2308 "Argument value does not match function argument type!", &Arg, 2309 FT->getParamType(i)); 2310 Assert(Arg.getType()->isFirstClassType(), 2311 "Function arguments must have first-class types!", &Arg); 2312 if (!isLLVMdotName) { 2313 Assert(!Arg.getType()->isMetadataTy(), 2314 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2315 Assert(!Arg.getType()->isTokenTy(), 2316 "Function takes token but isn't an intrinsic", &Arg, &F); 2317 } 2318 2319 // Check that swifterror argument is only used by loads and stores. 2320 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2321 verifySwiftErrorValue(&Arg); 2322 } 2323 ++i; 2324 } 2325 2326 if (!isLLVMdotName) 2327 Assert(!F.getReturnType()->isTokenTy(), 2328 "Functions returns a token but isn't an intrinsic", &F); 2329 2330 // Get the function metadata attachments. 2331 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2332 F.getAllMetadata(MDs); 2333 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2334 verifyFunctionMetadata(MDs); 2335 2336 // Check validity of the personality function 2337 if (F.hasPersonalityFn()) { 2338 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2339 if (Per) 2340 Assert(Per->getParent() == F.getParent(), 2341 "Referencing personality function in another module!", 2342 &F, F.getParent(), Per, Per->getParent()); 2343 } 2344 2345 if (F.isMaterializable()) { 2346 // Function has a body somewhere we can't see. 2347 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2348 MDs.empty() ? nullptr : MDs.front().second); 2349 } else if (F.isDeclaration()) { 2350 for (const auto &I : MDs) { 2351 // This is used for call site debug information. 2352 AssertDI(I.first != LLVMContext::MD_dbg || 2353 !cast<DISubprogram>(I.second)->isDistinct(), 2354 "function declaration may only have a unique !dbg attachment", 2355 &F); 2356 Assert(I.first != LLVMContext::MD_prof, 2357 "function declaration may not have a !prof attachment", &F); 2358 2359 // Verify the metadata itself. 2360 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2361 } 2362 Assert(!F.hasPersonalityFn(), 2363 "Function declaration shouldn't have a personality routine", &F); 2364 } else { 2365 // Verify that this function (which has a body) is not named "llvm.*". It 2366 // is not legal to define intrinsics. 2367 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2368 2369 // Check the entry node 2370 const BasicBlock *Entry = &F.getEntryBlock(); 2371 Assert(pred_empty(Entry), 2372 "Entry block to function must not have predecessors!", Entry); 2373 2374 // The address of the entry block cannot be taken, unless it is dead. 2375 if (Entry->hasAddressTaken()) { 2376 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2377 "blockaddress may not be used with the entry block!", Entry); 2378 } 2379 2380 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2381 // Visit metadata attachments. 2382 for (const auto &I : MDs) { 2383 // Verify that the attachment is legal. 2384 auto AllowLocs = AreDebugLocsAllowed::No; 2385 switch (I.first) { 2386 default: 2387 break; 2388 case LLVMContext::MD_dbg: { 2389 ++NumDebugAttachments; 2390 AssertDI(NumDebugAttachments == 1, 2391 "function must have a single !dbg attachment", &F, I.second); 2392 AssertDI(isa<DISubprogram>(I.second), 2393 "function !dbg attachment must be a subprogram", &F, I.second); 2394 auto *SP = cast<DISubprogram>(I.second); 2395 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2396 AssertDI(!AttachedTo || AttachedTo == &F, 2397 "DISubprogram attached to more than one function", SP, &F); 2398 AttachedTo = &F; 2399 AllowLocs = AreDebugLocsAllowed::Yes; 2400 break; 2401 } 2402 case LLVMContext::MD_prof: 2403 ++NumProfAttachments; 2404 Assert(NumProfAttachments == 1, 2405 "function must have a single !prof attachment", &F, I.second); 2406 break; 2407 } 2408 2409 // Verify the metadata itself. 2410 visitMDNode(*I.second, AllowLocs); 2411 } 2412 } 2413 2414 // If this function is actually an intrinsic, verify that it is only used in 2415 // direct call/invokes, never having its "address taken". 2416 // Only do this if the module is materialized, otherwise we don't have all the 2417 // uses. 2418 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2419 const User *U; 2420 if (F.hasAddressTaken(&U)) 2421 Assert(false, "Invalid user of intrinsic instruction!", U); 2422 } 2423 2424 auto *N = F.getSubprogram(); 2425 HasDebugInfo = (N != nullptr); 2426 if (!HasDebugInfo) 2427 return; 2428 2429 // Check that all !dbg attachments lead to back to N. 2430 // 2431 // FIXME: Check this incrementally while visiting !dbg attachments. 2432 // FIXME: Only check when N is the canonical subprogram for F. 2433 SmallPtrSet<const MDNode *, 32> Seen; 2434 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2435 // Be careful about using DILocation here since we might be dealing with 2436 // broken code (this is the Verifier after all). 2437 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2438 if (!DL) 2439 return; 2440 if (!Seen.insert(DL).second) 2441 return; 2442 2443 Metadata *Parent = DL->getRawScope(); 2444 AssertDI(Parent && isa<DILocalScope>(Parent), 2445 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2446 Parent); 2447 2448 DILocalScope *Scope = DL->getInlinedAtScope(); 2449 Assert(Scope, "Failed to find DILocalScope", DL); 2450 2451 if (!Seen.insert(Scope).second) 2452 return; 2453 2454 DISubprogram *SP = Scope->getSubprogram(); 2455 2456 // Scope and SP could be the same MDNode and we don't want to skip 2457 // validation in that case 2458 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2459 return; 2460 2461 AssertDI(SP->describes(&F), 2462 "!dbg attachment points at wrong subprogram for function", N, &F, 2463 &I, DL, Scope, SP); 2464 }; 2465 for (auto &BB : F) 2466 for (auto &I : BB) { 2467 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2468 // The llvm.loop annotations also contain two DILocations. 2469 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2470 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2471 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2472 if (BrokenDebugInfo) 2473 return; 2474 } 2475 } 2476 2477 // verifyBasicBlock - Verify that a basic block is well formed... 2478 // 2479 void Verifier::visitBasicBlock(BasicBlock &BB) { 2480 InstsInThisBlock.clear(); 2481 2482 // Ensure that basic blocks have terminators! 2483 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2484 2485 // Check constraints that this basic block imposes on all of the PHI nodes in 2486 // it. 2487 if (isa<PHINode>(BB.front())) { 2488 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2489 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2490 llvm::sort(Preds); 2491 for (const PHINode &PN : BB.phis()) { 2492 // Ensure that PHI nodes have at least one entry! 2493 Assert(PN.getNumIncomingValues() != 0, 2494 "PHI nodes must have at least one entry. If the block is dead, " 2495 "the PHI should be removed!", 2496 &PN); 2497 Assert(PN.getNumIncomingValues() == Preds.size(), 2498 "PHINode should have one entry for each predecessor of its " 2499 "parent basic block!", 2500 &PN); 2501 2502 // Get and sort all incoming values in the PHI node... 2503 Values.clear(); 2504 Values.reserve(PN.getNumIncomingValues()); 2505 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2506 Values.push_back( 2507 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2508 llvm::sort(Values); 2509 2510 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2511 // Check to make sure that if there is more than one entry for a 2512 // particular basic block in this PHI node, that the incoming values are 2513 // all identical. 2514 // 2515 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2516 Values[i].second == Values[i - 1].second, 2517 "PHI node has multiple entries for the same basic block with " 2518 "different incoming values!", 2519 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2520 2521 // Check to make sure that the predecessors and PHI node entries are 2522 // matched up. 2523 Assert(Values[i].first == Preds[i], 2524 "PHI node entries do not match predecessors!", &PN, 2525 Values[i].first, Preds[i]); 2526 } 2527 } 2528 } 2529 2530 // Check that all instructions have their parent pointers set up correctly. 2531 for (auto &I : BB) 2532 { 2533 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2534 } 2535 } 2536 2537 void Verifier::visitTerminator(Instruction &I) { 2538 // Ensure that terminators only exist at the end of the basic block. 2539 Assert(&I == I.getParent()->getTerminator(), 2540 "Terminator found in the middle of a basic block!", I.getParent()); 2541 visitInstruction(I); 2542 } 2543 2544 void Verifier::visitBranchInst(BranchInst &BI) { 2545 if (BI.isConditional()) { 2546 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2547 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2548 } 2549 visitTerminator(BI); 2550 } 2551 2552 void Verifier::visitReturnInst(ReturnInst &RI) { 2553 Function *F = RI.getParent()->getParent(); 2554 unsigned N = RI.getNumOperands(); 2555 if (F->getReturnType()->isVoidTy()) 2556 Assert(N == 0, 2557 "Found return instr that returns non-void in Function of void " 2558 "return type!", 2559 &RI, F->getReturnType()); 2560 else 2561 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2562 "Function return type does not match operand " 2563 "type of return inst!", 2564 &RI, F->getReturnType()); 2565 2566 // Check to make sure that the return value has necessary properties for 2567 // terminators... 2568 visitTerminator(RI); 2569 } 2570 2571 void Verifier::visitSwitchInst(SwitchInst &SI) { 2572 // Check to make sure that all of the constants in the switch instruction 2573 // have the same type as the switched-on value. 2574 Type *SwitchTy = SI.getCondition()->getType(); 2575 SmallPtrSet<ConstantInt*, 32> Constants; 2576 for (auto &Case : SI.cases()) { 2577 Assert(Case.getCaseValue()->getType() == SwitchTy, 2578 "Switch constants must all be same type as switch value!", &SI); 2579 Assert(Constants.insert(Case.getCaseValue()).second, 2580 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2581 } 2582 2583 visitTerminator(SI); 2584 } 2585 2586 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2587 Assert(BI.getAddress()->getType()->isPointerTy(), 2588 "Indirectbr operand must have pointer type!", &BI); 2589 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2590 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2591 "Indirectbr destinations must all have pointer type!", &BI); 2592 2593 visitTerminator(BI); 2594 } 2595 2596 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2597 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2598 &CBI); 2599 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2600 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2601 "Callbr successors must all have pointer type!", &CBI); 2602 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2603 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2604 "Using an unescaped label as a callbr argument!", &CBI); 2605 if (isa<BasicBlock>(CBI.getOperand(i))) 2606 for (unsigned j = i + 1; j != e; ++j) 2607 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2608 "Duplicate callbr destination!", &CBI); 2609 } 2610 { 2611 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2612 for (Value *V : CBI.args()) 2613 if (auto *BA = dyn_cast<BlockAddress>(V)) 2614 ArgBBs.insert(BA->getBasicBlock()); 2615 for (BasicBlock *BB : CBI.getIndirectDests()) 2616 Assert(ArgBBs.find(BB) != ArgBBs.end(), 2617 "Indirect label missing from arglist.", &CBI); 2618 } 2619 2620 visitTerminator(CBI); 2621 } 2622 2623 void Verifier::visitSelectInst(SelectInst &SI) { 2624 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2625 SI.getOperand(2)), 2626 "Invalid operands for select instruction!", &SI); 2627 2628 Assert(SI.getTrueValue()->getType() == SI.getType(), 2629 "Select values must have same type as select instruction!", &SI); 2630 visitInstruction(SI); 2631 } 2632 2633 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2634 /// a pass, if any exist, it's an error. 2635 /// 2636 void Verifier::visitUserOp1(Instruction &I) { 2637 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2638 } 2639 2640 void Verifier::visitTruncInst(TruncInst &I) { 2641 // Get the source and destination types 2642 Type *SrcTy = I.getOperand(0)->getType(); 2643 Type *DestTy = I.getType(); 2644 2645 // Get the size of the types in bits, we'll need this later 2646 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2647 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2648 2649 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2650 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2651 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2652 "trunc source and destination must both be a vector or neither", &I); 2653 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2654 2655 visitInstruction(I); 2656 } 2657 2658 void Verifier::visitZExtInst(ZExtInst &I) { 2659 // Get the source and destination types 2660 Type *SrcTy = I.getOperand(0)->getType(); 2661 Type *DestTy = I.getType(); 2662 2663 // Get the size of the types in bits, we'll need this later 2664 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2665 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2666 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2667 "zext source and destination must both be a vector or neither", &I); 2668 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2669 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2670 2671 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2672 2673 visitInstruction(I); 2674 } 2675 2676 void Verifier::visitSExtInst(SExtInst &I) { 2677 // Get the source and destination types 2678 Type *SrcTy = I.getOperand(0)->getType(); 2679 Type *DestTy = I.getType(); 2680 2681 // Get the size of the types in bits, we'll need this later 2682 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2683 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2684 2685 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2686 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2687 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2688 "sext source and destination must both be a vector or neither", &I); 2689 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2690 2691 visitInstruction(I); 2692 } 2693 2694 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2695 // Get the source and destination types 2696 Type *SrcTy = I.getOperand(0)->getType(); 2697 Type *DestTy = I.getType(); 2698 // Get the size of the types in bits, we'll need this later 2699 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2700 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2701 2702 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2703 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2704 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2705 "fptrunc source and destination must both be a vector or neither", &I); 2706 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2707 2708 visitInstruction(I); 2709 } 2710 2711 void Verifier::visitFPExtInst(FPExtInst &I) { 2712 // Get the source and destination types 2713 Type *SrcTy = I.getOperand(0)->getType(); 2714 Type *DestTy = I.getType(); 2715 2716 // Get the size of the types in bits, we'll need this later 2717 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2718 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2719 2720 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2721 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2722 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2723 "fpext source and destination must both be a vector or neither", &I); 2724 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2725 2726 visitInstruction(I); 2727 } 2728 2729 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2730 // Get the source and destination types 2731 Type *SrcTy = I.getOperand(0)->getType(); 2732 Type *DestTy = I.getType(); 2733 2734 bool SrcVec = SrcTy->isVectorTy(); 2735 bool DstVec = DestTy->isVectorTy(); 2736 2737 Assert(SrcVec == DstVec, 2738 "UIToFP source and dest must both be vector or scalar", &I); 2739 Assert(SrcTy->isIntOrIntVectorTy(), 2740 "UIToFP source must be integer or integer vector", &I); 2741 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2742 &I); 2743 2744 if (SrcVec && DstVec) 2745 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2746 cast<VectorType>(DestTy)->getNumElements(), 2747 "UIToFP source and dest vector length