1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 //  * Both of a binary operator's parameters are of the same type
17 //  * Verify that the indices of mem access instructions match other operands
18 //  * Verify that arithmetic and other things are only performed on first-class
19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
20 //  * All of the constants in a switch statement are of the correct type
21 //  * The code is in valid SSA form
22 //  * It should be illegal to put a label into any other type (like a structure)
23 //    or to return one. [except constant arrays!]
24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 //  * PHI nodes must have an entry for each predecessor, with no extras.
26 //  * PHI nodes must be the first thing in a basic block, all grouped together
27 //  * PHI nodes must have at least one entry
28 //  * All basic blocks should only end with terminator insts, not contain them
29 //  * The entry node to a function must not have predecessors
30 //  * All Instructions must be embedded into a basic block
31 //  * Functions cannot take a void-typed parameter
32 //  * Verify that a function's argument list agrees with it's declared type.
33 //  * It is illegal to specify a name for a void value.
34 //  * It is illegal to have a internal global value with no initializer
35 //  * It is illegal to have a ret instruction that returns a value that does not
36 //    agree with the function return value type.
37 //  * Function call argument types match the function prototype
38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
39 //    only by the unwind edge of an invoke instruction.
40 //  * A landingpad instruction must be the first non-PHI instruction in the
41 //    block.
42 //  * Landingpad instructions must be in a function with a personality function.
43 //  * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/ilist.h"
53 #include "llvm/ADT/MapVector.h"
54 #include "llvm/ADT/Optional.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/SmallSet.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/IR/Argument.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Dominators.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GlobalAlias.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/InstVisitor.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/AtomicOrdering.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/Dwarf.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119 
120 namespace llvm {
121 
122 struct VerifierSupport {
123   raw_ostream *OS;
124   const Module &M;
125   ModuleSlotTracker MST;
126   const DataLayout &DL;
127   LLVMContext &Context;
128 
129   /// Track the brokenness of the module while recursively visiting.
130   bool Broken = false;
131   /// Broken debug info can be "recovered" from by stripping the debug info.
132   bool BrokenDebugInfo = false;
133   /// Whether to treat broken debug info as an error.
134   bool TreatBrokenDebugInfoAsError = true;
135 
136   explicit VerifierSupport(raw_ostream *OS, const Module &M)
137       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138 
139 private:
140   void Write(const Module *M) {
141     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142   }
143 
144   void Write(const Value *V) {
145     if (!V)
146       return;
147     if (isa<Instruction>(V)) {
148       V->print(*OS, MST);
149       *OS << '\n';
150     } else {
151       V->printAsOperand(*OS, true, MST);
152       *OS << '\n';
153     }
154   }
155 
156   void Write(ImmutableCallSite CS) {
157     Write(CS.getInstruction());
158   }
159 
160   void Write(const Metadata *MD) {
161     if (!MD)
162       return;
163     MD->print(*OS, MST, &M);
164     *OS << '\n';
165   }
166 
167   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168     Write(MD.get());
169   }
170 
171   void Write(const NamedMDNode *NMD) {
172     if (!NMD)
173       return;
174     NMD->print(*OS, MST);
175     *OS << '\n';
176   }
177 
178   void Write(Type *T) {
179     if (!T)
180       return;
181     *OS << ' ' << *T;
182   }
183 
184   void Write(const Comdat *C) {
185     if (!C)
186       return;
187     *OS << *C;
188   }
189 
190   void Write(const APInt *AI) {
191     if (!AI)
192       return;
193     *OS << *AI << '\n';
194   }
195 
196   void Write(const unsigned i) { *OS << i << '\n'; }
197 
198   template <typename T> void Write(ArrayRef<T> Vs) {
199     for (const T &V : Vs)
200       Write(V);
201   }
202 
203   template <typename T1, typename... Ts>
204   void WriteTs(const T1 &V1, const Ts &... Vs) {
205     Write(V1);
206     WriteTs(Vs...);
207   }
208 
209   template <typename... Ts> void WriteTs() {}
210 
211 public:
212   /// \brief A check failed, so printout out the condition and the message.
213   ///
214   /// This provides a nice place to put a breakpoint if you want to see why
215   /// something is not correct.
216   void CheckFailed(const Twine &Message) {
217     if (OS)
218       *OS << Message << '\n';
219     Broken = true;
220   }
221 
222   /// \brief A check failed (with values to print).
223   ///
224   /// This calls the Message-only version so that the above is easier to set a
225   /// breakpoint on.
226   template <typename T1, typename... Ts>
227   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228     CheckFailed(Message);
229     if (OS)
230       WriteTs(V1, Vs...);
231   }
232 
233   /// A debug info check failed.
234   void DebugInfoCheckFailed(const Twine &Message) {
235     if (OS)
236       *OS << Message << '\n';
237     Broken |= TreatBrokenDebugInfoAsError;
238     BrokenDebugInfo = true;
239   }
240 
241   /// A debug info check failed (with values to print).
242   template <typename T1, typename... Ts>
243   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244                             const Ts &... Vs) {
245     DebugInfoCheckFailed(Message);
246     if (OS)
247       WriteTs(V1, Vs...);
248   }
249 };
250 
251 } // namespace llvm
252 
253 namespace {
254 
255 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256   friend class InstVisitor<Verifier>;
257 
258   DominatorTree DT;
259 
260   /// \brief When verifying a basic block, keep track of all of the
261   /// instructions we have seen so far.
262   ///
263   /// This allows us to do efficient dominance checks for the case when an
264   /// instruction has an operand that is an instruction in the same block.
265   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266 
267   /// \brief Keep track of the metadata nodes that have been checked already.
268   SmallPtrSet<const Metadata *, 32> MDNodes;
269 
270   /// Track all DICompileUnits visited.
271   SmallPtrSet<const Metadata *, 2> CUVisited;
272 
273   /// \brief The result type for a landingpad.
274   Type *LandingPadResultTy;
275 
276   /// \brief Whether we've seen a call to @llvm.localescape in this function
277   /// already.
278   bool SawFrameEscape;
279 
280   /// Stores the count of how many objects were passed to llvm.localescape for a
281   /// given function and the largest index passed to llvm.localrecover.
282   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
283 
284   // Maps catchswitches and cleanuppads that unwind to siblings to the
285   // terminators that indicate the unwind, used to detect cycles therein.
286   MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
287 
288   /// Cache of constants visited in search of ConstantExprs.
289   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
290 
291   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
292   SmallVector<const Function *, 4> DeoptimizeDeclarations;
293 
294   // Verify that this GlobalValue is only used in this module.
295   // This map is used to avoid visiting uses twice. We can arrive at a user
296   // twice, if they have multiple operands. In particular for very large
297   // constant expressions, we can arrive at a particular user many times.
298   SmallPtrSet<const Value *, 32> GlobalValueVisited;
299 
300   TBAAVerifier TBAAVerifyHelper;
301 
302   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
303 
304 public:
305   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
306                     const Module &M)
307       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
308         SawFrameEscape(false), TBAAVerifyHelper(this) {
309     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
310   }
311 
312   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
313 
314   bool verify(const Function &F) {
315     assert(F.getParent() == &M &&
316            "An instance of this class only works with a specific module!");
317 
318     // First ensure the function is well-enough formed to compute dominance
319     // information, and directly compute a dominance tree. We don't rely on the
320     // pass manager to provide this as it isolates us from a potentially
321     // out-of-date dominator tree and makes it significantly more complex to run
322     // this code outside of a pass manager.
323     // FIXME: It's really gross that we have to cast away constness here.
324     if (!F.empty())
325       DT.recalculate(const_cast<Function &>(F));
326 
327     for (const BasicBlock &BB : F) {
328       if (!BB.empty() && BB.back().isTerminator())
329         continue;
330 
331       if (OS) {
332         *OS << "Basic Block in function '" << F.getName()
333             << "' does not have terminator!\n";
334         BB.printAsOperand(*OS, true, MST);
335         *OS << "\n";
336       }
337       return false;
338     }
339 
340     Broken = false;
341     // FIXME: We strip const here because the inst visitor strips const.
342     visit(const_cast<Function &>(F));
343     verifySiblingFuncletUnwinds();
344     InstsInThisBlock.clear();
345     LandingPadResultTy = nullptr;
346     SawFrameEscape = false;
347     SiblingFuncletInfo.clear();
348 
349     return !Broken;
350   }
351 
352   /// Verify the module that this instance of \c Verifier was initialized with.
353   bool verify() {
354     Broken = false;
355 
356     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
357     for (const Function &F : M)
358       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
359         DeoptimizeDeclarations.push_back(&F);
360 
361     // Now that we've visited every function, verify that we never asked to
362     // recover a frame index that wasn't escaped.
363     verifyFrameRecoverIndices();
364     for (const GlobalVariable &GV : M.globals())
365       visitGlobalVariable(GV);
366 
367     for (const GlobalAlias &GA : M.aliases())
368       visitGlobalAlias(GA);
369 
370     for (const NamedMDNode &NMD : M.named_metadata())
371       visitNamedMDNode(NMD);
372 
373     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
374       visitComdat(SMEC.getValue());
375 
376     visitModuleFlags(M);
377     visitModuleIdents(M);
378 
379     verifyCompileUnits();
380 
381     verifyDeoptimizeCallingConvs();
382 
383     return !Broken;
384   }
385 
386 private:
387   // Verification methods...
388   void visitGlobalValue(const GlobalValue &GV);
389   void visitGlobalVariable(const GlobalVariable &GV);
390   void visitGlobalAlias(const GlobalAlias &GA);
391   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
392   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
393                            const GlobalAlias &A, const Constant &C);
394   void visitNamedMDNode(const NamedMDNode &NMD);
395   void visitMDNode(const MDNode &MD);
396   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
397   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
398   void visitComdat(const Comdat &C);
399   void visitModuleIdents(const Module &M);
400   void visitModuleFlags(const Module &M);
401   void visitModuleFlag(const MDNode *Op,
402                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
403                        SmallVectorImpl<const MDNode *> &Requirements);
404   void visitFunction(const Function &F);
405   void visitBasicBlock(BasicBlock &BB);
406   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
407   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
408 
409   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
410 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
411 #include "llvm/IR/Metadata.def"
412   void visitDIScope(const DIScope &N);
413   void visitDIVariable(const DIVariable &N);
414   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
415   void visitDITemplateParameter(const DITemplateParameter &N);
416 
417   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
418 
419   // InstVisitor overrides...
420   using InstVisitor<Verifier>::visit;
421   void visit(Instruction &I);
422 
423   void visitTruncInst(TruncInst &I);
424   void visitZExtInst(ZExtInst &I);
425   void visitSExtInst(SExtInst &I);
426   void visitFPTruncInst(FPTruncInst &I);
427   void visitFPExtInst(FPExtInst &I);
428   void visitFPToUIInst(FPToUIInst &I);
429   void visitFPToSIInst(FPToSIInst &I);
430   void visitUIToFPInst(UIToFPInst &I);
431   void visitSIToFPInst(SIToFPInst &I);
432   void visitIntToPtrInst(IntToPtrInst &I);
433   void visitPtrToIntInst(PtrToIntInst &I);
434   void visitBitCastInst(BitCastInst &I);
435   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
436   void visitPHINode(PHINode &PN);
437   void visitBinaryOperator(BinaryOperator &B);
438   void visitICmpInst(ICmpInst &IC);
439   void visitFCmpInst(FCmpInst &FC);
440   void visitExtractElementInst(ExtractElementInst &EI);
441   void visitInsertElementInst(InsertElementInst &EI);
442   void visitShuffleVectorInst(ShuffleVectorInst &EI);
443   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
444   void visitCallInst(CallInst &CI);
445   void visitInvokeInst(InvokeInst &II);
446   void visitGetElementPtrInst(GetElementPtrInst &GEP);
447   void visitLoadInst(LoadInst &LI);
448   void visitStoreInst(StoreInst &SI);
449   void verifyDominatesUse(Instruction &I, unsigned i);
450   void visitInstruction(Instruction &I);
451   void visitTerminatorInst(TerminatorInst &I);
452   void visitBranchInst(BranchInst &BI);
453   void visitReturnInst(ReturnInst &RI);
454   void visitSwitchInst(SwitchInst &SI);
455   void visitIndirectBrInst(IndirectBrInst &BI);
456   void visitSelectInst(SelectInst &SI);
457   void visitUserOp1(Instruction &I);
458   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
459   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
460   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
461   template <class DbgIntrinsicTy>
462   void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
463   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
464   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
465   void visitFenceInst(FenceInst &FI);
466   void visitAllocaInst(AllocaInst &AI);
467   void visitExtractValueInst(ExtractValueInst &EVI);
468   void visitInsertValueInst(InsertValueInst &IVI);
469   void visitEHPadPredecessors(Instruction &I);
470   void visitLandingPadInst(LandingPadInst &LPI);
471   void visitResumeInst(ResumeInst &RI);
472   void visitCatchPadInst(CatchPadInst &CPI);
473   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
474   void visitCleanupPadInst(CleanupPadInst &CPI);
475   void visitFuncletPadInst(FuncletPadInst &FPI);
476   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
477   void visitCleanupReturnInst(CleanupReturnInst &CRI);
478 
479   void verifyCallSite(CallSite CS);
480   void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
481   void verifySwiftErrorValue(const Value *SwiftErrorVal);
482   void verifyMustTailCall(CallInst &CI);
483   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
484                         unsigned ArgNo, std::string &Suffix);
485   bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
486   void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
487                             const Value *V);
488   void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
489                             bool isReturnValue, const Value *V);
490   void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
491                            const Value *V);
492   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
493 
494   void visitConstantExprsRecursively(const Constant *EntryC);
495   void visitConstantExpr(const ConstantExpr *CE);
496   void verifyStatepoint(ImmutableCallSite CS);
497   void verifyFrameRecoverIndices();
498   void verifySiblingFuncletUnwinds();
499 
500   void verifyFragmentExpression(const DbgInfoIntrinsic &I);
501 
502   /// Module-level debug info verification...
503   void verifyCompileUnits();
504 
505   /// Module-level verification that all @llvm.experimental.deoptimize
506   /// declarations share the same calling convention.
