1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 /// Whether a metadata node is allowed to be, or contain, a DILocation. 401 enum class AreDebugLocsAllowed { No, Yes }; 402 403 // Verification methods... 404 void visitGlobalValue(const GlobalValue &GV); 405 void visitGlobalVariable(const GlobalVariable &GV); 406 void visitGlobalAlias(const GlobalAlias &GA); 407 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 408 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 409 const GlobalAlias &A, const Constant &C); 410 void visitNamedMDNode(const NamedMDNode &NMD); 411 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 412 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 413 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 414 void visitComdat(const Comdat &C); 415 void visitModuleIdents(const Module &M); 416 void visitModuleCommandLines(const Module &M); 417 void visitModuleFlags(const Module &M); 418 void visitModuleFlag(const MDNode *Op, 419 DenseMap<const MDString *, const MDNode *> &SeenIDs, 420 SmallVectorImpl<const MDNode *> &Requirements); 421 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 422 void visitFunction(const Function &F); 423 void visitBasicBlock(BasicBlock &BB); 424 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 425 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 426 void visitProfMetadata(Instruction &I, MDNode *MD); 427 428 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 429 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 430 #include "llvm/IR/Metadata.def" 431 void visitDIScope(const DIScope &N); 432 void visitDIVariable(const DIVariable &N); 433 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 434 void visitDITemplateParameter(const DITemplateParameter &N); 435 436 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 437 438 // InstVisitor overrides... 439 using InstVisitor<Verifier>::visit; 440 void visit(Instruction &I); 441 442 void visitTruncInst(TruncInst &I); 443 void visitZExtInst(ZExtInst &I); 444 void visitSExtInst(SExtInst &I); 445 void visitFPTruncInst(FPTruncInst &I); 446 void visitFPExtInst(FPExtInst &I); 447 void visitFPToUIInst(FPToUIInst &I); 448 void visitFPToSIInst(FPToSIInst &I); 449 void visitUIToFPInst(UIToFPInst &I); 450 void visitSIToFPInst(SIToFPInst &I); 451 void visitIntToPtrInst(IntToPtrInst &I); 452 void visitPtrToIntInst(PtrToIntInst &I); 453 void visitBitCastInst(BitCastInst &I); 454 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 455 void visitPHINode(PHINode &PN); 456 void visitCallBase(CallBase &Call); 457 void visitUnaryOperator(UnaryOperator &U); 458 void visitBinaryOperator(BinaryOperator &B); 459 void visitICmpInst(ICmpInst &IC); 460 void visitFCmpInst(FCmpInst &FC); 461 void visitExtractElementInst(ExtractElementInst &EI); 462 void visitInsertElementInst(InsertElementInst &EI); 463 void visitShuffleVectorInst(ShuffleVectorInst &EI); 464 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 465 void visitCallInst(CallInst &CI); 466 void visitInvokeInst(InvokeInst &II); 467 void visitGetElementPtrInst(GetElementPtrInst &GEP); 468 void visitLoadInst(LoadInst &LI); 469 void visitStoreInst(StoreInst &SI); 470 void verifyDominatesUse(Instruction &I, unsigned i); 471 void visitInstruction(Instruction &I); 472 void visitTerminator(Instruction &I); 473 void visitBranchInst(BranchInst &BI); 474 void visitReturnInst(ReturnInst &RI); 475 void visitSwitchInst(SwitchInst &SI); 476 void visitIndirectBrInst(IndirectBrInst &BI); 477 void visitCallBrInst(CallBrInst &CBI); 478 void visitSelectInst(SelectInst &SI); 479 void visitUserOp1(Instruction &I); 480 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 481 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 482 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 483 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 484 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 485 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 486 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 487 void visitFenceInst(FenceInst &FI); 488 void visitAllocaInst(AllocaInst &AI); 489 void visitExtractValueInst(ExtractValueInst &EVI); 490 void visitInsertValueInst(InsertValueInst &IVI); 491 void visitEHPadPredecessors(Instruction &I); 492 void visitLandingPadInst(LandingPadInst &LPI); 493 void visitResumeInst(ResumeInst &RI); 494 void visitCatchPadInst(CatchPadInst &CPI); 495 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 496 void visitCleanupPadInst(CleanupPadInst &CPI); 497 void visitFuncletPadInst(FuncletPadInst &FPI); 498 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 499 void visitCleanupReturnInst(CleanupReturnInst &CRI); 500 501 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 502 void verifySwiftErrorValue(const Value *SwiftErrorVal); 503 void verifyMustTailCall(CallInst &CI); 504 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 505 unsigned ArgNo, std::string &Suffix); 506 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 507 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 508 const Value *V); 509 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 510 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 511 const Value *V, bool IsIntrinsic); 512 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 513 514 void visitConstantExprsRecursively(const Constant *EntryC); 515 void visitConstantExpr(const ConstantExpr *CE); 516 void verifyStatepoint(const CallBase &Call); 517 void verifyFrameRecoverIndices(); 518 void verifySiblingFuncletUnwinds(); 519 520 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 521 template <typename ValueOrMetadata> 522 void verifyFragmentExpression(const DIVariable &V, 523 DIExpression::FragmentInfo Fragment, 524 ValueOrMetadata *Desc); 525 void verifyFnArgs(const DbgVariableIntrinsic &I); 526 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 527 528 /// Module-level debug info verification... 529 void verifyCompileUnits(); 530 531 /// Module-level verification that all @llvm.experimental.deoptimize 532 /// declarations share the same calling convention. 533 void verifyDeoptimizeCallingConvs(); 534 535 /// Verify all-or-nothing property of DIFile source attribute within a CU. 536 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 537 }; 538 539 } // end anonymous namespace 540 541 /// We know that cond should be true, if not print an error message. 542 #define Assert(C, ...) \ 543 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 544 545 /// We know that a debug info condition should be true, if not print 546 /// an error message. 547 #define AssertDI(C, ...) \ 548 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 549 550 void Verifier::visit(Instruction &I) { 551 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 552 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 553 InstVisitor<Verifier>::visit(I); 554 } 555 556 // Helper to recursively iterate over indirect users. By 557 // returning false, the callback can ask to stop recursing 558 // further. 559 static void forEachUser(const Value *User, 560 SmallPtrSet<const Value *, 32> &Visited, 561 llvm::function_ref<bool(const Value *)> Callback) { 562 if (!Visited.insert(User).second) 563 return; 564 for (const Value *TheNextUser : User->materialized_users()) 565 if (Callback(TheNextUser)) 566 forEachUser(TheNextUser, Visited, Callback); 567 } 568 569 void Verifier::visitGlobalValue(const GlobalValue &GV) { 570 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 571 "Global is external, but doesn't have external or weak linkage!", &GV); 572 573 Assert(GV.getAlignment() <= Value::MaximumAlignment, 574 "huge alignment values are unsupported", &GV); 575 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 576 "Only global variables can have appending linkage!", &GV); 577 578 if (GV.hasAppendingLinkage()) { 579 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 580 Assert(GVar && GVar->getValueType()->isArrayTy(), 581 "Only global arrays can have appending linkage!", GVar); 582 } 583 584 if (GV.isDeclarationForLinker()) 585 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 586 587 if (GV.hasDLLImportStorageClass()) { 588 Assert(!GV.isDSOLocal(), 589 "GlobalValue with DLLImport Storage is dso_local!", &GV); 590 591 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 592 GV.hasAvailableExternallyLinkage(), 593 "Global is marked as dllimport, but not external", &GV); 594 } 595 596 if (GV.isImplicitDSOLocal()) 597 Assert(GV.isDSOLocal(), 598 "GlobalValue with local linkage or non-default " 599 "visibility must be dso_local!", 600 &GV); 601 602 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 603 if (const Instruction *I = dyn_cast<Instruction>(V)) { 604 if (!I->getParent() || !I->getParent()->getParent()) 605 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 606 I); 607 else if (I->getParent()->getParent()->getParent() != &M) 608 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 609 I->getParent()->getParent(), 610 I->getParent()->getParent()->getParent()); 611 return false; 612 } else if (const Function *F = dyn_cast<Function>(V)) { 613 if (F->getParent() != &M) 614 CheckFailed("Global is used by function in a different module", &GV, &M, 615 F, F->getParent()); 616 return false; 617 } 618 return true; 619 }); 620 } 621 622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 623 if (GV.hasInitializer()) { 624 Assert(GV.getInitializer()->getType() == GV.getValueType(), 625 "Global variable initializer type does not match global " 626 "variable type!", 627 &GV); 628 // If the global has common linkage, it must have a zero initializer and 629 // cannot be constant. 630 if (GV.hasCommonLinkage()) { 631 Assert(GV.getInitializer()->isNullValue(), 632 "'common' global must have a zero initializer!", &GV); 633 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 634 &GV); 635 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 636 } 637 } 638 639 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 640 GV.getName() == "llvm.global_dtors")) { 641 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 642 "invalid linkage for intrinsic global variable", &GV); 643 // Don't worry about emitting an error for it not being an array, 644 // visitGlobalValue will complain on appending non-array. 645 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 646 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 647 PointerType *FuncPtrTy = 648 FunctionType::get(Type::getVoidTy(Context), false)-> 649 getPointerTo(DL.getProgramAddressSpace()); 650 Assert(STy && 651 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 652 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 653 STy->getTypeAtIndex(1) == FuncPtrTy, 654 "wrong type for intrinsic global variable", &GV); 655 Assert(STy->getNumElements() == 3, 656 "the third field of the element type is mandatory, " 657 "specify i8* null to migrate from the obsoleted 2-field form"); 658 Type *ETy = STy->getTypeAtIndex(2); 659 Assert(ETy->isPointerTy() && 660 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 661 "wrong type for intrinsic global variable", &GV); 662 } 663 } 664 665 if (GV.hasName() && (GV.getName() == "llvm.used" || 666 GV.getName() == "llvm.compiler.used")) { 667 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 668 "invalid linkage for intrinsic global variable", &GV); 669 Type *GVType = GV.getValueType(); 670 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 671 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 672 Assert(PTy, "wrong type for intrinsic global variable", &GV); 673 if (GV.hasInitializer()) { 674 const Constant *Init = GV.getInitializer(); 675 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 676 Assert(InitArray, "wrong initalizer for intrinsic global variable", 677 Init); 678 for (Value *Op : InitArray->operands()) { 679 Value *V = Op->stripPointerCasts(); 680 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 681 isa<GlobalAlias>(V), 682 "invalid llvm.used member", V); 683 Assert(V->hasName(), "members of llvm.used must be named", V); 684 } 685 } 686 } 687 } 688 689 // Visit any debug info attachments. 690 SmallVector<MDNode *, 1> MDs; 691 GV.getMetadata(LLVMContext::MD_dbg, MDs); 692 for (auto *MD : MDs) { 693 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 694 visitDIGlobalVariableExpression(*GVE); 695 else 696 AssertDI(false, "!dbg attachment of global variable must be a " 697 "DIGlobalVariableExpression"); 698 } 699 700 // Scalable vectors cannot be global variables, since we don't know 701 // the runtime size. If the global is a struct or an array containing 702 // scalable vectors, that will be caught by the isValidElementType methods 703 // in StructType or ArrayType instead. 704 Assert(!isa<ScalableVectorType>(GV.getValueType()), 705 "Globals cannot contain scalable vectors", &GV); 706 707 if (!GV.hasInitializer()) { 708 visitGlobalValue(GV); 709 return; 710 } 711 712 // Walk any aggregate initializers looking for bitcasts between address spaces 713 visitConstantExprsRecursively(GV.getInitializer()); 714 715 visitGlobalValue(GV); 716 } 717 718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 719 SmallPtrSet<const GlobalAlias*, 4> Visited; 720 Visited.insert(&GA); 721 visitAliaseeSubExpr(Visited, GA, C); 722 } 723 724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 725 const GlobalAlias &GA, const Constant &C) { 726 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 727 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 728 &GA); 729 730 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 731 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 732 733 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 734 &GA); 735 } else { 736 // Only continue verifying subexpressions of GlobalAliases. 737 // Do not recurse into global initializers. 738 return; 739 } 740 } 741 742 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 743 visitConstantExprsRecursively(CE); 744 745 for (const Use &U : C.operands()) { 746 Value *V = &*U; 747 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 748 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 749 else if (const auto *C2 = dyn_cast<Constant>(V)) 750 visitAliaseeSubExpr(Visited, GA, *C2); 751 } 752 } 753 754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 755 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 756 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 757 "weak_odr, or external linkage!", 758 &GA); 759 const Constant *Aliasee = GA.getAliasee(); 760 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 761 Assert(GA.getType() == Aliasee->getType(), 762 "Alias and aliasee types should match!", &GA); 763 764 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 765 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 766 767 visitAliaseeSubExpr(GA, *Aliasee); 768 769 visitGlobalValue(GA); 770 } 771 772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 773 // There used to be various other llvm.dbg.* nodes, but we don't support 774 // upgrading them and we want to reserve the namespace for future uses. 775 if (NMD.getName().startswith("llvm.dbg.")) 776 AssertDI(NMD.getName() == "llvm.dbg.cu", 777 "unrecognized named metadata node in the llvm.dbg namespace", 778 &NMD); 779 for (const MDNode *MD : NMD.operands()) { 780 if (NMD.getName() == "llvm.dbg.cu") 781 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 782 783 if (!MD) 784 continue; 785 786 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 787 } 788 } 789 790 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 791 // Only visit each node once. Metadata can be mutually recursive, so this 792 // avoids infinite recursion here, as well as being an optimization. 793 if (!MDNodes.insert(&MD).second) 794 return; 795 796 switch (MD.getMetadataID()) { 797 default: 798 llvm_unreachable("Invalid MDNode subclass"); 799 case Metadata::MDTupleKind: 800 break; 801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 802 case Metadata::CLASS##Kind: \ 803 visit##CLASS(cast<CLASS>(MD)); \ 804 break; 805 #include "llvm/IR/Metadata.def" 806 } 807 808 for (const Metadata *Op : MD.operands()) { 809 if (!Op) 810 continue; 811 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 812 &MD, Op); 813 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 814 "DILocation not allowed within this metadata node", &MD, Op); 815 if (auto *N = dyn_cast<MDNode>(Op)) { 816 visitMDNode(*N, AllowLocs); 817 continue; 818 } 819 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 820 visitValueAsMetadata(*V, nullptr); 821 continue; 822 } 823 } 824 825 // Check these last, so we diagnose problems in operands first. 826 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 827 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 828 } 829 830 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 831 Assert(MD.getValue(), "Expected valid value", &MD); 832 Assert(!MD.getValue()->getType()->isMetadataTy(), 833 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 834 835 auto *L = dyn_cast<LocalAsMetadata>(&MD); 836 if (!L) 837 return; 838 839 Assert(F, "function-local metadata used outside a function", L); 840 841 // If this was an instruction, bb, or argument, verify that it is in the 842 // function that we expect. 843 Function *ActualF = nullptr; 844 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 845 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 846 ActualF = I->getParent()->getParent(); 847 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 848 ActualF = BB->getParent(); 849 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 850 ActualF = A->getParent(); 851 assert(ActualF && "Unimplemented function local metadata case!"); 852 853 Assert(ActualF == F, "function-local metadata used in wrong function", L); 854 } 855 856 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 857 Metadata *MD = MDV.getMetadata(); 858 if (auto *N = dyn_cast<MDNode>(MD)) { 859 visitMDNode(*N, AreDebugLocsAllowed::No); 860 return; 861 } 862 863 // Only visit each node once. Metadata can be mutually recursive, so this 864 // avoids infinite recursion here, as well as being an optimization. 865 if (!MDNodes.insert(MD).second) 866 return; 867 868 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 869 visitValueAsMetadata(*V, F); 870 } 871 872 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 873 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 874 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 875 876 void Verifier::visitDILocation(const DILocation &N) { 877 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 878 "location requires a valid scope", &N, N.getRawScope()); 879 if (auto *IA = N.getRawInlinedAt()) 880 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 881 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 882 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 883 } 884 885 void Verifier::visitGenericDINode(const GenericDINode &N) { 886 AssertDI(N.getTag(), "invalid tag", &N); 887 } 888 889 void Verifier::visitDIScope(const DIScope &N) { 890 if (auto *F = N.getRawFile()) 891 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 892 } 893 894 void Verifier::visitDISubrange(const DISubrange &N) { 895 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 896 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 897 "Subrange must contain count or upperBound", &N); 898 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 899 "Subrange can have any one of count or upperBound", &N); 900 AssertDI(!N.getRawCountNode() || N.getCount(), 901 "Count must either be a signed constant or a DIVariable", &N); 902 auto Count = N.getCount(); 903 AssertDI(!Count || !Count.is<ConstantInt *>() || 904 Count.get<ConstantInt *>()->getSExtValue() >= -1, 905 "invalid subrange count", &N); 906 auto *LBound = N.getRawLowerBound(); 907 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 908 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 909 "LowerBound must be signed constant or DIVariable or DIExpression", 910 &N); 911 auto *UBound = N.getRawUpperBound(); 912 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 913 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 914 "UpperBound must be signed constant or DIVariable or DIExpression", 915 &N); 916 auto *Stride = N.getRawStride(); 917 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 918 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 919 "Stride must be signed constant or DIVariable or DIExpression", &N); 920 } 921 922 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 923 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 924 } 925 926 void Verifier::visitDIBasicType(const DIBasicType &N) { 927 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 928 N.getTag() == dwarf::DW_TAG_unspecified_type, 929 "invalid tag", &N); 930 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 931 "has conflicting flags", &N); 932 } 933 934 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 935 // Common scope checks. 936 visitDIScope(N); 937 938 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 939 N.getTag() == dwarf::DW_TAG_pointer_type || 940 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 941 N.getTag() == dwarf::DW_TAG_reference_type || 942 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 943 N.getTag() == dwarf::DW_TAG_const_type || 944 N.getTag() == dwarf::DW_TAG_volatile_type || 945 N.getTag() == dwarf::DW_TAG_restrict_type || 946 N.getTag() == dwarf::DW_TAG_atomic_type || 947 N.getTag() == dwarf::DW_TAG_member || 948 N.getTag() == dwarf::DW_TAG_inheritance || 949 N.getTag() == dwarf::DW_TAG_friend, 950 "invalid tag", &N); 951 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 952 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 953 N.getRawExtraData()); 954 } 955 956 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 957 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 958 N.getRawBaseType()); 959 960 if (N.getDWARFAddressSpace()) { 961 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 962 N.getTag() == dwarf::DW_TAG_reference_type || 963 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 964 "DWARF address space only applies to pointer or reference types", 965 &N); 966 } 967 } 968 969 /// Detect mutually exclusive flags. 970 static bool hasConflictingReferenceFlags(unsigned Flags) { 971 return ((Flags & DINode::FlagLValueReference) && 972 (Flags & DINode::FlagRValueReference)) || 973 ((Flags & DINode::FlagTypePassByValue) && 974 (Flags & DINode::FlagTypePassByReference)); 975 } 976 977 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 978 auto *Params = dyn_cast<MDTuple>(&RawParams); 979 AssertDI(Params, "invalid template params", &N, &RawParams); 980 for (Metadata *Op : Params->operands()) { 981 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 982 &N, Params, Op); 983 } 984 } 985 986 void Verifier::visitDICompositeType(const DICompositeType &N) { 987 // Common scope checks. 988 visitDIScope(N); 989 990 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 991 N.getTag() == dwarf::DW_TAG_structure_type || 992 N.getTag() == dwarf::DW_TAG_union_type || 993 N.getTag() == dwarf::DW_TAG_enumeration_type || 994 N.getTag() == dwarf::DW_TAG_class_type || 995 N.getTag() == dwarf::DW_TAG_variant_part, 996 "invalid tag", &N); 997 998 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 999 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1000 N.getRawBaseType()); 1001 1002 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1003 "invalid composite elements", &N, N.getRawElements()); 1004 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1005 N.getRawVTableHolder()); 1006 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1007 "invalid reference flags", &N); 1008 unsigned DIBlockByRefStruct = 1 << 4; 1009 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1010 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1011 1012 if (N.isVector()) { 1013 const DINodeArray Elements = N.getElements(); 1014 AssertDI(Elements.size() == 1 && 1015 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1016 "invalid vector, expected one element of type subrange", &N); 1017 } 1018 1019 if (auto *Params = N.getRawTemplateParams()) 1020 visitTemplateParams(N, *Params); 1021 1022 if (N.getTag() == dwarf::DW_TAG_class_type || 1023 N.getTag() == dwarf::DW_TAG_union_type) { 1024 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1025 "class/union requires a filename", &N, N.getFile()); 1026 } 1027 1028 if (auto *D = N.getRawDiscriminator()) { 1029 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1030 "discriminator can only appear on variant part"); 1031 } 1032 1033 if (N.getRawDataLocation()) { 1034 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1035 "dataLocation can only appear in array type"); 1036 } 1037 } 1038 1039 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1040 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1041 if (auto *Types = N.getRawTypeArray()) { 1042 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1043 for (Metadata *Ty : N.getTypeArray()->operands()) { 1044 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1045 } 1046 } 1047 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1048 "invalid reference flags", &N); 1049 } 1050 1051 void Verifier::visitDIFile(const DIFile &N) { 1052 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1053 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1054 if (Checksum) { 1055 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1056 "invalid checksum kind", &N); 1057 size_t Size; 1058 switch (Checksum->Kind) { 1059 case DIFile::CSK_MD5: 1060 Size = 32; 1061 break; 1062 case DIFile::CSK_SHA1: 1063 Size = 40; 1064 break; 1065 case DIFile::CSK_SHA256: 1066 Size = 64; 1067 break; 1068 } 1069 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1070 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1071 "invalid checksum", &N); 1072 } 1073 } 1074 1075 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1076 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1077 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1078 1079 // Don't bother verifying the compilation directory or producer string 1080 // as those could be empty. 