mismatch", &I); 2748 2749 visitInstruction(I); 2750 } 2751 2752 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2753 // Get the source and destination types 2754 Type *SrcTy = I.getOperand(0)->getType(); 2755 Type *DestTy = I.getType(); 2756 2757 bool SrcVec = SrcTy->isVectorTy(); 2758 bool DstVec = DestTy->isVectorTy(); 2759 2760 Assert(SrcVec == DstVec, 2761 "SIToFP source and dest must both be vector or scalar", &I); 2762 Assert(SrcTy->isIntOrIntVectorTy(), 2763 "SIToFP source must be integer or integer vector", &I); 2764 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2765 &I); 2766 2767 if (SrcVec && DstVec) 2768 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2769 cast<VectorType>(DestTy)->getNumElements(), 2770 "SIToFP source and dest vector length mismatch", &I); 2771 2772 visitInstruction(I); 2773 } 2774 2775 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2776 // Get the source and destination types 2777 Type *SrcTy = I.getOperand(0)->getType(); 2778 Type *DestTy = I.getType(); 2779 2780 bool SrcVec = SrcTy->isVectorTy(); 2781 bool DstVec = DestTy->isVectorTy(); 2782 2783 Assert(SrcVec == DstVec, 2784 "FPToUI source and dest must both be vector or scalar", &I); 2785 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2786 &I); 2787 Assert(DestTy->isIntOrIntVectorTy(), 2788 "FPToUI result must be integer or integer vector", &I); 2789 2790 if (SrcVec && DstVec) 2791 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2792 cast<VectorType>(DestTy)->getNumElements(), 2793 "FPToUI source and dest vector length mismatch", &I); 2794 2795 visitInstruction(I); 2796 } 2797 2798 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2799 // Get the source and destination types 2800 Type *SrcTy = I.getOperand(0)->getType(); 2801 Type *DestTy = I.getType(); 2802 2803 bool SrcVec = SrcTy->isVectorTy(); 2804 bool DstVec = DestTy->isVectorTy(); 2805 2806 Assert(SrcVec == DstVec, 2807 "FPToSI source and dest must both be vector or scalar", &I); 2808 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2809 &I); 2810 Assert(DestTy->isIntOrIntVectorTy(), 2811 "FPToSI result must be integer or integer vector", &I); 2812 2813 if (SrcVec && DstVec) 2814 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2815 cast<VectorType>(DestTy)->getNumElements(), 2816 "FPToSI source and dest vector length mismatch", &I); 2817 2818 visitInstruction(I); 2819 } 2820 2821 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2822 // Get the source and destination types 2823 Type *SrcTy = I.getOperand(0)->getType(); 2824 Type *DestTy = I.getType(); 2825 2826 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2827 2828 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2829 Assert(!DL.isNonIntegralPointerType(PTy), 2830 "ptrtoint not supported for non-integral pointers"); 2831 2832 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2833 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2834 &I); 2835 2836 if (SrcTy->isVectorTy()) { 2837 VectorType *VSrc = cast<VectorType>(SrcTy); 2838 VectorType *VDest = cast<VectorType>(DestTy); 2839 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2840 "PtrToInt Vector width mismatch", &I); 2841 } 2842 2843 visitInstruction(I); 2844 } 2845 2846 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2847 // Get the source and destination types 2848 Type *SrcTy = I.getOperand(0)->getType(); 2849 Type *DestTy = I.getType(); 2850 2851 Assert(SrcTy->isIntOrIntVectorTy(), 2852 "IntToPtr source must be an integral", &I); 2853 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2854 2855 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2856 Assert(!DL.isNonIntegralPointerType(PTy), 2857 "inttoptr not supported for non-integral pointers"); 2858 2859 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2860 &I); 2861 if (SrcTy->isVectorTy()) { 2862 VectorType *VSrc = cast<VectorType>(SrcTy); 2863 VectorType *VDest = cast<VectorType>(DestTy); 2864 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2865 "IntToPtr Vector width mismatch", &I); 2866 } 2867 visitInstruction(I); 2868 } 2869 2870 void Verifier::visitBitCastInst(BitCastInst &I) { 2871 Assert( 2872 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2873 "Invalid bitcast", &I); 2874 visitInstruction(I); 2875 } 2876 2877 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2878 Type *SrcTy = I.getOperand(0)->getType(); 2879 Type *DestTy = I.getType(); 2880 2881 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2882 &I); 2883 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2884 &I); 2885 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2886 "AddrSpaceCast must be between different address spaces", &I); 2887 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2888 Assert(SrcVTy->getNumElements() == 2889 cast<VectorType>(DestTy)->getNumElements(), 2890 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2891 visitInstruction(I); 2892 } 2893 2894 /// visitPHINode - Ensure that a PHI node is well formed. 2895 /// 2896 void Verifier::visitPHINode(PHINode &PN) { 2897 // Ensure that the PHI nodes are all grouped together at the top of the block. 2898 // This can be tested by checking whether the instruction before this is 2899 // either nonexistent (because this is begin()) or is a PHI node. If not, 2900 // then there is some other instruction before a PHI. 2901 Assert(&PN == &PN.getParent()->front() || 2902 isa<PHINode>(--BasicBlock::iterator(&PN)), 2903 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2904 2905 // Check that a PHI doesn't yield a Token. 2906 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2907 2908 // Check that all of the values of the PHI node have the same type as the 2909 // result, and that the incoming blocks are really basic blocks. 2910 for (Value *IncValue : PN.incoming_values()) { 2911 Assert(PN.getType() == IncValue->getType(), 2912 "PHI node operands are not the same type as the result!", &PN); 2913 } 2914 2915 // All other PHI node constraints are checked in the visitBasicBlock method. 2916 2917 visitInstruction(PN); 2918 } 2919 2920 void Verifier::visitCallBase(CallBase &Call) { 2921 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 2922 "Called function must be a pointer!", Call); 2923 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2924 2925 Assert(FPTy->getElementType()->isFunctionTy(), 2926 "Called function is not pointer to function type!", Call); 2927 2928 Assert(FPTy->getElementType() == Call.getFunctionType(), 2929 "Called function is not the same type as the call!", Call); 2930 2931 FunctionType *FTy = Call.getFunctionType(); 2932 2933 // Verify that the correct number of arguments are being passed 2934 if (FTy->isVarArg()) 2935 Assert(Call.arg_size() >= FTy->getNumParams(), 2936 "Called function requires more parameters than were provided!", 2937 Call); 2938 else 2939 Assert(Call.arg_size() == FTy->getNumParams(), 2940 "Incorrect number of arguments passed to called function!", Call); 2941 2942 // Verify that all arguments to the call match the function type. 2943 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2944 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2945 "Call parameter type does not match function signature!", 2946 Call.getArgOperand(i), FTy->getParamType(i), Call); 2947 2948 AttributeList Attrs = Call.getAttributes(); 2949 2950 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2951 "Attribute after last parameter!", Call); 2952 2953 bool IsIntrinsic = Call.getCalledFunction() && 2954 Call.getCalledFunction()->getName().startswith("llvm."); 2955 2956 Function *Callee = 2957 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2958 2959 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2960 // Don't allow speculatable on call sites, unless the underlying function 2961 // declaration is also speculatable. 2962 Assert(Callee && Callee->isSpeculatable(), 2963 "speculatable attribute may not apply to call sites", Call); 2964 } 2965 2966 if (Attrs.hasAttribute(AttributeList::FunctionIndex, 2967 Attribute::Preallocated)) { 2968 Assert(Call.getCalledFunction()->getIntrinsicID() == 2969 Intrinsic::call_preallocated_arg, 2970 "preallocated as a call site attribute can only be on " 2971 "llvm.call.preallocated.arg"); 2972 } 2973 2974 // Verify call attributes. 2975 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2976 2977 // Conservatively check the inalloca argument. 2978 // We have a bug if we can find that there is an underlying alloca without 2979 // inalloca. 2980 if (Call.hasInAllocaArgument()) { 2981 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2982 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2983 Assert(AI->isUsedWithInAlloca(), 2984 "inalloca argument for call has mismatched alloca", AI, Call); 2985 } 2986 2987 // For each argument of the callsite, if it has the swifterror argument, 2988 // make sure the underlying alloca/parameter it comes from has a swifterror as 2989 // well. 2990 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2991 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2992 Value *SwiftErrorArg = Call.getArgOperand(i); 2993 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2994 Assert(AI->isSwiftError(), 2995 "swifterror argument for call has mismatched alloca", AI, Call); 2996 continue; 2997 } 2998 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2999 Assert(ArgI, 3000 "swifterror argument should come from an alloca or parameter", 3001 SwiftErrorArg, Call); 3002 Assert(ArgI->hasSwiftErrorAttr(), 3003 "swifterror argument for call has mismatched parameter", ArgI, 3004 Call); 3005 } 3006 3007 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3008 // Don't allow immarg on call sites, unless the underlying declaration 3009 // also has the matching immarg. 3010 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3011 "immarg may not apply only to call sites", 3012 Call.getArgOperand(i), Call); 3013 } 3014 3015 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3016 Value *ArgVal = Call.getArgOperand(i); 3017 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3018 "immarg operand has non-immediate parameter", ArgVal, Call); 3019 } 3020 3021 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3022 Value *ArgVal = Call.getArgOperand(i); 3023 bool hasOB = 3024 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3025 bool isMustTail = Call.isMustTailCall(); 3026 Assert(hasOB != isMustTail, 3027 "preallocated operand either requires a preallocated bundle or " 3028 "the call to be musttail (but not both)", 3029 ArgVal, Call); 3030 } 3031 } 3032 3033 if (FTy->isVarArg()) { 3034 // FIXME? is 'nest' even legal here? 3035 bool SawNest = false; 3036 bool SawReturned = false; 3037 3038 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3039 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3040 SawNest = true; 3041 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3042 SawReturned = true; 3043 } 3044 3045 // Check attributes on the varargs part. 3046 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3047 Type *Ty = Call.getArgOperand(Idx)->getType(); 3048 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3049 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3050 3051 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3052 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3053 SawNest = true; 3054 } 3055 3056 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3057 Assert(!SawReturned, "More than one parameter has attribute returned!", 3058 Call); 3059 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3060 "Incompatible argument and return types for 'returned' " 3061 "attribute", 3062 Call); 3063 SawReturned = true; 3064 } 3065 3066 // Statepoint intrinsic is vararg but the wrapped function may be not. 3067 // Allow sret here and check the wrapped function in verifyStatepoint. 3068 if (!Call.getCalledFunction() || 3069 Call.getCalledFunction()->getIntrinsicID() != 3070 Intrinsic::experimental_gc_statepoint) 3071 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3072 "Attribute 'sret' cannot be used for vararg call arguments!", 3073 Call); 3074 3075 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3076 Assert(Idx == Call.arg_size() - 1, 3077 "inalloca isn't on the last argument!", Call); 3078 } 3079 } 3080 3081 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3082 if (!IsIntrinsic) { 3083 for (Type *ParamTy : FTy->params()) { 3084 Assert(!ParamTy->isMetadataTy(), 3085 "Function has metadata parameter but isn't an intrinsic", Call); 3086 Assert(!ParamTy->isTokenTy(), 3087 "Function has token parameter but isn't an intrinsic", Call); 3088 } 3089 } 3090 3091 // Verify that indirect calls don't return tokens. 3092 if (!Call.getCalledFunction()) 3093 Assert(!FTy->getReturnType()->isTokenTy(), 3094 "Return type cannot be token for indirect call!"); 3095 3096 if (Function *F = Call.getCalledFunction()) 3097 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3098 visitIntrinsicCall(ID, Call); 3099 3100 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3101 // most one "gc-transition", at most one "cfguardtarget", 3102 // and at most one "preallocated" operand bundle. 3103 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3104 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3105 FoundPreallocatedBundle = false; 3106 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3107 OperandBundleUse BU = Call.getOperandBundleAt(i); 3108 uint32_t Tag = BU.getTagID(); 3109 if (Tag == LLVMContext::OB_deopt) { 3110 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3111 FoundDeoptBundle = true; 3112 } else if (Tag == LLVMContext::OB_gc_transition) { 3113 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3114 Call); 3115 FoundGCTransitionBundle = true; 3116 } else if (Tag == LLVMContext::OB_funclet) { 3117 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3118 FoundFuncletBundle = true; 3119 Assert(BU.Inputs.size() == 1, 3120 "Expected exactly one funclet bundle operand", Call); 3121 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3122 "Funclet bundle operands should correspond to a FuncletPadInst", 3123 Call); 3124 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3125 Assert(!FoundCFGuardTargetBundle, 3126 "Multiple CFGuardTarget operand bundles", Call); 3127 FoundCFGuardTargetBundle = true; 3128 Assert(BU.Inputs.size() == 1, 3129 "Expected exactly one cfguardtarget bundle operand", Call); 3130 } else if (Tag == LLVMContext::OB_preallocated) { 3131 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3132 Call); 3133 FoundPreallocatedBundle = true; 3134 Assert(BU.Inputs.size() == 1, 3135 "Expected exactly one preallocated bundle operand", Call); 3136 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3137 Assert(Input && 3138 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3139 "\"preallocated\" argument must be a token from " 3140 "llvm.call.preallocated.setup", 3141 Call); 3142 } 3143 } 3144 3145 // Verify that each inlinable callsite of a debug-info-bearing function in a 3146 // debug-info-bearing function has a debug location attached to it. Failure to 3147 // do so causes assertion failures when the inliner sets up inline scope info. 3148 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3149 Call.getCalledFunction()->getSubprogram()) 3150 AssertDI(Call.getDebugLoc(), 3151 "inlinable function call in a function with " 3152 "debug info must have a !dbg location", 3153 Call); 3154 3155 visitInstruction(Call); 3156 } 3157 3158 /// Two types are "congruent" if they are identical, or if they are both pointer 3159 /// types with different pointee types and the same address space. 3160 static bool isTypeCongruent(Type *L, Type *R) { 3161 if (L == R) 3162 return true; 3163 PointerType *PL = dyn_cast<PointerType>(L); 3164 PointerType *PR = dyn_cast<PointerType>(R); 3165 if (!PL || !PR) 3166 return false; 3167 return PL->getAddressSpace() == PR->getAddressSpace(); 3168 } 3169 3170 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3171 static const Attribute::AttrKind ABIAttrs[] = { 3172 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3173 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3174 Attribute::Preallocated}; 3175 AttrBuilder Copy; 3176 for (auto AK : ABIAttrs) { 3177 if (Attrs.hasParamAttribute(I, AK)) 3178 Copy.addAttribute(AK); 3179 } 3180 // `align` is ABI-affecting only in combination with `byval`. 