507   void verifyDeoptimizeCallingConvs();
508 };
509 
510 } // end anonymous namespace
511 
512 /// We know that cond should be true, if not print an error message.
513 #define Assert(C, ...) \
514   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
515 
516 /// We know that a debug info condition should be true, if not print
517 /// an error message.
518 #define AssertDI(C, ...) \
519   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
520 
521 void Verifier::visit(Instruction &I) {
522   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
523     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
524   InstVisitor<Verifier>::visit(I);
525 }
526 
527 // Helper to recursively iterate over indirect users. By
528 // returning false, the callback can ask to stop recursing
529 // further.
530 static void forEachUser(const Value *User,
531                         SmallPtrSet<const Value *, 32> &Visited,
532                         llvm::function_ref<bool(const Value *)> Callback) {
533   if (!Visited.insert(User).second)
534     return;
535   for (const Value *TheNextUser : User->materialized_users())
536     if (Callback(TheNextUser))
537       forEachUser(TheNextUser, Visited, Callback);
538 }
539 
540 void Verifier::visitGlobalValue(const GlobalValue &GV) {
541   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
542          "Global is external, but doesn't have external or weak linkage!", &GV);
543 
544   Assert(GV.getAlignment() <= Value::MaximumAlignment,
545          "huge alignment values are unsupported", &GV);
546   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
547          "Only global variables can have appending linkage!", &GV);
548 
549   if (GV.hasAppendingLinkage()) {
550     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
551     Assert(GVar && GVar->getValueType()->isArrayTy(),
552            "Only global arrays can have appending linkage!", GVar);
553   }
554 
555   if (GV.isDeclarationForLinker())
556     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
557 
558   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
559     if (const Instruction *I = dyn_cast<Instruction>(V)) {
560       if (!I->getParent() || !I->getParent()->getParent())
561         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
562                     I);
563       else if (I->getParent()->getParent()->getParent() != &M)
564         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
565                     I->getParent()->getParent(),
566                     I->getParent()->getParent()->getParent());
567       return false;
568     } else if (const Function *F = dyn_cast<Function>(V)) {
569       if (F->getParent() != &M)
570         CheckFailed("Global is used by function in a different module", &GV, &M,
571                     F, F->getParent());
572       return false;
573     }
574     return true;
575   });
576 }
577 
578 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
579   if (GV.hasInitializer()) {
580     Assert(GV.getInitializer()->getType() == GV.getValueType(),
581            "Global variable initializer type does not match global "
582            "variable type!",
583            &GV);
584     // If the global has common linkage, it must have a zero initializer and
585     // cannot be constant.
586     if (GV.hasCommonLinkage()) {
587       Assert(GV.getInitializer()->isNullValue(),
588              "'common' global must have a zero initializer!", &GV);
589       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
590              &GV);
591       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
592     }
593   }
594 
595   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
596                        GV.getName() == "llvm.global_dtors")) {
597     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
598            "invalid linkage for intrinsic global variable", &GV);
599     // Don't worry about emitting an error for it not being an array,
600     // visitGlobalValue will complain on appending non-array.
601     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
602       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
603       PointerType *FuncPtrTy =
604           FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
605       // FIXME: Reject the 2-field form in LLVM 4.0.
606       Assert(STy &&
607                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
608                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
609                  STy->getTypeAtIndex(1) == FuncPtrTy,
610              "wrong type for intrinsic global variable", &GV);
611       if (STy->getNumElements() == 3) {
612         Type *ETy = STy->getTypeAtIndex(2);
613         Assert(ETy->isPointerTy() &&
614                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
615                "wrong type for intrinsic global variable", &GV);
616       }
617     }
618   }
619 
620   if (GV.hasName() && (GV.getName() == "llvm.used" ||
621                        GV.getName() == "llvm.compiler.used")) {
622     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
623            "invalid linkage for intrinsic global variable", &GV);
624     Type *GVType = GV.getValueType();
625     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
626       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
627       Assert(PTy, "wrong type for intrinsic global variable", &GV);
628       if (GV.hasInitializer()) {
629         const Constant *Init = GV.getInitializer();
630         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
631         Assert(InitArray, "wrong initalizer for intrinsic global variable",
632                Init);
633         for (Value *Op : InitArray->operands()) {
634           Value *V = Op->stripPointerCastsNoFollowAliases();
635           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
636                      isa<GlobalAlias>(V),
637                  "invalid llvm.used member", V);
638           Assert(V->hasName(), "members of llvm.used must be named", V);
639         }
640       }
641     }
642   }
643 
644   Assert(!GV.hasDLLImportStorageClass() ||
645              (GV.isDeclaration() && GV.hasExternalLinkage()) ||
646              GV.hasAvailableExternallyLinkage(),
647          "Global is marked as dllimport, but not external", &GV);
648 
649   // Visit any debug info attachments.
650   SmallVector<MDNode *, 1> MDs;
651   GV.getMetadata(LLVMContext::MD_dbg, MDs);
652   for (auto *MD : MDs) {
653     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
654       visitDIGlobalVariableExpression(*GVE);
655     else
656       AssertDI(false, "!dbg attachment of global variable must be a DIGlobalVariableExpression");
657   }
658 
659   if (!GV.hasInitializer()) {
660     visitGlobalValue(GV);
661     return;
662   }
663 
664   // Walk any aggregate initializers looking for bitcasts between address spaces
665   visitConstantExprsRecursively(GV.getInitializer());
666 
667   visitGlobalValue(GV);
668 }
669 
670 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
671   SmallPtrSet<const GlobalAlias*, 4> Visited;
672   Visited.insert(&GA);
673   visitAliaseeSubExpr(Visited, GA, C);
674 }
675 
676 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
677                                    const GlobalAlias &GA, const Constant &C) {
678   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
679     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
680            &GA);
681 
682     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
683       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
684 
685       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
686              &GA);
687     } else {
688       // Only continue verifying subexpressions of GlobalAliases.
689       // Do not recurse into global initializers.
690       return;
691     }
692   }
693 
694   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
695     visitConstantExprsRecursively(CE);
696 
697   for (const Use &U : C.operands()) {
698     Value *V = &*U;
699     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
700       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
701     else if (const auto *C2 = dyn_cast<Constant>(V))
702       visitAliaseeSubExpr(Visited, GA, *C2);
703   }
704 }
705 
706 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
707   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
708          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
709          "weak_odr, or external linkage!",
710          &GA);
711   const Constant *Aliasee = GA.getAliasee();
712   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
713   Assert(GA.getType() == Aliasee->getType(),
714          "Alias and aliasee types should match!", &GA);
715 
716   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
717          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
718 
719   visitAliaseeSubExpr(GA, *Aliasee);
720 
721   visitGlobalValue(GA);
722 }
723 
724 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
725   // There used to be various other llvm.dbg.* nodes, but we don't support
726   // upgrading them and we want to reserve the namespace for future uses.
727   if (NMD.getName().startswith("llvm.dbg."))
728     AssertDI(NMD.getName() == "llvm.dbg.cu",
729              "unrecognized named metadata node in the llvm.dbg namespace",
730              &NMD);
731   for (const MDNode *MD : NMD.operands()) {
732     if (NMD.getName() == "llvm.dbg.cu")
733       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
734 
735     if (!MD)
736       continue;
737 
738     visitMDNode(*MD);
739   }
740 }
741 
742 void Verifier::visitMDNode(const MDNode &MD) {
743   // Only visit each node once.  Metadata can be mutually recursive, so this
744   // avoids infinite recursion here, as well as being an optimization.
745   if (!MDNodes.insert(&MD).second)
746     return;
747 
748   switch (MD.getMetadataID()) {
749   default:
750     llvm_unreachable("Invalid MDNode subclass");
751   case Metadata::MDTupleKind:
752     break;
753 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
754   case Metadata::CLASS##Kind:                                                  \
755     visit##CLASS(cast<CLASS>(MD));                                             \
756     break;
757 #include "llvm/IR/Metadata.def"
758   }
759 
760   for (const Metadata *Op : MD.operands()) {
761     if (!Op)
762       continue;
763     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
764            &MD, Op);
765     if (auto *N = dyn_cast<MDNode>(Op)) {
766       visitMDNode(*N);
767       continue;
768     }
769     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
770       visitValueAsMetadata(*V, nullptr);
771       continue;
772     }
773   }
774 
775   // Check these last, so we diagnose problems in operands first.
776   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
777   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
778 }
779 
780 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
781   Assert(MD.getValue(), "Expected valid value", &MD);
782   Assert(!MD.getValue()->getType()->isMetadataTy(),
783          "Unexpected metadata round-trip through values", &MD, MD.getValue());
784 
785   auto *L = dyn_cast<LocalAsMetadata>(&MD);
786   if (!L)
787     return;
788 
789   Assert(F, "function-local metadata used outside a function", L);
790 
791   // If this was an instruction, bb, or argument, verify that it is in the
792   // function that we expect.
793   Function *ActualF = nullptr;
794   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
795     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
796     ActualF = I->getParent()->getParent();
797   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
798     ActualF = BB->getParent();
799   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
800     ActualF = A->getParent();
801   assert(ActualF && "Unimplemented function local metadata case!");
802 
803   Assert(ActualF == F, "function-local metadata used in wrong function", L);
804 }
805 
806 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
807   Metadata *MD = MDV.getMetadata();
808   if (auto *N = dyn_cast<MDNode>(MD)) {
809     visitMDNode(*N);
810     return;
811   }
812 
813   // Only visit each node once.  Metadata can be mutually recursive, so this
814   // avoids infinite recursion here, as well as being an optimization.
815   if (!MDNodes.insert(MD).second)
816     return;
817 
818   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
819     visitValueAsMetadata(*V, F);
820 }
821 
822 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
823 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
824 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
825 
826 template <class Ty>
827 static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
828   for (Metadata *MD : N.operands()) {
829     if (MD) {
830       if (!isa<Ty>(MD))
831         return false;
832     } else {
833       if (!AllowNull)
834         return false;
835     }
836   }
837   return true;
838 }
839 
840 template <class Ty> static bool isValidMetadataArray(const MDTuple &N) {
841   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
842 }
843 
844 template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) {
845   return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
846 }
847 
848 void Verifier::visitDILocation(const DILocation &N) {
849   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
850            "location requires a valid scope", &N, N.getRawScope());
851   if (auto *IA = N.getRawInlinedAt())
852     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
853 }
854 
855 void Verifier::visitGenericDINode(const GenericDINode &N) {
856   AssertDI(N.getTag(), "invalid tag", &N);
857 }
858 
859 void Verifier::visitDIScope(const DIScope &N) {
860   if (auto *F = N.getRawFile())
861     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
862 }
863 
864 void Verifier::visitDISubrange(const DISubrange &N) {
865   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
866   AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
867 }
868 
869 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
870   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
871 }
872 
873 void Verifier::visitDIBasicType(const DIBasicType &N) {
874   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
875                N.getTag() == dwarf::DW_TAG_unspecified_type,
876            "invalid tag", &N);
877 }
878 
879 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
880   // Common scope checks.
881   visitDIScope(N);
882 
883   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
884                N.getTag() == dwarf::DW_TAG_pointer_type ||
885                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
886                N.getTag() == dwarf::DW_TAG_reference_type ||
887                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
888                N.getTag() == dwarf::DW_TAG_const_type ||
889                N.getTag() == dwarf::DW_TAG_volatile_type ||
890                N.getTag() == dwarf::DW_TAG_restrict_type ||
891                N.getTag() == dwarf::DW_TAG_atomic_type ||
892                N.getTag() == dwarf::DW_TAG_member ||
893                N.getTag() == dwarf::DW_TAG_inheritance ||
894                N.getTag() == dwarf::DW_TAG_friend,
895            "invalid tag", &N);
896   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
897     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
898              N.getRawExtraData());
899   }
900 
901   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
902   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
903            N.getRawBaseType());
904 }
905 
906 static bool hasConflictingReferenceFlags(unsigned Flags) {
907   return (Flags & DINode::FlagLValueReference) &&
908          (Flags & DINode::FlagRValueReference);
909 }
910 
911 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
912   auto *Params = dyn_cast<MDTuple>(&RawParams);
913   AssertDI(Params, "invalid template params", &N, &RawParams);
914   for (Metadata *Op : Params->operands()) {
915     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
916              &N, Params, Op);
917   }
918 }
919 
920 void Verifier::visitDICompositeType(const DICompositeType &N) {
921   // Common scope checks.
922   visitDIScope(N);
923 
924   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
925                N.getTag() == dwarf::DW_TAG_structure_type ||
926                N.getTag() == dwarf::DW_TAG_union_type ||
927                N.getTag() == dwarf::DW_TAG_enumeration_type ||
928                N.getTag() == dwarf::DW_TAG_class_type,
929            "invalid tag", &N);
930 
931   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
932   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
933            N.getRawBaseType());
934 
935   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
936            "invalid composite elements", &N, N.getRawElements());
937   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
938            N.getRawVTableHolder());
939   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
940            "invalid reference flags", &N);
941   if (auto *Params = N.getRawTemplateParams())
942     visitTemplateParams(N, *Params);
943 
944   if (N.getTag() == dwarf::DW_TAG_class_type ||
945       N.getTag() == dwarf::DW_TAG_union_type) {
946     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
947              "class/union requires a filename", &N, N.getFile());
948   }
949 }
950 
951 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
952   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
953   if (auto *Types = N.getRawTypeArray()) {
954     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
955     for (Metadata *Ty : N.getTypeArray()->operands()) {
956       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
957     }
958   }
959   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
960            "invalid reference flags", &N);
961 }
962 
963 void Verifier::visitDIFile(const DIFile &N) {
964   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
965   AssertDI((N.getChecksumKind() != DIFile::CSK_None ||
966             N.getChecksum().empty()), "invalid checksum kind", &N);
967 }
968 
969 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
970   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
971   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
972 
973   // Don't bother verifying the compilation directory or producer string
974   // as those could be empty.