1081 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1082 N.getRawFile()); 1083 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1084 N.getFile()); 1085 1086 verifySourceDebugInfo(N, *N.getFile()); 1087 1088 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1089 "invalid emission kind", &N); 1090 1091 if (auto *Array = N.getRawEnumTypes()) { 1092 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1093 for (Metadata *Op : N.getEnumTypes()->operands()) { 1094 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1095 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1096 "invalid enum type", &N, N.getEnumTypes(), Op); 1097 } 1098 } 1099 if (auto *Array = N.getRawRetainedTypes()) { 1100 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1101 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1102 AssertDI(Op && (isa<DIType>(Op) || 1103 (isa<DISubprogram>(Op) && 1104 !cast<DISubprogram>(Op)->isDefinition())), 1105 "invalid retained type", &N, Op); 1106 } 1107 } 1108 if (auto *Array = N.getRawGlobalVariables()) { 1109 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1110 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1111 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1112 "invalid global variable ref", &N, Op); 1113 } 1114 } 1115 if (auto *Array = N.getRawImportedEntities()) { 1116 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1117 for (Metadata *Op : N.getImportedEntities()->operands()) { 1118 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1119 &N, Op); 1120 } 1121 } 1122 if (auto *Array = N.getRawMacros()) { 1123 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1124 for (Metadata *Op : N.getMacros()->operands()) { 1125 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1126 } 1127 } 1128 CUVisited.insert(&N); 1129 } 1130 1131 void Verifier::visitDISubprogram(const DISubprogram &N) { 1132 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1133 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1134 if (auto *F = N.getRawFile()) 1135 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1136 else 1137 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1138 if (auto *T = N.getRawType()) 1139 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1140 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1141 N.getRawContainingType()); 1142 if (auto *Params = N.getRawTemplateParams()) 1143 visitTemplateParams(N, *Params); 1144 if (auto *S = N.getRawDeclaration()) 1145 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1146 "invalid subprogram declaration", &N, S); 1147 if (auto *RawNode = N.getRawRetainedNodes()) { 1148 auto *Node = dyn_cast<MDTuple>(RawNode); 1149 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1150 for (Metadata *Op : Node->operands()) { 1151 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1152 "invalid retained nodes, expected DILocalVariable or DILabel", 1153 &N, Node, Op); 1154 } 1155 } 1156 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1157 "invalid reference flags", &N); 1158 1159 auto *Unit = N.getRawUnit(); 1160 if (N.isDefinition()) { 1161 // Subprogram definitions (not part of the type hierarchy). 1162 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1163 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1164 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1165 if (N.getFile()) 1166 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1167 } else { 1168 // Subprogram declarations (part of the type hierarchy). 1169 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1170 } 1171 1172 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1173 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1174 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1175 for (Metadata *Op : ThrownTypes->operands()) 1176 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1177 Op); 1178 } 1179 1180 if (N.areAllCallsDescribed()) 1181 AssertDI(N.isDefinition(), 1182 "DIFlagAllCallsDescribed must be attached to a definition"); 1183 } 1184 1185 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1186 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1187 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1188 "invalid local scope", &N, N.getRawScope()); 1189 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1190 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1191 } 1192 1193 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1194 visitDILexicalBlockBase(N); 1195 1196 AssertDI(N.getLine() || !N.getColumn(), 1197 "cannot have column info without line info", &N); 1198 } 1199 1200 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1201 visitDILexicalBlockBase(N); 1202 } 1203 1204 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1205 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1206 if (auto *S = N.getRawScope()) 1207 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1208 if (auto *S = N.getRawDecl()) 1209 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1210 } 1211 1212 void Verifier::visitDINamespace(const DINamespace &N) { 1213 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1214 if (auto *S = N.getRawScope()) 1215 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1216 } 1217 1218 void Verifier::visitDIMacro(const DIMacro &N) { 1219 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1220 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1221 "invalid macinfo type", &N); 1222 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1223 if (!N.getValue().empty()) { 1224 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1225 } 1226 } 1227 1228 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1229 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1230 "invalid macinfo type", &N); 1231 if (auto *F = N.getRawFile()) 1232 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1233 1234 if (auto *Array = N.getRawElements()) { 1235 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1236 for (Metadata *Op : N.getElements()->operands()) { 1237 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1238 } 1239 } 1240 } 1241 1242 void Verifier::visitDIModule(const DIModule &N) { 1243 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1244 AssertDI(!N.getName().empty(), "anonymous module", &N); 1245 } 1246 1247 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1248 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1249 } 1250 1251 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1252 visitDITemplateParameter(N); 1253 1254 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1255 &N); 1256 } 1257 1258 void Verifier::visitDITemplateValueParameter( 1259 const DITemplateValueParameter &N) { 1260 visitDITemplateParameter(N); 1261 1262 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1263 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1264 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1265 "invalid tag", &N); 1266 } 1267 1268 void Verifier::visitDIVariable(const DIVariable &N) { 1269 if (auto *S = N.getRawScope()) 1270 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1271 if (auto *F = N.getRawFile()) 1272 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1273 } 1274 1275 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1276 // Checks common to all variables. 1277 visitDIVariable(N); 1278 1279 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1280 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1281 // Assert only if the global variable is not an extern 1282 if (N.isDefinition()) 1283 AssertDI(N.getType(), "missing global variable type", &N); 1284 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1285 AssertDI(isa<DIDerivedType>(Member), 1286 "invalid static data member declaration", &N, Member); 1287 } 1288 } 1289 1290 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1291 // Checks common to all variables. 1292 visitDIVariable(N); 1293 1294 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1295 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1296 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1297 "local variable requires a valid scope", &N, N.getRawScope()); 1298 if (auto Ty = N.getType()) 1299 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1300 } 1301 1302 void Verifier::visitDILabel(const DILabel &N) { 1303 if (auto *S = N.getRawScope()) 1304 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1305 if (auto *F = N.getRawFile()) 1306 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1307 1308 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1309 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1310 "label requires a valid scope", &N, N.getRawScope()); 1311 } 1312 1313 void Verifier::visitDIExpression(const DIExpression &N) { 1314 AssertDI(N.isValid(), "invalid expression", &N); 1315 } 1316 1317 void Verifier::visitDIGlobalVariableExpression( 1318 const DIGlobalVariableExpression &GVE) { 1319 AssertDI(GVE.getVariable(), "missing variable"); 1320 if (auto *Var = GVE.getVariable()) 1321 visitDIGlobalVariable(*Var); 1322 if (auto *Expr = GVE.getExpression()) { 1323 visitDIExpression(*Expr); 1324 if (auto Fragment = Expr->getFragmentInfo()) 1325 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1326 } 1327 } 1328 1329 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1330 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1331 if (auto *T = N.getRawType()) 1332 AssertDI(isType(T), "invalid type ref", &N, T); 1333 if (auto *F = N.getRawFile()) 1334 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1335 } 1336 1337 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1338 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1339 N.getTag() == dwarf::DW_TAG_imported_declaration, 1340 "invalid tag", &N); 1341 if (auto *S = N.getRawScope()) 1342 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1343 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1344 N.getRawEntity()); 1345 } 1346 1347 void Verifier::visitComdat(const Comdat &C) { 1348 // In COFF the Module is invalid if the GlobalValue has private linkage. 1349 // Entities with private linkage don't have entries in the symbol table. 1350 if (TT.isOSBinFormatCOFF()) 1351 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1352 Assert(!GV->hasPrivateLinkage(), 1353 "comdat global value has private linkage", GV); 1354 } 1355 1356 void Verifier::visitModuleIdents(const Module &M) { 1357 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1358 if (!Idents) 1359 return; 1360 1361 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1362 // Scan each llvm.ident entry and make sure that this requirement is met. 1363 for (const MDNode *N : Idents->operands()) { 1364 Assert(N->getNumOperands() == 1, 1365 "incorrect number of operands in llvm.ident metadata", N); 1366 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1367 ("invalid value for llvm.ident metadata entry operand" 1368 "(the operand should be a string)"), 1369 N->getOperand(0)); 1370 } 1371 } 1372 1373 void Verifier::visitModuleCommandLines(const Module &M) { 1374 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1375 if (!CommandLines) 1376 return; 1377 1378 // llvm.commandline takes a list of metadata entry. Each entry has only one 1379 // string. Scan each llvm.commandline entry and make sure that this 1380 // requirement is met. 1381 for (const MDNode *N : CommandLines->operands()) { 1382 Assert(N->getNumOperands() == 1, 1383 "incorrect number of operands in llvm.commandline metadata", N); 1384 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1385 ("invalid value for llvm.commandline metadata entry operand" 1386 "(the operand should be a string)"), 1387 N->getOperand(0)); 1388 } 1389 } 1390 1391 void Verifier::visitModuleFlags(const Module &M) { 1392 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1393 if (!Flags) return; 1394 1395 // Scan each flag, and track the flags and requirements. 1396 DenseMap<const MDString*, const MDNode*> SeenIDs; 1397 SmallVector<const MDNode*, 16> Requirements; 1398 for (const MDNode *MDN : Flags->operands()) 1399 visitModuleFlag(MDN, SeenIDs, Requirements); 1400 1401 // Validate that the requirements in the module are valid. 1402 for (const MDNode *Requirement : Requirements) { 1403 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1404 const Metadata *ReqValue = Requirement->getOperand(1); 1405 1406 const MDNode *Op = SeenIDs.lookup(Flag); 1407 if (!Op) { 1408 CheckFailed("invalid requirement on flag, flag is not present in module", 1409 Flag); 1410 continue; 1411 } 1412 1413 if (Op->getOperand(2) != ReqValue) { 1414 CheckFailed(("invalid requirement on flag, " 1415 "flag does not have the required value"), 1416 Flag); 1417 continue; 1418 } 1419 } 1420 } 1421 1422 void 1423 Verifier::visitModuleFlag(const MDNode *Op, 1424 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1425 SmallVectorImpl<const MDNode *> &Requirements) { 1426 // Each module flag should have three arguments, the merge behavior (a 1427 // constant int), the flag ID (an MDString), and the value. 1428 Assert(Op->getNumOperands() == 3, 1429 "incorrect number of operands in module flag", Op); 1430 Module::ModFlagBehavior MFB; 1431 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1432 Assert( 1433 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1434 "invalid behavior operand in module flag (expected constant integer)", 1435 Op->getOperand(0)); 1436 Assert(false, 1437 "invalid behavior operand in module flag (unexpected constant)", 1438 Op->getOperand(0)); 1439 } 1440 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1441 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1442 Op->getOperand(1)); 1443 1444 // Sanity check the values for behaviors with additional requirements. 1445 switch (MFB) { 1446 case Module::Error: 1447 case Module::Warning: 1448 case Module::Override: 1449 // These behavior types accept any value. 1450 break; 1451 1452 case Module::Max: { 1453 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1454 "invalid value for 'max' module flag (expected constant integer)", 1455 Op->getOperand(2)); 1456 break; 1457 } 1458 1459 case Module::Require: { 1460 // The value should itself be an MDNode with two operands, a flag ID (an 1461 // MDString), and a value. 1462 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1463 Assert(Value && Value->getNumOperands() == 2, 1464 "invalid value for 'require' module flag (expected metadata pair)", 1465 Op->getOperand(2)); 1466 Assert(isa<MDString>(Value->getOperand(0)), 1467 ("invalid value for 'require' module flag " 1468 "(first value operand should be a string)"), 1469 Value->getOperand(0)); 1470 1471 // Append it to the list of requirements, to check once all module flags are 1472 // scanned. 1473 Requirements.push_back(Value); 1474 break; 1475 } 1476 1477 case Module::Append: 1478 case Module::AppendUnique: { 1479 // These behavior types require the operand be an MDNode. 1480 Assert(isa<MDNode>(Op->getOperand(2)), 1481 "invalid value for 'append'-type module flag " 1482 "(expected a metadata node)", 1483 Op->getOperand(2)); 1484 break; 1485 } 1486 } 1487 1488 // Unless this is a "requires" flag, check the ID is unique. 1489 if (MFB != Module::Require) { 1490 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1491 Assert(Inserted, 1492 "module flag identifiers must be unique (or of 'require' type)", ID); 1493 } 1494 1495 if (ID->getString() == "wchar_size") { 1496 ConstantInt *Value 1497 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1498 Assert(Value, "wchar_size metadata requires constant integer argument"); 1499 } 1500 1501 if (ID->getString() == "Linker Options") { 1502 // If the llvm.linker.options named metadata exists, we assume that the 1503 // bitcode reader has upgraded the module flag. Otherwise the flag might 1504 // have been created by a client directly. 1505 Assert(M.getNamedMetadata("llvm.linker.options"), 1506 "'Linker Options' named metadata no longer supported"); 1507 } 1508 1509 if (ID->getString() == "SemanticInterposition") { 1510 ConstantInt *Value = 1511 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1512 Assert(Value, 1513 "SemanticInterposition metadata requires constant integer argument"); 1514 } 1515 1516 if (ID->getString() == "CG Profile") { 1517 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1518 visitModuleFlagCGProfileEntry(MDO); 1519 } 1520 } 1521 1522 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1523 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1524 if (!FuncMDO) 1525 return; 1526 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1527 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1528 FuncMDO); 1529 }; 1530 auto Node = dyn_cast_or_null<MDNode>(MDO); 1531 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1532 CheckFunction(Node->getOperand(0)); 1533 CheckFunction(Node->getOperand(1)); 1534 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1535 Assert(Count && Count->getType()->isIntegerTy(), 1536 "expected an integer constant", Node->getOperand(2)); 1537 } 1538 1539 /// Return true if this attribute kind only applies to functions. 1540 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1541 switch (Kind) { 1542 case Attribute::NoMerge: 1543 case Attribute::NoReturn: 1544 case Attribute::NoSync: 1545 case Attribute::WillReturn: 1546 case Attribute::NoCfCheck: 1547 case Attribute::NoUnwind: 1548 case Attribute::NoInline: 1549 case Attribute::AlwaysInline: 1550 case Attribute::OptimizeForSize: 1551 case Attribute::StackProtect: 1552 case Attribute::StackProtectReq: 1553 case Attribute::StackProtectStrong: 1554 case Attribute::SafeStack: 1555 case Attribute::ShadowCallStack: 1556 case Attribute::NoRedZone: 1557 case Attribute::NoImplicitFloat: 1558 case Attribute::Naked: 1559 case Attribute::InlineHint: 1560 case Attribute::StackAlignment: 1561 case Attribute::UWTable: 1562 case Attribute::NonLazyBind: 1563 case Attribute::ReturnsTwice: 1564 case Attribute::SanitizeAddress: 1565 case Attribute::SanitizeHWAddress: 1566 case Attribute::SanitizeMemTag: 1567 case Attribute::SanitizeThread: 1568 case Attribute::SanitizeMemory: 1569 case Attribute::MinSize: 1570 case Attribute::NoDuplicate: 1571 case Attribute::Builtin: 1572 case Attribute::NoBuiltin: 1573 case Attribute::Cold: 1574 case Attribute::OptForFuzzing: 1575 case Attribute::OptimizeNone: 1576 case Attribute::JumpTable: 1577 case Attribute::Convergent: 1578 case Attribute::ArgMemOnly: 1579 case Attribute::NoRecurse: 1580 case Attribute::InaccessibleMemOnly: 1581 case Attribute::InaccessibleMemOrArgMemOnly: 1582 case Attribute::AllocSize: 1583 case Attribute::SpeculativeLoadHardening: 1584 case Attribute::Speculatable: 1585 case Attribute::StrictFP: 1586 case Attribute::NullPointerIsValid: 1587 return true; 1588 default: 1589 break; 1590 } 1591 return false; 1592 } 1593 1594 /// Return true if this is a function attribute that can also appear on 1595 /// arguments. 1596 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1597 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1598 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1599 Kind == Attribute::Preallocated; 1600 } 1601 1602 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1603 const Value *V) { 1604 for (Attribute A : Attrs) { 1605 if (A.isStringAttribute()) 1606 continue; 1607 1608 if (A.isIntAttribute() != 1609 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1610 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1611 V); 1612 return; 1613 } 1614 1615 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1616 if (!IsFunction) { 1617 CheckFailed("Attribute '" + A.getAsString() + 1618 "' only applies to functions!", 1619 V); 1620 return; 1621 } 1622 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1623 CheckFailed("Attribute '" + A.getAsString() + 1624 "' does not apply to functions!", 1625 V); 1626 return; 1627 } 1628 } 1629 } 1630 1631 // VerifyParameterAttrs - Check the given attributes for an argument or return 1632 // value of the specified type. The value V is printed in error messages. 1633 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1634 const Value *V) { 1635 if (!Attrs.hasAttributes()) 1636 return; 1637 1638 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1639 1640 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1641 Assert(Attrs.getNumAttributes() == 1, 1642 "Attribute 'immarg' is incompatible with other attributes", V); 1643 } 1644 1645 // Check for mutually incompatible attributes. Only inreg is compatible with 1646 // sret. 1647 unsigned AttrCount = 0; 1648 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1649 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1650 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1651 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1652 Attrs.hasAttribute(Attribute::InReg); 1653 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1654 Assert(AttrCount <= 1, 1655 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1656 "and 'sret' are incompatible!", 1657 V); 1658 1659 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1660 Attrs.hasAttribute(Attribute::ReadOnly)), 1661 "Attributes " 1662 "'inalloca and readonly' are incompatible!", 1663 V); 1664 1665 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1666 Attrs.hasAttribute(Attribute::Returned)), 1667 "Attributes " 1668 "'sret and returned' are incompatible!", 1669 V); 1670 1671 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1672 Attrs.hasAttribute(Attribute::SExt)), 1673 "Attributes " 1674 "'zeroext and signext' are incompatible!", 1675 V); 1676 1677 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1678 Attrs.hasAttribute(Attribute::ReadOnly)), 1679 "Attributes " 1680 "'readnone and readonly' are incompatible!", 1681 V); 1682 1683 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1684 Attrs.hasAttribute(Attribute::WriteOnly)), 1685 "Attributes " 1686 "'readnone and writeonly' are incompatible!", 1687 V); 1688 1689 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1690 Attrs.hasAttribute(Attribute::WriteOnly)), 1691 "Attributes " 1692 "'readonly and writeonly' are incompatible!", 1693 V); 1694 1695 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1696 Attrs.hasAttribute(Attribute::AlwaysInline)), 1697 "Attributes " 1698 "'noinline and alwaysinline' are incompatible!", 1699 V); 1700 1701 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1702 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1703 "Attribute 'byval' type does not match parameter!", V); 1704 } 1705 1706 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1707 Assert(Attrs.getPreallocatedType() == 1708 cast<PointerType>(Ty)->getElementType(), 1709 "Attribute 'preallocated' type does not match parameter!", V); 1710 } 1711 1712 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1713 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1714 "Wrong types for attribute: " + 1715 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1716 V); 1717 1718 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1719 SmallPtrSet<Type*, 4> Visited; 1720 if (!PTy->getElementType()->isSized(&Visited)) { 1721 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1722 !Attrs.hasAttribute(Attribute::InAlloca) && 1723 !Attrs.hasAttribute(Attribute::Preallocated), 1724 "Attributes 'byval', 'inalloca', and 'preallocated' do not " 1725 "support unsized types!", 1726 V); 1727 } 1728 if (!isa<PointerType>(PTy->getElementType())) 1729 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1730 "Attribute 'swifterror' only applies to parameters " 1731 "with pointer to pointer type!", 1732 V); 1733 } else { 1734 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1735 "Attribute 'byval' only applies to parameters with pointer type!", 1736 V); 1737 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1738 "Attribute 'swifterror' only applies to parameters " 1739 "with pointer type!", 1740 V); 1741 } 1742 } 1743 1744 // Check parameter attributes against a function type. 1745 // The value V is printed in error messages. 1746 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1747 const Value *V, bool IsIntrinsic) { 1748 if (Attrs.isEmpty()) 1749 return; 1750 1751 bool SawNest = false; 1752 bool SawReturned = false; 1753 bool SawSRet = false; 1754 bool SawSwiftSelf = false; 1755 bool SawSwiftError = false; 1756 1757 // Verify return value attributes. 