3181 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3182 Attrs.hasParamAttribute(I, Attribute::ByVal)) 3183 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3184 return Copy; 3185 } 3186 3187 void Verifier::verifyMustTailCall(CallInst &CI) { 3188 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3189 3190 // - The caller and callee prototypes must match. Pointer types of 3191 // parameters or return types may differ in pointee type, but not 3192 // address space. 3193 Function *F = CI.getParent()->getParent(); 3194 FunctionType *CallerTy = F->getFunctionType(); 3195 FunctionType *CalleeTy = CI.getFunctionType(); 3196 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3197 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3198 "cannot guarantee tail call due to mismatched parameter counts", 3199 &CI); 3200 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3201 Assert( 3202 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3203 "cannot guarantee tail call due to mismatched parameter types", &CI); 3204 } 3205 } 3206 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3207 "cannot guarantee tail call due to mismatched varargs", &CI); 3208 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3209 "cannot guarantee tail call due to mismatched return types", &CI); 3210 3211 // - The calling conventions of the caller and callee must match. 3212 Assert(F->getCallingConv() == CI.getCallingConv(), 3213 "cannot guarantee tail call due to mismatched calling conv", &CI); 3214 3215 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3216 // returned, preallocated, and inalloca, must match. 3217 AttributeList CallerAttrs = F->getAttributes(); 3218 AttributeList CalleeAttrs = CI.getAttributes(); 3219 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3220 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3221 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3222 Assert(CallerABIAttrs == CalleeABIAttrs, 3223 "cannot guarantee tail call due to mismatched ABI impacting " 3224 "function attributes", 3225 &CI, CI.getOperand(I)); 3226 } 3227 3228 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3229 // or a pointer bitcast followed by a ret instruction. 3230 // - The ret instruction must return the (possibly bitcasted) value 3231 // produced by the call or void. 3232 Value *RetVal = &CI; 3233 Instruction *Next = CI.getNextNode(); 3234 3235 // Handle the optional bitcast. 3236 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3237 Assert(BI->getOperand(0) == RetVal, 3238 "bitcast following musttail call must use the call", BI); 3239 RetVal = BI; 3240 Next = BI->getNextNode(); 3241 } 3242 3243 // Check the return. 3244 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3245 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3246 &CI); 3247 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3248 "musttail call result must be returned", Ret); 3249 } 3250 3251 void Verifier::visitCallInst(CallInst &CI) { 3252 visitCallBase(CI); 3253 3254 if (CI.isMustTailCall()) 3255 verifyMustTailCall(CI); 3256 } 3257 3258 void Verifier::visitInvokeInst(InvokeInst &II) { 3259 visitCallBase(II); 3260 3261 // Verify that the first non-PHI instruction of the unwind destination is an 3262 // exception handling instruction. 3263 Assert( 3264 II.getUnwindDest()->isEHPad(), 3265 "The unwind destination does not have an exception handling instruction!", 3266 &II); 3267 3268 visitTerminator(II); 3269 } 3270 3271 /// visitUnaryOperator - Check the argument to the unary operator. 3272 /// 3273 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3274 Assert(U.getType() == U.getOperand(0)->getType(), 3275 "Unary operators must have same type for" 3276 "operands and result!", 3277 &U); 3278 3279 switch (U.getOpcode()) { 3280 // Check that floating-point arithmetic operators are only used with 3281 // floating-point operands. 3282 case Instruction::FNeg: 3283 Assert(U.getType()->isFPOrFPVectorTy(), 3284 "FNeg operator only works with float types!", &U); 3285 break; 3286 default: 3287 llvm_unreachable("Unknown UnaryOperator opcode!"); 3288 } 3289 3290 visitInstruction(U); 3291 } 3292 3293 /// visitBinaryOperator - Check that both arguments to the binary operator are 3294 /// of the same type! 3295 /// 3296 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3297 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3298 "Both operands to a binary operator are not of the same type!", &B); 3299 3300 switch (B.getOpcode()) { 3301 // Check that integer arithmetic operators are only used with 3302 // integral operands. 3303 case Instruction::Add: 3304 case Instruction::Sub: 3305 case Instruction::Mul: 3306 case Instruction::SDiv: 3307 case Instruction::UDiv: 3308 case Instruction::SRem: 3309 case Instruction::URem: 3310 Assert(B.getType()->isIntOrIntVectorTy(), 3311 "Integer arithmetic operators only work with integral types!", &B); 3312 Assert(B.getType() == B.getOperand(0)->getType(), 3313 "Integer arithmetic operators must have same type " 3314 "for operands and result!", 3315 &B); 3316 break; 3317 // Check that floating-point arithmetic operators are only used with 3318 // floating-point operands. 3319 case Instruction::FAdd: 3320 case Instruction::FSub: 3321 case Instruction::FMul: 3322 case Instruction::FDiv: 3323 case Instruction::FRem: 3324 Assert(B.getType()->isFPOrFPVectorTy(), 3325 "Floating-point arithmetic operators only work with " 3326 "floating-point types!", 3327 &B); 3328 Assert(B.getType() == B.getOperand(0)->getType(), 3329 "Floating-point arithmetic operators must have same type " 3330 "for operands and result!", 3331 &B); 3332 break; 3333 // Check that logical operators are only used with integral operands. 3334 case Instruction::And: 3335 case Instruction::Or: 3336 case Instruction::Xor: 3337 Assert(B.getType()->isIntOrIntVectorTy(), 3338 "Logical operators only work with integral types!", &B); 3339 Assert(B.getType() == B.getOperand(0)->getType(), 3340 "Logical operators must have same type for operands and result!", 3341 &B); 3342 break; 3343 case Instruction::Shl: 3344 case Instruction::LShr: 3345 case Instruction::AShr: 3346 Assert(B.getType()->isIntOrIntVectorTy(), 3347 "Shifts only work with integral types!", &B); 3348 Assert(B.getType() == B.getOperand(0)->getType(), 3349 "Shift return type must be same as operands!", &B); 3350 break; 3351 default: 3352 llvm_unreachable("Unknown BinaryOperator opcode!"); 3353 } 3354 3355 visitInstruction(B); 3356 } 3357 3358 void Verifier::visitICmpInst(ICmpInst &IC) { 3359 // Check that the operands are the same type 3360 Type *Op0Ty = IC.getOperand(0)->getType(); 3361 Type *Op1Ty = IC.getOperand(1)->getType(); 3362 Assert(Op0Ty == Op1Ty, 3363 "Both operands to ICmp instruction are not of the same type!", &IC); 3364 // Check that the operands are the right type 3365 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3366 "Invalid operand types for ICmp instruction", &IC); 3367 // Check that the predicate is valid. 3368 Assert(IC.isIntPredicate(), 3369 "Invalid predicate in ICmp instruction!", &IC); 3370 3371 visitInstruction(IC); 3372 } 3373 3374 void Verifier::visitFCmpInst(FCmpInst &FC) { 3375 // Check that the operands are the same type 3376 Type *Op0Ty = FC.getOperand(0)->getType(); 3377 Type *Op1Ty = FC.getOperand(1)->getType(); 3378 Assert(Op0Ty == Op1Ty, 3379 "Both operands to FCmp instruction are not of the same type!", &FC); 3380 // Check that the operands are the right type 3381 Assert(Op0Ty->isFPOrFPVectorTy(), 3382 "Invalid operand types for FCmp instruction", &FC); 3383 // Check that the predicate is valid. 3384 Assert(FC.isFPPredicate(), 3385 "Invalid predicate in FCmp instruction!", &FC); 3386 3387 visitInstruction(FC); 3388 } 3389 3390 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3391 Assert( 3392 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3393 "Invalid extractelement operands!", &EI); 3394 visitInstruction(EI); 3395 } 3396 3397 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3398 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3399 IE.getOperand(2)), 3400 "Invalid insertelement operands!", &IE); 3401 visitInstruction(IE); 3402 } 3403 3404 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3405 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3406 SV.getShuffleMask()), 3407 "Invalid shufflevector operands!", &SV); 3408 visitInstruction(SV); 3409 } 3410 3411 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3412 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3413 3414 Assert(isa<PointerType>(TargetTy), 3415 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3416 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3417 3418 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3419 Assert(all_of( 3420 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3421 "GEP indexes must be integers", &GEP); 3422 Type *ElTy = 3423 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3424 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3425 3426 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3427 GEP.getResultElementType() == ElTy, 3428 "GEP is not of right type for indices!", &GEP, ElTy); 3429 3430 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3431 // Additional checks for vector GEPs. 3432 ElementCount GEPWidth = GEPVTy->getElementCount(); 3433 if (GEP.getPointerOperandType()->isVectorTy()) 3434 Assert( 3435 GEPWidth == 3436 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3437 "Vector GEP result width doesn't match operand's", &GEP); 3438 for (Value *Idx : Idxs) { 3439 Type *IndexTy = Idx->getType(); 3440 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3441 ElementCount IndexWidth = IndexVTy->getElementCount(); 3442 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3443 } 3444 Assert(IndexTy->isIntOrIntVectorTy(), 3445 "All GEP indices should be of integer type"); 3446 } 3447 } 3448 3449 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3450 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3451 "GEP address space doesn't match type", &GEP); 3452 } 3453 3454 visitInstruction(GEP); 3455 } 3456 3457 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3458 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3459 } 3460 3461 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3462 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3463 "precondition violation"); 3464 3465 unsigned NumOperands = Range->getNumOperands(); 3466 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3467 unsigned NumRanges = NumOperands / 2; 3468 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3469 3470 ConstantRange LastRange(1, true); // Dummy initial value 3471 for (unsigned i = 0; i < NumRanges; ++i) { 3472 ConstantInt *Low = 3473 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3474 Assert(Low, "The lower limit must be an integer!", Low); 3475 ConstantInt *High = 3476 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3477 Assert(High, "The upper limit must be an integer!", High); 3478 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3479 "Range types must match instruction type!", &I); 3480 3481 APInt HighV = High->getValue(); 3482 APInt LowV = Low->getValue(); 3483 ConstantRange CurRange(LowV, HighV); 3484 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3485 "Range must not be empty!", Range); 3486 if (i != 0) { 3487 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3488 "Intervals are overlapping", Range); 3489 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3490 Range); 3491 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3492 Range); 3493 } 3494 LastRange = ConstantRange(LowV, HighV); 3495 } 3496 if (NumRanges > 2) { 3497 APInt FirstLow = 3498 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3499 APInt FirstHigh = 3500 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3501 ConstantRange FirstRange(FirstLow, FirstHigh); 3502 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3503 "Intervals are overlapping", Range); 3504 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3505 Range); 3506 } 3507 } 3508 3509 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3510 unsigned Size = DL.getTypeSizeInBits(Ty); 3511 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3512 Assert(!(Size & (Size - 1)), 3513 "atomic memory access' operand must have a power-of-two size", Ty, I); 3514 } 3515 3516 void Verifier::visitLoadInst(LoadInst &LI) { 3517 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3518 Assert(PTy, "Load operand must be a pointer.", &LI); 3519 Type *ElTy = LI.getType(); 3520 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3521 "huge alignment values are unsupported", &LI); 3522 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3523 if (LI.isAtomic()) { 3524 Assert(LI.getOrdering() != AtomicOrdering::Release && 3525 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3526 "Load cannot have Release ordering", &LI); 3527 Assert(LI.getAlignment() != 0, 3528 "Atomic load must specify explicit alignment", &LI); 3529 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3530 "atomic load operand must have integer, pointer, or floating point " 3531 "type!", 3532 ElTy, &LI); 3533 checkAtomicMemAccessSize(ElTy, &LI); 3534 } else { 3535 Assert(LI.getSyncScopeID() == SyncScope::System, 3536 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3537 } 3538 3539 visitInstruction(LI); 3540 } 3541 3542 void Verifier::visitStoreInst(StoreInst &SI) { 3543 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3544 Assert(PTy, "Store operand must be a pointer.", &SI); 3545 Type *ElTy = PTy->getElementType(); 3546 Assert(ElTy == SI.getOperand(0)->getType(), 3547 "Stored value type does not match pointer operand type!", &SI, ElTy); 3548 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3549 "huge alignment values are unsupported", &SI); 3550 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3551 if (SI.isAtomic()) { 3552 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3553 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3554 "Store cannot have Acquire ordering", &SI); 3555 Assert(SI.getAlignment() != 0, 3556 "Atomic store must specify explicit alignment", &SI); 3557 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3558 "atomic store operand must have integer, pointer, or floating point " 3559 "type!", 3560 ElTy, &SI); 3561 checkAtomicMemAccessSize(ElTy, &SI); 3562 } else { 3563 Assert(SI.getSyncScopeID() == SyncScope::System, 3564 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3565 } 3566 visitInstruction(SI); 3567 } 3568 3569 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3570 void Verifier::verifySwiftErrorCall(CallBase &Call, 3571 const Value *SwiftErrorVal) { 3572 unsigned Idx = 0; 3573 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3574 if (*I == SwiftErrorVal) { 3575 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3576 "swifterror value when used in a callsite should be marked " 3577 "with swifterror attribute", 3578 SwiftErrorVal, Call); 3579 } 3580 } 3581 } 3582 3583 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3584 // Check that swifterror value is only used by loads, stores, or as 3585 // a swifterror argument. 3586 for (const User *U : SwiftErrorVal->users()) { 3587 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3588 isa<InvokeInst>(U), 3589 "swifterror value can only be loaded and stored from, or " 3590 "as a swifterror argument!", 3591 SwiftErrorVal, U); 3592 // If it is used by a store, check it is the second operand. 3593 if (auto StoreI = dyn_cast<StoreInst>(U)) 3594 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3595 "swifterror value should be the second operand when used " 3596 "by stores", SwiftErrorVal, U); 3597 if (auto *Call = dyn_cast<CallBase>(U)) 3598 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3599 } 3600 } 3601 3602 void Verifier::visitAllocaInst(AllocaInst &AI) { 3603 SmallPtrSet<Type*, 4> Visited; 3604 PointerType *PTy = AI.getType(); 3605 // TODO: Relax this restriction? 3606 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3607 "Allocation instruction pointer not in the stack address space!", 3608 &AI); 3609 Assert(AI.getAllocatedType()->isSized(&Visited), 3610 "Cannot allocate unsized type", &AI); 3611 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3612 "Alloca array size must have integer type", &AI); 3613 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3614 "huge alignment values are unsupported", &AI); 3615 3616 if (AI.isSwiftError()) { 3617 verifySwiftErrorValue(&AI); 3618 } 3619 3620 visitInstruction(AI); 3621 } 3622 3623 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3624 3625 // FIXME: more conditions??? 