975   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
976            N.getRawFile());
977   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
978            N.getFile());
979 
980   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
981            "invalid emission kind", &N);
982 
983   if (auto *Array = N.getRawEnumTypes()) {
984     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
985     for (Metadata *Op : N.getEnumTypes()->operands()) {
986       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
987       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
988                "invalid enum type", &N, N.getEnumTypes(), Op);
989     }
990   }
991   if (auto *Array = N.getRawRetainedTypes()) {
992     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
993     for (Metadata *Op : N.getRetainedTypes()->operands()) {
994       AssertDI(Op && (isa<DIType>(Op) ||
995                       (isa<DISubprogram>(Op) &&
996                        !cast<DISubprogram>(Op)->isDefinition())),
997                "invalid retained type", &N, Op);
998     }
999   }
1000   if (auto *Array = N.getRawGlobalVariables()) {
1001     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1002     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1003       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1004                "invalid global variable ref", &N, Op);
1005     }
1006   }
1007   if (auto *Array = N.getRawImportedEntities()) {
1008     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1009     for (Metadata *Op : N.getImportedEntities()->operands()) {
1010       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1011                &N, Op);
1012     }
1013   }
1014   if (auto *Array = N.getRawMacros()) {
1015     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1016     for (Metadata *Op : N.getMacros()->operands()) {
1017       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1018     }
1019   }
1020   CUVisited.insert(&N);
1021 }
1022 
1023 void Verifier::visitDISubprogram(const DISubprogram &N) {
1024   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1025   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1026   if (auto *F = N.getRawFile())
1027     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1028   if (auto *T = N.getRawType())
1029     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1030   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1031            N.getRawContainingType());
1032   if (auto *Params = N.getRawTemplateParams())
1033     visitTemplateParams(N, *Params);
1034   if (auto *S = N.getRawDeclaration())
1035     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1036              "invalid subprogram declaration", &N, S);
1037   if (auto *RawVars = N.getRawVariables()) {
1038     auto *Vars = dyn_cast<MDTuple>(RawVars);
1039     AssertDI(Vars, "invalid variable list", &N, RawVars);
1040     for (Metadata *Op : Vars->operands()) {
1041       AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
1042                Vars, Op);
1043     }
1044   }
1045   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1046            "invalid reference flags", &N);
1047 
1048   auto *Unit = N.getRawUnit();
1049   if (N.isDefinition()) {
1050     // Subprogram definitions (not part of the type hierarchy).
1051     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1052     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1053     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1054   } else {
1055     // Subprogram declarations (part of the type hierarchy).
1056     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1057   }
1058 }
1059 
1060 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1061   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1062   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1063            "invalid local scope", &N, N.getRawScope());
1064 }
1065 
1066 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1067   visitDILexicalBlockBase(N);
1068 
1069   AssertDI(N.getLine() || !N.getColumn(),
1070            "cannot have column info without line info", &N);
1071 }
1072 
1073 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1074   visitDILexicalBlockBase(N);
1075 }
1076 
1077 void Verifier::visitDINamespace(const DINamespace &N) {
1078   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1079   if (auto *S = N.getRawScope())
1080     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1081 }
1082 
1083 void Verifier::visitDIMacro(const DIMacro &N) {
1084   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1085                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1086            "invalid macinfo type", &N);
1087   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1088   if (!N.getValue().empty()) {
1089     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1090   }
1091 }
1092 
1093 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1094   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1095            "invalid macinfo type", &N);
1096   if (auto *F = N.getRawFile())
1097     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1098 
1099   if (auto *Array = N.getRawElements()) {
1100     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1101     for (Metadata *Op : N.getElements()->operands()) {
1102       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1103     }
1104   }
1105 }
1106 
1107 void Verifier::visitDIModule(const DIModule &N) {
1108   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1109   AssertDI(!N.getName().empty(), "anonymous module", &N);
1110 }
1111 
1112 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1113   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1114 }
1115 
1116 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1117   visitDITemplateParameter(N);
1118 
1119   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1120            &N);
1121 }
1122 
1123 void Verifier::visitDITemplateValueParameter(
1124     const DITemplateValueParameter &N) {
1125   visitDITemplateParameter(N);
1126 
1127   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1128                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1129                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1130            "invalid tag", &N);
1131 }
1132 
1133 void Verifier::visitDIVariable(const DIVariable &N) {
1134   if (auto *S = N.getRawScope())
1135     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1136   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1137   if (auto *F = N.getRawFile())
1138     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1139 }
1140 
1141 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1142   // Checks common to all variables.
1143   visitDIVariable(N);
1144 
1145   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1146   AssertDI(!N.getName().empty(), "missing global variable name", &N);
1147   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1148     AssertDI(isa<DIDerivedType>(Member),
1149              "invalid static data member declaration", &N, Member);
1150   }
1151 }
1152 
1153 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1154   // Checks common to all variables.
1155   visitDIVariable(N);
1156 
1157   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1158   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1159            "local variable requires a valid scope", &N, N.getRawScope());
1160 }
1161 
1162 void Verifier::visitDIExpression(const DIExpression &N) {
1163   AssertDI(N.isValid(), "invalid expression", &N);
1164 }
1165 
1166 void Verifier::visitDIGlobalVariableExpression(
1167     const DIGlobalVariableExpression &GVE) {
1168   AssertDI(GVE.getVariable(), "missing variable");
1169   if (auto *Var = GVE.getVariable())
1170     visitDIGlobalVariable(*Var);
1171   if (auto *Expr = GVE.getExpression())
1172     visitDIExpression(*Expr);
1173 }
1174 
1175 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1176   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1177   if (auto *T = N.getRawType())
1178     AssertDI(isType(T), "invalid type ref", &N, T);
1179   if (auto *F = N.getRawFile())
1180     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1181 }
1182 
1183 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1184   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1185                N.getTag() == dwarf::DW_TAG_imported_declaration,
1186            "invalid tag", &N);
1187   if (auto *S = N.getRawScope())
1188     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1189   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1190            N.getRawEntity());
1191 }
1192 
1193 void Verifier::visitComdat(const Comdat &C) {
1194   // The Module is invalid if the GlobalValue has private linkage.  Entities
1195   // with private linkage don't have entries in the symbol table.
1196   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1197     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1198            GV);
1199 }
1200 
1201 void Verifier::visitModuleIdents(const Module &M) {
1202   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1203   if (!Idents)
1204     return;
1205 
1206   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1207   // Scan each llvm.ident entry and make sure that this requirement is met.
1208   for (const MDNode *N : Idents->operands()) {
1209     Assert(N->getNumOperands() == 1,
1210            "incorrect number of operands in llvm.ident metadata", N);
1211     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1212            ("invalid value for llvm.ident metadata entry operand"
1213             "(the operand should be a string)"),
1214            N->getOperand(0));
1215   }
1216 }
1217 
1218 void Verifier::visitModuleFlags(const Module &M) {
1219   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1220   if (!Flags) return;
1221 
1222   // Scan each flag, and track the flags and requirements.
1223   DenseMap<const MDString*, const MDNode*> SeenIDs;
1224   SmallVector<const MDNode*, 16> Requirements;
1225   for (const MDNode *MDN : Flags->operands())
1226     visitModuleFlag(MDN, SeenIDs, Requirements);
1227 
1228   // Validate that the requirements in the module are valid.
1229   for (const MDNode *Requirement : Requirements) {
1230     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1231     const Metadata *ReqValue = Requirement->getOperand(1);
1232 
1233     const MDNode *Op = SeenIDs.lookup(Flag);
1234     if (!Op) {
1235       CheckFailed("invalid requirement on flag, flag is not present in module",
1236                   Flag);
1237       continue;
1238     }
1239 
1240     if (Op->getOperand(2) != ReqValue) {
1241       CheckFailed(("invalid requirement on flag, "
1242                    "flag does not have the required value"),
1243                   Flag);
1244       continue;
1245     }
1246   }
1247 }
1248 
1249 void
1250 Verifier::visitModuleFlag(const MDNode *Op,
1251                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1252                           SmallVectorImpl<const MDNode *> &Requirements) {
1253   // Each module flag should have three arguments, the merge behavior (a
1254   // constant int), the flag ID (an MDString), and the value.
1255   Assert(Op->getNumOperands() == 3,
1256          "incorrect number of operands in module flag", Op);
1257   Module::ModFlagBehavior MFB;
1258   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1259     Assert(
1260         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1261         "invalid behavior operand in module flag (expected constant integer)",
1262         Op->getOperand(0));
1263     Assert(false,
1264            "invalid behavior operand in module flag (unexpected constant)",
1265            Op->getOperand(0));
1266   }
1267   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1268   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1269          Op->getOperand(1));
1270 
1271   // Sanity check the values for behaviors with additional requirements.
1272   switch (MFB) {
1273   case Module::Error:
1274   case Module::Warning:
1275   case Module::Override:
1276     // These behavior types accept any value.
1277     break;
1278 
1279   case Module::Require: {
1280     // The value should itself be an MDNode with two operands, a flag ID (an
1281     // MDString), and a value.
1282     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1283     Assert(Value && Value->getNumOperands() == 2,
1284            "invalid value for 'require' module flag (expected metadata pair)",
1285            Op->getOperand(2));
1286     Assert(isa<MDString>(Value->getOperand(0)),
1287            ("invalid value for 'require' module flag "
1288             "(first value operand should be a string)"),
1289            Value->getOperand(0));
1290 
1291     // Append it to the list of requirements, to check once all module flags are
1292     // scanned.
1293     Requirements.push_back(Value);
1294     break;
1295   }
1296 
1297   case Module::Append:
1298   case Module::AppendUnique: {
1299     // These behavior types require the operand be an MDNode.
1300     Assert(isa<MDNode>(Op->getOperand(2)),
1301            "invalid value for 'append'-type module flag "
1302            "(expected a metadata node)",
1303            Op->getOperand(2));
1304     break;
1305   }
1306   }
1307 
1308   // Unless this is a "requires" flag, check the ID is unique.
1309   if (MFB != Module::Require) {
1310     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1311     Assert(Inserted,
1312            "module flag identifiers must be unique (or of 'require' type)", ID);
1313   }
1314 }
1315 
1316 void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1317                                     bool isFunction, const Value *V) {
1318   unsigned Slot = ~0U;
1319   for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1320     if (Attrs.getSlotIndex(I) == Idx) {
1321       Slot = I;
1322       break;
1323     }
1324 
1325   assert(Slot != ~0U && "Attribute set inconsistency!");
1326 
1327   for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1328          I != E; ++I) {
1329     if (I->isStringAttribute())
1330       continue;
1331 
1332     if (I->getKindAsEnum() == Attribute::NoReturn ||
1333         I->getKindAsEnum() == Attribute::NoUnwind ||
1334         I->getKindAsEnum() == Attribute::NoInline ||
1335         I->getKindAsEnum() == Attribute::AlwaysInline ||
1336         I->getKindAsEnum() == Attribute::OptimizeForSize ||
1337         I->getKindAsEnum() == Attribute::StackProtect ||
1338         I->getKindAsEnum() == Attribute::StackProtectReq ||
1339         I->getKindAsEnum() == Attribute::StackProtectStrong ||
1340         I->getKindAsEnum() == Attribute::SafeStack ||
1341         I->getKindAsEnum() == Attribute::NoRedZone ||
1342         I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1343         I->getKindAsEnum() == Attribute::Naked ||
1344         I->getKindAsEnum() == Attribute::InlineHint ||
1345         I->getKindAsEnum() == Attribute::StackAlignment ||
1346         I->getKindAsEnum() == Attribute::UWTable ||
1347         I->getKindAsEnum() == Attribute::NonLazyBind ||
1348         I->getKindAsEnum() == Attribute::ReturnsTwice ||
1349         I->getKindAsEnum() == Attribute::SanitizeAddress ||
1350         I->getKindAsEnum() == Attribute::SanitizeThread ||
1351         I->getKindAsEnum() == Attribute::SanitizeMemory ||
1352         I->getKindAsEnum() == Attribute::MinSize ||
1353         I->getKindAsEnum() == Attribute::NoDuplicate ||
1354         I->getKindAsEnum() == Attribute::Builtin ||
1355         I->getKindAsEnum() == Attribute::NoBuiltin ||
1356         I->getKindAsEnum() == Attribute::Cold ||
1357         I->getKindAsEnum() == Attribute::OptimizeNone ||
1358         I->getKindAsEnum() == Attribute::JumpTable ||
1359         I->getKindAsEnum() == Attribute::Convergent ||
1360         I->getKindAsEnum() == Attribute::ArgMemOnly ||
1361         I->getKindAsEnum() == Attribute::NoRecurse ||
1362         I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1363         I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1364         I->getKindAsEnum() == Attribute::AllocSize) {
1365       if (!isFunction) {
1366         CheckFailed("Attribute '" + I->getAsString() +
1367                     "' only applies to functions!", V);
1368         return;
1369       }
1370     } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1371                I->getKindAsEnum() == Attribute::WriteOnly ||
1372                I->getKindAsEnum() == Attribute::ReadNone) {
1373       if (Idx == 0) {
1374         CheckFailed("Attribute '" + I->getAsString() +
1375                     "' does not apply to function returns");
1376         return;
1377       }
1378     } else if (isFunction) {
1379       CheckFailed("Attribute '" + I->getAsString() +
1380                   "' does not apply to functions!", V);
1381       return;
1382     }
1383   }
1384 }
1385 
1386 // VerifyParameterAttrs - Check the given attributes for an argument or return
1387 // value of the specified type.  The value V is printed in error messages.
1388 void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1389                                     bool isReturnValue, const Value *V) {
1390   if (!Attrs.hasAttributes(Idx))
1391     return;
1392 
1393   verifyAttributeTypes(Attrs, Idx, false, V);
1394 
1395   if (isReturnValue)
1396     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1397                !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1398                !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1399                !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1400                !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1401                !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1402                !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&
1403                !Attrs.hasAttribute(Idx, Attribute::SwiftError),
1404            "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1405            "'returned', 'swiftself', and 'swifterror' do not apply to return "
1406            "values!",
1407            V);
1408 
1409   // Check for mutually incompatible attributes.  Only inreg is compatible with
1410   // sret.