1758 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1759 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1760 !RetAttrs.hasAttribute(Attribute::Nest) && 1761 !RetAttrs.hasAttribute(Attribute::StructRet) && 1762 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1763 !RetAttrs.hasAttribute(Attribute::NoFree) && 1764 !RetAttrs.hasAttribute(Attribute::Returned) && 1765 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1766 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1767 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1768 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1769 "Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', " 1770 "'nocapture', 'nofree', " 1771 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1772 "values!", 1773 V); 1774 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1775 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1776 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1777 "Attribute '" + RetAttrs.getAsString() + 1778 "' does not apply to function returns", 1779 V); 1780 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1781 1782 // Verify parameter attributes. 1783 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1784 Type *Ty = FT->getParamType(i); 1785 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1786 1787 if (!IsIntrinsic) { 1788 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1789 "immarg attribute only applies to intrinsics",V); 1790 } 1791 1792 verifyParameterAttrs(ArgAttrs, Ty, V); 1793 1794 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1795 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1796 SawNest = true; 1797 } 1798 1799 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1800 Assert(!SawReturned, "More than one parameter has attribute returned!", 1801 V); 1802 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1803 "Incompatible argument and return types for 'returned' attribute", 1804 V); 1805 SawReturned = true; 1806 } 1807 1808 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1809 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1810 Assert(i == 0 || i == 1, 1811 "Attribute 'sret' is not on first or second parameter!", V); 1812 SawSRet = true; 1813 } 1814 1815 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1816 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1817 SawSwiftSelf = true; 1818 } 1819 1820 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1821 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1822 V); 1823 SawSwiftError = true; 1824 } 1825 1826 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1827 Assert(i == FT->getNumParams() - 1, 1828 "inalloca isn't on the last parameter!", V); 1829 } 1830 } 1831 1832 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1833 return; 1834 1835 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1836 1837 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1838 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1839 "Attributes 'readnone and readonly' are incompatible!", V); 1840 1841 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1842 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1843 "Attributes 'readnone and writeonly' are incompatible!", V); 1844 1845 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1846 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1847 "Attributes 'readonly and writeonly' are incompatible!", V); 1848 1849 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1850 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1851 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1852 "incompatible!", 1853 V); 1854 1855 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1856 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1857 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1858 1859 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1860 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1861 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1862 1863 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1864 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1865 "Attribute 'optnone' requires 'noinline'!", V); 1866 1867 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1868 "Attributes 'optsize and optnone' are incompatible!", V); 1869 1870 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1871 "Attributes 'minsize and optnone' are incompatible!", V); 1872 } 1873 1874 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1875 const GlobalValue *GV = cast<GlobalValue>(V); 1876 Assert(GV->hasGlobalUnnamedAddr(), 1877 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1878 } 1879 1880 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1881 std::pair<unsigned, Optional<unsigned>> Args = 1882 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1883 1884 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1885 if (ParamNo >= FT->getNumParams()) { 1886 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1887 return false; 1888 } 1889 1890 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1891 CheckFailed("'allocsize' " + Name + 1892 " argument must refer to an integer parameter", 1893 V); 1894 return false; 1895 } 1896 1897 return true; 1898 }; 1899 1900 if (!CheckParam("element size", Args.first)) 1901 return; 1902 1903 if (Args.second && !CheckParam("number of elements", *Args.second)) 1904 return; 1905 } 1906 1907 if (Attrs.hasFnAttribute("frame-pointer")) { 1908 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1909 "frame-pointer").getValueAsString(); 1910 if (FP != "all" && FP != "non-leaf" && FP != "none") 1911 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1912 } 1913 1914 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1915 StringRef S = Attrs 1916 .getAttribute(AttributeList::FunctionIndex, 1917 "patchable-function-prefix") 1918 .getValueAsString(); 1919 unsigned N; 1920 if (S.getAsInteger(10, N)) 1921 CheckFailed( 1922 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1923 } 1924 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1925 StringRef S = Attrs 1926 .getAttribute(AttributeList::FunctionIndex, 1927 "patchable-function-entry") 1928 .getValueAsString(); 1929 unsigned N; 1930 if (S.getAsInteger(10, N)) 1931 CheckFailed( 1932 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1933 } 1934 } 1935 1936 void Verifier::verifyFunctionMetadata( 1937 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1938 for (const auto &Pair : MDs) { 1939 if (Pair.first == LLVMContext::MD_prof) { 1940 MDNode *MD = Pair.second; 1941 Assert(MD->getNumOperands() >= 2, 1942 "!prof annotations should have no less than 2 operands", MD); 1943 1944 // Check first operand. 1945 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1946 MD); 1947 Assert(isa<MDString>(MD->getOperand(0)), 1948 "expected string with name of the !prof annotation", MD); 1949 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1950 StringRef ProfName = MDS->getString(); 1951 Assert(ProfName.equals("function_entry_count") || 1952 ProfName.equals("synthetic_function_entry_count"), 1953 "first operand should be 'function_entry_count'" 1954 " or 'synthetic_function_entry_count'", 1955 MD); 1956 1957 // Check second operand. 1958 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1959 MD); 1960 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1961 "expected integer argument to function_entry_count", MD); 1962 } 1963 } 1964 } 1965 1966 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1967 if (!ConstantExprVisited.insert(EntryC).second) 1968 return; 1969 1970 SmallVector<const Constant *, 16> Stack; 1971 Stack.push_back(EntryC); 1972 1973 while (!Stack.empty()) { 1974 const Constant *C = Stack.pop_back_val(); 1975 1976 // Check this constant expression. 1977 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1978 visitConstantExpr(CE); 1979 1980 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1981 // Global Values get visited separately, but we do need to make sure 1982 // that the global value is in the correct module 1983 Assert(GV->getParent() == &M, "Referencing global in another module!", 1984 EntryC, &M, GV, GV->getParent()); 1985 continue; 1986 } 1987 1988 // Visit all sub-expressions. 1989 for (const Use &U : C->operands()) { 1990 const auto *OpC = dyn_cast<Constant>(U); 1991 if (!OpC) 1992 continue; 1993 if (!ConstantExprVisited.insert(OpC).second) 1994 continue; 1995 Stack.push_back(OpC); 1996 } 1997 } 1998 } 1999 2000 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2001 if (CE->getOpcode() == Instruction::BitCast) 2002 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2003 CE->getType()), 2004 "Invalid bitcast", CE); 2005 2006 if (CE->getOpcode() == Instruction::IntToPtr || 2007 CE->getOpcode() == Instruction::PtrToInt) { 2008 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2009 ? CE->getType() 2010 : CE->getOperand(0)->getType(); 2011 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2012 ? "inttoptr not supported for non-integral pointers" 2013 : "ptrtoint not supported for non-integral pointers"; 2014 Assert( 2015 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2016 Msg); 2017 } 2018 } 2019 2020 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2021 // There shouldn't be more attribute sets than there are parameters plus the 2022 // function and return value. 2023 return Attrs.getNumAttrSets() <= Params + 2; 2024 } 2025 2026 /// Verify that statepoint intrinsic is well formed. 2027 void Verifier::verifyStatepoint(const CallBase &Call) { 2028 assert(Call.getCalledFunction() && 2029 Call.getCalledFunction()->getIntrinsicID() == 2030 Intrinsic::experimental_gc_statepoint); 2031 2032 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2033 !Call.onlyAccessesArgMemory(), 2034 "gc.statepoint must read and write all memory to preserve " 2035 "reordering restrictions required by safepoint semantics", 2036 Call); 2037 2038 const int64_t NumPatchBytes = 2039 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2040 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2041 Assert(NumPatchBytes >= 0, 2042 "gc.statepoint number of patchable bytes must be " 2043 "positive", 2044 Call); 2045 2046 const Value *Target = Call.getArgOperand(2); 2047 auto *PT = dyn_cast<PointerType>(Target->getType()); 2048 Assert(PT && PT->getElementType()->isFunctionTy(), 2049 "gc.statepoint callee must be of function pointer type", Call, Target); 2050 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2051 2052 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2053 Assert(NumCallArgs >= 0, 2054 "gc.statepoint number of arguments to underlying call " 2055 "must be positive", 2056 Call); 2057 const int NumParams = (int)TargetFuncType->getNumParams(); 2058 if (TargetFuncType->isVarArg()) { 2059 Assert(NumCallArgs >= NumParams, 2060 "gc.statepoint mismatch in number of vararg call args", Call); 2061 2062 // TODO: Remove this limitation 2063 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2064 "gc.statepoint doesn't support wrapping non-void " 2065 "vararg functions yet", 2066 Call); 2067 } else 2068 Assert(NumCallArgs == NumParams, 2069 "gc.statepoint mismatch in number of call args", Call); 2070 2071 const uint64_t Flags 2072 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2073 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2074 "unknown flag used in gc.statepoint flags argument", Call); 2075 2076 // Verify that the types of the call parameter arguments match 2077 // the type of the wrapped callee. 2078 AttributeList Attrs = Call.getAttributes(); 2079 for (int i = 0; i < NumParams; i++) { 2080 Type *ParamType = TargetFuncType->getParamType(i); 2081 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2082 Assert(ArgType == ParamType, 2083 "gc.statepoint call argument does not match wrapped " 2084 "function type", 2085 Call); 2086 2087 if (TargetFuncType->isVarArg()) { 2088 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2089 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2090 "Attribute 'sret' cannot be used for vararg call arguments!", 2091 Call); 2092 } 2093 } 2094 2095 const int EndCallArgsInx = 4 + NumCallArgs; 2096 2097 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2098 Assert(isa<ConstantInt>(NumTransitionArgsV), 2099 "gc.statepoint number of transition arguments " 2100 "must be constant integer", 2101 Call); 2102 const int NumTransitionArgs = 2103 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2104 Assert(NumTransitionArgs >= 0, 2105 "gc.statepoint number of transition arguments must be positive", Call); 2106 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2107 2108 // We're migrating away from inline operands to operand bundles, enforce 2109 // the either/or property during transition. 2110 if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) { 2111 Assert(NumTransitionArgs == 0, 2112 "can't use both deopt operands and deopt bundle on a statepoint"); 2113 } 2114 2115 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2116 Assert(isa<ConstantInt>(NumDeoptArgsV), 2117 "gc.statepoint number of deoptimization arguments " 2118 "must be constant integer", 2119 Call); 2120 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2121 Assert(NumDeoptArgs >= 0, 2122 "gc.statepoint number of deoptimization arguments " 2123 "must be positive", 2124 Call); 2125 2126 // We're migrating away from inline operands to operand bundles, enforce 2127 // the either/or property during transition. 2128 if (Call.getOperandBundle(LLVMContext::OB_deopt)) { 2129 Assert(NumDeoptArgs == 0, 2130 "can't use both deopt operands and deopt bundle on a statepoint"); 2131 } 2132 2133 const int ExpectedNumArgs = 2134 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2135 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2136 "gc.statepoint too few arguments according to length fields", Call); 2137 2138 // Check that the only uses of this gc.statepoint are gc.result or 2139 // gc.relocate calls which are tied to this statepoint and thus part 2140 // of the same statepoint sequence 2141 for (const User *U : Call.users()) { 2142 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2143 Assert(UserCall, "illegal use of statepoint token", Call, U); 2144 if (!UserCall) 2145 continue; 2146 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2147 "gc.result or gc.relocate are the only value uses " 2148 "of a gc.statepoint", 2149 Call, U); 2150 if (isa<GCResultInst>(UserCall)) { 2151 Assert(UserCall->getArgOperand(0) == &Call, 2152 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2153 } else if (isa<GCRelocateInst>(Call)) { 2154 Assert(UserCall->getArgOperand(0) == &Call, 2155 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2156 } 2157 } 2158 2159 // Note: It is legal for a single derived pointer to be listed multiple 2160 // times. It's non-optimal, but it is legal. It can also happen after 2161 // insertion if we strip a bitcast away. 2162 // Note: It is really tempting to check that each base is relocated and 2163 // that a derived pointer is never reused as a base pointer. This turns 2164 // out to be problematic since optimizations run after safepoint insertion 2165 // can recognize equality properties that the insertion logic doesn't know 2166 // about. See example statepoint.ll in the verifier subdirectory 2167 } 2168 2169 void Verifier::verifyFrameRecoverIndices() { 2170 for (auto &Counts : FrameEscapeInfo) { 2171 Function *F = Counts.first; 2172 unsigned EscapedObjectCount = Counts.second.first; 2173 unsigned MaxRecoveredIndex = Counts.second.second; 2174 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2175 "all indices passed to llvm.localrecover must be less than the " 2176 "number of arguments passed to llvm.localescape in the parent " 2177 "function", 2178 F); 2179 } 2180 } 2181 2182 static Instruction *getSuccPad(Instruction *Terminator) { 2183 BasicBlock *UnwindDest; 2184 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2185 UnwindDest = II->getUnwindDest(); 2186 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2187 UnwindDest = CSI->getUnwindDest(); 2188 else 2189 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2190 return UnwindDest->getFirstNonPHI(); 2191 } 2192 2193 void Verifier::verifySiblingFuncletUnwinds() { 2194 SmallPtrSet<Instruction *, 8> Visited; 2195 SmallPtrSet<Instruction *, 8> Active; 2196 for (const auto &Pair : SiblingFuncletInfo) { 2197 Instruction *PredPad = Pair.first; 2198 if (Visited.count(PredPad)) 2199 continue; 2200 Active.insert(PredPad); 2201 Instruction *Terminator = Pair.second; 2202 do { 2203 Instruction *SuccPad = getSuccPad(Terminator); 2204 if (Active.count(SuccPad)) { 2205 // Found a cycle; report error 2206 Instruction *CyclePad = SuccPad; 2207 SmallVector<Instruction *, 8> CycleNodes; 2208 do { 2209 CycleNodes.push_back(CyclePad); 2210 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2211 if (CycleTerminator != CyclePad) 2212 CycleNodes.push_back(CycleTerminator); 2213 CyclePad = getSuccPad(CycleTerminator); 2214 } while (CyclePad != SuccPad); 2215 Assert(false, "EH pads can't handle each other's exceptions", 2216 ArrayRef<Instruction *>(CycleNodes)); 2217 } 2218 // Don't re-walk a node we've already checked 2219 if (!Visited.insert(SuccPad).second) 2220 break; 2221 // Walk to this successor if it has a map entry. 2222 PredPad = SuccPad; 2223 auto TermI = SiblingFuncletInfo.find(PredPad); 2224 if (TermI == SiblingFuncletInfo.end()) 2225 break; 2226 Terminator = TermI->second; 2227 Active.insert(PredPad); 2228 } while (true); 2229 // Each node only has one successor, so we've walked all the active 2230 // nodes' successors. 2231 Active.clear(); 2232 } 2233 } 2234 2235 // visitFunction - Verify that a function is ok. 2236 // 2237 void Verifier::visitFunction(const Function &F) { 2238 visitGlobalValue(F); 2239 2240 // Check function arguments. 2241 FunctionType *FT = F.getFunctionType(); 2242 unsigned NumArgs = F.arg_size(); 2243 2244 Assert(&Context == &F.getContext(), 2245 "Function context does not match Module context!", &F); 2246 2247 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2248 Assert(FT->getNumParams() == NumArgs, 2249 "# formal arguments must match # of arguments for function type!", &F, 2250 FT); 2251 Assert(F.getReturnType()->isFirstClassType() || 2252 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2253 "Functions cannot return aggregate values!", &F); 2254 2255 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2256 "Invalid struct return type!", &F); 2257 2258 AttributeList Attrs = F.getAttributes(); 2259 2260 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2261 "Attribute after last parameter!", &F); 2262 2263 bool isLLVMdotName = F.getName().size() >= 5 && 2264 F.getName().substr(0, 5) == "llvm."; 2265 2266 // Check function attributes. 2267 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2268 2269 // On function declarations/definitions, we do not support the builtin 2270 // attribute. We do not check this in VerifyFunctionAttrs since that is 2271 // checking for Attributes that can/can not ever be on functions. 2272 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2273 "Attribute 'builtin' can only be applied to a callsite.", &F); 2274 2275 // Check that this function meets the restrictions on this calling convention. 2276 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2277 // restrictions can be lifted. 2278 switch (F.getCallingConv()) { 2279 default: 2280 case CallingConv::C: 2281 break; 2282 case CallingConv::AMDGPU_KERNEL: 2283 case CallingConv::SPIR_KERNEL: 2284 Assert(F.getReturnType()->isVoidTy(), 2285 "Calling convention requires void return type", &F); 2286 LLVM_FALLTHROUGH; 2287 case CallingConv::AMDGPU_VS: 2288 case CallingConv::AMDGPU_HS: 2289 case CallingConv::AMDGPU_GS: 2290 case CallingConv::AMDGPU_PS: 2291 case CallingConv::AMDGPU_CS: 2292 Assert(!F.hasStructRetAttr(), 2293 "Calling convention does not allow sret", &F); 2294 LLVM_FALLTHROUGH; 2295 case CallingConv::Fast: 2296 case CallingConv::Cold: 2297 case CallingConv::Intel_OCL_BI: 2298 case CallingConv::PTX_Kernel: 2299 case CallingConv::PTX_Device: 2300 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2301 "perfect forwarding!", 2302 &F); 2303 break; 2304 } 2305 2306 // Check that the argument values match the function type for this function... 2307 unsigned i = 0; 2308 for (const Argument &Arg : F.args()) { 2309 Assert(Arg.getType() == FT->getParamType(i), 2310 "Argument value does not match function argument type!", &Arg, 2311 FT->getParamType(i)); 2312 Assert(Arg.getType()->isFirstClassType(), 2313 "Function arguments must have first-class types!", &Arg); 2314 if (!isLLVMdotName) { 2315 Assert(!Arg.getType()->isMetadataTy(), 2316 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2317 Assert(!Arg.getType()->isTokenTy(), 2318 "Function takes token but isn't an intrinsic", &Arg, &F); 2319 } 2320 2321 // Check that swifterror argument is only used by loads and stores. 2322 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2323 verifySwiftErrorValue(&Arg); 2324 } 2325 ++i; 2326 } 2327 2328 if (!isLLVMdotName) 2329 Assert(!F.getReturnType()->isTokenTy(), 2330 "Functions returns a token but isn't an intrinsic", &F); 2331 2332 // Get the function metadata attachments. 2333 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2334 F.getAllMetadata(MDs); 2335 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2336 verifyFunctionMetadata(MDs); 2337 2338 // Check validity of the personality function 2339 if (F.hasPersonalityFn()) { 2340 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2341 if (Per) 2342 Assert(Per->getParent() == F.getParent(), 2343 "Referencing personality function in another module!", 2344 &F, F.getParent(), Per, Per->getParent()); 2345 } 2346 2347 if (F.isMaterializable()) { 2348 // Function has a body somewhere we can't see. 2349 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2350 MDs.empty() ? nullptr : MDs.front().second); 2351 } else if (F.isDeclaration()) { 2352 for (const auto &I : MDs) { 2353 // This is used for call site debug information. 2354 AssertDI(I.first != LLVMContext::MD_dbg || 2355 !cast<DISubprogram>(I.second)->isDistinct(), 2356 "function declaration may only have a unique !dbg attachment", 2357 &F); 2358 Assert(I.first != LLVMContext::MD_prof, 2359 "function declaration may not have a !prof attachment", &F); 2360 2361 // Verify the metadata itself. 2362 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2363 } 2364 Assert(!F.hasPersonalityFn(), 2365 "Function declaration shouldn't have a personality routine", &F); 2366 } else { 2367 // Verify that this function (which has a body) is not named "llvm.*". It 2368 // is not legal to define intrinsics. 2369 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2370 2371 // Check the entry node 2372 const BasicBlock *Entry = &F.getEntryBlock(); 2373 Assert(pred_empty(Entry), 2374 "Entry block to function must not have predecessors!", Entry); 2375 2376 // The address of the entry block cannot be taken, unless it is dead. 2377 if (Entry->hasAddressTaken()) { 2378 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2379 "blockaddress may not be used with the entry block!", Entry); 2380 } 2381 2382 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2383 // Visit metadata attachments. 2384 for (const auto &I : MDs) { 2385 // Verify that the attachment is legal. 2386 auto AllowLocs = AreDebugLocsAllowed::No; 2387 switch (I.first) { 2388 default: 2389 break; 2390 case LLVMContext::MD_dbg: { 2391 ++NumDebugAttachments; 2392 AssertDI(NumDebugAttachments == 1, 2393 "function must have a single !dbg attachment", &F, I.second); 2394 AssertDI(isa<DISubprogram>(I.second), 2395 "function !dbg attachment must be a subprogram", &F, I.second); 2396 auto *SP = cast<DISubprogram>(I.second); 2397 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2398 AssertDI(!AttachedTo || AttachedTo == &F, 2399 "DISubprogram attached to more than one function", SP, &F); 2400 AttachedTo = &F; 2401 AllowLocs = AreDebugLocsAllowed::Yes; 2402 break; 2403 } 2404 case LLVMContext::MD_prof: 2405 ++NumProfAttachments; 2406 Assert(NumProfAttachments == 1, 2407 "function must have a single !prof attachment", &F, I.second); 2408 break; 2409 } 2410 2411 // Verify the metadata itself. 2412 visitMDNode(*I.second, AllowLocs); 2413 } 2414 } 2415 2416 // If this function is actually an intrinsic, verify that it is only used in 2417 // direct call/invokes, never having its "address taken". 2418 // Only do this if the module is materialized, otherwise we don't have all the 2419 // uses. 2420 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2421 const User *U; 2422 if (F.hasAddressTaken(&U)) 2423 Assert(false, "Invalid user of intrinsic instruction!", U); 2424 } 2425 2426 auto *N = F.getSubprogram(); 2427 HasDebugInfo = (N != nullptr); 2428 if (!HasDebugInfo) 2429 return; 2430 2431 // Check that all !dbg attachments lead to back to N. 2432 // 2433 // FIXME: Check this incrementally while visiting !dbg attachments. 2434 // FIXME: Only check when N is the canonical subprogram for F. 2435 SmallPtrSet<const MDNode *, 32> Seen; 2436 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2437 // Be careful about using DILocation here since we might be dealing with 2438 // broken code (this is the Verifier after all). 