3626 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3627 "cmpxchg instructions must be atomic.", &CXI); 3628 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3629 "cmpxchg instructions must be atomic.", &CXI); 3630 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3631 "cmpxchg instructions cannot be unordered.", &CXI); 3632 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3633 "cmpxchg instructions cannot be unordered.", &CXI); 3634 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3635 "cmpxchg instructions failure argument shall be no stronger than the " 3636 "success argument", 3637 &CXI); 3638 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3639 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3640 "cmpxchg failure ordering cannot include release semantics", &CXI); 3641 3642 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3643 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3644 Type *ElTy = PTy->getElementType(); 3645 Assert(ElTy->isIntOrPtrTy(), 3646 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3647 checkAtomicMemAccessSize(ElTy, &CXI); 3648 Assert(ElTy == CXI.getOperand(1)->getType(), 3649 "Expected value type does not match pointer operand type!", &CXI, 3650 ElTy); 3651 Assert(ElTy == CXI.getOperand(2)->getType(), 3652 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3653 visitInstruction(CXI); 3654 } 3655 3656 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3657 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3658 "atomicrmw instructions must be atomic.", &RMWI); 3659 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3660 "atomicrmw instructions cannot be unordered.", &RMWI); 3661 auto Op = RMWI.getOperation(); 3662 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3663 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3664 Type *ElTy = PTy->getElementType(); 3665 if (Op == AtomicRMWInst::Xchg) { 3666 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3667 AtomicRMWInst::getOperationName(Op) + 3668 " operand must have integer or floating point type!", 3669 &RMWI, ElTy); 3670 } else if (AtomicRMWInst::isFPOperation(Op)) { 3671 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3672 AtomicRMWInst::getOperationName(Op) + 3673 " operand must have floating point type!", 3674 &RMWI, ElTy); 3675 } else { 3676 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3677 AtomicRMWInst::getOperationName(Op) + 3678 " operand must have integer type!", 3679 &RMWI, ElTy); 3680 } 3681 checkAtomicMemAccessSize(ElTy, &RMWI); 3682 Assert(ElTy == RMWI.getOperand(1)->getType(), 3683 "Argument value type does not match pointer operand type!", &RMWI, 3684 ElTy); 3685 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3686 "Invalid binary operation!", &RMWI); 3687 visitInstruction(RMWI); 3688 } 3689 3690 void Verifier::visitFenceInst(FenceInst &FI) { 3691 const AtomicOrdering Ordering = FI.getOrdering(); 3692 Assert(Ordering == AtomicOrdering::Acquire || 3693 Ordering == AtomicOrdering::Release || 3694 Ordering == AtomicOrdering::AcquireRelease || 3695 Ordering == AtomicOrdering::SequentiallyConsistent, 3696 "fence instructions may only have acquire, release, acq_rel, or " 3697 "seq_cst ordering.", 3698 &FI); 3699 visitInstruction(FI); 3700 } 3701 3702 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3703 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3704 EVI.getIndices()) == EVI.getType(), 3705 "Invalid ExtractValueInst operands!", &EVI); 3706 3707 visitInstruction(EVI); 3708 } 3709 3710 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3711 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3712 IVI.getIndices()) == 3713 IVI.getOperand(1)->getType(), 3714 "Invalid InsertValueInst operands!", &IVI); 3715 3716 visitInstruction(IVI); 3717 } 3718 3719 static Value *getParentPad(Value *EHPad) { 3720 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3721 return FPI->getParentPad(); 3722 3723 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3724 } 3725 3726 void Verifier::visitEHPadPredecessors(Instruction &I) { 3727 assert(I.isEHPad()); 3728 3729 BasicBlock *BB = I.getParent(); 3730 Function *F = BB->getParent(); 3731 3732 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3733 3734 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3735 // The landingpad instruction defines its parent as a landing pad block. The 3736 // landing pad block may be branched to only by the unwind edge of an 3737 // invoke. 3738 for (BasicBlock *PredBB : predecessors(BB)) { 3739 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3740 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3741 "Block containing LandingPadInst must be jumped to " 3742 "only by the unwind edge of an invoke.", 3743 LPI); 3744 } 3745 return; 3746 } 3747 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3748 if (!pred_empty(BB)) 3749 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3750 "Block containg CatchPadInst must be jumped to " 3751 "only by its catchswitch.", 3752 CPI); 3753 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3754 "Catchswitch cannot unwind to one of its catchpads", 3755 CPI->getCatchSwitch(), CPI); 3756 return; 3757 } 3758 3759 // Verify that each pred has a legal terminator with a legal to/from EH 3760 // pad relationship. 3761 Instruction *ToPad = &I; 3762 Value *ToPadParent = getParentPad(ToPad); 3763 for (BasicBlock *PredBB : predecessors(BB)) { 3764 Instruction *TI = PredBB->getTerminator(); 3765 Value *FromPad; 3766 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3767 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3768 "EH pad must be jumped to via an unwind edge", ToPad, II); 3769 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3770 FromPad = Bundle->Inputs[0]; 3771 else 3772 FromPad = ConstantTokenNone::get(II->getContext()); 3773 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3774 FromPad = CRI->getOperand(0); 3775 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3776 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3777 FromPad = CSI; 3778 } else { 3779 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3780 } 3781 3782 // The edge may exit from zero or more nested pads. 3783 SmallSet<Value *, 8> Seen; 3784 for (;; FromPad = getParentPad(FromPad)) { 3785 Assert(FromPad != ToPad, 3786 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3787 if (FromPad == ToPadParent) { 3788 // This is a legal unwind edge. 3789 break; 3790 } 3791 Assert(!isa<ConstantTokenNone>(FromPad), 3792 "A single unwind edge may only enter one EH pad", TI); 3793 Assert(Seen.insert(FromPad).second, 3794 "EH pad jumps through a cycle of pads", FromPad); 3795 } 3796 } 3797 } 3798 3799 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3800 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3801 // isn't a cleanup. 3802 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3803 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3804 3805 visitEHPadPredecessors(LPI); 3806 3807 if (!LandingPadResultTy) 3808 LandingPadResultTy = LPI.getType(); 3809 else 3810 Assert(LandingPadResultTy == LPI.getType(), 3811 "The landingpad instruction should have a consistent result type " 3812 "inside a function.", 3813 &LPI); 3814 3815 Function *F = LPI.getParent()->getParent(); 3816 Assert(F->hasPersonalityFn(), 3817 "LandingPadInst needs to be in a function with a personality.", &LPI); 3818 3819 // The landingpad instruction must be the first non-PHI instruction in the 3820 // block. 3821 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3822 "LandingPadInst not the first non-PHI instruction in the block.", 3823 &LPI); 3824 3825 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3826 Constant *Clause = LPI.getClause(i); 3827 if (LPI.isCatch(i)) { 3828 Assert(isa<PointerType>(Clause->getType()), 3829 "Catch operand does not have pointer type!", &LPI); 3830 } else { 3831 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3832 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3833 "Filter operand is not an array of constants!", &LPI); 3834 } 3835 } 3836 3837 visitInstruction(LPI); 3838 } 3839 3840 void Verifier::visitResumeInst(ResumeInst &RI) { 3841 Assert(RI.getFunction()->hasPersonalityFn(), 3842 "ResumeInst needs to be in a function with a personality.", &RI); 3843 3844 if (!LandingPadResultTy) 3845 LandingPadResultTy = RI.getValue()->getType(); 3846 else 3847 Assert(LandingPadResultTy == RI.getValue()->getType(), 3848 "The resume instruction should have a consistent result type " 3849 "inside a function.", 3850 &RI); 3851 3852 visitTerminator(RI); 3853 } 3854 3855 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3856 BasicBlock *BB = CPI.getParent(); 3857 3858 Function *F = BB->getParent(); 3859 Assert(F->hasPersonalityFn(), 3860 "CatchPadInst needs to be in a function with a personality.", &CPI); 3861 3862 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3863 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3864 CPI.getParentPad()); 3865 3866 // The catchpad instruction must be the first non-PHI instruction in the 3867 // block. 3868 Assert(BB->getFirstNonPHI() == &CPI, 3869 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3870 3871 visitEHPadPredecessors(CPI); 3872 visitFuncletPadInst(CPI); 3873 } 3874 3875 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3876 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3877 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3878 CatchReturn.getOperand(0)); 3879 3880 visitTerminator(CatchReturn); 3881 } 3882 3883 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3884 BasicBlock *BB = CPI.getParent(); 3885 3886 Function *F = BB->getParent(); 3887 Assert(F->hasPersonalityFn(), 3888 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3889 3890 // The cleanuppad instruction must be the first non-PHI instruction in the 3891 // block. 3892 Assert(BB->getFirstNonPHI() == &CPI, 3893 "CleanupPadInst not the first non-PHI instruction in the block.", 3894 &CPI); 3895 3896 auto *ParentPad = CPI.getParentPad(); 3897 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3898 "CleanupPadInst has an invalid parent.", &CPI); 3899 3900 visitEHPadPredecessors(CPI); 3901 visitFuncletPadInst(CPI); 3902 } 3903 3904 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3905 User *FirstUser = nullptr; 3906 Value *FirstUnwindPad = nullptr; 3907 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3908 SmallSet<FuncletPadInst *, 8> Seen; 3909 3910 while (!Worklist.empty()) { 3911 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3912 Assert(Seen.insert(CurrentPad).second, 3913 "FuncletPadInst must not be nested within itself", CurrentPad); 3914 Value *UnresolvedAncestorPad = nullptr; 3915 for (User *U : CurrentPad->users()) { 3916 BasicBlock *UnwindDest; 3917 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3918 UnwindDest = CRI->getUnwindDest(); 3919 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3920 // We allow catchswitch unwind to caller to nest 3921 // within an outer pad that unwinds somewhere else, 3922 // because catchswitch doesn't have a nounwind variant. 3923 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3924 if (CSI->unwindsToCaller()) 3925 continue; 3926 UnwindDest = CSI->getUnwindDest(); 3927 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3928 UnwindDest = II->getUnwindDest(); 3929 } else if (isa<CallInst>(U)) { 3930 // Calls which don't unwind may be found inside funclet 3931 // pads that unwind somewhere else. We don't *require* 3932 // such calls to be annotated nounwind. 3933 continue; 3934 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3935 // The unwind dest for a cleanup can only be found by 3936 // recursive search. Add it to the worklist, and we'll 3937 // search for its first use that determines where it unwinds. 3938 Worklist.push_back(CPI); 3939 continue; 3940 } else { 3941 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3942 continue; 3943 } 3944 3945 Value *UnwindPad; 3946 bool ExitsFPI; 3947 if (UnwindDest) { 3948 UnwindPad = UnwindDest->getFirstNonPHI(); 3949 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3950 continue; 3951 Value *UnwindParent = getParentPad(UnwindPad); 3952 // Ignore unwind edges that don't exit CurrentPad. 3953 if (UnwindParent == CurrentPad) 3954 continue; 3955 // Determine whether the original funclet pad is exited, 3956 // and if we are scanning nested pads determine how many 3957 // of them are exited so we can stop searching their 3958 // children. 3959 Value *ExitedPad = CurrentPad; 3960 ExitsFPI = false; 3961 do { 3962 if (ExitedPad == &FPI) { 3963 ExitsFPI = true; 3964 // Now we can resolve any ancestors of CurrentPad up to 3965 // FPI, but not including FPI since we need to make sure 3966 // to check all direct users of FPI for consistency. 3967 UnresolvedAncestorPad = &FPI; 3968 break; 3969 } 3970 Value *ExitedParent = getParentPad(ExitedPad); 3971 if (ExitedParent == UnwindParent) { 3972 // ExitedPad is the ancestor-most pad which this unwind 3973 // edge exits, so we can resolve up to it, meaning that 3974 // ExitedParent is the first ancestor still unresolved. 3975 UnresolvedAncestorPad = ExitedParent; 3976 break; 3977 } 3978 ExitedPad = ExitedParent; 3979 } while (!isa<ConstantTokenNone>(ExitedPad)); 3980 } else { 3981 // Unwinding to caller exits all pads. 3982 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3983 ExitsFPI = true; 3984 UnresolvedAncestorPad = &FPI; 3985 } 3986 3987 if (ExitsFPI) { 3988 // This unwind edge exits FPI. Make sure it agrees with other 3989 // such edges. 3990 if (FirstUser) { 3991 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3992 "pad must have the same unwind " 3993 "dest", 3994 &FPI, U, FirstUser); 3995 } else { 3996 FirstUser = U; 3997 FirstUnwindPad = UnwindPad; 3998 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3999 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4000 getParentPad(UnwindPad) == getParentPad(&FPI)) 4001 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4002 } 4003 } 4004 // Make sure we visit all uses of FPI, but for nested pads stop as 4005 // soon as we know where they unwind to. 4006 if (CurrentPad != &FPI) 4007 break; 4008 } 4009 if (UnresolvedAncestorPad) { 4010 if (CurrentPad == UnresolvedAncestorPad) { 4011 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4012 // we've found an unwind edge that exits it, because we need to verify 4013 // all direct uses of FPI. 4014 assert(CurrentPad == &FPI); 4015 continue; 4016 } 4017 // Pop off the worklist any nested pads that we've found an unwind 4018 // destination for. The pads on the worklist are the uncles, 4019 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4020 // for all ancestors of CurrentPad up to but not including 4021 // UnresolvedAncestorPad. 4022 Value *ResolvedPad = CurrentPad; 4023 while (!Worklist.empty()) { 4024 Value *UnclePad = Worklist.back(); 4025 Value *AncestorPad = getParentPad(UnclePad); 4026 // Walk ResolvedPad up the ancestor list until we either find the 4027 // uncle's parent or the last resolved ancestor. 4028 while (ResolvedPad != AncestorPad) { 4029 Value *ResolvedParent = getParentPad(ResolvedPad); 4030 if (ResolvedParent == UnresolvedAncestorPad) { 4031 break; 4032 } 4033 ResolvedPad = ResolvedParent; 4034 } 4035 // If the resolved ancestor search didn't find the uncle's parent, 4036 // then the uncle is not yet resolved. 4037 if (ResolvedPad != AncestorPad) 4038 break; 4039 // This uncle is resolved, so pop it from the worklist. 4040 Worklist.pop_back(); 4041 } 4042 } 4043 } 4044 4045 if (FirstUnwindPad) { 4046 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4047 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4048 Value *SwitchUnwindPad; 4049 if (SwitchUnwindDest) 4050 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4051 else 4052 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4053 Assert(SwitchUnwindPad == FirstUnwindPad, 4054 "Unwind edges out of a catch must have the same unwind dest as " 4055 "the parent catchswitch", 4056 &FPI, FirstUser, CatchSwitch); 4057 } 4058 } 4059 4060 visitInstruction(FPI); 4061 } 4062 4063 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4064 BasicBlock *BB = CatchSwitch.getParent(); 4065 4066 Function *F = BB->getParent(); 4067 Assert(F->hasPersonalityFn(), 4068 "CatchSwitchInst needs to be in a function with a personality.", 4069 &CatchSwitch); 4070 4071 // The catchswitch instruction must be the first non-PHI instruction in the 4072 // block. 