1411   unsigned AttrCount = 0;
1412   AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1413   AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1414   AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1415                Attrs.hasAttribute(Idx, Attribute::InReg);
1416   AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1417   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1418                          "and 'sret' are incompatible!",
1419          V);
1420 
1421   Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1422            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1423          "Attributes "
1424          "'inalloca and readonly' are incompatible!",
1425          V);
1426 
1427   Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1428            Attrs.hasAttribute(Idx, Attribute::Returned)),
1429          "Attributes "
1430          "'sret and returned' are incompatible!",
1431          V);
1432 
1433   Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1434            Attrs.hasAttribute(Idx, Attribute::SExt)),
1435          "Attributes "
1436          "'zeroext and signext' are incompatible!",
1437          V);
1438 
1439   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1440            Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1441          "Attributes "
1442          "'readnone and readonly' are incompatible!",
1443          V);
1444 
1445   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1446            Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1447          "Attributes "
1448          "'readnone and writeonly' are incompatible!",
1449          V);
1450 
1451   Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
1452            Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1453          "Attributes "
1454          "'readonly and writeonly' are incompatible!",
1455          V);
1456 
1457   Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1458            Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1459          "Attributes "
1460          "'noinline and alwaysinline' are incompatible!",
1461          V);
1462 
1463   Assert(
1464       !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)),
1465       "Wrong types for attribute: " +
1466           AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty))
1467               .getAsString(Idx),
1468       V);
1469 
1470   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1471     SmallPtrSet<Type*, 4> Visited;
1472     if (!PTy->getElementType()->isSized(&Visited)) {
1473       Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1474                  !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1475              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1476              V);
1477     }
1478     if (!isa<PointerType>(PTy->getElementType()))
1479       Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1480              "Attribute 'swifterror' only applies to parameters "
1481              "with pointer to pointer type!",
1482              V);
1483   } else {
1484     Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1485            "Attribute 'byval' only applies to parameters with pointer type!",
1486            V);
1487     Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1488            "Attribute 'swifterror' only applies to parameters "
1489            "with pointer type!",
1490            V);
1491   }
1492 }
1493 
1494 // Check parameter attributes against a function type.
1495 // The value V is printed in error messages.
1496 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1497                                    const Value *V) {
1498   if (Attrs.isEmpty())
1499     return;
1500 
1501   bool SawNest = false;
1502   bool SawReturned = false;
1503   bool SawSRet = false;
1504   bool SawSwiftSelf = false;
1505   bool SawSwiftError = false;
1506 
1507   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1508     unsigned Idx = Attrs.getSlotIndex(i);
1509 
1510     Type *Ty;
1511     if (Idx == 0)
1512       Ty = FT->getReturnType();
1513     else if (Idx-1 < FT->getNumParams())
1514       Ty = FT->getParamType(Idx-1);
1515     else
1516       break;  // VarArgs attributes, verified elsewhere.
1517 
1518     verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1519 
1520     if (Idx == 0)
1521       continue;
1522 
1523     if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1524       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1525       SawNest = true;
1526     }
1527 
1528     if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1529       Assert(!SawReturned, "More than one parameter has attribute returned!",
1530              V);
1531       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1532              "Incompatible "
1533              "argument and return types for 'returned' attribute",
1534              V);
1535       SawReturned = true;
1536     }
1537 
1538     if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1539       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1540       Assert(Idx == 1 || Idx == 2,
1541              "Attribute 'sret' is not on first or second parameter!", V);
1542       SawSRet = true;
1543     }
1544 
1545     if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1546       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1547       SawSwiftSelf = true;
1548     }
1549 
1550     if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1551       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1552              V);
1553       SawSwiftError = true;
1554     }
1555 
1556     if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1557       Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1558              V);
1559     }
1560   }
1561 
1562   if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1563     return;
1564 
1565   verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1566 
1567   Assert(
1568       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1569         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1570       "Attributes 'readnone and readonly' are incompatible!", V);
1571 
1572   Assert(
1573       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1574         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1575       "Attributes 'readnone and writeonly' are incompatible!", V);
1576 
1577   Assert(
1578       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&
1579         Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1580       "Attributes 'readonly and writeonly' are incompatible!", V);
1581 
1582   Assert(
1583       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1584         Attrs.hasAttribute(AttributeSet::FunctionIndex,
1585                            Attribute::InaccessibleMemOrArgMemOnly)),
1586       "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1587 
1588   Assert(
1589       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1590         Attrs.hasAttribute(AttributeSet::FunctionIndex,
1591                            Attribute::InaccessibleMemOnly)),
1592       "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1593 
1594   Assert(
1595       !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1596         Attrs.hasAttribute(AttributeSet::FunctionIndex,
1597                            Attribute::AlwaysInline)),
1598       "Attributes 'noinline and alwaysinline' are incompatible!", V);
1599 
1600   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1601                          Attribute::OptimizeNone)) {
1602     Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1603            "Attribute 'optnone' requires 'noinline'!", V);
1604 
1605     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1606                                Attribute::OptimizeForSize),
1607            "Attributes 'optsize and optnone' are incompatible!", V);
1608 
1609     Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1610            "Attributes 'minsize and optnone' are incompatible!", V);
1611   }
1612 
1613   if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1614                          Attribute::JumpTable)) {
1615     const GlobalValue *GV = cast<GlobalValue>(V);
1616     Assert(GV->hasGlobalUnnamedAddr(),
1617            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1618   }
1619 
1620   if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1621     std::pair<unsigned, Optional<unsigned>> Args =
1622         Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1623 
1624     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1625       if (ParamNo >= FT->getNumParams()) {
1626         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1627         return false;
1628       }
1629 
1630       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1631         CheckFailed("'allocsize' " + Name +
1632                         " argument must refer to an integer parameter",
1633                     V);
1634         return false;
1635       }
1636 
1637       return true;
1638     };
1639 
1640     if (!CheckParam("element size", Args.first))
1641       return;
1642 
1643     if (Args.second && !CheckParam("number of elements", *Args.second))
1644       return;
1645   }
1646 }
1647 
1648 void Verifier::verifyFunctionMetadata(
1649     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1650   for (const auto &Pair : MDs) {
1651     if (Pair.first == LLVMContext::MD_prof) {
1652       MDNode *MD = Pair.second;
1653       Assert(MD->getNumOperands() == 2,
1654              "!prof annotations should have exactly 2 operands", MD);
1655 
1656       // Check first operand.
1657       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1658              MD);
1659       Assert(isa<MDString>(MD->getOperand(0)),
1660              "expected string with name of the !prof annotation", MD);
1661       MDString *MDS = cast<MDString>(MD->getOperand(0));
1662       StringRef ProfName = MDS->getString();
1663       Assert(ProfName.equals("function_entry_count"),
1664              "first operand should be 'function_entry_count'", MD);
1665 
1666       // Check second operand.
1667       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1668              MD);
1669       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1670              "expected integer argument to function_entry_count", MD);
1671     }
1672   }
1673 }
1674 
1675 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1676   if (!ConstantExprVisited.insert(EntryC).second)
1677     return;
1678 
1679   SmallVector<const Constant *, 16> Stack;
1680   Stack.push_back(EntryC);
1681 
1682   while (!Stack.empty()) {
1683     const Constant *C = Stack.pop_back_val();
1684 
1685     // Check this constant expression.
1686     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1687       visitConstantExpr(CE);
1688 
1689     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1690       // Global Values get visited separately, but we do need to make sure
1691       // that the global value is in the correct module
1692       Assert(GV->getParent() == &M, "Referencing global in another module!",
1693              EntryC, &M, GV, GV->getParent());
1694       continue;
1695     }
1696 
1697     // Visit all sub-expressions.
1698     for (const Use &U : C->operands()) {
1699       const auto *OpC = dyn_cast<Constant>(U);
1700       if (!OpC)
1701         continue;
1702       if (!ConstantExprVisited.insert(OpC).second)
1703         continue;
1704       Stack.push_back(OpC);
1705     }
1706   }
1707 }
1708 
1709 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1710   if (CE->getOpcode() == Instruction::BitCast)
1711     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1712                                  CE->getType()),
1713            "Invalid bitcast", CE);
1714 
1715   if (CE->getOpcode() == Instruction::IntToPtr ||
1716       CE->getOpcode() == Instruction::PtrToInt) {
1717     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1718                       ? CE->getType()
1719                       : CE->getOperand(0)->getType();
1720     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1721                         ? "inttoptr not supported for non-integral pointers"
1722                         : "ptrtoint not supported for non-integral pointers";
1723     Assert(
1724         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1725         Msg);
1726   }
1727 }
1728 
1729 bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1730   if (Attrs.getNumSlots() == 0)
1731     return true;
1732 
1733   unsigned LastSlot = Attrs.getNumSlots() - 1;
1734   unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1735   if (LastIndex <= Params
1736       || (LastIndex == AttributeSet::FunctionIndex
1737           && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1738     return true;
1739 
1740   return false;
1741 }
1742 
1743 /// Verify that statepoint intrinsic is well formed.
1744 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1745   assert(CS.getCalledFunction() &&
1746          CS.getCalledFunction()->getIntrinsicID() ==
1747            Intrinsic::experimental_gc_statepoint);
1748 
1749   const Instruction &CI = *CS.getInstruction();
1750 
1751   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1752          !CS.onlyAccessesArgMemory(),
1753          "gc.statepoint must read and write all memory to preserve "
1754          "reordering restrictions required by safepoint semantics",
1755          &CI);
1756 
1757   const Value *IDV = CS.getArgument(0);
1758   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1759          &CI);
1760 
1761   const Value *NumPatchBytesV = CS.getArgument(1);
1762   Assert(isa<ConstantInt>(NumPatchBytesV),
1763          "gc.statepoint number of patchable bytes must be a constant integer",
1764          &CI);
1765   const int64_t NumPatchBytes =
1766       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1767   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1768   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1769                              "positive",
1770          &CI);
1771 
1772   const Value *Target = CS.getArgument(2);
1773   auto *PT = dyn_cast<PointerType>(Target->getType());
1774   Assert(PT && PT->getElementType()->isFunctionTy(),
1775          "gc.statepoint callee must be of function pointer type", &CI, Target);
1776   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1777 
1778   const Value *NumCallArgsV = CS.getArgument(3);
1779   Assert(isa<ConstantInt>(NumCallArgsV),
1780          "gc.statepoint number of arguments to underlying call "
1781          "must be constant integer",
1782          &CI);
1783   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1784   Assert(NumCallArgs >= 0,
1785          "gc.statepoint number of arguments to underlying call "
1786          "must be positive",
1787          &CI);
1788   const int NumParams = (int)TargetFuncType->getNumParams();
1789   if (TargetFuncType->isVarArg()) {
1790     Assert(NumCallArgs >= NumParams,
1791            "gc.statepoint mismatch in number of vararg call args", &CI);
1792 
1793     // TODO: Remove this limitation
1794     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1795            "gc.statepoint doesn't support wrapping non-void "
1796            "vararg functions yet",
1797            &CI);
1798   } else
1799     Assert(NumCallArgs == NumParams,
1800            "gc.statepoint mismatch in number of call args", &CI);
1801 
1802   const Value *FlagsV = CS.getArgument(4);
1803   Assert(isa<ConstantInt>(FlagsV),
1804          "gc.statepoint flags must be constant integer", &CI);
1805   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1806   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1807          "unknown flag used in gc.statepoint flags argument", &CI);
1808 
1809   // Verify that the types of the call parameter arguments match
1810   // the type of the wrapped callee.
1811   for (int i = 0; i < NumParams; i++) {
1812     Type *ParamType = TargetFuncType->getParamType(i);
1813     Type *ArgType = CS.getArgument(5 + i)->getType();
1814     Assert(ArgType == ParamType,
1815            "gc.statepoint call argument does not match wrapped "
1816            "function type",
1817            &CI);
1818   }
1819 
1820   const int EndCallArgsInx = 4 + NumCallArgs;
1821 
1822   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1823   Assert(isa<ConstantInt>(NumTransitionArgsV),
1824          "gc.statepoint number of transition arguments "
1825          "must be constant integer",
1826          &CI);
1827   const int NumTransitionArgs =
1828       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1829   Assert(NumTransitionArgs >= 0,
1830          "gc.statepoint number of transition arguments must be positive", &CI);
1831   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1832 
1833   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1834   Assert(isa<ConstantInt>(NumDeoptArgsV),
1835          "gc.statepoint number of deoptimization arguments "
1836          "must be constant integer",
1837          &CI);
1838   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1839   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1840                             "must be positive",
1841          &CI);
1842 
1843   const int ExpectedNumArgs =
1844       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1845   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1846          "gc.statepoint too few arguments according to length fields", &CI);
1847 
1848   // Check that the only uses of this gc.statepoint are gc.result or
1849   // gc.relocate calls which are tied to this statepoint and thus part
1850   // of the same statepoint sequence
1851   for (const User *U : CI.users()) {
1852     const CallInst *Call = dyn_cast<const CallInst>(U);
1853     Assert(Call, "illegal use of statepoint token", &CI, U);
1854     if (!Call) continue;
1855     Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1856            "gc.result or gc.relocate are the only value uses "
1857            "of a gc.statepoint",
1858            &CI, U);
1859     if (isa<GCResultInst>(Call)) {
1860       Assert(Call->getArgOperand(0) == &CI,
1861              "gc.result connected to wrong gc.statepoint", &CI, Call);
1862     } else if (isa<GCRelocateInst>(Call)) {
1863       Assert(Call->getArgOperand(0) == &CI,
1864              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1865     }
1866   }
1867 
1868   // Note: It is legal for a single derived pointer to be listed multiple
1869   // times.  It's non-optimal, but it is legal.  It can also happen after
1870   // insertion if we strip a bitcast away.