2439 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2440 if (!DL) 2441 return; 2442 if (!Seen.insert(DL).second) 2443 return; 2444 2445 Metadata *Parent = DL->getRawScope(); 2446 AssertDI(Parent && isa<DILocalScope>(Parent), 2447 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2448 Parent); 2449 2450 DILocalScope *Scope = DL->getInlinedAtScope(); 2451 Assert(Scope, "Failed to find DILocalScope", DL); 2452 2453 if (!Seen.insert(Scope).second) 2454 return; 2455 2456 DISubprogram *SP = Scope->getSubprogram(); 2457 2458 // Scope and SP could be the same MDNode and we don't want to skip 2459 // validation in that case 2460 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2461 return; 2462 2463 AssertDI(SP->describes(&F), 2464 "!dbg attachment points at wrong subprogram for function", N, &F, 2465 &I, DL, Scope, SP); 2466 }; 2467 for (auto &BB : F) 2468 for (auto &I : BB) { 2469 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2470 // The llvm.loop annotations also contain two DILocations. 2471 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2472 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2473 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2474 if (BrokenDebugInfo) 2475 return; 2476 } 2477 } 2478 2479 // verifyBasicBlock - Verify that a basic block is well formed... 2480 // 2481 void Verifier::visitBasicBlock(BasicBlock &BB) { 2482 InstsInThisBlock.clear(); 2483 2484 // Ensure that basic blocks have terminators! 2485 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2486 2487 // Check constraints that this basic block imposes on all of the PHI nodes in 2488 // it. 2489 if (isa<PHINode>(BB.front())) { 2490 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2491 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2492 llvm::sort(Preds); 2493 for (const PHINode &PN : BB.phis()) { 2494 // Ensure that PHI nodes have at least one entry! 2495 Assert(PN.getNumIncomingValues() != 0, 2496 "PHI nodes must have at least one entry. If the block is dead, " 2497 "the PHI should be removed!", 2498 &PN); 2499 Assert(PN.getNumIncomingValues() == Preds.size(), 2500 "PHINode should have one entry for each predecessor of its " 2501 "parent basic block!", 2502 &PN); 2503 2504 // Get and sort all incoming values in the PHI node... 2505 Values.clear(); 2506 Values.reserve(PN.getNumIncomingValues()); 2507 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2508 Values.push_back( 2509 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2510 llvm::sort(Values); 2511 2512 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2513 // Check to make sure that if there is more than one entry for a 2514 // particular basic block in this PHI node, that the incoming values are 2515 // all identical. 2516 // 2517 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2518 Values[i].second == Values[i - 1].second, 2519 "PHI node has multiple entries for the same basic block with " 2520 "different incoming values!", 2521 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2522 2523 // Check to make sure that the predecessors and PHI node entries are 2524 // matched up. 2525 Assert(Values[i].first == Preds[i], 2526 "PHI node entries do not match predecessors!", &PN, 2527 Values[i].first, Preds[i]); 2528 } 2529 } 2530 } 2531 2532 // Check that all instructions have their parent pointers set up correctly. 2533 for (auto &I : BB) 2534 { 2535 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2536 } 2537 } 2538 2539 void Verifier::visitTerminator(Instruction &I) { 2540 // Ensure that terminators only exist at the end of the basic block. 2541 Assert(&I == I.getParent()->getTerminator(), 2542 "Terminator found in the middle of a basic block!", I.getParent()); 2543 visitInstruction(I); 2544 } 2545 2546 void Verifier::visitBranchInst(BranchInst &BI) { 2547 if (BI.isConditional()) { 2548 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2549 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2550 } 2551 visitTerminator(BI); 2552 } 2553 2554 void Verifier::visitReturnInst(ReturnInst &RI) { 2555 Function *F = RI.getParent()->getParent(); 2556 unsigned N = RI.getNumOperands(); 2557 if (F->getReturnType()->isVoidTy()) 2558 Assert(N == 0, 2559 "Found return instr that returns non-void in Function of void " 2560 "return type!", 2561 &RI, F->getReturnType()); 2562 else 2563 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2564 "Function return type does not match operand " 2565 "type of return inst!", 2566 &RI, F->getReturnType()); 2567 2568 // Check to make sure that the return value has necessary properties for 2569 // terminators... 2570 visitTerminator(RI); 2571 } 2572 2573 void Verifier::visitSwitchInst(SwitchInst &SI) { 2574 // Check to make sure that all of the constants in the switch instruction 2575 // have the same type as the switched-on value. 2576 Type *SwitchTy = SI.getCondition()->getType(); 2577 SmallPtrSet<ConstantInt*, 32> Constants; 2578 for (auto &Case : SI.cases()) { 2579 Assert(Case.getCaseValue()->getType() == SwitchTy, 2580 "Switch constants must all be same type as switch value!", &SI); 2581 Assert(Constants.insert(Case.getCaseValue()).second, 2582 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2583 } 2584 2585 visitTerminator(SI); 2586 } 2587 2588 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2589 Assert(BI.getAddress()->getType()->isPointerTy(), 2590 "Indirectbr operand must have pointer type!", &BI); 2591 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2592 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2593 "Indirectbr destinations must all have pointer type!", &BI); 2594 2595 visitTerminator(BI); 2596 } 2597 2598 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2599 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2600 &CBI); 2601 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2602 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2603 "Callbr successors must all have pointer type!", &CBI); 2604 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2605 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2606 "Using an unescaped label as a callbr argument!", &CBI); 2607 if (isa<BasicBlock>(CBI.getOperand(i))) 2608 for (unsigned j = i + 1; j != e; ++j) 2609 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2610 "Duplicate callbr destination!", &CBI); 2611 } 2612 { 2613 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2614 for (Value *V : CBI.args()) 2615 if (auto *BA = dyn_cast<BlockAddress>(V)) 2616 ArgBBs.insert(BA->getBasicBlock()); 2617 for (BasicBlock *BB : CBI.getIndirectDests()) 2618 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2619 } 2620 2621 visitTerminator(CBI); 2622 } 2623 2624 void Verifier::visitSelectInst(SelectInst &SI) { 2625 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2626 SI.getOperand(2)), 2627 "Invalid operands for select instruction!", &SI); 2628 2629 Assert(SI.getTrueValue()->getType() == SI.getType(), 2630 "Select values must have same type as select instruction!", &SI); 2631 visitInstruction(SI); 2632 } 2633 2634 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2635 /// a pass, if any exist, it's an error. 2636 /// 2637 void Verifier::visitUserOp1(Instruction &I) { 2638 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2639 } 2640 2641 void Verifier::visitTruncInst(TruncInst &I) { 2642 // Get the source and destination types 2643 Type *SrcTy = I.getOperand(0)->getType(); 2644 Type *DestTy = I.getType(); 2645 2646 // Get the size of the types in bits, we'll need this later 2647 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2648 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2649 2650 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2651 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2652 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2653 "trunc source and destination must both be a vector or neither", &I); 2654 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2655 2656 visitInstruction(I); 2657 } 2658 2659 void Verifier::visitZExtInst(ZExtInst &I) { 2660 // Get the source and destination types 2661 Type *SrcTy = I.getOperand(0)->getType(); 2662 Type *DestTy = I.getType(); 2663 2664 // Get the size of the types in bits, we'll need this later 2665 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2666 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2667 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2668 "zext source and destination must both be a vector or neither", &I); 2669 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2670 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2671 2672 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2673 2674 visitInstruction(I); 2675 } 2676 2677 void Verifier::visitSExtInst(SExtInst &I) { 2678 // Get the source and destination types 2679 Type *SrcTy = I.getOperand(0)->getType(); 2680 Type *DestTy = I.getType(); 2681 2682 // Get the size of the types in bits, we'll need this later 2683 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2684 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2685 2686 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2687 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2688 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2689 "sext source and destination must both be a vector or neither", &I); 2690 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2691 2692 visitInstruction(I); 2693 } 2694 2695 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2696 // Get the source and destination types 2697 Type *SrcTy = I.getOperand(0)->getType(); 2698 Type *DestTy = I.getType(); 2699 // Get the size of the types in bits, we'll need this later 2700 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2701 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2702 2703 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2704 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2705 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2706 "fptrunc source and destination must both be a vector or neither", &I); 2707 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2708 2709 visitInstruction(I); 2710 } 2711 2712 void Verifier::visitFPExtInst(FPExtInst &I) { 2713 // Get the source and destination types 2714 Type *SrcTy = I.getOperand(0)->getType(); 2715 Type *DestTy = I.getType(); 2716 2717 // Get the size of the types in bits, we'll need this later 2718 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2719 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2720 2721 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2722 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2723 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2724 "fpext source and destination must both be a vector or neither", &I); 2725 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2726 2727 visitInstruction(I); 2728 } 2729 2730 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2731 // Get the source and destination types 2732 Type *SrcTy = I.getOperand(0)->getType(); 2733 Type *DestTy = I.getType(); 2734 2735 bool SrcVec = SrcTy->isVectorTy(); 2736 bool DstVec = DestTy->isVectorTy(); 2737 2738 Assert(SrcVec == DstVec, 2739 "UIToFP source and dest must both be vector or scalar", &I); 2740 Assert(SrcTy->isIntOrIntVectorTy(), 2741 "UIToFP source must be integer or integer vector", &I); 2742 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2743 &I); 2744 2745 if (SrcVec && DstVec) 2746 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2747 cast<VectorType>(DestTy)->getNumElements(), 2748 "UIToFP source and dest vector length mismatch", &I); 2749 2750 visitInstruction(I); 2751 } 2752 2753 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2754 // Get the source and destination types 2755 Type *SrcTy = I.getOperand(0)->getType(); 2756 Type *DestTy = I.getType(); 2757 2758 bool SrcVec = SrcTy->isVectorTy(); 2759 bool DstVec = DestTy->isVectorTy(); 2760 2761 Assert(SrcVec == DstVec, 2762 "SIToFP source and dest must both be vector or scalar", &I); 2763 Assert(SrcTy->isIntOrIntVectorTy(), 2764 "SIToFP source must be integer or integer vector", &I); 2765 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2766 &I); 2767 2768 if (SrcVec && DstVec) 2769 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2770 cast<VectorType>(DestTy)->getNumElements(), 2771 "SIToFP source and dest vector length mismatch", &I); 2772 2773 visitInstruction(I); 2774 } 2775 2776 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2777 // Get the source and destination types 2778 Type *SrcTy = I.getOperand(0)->getType(); 2779 Type *DestTy = I.getType(); 2780 2781 bool SrcVec = SrcTy->isVectorTy(); 2782 bool DstVec = DestTy->isVectorTy(); 2783 2784 Assert(SrcVec == DstVec, 2785 "FPToUI source and dest must both be vector or scalar", &I); 2786 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2787 &I); 2788 Assert(DestTy->isIntOrIntVectorTy(), 2789 "FPToUI result must be integer or integer vector", &I); 2790 2791 if (SrcVec && DstVec) 2792 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2793 cast<VectorType>(DestTy)->getNumElements(), 2794 "FPToUI source and dest vector length mismatch", &I); 2795 2796 visitInstruction(I); 2797 } 2798 2799 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2800 // Get the source and destination types 2801 Type *SrcTy = I.getOperand(0)->getType(); 2802 Type *DestTy = I.getType(); 2803 2804 bool SrcVec = SrcTy->isVectorTy(); 2805 bool DstVec = DestTy->isVectorTy(); 2806 2807 Assert(SrcVec == DstVec, 2808 "FPToSI source and dest must both be vector or scalar", &I); 2809 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2810 &I); 2811 Assert(DestTy->isIntOrIntVectorTy(), 2812 "FPToSI result must be integer or integer vector", &I); 2813 2814 if (SrcVec && DstVec) 2815 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2816 cast<VectorType>(DestTy)->getNumElements(), 2817 "FPToSI source and dest vector length mismatch", &I); 2818 2819 visitInstruction(I); 2820 } 2821 2822 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2823 // Get the source and destination types 2824 Type *SrcTy = I.getOperand(0)->getType(); 2825 Type *DestTy = I.getType(); 2826 2827 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2828 2829 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2830 Assert(!DL.isNonIntegralPointerType(PTy), 2831 "ptrtoint not supported for non-integral pointers"); 2832 2833 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2834 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2835 &I); 2836 2837 if (SrcTy->isVectorTy()) { 2838 VectorType *VSrc = cast<VectorType>(SrcTy); 2839 VectorType *VDest = cast<VectorType>(DestTy); 2840 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2841 "PtrToInt Vector width mismatch", &I); 2842 } 2843 2844 visitInstruction(I); 2845 } 2846 2847 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2848 // Get the source and destination types 2849 Type *SrcTy = I.getOperand(0)->getType(); 2850 Type *DestTy = I.getType(); 2851 2852 Assert(SrcTy->isIntOrIntVectorTy(), 2853 "IntToPtr source must be an integral", &I); 2854 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2855 2856 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2857 Assert(!DL.isNonIntegralPointerType(PTy), 2858 "inttoptr not supported for non-integral pointers"); 2859 2860 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2861 &I); 2862 if (SrcTy->isVectorTy()) { 2863 VectorType *VSrc = cast<VectorType>(SrcTy); 2864 VectorType *VDest = cast<VectorType>(DestTy); 2865 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2866 "IntToPtr Vector width mismatch", &I); 2867 } 2868 visitInstruction(I); 2869 } 2870 2871 void Verifier::visitBitCastInst(BitCastInst &I) { 2872 Assert( 2873 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2874 "Invalid bitcast", &I); 2875 visitInstruction(I); 2876 } 2877 2878 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2879 Type *SrcTy = I.getOperand(0)->getType(); 2880 Type *DestTy = I.getType(); 2881 2882 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2883 &I); 2884 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2885 &I); 2886 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2887 "AddrSpaceCast must be between different address spaces", &I); 2888 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2889 Assert(SrcVTy->getNumElements() == 2890 cast<VectorType>(DestTy)->getNumElements(), 2891 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2892 visitInstruction(I); 2893 } 2894 2895 /// visitPHINode - Ensure that a PHI node is well formed. 2896 /// 2897 void Verifier::visitPHINode(PHINode &PN) { 2898 // Ensure that the PHI nodes are all grouped together at the top of the block. 2899 // This can be tested by checking whether the instruction before this is 2900 // either nonexistent (because this is begin()) or is a PHI node. If not, 2901 // then there is some other instruction before a PHI. 2902 Assert(&PN == &PN.getParent()->front() || 2903 isa<PHINode>(--BasicBlock::iterator(&PN)), 2904 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2905 2906 // Check that a PHI doesn't yield a Token. 2907 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2908 2909 // Check that all of the values of the PHI node have the same type as the 2910 // result, and that the incoming blocks are really basic blocks. 2911 for (Value *IncValue : PN.incoming_values()) { 2912 Assert(PN.getType() == IncValue->getType(), 2913 "PHI node operands are not the same type as the result!", &PN); 2914 } 2915 2916 // All other PHI node constraints are checked in the visitBasicBlock method. 2917 2918 visitInstruction(PN); 2919 } 2920 2921 void Verifier::visitCallBase(CallBase &Call) { 2922 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 2923 "Called function must be a pointer!", Call); 2924 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2925 2926 Assert(FPTy->getElementType()->isFunctionTy(), 2927 "Called function is not pointer to function type!", Call); 2928 2929 Assert(FPTy->getElementType() == Call.getFunctionType(), 2930 "Called function is not the same type as the call!", Call); 2931 2932 FunctionType *FTy = Call.getFunctionType(); 2933 2934 // Verify that the correct number of arguments are being passed 2935 if (FTy->isVarArg()) 2936 Assert(Call.arg_size() >= FTy->getNumParams(), 2937 "Called function requires more parameters than were provided!", 2938 Call); 2939 else 2940 Assert(Call.arg_size() == FTy->getNumParams(), 2941 "Incorrect number of arguments passed to called function!", Call); 2942 2943 // Verify that all arguments to the call match the function type. 2944 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2945 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2946 "Call parameter type does not match function signature!", 2947 Call.getArgOperand(i), FTy->getParamType(i), Call); 2948 2949 AttributeList Attrs = Call.getAttributes(); 2950 2951 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2952 "Attribute after last parameter!", Call); 2953 2954 bool IsIntrinsic = Call.getCalledFunction() && 2955 Call.getCalledFunction()->getName().startswith("llvm."); 2956 2957 Function *Callee = 2958 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2959 2960 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 2961 // Don't allow speculatable on call sites, unless the underlying function 2962 // declaration is also speculatable. 2963 Assert(Callee && Callee->isSpeculatable(), 2964 "speculatable attribute may not apply to call sites", Call); 2965 } 2966 2967 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 2968 Assert(Call.getCalledFunction()->getIntrinsicID() == 2969 Intrinsic::call_preallocated_arg, 2970 "preallocated as a call site attribute can only be on " 2971 "llvm.call.preallocated.arg"); 2972 } 2973 2974 // Verify call attributes. 2975 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2976 2977 // Conservatively check the inalloca argument. 2978 // We have a bug if we can find that there is an underlying alloca without 2979 // inalloca. 2980 if (Call.hasInAllocaArgument()) { 2981 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2982 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2983 Assert(AI->isUsedWithInAlloca(), 2984 "inalloca argument for call has mismatched alloca", AI, Call); 2985 } 2986 2987 // For each argument of the callsite, if it has the swifterror argument, 2988 // make sure the underlying alloca/parameter it comes from has a swifterror as 2989 // well. 2990 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2991 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2992 Value *SwiftErrorArg = Call.getArgOperand(i); 2993 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2994 Assert(AI->isSwiftError(), 2995 "swifterror argument for call has mismatched alloca", AI, Call); 2996 continue; 2997 } 2998 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2999 Assert(ArgI, 3000 "swifterror argument should come from an alloca or parameter", 3001 SwiftErrorArg, Call); 3002 Assert(ArgI->hasSwiftErrorAttr(), 3003 "swifterror argument for call has mismatched parameter", ArgI, 3004 Call); 3005 } 3006 3007 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3008 // Don't allow immarg on call sites, unless the underlying declaration 3009 // also has the matching immarg. 3010 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3011 "immarg may not apply only to call sites", 3012 Call.getArgOperand(i), Call); 3013 } 3014 3015 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3016 Value *ArgVal = Call.getArgOperand(i); 3017 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3018 "immarg operand has non-immediate parameter", ArgVal, Call); 3019 } 3020 3021 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3022 Value *ArgVal = Call.getArgOperand(i); 3023 bool hasOB = 3024 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3025 bool isMustTail = Call.isMustTailCall(); 3026 Assert(hasOB != isMustTail, 3027 "preallocated operand either requires a preallocated bundle or " 3028 "the call to be musttail (but not both)", 3029 ArgVal, Call); 3030 } 3031 } 3032 3033 if (FTy->isVarArg()) { 3034 // FIXME? is 'nest' even legal here? 3035 bool SawNest = false; 3036 bool SawReturned = false; 3037 3038 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3039 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3040 SawNest = true; 3041 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3042 SawReturned = true; 3043 } 3044 3045 // Check attributes on the varargs part. 3046 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3047 Type *Ty = Call.getArgOperand(Idx)->getType(); 3048 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3049 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3050 3051 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3052 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3053 SawNest = true; 3054 } 3055 3056 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3057 Assert(!SawReturned, "More than one parameter has attribute returned!", 3058 Call); 3059 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3060 "Incompatible argument and return types for 'returned' " 3061 "attribute", 3062 Call); 3063 SawReturned = true; 3064 } 3065 3066 // Statepoint intrinsic is vararg but the wrapped function may be not. 3067 // Allow sret here and check the wrapped function in verifyStatepoint. 3068 if (!Call.getCalledFunction() || 3069 Call.getCalledFunction()->getIntrinsicID() != 3070 Intrinsic::experimental_gc_statepoint) 3071 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3072 "Attribute 'sret' cannot be used for vararg call arguments!", 3073 Call); 3074 3075 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3076 Assert(Idx == Call.arg_size() - 1, 3077 "inalloca isn't on the last argument!", Call); 3078 } 3079 } 3080 3081 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3082 if (!IsIntrinsic) { 3083 for (Type *ParamTy : FTy->params()) { 3084 Assert(!ParamTy->isMetadataTy(), 3085 "Function has metadata parameter but isn't an intrinsic", Call); 3086 Assert(!ParamTy->isTokenTy(), 3087 "Function has token parameter but isn't an intrinsic", Call); 3088 } 3089 } 3090 3091 // Verify that indirect calls don't return tokens. 3092 if (!Call.getCalledFunction()) 3093 Assert(!FTy->getReturnType()->isTokenTy(), 3094 "Return type cannot be token for indirect call!"); 3095 3096 if (Function *F = Call.getCalledFunction()) 3097 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3098 visitIntrinsicCall(ID, Call); 3099 3100 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3101 // most one "gc-transition", at most one "cfguardtarget", 3102 // and at most one "preallocated" operand bundle. 