4073 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4074 "CatchSwitchInst not the first non-PHI instruction in the block.", 4075 &CatchSwitch); 4076 4077 auto *ParentPad = CatchSwitch.getParentPad(); 4078 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4079 "CatchSwitchInst has an invalid parent.", ParentPad); 4080 4081 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4082 Instruction *I = UnwindDest->getFirstNonPHI(); 4083 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4084 "CatchSwitchInst must unwind to an EH block which is not a " 4085 "landingpad.", 4086 &CatchSwitch); 4087 4088 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4089 if (getParentPad(I) == ParentPad) 4090 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4091 } 4092 4093 Assert(CatchSwitch.getNumHandlers() != 0, 4094 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4095 4096 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4097 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4098 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4099 } 4100 4101 visitEHPadPredecessors(CatchSwitch); 4102 visitTerminator(CatchSwitch); 4103 } 4104 4105 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4106 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4107 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4108 CRI.getOperand(0)); 4109 4110 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4111 Instruction *I = UnwindDest->getFirstNonPHI(); 4112 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4113 "CleanupReturnInst must unwind to an EH block which is not a " 4114 "landingpad.", 4115 &CRI); 4116 } 4117 4118 visitTerminator(CRI); 4119 } 4120 4121 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4122 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4123 // If the we have an invalid invoke, don't try to compute the dominance. 4124 // We already reject it in the invoke specific checks and the dominance 4125 // computation doesn't handle multiple edges. 4126 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4127 if (II->getNormalDest() == II->getUnwindDest()) 4128 return; 4129 } 4130 4131 // Quick check whether the def has already been encountered in the same block. 4132 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4133 // uses are defined to happen on the incoming edge, not at the instruction. 4134 // 4135 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4136 // wrapping an SSA value, assert that we've already encountered it. See 4137 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4138 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4139 return; 4140 4141 const Use &U = I.getOperandUse(i); 4142 Assert(DT.dominates(Op, U), 4143 "Instruction does not dominate all uses!", Op, &I); 4144 } 4145 4146 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4147 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4148 "apply only to pointer types", &I); 4149 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4150 "dereferenceable, dereferenceable_or_null apply only to load" 4151 " and inttoptr instructions, use attributes for calls or invokes", &I); 4152 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4153 "take one operand!", &I); 4154 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4155 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4156 "dereferenceable_or_null metadata value must be an i64!", &I); 4157 } 4158 4159 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4160 Assert(MD->getNumOperands() >= 2, 4161 "!prof annotations should have no less than 2 operands", MD); 4162 4163 // Check first operand. 4164 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4165 Assert(isa<MDString>(MD->getOperand(0)), 4166 "expected string with name of the !prof annotation", MD); 4167 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4168 StringRef ProfName = MDS->getString(); 4169 4170 // Check consistency of !prof branch_weights metadata. 4171 if (ProfName.equals("branch_weights")) { 4172 unsigned ExpectedNumOperands = 0; 4173 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4174 ExpectedNumOperands = BI->getNumSuccessors(); 4175 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4176 ExpectedNumOperands = SI->getNumSuccessors(); 4177 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) 4178 ExpectedNumOperands = 1; 4179 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4180 ExpectedNumOperands = IBI->getNumDestinations(); 4181 else if (isa<SelectInst>(&I)) 4182 ExpectedNumOperands = 2; 4183 else 4184 CheckFailed("!prof branch_weights are not allowed for this instruction", 4185 MD); 4186 4187 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4188 "Wrong number of operands", MD); 4189 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4190 auto &MDO = MD->getOperand(i); 4191 Assert(MDO, "second operand should not be null", MD); 4192 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4193 "!prof brunch_weights operand is not a const int"); 4194 } 4195 } 4196 } 4197 4198 /// verifyInstruction - Verify that an instruction is well formed. 4199 /// 4200 void Verifier::visitInstruction(Instruction &I) { 4201 BasicBlock *BB = I.getParent(); 4202 Assert(BB, "Instruction not embedded in basic block!", &I); 4203 4204 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4205 for (User *U : I.users()) { 4206 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4207 "Only PHI nodes may reference their own value!", &I); 4208 } 4209 } 4210 4211 // Check that void typed values don't have names 4212 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4213 "Instruction has a name, but provides a void value!", &I); 4214 4215 // Check that the return value of the instruction is either void or a legal 4216 // value type. 4217 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4218 "Instruction returns a non-scalar type!", &I); 4219 4220 // Check that the instruction doesn't produce metadata. Calls are already 4221 // checked against the callee type. 4222 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4223 "Invalid use of metadata!", &I); 4224 4225 // Check that all uses of the instruction, if they are instructions 4226 // themselves, actually have parent basic blocks. If the use is not an 4227 // instruction, it is an error! 4228 for (Use &U : I.uses()) { 4229 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4230 Assert(Used->getParent() != nullptr, 4231 "Instruction referencing" 4232 " instruction not embedded in a basic block!", 4233 &I, Used); 4234 else { 4235 CheckFailed("Use of instruction is not an instruction!", U); 4236 return; 4237 } 4238 } 4239 4240 // Get a pointer to the call base of the instruction if it is some form of 4241 // call. 4242 const CallBase *CBI = dyn_cast<CallBase>(&I); 4243 4244 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4245 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4246 4247 // Check to make sure that only first-class-values are operands to 4248 // instructions. 4249 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4250 Assert(false, "Instruction operands must be first-class values!", &I); 4251 } 4252 4253 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4254 // Check to make sure that the "address of" an intrinsic function is never 4255 // taken. 4256 Assert(!F->isIntrinsic() || 4257 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4258 "Cannot take the address of an intrinsic!", &I); 4259 Assert( 4260 !F->isIntrinsic() || isa<CallInst>(I) || 4261 F->getIntrinsicID() == Intrinsic::donothing || 4262 F->getIntrinsicID() == Intrinsic::coro_resume || 4263 F->getIntrinsicID() == Intrinsic::coro_destroy || 4264 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4265 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4266 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4267 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4268 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4269 "statepoint, coro_resume or coro_destroy", 4270 &I); 4271 Assert(F->getParent() == &M, "Referencing function in another module!", 4272 &I, &M, F, F->getParent()); 4273 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4274 Assert(OpBB->getParent() == BB->getParent(), 4275 "Referring to a basic block in another function!", &I); 4276 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4277 Assert(OpArg->getParent() == BB->getParent(), 4278 "Referring to an argument in another function!", &I); 4279 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4280 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4281 &M, GV, GV->getParent()); 4282 } else if (isa<Instruction>(I.getOperand(i))) { 4283 verifyDominatesUse(I, i); 4284 } else if (isa<InlineAsm>(I.getOperand(i))) { 4285 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4286 "Cannot take the address of an inline asm!", &I); 4287 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4288 if (CE->getType()->isPtrOrPtrVectorTy() || 4289 !DL.getNonIntegralAddressSpaces().empty()) { 4290 // If we have a ConstantExpr pointer, we need to see if it came from an 4291 // illegal bitcast. If the datalayout string specifies non-integral 4292 // address spaces then we also need to check for illegal ptrtoint and 4293 // inttoptr expressions. 4294 visitConstantExprsRecursively(CE); 4295 } 4296 } 4297 } 4298 4299 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4300 Assert(I.getType()->isFPOrFPVectorTy(), 4301 "fpmath requires a floating point result!", &I); 4302 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4303 if (ConstantFP *CFP0 = 4304 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4305 const APFloat &Accuracy = CFP0->getValueAPF(); 4306 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4307 "fpmath accuracy must have float type", &I); 4308 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4309 "fpmath accuracy not a positive number!", &I); 4310 } else { 4311 Assert(false, "invalid fpmath accuracy!", &I); 4312 } 4313 } 4314 4315 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4316 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4317 "Ranges are only for loads, calls and invokes!", &I); 4318 visitRangeMetadata(I, Range, I.getType()); 4319 } 4320 4321 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4322 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4323 &I); 4324 Assert(isa<LoadInst>(I), 4325 "nonnull applies only to load instructions, use attributes" 4326 " for calls or invokes", 4327 &I); 4328 } 4329 4330 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4331 visitDereferenceableMetadata(I, MD); 4332 4333 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4334 visitDereferenceableMetadata(I, MD); 4335 4336 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4337 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4338 4339 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4340 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4341 &I); 4342 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4343 "use attributes for calls or invokes", &I); 4344 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4345 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4346 Assert(CI && CI->getType()->isIntegerTy(64), 4347 "align metadata value must be an i64!", &I); 4348 uint64_t Align = CI->getZExtValue(); 4349 Assert(isPowerOf2_64(Align), 4350 "align metadata value must be a power of 2!", &I); 4351 Assert(Align <= Value::MaximumAlignment, 4352 "alignment is larger that implementation defined limit", &I); 4353 } 4354 4355 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4356 visitProfMetadata(I, MD); 4357 4358 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4359 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4360 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4361 } 4362 4363 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4364 verifyFragmentExpression(*DII); 4365 verifyNotEntryValue(*DII); 4366 } 4367 4368 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4369 I.getAllMetadata(MDs); 4370 for (auto Attachment : MDs) { 4371 unsigned Kind = Attachment.first; 4372 auto AllowLocs = 4373 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4374 ? AreDebugLocsAllowed::Yes 4375 : AreDebugLocsAllowed::No; 4376 visitMDNode(*Attachment.second, AllowLocs); 4377 } 4378 4379 InstsInThisBlock.insert(&I); 4380 } 4381 4382 /// Allow intrinsics to be verified in different ways. 4383 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4384 Function *IF = Call.getCalledFunction(); 4385 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4386 IF); 4387 4388 // Verify that the intrinsic prototype lines up with what the .td files 4389 // describe. 4390 FunctionType *IFTy = IF->getFunctionType(); 4391 bool IsVarArg = IFTy->isVarArg(); 4392 4393 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4394 getIntrinsicInfoTableEntries(ID, Table); 4395 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4396 4397 // Walk the descriptors to extract overloaded types. 4398 SmallVector<Type *, 4> ArgTys; 4399 Intrinsic::MatchIntrinsicTypesResult Res = 4400 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4401 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4402 "Intrinsic has incorrect return type!", IF); 4403 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4404 "Intrinsic has incorrect argument type!", IF); 4405 4406 // Verify if the intrinsic call matches the vararg property. 4407 if (IsVarArg) 4408 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4409 "Intrinsic was not defined with variable arguments!", IF); 4410 else 4411 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4412 "Callsite was not defined with variable arguments!", IF); 4413 4414 // All descriptors should be absorbed by now. 4415 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4416 4417 // Now that we have the intrinsic ID and the actual argument types (and we 4418 // know they are legal for the intrinsic!) get the intrinsic name through the 4419 // usual means. This allows us to verify the mangling of argument types into 4420 // the name. 4421 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4422 Assert(ExpectedName == IF->getName(), 4423 "Intrinsic name not mangled correctly for type arguments! " 4424 "Should be: " + 4425 ExpectedName, 4426 IF); 4427 4428 // If the intrinsic takes MDNode arguments, verify that they are either global 4429 // or are local to *this* function. 