1871   // Note: It is really tempting to check that each base is relocated and
1872   // that a derived pointer is never reused as a base pointer.  This turns
1873   // out to be problematic since optimizations run after safepoint insertion
1874   // can recognize equality properties that the insertion logic doesn't know
1875   // about.  See example statepoint.ll in the verifier subdirectory
1876 }
1877 
1878 void Verifier::verifyFrameRecoverIndices() {
1879   for (auto &Counts : FrameEscapeInfo) {
1880     Function *F = Counts.first;
1881     unsigned EscapedObjectCount = Counts.second.first;
1882     unsigned MaxRecoveredIndex = Counts.second.second;
1883     Assert(MaxRecoveredIndex <= EscapedObjectCount,
1884            "all indices passed to llvm.localrecover must be less than the "
1885            "number of arguments passed ot llvm.localescape in the parent "
1886            "function",
1887            F);
1888   }
1889 }
1890 
1891 static Instruction *getSuccPad(TerminatorInst *Terminator) {
1892   BasicBlock *UnwindDest;
1893   if (auto *II = dyn_cast<InvokeInst>(Terminator))
1894     UnwindDest = II->getUnwindDest();
1895   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1896     UnwindDest = CSI->getUnwindDest();
1897   else
1898     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1899   return UnwindDest->getFirstNonPHI();
1900 }
1901 
1902 void Verifier::verifySiblingFuncletUnwinds() {
1903   SmallPtrSet<Instruction *, 8> Visited;
1904   SmallPtrSet<Instruction *, 8> Active;
1905   for (const auto &Pair : SiblingFuncletInfo) {
1906     Instruction *PredPad = Pair.first;
1907     if (Visited.count(PredPad))
1908       continue;
1909     Active.insert(PredPad);
1910     TerminatorInst *Terminator = Pair.second;
1911     do {
1912       Instruction *SuccPad = getSuccPad(Terminator);
1913       if (Active.count(SuccPad)) {
1914         // Found a cycle; report error
1915         Instruction *CyclePad = SuccPad;
1916         SmallVector<Instruction *, 8> CycleNodes;
1917         do {
1918           CycleNodes.push_back(CyclePad);
1919           TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1920           if (CycleTerminator != CyclePad)
1921             CycleNodes.push_back(CycleTerminator);
1922           CyclePad = getSuccPad(CycleTerminator);
1923         } while (CyclePad != SuccPad);
1924         Assert(false, "EH pads can't handle each other's exceptions",
1925                ArrayRef<Instruction *>(CycleNodes));
1926       }
1927       // Don't re-walk a node we've already checked
1928       if (!Visited.insert(SuccPad).second)
1929         break;
1930       // Walk to this successor if it has a map entry.
1931       PredPad = SuccPad;
1932       auto TermI = SiblingFuncletInfo.find(PredPad);
1933       if (TermI == SiblingFuncletInfo.end())
1934         break;
1935       Terminator = TermI->second;
1936       Active.insert(PredPad);
1937     } while (true);
1938     // Each node only has one successor, so we've walked all the active
1939     // nodes' successors.
1940     Active.clear();
1941   }
1942 }
1943 
1944 // visitFunction - Verify that a function is ok.
1945 //
1946 void Verifier::visitFunction(const Function &F) {
1947   visitGlobalValue(F);
1948 
1949   // Check function arguments.
1950   FunctionType *FT = F.getFunctionType();
1951   unsigned NumArgs = F.arg_size();
1952 
1953   Assert(&Context == &F.getContext(),
1954          "Function context does not match Module context!", &F);
1955 
1956   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1957   Assert(FT->getNumParams() == NumArgs,
1958          "# formal arguments must match # of arguments for function type!", &F,
1959          FT);
1960   Assert(F.getReturnType()->isFirstClassType() ||
1961              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1962          "Functions cannot return aggregate values!", &F);
1963 
1964   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1965          "Invalid struct return type!", &F);
1966 
1967   AttributeSet Attrs = F.getAttributes();
1968 
1969   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
1970          "Attribute after last parameter!", &F);
1971 
1972   // Check function attributes.
1973   verifyFunctionAttrs(FT, Attrs, &F);
1974 
1975   // On function declarations/definitions, we do not support the builtin
1976   // attribute. We do not check this in VerifyFunctionAttrs since that is
1977   // checking for Attributes that can/can not ever be on functions.
1978   Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1979          "Attribute 'builtin' can only be applied to a callsite.", &F);
1980 
1981   // Check that this function meets the restrictions on this calling convention.
1982   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1983   // restrictions can be lifted.
1984   switch (F.getCallingConv()) {
1985   default:
1986   case CallingConv::C:
1987     break;
1988   case CallingConv::Fast:
1989   case CallingConv::Cold:
1990   case CallingConv::Intel_OCL_BI:
1991   case CallingConv::PTX_Kernel:
1992   case CallingConv::PTX_Device:
1993     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1994                           "perfect forwarding!",
1995            &F);
1996     break;
1997   }
1998 
1999   bool isLLVMdotName = F.getName().size() >= 5 &&
2000                        F.getName().substr(0, 5) == "llvm.";
2001 
2002   // Check that the argument values match the function type for this function...
2003   unsigned i = 0;
2004   for (const Argument &Arg : F.args()) {
2005     Assert(Arg.getType() == FT->getParamType(i),
2006            "Argument value does not match function argument type!", &Arg,
2007            FT->getParamType(i));
2008     Assert(Arg.getType()->isFirstClassType(),
2009            "Function arguments must have first-class types!", &Arg);
2010     if (!isLLVMdotName) {
2011       Assert(!Arg.getType()->isMetadataTy(),
2012              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2013       Assert(!Arg.getType()->isTokenTy(),
2014              "Function takes token but isn't an intrinsic", &Arg, &F);
2015     }
2016 
2017     // Check that swifterror argument is only used by loads and stores.
2018     if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
2019       verifySwiftErrorValue(&Arg);
2020     }
2021     ++i;
2022   }
2023 
2024   if (!isLLVMdotName)
2025     Assert(!F.getReturnType()->isTokenTy(),
2026            "Functions returns a token but isn't an intrinsic", &F);
2027 
2028   // Get the function metadata attachments.
2029   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2030   F.getAllMetadata(MDs);
2031   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2032   verifyFunctionMetadata(MDs);
2033 
2034   // Check validity of the personality function
2035   if (F.hasPersonalityFn()) {
2036     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2037     if (Per)
2038       Assert(Per->getParent() == F.getParent(),
2039              "Referencing personality function in another module!",
2040              &F, F.getParent(), Per, Per->getParent());
2041   }
2042 
2043   if (F.isMaterializable()) {
2044     // Function has a body somewhere we can't see.
2045     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2046            MDs.empty() ? nullptr : MDs.front().second);
2047   } else if (F.isDeclaration()) {
2048     for (const auto &I : MDs) {
2049       AssertDI(I.first != LLVMContext::MD_dbg,
2050                "function declaration may not have a !dbg attachment", &F);
2051       Assert(I.first != LLVMContext::MD_prof,
2052              "function declaration may not have a !prof attachment", &F);
2053 
2054       // Verify the metadata itself.
2055       visitMDNode(*I.second);
2056     }
2057     Assert(!F.hasPersonalityFn(),
2058            "Function declaration shouldn't have a personality routine", &F);
2059   } else {
2060     // Verify that this function (which has a body) is not named "llvm.*".  It
2061     // is not legal to define intrinsics.
2062     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2063 
2064     // Check the entry node
2065     const BasicBlock *Entry = &F.getEntryBlock();
2066     Assert(pred_empty(Entry),
2067            "Entry block to function must not have predecessors!", Entry);
2068 
2069     // The address of the entry block cannot be taken, unless it is dead.
2070     if (Entry->hasAddressTaken()) {
2071       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2072              "blockaddress may not be used with the entry block!", Entry);
2073     }
2074 
2075     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2076     // Visit metadata attachments.
2077     for (const auto &I : MDs) {
2078       // Verify that the attachment is legal.
2079       switch (I.first) {
2080       default:
2081         break;
2082       case LLVMContext::MD_dbg:
2083         ++NumDebugAttachments;
2084         AssertDI(NumDebugAttachments == 1,
2085                  "function must have a single !dbg attachment", &F, I.second);
2086         AssertDI(isa<DISubprogram>(I.second),
2087                  "function !dbg attachment must be a subprogram", &F, I.second);
2088         break;
2089       case LLVMContext::MD_prof:
2090         ++NumProfAttachments;
2091         Assert(NumProfAttachments == 1,
2092                "function must have a single !prof attachment", &F, I.second);
2093         break;
2094       }
2095 
2096       // Verify the metadata itself.
2097       visitMDNode(*I.second);
2098     }
2099   }
2100 
2101   // If this function is actually an intrinsic, verify that it is only used in
2102   // direct call/invokes, never having its "address taken".
2103   // Only do this if the module is materialized, otherwise we don't have all the
2104   // uses.
2105   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2106     const User *U;
2107     if (F.hasAddressTaken(&U))
2108       Assert(false, "Invalid user of intrinsic instruction!", U);
2109   }
2110 
2111   Assert(!F.hasDLLImportStorageClass() ||
2112              (F.isDeclaration() && F.hasExternalLinkage()) ||
2113              F.hasAvailableExternallyLinkage(),
2114          "Function is marked as dllimport, but not external.", &F);
2115 
2116   auto *N = F.getSubprogram();
2117   if (!N)
2118     return;
2119 
2120   visitDISubprogram(*N);
2121 
2122   // Check that all !dbg attachments lead to back to N (or, at least, another
2123   // subprogram that describes the same function).
2124   //
2125   // FIXME: Check this incrementally while visiting !dbg attachments.
2126   // FIXME: Only check when N is the canonical subprogram for F.
2127   SmallPtrSet<const MDNode *, 32> Seen;
2128   for (auto &BB : F)
2129     for (auto &I : BB) {
2130       // Be careful about using DILocation here since we might be dealing with
2131       // broken code (this is the Verifier after all).
2132       DILocation *DL =
2133           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2134       if (!DL)
2135         continue;
2136       if (!Seen.insert(DL).second)
2137         continue;
2138 
2139       DILocalScope *Scope = DL->getInlinedAtScope();
2140       if (Scope && !Seen.insert(Scope).second)
2141         continue;
2142 
2143       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2144 
2145       // Scope and SP could be the same MDNode and we don't want to skip
2146       // validation in that case
2147       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2148         continue;
2149 
2150       // FIXME: Once N is canonical, check "SP == &N".
2151       AssertDI(SP->describes(&F),
2152                "!dbg attachment points at wrong subprogram for function", N, &F,
2153                &I, DL, Scope, SP);
2154     }
2155 }
2156 
2157 // verifyBasicBlock - Verify that a basic block is well formed...
2158 //
2159 void Verifier::visitBasicBlock(BasicBlock &BB) {
2160   InstsInThisBlock.clear();
2161 
2162   // Ensure that basic blocks have terminators!
2163   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2164 
2165   // Check constraints that this basic block imposes on all of the PHI nodes in
2166   // it.
2167   if (isa<PHINode>(BB.front())) {
2168     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2169     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2170     std::sort(Preds.begin(), Preds.end());
2171     PHINode *PN;
2172     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2173       // Ensure that PHI nodes have at least one entry!
2174       Assert(PN->getNumIncomingValues() != 0,
2175              "PHI nodes must have at least one entry.  If the block is dead, "
2176              "the PHI should be removed!",
2177              PN);
2178       Assert(PN->getNumIncomingValues() == Preds.size(),
2179              "PHINode should have one entry for each predecessor of its "
2180              "parent basic block!",
2181              PN);
2182 
2183       // Get and sort all incoming values in the PHI node...
2184       Values.clear();
2185       Values.reserve(PN->getNumIncomingValues());
2186       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2187         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2188                                         PN->getIncomingValue(i)));
2189       std::sort(Values.begin(), Values.end());
2190 
2191       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2192         // Check to make sure that if there is more than one entry for a
2193         // particular basic block in this PHI node, that the incoming values are
2194         // all identical.
2195         //
2196         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2197                    Values[i].second == Values[i - 1].second,
2198                "PHI node has multiple entries for the same basic block with "
2199                "different incoming values!",
2200                PN, Values[i].first, Values[i].second, Values[i - 1].second);
2201 
2202         // Check to make sure that the predecessors and PHI node entries are
2203         // matched up.
2204         Assert(Values[i].first == Preds[i],
2205                "PHI node entries do not match predecessors!", PN,
2206                Values[i].first, Preds[i]);
2207       }
2208     }
2209   }
2210 
2211   // Check that all instructions have their parent pointers set up correctly.
2212   for (auto &I : BB)
2213   {
2214     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2215   }
2216 }
2217 
2218 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2219   // Ensure that terminators only exist at the end of the basic block.
2220   Assert(&I == I.getParent()->getTerminator(),
2221          "Terminator found in the middle of a basic block!", I.getParent());
2222   visitInstruction(I);
2223 }
2224 
2225 void Verifier::visitBranchInst(BranchInst &BI) {
2226   if (BI.isConditional()) {
2227     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2228            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2229   }
2230   visitTerminatorInst(BI);
2231 }
2232 
2233 void Verifier::visitReturnInst(ReturnInst &RI) {
2234   Function *F = RI.getParent()->getParent();
2235   unsigned N = RI.getNumOperands();
2236   if (F->getReturnType()->isVoidTy())
2237     Assert(N == 0,
2238            "Found return instr that returns non-void in Function of void "
2239            "return type!",
2240            &RI, F->getReturnType());
2241   else
2242     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2243            "Function return type does not match operand "
2244            "type of return inst!",
2245            &RI, F->getReturnType());
2246 
2247   // Check to make sure that the return value has necessary properties for
2248   // terminators...
2249   visitTerminatorInst(RI);
2250 }
2251 
2252 void Verifier::visitSwitchInst(SwitchInst &SI) {
2253   // Check to make sure that all of the constants in the switch instruction
2254   // have the same type as the switched-on value.
2255   Type *SwitchTy = SI.getCondition()->getType();
2256   SmallPtrSet<ConstantInt*, 32> Constants;
2257   for (auto &Case : SI.cases()) {
2258     Assert(Case.getCaseValue()->getType() == SwitchTy,
2259            "Switch constants must all be same type as switch value!", &SI);
2260     Assert(Constants.insert(Case.getCaseValue()).second,
2261            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2262   }
2263 
2264   visitTerminatorInst(SI);
2265 }
2266 
2267 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2268   Assert(BI.getAddress()->getType()->isPointerTy(),
2269          "Indirectbr operand must have pointer type!", &BI);
2270   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2271     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2272            "Indirectbr destinations must all have pointer type!", &BI);
2273 
2274   visitTerminatorInst(BI);
2275 }
2276 
2277 void Verifier::visitSelectInst(SelectInst &SI) {
2278   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2279                                          SI.getOperand(2)),
2280          "Invalid operands for select instruction!", &SI);
2281 
2282   Assert(SI.getTrueValue()->getType() == SI.getType(),
2283          "Select values must have same type as select instruction!", &SI);
2284   visitInstruction(SI);
2285 }
2286 
2287 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2288 /// a pass, if any exist, it's an error.