3103 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3104 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3105 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;; 3106 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3107 OperandBundleUse BU = Call.getOperandBundleAt(i); 3108 uint32_t Tag = BU.getTagID(); 3109 if (Tag == LLVMContext::OB_deopt) { 3110 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3111 FoundDeoptBundle = true; 3112 } else if (Tag == LLVMContext::OB_gc_transition) { 3113 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3114 Call); 3115 FoundGCTransitionBundle = true; 3116 } else if (Tag == LLVMContext::OB_funclet) { 3117 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3118 FoundFuncletBundle = true; 3119 Assert(BU.Inputs.size() == 1, 3120 "Expected exactly one funclet bundle operand", Call); 3121 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3122 "Funclet bundle operands should correspond to a FuncletPadInst", 3123 Call); 3124 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3125 Assert(!FoundCFGuardTargetBundle, 3126 "Multiple CFGuardTarget operand bundles", Call); 3127 FoundCFGuardTargetBundle = true; 3128 Assert(BU.Inputs.size() == 1, 3129 "Expected exactly one cfguardtarget bundle operand", Call); 3130 } else if (Tag == LLVMContext::OB_preallocated) { 3131 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3132 Call); 3133 FoundPreallocatedBundle = true; 3134 Assert(BU.Inputs.size() == 1, 3135 "Expected exactly one preallocated bundle operand", Call); 3136 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3137 Assert(Input && 3138 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3139 "\"preallocated\" argument must be a token from " 3140 "llvm.call.preallocated.setup", 3141 Call); 3142 } else if (Tag == LLVMContext::OB_gc_live) { 3143 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3144 Call); 3145 FoundGCLiveBundle = true; 3146 } 3147 } 3148 3149 // Verify that each inlinable callsite of a debug-info-bearing function in a 3150 // debug-info-bearing function has a debug location attached to it. Failure to 3151 // do so causes assertion failures when the inliner sets up inline scope info. 3152 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3153 Call.getCalledFunction()->getSubprogram()) 3154 AssertDI(Call.getDebugLoc(), 3155 "inlinable function call in a function with " 3156 "debug info must have a !dbg location", 3157 Call); 3158 3159 visitInstruction(Call); 3160 } 3161 3162 /// Two types are "congruent" if they are identical, or if they are both pointer 3163 /// types with different pointee types and the same address space. 3164 static bool isTypeCongruent(Type *L, Type *R) { 3165 if (L == R) 3166 return true; 3167 PointerType *PL = dyn_cast<PointerType>(L); 3168 PointerType *PR = dyn_cast<PointerType>(R); 3169 if (!PL || !PR) 3170 return false; 3171 return PL->getAddressSpace() == PR->getAddressSpace(); 3172 } 3173 3174 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3175 static const Attribute::AttrKind ABIAttrs[] = { 3176 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3177 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3178 Attribute::Preallocated}; 3179 AttrBuilder Copy; 3180 for (auto AK : ABIAttrs) { 3181 if (Attrs.hasParamAttribute(I, AK)) 3182 Copy.addAttribute(AK); 3183 } 3184 // `align` is ABI-affecting only in combination with `byval`. 3185 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3186 Attrs.hasParamAttribute(I, Attribute::ByVal)) 3187 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3188 return Copy; 3189 } 3190 3191 void Verifier::verifyMustTailCall(CallInst &CI) { 3192 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3193 3194 // - The caller and callee prototypes must match. Pointer types of 3195 // parameters or return types may differ in pointee type, but not 3196 // address space. 3197 Function *F = CI.getParent()->getParent(); 3198 FunctionType *CallerTy = F->getFunctionType(); 3199 FunctionType *CalleeTy = CI.getFunctionType(); 3200 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3201 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3202 "cannot guarantee tail call due to mismatched parameter counts", 3203 &CI); 3204 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3205 Assert( 3206 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3207 "cannot guarantee tail call due to mismatched parameter types", &CI); 3208 } 3209 } 3210 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3211 "cannot guarantee tail call due to mismatched varargs", &CI); 3212 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3213 "cannot guarantee tail call due to mismatched return types", &CI); 3214 3215 // - The calling conventions of the caller and callee must match. 3216 Assert(F->getCallingConv() == CI.getCallingConv(), 3217 "cannot guarantee tail call due to mismatched calling conv", &CI); 3218 3219 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3220 // returned, preallocated, and inalloca, must match. 3221 AttributeList CallerAttrs = F->getAttributes(); 3222 AttributeList CalleeAttrs = CI.getAttributes(); 3223 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3224 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3225 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3226 Assert(CallerABIAttrs == CalleeABIAttrs, 3227 "cannot guarantee tail call due to mismatched ABI impacting " 3228 "function attributes", 3229 &CI, CI.getOperand(I)); 3230 } 3231 3232 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3233 // or a pointer bitcast followed by a ret instruction. 3234 // - The ret instruction must return the (possibly bitcasted) value 3235 // produced by the call or void. 3236 Value *RetVal = &CI; 3237 Instruction *Next = CI.getNextNode(); 3238 3239 // Handle the optional bitcast. 3240 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3241 Assert(BI->getOperand(0) == RetVal, 3242 "bitcast following musttail call must use the call", BI); 3243 RetVal = BI; 3244 Next = BI->getNextNode(); 3245 } 3246 3247 // Check the return. 3248 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3249 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3250 &CI); 3251 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3252 "musttail call result must be returned", Ret); 3253 } 3254 3255 void Verifier::visitCallInst(CallInst &CI) { 3256 visitCallBase(CI); 3257 3258 if (CI.isMustTailCall()) 3259 verifyMustTailCall(CI); 3260 } 3261 3262 void Verifier::visitInvokeInst(InvokeInst &II) { 3263 visitCallBase(II); 3264 3265 // Verify that the first non-PHI instruction of the unwind destination is an 3266 // exception handling instruction. 3267 Assert( 3268 II.getUnwindDest()->isEHPad(), 3269 "The unwind destination does not have an exception handling instruction!", 3270 &II); 3271 3272 visitTerminator(II); 3273 } 3274 3275 /// visitUnaryOperator - Check the argument to the unary operator. 3276 /// 3277 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3278 Assert(U.getType() == U.getOperand(0)->getType(), 3279 "Unary operators must have same type for" 3280 "operands and result!", 3281 &U); 3282 3283 switch (U.getOpcode()) { 3284 // Check that floating-point arithmetic operators are only used with 3285 // floating-point operands. 3286 case Instruction::FNeg: 3287 Assert(U.getType()->isFPOrFPVectorTy(), 3288 "FNeg operator only works with float types!", &U); 3289 break; 3290 default: 3291 llvm_unreachable("Unknown UnaryOperator opcode!"); 3292 } 3293 3294 visitInstruction(U); 3295 } 3296 3297 /// visitBinaryOperator - Check that both arguments to the binary operator are 3298 /// of the same type! 3299 /// 3300 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3301 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3302 "Both operands to a binary operator are not of the same type!", &B); 3303 3304 switch (B.getOpcode()) { 3305 // Check that integer arithmetic operators are only used with 3306 // integral operands. 3307 case Instruction::Add: 3308 case Instruction::Sub: 3309 case Instruction::Mul: 3310 case Instruction::SDiv: 3311 case Instruction::UDiv: 3312 case Instruction::SRem: 3313 case Instruction::URem: 3314 Assert(B.getType()->isIntOrIntVectorTy(), 3315 "Integer arithmetic operators only work with integral types!", &B); 3316 Assert(B.getType() == B.getOperand(0)->getType(), 3317 "Integer arithmetic operators must have same type " 3318 "for operands and result!", 3319 &B); 3320 break; 3321 // Check that floating-point arithmetic operators are only used with 3322 // floating-point operands. 3323 case Instruction::FAdd: 3324 case Instruction::FSub: 3325 case Instruction::FMul: 3326 case Instruction::FDiv: 3327 case Instruction::FRem: 3328 Assert(B.getType()->isFPOrFPVectorTy(), 3329 "Floating-point arithmetic operators only work with " 3330 "floating-point types!", 3331 &B); 3332 Assert(B.getType() == B.getOperand(0)->getType(), 3333 "Floating-point arithmetic operators must have same type " 3334 "for operands and result!", 3335 &B); 3336 break; 3337 // Check that logical operators are only used with integral operands. 3338 case Instruction::And: 3339 case Instruction::Or: 3340 case Instruction::Xor: 3341 Assert(B.getType()->isIntOrIntVectorTy(), 3342 "Logical operators only work with integral types!", &B); 3343 Assert(B.getType() == B.getOperand(0)->getType(), 3344 "Logical operators must have same type for operands and result!", 3345 &B); 3346 break; 3347 case Instruction::Shl: 3348 case Instruction::LShr: 3349 case Instruction::AShr: 3350 Assert(B.getType()->isIntOrIntVectorTy(), 3351 "Shifts only work with integral types!", &B); 3352 Assert(B.getType() == B.getOperand(0)->getType(), 3353 "Shift return type must be same as operands!", &B); 3354 break; 3355 default: 3356 llvm_unreachable("Unknown BinaryOperator opcode!"); 3357 } 3358 3359 visitInstruction(B); 3360 } 3361 3362 void Verifier::visitICmpInst(ICmpInst &IC) { 3363 // Check that the operands are the same type 3364 Type *Op0Ty = IC.getOperand(0)->getType(); 3365 Type *Op1Ty = IC.getOperand(1)->getType(); 3366 Assert(Op0Ty == Op1Ty, 3367 "Both operands to ICmp instruction are not of the same type!", &IC); 3368 // Check that the operands are the right type 3369 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3370 "Invalid operand types for ICmp instruction", &IC); 3371 // Check that the predicate is valid. 3372 Assert(IC.isIntPredicate(), 3373 "Invalid predicate in ICmp instruction!", &IC); 3374 3375 visitInstruction(IC); 3376 } 3377 3378 void Verifier::visitFCmpInst(FCmpInst &FC) { 3379 // Check that the operands are the same type 3380 Type *Op0Ty = FC.getOperand(0)->getType(); 3381 Type *Op1Ty = FC.getOperand(1)->getType(); 3382 Assert(Op0Ty == Op1Ty, 3383 "Both operands to FCmp instruction are not of the same type!", &FC); 3384 // Check that the operands are the right type 3385 Assert(Op0Ty->isFPOrFPVectorTy(), 3386 "Invalid operand types for FCmp instruction", &FC); 3387 // Check that the predicate is valid. 3388 Assert(FC.isFPPredicate(), 3389 "Invalid predicate in FCmp instruction!", &FC); 3390 3391 visitInstruction(FC); 3392 } 3393 3394 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3395 Assert( 3396 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3397 "Invalid extractelement operands!", &EI); 3398 visitInstruction(EI); 3399 } 3400 3401 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3402 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3403 IE.getOperand(2)), 3404 "Invalid insertelement operands!", &IE); 3405 visitInstruction(IE); 3406 } 3407 3408 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3409 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3410 SV.getShuffleMask()), 3411 "Invalid shufflevector operands!", &SV); 3412 visitInstruction(SV); 3413 } 3414 3415 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3416 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3417 3418 Assert(isa<PointerType>(TargetTy), 3419 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3420 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3421 3422 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3423 Assert(all_of( 3424 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3425 "GEP indexes must be integers", &GEP); 3426 Type *ElTy = 3427 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3428 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3429 3430 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3431 GEP.getResultElementType() == ElTy, 3432 "GEP is not of right type for indices!", &GEP, ElTy); 3433 3434 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3435 // Additional checks for vector GEPs. 3436 ElementCount GEPWidth = GEPVTy->getElementCount(); 3437 if (GEP.getPointerOperandType()->isVectorTy()) 3438 Assert( 3439 GEPWidth == 3440 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3441 "Vector GEP result width doesn't match operand's", &GEP); 3442 for (Value *Idx : Idxs) { 3443 Type *IndexTy = Idx->getType(); 3444 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3445 ElementCount IndexWidth = IndexVTy->getElementCount(); 3446 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3447 } 3448 Assert(IndexTy->isIntOrIntVectorTy(), 3449 "All GEP indices should be of integer type"); 3450 } 3451 } 3452 3453 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3454 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3455 "GEP address space doesn't match type", &GEP); 3456 } 3457 3458 visitInstruction(GEP); 3459 } 3460 3461 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3462 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3463 } 3464 3465 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3466 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3467 "precondition violation"); 3468 3469 unsigned NumOperands = Range->getNumOperands(); 3470 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3471 unsigned NumRanges = NumOperands / 2; 3472 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3473 3474 ConstantRange LastRange(1, true); // Dummy initial value 3475 for (unsigned i = 0; i < NumRanges; ++i) { 3476 ConstantInt *Low = 3477 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3478 Assert(Low, "The lower limit must be an integer!", Low); 3479 ConstantInt *High = 3480 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3481 Assert(High, "The upper limit must be an integer!", High); 3482 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3483 "Range types must match instruction type!", &I); 3484 3485 APInt HighV = High->getValue(); 3486 APInt LowV = Low->getValue(); 3487 ConstantRange CurRange(LowV, HighV); 3488 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3489 "Range must not be empty!", Range); 3490 if (i != 0) { 3491 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3492 "Intervals are overlapping", Range); 3493 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3494 Range); 3495 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3496 Range); 3497 } 3498 LastRange = ConstantRange(LowV, HighV); 3499 } 3500 if (NumRanges > 2) { 3501 APInt FirstLow = 3502 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3503 APInt FirstHigh = 3504 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3505 ConstantRange FirstRange(FirstLow, FirstHigh); 3506 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3507 "Intervals are overlapping", Range); 3508 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3509 Range); 3510 } 3511 } 3512 3513 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3514 unsigned Size = DL.getTypeSizeInBits(Ty); 3515 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3516 Assert(!(Size & (Size - 1)), 3517 "atomic memory access' operand must have a power-of-two size", Ty, I); 3518 } 3519 3520 void Verifier::visitLoadInst(LoadInst &LI) { 3521 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3522 Assert(PTy, "Load operand must be a pointer.", &LI); 3523 Type *ElTy = LI.getType(); 3524 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3525 "huge alignment values are unsupported", &LI); 3526 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3527 if (LI.isAtomic()) { 3528 Assert(LI.getOrdering() != AtomicOrdering::Release && 3529 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3530 "Load cannot have Release ordering", &LI); 3531 Assert(LI.getAlignment() != 0, 3532 "Atomic load must specify explicit alignment", &LI); 3533 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3534 "atomic load operand must have integer, pointer, or floating point " 3535 "type!", 3536 ElTy, &LI); 3537 checkAtomicMemAccessSize(ElTy, &LI); 3538 } else { 3539 Assert(LI.getSyncScopeID() == SyncScope::System, 3540 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3541 } 3542 3543 visitInstruction(LI); 3544 } 3545 3546 void Verifier::visitStoreInst(StoreInst &SI) { 3547 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3548 Assert(PTy, "Store operand must be a pointer.", &SI); 3549 Type *ElTy = PTy->getElementType(); 3550 Assert(ElTy == SI.getOperand(0)->getType(), 3551 "Stored value type does not match pointer operand type!", &SI, ElTy); 3552 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3553 "huge alignment values are unsupported", &SI); 3554 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3555 if (SI.isAtomic()) { 3556 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3557 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3558 "Store cannot have Acquire ordering", &SI); 3559 Assert(SI.getAlignment() != 0, 3560 "Atomic store must specify explicit alignment", &SI); 3561 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3562 "atomic store operand must have integer, pointer, or floating point " 3563 "type!", 3564 ElTy, &SI); 3565 checkAtomicMemAccessSize(ElTy, &SI); 3566 } else { 3567 Assert(SI.getSyncScopeID() == SyncScope::System, 3568 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3569 } 3570 visitInstruction(SI); 3571 } 3572 3573 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3574 void Verifier::verifySwiftErrorCall(CallBase &Call, 3575 const Value *SwiftErrorVal) { 3576 unsigned Idx = 0; 3577 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3578 if (*I == SwiftErrorVal) { 3579 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3580 "swifterror value when used in a callsite should be marked " 3581 "with swifterror attribute", 3582 SwiftErrorVal, Call); 3583 } 3584 } 3585 } 3586 3587 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3588 // Check that swifterror value is only used by loads, stores, or as 3589 // a swifterror argument. 3590 for (const User *U : SwiftErrorVal->users()) { 3591 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3592 isa<InvokeInst>(U), 3593 "swifterror value can only be loaded and stored from, or " 3594 "as a swifterror argument!", 3595 SwiftErrorVal, U); 3596 // If it is used by a store, check it is the second operand. 3597 if (auto StoreI = dyn_cast<StoreInst>(U)) 3598 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3599 "swifterror value should be the second operand when used " 3600 "by stores", SwiftErrorVal, U); 3601 if (auto *Call = dyn_cast<CallBase>(U)) 3602 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3603 } 3604 } 3605 3606 void Verifier::visitAllocaInst(AllocaInst &AI) { 3607 SmallPtrSet<Type*, 4> Visited; 3608 PointerType *PTy = AI.getType(); 3609 // TODO: Relax this restriction? 3610 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3611 "Allocation instruction pointer not in the stack address space!", 3612 &AI); 3613 Assert(AI.getAllocatedType()->isSized(&Visited), 3614 "Cannot allocate unsized type", &AI); 3615 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3616 "Alloca array size must have integer type", &AI); 3617 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3618 "huge alignment values are unsupported", &AI); 3619 3620 if (AI.isSwiftError()) { 3621 verifySwiftErrorValue(&AI); 3622 } 3623 3624 visitInstruction(AI); 3625 } 3626 3627 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3628 3629 // FIXME: more conditions??? 3630 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3631 "cmpxchg instructions must be atomic.", &CXI); 3632 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3633 "cmpxchg instructions must be atomic.", &CXI); 3634 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3635 "cmpxchg instructions cannot be unordered.", &CXI); 3636 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3637 "cmpxchg instructions cannot be unordered.", &CXI); 3638 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3639 "cmpxchg instructions failure argument shall be no stronger than the " 3640 "success argument", 3641 &CXI); 3642 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3643 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3644 "cmpxchg failure ordering cannot include release semantics", &CXI); 3645 3646 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3647 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3648 Type *ElTy = PTy->getElementType(); 3649 Assert(ElTy->isIntOrPtrTy(), 3650 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3651 checkAtomicMemAccessSize(ElTy, &CXI); 3652 Assert(ElTy == CXI.getOperand(1)->getType(), 3653 "Expected value type does not match pointer operand type!", &CXI, 3654 ElTy); 3655 Assert(ElTy == CXI.getOperand(2)->getType(), 3656 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3657 visitInstruction(CXI); 3658 } 3659 3660 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3661 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3662 "atomicrmw instructions must be atomic.", &RMWI); 3663 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3664 "atomicrmw instructions cannot be unordered.", &RMWI); 3665 auto Op = RMWI.getOperation(); 3666 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3667 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3668 Type *ElTy = PTy->getElementType(); 3669 if (Op == AtomicRMWInst::Xchg) { 3670 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3671 AtomicRMWInst::getOperationName(Op) + 3672 " operand must have integer or floating point type!", 3673 &RMWI, ElTy); 3674 } else if (AtomicRMWInst::isFPOperation(Op)) { 3675 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3676 AtomicRMWInst::getOperationName(Op) + 3677 " operand must have floating point type!", 3678 &RMWI, ElTy); 3679 } else { 3680 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3681 AtomicRMWInst::getOperationName(Op) + 3682 " operand must have integer type!", 3683 &RMWI, ElTy); 3684 } 3685 checkAtomicMemAccessSize(ElTy, &RMWI); 3686 Assert(ElTy == RMWI.getOperand(1)->getType(), 3687 "Argument value type does not match pointer operand type!", &RMWI, 3688 ElTy); 3689 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3690 "Invalid binary operation!", &RMWI); 3691 visitInstruction(RMWI); 3692 } 3693 3694 void Verifier::visitFenceInst(FenceInst &FI) { 3695 const AtomicOrdering Ordering = FI.getOrdering(); 3696 Assert(Ordering == AtomicOrdering::Acquire || 3697 Ordering == AtomicOrdering::Release || 3698 Ordering == AtomicOrdering::AcquireRelease || 3699 Ordering == AtomicOrdering::SequentiallyConsistent, 3700 "fence instructions may only have acquire, release, acq_rel, or " 3701 "seq_cst ordering.", 3702 &FI); 3703 visitInstruction(FI); 3704 } 3705 3706 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3707 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3708 EVI.getIndices()) == EVI.getType(), 3709 "Invalid ExtractValueInst operands!", &EVI); 3710 3711 visitInstruction(EVI); 3712 } 3713 3714 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3715 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3716 IVI.getIndices()) == 3717 IVI.getOperand(1)->getType(), 3718 "Invalid InsertValueInst operands!", &IVI); 3719 3720 visitInstruction(IVI); 3721 } 3722 3723 static Value *getParentPad(Value *EHPad) { 3724 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3725 return FPI->getParentPad(); 3726 3727 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3728 } 3729 3730 void Verifier::visitEHPadPredecessors(Instruction &I) { 3731 assert(I.isEHPad()); 3732 3733 BasicBlock *BB = I.getParent(); 3734 Function *F = BB->getParent(); 3735 3736 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3737 3738 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3739 // The landingpad instruction defines its parent as a landing pad block. The 3740 // landing pad block may be branched to only by the unwind edge of an 3741 // invoke. 3742 for (BasicBlock *PredBB : predecessors(BB)) { 3743 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3744 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3745 "Block containing LandingPadInst must be jumped to " 3746 "only by the unwind edge of an invoke.", 3747 LPI); 3748 } 3749 return; 3750 } 3751 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3752 if (!pred_empty(BB)) 3753 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3754 "Block containg CatchPadInst must be jumped to " 3755 "only by its catchswitch.", 3756 CPI); 3757 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3758 "Catchswitch cannot unwind to one of its catchpads", 3759 CPI->getCatchSwitch(), CPI); 3760 return; 3761 } 3762 3763 // Verify that each pred has a legal terminator with a legal to/from EH 3764 // pad relationship. 3765 Instruction *ToPad = &I; 3766 Value *ToPadParent = getParentPad(ToPad); 3767 for (BasicBlock *PredBB : predecessors(BB)) { 3768 Instruction *TI = PredBB->getTerminator(); 3769 Value *FromPad; 3770 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3771 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3772 "EH pad must be jumped to via an unwind edge", ToPad, II); 3773 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3774 FromPad = Bundle->Inputs[0]; 3775 else 3776 FromPad = ConstantTokenNone::get(II->getContext()); 3777 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3778 FromPad = CRI->getOperand(0); 3779 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3780 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3781 FromPad = CSI; 3782 } else { 3783 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3784 } 3785 3786 // The edge may exit from zero or more nested pads. 3787 SmallSet<Value *, 8> Seen; 3788 for (;; FromPad = getParentPad(FromPad)) { 3789 Assert(FromPad != ToPad, 3790 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3791 if (FromPad == ToPadParent) { 3792 // This is a legal unwind edge. 3793 break; 3794 } 3795 Assert(!isa<ConstantTokenNone>(FromPad), 3796 "A single unwind edge may only enter one EH pad", TI); 3797 Assert(Seen.insert(FromPad).second, 3798 "EH pad jumps through a cycle of pads", FromPad); 3799 } 3800 } 3801 } 3802 3803 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3804 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3805 // isn't a cleanup. 