4430 for (Value *V : Call.args()) 4431 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4432 visitMetadataAsValue(*MD, Call.getCaller()); 4433 4434 switch (ID) { 4435 default: 4436 break; 4437 case Intrinsic::assume: { 4438 for (auto &Elem : Call.bundle_op_infos()) { 4439 Assert(Elem.Tag->getKey() == "ignore" || 4440 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4441 "tags must be valid attribute names"); 4442 Assert(Elem.End - Elem.Begin <= 2, "to many arguments"); 4443 Attribute::AttrKind Kind = 4444 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4445 if (Kind == Attribute::None) 4446 break; 4447 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4448 Assert(Elem.End - Elem.Begin == 2, 4449 "this attribute should have 2 arguments"); 4450 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4451 "the second argument should be a constant integral value"); 4452 } else if (isFuncOnlyAttr(Kind)) { 4453 Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument"); 4454 } else if (!isFuncOrArgAttr(Kind)) { 4455 Assert((Elem.End - Elem.Begin) == 1, 4456 "this attribute should have one argument"); 4457 } 4458 } 4459 break; 4460 } 4461 case Intrinsic::coro_id: { 4462 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4463 if (isa<ConstantPointerNull>(InfoArg)) 4464 break; 4465 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4466 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4467 "info argument of llvm.coro.begin must refer to an initialized " 4468 "constant"); 4469 Constant *Init = GV->getInitializer(); 4470 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4471 "info argument of llvm.coro.begin must refer to either a struct or " 4472 "an array"); 4473 break; 4474 } 4475 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4476 case Intrinsic::INTRINSIC: 4477 #include "llvm/IR/ConstrainedOps.def" 4478 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4479 break; 4480 case Intrinsic::dbg_declare: // llvm.dbg.declare 4481 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4482 "invalid llvm.dbg.declare intrinsic call 1", Call); 4483 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4484 break; 4485 case Intrinsic::dbg_addr: // llvm.dbg.addr 4486 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4487 break; 4488 case Intrinsic::dbg_value: // llvm.dbg.value 4489 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4490 break; 4491 case Intrinsic::dbg_label: // llvm.dbg.label 4492 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4493 break; 4494 case Intrinsic::memcpy: 4495 case Intrinsic::memcpy_inline: 4496 case Intrinsic::memmove: 4497 case Intrinsic::memset: { 4498 const auto *MI = cast<MemIntrinsic>(&Call); 4499 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4500 return Alignment == 0 || isPowerOf2_32(Alignment); 4501 }; 4502 Assert(IsValidAlignment(MI->getDestAlignment()), 4503 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4504 Call); 4505 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4506 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4507 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4508 Call); 4509 } 4510 4511 break; 4512 } 4513 case Intrinsic::memcpy_element_unordered_atomic: 4514 case Intrinsic::memmove_element_unordered_atomic: 4515 case Intrinsic::memset_element_unordered_atomic: { 4516 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4517 4518 ConstantInt *ElementSizeCI = 4519 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4520 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4521 Assert(ElementSizeVal.isPowerOf2(), 4522 "element size of the element-wise atomic memory intrinsic " 4523 "must be a power of 2", 4524 Call); 4525 4526 auto IsValidAlignment = [&](uint64_t Alignment) { 4527 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4528 }; 4529 uint64_t DstAlignment = AMI->getDestAlignment(); 4530 Assert(IsValidAlignment(DstAlignment), 4531 "incorrect alignment of the destination argument", Call); 4532 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4533 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4534 Assert(IsValidAlignment(SrcAlignment), 4535 "incorrect alignment of the source argument", Call); 4536 } 4537 break; 4538 } 4539 case Intrinsic::call_preallocated_setup: { 4540 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4541 Assert(NumArgs != nullptr, 4542 "llvm.call.preallocated.setup argument must be a constant"); 4543 bool FoundCall = false; 4544 for (User *U : Call.users()) { 4545 auto *UseCall = dyn_cast<CallBase>(U); 4546 Assert(UseCall != nullptr, 4547 "Uses of llvm.call.preallocated.setup must be calls"); 4548 const Function *Fn = UseCall->getCalledFunction(); 4549 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4550 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4551 Assert(AllocArgIndex != nullptr, 4552 "llvm.call.preallocated.alloc arg index must be a constant"); 4553 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4554 Assert(AllocArgIndexInt.sge(0) && 4555 AllocArgIndexInt.slt(NumArgs->getValue()), 4556 "llvm.call.preallocated.alloc arg index must be between 0 and " 4557 "corresponding " 4558 "llvm.call.preallocated.setup's argument count"); 4559 } else { 4560 Assert(!FoundCall, "Can have at most one call corresponding to a " 4561 "llvm.call.preallocated.setup"); 4562 FoundCall = true; 4563 size_t NumPreallocatedArgs = 0; 4564 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4565 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4566 ++NumPreallocatedArgs; 4567 } 4568 } 4569 Assert(NumPreallocatedArgs != 0, 4570 "cannot use preallocated intrinsics on a call without " 4571 "preallocated arguments"); 4572 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4573 "llvm.call.preallocated.setup arg size must be equal to number " 4574 "of preallocated arguments " 4575 "at call site", 4576 Call, *UseCall); 4577 // getOperandBundle() cannot be called if more than one of the operand 4578 // bundle exists. There is already a check elsewhere for this, so skip 4579 // here if we see more than one. 4580 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4581 1) { 4582 return; 4583 } 4584 auto PreallocatedBundle = 4585 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4586 Assert(PreallocatedBundle, 4587 "Use of llvm.call.preallocated.setup outside intrinsics " 4588 "must be in \"preallocated\" operand bundle"); 4589 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4590 "preallocated bundle must have token from corresponding " 4591 "llvm.call.preallocated.setup"); 4592 } 4593 } 4594 break; 4595 } 4596 case Intrinsic::call_preallocated_arg: { 4597 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4598 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4599 Intrinsic::call_preallocated_setup, 4600 "llvm.call.preallocated.arg token argument must be a " 4601 "llvm.call.preallocated.setup"); 4602 Assert(Call.hasFnAttr(Attribute::Preallocated), 4603 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4604 "call site attribute"); 4605 break; 4606 } 4607 case Intrinsic::gcroot: 4608 case Intrinsic::gcwrite: 4609 case Intrinsic::gcread: 4610 if (ID == Intrinsic::gcroot) { 4611 AllocaInst *AI = 4612 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4613 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4614 Assert(isa<Constant>(Call.getArgOperand(1)), 4615 "llvm.gcroot parameter #2 must be a constant.", Call); 4616 if (!AI->getAllocatedType()->isPointerTy()) { 4617 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4618 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4619 "or argument #2 must be a non-null constant.", 4620 Call); 4621 } 4622 } 4623 4624 Assert(Call.getParent()->getParent()->hasGC(), 4625 "Enclosing function does not use GC.", Call); 4626 break; 4627 case Intrinsic::init_trampoline: 4628 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4629 "llvm.init_trampoline parameter #2 must resolve to a function.", 4630 Call); 4631 break; 4632 case Intrinsic::prefetch: 4633 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4634 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4635 "invalid arguments to llvm.prefetch", Call); 4636 break; 4637 case Intrinsic::stackprotector: 4638 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4639 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4640 break; 4641 case Intrinsic::localescape: { 4642 BasicBlock *BB = Call.getParent(); 4643 Assert(BB == &BB->getParent()->front(), 4644 "llvm.localescape used outside of entry block", Call); 4645 Assert(!SawFrameEscape, 4646 "multiple calls to llvm.localescape in one function", Call); 4647 for (Value *Arg : Call.args()) { 4648 if (isa<ConstantPointerNull>(Arg)) 4649 continue; // Null values are allowed as placeholders. 4650 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4651 Assert(AI && AI->isStaticAlloca(), 4652 "llvm.localescape only accepts static allocas", Call); 4653 } 4654 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4655 SawFrameEscape = true; 4656 break; 4657 } 4658 case Intrinsic::localrecover: { 4659 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4660 Function *Fn = dyn_cast<Function>(FnArg); 4661 Assert(Fn && !Fn->isDeclaration(), 4662 "llvm.localrecover first " 4663 "argument must be function defined in this module", 4664 Call); 4665 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4666 auto &Entry = FrameEscapeInfo[Fn]; 4667 Entry.second = unsigned( 4668 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4669 break; 4670 } 4671 4672 case Intrinsic::experimental_gc_statepoint: 4673 if (auto *CI = dyn_cast<CallInst>(&Call)) 4674 Assert(!CI->isInlineAsm(), 4675 "gc.statepoint support for inline assembly unimplemented", CI); 4676 Assert(Call.getParent()->getParent()->hasGC(), 4677 "Enclosing function does not use GC.", Call); 4678 4679 verifyStatepoint(Call); 4680 break; 4681 case Intrinsic::experimental_gc_result: { 4682 Assert(Call.getParent()->getParent()->hasGC(), 4683 "Enclosing function does not use GC.", Call); 4684 // Are we tied to a statepoint properly? 4685 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4686 const Function *StatepointFn = 4687 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4688 Assert(StatepointFn && StatepointFn->isDeclaration() && 4689 StatepointFn->getIntrinsicID() == 4690 Intrinsic::experimental_gc_statepoint, 4691 "gc.result operand #1 must be from a statepoint", Call, 4692 Call.getArgOperand(0)); 4693 4694 // Assert that result type matches wrapped callee. 4695 const Value *Target = StatepointCall->getArgOperand(2); 4696 auto *PT = cast<PointerType>(Target->getType()); 4697 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4698 Assert(Call.getType() == TargetFuncType->getReturnType(), 4699 "gc.result result type does not match wrapped callee", Call); 4700 break; 4701 } 4702 case Intrinsic::experimental_gc_relocate: { 4703 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4704 4705 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4706 "gc.relocate must return a pointer or a vector of pointers", Call); 4707 4708 // Check that this relocate is correctly tied to the statepoint 4709 4710 // This is case for relocate on the unwinding path of an invoke statepoint 4711 if (LandingPadInst *LandingPad = 4712 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4713 4714 const BasicBlock *InvokeBB = 4715 LandingPad->getParent()->getUniquePredecessor(); 4716 4717 // Landingpad relocates should have only one predecessor with invoke 4718 // statepoint terminator 4719 Assert(InvokeBB, "safepoints should have unique landingpads", 4720 LandingPad->getParent()); 4721 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4722 InvokeBB); 4723 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4724 "gc relocate should be linked to a statepoint", InvokeBB); 4725 } else { 4726 // In all other cases relocate should be tied to the statepoint directly. 4727 // This covers relocates on a normal return path of invoke statepoint and 4728 // relocates of a call statepoint. 4729 auto Token = Call.getArgOperand(0); 4730 Assert(isa<GCStatepointInst>(Token), 4731 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4732 } 4733 4734 // Verify rest of the relocate arguments. 4735 const CallBase &StatepointCall = 4736 *cast<GCRelocateInst>(Call).getStatepoint(); 4737 4738 // Both the base and derived must be piped through the safepoint. 4739 Value *Base = Call.getArgOperand(1); 4740 Assert(isa<ConstantInt>(Base), 4741 "gc.relocate operand #2 must be integer offset", Call); 4742 4743 Value *Derived = Call.getArgOperand(2); 4744 Assert(isa<ConstantInt>(Derived), 4745 "gc.relocate operand #3 must be integer offset", Call); 4746 4747 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4748 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4749 // Check the bounds 4750 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4751 "gc.relocate: statepoint base index out of bounds", Call); 4752 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4753 "gc.relocate: statepoint derived index out of bounds", Call); 4754 4755 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4756 // section of the statepoint's argument. 4757 Assert(StatepointCall.arg_size() > 0, 4758 "gc.statepoint: insufficient arguments"); 4759 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4760 "gc.statement: number of call arguments must be constant integer"); 4761 const unsigned NumCallArgs = 4762 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4763 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4764 "gc.statepoint: mismatch in number of call arguments"); 4765 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4766 "gc.statepoint: number of transition arguments must be " 4767 "a constant integer"); 4768 const int NumTransitionArgs = 4769 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4770 ->getZExtValue(); 4771 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4772 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4773 "gc.statepoint: number of deoptimization arguments must be " 4774 "a constant integer"); 4775 const int NumDeoptArgs = 4776 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4777 ->getZExtValue(); 4778 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4779 const int GCParamArgsEnd = StatepointCall.arg_size(); 4780 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4781 "gc.relocate: statepoint base index doesn't fall within the " 4782 "'gc parameters' section of the statepoint call", 4783 Call); 4784 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4785 "gc.relocate: statepoint derived index doesn't fall within the " 4786 "'gc parameters' section of the statepoint call", 4787 Call); 4788 4789 // Relocated value must be either a pointer type or vector-of-pointer type, 4790 // but gc_relocate does not need to return the same pointer type as the 4791 // relocated pointer. It can be casted to the correct type later if it's 4792 // desired. However, they must have the same address space and 'vectorness' 4793 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4794 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4795 "gc.relocate: relocated value must be a gc pointer", Call); 4796 4797 auto ResultType = Call.getType(); 4798 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4799 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4800 "gc.relocate: vector relocates to vector and pointer to pointer", 4801 Call); 4802 Assert( 4803 ResultType->getPointerAddressSpace() == 4804 DerivedType->getPointerAddressSpace(), 4805 "gc.relocate: relocating a pointer shouldn't change its address space", 4806 Call); 4807 break; 4808 } 4809 case Intrinsic::eh_exceptioncode: 4810 case Intrinsic::eh_exceptionpointer: { 4811 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4812 "eh.exceptionpointer argument must be a catchpad", Call); 4813 break; 4814 } 4815 case Intrinsic::get_active_lane_mask: { 4816 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4817 "vector", Call); 4818 auto *ElemTy = Call.getType()->getScalarType(); 4819 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4820 "i1", Call); 4821 break; 4822 } 4823 case Intrinsic::masked_load: { 4824 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4825 Call); 4826 4827 Value *Ptr = Call.getArgOperand(0); 4828 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4829 Value *Mask = Call.getArgOperand(2); 4830 Value *PassThru = Call.getArgOperand(3); 4831 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4832 Call); 4833 Assert(Alignment->getValue().isPowerOf2(), 4834 "masked_load: alignment must be a power of 2", Call); 4835 4836 // DataTy is the overloaded type 4837 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4838 Assert(DataTy == Call.getType(), 4839 "masked_load: return must match pointer type", Call); 4840 Assert(PassThru->getType() == DataTy, 4841 "masked_load: pass through and data type must match", Call); 4842 Assert(cast<VectorType>(Mask->getType())->getNumElements() == 4843 cast<VectorType>(DataTy)->getNumElements(), 4844 "masked_load: vector mask must be same length as data", Call); 4845 break; 4846 } 4847 case Intrinsic::masked_store: { 4848 Value *Val = Call.getArgOperand(0); 4849 Value *Ptr = Call.getArgOperand(1); 4850 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4851 Value *Mask = Call.getArgOperand(3); 4852 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4853 Call); 4854 Assert(Alignment->getValue().isPowerOf2(), 4855 "masked_store: alignment must be a power of 2", Call); 4856 4857 // DataTy is the overloaded type 4858 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4859 Assert(DataTy == Val->getType(), 4860 "masked_store: storee must match pointer type", Call); 4861 Assert(cast<VectorType>(Mask->getType())->getNumElements() == 4862 cast<VectorType>(DataTy)->getNumElements(), 4863 "masked_store: vector mask must be same length as data", Call); 4864 break; 4865 } 4866 4867 case Intrinsic::masked_gather: { 4868 const APInt &Alignment = 4869 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4870 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4871 "masked_gather: alignment must be 0 or a power of 2", Call); 4872 break; 4873 } 4874 case Intrinsic::masked_scatter: { 4875 const APInt &Alignment = 4876 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4877 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4878 "masked_scatter: alignment must be 0 or a power of 2", Call); 4879 break; 4880 } 4881 4882 case Intrinsic::experimental_guard: { 4883 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4884 