2289 ///
2290 void Verifier::visitUserOp1(Instruction &I) {
2291   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2292 }
2293 
2294 void Verifier::visitTruncInst(TruncInst &I) {
2295   // Get the source and destination types
2296   Type *SrcTy = I.getOperand(0)->getType();
2297   Type *DestTy = I.getType();
2298 
2299   // Get the size of the types in bits, we'll need this later
2300   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2301   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2302 
2303   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2304   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2305   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2306          "trunc source and destination must both be a vector or neither", &I);
2307   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2308 
2309   visitInstruction(I);
2310 }
2311 
2312 void Verifier::visitZExtInst(ZExtInst &I) {
2313   // Get the source and destination types
2314   Type *SrcTy = I.getOperand(0)->getType();
2315   Type *DestTy = I.getType();
2316 
2317   // Get the size of the types in bits, we'll need this later
2318   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2319   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2320   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2321          "zext source and destination must both be a vector or neither", &I);
2322   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2323   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2324 
2325   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2326 
2327   visitInstruction(I);
2328 }
2329 
2330 void Verifier::visitSExtInst(SExtInst &I) {
2331   // Get the source and destination types
2332   Type *SrcTy = I.getOperand(0)->getType();
2333   Type *DestTy = I.getType();
2334 
2335   // Get the size of the types in bits, we'll need this later
2336   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2337   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2338 
2339   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2340   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2341   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2342          "sext source and destination must both be a vector or neither", &I);
2343   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2344 
2345   visitInstruction(I);
2346 }
2347 
2348 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2349   // Get the source and destination types
2350   Type *SrcTy = I.getOperand(0)->getType();
2351   Type *DestTy = I.getType();
2352   // Get the size of the types in bits, we'll need this later
2353   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2354   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2355 
2356   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2357   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2358   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2359          "fptrunc source and destination must both be a vector or neither", &I);
2360   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2361 
2362   visitInstruction(I);
2363 }
2364 
2365 void Verifier::visitFPExtInst(FPExtInst &I) {
2366   // Get the source and destination types
2367   Type *SrcTy = I.getOperand(0)->getType();
2368   Type *DestTy = I.getType();
2369 
2370   // Get the size of the types in bits, we'll need this later
2371   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2372   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2373 
2374   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2375   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2376   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2377          "fpext source and destination must both be a vector or neither", &I);
2378   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2379 
2380   visitInstruction(I);
2381 }
2382 
2383 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2384   // Get the source and destination types
2385   Type *SrcTy = I.getOperand(0)->getType();
2386   Type *DestTy = I.getType();
2387 
2388   bool SrcVec = SrcTy->isVectorTy();
2389   bool DstVec = DestTy->isVectorTy();
2390 
2391   Assert(SrcVec == DstVec,
2392          "UIToFP source and dest must both be vector or scalar", &I);
2393   Assert(SrcTy->isIntOrIntVectorTy(),
2394          "UIToFP source must be integer or integer vector", &I);
2395   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2396          &I);
2397 
2398   if (SrcVec && DstVec)
2399     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2400                cast<VectorType>(DestTy)->getNumElements(),
2401            "UIToFP source and dest vector length mismatch", &I);
2402 
2403   visitInstruction(I);
2404 }
2405 
2406 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2407   // Get the source and destination types
2408   Type *SrcTy = I.getOperand(0)->getType();
2409   Type *DestTy = I.getType();
2410 
2411   bool SrcVec = SrcTy->isVectorTy();
2412   bool DstVec = DestTy->isVectorTy();
2413 
2414   Assert(SrcVec == DstVec,
2415          "SIToFP source and dest must both be vector or scalar", &I);
2416   Assert(SrcTy->isIntOrIntVectorTy(),
2417          "SIToFP source must be integer or integer vector", &I);
2418   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2419          &I);
2420 
2421   if (SrcVec && DstVec)
2422     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2423                cast<VectorType>(DestTy)->getNumElements(),
2424            "SIToFP source and dest vector length mismatch", &I);
2425 
2426   visitInstruction(I);
2427 }
2428 
2429 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2430   // Get the source and destination types
2431   Type *SrcTy = I.getOperand(0)->getType();
2432   Type *DestTy = I.getType();
2433 
2434   bool SrcVec = SrcTy->isVectorTy();
2435   bool DstVec = DestTy->isVectorTy();
2436 
2437   Assert(SrcVec == DstVec,
2438          "FPToUI source and dest must both be vector or scalar", &I);
2439   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2440          &I);
2441   Assert(DestTy->isIntOrIntVectorTy(),
2442          "FPToUI result must be integer or integer vector", &I);
2443 
2444   if (SrcVec && DstVec)
2445     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2446                cast<VectorType>(DestTy)->getNumElements(),
2447            "FPToUI source and dest vector length mismatch", &I);
2448 
2449   visitInstruction(I);
2450 }
2451 
2452 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2453   // Get the source and destination types
2454   Type *SrcTy = I.getOperand(0)->getType();
2455   Type *DestTy = I.getType();
2456 
2457   bool SrcVec = SrcTy->isVectorTy();
2458   bool DstVec = DestTy->isVectorTy();
2459 
2460   Assert(SrcVec == DstVec,
2461          "FPToSI source and dest must both be vector or scalar", &I);
2462   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2463          &I);
2464   Assert(DestTy->isIntOrIntVectorTy(),
2465          "FPToSI result must be integer or integer vector", &I);
2466 
2467   if (SrcVec && DstVec)
2468     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2469                cast<VectorType>(DestTy)->getNumElements(),
2470            "FPToSI source and dest vector length mismatch", &I);
2471 
2472   visitInstruction(I);
2473 }
2474 
2475 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2476   // Get the source and destination types
2477   Type *SrcTy = I.getOperand(0)->getType();
2478   Type *DestTy = I.getType();
2479 
2480   Assert(SrcTy->getScalarType()->isPointerTy(),
2481          "PtrToInt source must be pointer", &I);
2482 
2483   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2484     Assert(!DL.isNonIntegralPointerType(PTy),
2485            "ptrtoint not supported for non-integral pointers");
2486 
2487   Assert(DestTy->getScalarType()->isIntegerTy(),
2488          "PtrToInt result must be integral", &I);
2489   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2490          &I);
2491 
2492   if (SrcTy->isVectorTy()) {
2493     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2494     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2495     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2496            "PtrToInt Vector width mismatch", &I);
2497   }
2498 
2499   visitInstruction(I);
2500 }
2501 
2502 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2503   // Get the source and destination types
2504   Type *SrcTy = I.getOperand(0)->getType();
2505   Type *DestTy = I.getType();
2506 
2507   Assert(SrcTy->getScalarType()->isIntegerTy(),
2508          "IntToPtr source must be an integral", &I);
2509   Assert(DestTy->getScalarType()->isPointerTy(),
2510          "IntToPtr result must be a pointer", &I);
2511 
2512   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2513     Assert(!DL.isNonIntegralPointerType(PTy),
2514            "inttoptr not supported for non-integral pointers");
2515 
2516   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2517          &I);
2518   if (SrcTy->isVectorTy()) {
2519     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2520     VectorType *VDest = dyn_cast<VectorType>(DestTy);
2521     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2522            "IntToPtr Vector width mismatch", &I);
2523   }
2524   visitInstruction(I);
2525 }
2526 
2527 void Verifier::visitBitCastInst(BitCastInst &I) {
2528   Assert(
2529       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2530       "Invalid bitcast", &I);
2531   visitInstruction(I);
2532 }
2533 
2534 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2535   Type *SrcTy = I.getOperand(0)->getType();
2536   Type *DestTy = I.getType();
2537 
2538   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2539          &I);
2540   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2541          &I);
2542   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2543          "AddrSpaceCast must be between different address spaces", &I);
2544   if (SrcTy->isVectorTy())
2545     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2546            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2547   visitInstruction(I);
2548 }
2549 
2550 /// visitPHINode - Ensure that a PHI node is well formed.
2551 ///
2552 void Verifier::visitPHINode(PHINode &PN) {
2553   // Ensure that the PHI nodes are all grouped together at the top of the block.
2554   // This can be tested by checking whether the instruction before this is
2555   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2556   // then there is some other instruction before a PHI.
2557   Assert(&PN == &PN.getParent()->front() ||
2558              isa<PHINode>(--BasicBlock::iterator(&PN)),
2559          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2560 
2561   // Check that a PHI doesn't yield a Token.
2562   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2563 
2564   // Check that all of the values of the PHI node have the same type as the
2565   // result, and that the incoming blocks are really basic blocks.
2566   for (Value *IncValue : PN.incoming_values()) {
2567     Assert(PN.getType() == IncValue->getType(),
2568            "PHI node operands are not the same type as the result!", &PN);
2569   }
2570 
2571   // All other PHI node constraints are checked in the visitBasicBlock method.
2572 
2573   visitInstruction(PN);
2574 }
2575 
2576 void Verifier::verifyCallSite(CallSite CS) {
2577   Instruction *I = CS.getInstruction();
2578 
2579   Assert(CS.getCalledValue()->getType()->isPointerTy(),
2580          "Called function must be a pointer!", I);
2581   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2582 
2583   Assert(FPTy->getElementType()->isFunctionTy(),
2584          "Called function is not pointer to function type!", I);
2585 
2586   Assert(FPTy->getElementType() == CS.getFunctionType(),
2587          "Called function is not the same type as the call!", I);
2588 
2589   FunctionType *FTy = CS.getFunctionType();
2590 
2591   // Verify that the correct number of arguments are being passed
2592   if (FTy->isVarArg())
2593     Assert(CS.arg_size() >= FTy->getNumParams(),
2594            "Called function requires more parameters than were provided!", I);
2595   else
2596     Assert(CS.arg_size() == FTy->getNumParams(),
2597            "Incorrect number of arguments passed to called function!", I);
2598 
2599   // Verify that all arguments to the call match the function type.
2600   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2601     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2602            "Call parameter type does not match function signature!",
2603            CS.getArgument(i), FTy->getParamType(i), I);
2604 
2605   AttributeSet Attrs = CS.getAttributes();
2606 
2607   Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2608          "Attribute after last parameter!", I);
2609 
2610   // Verify call attributes.
2611   verifyFunctionAttrs(FTy, Attrs, I);
2612 
2613   // Conservatively check the inalloca argument.
2614   // We have a bug if we can find that there is an underlying alloca without
2615   // inalloca.
2616   if (CS.hasInAllocaArgument()) {
2617     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2618     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2619       Assert(AI->isUsedWithInAlloca(),
2620              "inalloca argument for call has mismatched alloca", AI, I);
2621   }
2622 
2623   // For each argument of the callsite, if it has the swifterror argument,
2624   // make sure the underlying alloca/parameter it comes from has a swifterror as
2625   // well.
2626   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2627     if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2628       Value *SwiftErrorArg = CS.getArgument(i);
2629       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2630         Assert(AI->isSwiftError(),
2631                "swifterror argument for call has mismatched alloca", AI, I);
2632         continue;
2633       }
2634       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2635       Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2636       Assert(ArgI->hasSwiftErrorAttr(),
2637              "swifterror argument for call has mismatched parameter", ArgI, I);
2638     }
2639 
2640   if (FTy->isVarArg()) {
2641     // FIXME? is 'nest' even legal here?
2642     bool SawNest = false;
2643     bool SawReturned = false;
2644 
2645     for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2646       if (Attrs.hasAttribute(Idx, Attribute::Nest))
2647         SawNest = true;
2648       if (Attrs.hasAttribute(Idx, Attribute::Returned))
2649         SawReturned = true;
2650     }
2651 
2652     // Check attributes on the varargs part.
2653     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2654       Type *Ty = CS.getArgument(Idx-1)->getType();
2655       verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2656 
2657       if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2658         Assert(!SawNest, "More than one parameter has attribute nest!", I);
2659         SawNest = true;
2660       }
2661 
2662       if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2663         Assert(!SawReturned, "More than one parameter has attribute returned!",
2664                I);
2665         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2666                "Incompatible argument and return types for 'returned' "
2667                "attribute",
2668                I);
2669         SawReturned = true;
2670       }
2671 
2672       Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2673              "Attribute 'sret' cannot be used for vararg call arguments!", I);
2674 
2675       if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2676         Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2677     }
2678   }
2679 
2680   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2681   if (CS.getCalledFunction() == nullptr ||
2682       !CS.getCalledFunction()->getName().startswith("llvm.")) {
2683     for (Type *ParamTy : FTy->params()) {
2684       Assert(!ParamTy->isMetadataTy(),
2685              "Function has metadata parameter but isn't an intrinsic", I);
2686       Assert(!ParamTy->isTokenTy(),
2687              "Function has token parameter but isn't an intrinsic", I);
2688     }
2689   }
2690 
2691   // Verify that indirect calls don't return tokens.
2692   if (CS.getCalledFunction() == nullptr)
2693     Assert(!FTy->getReturnType()->isTokenTy(),
2694            "Return type cannot be token for indirect call!");
2695 
2696   if (Function *F = CS.getCalledFunction())
2697     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2698       visitIntrinsicCallSite(ID, CS);
2699 
2700   // Verify that a callsite has at most one "deopt", at most one "funclet" and
2701   // at most one "gc-transition" operand bundle.