3806 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3807 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3808 3809 visitEHPadPredecessors(LPI); 3810 3811 if (!LandingPadResultTy) 3812 LandingPadResultTy = LPI.getType(); 3813 else 3814 Assert(LandingPadResultTy == LPI.getType(), 3815 "The landingpad instruction should have a consistent result type " 3816 "inside a function.", 3817 &LPI); 3818 3819 Function *F = LPI.getParent()->getParent(); 3820 Assert(F->hasPersonalityFn(), 3821 "LandingPadInst needs to be in a function with a personality.", &LPI); 3822 3823 // The landingpad instruction must be the first non-PHI instruction in the 3824 // block. 3825 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3826 "LandingPadInst not the first non-PHI instruction in the block.", 3827 &LPI); 3828 3829 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3830 Constant *Clause = LPI.getClause(i); 3831 if (LPI.isCatch(i)) { 3832 Assert(isa<PointerType>(Clause->getType()), 3833 "Catch operand does not have pointer type!", &LPI); 3834 } else { 3835 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3836 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3837 "Filter operand is not an array of constants!", &LPI); 3838 } 3839 } 3840 3841 visitInstruction(LPI); 3842 } 3843 3844 void Verifier::visitResumeInst(ResumeInst &RI) { 3845 Assert(RI.getFunction()->hasPersonalityFn(), 3846 "ResumeInst needs to be in a function with a personality.", &RI); 3847 3848 if (!LandingPadResultTy) 3849 LandingPadResultTy = RI.getValue()->getType(); 3850 else 3851 Assert(LandingPadResultTy == RI.getValue()->getType(), 3852 "The resume instruction should have a consistent result type " 3853 "inside a function.", 3854 &RI); 3855 3856 visitTerminator(RI); 3857 } 3858 3859 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3860 BasicBlock *BB = CPI.getParent(); 3861 3862 Function *F = BB->getParent(); 3863 Assert(F->hasPersonalityFn(), 3864 "CatchPadInst needs to be in a function with a personality.", &CPI); 3865 3866 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3867 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3868 CPI.getParentPad()); 3869 3870 // The catchpad instruction must be the first non-PHI instruction in the 3871 // block. 3872 Assert(BB->getFirstNonPHI() == &CPI, 3873 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3874 3875 visitEHPadPredecessors(CPI); 3876 visitFuncletPadInst(CPI); 3877 } 3878 3879 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3880 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3881 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3882 CatchReturn.getOperand(0)); 3883 3884 visitTerminator(CatchReturn); 3885 } 3886 3887 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3888 BasicBlock *BB = CPI.getParent(); 3889 3890 Function *F = BB->getParent(); 3891 Assert(F->hasPersonalityFn(), 3892 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3893 3894 // The cleanuppad instruction must be the first non-PHI instruction in the 3895 // block. 3896 Assert(BB->getFirstNonPHI() == &CPI, 3897 "CleanupPadInst not the first non-PHI instruction in the block.", 3898 &CPI); 3899 3900 auto *ParentPad = CPI.getParentPad(); 3901 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3902 "CleanupPadInst has an invalid parent.", &CPI); 3903 3904 visitEHPadPredecessors(CPI); 3905 visitFuncletPadInst(CPI); 3906 } 3907 3908 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3909 User *FirstUser = nullptr; 3910 Value *FirstUnwindPad = nullptr; 3911 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3912 SmallSet<FuncletPadInst *, 8> Seen; 3913 3914 while (!Worklist.empty()) { 3915 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3916 Assert(Seen.insert(CurrentPad).second, 3917 "FuncletPadInst must not be nested within itself", CurrentPad); 3918 Value *UnresolvedAncestorPad = nullptr; 3919 for (User *U : CurrentPad->users()) { 3920 BasicBlock *UnwindDest; 3921 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3922 UnwindDest = CRI->getUnwindDest(); 3923 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3924 // We allow catchswitch unwind to caller to nest 3925 // within an outer pad that unwinds somewhere else, 3926 // because catchswitch doesn't have a nounwind variant. 3927 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3928 if (CSI->unwindsToCaller()) 3929 continue; 3930 UnwindDest = CSI->getUnwindDest(); 3931 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3932 UnwindDest = II->getUnwindDest(); 3933 } else if (isa<CallInst>(U)) { 3934 // Calls which don't unwind may be found inside funclet 3935 // pads that unwind somewhere else. We don't *require* 3936 // such calls to be annotated nounwind. 3937 continue; 3938 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3939 // The unwind dest for a cleanup can only be found by 3940 // recursive search. Add it to the worklist, and we'll 3941 // search for its first use that determines where it unwinds. 3942 Worklist.push_back(CPI); 3943 continue; 3944 } else { 3945 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3946 continue; 3947 } 3948 3949 Value *UnwindPad; 3950 bool ExitsFPI; 3951 if (UnwindDest) { 3952 UnwindPad = UnwindDest->getFirstNonPHI(); 3953 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3954 continue; 3955 Value *UnwindParent = getParentPad(UnwindPad); 3956 // Ignore unwind edges that don't exit CurrentPad. 3957 if (UnwindParent == CurrentPad) 3958 continue; 3959 // Determine whether the original funclet pad is exited, 3960 // and if we are scanning nested pads determine how many 3961 // of them are exited so we can stop searching their 3962 // children. 3963 Value *ExitedPad = CurrentPad; 3964 ExitsFPI = false; 3965 do { 3966 if (ExitedPad == &FPI) { 3967 ExitsFPI = true; 3968 // Now we can resolve any ancestors of CurrentPad up to 3969 // FPI, but not including FPI since we need to make sure 3970 // to check all direct users of FPI for consistency. 3971 UnresolvedAncestorPad = &FPI; 3972 break; 3973 } 3974 Value *ExitedParent = getParentPad(ExitedPad); 3975 if (ExitedParent == UnwindParent) { 3976 // ExitedPad is the ancestor-most pad which this unwind 3977 // edge exits, so we can resolve up to it, meaning that 3978 // ExitedParent is the first ancestor still unresolved. 3979 UnresolvedAncestorPad = ExitedParent; 3980 break; 3981 } 3982 ExitedPad = ExitedParent; 3983 } while (!isa<ConstantTokenNone>(ExitedPad)); 3984 } else { 3985 // Unwinding to caller exits all pads. 3986 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3987 ExitsFPI = true; 3988 UnresolvedAncestorPad = &FPI; 3989 } 3990 3991 if (ExitsFPI) { 3992 // This unwind edge exits FPI. Make sure it agrees with other 3993 // such edges. 3994 if (FirstUser) { 3995 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3996 "pad must have the same unwind " 3997 "dest", 3998 &FPI, U, FirstUser); 3999 } else { 4000 FirstUser = U; 4001 FirstUnwindPad = UnwindPad; 4002 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4003 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4004 getParentPad(UnwindPad) == getParentPad(&FPI)) 4005 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4006 } 4007 } 4008 // Make sure we visit all uses of FPI, but for nested pads stop as 4009 // soon as we know where they unwind to. 4010 if (CurrentPad != &FPI) 4011 break; 4012 } 4013 if (UnresolvedAncestorPad) { 4014 if (CurrentPad == UnresolvedAncestorPad) { 4015 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4016 // we've found an unwind edge that exits it, because we need to verify 4017 // all direct uses of FPI. 4018 assert(CurrentPad == &FPI); 4019 continue; 4020 } 4021 // Pop off the worklist any nested pads that we've found an unwind 4022 // destination for. The pads on the worklist are the uncles, 4023 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4024 // for all ancestors of CurrentPad up to but not including 4025 // UnresolvedAncestorPad. 4026 Value *ResolvedPad = CurrentPad; 4027 while (!Worklist.empty()) { 4028 Value *UnclePad = Worklist.back(); 4029 Value *AncestorPad = getParentPad(UnclePad); 4030 // Walk ResolvedPad up the ancestor list until we either find the 4031 // uncle's parent or the last resolved ancestor. 4032 while (ResolvedPad != AncestorPad) { 4033 Value *ResolvedParent = getParentPad(ResolvedPad); 4034 if (ResolvedParent == UnresolvedAncestorPad) { 4035 break; 4036 } 4037 ResolvedPad = ResolvedParent; 4038 } 4039 // If the resolved ancestor search didn't find the uncle's parent, 4040 // then the uncle is not yet resolved. 4041 if (ResolvedPad != AncestorPad) 4042 break; 4043 // This uncle is resolved, so pop it from the worklist. 4044 Worklist.pop_back(); 4045 } 4046 } 4047 } 4048 4049 if (FirstUnwindPad) { 4050 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4051 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4052 Value *SwitchUnwindPad; 4053 if (SwitchUnwindDest) 4054 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4055 else 4056 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4057 Assert(SwitchUnwindPad == FirstUnwindPad, 4058 "Unwind edges out of a catch must have the same unwind dest as " 4059 "the parent catchswitch", 4060 &FPI, FirstUser, CatchSwitch); 4061 } 4062 } 4063 4064 visitInstruction(FPI); 4065 } 4066 4067 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4068 BasicBlock *BB = CatchSwitch.getParent(); 4069 4070 Function *F = BB->getParent(); 4071 Assert(F->hasPersonalityFn(), 4072 "CatchSwitchInst needs to be in a function with a personality.", 4073 &CatchSwitch); 4074 4075 // The catchswitch instruction must be the first non-PHI instruction in the 4076 // block. 4077 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4078 "CatchSwitchInst not the first non-PHI instruction in the block.", 4079 &CatchSwitch); 4080 4081 auto *ParentPad = CatchSwitch.getParentPad(); 4082 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4083 "CatchSwitchInst has an invalid parent.", ParentPad); 4084 4085 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4086 Instruction *I = UnwindDest->getFirstNonPHI(); 4087 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4088 "CatchSwitchInst must unwind to an EH block which is not a " 4089 "landingpad.", 4090 &CatchSwitch); 4091 4092 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4093 if (getParentPad(I) == ParentPad) 4094 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4095 } 4096 4097 Assert(CatchSwitch.getNumHandlers() != 0, 4098 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4099 4100 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4101 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4102 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4103 } 4104 4105 visitEHPadPredecessors(CatchSwitch); 4106 visitTerminator(CatchSwitch); 4107 } 4108 4109 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4110 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4111 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4112 CRI.getOperand(0)); 4113 4114 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4115 Instruction *I = UnwindDest->getFirstNonPHI(); 4116 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4117 "CleanupReturnInst must unwind to an EH block which is not a " 4118 "landingpad.", 4119 &CRI); 4120 } 4121 4122 visitTerminator(CRI); 4123 } 4124 4125 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4126 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4127 // If the we have an invalid invoke, don't try to compute the dominance. 4128 // We already reject it in the invoke specific checks and the dominance 4129 // computation doesn't handle multiple edges. 4130 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4131 if (II->getNormalDest() == II->getUnwindDest()) 4132 return; 4133 } 4134 4135 // Quick check whether the def has already been encountered in the same block. 4136 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4137 // uses are defined to happen on the incoming edge, not at the instruction. 4138 // 4139 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4140 // wrapping an SSA value, assert that we've already encountered it. See 4141 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4142 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4143 return; 4144 4145 const Use &U = I.getOperandUse(i); 4146 Assert(DT.dominates(Op, U), 4147 "Instruction does not dominate all uses!", Op, &I); 4148 } 4149 4150 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4151 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4152 "apply only to pointer types", &I); 4153 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4154 "dereferenceable, dereferenceable_or_null apply only to load" 4155 " and inttoptr instructions, use attributes for calls or invokes", &I); 4156 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4157 "take one operand!", &I); 4158 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4159 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4160 "dereferenceable_or_null metadata value must be an i64!", &I); 4161 } 4162 4163 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4164 Assert(MD->getNumOperands() >= 2, 4165 "!prof annotations should have no less than 2 operands", MD); 4166 4167 // Check first operand. 4168 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4169 Assert(isa<MDString>(MD->getOperand(0)), 4170 "expected string with name of the !prof annotation", MD); 4171 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4172 StringRef ProfName = MDS->getString(); 4173 4174 // Check consistency of !prof branch_weights metadata. 4175 if (ProfName.equals("branch_weights")) { 4176 if (isa<InvokeInst>(&I)) { 4177 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4178 "Wrong number of InvokeInst branch_weights operands", MD); 4179 } else { 4180 unsigned ExpectedNumOperands = 0; 4181 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4182 ExpectedNumOperands = BI->getNumSuccessors(); 4183 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4184 ExpectedNumOperands = SI->getNumSuccessors(); 4185 else if (isa<CallInst>(&I)) 4186 ExpectedNumOperands = 1; 4187 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4188 ExpectedNumOperands = IBI->getNumDestinations(); 4189 else if (isa<SelectInst>(&I)) 4190 ExpectedNumOperands = 2; 4191 else 4192 CheckFailed("!prof branch_weights are not allowed for this instruction", 4193 MD); 4194 4195 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4196 "Wrong number of operands", MD); 4197 } 4198 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4199 auto &MDO = MD->getOperand(i); 4200 Assert(MDO, "second operand should not be null", MD); 4201 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4202 "!prof brunch_weights operand is not a const int"); 4203 } 4204 } 4205 } 4206 4207 /// verifyInstruction - Verify that an instruction is well formed. 4208 /// 4209 void Verifier::visitInstruction(Instruction &I) { 4210 BasicBlock *BB = I.getParent(); 4211 Assert(BB, "Instruction not embedded in basic block!", &I); 4212 4213 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4214 for (User *U : I.users()) { 4215 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4216 "Only PHI nodes may reference their own value!", &I); 4217 } 4218 } 4219 4220 // Check that void typed values don't have names 4221 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4222 "Instruction has a name, but provides a void value!", &I); 4223 4224 // Check that the return value of the instruction is either void or a legal 4225 // value type. 4226 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4227 "Instruction returns a non-scalar type!", &I); 4228 4229 // Check that the instruction doesn't produce metadata. Calls are already 4230 // checked against the callee type. 4231 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4232 "Invalid use of metadata!", &I); 4233 4234 // Check that all uses of the instruction, if they are instructions 4235 // themselves, actually have parent basic blocks. If the use is not an 4236 // instruction, it is an error! 4237 for (Use &U : I.uses()) { 4238 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4239 Assert(Used->getParent() != nullptr, 4240 "Instruction referencing" 4241 " instruction not embedded in a basic block!", 4242 &I, Used); 4243 else { 4244 CheckFailed("Use of instruction is not an instruction!", U); 4245 return; 4246 } 4247 } 4248 4249 // Get a pointer to the call base of the instruction if it is some form of 4250 // call. 4251 const CallBase *CBI = dyn_cast<CallBase>(&I); 4252 4253 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4254 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4255 4256 // Check to make sure that only first-class-values are operands to 4257 // instructions. 4258 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4259 Assert(false, "Instruction operands must be first-class values!", &I); 4260 } 4261 4262 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4263 // Check to make sure that the "address of" an intrinsic function is never 4264 // taken. 4265 Assert(!F->isIntrinsic() || 4266 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4267 "Cannot take the address of an intrinsic!", &I); 4268 Assert( 4269 !F->isIntrinsic() || isa<CallInst>(I) || 4270 F->getIntrinsicID() == Intrinsic::donothing || 4271 F->getIntrinsicID() == Intrinsic::coro_resume || 4272 F->getIntrinsicID() == Intrinsic::coro_destroy || 4273 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4274 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4275 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4276 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4277 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4278 "statepoint, coro_resume or coro_destroy", 4279 &I); 4280 Assert(F->getParent() == &M, "Referencing function in another module!", 4281 &I, &M, F, F->getParent()); 4282 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4283 Assert(OpBB->getParent() == BB->getParent(), 4284 "Referring to a basic block in another function!", &I); 4285 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4286 Assert(OpArg->getParent() == BB->getParent(), 4287 "Referring to an argument in another function!", &I); 4288 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4289 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4290 &M, GV, GV->getParent()); 4291 } else if (isa<Instruction>(I.getOperand(i))) { 4292 verifyDominatesUse(I, i); 4293 } else if (isa<InlineAsm>(I.getOperand(i))) { 4294 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4295 "Cannot take the address of an inline asm!", &I); 4296 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4297 if (CE->getType()->isPtrOrPtrVectorTy() || 4298 !DL.getNonIntegralAddressSpaces().empty()) { 4299 // If we have a ConstantExpr pointer, we need to see if it came from an 4300 // illegal bitcast. If the datalayout string specifies non-integral 4301 // address spaces then we also need to check for illegal ptrtoint and 4302 // inttoptr expressions. 4303 visitConstantExprsRecursively(CE); 4304 } 4305 } 4306 } 4307 4308 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4309 Assert(I.getType()->isFPOrFPVectorTy(), 4310 "fpmath requires a floating point result!", &I); 4311 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4312 if (ConstantFP *CFP0 = 4313 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4314 const APFloat &Accuracy = CFP0->getValueAPF(); 4315 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4316 "fpmath accuracy must have float type", &I); 4317 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4318 "fpmath accuracy not a positive number!", &I); 4319 } else { 4320 Assert(false, "invalid fpmath accuracy!", &I); 4321 } 4322 } 4323 4324 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4325 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4326 "Ranges are only for loads, calls and invokes!", &I); 4327 visitRangeMetadata(I, Range, I.getType()); 4328 } 4329 4330 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4331 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4332 &I); 4333 Assert(isa<LoadInst>(I), 4334 "nonnull applies only to load instructions, use attributes" 4335 " for calls or invokes", 4336 &I); 4337 } 4338 4339 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4340 visitDereferenceableMetadata(I, MD); 4341 4342 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4343 visitDereferenceableMetadata(I, MD); 4344 4345 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4346 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4347 4348 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4349 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4350 &I); 4351 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4352 "use attributes for calls or invokes", &I); 4353 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4354 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4355 Assert(CI && CI->getType()->isIntegerTy(64), 4356 "align metadata value must be an i64!", &I); 4357 uint64_t Align = CI->getZExtValue(); 4358 Assert(isPowerOf2_64(Align), 4359 "align metadata value must be a power of 2!", &I); 4360 Assert(Align <= Value::MaximumAlignment, 4361 "alignment is larger that implementation defined limit", &I); 4362 } 4363 4364 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4365 visitProfMetadata(I, MD); 4366 4367 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4368 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4369 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4370 } 4371 4372 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4373 verifyFragmentExpression(*DII); 4374 verifyNotEntryValue(*DII); 4375 } 4376 4377 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4378 I.getAllMetadata(MDs); 4379 for (auto Attachment : MDs) { 4380 unsigned Kind = Attachment.first; 4381 auto AllowLocs = 4382 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4383 ? AreDebugLocsAllowed::Yes 4384 : AreDebugLocsAllowed::No; 4385 visitMDNode(*Attachment.second, AllowLocs); 4386 } 4387 4388 InstsInThisBlock.insert(&I); 4389 } 4390 4391 /// Allow intrinsics to be verified in different ways. 4392 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4393 Function *IF = Call.getCalledFunction(); 4394 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4395 IF); 4396 4397 // Verify that the intrinsic prototype lines up with what the .td files 4398 // describe. 4399 FunctionType *IFTy = IF->getFunctionType(); 4400 bool IsVarArg = IFTy->isVarArg(); 4401 4402 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4403 getIntrinsicInfoTableEntries(ID, Table); 4404 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4405 4406 // Walk the descriptors to extract overloaded types. 4407 SmallVector<Type *, 4> ArgTys; 4408 Intrinsic::MatchIntrinsicTypesResult Res = 4409 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4410 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4411 "Intrinsic has incorrect return type!", IF); 4412 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4413 "Intrinsic has incorrect argument type!", IF); 4414 4415 // Verify if the intrinsic call matches the vararg property. 4416 if (IsVarArg) 4417 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4418 "Intrinsic was not defined with variable arguments!", IF); 4419 else 4420 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4421 "Callsite was not defined with variable arguments!", IF); 4422 4423 // All descriptors should be absorbed by now. 4424 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4425 4426 // Now that we have the intrinsic ID and the actual argument types (and we 4427 // know they are legal for the intrinsic!) get the intrinsic name through the 4428 // usual means. This allows us to verify the mangling of argument types into 4429 // the name. 4430 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4431 Assert(ExpectedName == IF->getName(), 4432 "Intrinsic name not mangled correctly for type arguments! " 4433 "Should be: " + 4434 ExpectedName, 4435 IF); 4436 4437 // If the intrinsic takes MDNode arguments, verify that they are either global 4438 // or are local to *this* function. 