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4885 "experimental_guard must have exactly one " 4886 "\"deopt\" operand bundle"); 4887 break; 4888 } 4889 4890 case Intrinsic::experimental_deoptimize: { 4891 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4892 Call); 4893 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4894 "experimental_deoptimize must have exactly one " 4895 "\"deopt\" operand bundle"); 4896 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4897 "experimental_deoptimize return type must match caller return type"); 4898 4899 if (isa<CallInst>(Call)) { 4900 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4901 Assert(RI, 4902 "calls to experimental_deoptimize must be followed by a return"); 4903 4904 if (!Call.getType()->isVoidTy() && RI) 4905 Assert(RI->getReturnValue() == &Call, 4906 "calls to experimental_deoptimize must be followed by a return " 4907 "of the value computed by experimental_deoptimize"); 4908 } 4909 4910 break; 4911 } 4912 case Intrinsic::sadd_sat: 4913 case Intrinsic::uadd_sat: 4914 case Intrinsic::ssub_sat: 4915 case Intrinsic::usub_sat: { 4916 Value *Op1 = Call.getArgOperand(0); 4917 Value *Op2 = Call.getArgOperand(1); 4918 Assert(Op1->getType()->isIntOrIntVectorTy(), 4919 "first operand of [us][add|sub]_sat must be an int type or vector " 4920 "of ints"); 4921 Assert(Op2->getType()->isIntOrIntVectorTy(), 4922 "second operand of [us][add|sub]_sat must be an int type or vector " 4923 "of ints"); 4924 break; 4925 } 4926 case Intrinsic::smul_fix: 4927 case Intrinsic::smul_fix_sat: 4928 case Intrinsic::umul_fix: 4929 case Intrinsic::umul_fix_sat: 4930 case Intrinsic::sdiv_fix: 4931 case Intrinsic::sdiv_fix_sat: 4932 case Intrinsic::udiv_fix: 4933 case Intrinsic::udiv_fix_sat: { 4934 Value *Op1 = Call.getArgOperand(0); 4935 Value *Op2 = Call.getArgOperand(1); 4936 Assert(Op1->getType()->isIntOrIntVectorTy(), 4937 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4938 "vector of ints"); 4939 Assert(Op2->getType()->isIntOrIntVectorTy(), 4940 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4941 "vector of ints"); 4942 4943 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4944 Assert(Op3->getType()->getBitWidth() <= 32, 4945 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 4946 4947 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4948 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 4949 Assert( 4950 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4951 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4952 "the operands"); 4953 } else { 4954 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4955 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4956 "to the width of the operands"); 4957 } 4958 break; 4959 } 4960 case Intrinsic::lround: 4961 case Intrinsic::llround: 4962 case Intrinsic::lrint: 4963 case Intrinsic::llrint: { 4964 Type *ValTy = Call.getArgOperand(0)->getType(); 4965 Type *ResultTy = Call.getType(); 4966 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4967 "Intrinsic does not support vectors", &Call); 4968 break; 4969 } 4970 case Intrinsic::bswap: { 4971 Type *Ty = Call.getType(); 4972 unsigned Size = Ty->getScalarSizeInBits(); 4973 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 4974 break; 4975 } 4976 case Intrinsic::matrix_multiply: 4977 case Intrinsic::matrix_transpose: 4978 case Intrinsic::matrix_columnwise_load: 4979 case Intrinsic::matrix_columnwise_store: { 4980 ConstantInt *NumRows; 4981 ConstantInt *NumColumns; 4982 VectorType *TypeToCheck; 4983 switch (ID) { 4984 case Intrinsic::matrix_multiply: 4985 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 4986 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 4987 TypeToCheck = cast<VectorType>(Call.getType()); 4988 break; 4989 case Intrinsic::matrix_transpose: 4990 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 4991 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 4992 TypeToCheck = cast<VectorType>(Call.getType()); 4993 break; 4994 case Intrinsic::matrix_columnwise_load: 4995 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 4996 NumColumns = cast<ConstantInt>(Call.getArgOperand(3)); 4997 TypeToCheck = cast<VectorType>(Call.getType()); 4998 break; 4999 case Intrinsic::matrix_columnwise_store: 5000 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5001 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5002 TypeToCheck = cast<VectorType>(Call.getArgOperand(0)->getType()); 5003 break; 5004 default: 5005 llvm_unreachable("unexpected intrinsic"); 5006 } 5007 Assert(TypeToCheck->getNumElements() == 5008 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5009 "result of a matrix operation does not fit in the returned vector"); 5010 break; 5011 } 5012 }; 5013 } 5014 5015 /// Carefully grab the subprogram from a local scope. 5016 /// 5017 /// This carefully grabs the subprogram from a local scope, avoiding the 5018 /// built-in assertions that would typically fire. 5019 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5020 if (!LocalScope) 5021 return nullptr; 5022 5023 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5024 return SP; 5025 5026 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5027 return getSubprogram(LB->getRawScope()); 5028 5029 // Just return null; broken scope chains are checked elsewhere. 5030 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5031 return nullptr; 5032 } 5033 5034 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5035 unsigned NumOperands; 5036 bool HasRoundingMD; 5037 switch (FPI.getIntrinsicID()) { 5038 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5039 case Intrinsic::INTRINSIC: \ 5040 NumOperands = NARG; \ 5041 HasRoundingMD = ROUND_MODE; \ 5042 break; 5043 #include "llvm/IR/ConstrainedOps.def" 5044 default: 5045 llvm_unreachable("Invalid constrained FP intrinsic!"); 5046 } 5047 NumOperands += (1 + HasRoundingMD); 5048 // Compare intrinsics carry an extra predicate metadata operand. 5049 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5050 NumOperands += 1; 5051 Assert((FPI.getNumArgOperands() == NumOperands), 5052 "invalid arguments for constrained FP intrinsic", &FPI); 5053 5054 switch (FPI.getIntrinsicID()) { 5055 case Intrinsic::experimental_constrained_lrint: 5056 case Intrinsic::experimental_constrained_llrint: { 5057 Type *ValTy = FPI.getArgOperand(0)->getType(); 5058 Type *ResultTy = FPI.getType(); 5059 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5060 "Intrinsic does not support vectors", &FPI); 5061 } 5062 break; 5063 5064 case Intrinsic::experimental_constrained_lround: 5065 case Intrinsic::experimental_constrained_llround: { 5066 Type *ValTy = FPI.getArgOperand(0)->getType(); 5067 Type *ResultTy = FPI.getType(); 5068 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5069 "Intrinsic does not support vectors", &FPI); 5070 break; 5071 } 5072 5073 case Intrinsic::experimental_constrained_fcmp: 5074 case Intrinsic::experimental_constrained_fcmps: { 5075 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5076 Assert(CmpInst::isFPPredicate(Pred), 5077 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5078 break; 5079 } 5080 5081 case Intrinsic::experimental_constrained_fptosi: 5082 case Intrinsic::experimental_constrained_fptoui: { 5083 Value *Operand = FPI.getArgOperand(0); 5084 uint64_t NumSrcElem = 0; 5085 Assert(Operand->getType()->isFPOrFPVectorTy(), 5086 "Intrinsic first argument must be floating point", &FPI); 5087 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5088 NumSrcElem = OperandT->getNumElements(); 5089 } 5090 5091 Operand = &FPI; 5092 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5093 "Intrinsic first argument and result disagree on vector use", &FPI); 5094 Assert(Operand->getType()->isIntOrIntVectorTy(), 5095 "Intrinsic result must be an integer", &FPI); 5096 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5097 Assert(NumSrcElem == OperandT->getNumElements(), 5098 "Intrinsic first argument and result vector lengths must be equal", 5099 &FPI); 5100 } 5101 } 5102 break; 5103 5104 case Intrinsic::experimental_constrained_sitofp: 5105 case Intrinsic::experimental_constrained_uitofp: { 5106 Value *Operand = FPI.getArgOperand(0); 5107 uint64_t NumSrcElem = 0; 5108 Assert(Operand->getType()->isIntOrIntVectorTy(), 5109 "Intrinsic first argument must be integer", &FPI); 5110 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5111 NumSrcElem = OperandT->getNumElements(); 5112 } 5113 5114 Operand = &FPI; 5115 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5116 "Intrinsic first argument and result disagree on vector use", &FPI); 5117 Assert(Operand->getType()->isFPOrFPVectorTy(), 5118 "Intrinsic result must be a floating point", &FPI); 5119 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5120 Assert(NumSrcElem == OperandT->getNumElements(), 5121 "Intrinsic first argument and result vector lengths must be equal", 5122 &FPI); 5123 } 5124 } break; 5125 5126 case Intrinsic::experimental_constrained_fptrunc: 5127 case Intrinsic::experimental_constrained_fpext: { 5128 Value *Operand = FPI.getArgOperand(0); 5129 Type *OperandTy = Operand->getType(); 5130 Value *Result = &FPI; 5131 Type *ResultTy = Result->getType(); 5132 Assert(OperandTy->isFPOrFPVectorTy(), 5133 "Intrinsic first argument must be FP or FP vector", &FPI); 5134 Assert(ResultTy->isFPOrFPVectorTy(), 5135 "Intrinsic result must be FP or FP vector", &FPI); 5136 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5137 "Intrinsic first argument and result disagree on vector use", &FPI); 5138 if (OperandTy->isVectorTy()) { 5139 auto *OperandVecTy = cast<VectorType>(OperandTy); 5140 auto *ResultVecTy = cast<VectorType>(ResultTy); 5141 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 5142 "Intrinsic first argument and result vector lengths must be equal", 5143 &FPI); 5144 } 5145 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5146 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5147 "Intrinsic first argument's type must be larger than result type", 5148 &FPI); 5149 } else { 5150 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5151 "Intrinsic first argument's type must be smaller than result type", 5152 &FPI); 5153 } 5154 } 5155 break; 5156 5157 default: 5158 break; 5159 } 5160 5161 // If a non-metadata argument is passed in a metadata slot then the 5162 // error will be caught earlier when the incorrect argument doesn't 5163 // match the specification in the intrinsic call table. Thus, no 5164 // argument type check is needed here. 5165 5166 Assert(FPI.getExceptionBehavior().hasValue(), 5167 "invalid exception behavior argument", &FPI); 5168 if (HasRoundingMD) { 5169 Assert(FPI.getRoundingMode().hasValue(), 5170 "invalid rounding mode argument", &FPI); 5171 } 5172 } 5173 5174 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5175 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5176 AssertDI(isa<ValueAsMetadata>(MD) || 5177 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5178 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5179 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5180 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5181 DII.getRawVariable()); 5182 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5183 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5184 DII.getRawExpression()); 5185 5186 // Ignore broken !dbg attachments; they're checked elsewhere. 5187 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5188 if (!isa<DILocation>(N)) 5189 return; 5190 5191 BasicBlock *BB = DII.getParent(); 5192 Function *F = BB ? BB->getParent() : nullptr; 5193 5194 // The scopes for variables and !dbg attachments must agree. 5195 DILocalVariable *Var = DII.getVariable(); 5196 DILocation *Loc = DII.getDebugLoc(); 5197 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5198 &DII, BB, F); 5199 5200 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5201 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5202 if (!VarSP || !LocSP) 5203 return; // Broken scope chains are checked elsewhere. 5204 5205 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5206 " variable and !dbg attachment", 5207 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5208 Loc->getScope()->getSubprogram()); 5209 5210 // This check is redundant with one in visitLocalVariable(). 5211 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5212 Var->getRawType()); 5213 verifyFnArgs(DII); 5214 } 5215 5216 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5217 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5218 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5219 DLI.getRawLabel()); 5220 5221 // Ignore broken !dbg attachments; they're checked elsewhere. 5222 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5223 if (!isa<DILocation>(N)) 5224 return; 5225 5226 BasicBlock *BB = DLI.getParent(); 5227 Function *F = BB ? BB->getParent() : nullptr; 5228 5229 // The scopes for variables and !dbg attachments must agree. 5230 DILabel *Label = DLI.getLabel(); 5231 DILocation *Loc = DLI.getDebugLoc(); 5232 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5233 &DLI, BB, F); 5234 5235 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5236 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5237 if (!LabelSP || !LocSP) 5238 return; 5239 5240 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5241 " label and !dbg attachment", 5242 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5243 Loc->getScope()->getSubprogram()); 5244 } 5245 5246 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5247 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5248 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5249 5250 // We don't know whether this intrinsic verified correctly. 5251 if (!V || !E || !E->isValid()) 5252 return; 5253 5254 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5255 auto Fragment = E->getFragmentInfo(); 5256 if (!Fragment) 5257 return; 5258 5259 // The frontend helps out GDB by emitting the members of local anonymous 5260 // unions as artificial local variables with shared storage. When SROA splits 5261 // the storage for artificial local variables that are smaller than the entire 5262 // union, the overhang piece will be outside of the allotted space for the 5263 // variable and this check fails. 5264 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5265 if (V->isArtificial()) 5266 return; 5267 5268 verifyFragmentExpression(*V, *Fragment, &I); 5269 } 5270 5271 template <typename ValueOrMetadata> 5272 void Verifier::verifyFragmentExpression(const DIVariable &V, 5273 DIExpression::FragmentInfo Fragment, 5274 ValueOrMetadata *Desc) { 5275 // If there's no size, the type is broken, but that should be checked 5276 // elsewhere. 5277 auto VarSize = V.getSizeInBits(); 5278 if (!VarSize) 5279 return; 5280 5281 unsigned FragSize = Fragment.SizeInBits; 5282 unsigned FragOffset = Fragment.OffsetInBits; 5283 AssertDI(FragSize + FragOffset <= *VarSize, 5284 "fragment is larger than or outside of variable", Desc, &V); 5285 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5286 } 5287 5288 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5289 // This function does not take the scope of noninlined function arguments into 5290 // account. Don't run it if current function is nodebug, because it may 5291 // contain inlined debug intrinsics. 5292 if (!HasDebugInfo) 5293 return; 5294 5295 // For performance reasons only check non-inlined ones. 5296 if (I.getDebugLoc()->getInlinedAt()) 5297 return; 5298 5299 DILocalVariable *Var = I.getVariable(); 5300 AssertDI(Var, "dbg intrinsic without variable"); 5301 5302 unsigned ArgNo = Var->getArg(); 5303 if (!ArgNo) 5304 return; 5305 5306 // Verify there are no duplicate function argument debug info entries. 5307 // These will cause hard-to-debug assertions in the DWARF backend. 5308 if (DebugFnArgs.size() < ArgNo) 5309 DebugFnArgs.resize(ArgNo, nullptr); 5310 5311 auto *Prev = DebugFnArgs[ArgNo - 1]; 5312 DebugFnArgs[ArgNo - 1] = Var; 5313 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5314 Prev, Var); 5315 } 5316 5317 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5318 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5319 5320 // We don't know whether this intrinsic verified correctly. 