2702   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2703        FoundGCTransitionBundle = false;
2704   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2705     OperandBundleUse BU = CS.getOperandBundleAt(i);
2706     uint32_t Tag = BU.getTagID();
2707     if (Tag == LLVMContext::OB_deopt) {
2708       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2709       FoundDeoptBundle = true;
2710     } else if (Tag == LLVMContext::OB_gc_transition) {
2711       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2712              I);
2713       FoundGCTransitionBundle = true;
2714     } else if (Tag == LLVMContext::OB_funclet) {
2715       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2716       FoundFuncletBundle = true;
2717       Assert(BU.Inputs.size() == 1,
2718              "Expected exactly one funclet bundle operand", I);
2719       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2720              "Funclet bundle operands should correspond to a FuncletPadInst",
2721              I);
2722     }
2723   }
2724 
2725   // Verify that each inlinable callsite of a debug-info-bearing function in a
2726   // debug-info-bearing function has a debug location attached to it. Failure to
2727   // do so causes assertion failures when the inliner sets up inline scope info.
2728   if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2729       CS.getCalledFunction()->getSubprogram())
2730     Assert(I->getDebugLoc(), "inlinable function call in a function with debug "
2731                              "info must have a !dbg location",
2732            I);
2733 
2734   visitInstruction(*I);
2735 }
2736 
2737 /// Two types are "congruent" if they are identical, or if they are both pointer
2738 /// types with different pointee types and the same address space.
2739 static bool isTypeCongruent(Type *L, Type *R) {
2740   if (L == R)
2741     return true;
2742   PointerType *PL = dyn_cast<PointerType>(L);
2743   PointerType *PR = dyn_cast<PointerType>(R);
2744   if (!PL || !PR)
2745     return false;
2746   return PL->getAddressSpace() == PR->getAddressSpace();
2747 }
2748 
2749 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2750   static const Attribute::AttrKind ABIAttrs[] = {
2751       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2752       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2753       Attribute::SwiftError};
2754   AttrBuilder Copy;
2755   for (auto AK : ABIAttrs) {
2756     if (Attrs.hasAttribute(I + 1, AK))
2757       Copy.addAttribute(AK);
2758   }
2759   if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2760     Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2761   return Copy;
2762 }
2763 
2764 void Verifier::verifyMustTailCall(CallInst &CI) {
2765   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2766 
2767   // - The caller and callee prototypes must match.  Pointer types of
2768   //   parameters or return types may differ in pointee type, but not
2769   //   address space.
2770   Function *F = CI.getParent()->getParent();
2771   FunctionType *CallerTy = F->getFunctionType();
2772   FunctionType *CalleeTy = CI.getFunctionType();
2773   Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2774          "cannot guarantee tail call due to mismatched parameter counts", &CI);
2775   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2776          "cannot guarantee tail call due to mismatched varargs", &CI);
2777   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2778          "cannot guarantee tail call due to mismatched return types", &CI);
2779   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2780     Assert(
2781         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2782         "cannot guarantee tail call due to mismatched parameter types", &CI);
2783   }
2784 
2785   // - The calling conventions of the caller and callee must match.
2786   Assert(F->getCallingConv() == CI.getCallingConv(),
2787          "cannot guarantee tail call due to mismatched calling conv", &CI);
2788 
2789   // - All ABI-impacting function attributes, such as sret, byval, inreg,
2790   //   returned, and inalloca, must match.
2791   AttributeSet CallerAttrs = F->getAttributes();
2792   AttributeSet CalleeAttrs = CI.getAttributes();
2793   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2794     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2795     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2796     Assert(CallerABIAttrs == CalleeABIAttrs,
2797            "cannot guarantee tail call due to mismatched ABI impacting "
2798            "function attributes",
2799            &CI, CI.getOperand(I));
2800   }
2801 
2802   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2803   //   or a pointer bitcast followed by a ret instruction.
2804   // - The ret instruction must return the (possibly bitcasted) value
2805   //   produced by the call or void.
2806   Value *RetVal = &CI;
2807   Instruction *Next = CI.getNextNode();
2808 
2809   // Handle the optional bitcast.
2810   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2811     Assert(BI->getOperand(0) == RetVal,
2812            "bitcast following musttail call must use the call", BI);
2813     RetVal = BI;
2814     Next = BI->getNextNode();
2815   }
2816 
2817   // Check the return.
2818   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2819   Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2820          &CI);
2821   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2822          "musttail call result must be returned", Ret);
2823 }
2824 
2825 void Verifier::visitCallInst(CallInst &CI) {
2826   verifyCallSite(&CI);
2827 
2828   if (CI.isMustTailCall())
2829     verifyMustTailCall(CI);
2830 }
2831 
2832 void Verifier::visitInvokeInst(InvokeInst &II) {
2833   verifyCallSite(&II);
2834 
2835   // Verify that the first non-PHI instruction of the unwind destination is an
2836   // exception handling instruction.
2837   Assert(
2838       II.getUnwindDest()->isEHPad(),
2839       "The unwind destination does not have an exception handling instruction!",
2840       &II);
2841 
2842   visitTerminatorInst(II);
2843 }
2844 
2845 /// visitBinaryOperator - Check that both arguments to the binary operator are
2846 /// of the same type!
2847 ///
2848 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2849   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2850          "Both operands to a binary operator are not of the same type!", &B);
2851 
2852   switch (B.getOpcode()) {
2853   // Check that integer arithmetic operators are only used with
2854   // integral operands.
2855   case Instruction::Add:
2856   case Instruction::Sub:
2857   case Instruction::Mul:
2858   case Instruction::SDiv:
2859   case Instruction::UDiv:
2860   case Instruction::SRem:
2861   case Instruction::URem:
2862     Assert(B.getType()->isIntOrIntVectorTy(),
2863            "Integer arithmetic operators only work with integral types!", &B);
2864     Assert(B.getType() == B.getOperand(0)->getType(),
2865            "Integer arithmetic operators must have same type "
2866            "for operands and result!",
2867            &B);
2868     break;
2869   // Check that floating-point arithmetic operators are only used with
2870   // floating-point operands.
2871   case Instruction::FAdd:
2872   case Instruction::FSub:
2873   case Instruction::FMul:
2874   case Instruction::FDiv:
2875   case Instruction::FRem:
2876     Assert(B.getType()->isFPOrFPVectorTy(),
2877            "Floating-point arithmetic operators only work with "
2878            "floating-point types!",
2879            &B);
2880     Assert(B.getType() == B.getOperand(0)->getType(),
2881            "Floating-point arithmetic operators must have same type "
2882            "for operands and result!",
2883            &B);
2884     break;
2885   // Check that logical operators are only used with integral operands.
2886   case Instruction::And:
2887   case Instruction::Or:
2888   case Instruction::Xor:
2889     Assert(B.getType()->isIntOrIntVectorTy(),
2890            "Logical operators only work with integral types!", &B);
2891     Assert(B.getType() == B.getOperand(0)->getType(),
2892            "Logical operators must have same type for operands and result!",
2893            &B);
2894     break;
2895   case Instruction::Shl:
2896   case Instruction::LShr:
2897   case Instruction::AShr:
2898     Assert(B.getType()->isIntOrIntVectorTy(),
2899            "Shifts only work with integral types!", &B);
2900     Assert(B.getType() == B.getOperand(0)->getType(),
2901            "Shift return type must be same as operands!", &B);
2902     break;
2903   default:
2904     llvm_unreachable("Unknown BinaryOperator opcode!");
2905   }
2906 
2907   visitInstruction(B);
2908 }
2909 
2910 void Verifier::visitICmpInst(ICmpInst &IC) {
2911   // Check that the operands are the same type
2912   Type *Op0Ty = IC.getOperand(0)->getType();
2913   Type *Op1Ty = IC.getOperand(1)->getType();
2914   Assert(Op0Ty == Op1Ty,
2915          "Both operands to ICmp instruction are not of the same type!", &IC);
2916   // Check that the operands are the right type
2917   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2918          "Invalid operand types for ICmp instruction", &IC);
2919   // Check that the predicate is valid.
2920   Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2921              IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2922          "Invalid predicate in ICmp instruction!", &IC);
2923 
2924   visitInstruction(IC);
2925 }
2926 
2927 void Verifier::visitFCmpInst(FCmpInst &FC) {
2928   // Check that the operands are the same type
2929   Type *Op0Ty = FC.getOperand(0)->getType();
2930   Type *Op1Ty = FC.getOperand(1)->getType();
2931   Assert(Op0Ty == Op1Ty,
2932          "Both operands to FCmp instruction are not of the same type!", &FC);
2933   // Check that the operands are the right type
2934   Assert(Op0Ty->isFPOrFPVectorTy(),
2935          "Invalid operand types for FCmp instruction", &FC);
2936   // Check that the predicate is valid.
2937   Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2938              FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2939          "Invalid predicate in FCmp instruction!", &FC);
2940 
2941   visitInstruction(FC);
2942 }
2943 
2944 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2945   Assert(
2946       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2947       "Invalid extractelement operands!", &EI);
2948   visitInstruction(EI);
2949 }
2950 
2951 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2952   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2953                                             IE.getOperand(2)),
2954          "Invalid insertelement operands!", &IE);
2955   visitInstruction(IE);
2956 }
2957 
2958 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2959   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2960                                             SV.getOperand(2)),
2961          "Invalid shufflevector operands!", &SV);
2962   visitInstruction(SV);
2963 }
2964 
2965 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2966   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2967 
2968   Assert(isa<PointerType>(TargetTy),
2969          "GEP base pointer is not a vector or a vector of pointers", &GEP);
2970   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2971   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2972   Type *ElTy =
2973       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2974   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2975 
2976   Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2977              GEP.getResultElementType() == ElTy,
2978          "GEP is not of right type for indices!", &GEP, ElTy);
2979 
2980   if (GEP.getType()->isVectorTy()) {
2981     // Additional checks for vector GEPs.
2982     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2983     if (GEP.getPointerOperandType()->isVectorTy())
2984       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2985              "Vector GEP result width doesn't match operand's", &GEP);
2986     for (Value *Idx : Idxs) {
2987       Type *IndexTy = Idx->getType();
2988       if (IndexTy->isVectorTy()) {
2989         unsigned IndexWidth = IndexTy->getVectorNumElements();
2990         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2991       }
2992       Assert(IndexTy->getScalarType()->isIntegerTy(),
2993              "All GEP indices should be of integer type");
2994     }
2995   }
2996   visitInstruction(GEP);
2997 }
2998 
2999 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3000   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3001 }
3002 
3003 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3004   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3005          "precondition violation");
3006 
3007   unsigned NumOperands = Range->getNumOperands();
3008   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3009   unsigned NumRanges = NumOperands / 2;
3010   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3011 
3012   ConstantRange LastRange(1); // Dummy initial value
3013   for (unsigned i = 0; i < NumRanges; ++i) {
3014     ConstantInt *Low =
3015         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3016     Assert(Low, "The lower limit must be an integer!", Low);
3017     ConstantInt *High =
3018         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3019     Assert(High, "The upper limit must be an integer!", High);
3020     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3021            "Range types must match instruction type!", &I);
3022 
3023     APInt HighV = High->getValue();
3024     APInt LowV = Low->getValue();
3025     ConstantRange CurRange(LowV, HighV);
3026     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3027            "Range must not be empty!", Range);
3028     if (i != 0) {
3029       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3030              "Intervals are overlapping", Range);
3031       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3032              Range);
3033       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3034              Range);
3035     }
3036     LastRange = ConstantRange(LowV, HighV);
3037   }
3038   if (NumRanges > 2) {
3039     APInt FirstLow =
3040         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3041     APInt FirstHigh =
3042         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3043     ConstantRange FirstRange(FirstLow, FirstHigh);
3044     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3045            "Intervals are overlapping", Range);
3046     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3047            Range);
3048   }
3049 }
3050 
3051 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3052   unsigned Size = DL.getTypeSizeInBits(Ty);
3053   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3054   Assert(!(Size & (Size - 1)),
3055          "atomic memory access' operand must have a power-of-two size", Ty, I);
3056 }
3057 
3058 void Verifier::visitLoadInst(LoadInst &LI) {
3059   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3060   Assert(PTy, "Load operand must be a pointer.", &LI);
3061   Type *ElTy = LI.getType();
3062   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3063          "huge alignment values are unsupported", &LI);
3064   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3065   if (LI.isAtomic()) {
3066     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3067                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3068            "Load cannot have Release ordering", &LI);
3069     Assert(LI.getAlignment() != 0,
3070            "Atomic load must specify explicit alignment", &LI);
3071     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3072                ElTy->isFloatingPointTy(),
3073            "atomic load operand must have integer, pointer, or floating point "
3074            "type!",
3075            ElTy, &LI);
3076     checkAtomicMemAccessSize(ElTy, &LI);
3077   } else {
3078     Assert(LI.getSynchScope() == CrossThread,
3079            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3080   }
3081 
3082   visitInstruction(LI);
3083 }
3084 
3085 void Verifier::visitStoreInst(StoreInst &SI) {
3086   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3087   Assert(PTy, "Store operand must be a pointer.", &SI);
3088   Type *ElTy = PTy->getElementType();
3089   Assert(ElTy == SI.getOperand(0)->getType(),
3090          "Stored value type does not match pointer operand type!", &SI, ElTy);
3091   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3092          "huge alignment values are unsupported", &SI);
3093   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3094   if (SI.isAtomic()) {
3095     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3096                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3097            "Store cannot have Acquire ordering", &SI);
3098     Assert(SI.getAlignment() != 0,
3099            "Atomic store must specify explicit alignment", &SI);
3100     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3101                ElTy->isFloatingPointTy(),
3102            "atomic store operand must have integer, pointer, or floating point "
3103            "type!",
3104            ElTy, &SI);
3105     checkAtomicMemAccessSize(ElTy, &SI);
3106   } else {
3107     Assert(SI.getSynchScope() == CrossThread,
3108            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3109   }
3110   visitInstruction(SI);
3111 }
3112 
3113 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3114 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3115                                         const Value *SwiftErrorVal) {
3116   unsigned Idx = 0;
3117   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3118        I != E; ++I, ++Idx) {
3119     if (*I == SwiftErrorVal) {
3120       Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),
3121              "swifterror value when used in a callsite should be marked "
3122              "with swifterror attribute",
3123               SwiftErrorVal, CS);
3124     }
3125   }
3126 }
3127 
3128 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3129   // Check that swifterror value is only used by loads, stores, or as
3130   // a swifterror argument.