4439 for (Value *V : Call.args()) 4440 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4441 visitMetadataAsValue(*MD, Call.getCaller()); 4442 4443 switch (ID) { 4444 default: 4445 break; 4446 case Intrinsic::assume: { 4447 for (auto &Elem : Call.bundle_op_infos()) { 4448 Assert(Elem.Tag->getKey() == "ignore" || 4449 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4450 "tags must be valid attribute names"); 4451 Assert(Elem.End - Elem.Begin <= 2, "to many arguments"); 4452 Attribute::AttrKind Kind = 4453 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4454 if (Kind == Attribute::None) 4455 break; 4456 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4457 Assert(Elem.End - Elem.Begin == 2, 4458 "this attribute should have 2 arguments"); 4459 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4460 "the second argument should be a constant integral value"); 4461 } else if (isFuncOnlyAttr(Kind)) { 4462 Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument"); 4463 } else if (!isFuncOrArgAttr(Kind)) { 4464 Assert((Elem.End - Elem.Begin) == 1, 4465 "this attribute should have one argument"); 4466 } 4467 } 4468 break; 4469 } 4470 case Intrinsic::coro_id: { 4471 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4472 if (isa<ConstantPointerNull>(InfoArg)) 4473 break; 4474 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4475 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4476 "info argument of llvm.coro.begin must refer to an initialized " 4477 "constant"); 4478 Constant *Init = GV->getInitializer(); 4479 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4480 "info argument of llvm.coro.begin must refer to either a struct or " 4481 "an array"); 4482 break; 4483 } 4484 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4485 case Intrinsic::INTRINSIC: 4486 #include "llvm/IR/ConstrainedOps.def" 4487 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4488 break; 4489 case Intrinsic::dbg_declare: // llvm.dbg.declare 4490 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4491 "invalid llvm.dbg.declare intrinsic call 1", Call); 4492 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4493 break; 4494 case Intrinsic::dbg_addr: // llvm.dbg.addr 4495 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4496 break; 4497 case Intrinsic::dbg_value: // llvm.dbg.value 4498 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4499 break; 4500 case Intrinsic::dbg_label: // llvm.dbg.label 4501 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4502 break; 4503 case Intrinsic::memcpy: 4504 case Intrinsic::memcpy_inline: 4505 case Intrinsic::memmove: 4506 case Intrinsic::memset: { 4507 const auto *MI = cast<MemIntrinsic>(&Call); 4508 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4509 return Alignment == 0 || isPowerOf2_32(Alignment); 4510 }; 4511 Assert(IsValidAlignment(MI->getDestAlignment()), 4512 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4513 Call); 4514 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4515 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4516 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4517 Call); 4518 } 4519 4520 break; 4521 } 4522 case Intrinsic::memcpy_element_unordered_atomic: 4523 case Intrinsic::memmove_element_unordered_atomic: 4524 case Intrinsic::memset_element_unordered_atomic: { 4525 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4526 4527 ConstantInt *ElementSizeCI = 4528 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4529 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4530 Assert(ElementSizeVal.isPowerOf2(), 4531 "element size of the element-wise atomic memory intrinsic " 4532 "must be a power of 2", 4533 Call); 4534 4535 auto IsValidAlignment = [&](uint64_t Alignment) { 4536 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4537 }; 4538 uint64_t DstAlignment = AMI->getDestAlignment(); 4539 Assert(IsValidAlignment(DstAlignment), 4540 "incorrect alignment of the destination argument", Call); 4541 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4542 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4543 Assert(IsValidAlignment(SrcAlignment), 4544 "incorrect alignment of the source argument", Call); 4545 } 4546 break; 4547 } 4548 case Intrinsic::call_preallocated_setup: { 4549 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4550 Assert(NumArgs != nullptr, 4551 "llvm.call.preallocated.setup argument must be a constant"); 4552 bool FoundCall = false; 4553 for (User *U : Call.users()) { 4554 auto *UseCall = dyn_cast<CallBase>(U); 4555 Assert(UseCall != nullptr, 4556 "Uses of llvm.call.preallocated.setup must be calls"); 4557 const Function *Fn = UseCall->getCalledFunction(); 4558 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4559 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4560 Assert(AllocArgIndex != nullptr, 4561 "llvm.call.preallocated.alloc arg index must be a constant"); 4562 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4563 Assert(AllocArgIndexInt.sge(0) && 4564 AllocArgIndexInt.slt(NumArgs->getValue()), 4565 "llvm.call.preallocated.alloc arg index must be between 0 and " 4566 "corresponding " 4567 "llvm.call.preallocated.setup's argument count"); 4568 } else { 4569 Assert(!FoundCall, "Can have at most one call corresponding to a " 4570 "llvm.call.preallocated.setup"); 4571 FoundCall = true; 4572 size_t NumPreallocatedArgs = 0; 4573 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4574 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4575 ++NumPreallocatedArgs; 4576 } 4577 } 4578 Assert(NumPreallocatedArgs != 0, 4579 "cannot use preallocated intrinsics on a call without " 4580 "preallocated arguments"); 4581 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4582 "llvm.call.preallocated.setup arg size must be equal to number " 4583 "of preallocated arguments " 4584 "at call site", 4585 Call, *UseCall); 4586 // getOperandBundle() cannot be called if more than one of the operand 4587 // bundle exists. There is already a check elsewhere for this, so skip 4588 // here if we see more than one. 4589 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4590 1) { 4591 return; 4592 } 4593 auto PreallocatedBundle = 4594 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4595 Assert(PreallocatedBundle, 4596 "Use of llvm.call.preallocated.setup outside intrinsics " 4597 "must be in \"preallocated\" operand bundle"); 4598 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4599 "preallocated bundle must have token from corresponding " 4600 "llvm.call.preallocated.setup"); 4601 } 4602 } 4603 break; 4604 } 4605 case Intrinsic::call_preallocated_arg: { 4606 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4607 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4608 Intrinsic::call_preallocated_setup, 4609 "llvm.call.preallocated.arg token argument must be a " 4610 "llvm.call.preallocated.setup"); 4611 Assert(Call.hasFnAttr(Attribute::Preallocated), 4612 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4613 "call site attribute"); 4614 break; 4615 } 4616 case Intrinsic::gcroot: 4617 case Intrinsic::gcwrite: 4618 case Intrinsic::gcread: 4619 if (ID == Intrinsic::gcroot) { 4620 AllocaInst *AI = 4621 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4622 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4623 Assert(isa<Constant>(Call.getArgOperand(1)), 4624 "llvm.gcroot parameter #2 must be a constant.", Call); 4625 if (!AI->getAllocatedType()->isPointerTy()) { 4626 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4627 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4628 "or argument #2 must be a non-null constant.", 4629 Call); 4630 } 4631 } 4632 4633 Assert(Call.getParent()->getParent()->hasGC(), 4634 "Enclosing function does not use GC.", Call); 4635 break; 4636 case Intrinsic::init_trampoline: 4637 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4638 "llvm.init_trampoline parameter #2 must resolve to a function.", 4639 Call); 4640 break; 4641 case Intrinsic::prefetch: 4642 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4643 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4644 "invalid arguments to llvm.prefetch", Call); 4645 break; 4646 case Intrinsic::stackprotector: 4647 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4648 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4649 break; 4650 case Intrinsic::localescape: { 4651 BasicBlock *BB = Call.getParent(); 4652 Assert(BB == &BB->getParent()->front(), 4653 "llvm.localescape used outside of entry block", Call); 4654 Assert(!SawFrameEscape, 4655 "multiple calls to llvm.localescape in one function", Call); 4656 for (Value *Arg : Call.args()) { 4657 if (isa<ConstantPointerNull>(Arg)) 4658 continue; // Null values are allowed as placeholders. 4659 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4660 Assert(AI && AI->isStaticAlloca(), 4661 "llvm.localescape only accepts static allocas", Call); 4662 } 4663 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4664 SawFrameEscape = true; 4665 break; 4666 } 4667 case Intrinsic::localrecover: { 4668 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4669 Function *Fn = dyn_cast<Function>(FnArg); 4670 Assert(Fn && !Fn->isDeclaration(), 4671 "llvm.localrecover first " 4672 "argument must be function defined in this module", 4673 Call); 4674 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4675 auto &Entry = FrameEscapeInfo[Fn]; 4676 Entry.second = unsigned( 4677 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4678 break; 4679 } 4680 4681 case Intrinsic::experimental_gc_statepoint: 4682 if (auto *CI = dyn_cast<CallInst>(&Call)) 4683 Assert(!CI->isInlineAsm(), 4684 "gc.statepoint support for inline assembly unimplemented", CI); 4685 Assert(Call.getParent()->getParent()->hasGC(), 4686 "Enclosing function does not use GC.", Call); 4687 4688 verifyStatepoint(Call); 4689 break; 4690 case Intrinsic::experimental_gc_result: { 4691 Assert(Call.getParent()->getParent()->hasGC(), 4692 "Enclosing function does not use GC.", Call); 4693 // Are we tied to a statepoint properly? 4694 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4695 const Function *StatepointFn = 4696 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4697 Assert(StatepointFn && StatepointFn->isDeclaration() && 4698 StatepointFn->getIntrinsicID() == 4699 Intrinsic::experimental_gc_statepoint, 4700 "gc.result operand #1 must be from a statepoint", Call, 4701 Call.getArgOperand(0)); 4702 4703 // Assert that result type matches wrapped callee. 4704 const Value *Target = StatepointCall->getArgOperand(2); 4705 auto *PT = cast<PointerType>(Target->getType()); 4706 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4707 Assert(Call.getType() == TargetFuncType->getReturnType(), 4708 "gc.result result type does not match wrapped callee", Call); 4709 break; 4710 } 4711 case Intrinsic::experimental_gc_relocate: { 4712 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4713 4714 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4715 "gc.relocate must return a pointer or a vector of pointers", Call); 4716 4717 // Check that this relocate is correctly tied to the statepoint 4718 4719 // This is case for relocate on the unwinding path of an invoke statepoint 4720 if (LandingPadInst *LandingPad = 4721 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4722 4723 const BasicBlock *InvokeBB = 4724 LandingPad->getParent()->getUniquePredecessor(); 4725 4726 // Landingpad relocates should have only one predecessor with invoke 4727 // statepoint terminator 4728 Assert(InvokeBB, "safepoints should have unique landingpads", 4729 LandingPad->getParent()); 4730 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4731 InvokeBB); 4732 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4733 "gc relocate should be linked to a statepoint", InvokeBB); 4734 } else { 4735 // In all other cases relocate should be tied to the statepoint directly. 4736 // This covers relocates on a normal return path of invoke statepoint and 4737 // relocates of a call statepoint. 4738 auto Token = Call.getArgOperand(0); 4739 Assert(isa<GCStatepointInst>(Token), 4740 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4741 } 4742 4743 // Verify rest of the relocate arguments. 4744 const CallBase &StatepointCall = 4745 *cast<GCRelocateInst>(Call).getStatepoint(); 4746 4747 // Both the base and derived must be piped through the safepoint. 4748 Value *Base = Call.getArgOperand(1); 4749 Assert(isa<ConstantInt>(Base), 4750 "gc.relocate operand #2 must be integer offset", Call); 4751 4752 Value *Derived = Call.getArgOperand(2); 4753 Assert(isa<ConstantInt>(Derived), 4754 "gc.relocate operand #3 must be integer offset", Call); 4755 4756 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4757 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4758 4759 // Check the bounds 4760 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4761 Assert(BaseIndex < Opt->Inputs.size(), 4762 "gc.relocate: statepoint base index out of bounds", Call); 4763 Assert(DerivedIndex < Opt->Inputs.size(), 4764 "gc.relocate: statepoint derived index out of bounds", Call); 4765 } else { 4766 Assert(BaseIndex < StatepointCall.arg_size(), 4767 "gc.relocate: statepoint base index out of bounds", Call); 4768 Assert(DerivedIndex < StatepointCall.arg_size(), 4769 "gc.relocate: statepoint derived index out of bounds", Call); 4770 4771 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4772 // section of the statepoint's argument. 4773 Assert(StatepointCall.arg_size() > 0, 4774 "gc.statepoint: insufficient arguments"); 4775 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4776 "gc.statement: number of call arguments must be constant integer"); 4777 const uint64_t NumCallArgs = 4778 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4779 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4780 "gc.statepoint: mismatch in number of call arguments"); 4781 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4782 "gc.statepoint: number of transition arguments must be " 4783 "a constant integer"); 4784 const uint64_t NumTransitionArgs = 4785 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4786 ->getZExtValue(); 4787 const uint64_t DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4788 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4789 "gc.statepoint: number of deoptimization arguments must be " 4790 "a constant integer"); 4791 const uint64_t NumDeoptArgs = 4792 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4793 ->getZExtValue(); 4794 const uint64_t GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4795 const uint64_t GCParamArgsEnd = StatepointCall.arg_size(); 4796 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4797 "gc.relocate: statepoint base index doesn't fall within the " 4798 "'gc parameters' section of the statepoint call", 4799 Call); 4800 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4801 "gc.relocate: statepoint derived index doesn't fall within the " 4802 "'gc parameters' section of the statepoint call", 4803 Call); 4804 } 4805 4806 // Relocated value must be either a pointer type or vector-of-pointer type, 4807 // but gc_relocate does not need to return the same pointer type as the 4808 // relocated pointer. It can be casted to the correct type later if it's 4809 // desired. However, they must have the same address space and 'vectorness' 4810 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4811 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4812 "gc.relocate: relocated value must be a gc pointer", Call); 4813 4814 auto ResultType = Call.getType(); 4815 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4816 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4817 "gc.relocate: vector relocates to vector and pointer to pointer", 4818 Call); 4819 Assert( 4820 ResultType->getPointerAddressSpace() == 4821 DerivedType->getPointerAddressSpace(), 4822 "gc.relocate: relocating a pointer shouldn't change its address space", 4823 Call); 4824 break; 4825 } 4826 case Intrinsic::eh_exceptioncode: 4827 case Intrinsic::eh_exceptionpointer: { 4828 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4829 "eh.exceptionpointer argument must be a catchpad", Call); 4830 break; 4831 } 4832 case Intrinsic::get_active_lane_mask: { 4833 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4834 "vector", Call); 4835 auto *ElemTy = Call.getType()->getScalarType(); 4836 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4837 "i1", Call); 4838 break; 4839 } 4840 case Intrinsic::masked_load: { 4841 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4842 Call); 4843 4844 Value *Ptr = Call.getArgOperand(0); 4845 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4846 Value *Mask = Call.getArgOperand(2); 4847 Value *PassThru = Call.getArgOperand(3); 4848 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4849 Call); 4850 Assert(Alignment->getValue().isPowerOf2(), 4851 "masked_load: alignment must be a power of 2", Call); 4852 4853 // DataTy is the overloaded type 4854 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4855 Assert(DataTy == Call.getType(), 4856 "masked_load: return must match pointer type", Call); 4857 Assert(PassThru->getType() == DataTy, 4858 "masked_load: pass through and data type must match", Call); 4859 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4860 cast<VectorType>(DataTy)->getElementCount(), 4861 "masked_load: vector mask must be same length as data", Call); 4862 break; 4863 } 4864 case Intrinsic::masked_store: { 4865 Value *Val = Call.getArgOperand(0); 4866 Value *Ptr = Call.getArgOperand(1); 4867 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4868 Value *Mask = Call.getArgOperand(3); 4869 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4870 Call); 4871 Assert(Alignment->getValue().isPowerOf2(), 4872 "masked_store: alignment must be a power of 2", Call); 4873 4874 // DataTy is the overloaded type 4875 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4876 Assert(DataTy == Val->getType(), 4877 "masked_store: storee must match pointer type", Call); 4878 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4879 cast<VectorType>(DataTy)->getElementCount(), 4880 "masked_store: vector mask must be same length as data", Call); 4881 break; 4882 } 4883 4884 case Intrinsic::masked_gather: { 4885 const APInt &Alignment = 4886 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4887 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4888 "masked_gather: alignment must be 0 or a power of 2", Call); 4889 break; 4890 } 4891 case Intrinsic::masked_scatter: { 4892 const APInt &Alignment = 4893 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4894 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4895 "masked_scatter: alignment must be 0 or a power of 2", Call); 4896 break; 4897 } 4898 4899 case Intrinsic::experimental_guard: { 4900 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4901 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4902 "experimental_guard must have exactly one " 4903 "\"deopt\" operand bundle"); 4904 break; 4905 } 4906 4907 case Intrinsic::experimental_deoptimize: { 4908 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4909 Call); 4910 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4911 "experimental_deoptimize must have exactly one " 4912 "\"deopt\" operand bundle"); 4913 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4914 "experimental_deoptimize return type must match caller return type"); 4915 4916 if (isa<CallInst>(Call)) { 4917 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4918 Assert(RI, 4919 "calls to experimental_deoptimize must be followed by a return"); 4920 4921 if (!Call.getType()->isVoidTy() && RI) 4922 Assert(RI->getReturnValue() == &Call, 4923 "calls to experimental_deoptimize must be followed by a return " 4924 "of the value computed by experimental_deoptimize"); 4925 } 4926 4927 break; 4928 } 4929 case Intrinsic::sadd_sat: 4930 case Intrinsic::uadd_sat: 4931 case Intrinsic::ssub_sat: 4932 case Intrinsic::usub_sat: { 4933 Value *Op1 = Call.getArgOperand(0); 4934 Value *Op2 = Call.getArgOperand(1); 4935 Assert(Op1->getType()->isIntOrIntVectorTy(), 4936 "first operand of [us][add|sub]_sat must be an int type or vector " 4937 "of ints"); 4938 Assert(Op2->getType()->isIntOrIntVectorTy(), 4939 "second operand of [us][add|sub]_sat must be an int type or vector " 4940 "of ints"); 4941 break; 4942 } 4943 case Intrinsic::smul_fix: 4944 case Intrinsic::smul_fix_sat: 4945 case Intrinsic::umul_fix: 4946 case Intrinsic::umul_fix_sat: 4947 case Intrinsic::sdiv_fix: 4948 case Intrinsic::sdiv_fix_sat: 4949 case Intrinsic::udiv_fix: 4950 case Intrinsic::udiv_fix_sat: { 4951 Value *Op1 = Call.getArgOperand(0); 4952 Value *Op2 = Call.getArgOperand(1); 4953 Assert(Op1->getType()->isIntOrIntVectorTy(), 4954 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4955 "vector of ints"); 4956 Assert(Op2->getType()->isIntOrIntVectorTy(), 4957 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4958 "vector of ints"); 4959 4960 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4961 Assert(Op3->getType()->getBitWidth() <= 32, 4962 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 4963 4964 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4965 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 4966 Assert( 4967 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4968 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4969 "the operands"); 4970 } else { 4971 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4972 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4973 "to the width of the operands"); 4974 } 4975 break; 4976 } 4977 case Intrinsic::lround: 4978 case Intrinsic::llround: 4979 case Intrinsic::lrint: 4980 case Intrinsic::llrint: { 4981 Type *ValTy = Call.getArgOperand(0)->getType(); 4982 Type *ResultTy = Call.getType(); 4983 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4984 "Intrinsic does not support vectors", &Call); 4985 break; 4986 } 4987 case Intrinsic::bswap: { 4988 Type *Ty = Call.getType(); 4989 unsigned Size = Ty->getScalarSizeInBits(); 4990 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 4991 break; 4992 } 4993 case Intrinsic::matrix_multiply: 4994 case Intrinsic::matrix_transpose: 4995 case Intrinsic::matrix_columnwise_load: 4996 case Intrinsic::matrix_columnwise_store: { 4997 ConstantInt *NumRows; 4998 ConstantInt *NumColumns; 4999 VectorType *TypeToCheck; 5000 switch (ID) { 5001 case Intrinsic::matrix_multiply: 5002 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5003 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5004 TypeToCheck = cast<VectorType>(Call.getType()); 5005 break; 5006 case Intrinsic::matrix_transpose: 5007 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5008 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5009 TypeToCheck = cast<VectorType>(Call.getType()); 5010 break; 5011 case Intrinsic::matrix_columnwise_load: 5012 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5013 NumColumns = cast<ConstantInt>(Call.getArgOperand(3)); 5014 TypeToCheck = cast<VectorType>(Call.getType()); 5015 break; 5016 case Intrinsic::matrix_columnwise_store: 5017 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5018 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5019 TypeToCheck = cast<VectorType>(Call.getArgOperand(0)->getType()); 5020 break; 5021 default: 5022 llvm_unreachable("unexpected intrinsic"); 5023 } 5024 Assert(TypeToCheck->getNumElements() == 5025 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5026 "result of a matrix operation does not fit in the returned vector"); 5027 break; 5028 } 5029 }; 5030 } 5031 5032 /// Carefully grab the subprogram from a local scope. 5033 /// 5034 /// This carefully grabs the subprogram from a local scope, avoiding the 5035 /// built-in assertions that would typically fire. 5036 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5037 if (!LocalScope) 5038 return nullptr; 5039 5040 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5041 return SP; 5042 5043 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5044 return getSubprogram(LB->getRawScope()); 5045 5046 // Just return null; broken scope chains are checked elsewhere. 5047 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5048 return nullptr; 5049 } 5050 5051 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5052 unsigned NumOperands; 5053 bool HasRoundingMD; 5054 switch (FPI.getIntrinsicID()) { 5055 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5056 case Intrinsic::INTRINSIC: \ 5057 NumOperands = NARG; \ 5058 HasRoundingMD = ROUND_MODE; \ 5059 break; 5060 #include "llvm/IR/ConstrainedOps.def" 5061 default: 5062 llvm_unreachable("Invalid constrained FP intrinsic!"); 5063 } 5064 NumOperands += (1 + HasRoundingMD); 5065 // Compare intrinsics carry an extra predicate metadata operand. 