5321 if (!E || !E->isValid()) 5322 return; 5323 5324 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5325 } 5326 5327 void Verifier::verifyCompileUnits() { 5328 // When more than one Module is imported into the same context, such as during 5329 // an LTO build before linking the modules, ODR type uniquing may cause types 5330 // to point to a different CU. This check does not make sense in this case. 5331 if (M.getContext().isODRUniquingDebugTypes()) 5332 return; 5333 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5334 SmallPtrSet<const Metadata *, 2> Listed; 5335 if (CUs) 5336 Listed.insert(CUs->op_begin(), CUs->op_end()); 5337 for (auto *CU : CUVisited) 5338 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5339 CUVisited.clear(); 5340 } 5341 5342 void Verifier::verifyDeoptimizeCallingConvs() { 5343 if (DeoptimizeDeclarations.empty()) 5344 return; 5345 5346 const Function *First = DeoptimizeDeclarations[0]; 5347 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5348 Assert(First->getCallingConv() == F->getCallingConv(), 5349 "All llvm.experimental.deoptimize declarations must have the same " 5350 "calling convention", 5351 First, F); 5352 } 5353 } 5354 5355 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5356 bool HasSource = F.getSource().hasValue(); 5357 if (!HasSourceDebugInfo.count(&U)) 5358 HasSourceDebugInfo[&U] = HasSource; 5359 AssertDI(HasSource == HasSourceDebugInfo[&U], 5360 "inconsistent use of embedded source"); 5361 } 5362 5363 //===----------------------------------------------------------------------===// 5364 // Implement the public interfaces to this file... 5365 //===----------------------------------------------------------------------===// 5366 5367 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5368 Function &F = const_cast<Function &>(f); 5369 5370 // Don't use a raw_null_ostream. Printing IR is expensive. 5371 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5372 5373 // Note that this function's return value is inverted from what you would 5374 // expect of a function called "verify". 5375 return !V.verify(F); 5376 } 5377 5378 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5379 bool *BrokenDebugInfo) { 5380 // Don't use a raw_null_ostream. Printing IR is expensive. 5381 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5382 5383 bool Broken = false; 5384 for (const Function &F : M) 5385 Broken |= !V.verify(F); 5386 5387 Broken |= !V.verify(); 5388 if (BrokenDebugInfo) 5389 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5390 // Note that this function's return value is inverted from what you would 5391 // expect of a function called "verify". 5392 return Broken; 5393 } 5394 5395 namespace { 5396 5397 struct VerifierLegacyPass : public FunctionPass { 5398 static char ID; 5399 5400 std::unique_ptr<Verifier> V; 5401 bool FatalErrors = true; 5402 5403 VerifierLegacyPass() : FunctionPass(ID) { 5404 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5405 } 5406 explicit VerifierLegacyPass(bool FatalErrors) 5407 : FunctionPass(ID), 5408 FatalErrors(FatalErrors) { 5409 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5410 } 5411 5412 bool doInitialization(Module &M) override { 5413 V = std::make_unique<Verifier>( 5414 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5415 return false; 5416 } 5417 5418 bool runOnFunction(Function &F) override { 5419 if (!V->verify(F) && FatalErrors) { 5420 errs() << "in function " << F.getName() << '\n'; 5421 report_fatal_error("Broken function found, compilation aborted!"); 5422 } 5423 return false; 5424 } 5425 5426 bool doFinalization(Module &M) override { 5427 bool HasErrors = false; 5428 for (Function &F : M) 5429 if (F.isDeclaration()) 5430 HasErrors |= !V->verify(F); 5431 5432 HasErrors |= !V->verify(); 5433 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5434 report_fatal_error("Broken module found, compilation aborted!"); 5435 return false; 5436 } 5437 5438 void getAnalysisUsage(AnalysisUsage &AU) const override { 5439 AU.setPreservesAll(); 5440 } 5441 }; 5442 5443 } // end anonymous namespace 5444 5445 /// Helper to issue failure from the TBAA verification 5446 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5447 if (Diagnostic) 5448 return Diagnostic->CheckFailed(Args...); 5449 } 5450 5451 #define AssertTBAA(C, ...) \ 5452 do { \ 5453 if (!(C)) { \ 5454 CheckFailed(__VA_ARGS__); \ 5455 return false; \ 5456 } \ 5457 } while (false) 5458 5459 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5460 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5461 /// struct-type node describing an aggregate data structure (like a struct). 5462 TBAAVerifier::TBAABaseNodeSummary 5463 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5464 bool IsNewFormat) { 5465 if (BaseNode->getNumOperands() < 2) { 5466 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5467 return {true, ~0u}; 5468 } 5469 5470 auto Itr = TBAABaseNodes.find(BaseNode); 5471 if (Itr != TBAABaseNodes.end()) 5472 return Itr->second; 5473 5474 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5475 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5476 (void)InsertResult; 5477 assert(InsertResult.second && "We just checked!"); 5478 return Result; 5479 } 5480 5481 TBAAVerifier::TBAABaseNodeSummary 5482 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5483 bool IsNewFormat) { 5484 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5485 5486 if (BaseNode->getNumOperands() == 2) { 5487 // Scalar nodes can only be accessed at offset 0. 5488 return isValidScalarTBAANode(BaseNode) 5489 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5490 : InvalidNode; 5491 } 5492 5493 if (IsNewFormat) { 5494 if (BaseNode->getNumOperands() % 3 != 0) { 5495 CheckFailed("Access tag nodes must have the number of operands that is a " 5496 "multiple of 3!", BaseNode); 5497 return InvalidNode; 5498 } 5499 } else { 5500 if (BaseNode->getNumOperands() % 2 != 1) { 5501 CheckFailed("Struct tag nodes must have an odd number of operands!", 5502 BaseNode); 5503 return InvalidNode; 5504 } 5505 } 5506 5507 // Check the type size field. 5508 if (IsNewFormat) { 5509 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5510 BaseNode->getOperand(1)); 5511 if (!TypeSizeNode) { 5512 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5513 return InvalidNode; 5514 } 5515 } 5516 5517 // Check the type name field. In the new format it can be anything. 5518 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5519 CheckFailed("Struct tag nodes have a string as their first operand", 5520 BaseNode); 5521 return InvalidNode; 5522 } 5523 5524 bool Failed = false; 5525 5526 Optional<APInt> PrevOffset; 5527 unsigned BitWidth = ~0u; 5528 5529 // We've already checked that BaseNode is not a degenerate root node with one 5530 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5531 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5532 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5533 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5534 Idx += NumOpsPerField) { 5535 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5536 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5537 if (!isa<MDNode>(FieldTy)) { 5538 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5539 Failed = true; 5540 continue; 5541 } 5542 5543 auto *OffsetEntryCI = 5544 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5545 if (!OffsetEntryCI) { 5546 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5547 Failed = true; 5548 continue; 5549 } 5550 5551 if (BitWidth == ~0u) 5552 BitWidth = OffsetEntryCI->getBitWidth(); 5553 5554 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5555 CheckFailed( 5556 "Bitwidth between the offsets and struct type entries must match", &I, 5557 BaseNode); 5558 Failed = true; 5559 continue; 5560 } 5561 5562 // NB! As far as I can tell, we generate a non-strictly increasing offset 5563 // sequence only from structs that have zero size bit fields. When 5564 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5565 // pick the field lexically the latest in struct type metadata node. This 5566 // mirrors the actual behavior of the alias analysis implementation. 5567 bool IsAscending = 5568 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5569 5570 if (!IsAscending) { 5571 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5572 Failed = true; 5573 } 5574 5575 PrevOffset = OffsetEntryCI->getValue(); 5576 5577 if (IsNewFormat) { 5578 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5579 BaseNode->getOperand(Idx + 2)); 5580 if (!MemberSizeNode) { 5581 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5582 Failed = true; 5583 continue; 5584 } 5585 } 5586 } 5587 5588 return Failed ? InvalidNode 5589 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5590 } 5591 5592 static bool IsRootTBAANode(const MDNode *MD) { 5593 return MD->getNumOperands() < 2; 5594 } 5595 5596 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5597 SmallPtrSetImpl<const MDNode *> &Visited) { 5598 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5599 return false; 5600 5601 if (!isa<MDString>(MD->getOperand(0))) 5602 return false; 5603 5604 if (MD->getNumOperands() == 3) { 5605 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5606 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5607 return false; 5608 } 5609 5610 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5611 return Parent && Visited.insert(Parent).second && 5612 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5613 } 5614 5615 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5616 auto ResultIt = TBAAScalarNodes.find(MD); 5617 if (ResultIt != TBAAScalarNodes.end()) 5618 return ResultIt->second; 5619 5620 SmallPtrSet<const MDNode *, 4> Visited; 5621 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5622 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5623 (void)InsertResult; 5624 assert(InsertResult.second && "Just checked!"); 5625 5626 return Result; 5627 } 5628 5629 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5630 /// Offset in place to be the offset within the field node returned. 5631 /// 5632 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5633 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5634 const MDNode *BaseNode, 5635 APInt &Offset, 5636 bool IsNewFormat) { 5637 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5638 5639 // Scalar nodes have only one possible "field" -- their parent in the access 5640 // hierarchy. Offset must be zero at this point, but our caller is supposed 5641 // to Assert that. 5642 if (BaseNode->getNumOperands() == 2) 5643 return cast<MDNode>(BaseNode->getOperand(1)); 5644 5645 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5646 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5647 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5648 Idx += NumOpsPerField) { 5649 auto *OffsetEntryCI = 5650 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5651 if (OffsetEntryCI->getValue().ugt(Offset)) { 5652 if (Idx == FirstFieldOpNo) { 5653 CheckFailed("Could not find TBAA parent in struct type node", &I, 5654 BaseNode, &Offset); 5655 return nullptr; 5656 } 5657 5658 unsigned PrevIdx = Idx - NumOpsPerField; 5659 auto *PrevOffsetEntryCI = 5660 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5661 Offset -= PrevOffsetEntryCI->getValue(); 5662 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5663 } 5664 } 5665 5666 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5667 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5668 BaseNode->getOperand(LastIdx + 1)); 5669 Offset -= LastOffsetEntryCI->getValue(); 5670 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5671 } 5672 5673 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5674 if (!Type || Type->getNumOperands() < 3) 5675 return false; 5676 5677 // In the new format type nodes shall have a reference to the parent type as 5678 // its first operand. 5679 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5680 if (!Parent) 5681 return false; 5682 5683 return true; 5684 } 5685 5686 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5687 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5688 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5689 isa<AtomicCmpXchgInst>(I), 5690 "This instruction shall not have a TBAA access tag!", &I); 5691 5692 bool IsStructPathTBAA = 5693 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5694 5695 AssertTBAA( 5696 IsStructPathTBAA, 5697 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5698 5699 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5700 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5701 5702 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5703 5704 if (IsNewFormat) { 5705 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5706 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5707 } else { 5708 AssertTBAA(MD->getNumOperands() < 5, 5709 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5710 } 5711 5712 // Check the access size field. 5713 if (IsNewFormat) { 5714 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5715 MD->getOperand(3)); 5716 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5717 } 5718 5719 // Check the immutability flag. 5720 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5721 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5722 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5723 MD->getOperand(ImmutabilityFlagOpNo)); 5724 AssertTBAA(IsImmutableCI, 5725 "Immutability tag on struct tag metadata must be a constant", 5726 &I, MD); 5727 AssertTBAA( 5728 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5729 "Immutability part of the struct tag metadata must be either 0 or 1", 5730 &I, MD); 5731 } 5732 5733 AssertTBAA(BaseNode && AccessType, 5734 "Malformed struct tag metadata: base and access-type " 5735 "should be non-null and point to Metadata nodes", 5736 &I, MD, BaseNode, AccessType); 5737 5738 if (!IsNewFormat) { 5739 AssertTBAA(isValidScalarTBAANode(AccessType), 5740 "Access type node must be a valid scalar type", &I, MD, 5741 AccessType); 5742 } 5743 5744 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5745 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5746 5747 APInt Offset = OffsetCI->getValue(); 5748 bool SeenAccessTypeInPath = false; 5749 5750 SmallPtrSet<MDNode *, 4> StructPath; 5751 5752 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5753 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5754 IsNewFormat)) { 5755 if (!StructPath.insert(BaseNode).second) { 5756 CheckFailed("Cycle detected in struct path", &I, MD); 5757 return false; 5758 } 5759 5760 bool Invalid; 5761 unsigned BaseNodeBitWidth; 5762 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5763 IsNewFormat); 5764 5765 // If the base node is invalid in itself, then we've already printed all the 5766 // errors we wanted to print. 5767 if (Invalid) 5768 return false; 5769 5770 SeenAccessTypeInPath |= BaseNode == AccessType; 5771 5772 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5773 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5774 &I, MD, &Offset); 5775 5776 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5777 (BaseNodeBitWidth == 0 && Offset == 0) || 5778 (IsNewFormat && BaseNodeBitWidth == ~0u), 5779 "Access bit-width not the same as description bit-width", &I, MD, 5780 BaseNodeBitWidth, Offset.getBitWidth()); 5781 5782 if (IsNewFormat && SeenAccessTypeInPath) 5783 break; 5784 } 5785 5786 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5787 &I, MD); 5788 return true; 5789 } 5790 5791 char VerifierLegacyPass::ID = 0; 5792 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5793 5794 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5795 return new VerifierLegacyPass(FatalErrors); 5796 } 5797 5798 AnalysisKey VerifierAnalysis::Key; 5799 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5800 ModuleAnalysisManager &) { 5801 Result Res; 5802 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5803 return Res; 5804 } 5805 5806 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5807 FunctionAnalysisManager &) { 5808 return { llvm::verifyFunction(F, &dbgs()), false }; 5809 } 5810 5811 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5812 auto Res = AM.getResult<VerifierAnalysis>(M); 5813 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5814 report_fatal_error("Broken module found, compilation aborted!"); 5815 5816 return PreservedAnalyses::all(); 5817 } 5818 5819 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5820 auto res = AM.getResult<VerifierAnalysis>(F); 5821 if (res.IRBroken && FatalErrors) 5822 report_fatal_error("Broken function found, compilation aborted!"); 5823 5824 return PreservedAnalyses::all(); 5825 } 5826