5066 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5067 NumOperands += 1; 5068 Assert((FPI.getNumArgOperands() == NumOperands), 5069 "invalid arguments for constrained FP intrinsic", &FPI); 5070 5071 switch (FPI.getIntrinsicID()) { 5072 case Intrinsic::experimental_constrained_lrint: 5073 case Intrinsic::experimental_constrained_llrint: { 5074 Type *ValTy = FPI.getArgOperand(0)->getType(); 5075 Type *ResultTy = FPI.getType(); 5076 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5077 "Intrinsic does not support vectors", &FPI); 5078 } 5079 break; 5080 5081 case Intrinsic::experimental_constrained_lround: 5082 case Intrinsic::experimental_constrained_llround: { 5083 Type *ValTy = FPI.getArgOperand(0)->getType(); 5084 Type *ResultTy = FPI.getType(); 5085 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5086 "Intrinsic does not support vectors", &FPI); 5087 break; 5088 } 5089 5090 case Intrinsic::experimental_constrained_fcmp: 5091 case Intrinsic::experimental_constrained_fcmps: { 5092 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5093 Assert(CmpInst::isFPPredicate(Pred), 5094 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5095 break; 5096 } 5097 5098 case Intrinsic::experimental_constrained_fptosi: 5099 case Intrinsic::experimental_constrained_fptoui: { 5100 Value *Operand = FPI.getArgOperand(0); 5101 uint64_t NumSrcElem = 0; 5102 Assert(Operand->getType()->isFPOrFPVectorTy(), 5103 "Intrinsic first argument must be floating point", &FPI); 5104 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5105 NumSrcElem = OperandT->getNumElements(); 5106 } 5107 5108 Operand = &FPI; 5109 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5110 "Intrinsic first argument and result disagree on vector use", &FPI); 5111 Assert(Operand->getType()->isIntOrIntVectorTy(), 5112 "Intrinsic result must be an integer", &FPI); 5113 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5114 Assert(NumSrcElem == OperandT->getNumElements(), 5115 "Intrinsic first argument and result vector lengths must be equal", 5116 &FPI); 5117 } 5118 } 5119 break; 5120 5121 case Intrinsic::experimental_constrained_sitofp: 5122 case Intrinsic::experimental_constrained_uitofp: { 5123 Value *Operand = FPI.getArgOperand(0); 5124 uint64_t NumSrcElem = 0; 5125 Assert(Operand->getType()->isIntOrIntVectorTy(), 5126 "Intrinsic first argument must be integer", &FPI); 5127 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5128 NumSrcElem = OperandT->getNumElements(); 5129 } 5130 5131 Operand = &FPI; 5132 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5133 "Intrinsic first argument and result disagree on vector use", &FPI); 5134 Assert(Operand->getType()->isFPOrFPVectorTy(), 5135 "Intrinsic result must be a floating point", &FPI); 5136 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5137 Assert(NumSrcElem == OperandT->getNumElements(), 5138 "Intrinsic first argument and result vector lengths must be equal", 5139 &FPI); 5140 } 5141 } break; 5142 5143 case Intrinsic::experimental_constrained_fptrunc: 5144 case Intrinsic::experimental_constrained_fpext: { 5145 Value *Operand = FPI.getArgOperand(0); 5146 Type *OperandTy = Operand->getType(); 5147 Value *Result = &FPI; 5148 Type *ResultTy = Result->getType(); 5149 Assert(OperandTy->isFPOrFPVectorTy(), 5150 "Intrinsic first argument must be FP or FP vector", &FPI); 5151 Assert(ResultTy->isFPOrFPVectorTy(), 5152 "Intrinsic result must be FP or FP vector", &FPI); 5153 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5154 "Intrinsic first argument and result disagree on vector use", &FPI); 5155 if (OperandTy->isVectorTy()) { 5156 auto *OperandVecTy = cast<VectorType>(OperandTy); 5157 auto *ResultVecTy = cast<VectorType>(ResultTy); 5158 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 5159 "Intrinsic first argument and result vector lengths must be equal", 5160 &FPI); 5161 } 5162 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5163 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5164 "Intrinsic first argument's type must be larger than result type", 5165 &FPI); 5166 } else { 5167 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5168 "Intrinsic first argument's type must be smaller than result type", 5169 &FPI); 5170 } 5171 } 5172 break; 5173 5174 default: 5175 break; 5176 } 5177 5178 // If a non-metadata argument is passed in a metadata slot then the 5179 // error will be caught earlier when the incorrect argument doesn't 5180 // match the specification in the intrinsic call table. Thus, no 5181 // argument type check is needed here. 5182 5183 Assert(FPI.getExceptionBehavior().hasValue(), 5184 "invalid exception behavior argument", &FPI); 5185 if (HasRoundingMD) { 5186 Assert(FPI.getRoundingMode().hasValue(), 5187 "invalid rounding mode argument", &FPI); 5188 } 5189 } 5190 5191 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5192 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5193 AssertDI(isa<ValueAsMetadata>(MD) || 5194 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5195 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5196 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5197 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5198 DII.getRawVariable()); 5199 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5200 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5201 DII.getRawExpression()); 5202 5203 // Ignore broken !dbg attachments; they're checked elsewhere. 5204 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5205 if (!isa<DILocation>(N)) 5206 return; 5207 5208 BasicBlock *BB = DII.getParent(); 5209 Function *F = BB ? BB->getParent() : nullptr; 5210 5211 // The scopes for variables and !dbg attachments must agree. 5212 DILocalVariable *Var = DII.getVariable(); 5213 DILocation *Loc = DII.getDebugLoc(); 5214 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5215 &DII, BB, F); 5216 5217 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5218 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5219 if (!VarSP || !LocSP) 5220 return; // Broken scope chains are checked elsewhere. 5221 5222 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5223 " variable and !dbg attachment", 5224 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5225 Loc->getScope()->getSubprogram()); 5226 5227 // This check is redundant with one in visitLocalVariable(). 5228 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5229 Var->getRawType()); 5230 verifyFnArgs(DII); 5231 } 5232 5233 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5234 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5235 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5236 DLI.getRawLabel()); 5237 5238 // Ignore broken !dbg attachments; they're checked elsewhere. 5239 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5240 if (!isa<DILocation>(N)) 5241 return; 5242 5243 BasicBlock *BB = DLI.getParent(); 5244 Function *F = BB ? BB->getParent() : nullptr; 5245 5246 // The scopes for variables and !dbg attachments must agree. 5247 DILabel *Label = DLI.getLabel(); 5248 DILocation *Loc = DLI.getDebugLoc(); 5249 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5250 &DLI, BB, F); 5251 5252 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5253 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5254 if (!LabelSP || !LocSP) 5255 return; 5256 5257 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5258 " label and !dbg attachment", 5259 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5260 Loc->getScope()->getSubprogram()); 5261 } 5262 5263 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5264 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5265 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5266 5267 // We don't know whether this intrinsic verified correctly. 5268 if (!V || !E || !E->isValid()) 5269 return; 5270 5271 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5272 auto Fragment = E->getFragmentInfo(); 5273 if (!Fragment) 5274 return; 5275 5276 // The frontend helps out GDB by emitting the members of local anonymous 5277 // unions as artificial local variables with shared storage. When SROA splits 5278 // the storage for artificial local variables that are smaller than the entire 5279 // union, the overhang piece will be outside of the allotted space for the 5280 // variable and this check fails. 5281 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5282 if (V->isArtificial()) 5283 return; 5284 5285 verifyFragmentExpression(*V, *Fragment, &I); 5286 } 5287 5288 template <typename ValueOrMetadata> 5289 void Verifier::verifyFragmentExpression(const DIVariable &V, 5290 DIExpression::FragmentInfo Fragment, 5291 ValueOrMetadata *Desc) { 5292 // If there's no size, the type is broken, but that should be checked 5293 // elsewhere. 5294 auto VarSize = V.getSizeInBits(); 5295 if (!VarSize) 5296 return; 5297 5298 unsigned FragSize = Fragment.SizeInBits; 5299 unsigned FragOffset = Fragment.OffsetInBits; 5300 AssertDI(FragSize + FragOffset <= *VarSize, 5301 "fragment is larger than or outside of variable", Desc, &V); 5302 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5303 } 5304 5305 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5306 // This function does not take the scope of noninlined function arguments into 5307 // account. Don't run it if current function is nodebug, because it may 5308 // contain inlined debug intrinsics. 5309 if (!HasDebugInfo) 5310 return; 5311 5312 // For performance reasons only check non-inlined ones. 5313 if (I.getDebugLoc()->getInlinedAt()) 5314 return; 5315 5316 DILocalVariable *Var = I.getVariable(); 5317 AssertDI(Var, "dbg intrinsic without variable"); 5318 5319 unsigned ArgNo = Var->getArg(); 5320 if (!ArgNo) 5321 return; 5322 5323 // Verify there are no duplicate function argument debug info entries. 5324 // These will cause hard-to-debug assertions in the DWARF backend. 5325 if (DebugFnArgs.size() < ArgNo) 5326 DebugFnArgs.resize(ArgNo, nullptr); 5327 5328 auto *Prev = DebugFnArgs[ArgNo - 1]; 5329 DebugFnArgs[ArgNo - 1] = Var; 5330 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5331 Prev, Var); 5332 } 5333 5334 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5335 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5336 5337 // We don't know whether this intrinsic verified correctly. 5338 if (!E || !E->isValid()) 5339 return; 5340 5341 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5342 } 5343 5344 void Verifier::verifyCompileUnits() { 5345 // When more than one Module is imported into the same context, such as during 5346 // an LTO build before linking the modules, ODR type uniquing may cause types 5347 // to point to a different CU. This check does not make sense in this case. 5348 if (M.getContext().isODRUniquingDebugTypes()) 5349 return; 5350 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5351 SmallPtrSet<const Metadata *, 2> Listed; 5352 if (CUs) 5353 Listed.insert(CUs->op_begin(), CUs->op_end()); 5354 for (auto *CU : CUVisited) 5355 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5356 CUVisited.clear(); 5357 } 5358 5359 void Verifier::verifyDeoptimizeCallingConvs() { 5360 if (DeoptimizeDeclarations.empty()) 5361 return; 5362 5363 const Function *First = DeoptimizeDeclarations[0]; 5364 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5365 Assert(First->getCallingConv() == F->getCallingConv(), 5366 "All llvm.experimental.deoptimize declarations must have the same " 5367 "calling convention", 5368 First, F); 5369 } 5370 } 5371 5372 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5373 bool HasSource = F.getSource().hasValue(); 5374 if (!HasSourceDebugInfo.count(&U)) 5375 HasSourceDebugInfo[&U] = HasSource; 5376 AssertDI(HasSource == HasSourceDebugInfo[&U], 5377 "inconsistent use of embedded source"); 5378 } 5379 5380 //===----------------------------------------------------------------------===// 5381 // Implement the public interfaces to this file... 5382 //===----------------------------------------------------------------------===// 5383 5384 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5385 Function &F = const_cast<Function &>(f); 5386 5387 // Don't use a raw_null_ostream. Printing IR is expensive. 5388 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5389 5390 // Note that this function's return value is inverted from what you would 5391 // expect of a function called "verify". 5392 return !V.verify(F); 5393 } 5394 5395 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5396 bool *BrokenDebugInfo) { 5397 // Don't use a raw_null_ostream. Printing IR is expensive. 5398 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5399 5400 bool Broken = false; 5401 for (const Function &F : M) 5402 Broken |= !V.verify(F); 5403 5404 Broken |= !V.verify(); 5405 if (BrokenDebugInfo) 5406 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5407 // Note that this function's return value is inverted from what you would 5408 // expect of a function called "verify". 5409 return Broken; 5410 } 5411 5412 namespace { 5413 5414 struct VerifierLegacyPass : public FunctionPass { 5415 static char ID; 5416 5417 std::unique_ptr<Verifier> V; 5418 bool FatalErrors = true; 5419 5420 VerifierLegacyPass() : FunctionPass(ID) { 5421 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5422 } 5423 explicit VerifierLegacyPass(bool FatalErrors) 5424 : FunctionPass(ID), 5425 FatalErrors(FatalErrors) { 5426 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5427 } 5428 5429 bool doInitialization(Module &M) override { 5430 V = std::make_unique<Verifier>( 5431 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5432 return false; 5433 } 5434 5435 bool runOnFunction(Function &F) override { 5436 if (!V->verify(F) && FatalErrors) { 5437 errs() << "in function " << F.getName() << '\n'; 5438 report_fatal_error("Broken function found, compilation aborted!"); 5439 } 5440 return false; 5441 } 5442 5443 bool doFinalization(Module &M) override { 5444 bool HasErrors = false; 5445 for (Function &F : M) 5446 if (F.isDeclaration()) 5447 HasErrors |= !V->verify(F); 5448 5449 HasErrors |= !V->verify(); 5450 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5451 report_fatal_error("Broken module found, compilation aborted!"); 5452 return false; 5453 } 5454 5455 void getAnalysisUsage(AnalysisUsage &AU) const override { 5456 AU.setPreservesAll(); 5457 } 5458 }; 5459 5460 } // end anonymous namespace 5461 5462 /// Helper to issue failure from the TBAA verification 5463 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5464 if (Diagnostic) 5465 return Diagnostic->CheckFailed(Args...); 5466 } 5467 5468 #define AssertTBAA(C, ...) \ 5469 do { \ 5470 if (!(C)) { \ 5471 CheckFailed(__VA_ARGS__); \ 5472 return false; \ 5473 } \ 5474 } while (false) 5475 5476 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5477 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5478 /// struct-type node describing an aggregate data structure (like a struct). 5479 TBAAVerifier::TBAABaseNodeSummary 5480 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5481 bool IsNewFormat) { 5482 if (BaseNode->getNumOperands() < 2) { 5483 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5484 return {true, ~0u}; 5485 } 5486 5487 auto Itr = TBAABaseNodes.find(BaseNode); 5488 if (Itr != TBAABaseNodes.end()) 5489 return Itr->second; 5490 5491 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5492 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5493 (void)InsertResult; 5494 assert(InsertResult.second && "We just checked!"); 5495 return Result; 5496 } 5497 5498 TBAAVerifier::TBAABaseNodeSummary 5499 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5500 bool IsNewFormat) { 5501 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5502 5503 if (BaseNode->getNumOperands() == 2) { 5504 // Scalar nodes can only be accessed at offset 0. 5505 return isValidScalarTBAANode(BaseNode) 5506 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5507 : InvalidNode; 5508 } 5509 5510 if (IsNewFormat) { 5511 if (BaseNode->getNumOperands() % 3 != 0) { 5512 CheckFailed("Access tag nodes must have the number of operands that is a " 5513 "multiple of 3!", BaseNode); 5514 return InvalidNode; 5515 } 5516 } else { 5517 if (BaseNode->getNumOperands() % 2 != 1) { 5518 CheckFailed("Struct tag nodes must have an odd number of operands!", 5519 BaseNode); 5520 return InvalidNode; 5521 } 5522 } 5523 5524 // Check the type size field. 5525 if (IsNewFormat) { 5526 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5527 BaseNode->getOperand(1)); 5528 if (!TypeSizeNode) { 5529 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5530 return InvalidNode; 5531 } 5532 } 5533 5534 // Check the type name field. In the new format it can be anything. 5535 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5536 CheckFailed("Struct tag nodes have a string as their first operand", 5537 BaseNode); 5538 return InvalidNode; 5539 } 5540 5541 bool Failed = false; 5542 5543 Optional<APInt> PrevOffset; 5544 unsigned BitWidth = ~0u; 5545 5546 // We've already checked that BaseNode is not a degenerate root node with one 5547 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5548 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5549 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5550 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5551 Idx += NumOpsPerField) { 5552 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5553 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5554 if (!isa<MDNode>(FieldTy)) { 5555 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5556 Failed = true; 5557 continue; 5558 } 5559 5560 auto *OffsetEntryCI = 5561 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5562 if (!OffsetEntryCI) { 5563 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5564 Failed = true; 5565 continue; 5566 } 5567 5568 if (BitWidth == ~0u) 5569 BitWidth = OffsetEntryCI->getBitWidth(); 5570 5571 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5572 CheckFailed( 5573 "Bitwidth between the offsets and struct type entries must match", &I, 5574 BaseNode); 5575 Failed = true; 5576 continue; 5577 } 5578 5579 // NB! As far as I can tell, we generate a non-strictly increasing offset 5580 // sequence only from structs that have zero size bit fields. When 5581 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5582 // pick the field lexically the latest in struct type metadata node. This 5583 // mirrors the actual behavior of the alias analysis implementation. 5584 bool IsAscending = 5585 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5586 5587 if (!IsAscending) { 5588 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5589 Failed = true; 5590 } 5591 5592 PrevOffset = OffsetEntryCI->getValue(); 5593 5594 if (IsNewFormat) { 5595 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5596 BaseNode->getOperand(Idx + 2)); 5597 if (!MemberSizeNode) { 5598 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5599 Failed = true; 5600 continue; 5601 } 5602 } 5603 } 5604 5605 return Failed ? InvalidNode 5606 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5607 } 5608 5609 static bool IsRootTBAANode(const MDNode *MD) { 5610 return MD->getNumOperands() < 2; 5611 } 5612 5613 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5614 SmallPtrSetImpl<const MDNode *> &Visited) { 5615 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5616 return false; 5617 5618 if (!isa<MDString>(MD->getOperand(0))) 5619 return false; 5620 5621 if (MD->getNumOperands() == 3) { 5622 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5623 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5624 return false; 5625 } 5626 5627 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5628 return Parent && Visited.insert(Parent).second && 5629 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5630 } 5631 5632 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5633 auto ResultIt = TBAAScalarNodes.find(MD); 5634 if (ResultIt != TBAAScalarNodes.end()) 5635 return ResultIt->second; 5636 5637 SmallPtrSet<const MDNode *, 4> Visited; 5638 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5639 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5640 (void)InsertResult; 5641 assert(InsertResult.second && "Just checked!"); 5642 5643 return Result; 5644 } 5645 5646 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5647 /// Offset in place to be the offset within the field node returned. 5648 /// 5649 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5650 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5651 const MDNode *BaseNode, 5652 APInt &Offset, 5653 bool IsNewFormat) { 5654 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5655 5656 // Scalar nodes have only one possible "field" -- their parent in the access 5657 // hierarchy. Offset must be zero at this point, but our caller is supposed 5658 // to Assert that. 5659 if (BaseNode->getNumOperands() == 2) 5660 return cast<MDNode>(BaseNode->getOperand(1)); 5661 5662 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5663 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5664 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5665 Idx += NumOpsPerField) { 5666 auto *OffsetEntryCI = 5667 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5668 if (OffsetEntryCI->getValue().ugt(Offset)) { 5669 if (Idx == FirstFieldOpNo) { 5670 CheckFailed("Could not find TBAA parent in struct type node", &I, 5671 BaseNode, &Offset); 5672 return nullptr; 5673 } 5674 5675 unsigned PrevIdx = Idx - NumOpsPerField; 5676 auto *PrevOffsetEntryCI = 5677 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5678 Offset -= PrevOffsetEntryCI->getValue(); 5679 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5680 } 5681 } 5682 5683 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5684 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5685 BaseNode->getOperand(LastIdx + 1)); 5686 Offset -= LastOffsetEntryCI->getValue(); 5687 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5688 } 5689 5690 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5691 if (!Type || Type->getNumOperands() < 3) 5692 return false; 5693 5694 // In the new format type nodes shall have a reference to the parent type as 5695 // its first operand. 5696 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5697 if (!Parent) 5698 return false; 5699 5700 return true; 5701 } 5702 5703 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5704 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5705 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5706 isa<AtomicCmpXchgInst>(I), 5707 "This instruction shall not have a TBAA access tag!", &I); 5708 5709 bool IsStructPathTBAA = 5710 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5711 5712 AssertTBAA( 5713 IsStructPathTBAA, 5714 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5715 5716 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5717 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5718 5719 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5720 5721 if (IsNewFormat) { 5722 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5723 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5724 } else { 5725 AssertTBAA(MD->getNumOperands() < 5, 5726 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5727 } 5728 5729 // Check the access size field. 5730 if (IsNewFormat) { 5731 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5732 MD->getOperand(3)); 5733 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5734 } 5735 5736 // Check the immutability flag. 5737 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5738 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5739 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5740 MD->getOperand(ImmutabilityFlagOpNo)); 5741 AssertTBAA(IsImmutableCI, 5742 "Immutability tag on struct tag metadata must be a constant", 5743 &I, MD); 5744 AssertTBAA( 5745 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5746 "Immutability part of the struct tag metadata must be either 0 or 1", 5747 &I, MD); 5748 } 5749 5750 AssertTBAA(BaseNode && AccessType, 5751 "Malformed struct tag metadata: base and access-type " 5752 "should be non-null and point to Metadata nodes", 5753 &I, MD, BaseNode, AccessType); 5754 5755 if (!IsNewFormat) { 5756 AssertTBAA(isValidScalarTBAANode(AccessType), 5757 "Access type node must be a valid scalar type", &I, MD, 5758 AccessType); 5759 } 5760 5761 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5762 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5763 5764 APInt Offset = OffsetCI->getValue(); 5765 bool SeenAccessTypeInPath = false; 5766 5767 SmallPtrSet<MDNode *, 4> StructPath; 5768 5769 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5770 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5771 IsNewFormat)) { 5772 if (!StructPath.insert(BaseNode).second) { 5773 CheckFailed("Cycle detected in struct path", &I, MD); 5774 return false; 5775 } 5776 5777 bool Invalid; 5778 unsigned BaseNodeBitWidth; 5779 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5780 IsNewFormat); 5781 5782 // If the base node is invalid in itself, then we've already printed all the 5783 // errors we wanted to print. 5784 if (Invalid) 5785 return false; 5786 5787 SeenAccessTypeInPath |= BaseNode == AccessType; 5788 5789 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5790 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5791 &I, MD, &Offset); 5792 5793 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5794 (BaseNodeBitWidth == 0 && Offset == 0) || 5795 (IsNewFormat && BaseNodeBitWidth == ~0u), 5796 "Access bit-width not the same as description bit-width", &I, MD, 5797 BaseNodeBitWidth, Offset.getBitWidth()); 5798 5799 if (IsNewFormat && SeenAccessTypeInPath) 5800 break; 5801 } 5802 5803 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5804 &I, MD); 5805 return true; 5806 } 5807 5808 char VerifierLegacyPass::ID = 0; 5809 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5810 5811 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5812 return new VerifierLegacyPass(FatalErrors); 5813 } 5814 5815 AnalysisKey VerifierAnalysis::Key; 5816 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5817 ModuleAnalysisManager &) { 5818 Result Res; 5819 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5820 return Res; 5821 } 5822 5823 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5824 FunctionAnalysisManager &) { 5825 return { llvm::verifyFunction(F, &dbgs()), false }; 5826 } 5827 5828 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5829 auto Res = AM.getResult<VerifierAnalysis>(M); 5830 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5831 report_fatal_error("Broken module found, compilation aborted!"); 5832 5833 return PreservedAnalyses::all(); 5834 } 5835 5836 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5837 auto res = AM.getResult<VerifierAnalysis>(F); 5838 if (res.IRBroken && FatalErrors) 5839 report_fatal_error("Broken function found, compilation aborted!"); 5840 5841 return PreservedAnalyses::all(); 5842 } 5843