3131   for (const User *U : SwiftErrorVal->users()) {
3132     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3133            isa<InvokeInst>(U),
3134            "swifterror value can only be loaded and stored from, or "
3135            "as a swifterror argument!",
3136            SwiftErrorVal, U);
3137     // If it is used by a store, check it is the second operand.
3138     if (auto StoreI = dyn_cast<StoreInst>(U))
3139       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3140              "swifterror value should be the second operand when used "
3141              "by stores", SwiftErrorVal, U);
3142     if (auto CallI = dyn_cast<CallInst>(U))
3143       verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3144     if (auto II = dyn_cast<InvokeInst>(U))
3145       verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3146   }
3147 }
3148 
3149 void Verifier::visitAllocaInst(AllocaInst &AI) {
3150   SmallPtrSet<Type*, 4> Visited;
3151   PointerType *PTy = AI.getType();
3152   Assert(PTy->getAddressSpace() == 0,
3153          "Allocation instruction pointer not in the generic address space!",
3154          &AI);
3155   Assert(AI.getAllocatedType()->isSized(&Visited),
3156          "Cannot allocate unsized type", &AI);
3157   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3158          "Alloca array size must have integer type", &AI);
3159   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3160          "huge alignment values are unsupported", &AI);
3161 
3162   if (AI.isSwiftError()) {
3163     verifySwiftErrorValue(&AI);
3164   }
3165 
3166   visitInstruction(AI);
3167 }
3168 
3169 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3170 
3171   // FIXME: more conditions???
3172   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3173          "cmpxchg instructions must be atomic.", &CXI);
3174   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3175          "cmpxchg instructions must be atomic.", &CXI);
3176   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3177          "cmpxchg instructions cannot be unordered.", &CXI);
3178   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3179          "cmpxchg instructions cannot be unordered.", &CXI);
3180   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3181          "cmpxchg instructions failure argument shall be no stronger than the "
3182          "success argument",
3183          &CXI);
3184   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3185              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3186          "cmpxchg failure ordering cannot include release semantics", &CXI);
3187 
3188   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3189   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3190   Type *ElTy = PTy->getElementType();
3191   Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3192         "cmpxchg operand must have integer or pointer type",
3193          ElTy, &CXI);
3194   checkAtomicMemAccessSize(ElTy, &CXI);
3195   Assert(ElTy == CXI.getOperand(1)->getType(),
3196          "Expected value type does not match pointer operand type!", &CXI,
3197          ElTy);
3198   Assert(ElTy == CXI.getOperand(2)->getType(),
3199          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3200   visitInstruction(CXI);
3201 }
3202 
3203 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3204   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3205          "atomicrmw instructions must be atomic.", &RMWI);
3206   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3207          "atomicrmw instructions cannot be unordered.", &RMWI);
3208   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3209   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3210   Type *ElTy = PTy->getElementType();
3211   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3212          &RMWI, ElTy);
3213   checkAtomicMemAccessSize(ElTy, &RMWI);
3214   Assert(ElTy == RMWI.getOperand(1)->getType(),
3215          "Argument value type does not match pointer operand type!", &RMWI,
3216          ElTy);
3217   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
3218              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
3219          "Invalid binary operation!", &RMWI);
3220   visitInstruction(RMWI);
3221 }
3222 
3223 void Verifier::visitFenceInst(FenceInst &FI) {
3224   const AtomicOrdering Ordering = FI.getOrdering();
3225   Assert(Ordering == AtomicOrdering::Acquire ||
3226              Ordering == AtomicOrdering::Release ||
3227              Ordering == AtomicOrdering::AcquireRelease ||
3228              Ordering == AtomicOrdering::SequentiallyConsistent,
3229          "fence instructions may only have acquire, release, acq_rel, or "
3230          "seq_cst ordering.",
3231          &FI);
3232   visitInstruction(FI);
3233 }
3234 
3235 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3236   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3237                                           EVI.getIndices()) == EVI.getType(),
3238          "Invalid ExtractValueInst operands!", &EVI);
3239 
3240   visitInstruction(EVI);
3241 }
3242 
3243 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3244   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3245                                           IVI.getIndices()) ==
3246              IVI.getOperand(1)->getType(),
3247          "Invalid InsertValueInst operands!", &IVI);
3248 
3249   visitInstruction(IVI);
3250 }
3251 
3252 static Value *getParentPad(Value *EHPad) {
3253   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3254     return FPI->getParentPad();
3255 
3256   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3257 }
3258 
3259 void Verifier::visitEHPadPredecessors(Instruction &I) {
3260   assert(I.isEHPad());
3261 
3262   BasicBlock *BB = I.getParent();
3263   Function *F = BB->getParent();
3264 
3265   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3266 
3267   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3268     // The landingpad instruction defines its parent as a landing pad block. The
3269     // landing pad block may be branched to only by the unwind edge of an
3270     // invoke.
3271     for (BasicBlock *PredBB : predecessors(BB)) {
3272       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3273       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3274              "Block containing LandingPadInst must be jumped to "
3275              "only by the unwind edge of an invoke.",
3276              LPI);
3277     }
3278     return;
3279   }
3280   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3281     if (!pred_empty(BB))
3282       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3283              "Block containg CatchPadInst must be jumped to "
3284              "only by its catchswitch.",
3285              CPI);
3286     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3287            "Catchswitch cannot unwind to one of its catchpads",
3288            CPI->getCatchSwitch(), CPI);
3289     return;
3290   }
3291 
3292   // Verify that each pred has a legal terminator with a legal to/from EH
3293   // pad relationship.
3294   Instruction *ToPad = &I;
3295   Value *ToPadParent = getParentPad(ToPad);
3296   for (BasicBlock *PredBB : predecessors(BB)) {
3297     TerminatorInst *TI = PredBB->getTerminator();
3298     Value *FromPad;
3299     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3300       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3301              "EH pad must be jumped to via an unwind edge", ToPad, II);
3302       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3303         FromPad = Bundle->Inputs[0];
3304       else
3305         FromPad = ConstantTokenNone::get(II->getContext());
3306     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3307       FromPad = CRI->getOperand(0);
3308       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3309     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3310       FromPad = CSI;
3311     } else {
3312       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3313     }
3314 
3315     // The edge may exit from zero or more nested pads.
3316     SmallSet<Value *, 8> Seen;
3317     for (;; FromPad = getParentPad(FromPad)) {
3318       Assert(FromPad != ToPad,
3319              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3320       if (FromPad == ToPadParent) {
3321         // This is a legal unwind edge.
3322         break;
3323       }
3324       Assert(!isa<ConstantTokenNone>(FromPad),
3325              "A single unwind edge may only enter one EH pad", TI);
3326       Assert(Seen.insert(FromPad).second,
3327              "EH pad jumps through a cycle of pads", FromPad);
3328     }
3329   }
3330 }
3331 
3332 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3333   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3334   // isn't a cleanup.
3335   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3336          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3337 
3338   visitEHPadPredecessors(LPI);
3339 
3340   if (!LandingPadResultTy)
3341     LandingPadResultTy = LPI.getType();
3342   else
3343     Assert(LandingPadResultTy == LPI.getType(),
3344            "The landingpad instruction should have a consistent result type "
3345            "inside a function.",
3346            &LPI);
3347 
3348   Function *F = LPI.getParent()->getParent();
3349   Assert(F->hasPersonalityFn(),
3350          "LandingPadInst needs to be in a function with a personality.", &LPI);
3351 
3352   // The landingpad instruction must be the first non-PHI instruction in the
3353   // block.
3354   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3355          "LandingPadInst not the first non-PHI instruction in the block.",
3356          &LPI);
3357 
3358   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3359     Constant *Clause = LPI.getClause(i);
3360     if (LPI.isCatch(i)) {
3361       Assert(isa<PointerType>(Clause->getType()),
3362              "Catch operand does not have pointer type!", &LPI);
3363     } else {
3364       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3365       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3366              "Filter operand is not an array of constants!", &LPI);
3367     }
3368   }
3369 
3370   visitInstruction(LPI);
3371 }
3372 
3373 void Verifier::visitResumeInst(ResumeInst &RI) {
3374   Assert(RI.getFunction()->hasPersonalityFn(),
3375          "ResumeInst needs to be in a function with a personality.", &RI);
3376 
3377   if (!LandingPadResultTy)
3378     LandingPadResultTy = RI.getValue()->getType();
3379   else
3380     Assert(LandingPadResultTy == RI.getValue()->getType(),
3381            "The resume instruction should have a consistent result type "
3382            "inside a function.",
3383            &RI);
3384 
3385   visitTerminatorInst(RI);
3386 }
3387 
3388 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3389   BasicBlock *BB = CPI.getParent();
3390 
3391   Function *F = BB->getParent();
3392   Assert(F->hasPersonalityFn(),
3393          "CatchPadInst needs to be in a function with a personality.", &CPI);
3394 
3395   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3396          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3397          CPI.getParentPad());
3398 
3399   // The catchpad instruction must be the first non-PHI instruction in the
3400   // block.
3401   Assert(BB->getFirstNonPHI() == &CPI,
3402          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3403 
3404   visitEHPadPredecessors(CPI);
3405   visitFuncletPadInst(CPI);
3406 }
3407 
3408 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3409   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3410          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3411          CatchReturn.getOperand(0));
3412 
3413   visitTerminatorInst(CatchReturn);
3414 }
3415 
3416 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3417   BasicBlock *BB = CPI.getParent();
3418 
3419   Function *F = BB->getParent();
3420   Assert(F->hasPersonalityFn(),
3421          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3422 
3423   // The cleanuppad instruction must be the first non-PHI instruction in the
3424   // block.
3425   Assert(BB->getFirstNonPHI() == &CPI,
3426          "CleanupPadInst not the first non-PHI instruction in the block.",
3427          &CPI);
3428 
3429   auto *ParentPad = CPI.getParentPad();
3430   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3431          "CleanupPadInst has an invalid parent.", &CPI);
3432 
3433   visitEHPadPredecessors(CPI);
3434   visitFuncletPadInst(CPI);
3435 }
3436 
3437 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3438   User *FirstUser = nullptr;
3439   Value *FirstUnwindPad = nullptr;
3440   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3441   SmallSet<FuncletPadInst *, 8> Seen;
3442 
3443   while (!Worklist.empty()) {
3444     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3445     Assert(Seen.insert(CurrentPad).second,
3446            "FuncletPadInst must not be nested within itself", CurrentPad);
3447     Value *UnresolvedAncestorPad = nullptr;
3448     for (User *U : CurrentPad->users()) {
3449       BasicBlock *UnwindDest;
3450       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3451         UnwindDest = CRI->getUnwindDest();
3452       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3453         // We allow catchswitch unwind to caller to nest
3454         // within an outer pad that unwinds somewhere else,
3455         // because catchswitch doesn't have a nounwind variant.
3456         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3457         if (CSI->unwindsToCaller())
3458           continue;
3459         UnwindDest = CSI->getUnwindDest();
3460       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3461         UnwindDest = II->getUnwindDest();
3462       } else if (isa<CallInst>(U)) {
3463         // Calls which don't unwind may be found inside funclet
3464         // pads that unwind somewhere else.  We don't *require*
3465         // such calls to be annotated nounwind.
3466         continue;
3467       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3468         // The unwind dest for a cleanup can only be found by
3469         // recursive search.  Add it to the worklist, and we'll
3470         // search for its first use that determines where it unwinds.
3471         Worklist.push_back(CPI);
3472         continue;
3473       } else {
3474         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3475         continue;
3476       }
3477 
3478       Value *UnwindPad;
3479       bool ExitsFPI;
3480       if (UnwindDest) {
3481         UnwindPad = UnwindDest->getFirstNonPHI();
3482         if (!cast<Instruction>(UnwindPad)->isEHPad())
3483           continue;
3484         Value *UnwindParent = getParentPad(UnwindPad);
3485         // Ignore unwind edges that don't exit CurrentPad.
3486         if (UnwindParent == CurrentPad)
3487           continue;
3488         // Determine whether the original funclet pad is exited,
3489         // and if we are scanning nested pads determine how many
3490         // of them are exited so we can stop searching their
3491         // children.
3492         Value *ExitedPad = CurrentPad;
3493         ExitsFPI = false;
3494         do {
3495           if (ExitedPad == &FPI) {
3496             ExitsFPI = true;
3497             // Now we can resolve any ancestors of CurrentPad up to
3498             // FPI, but not including FPI since we need to make sure
3499             // to check all direct users of FPI for consistency.
3500             UnresolvedAncestorPad = &FPI;
3501             break;
3502           }
3503           Value *ExitedParent = getParentPad(ExitedPad);
3504           if (ExitedParent == UnwindParent) {
3505             // ExitedPad is the ancestor-most pad which this unwind
3506             // edge exits, so we can resolve up to it, meaning that
3507             // ExitedParent is the first ancestor still unresolved.
3508             UnresolvedAncestorPad = ExitedParent;
3509             break;
3510           }
3511           ExitedPad = ExitedParent;
3512         } while (!isa<ConstantTokenNone>(ExitedPad));
3513       } else {
3514         // Unwinding to caller exits all pads.
3515         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3516         ExitsFPI = true;
3517         UnresolvedAncestorPad = &FPI;
3518       }
3519 
3520       if (ExitsFPI) {
3521         // This unwind edge exits FPI.  Make sure it agrees with other
3522         // such edges.
3523         if (FirstUser) {
3524           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3525                                               "pad must have the same unwind "
3526                                               "dest",
3527                  &FPI, U, FirstUser);
3528         } else {
3529           FirstUser = U;
3530           FirstUnwindPad = UnwindPad;
3531           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3532           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3533               getParentPad(UnwindPad) == getParentPad(&FPI))
3534             SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3535         }
3536       }
3537       // Make sure we visit all uses of FPI, but for nested pads stop as
3538       // soon as we know where they unwind to.
3539       if (CurrentPad != &FPI)
3540         break;
3541     }
3542     if (UnresolvedAncestorPad) {
3543       if (CurrentPad == UnresolvedAncestorPad) {
3544         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3545         // we've found an unwind edge that exits it, because we need to verify
3546         // all direct uses of FPI.
3547         assert(CurrentPad == &FPI);
3548         continue;
3549       }
3550       // Pop off the worklist any nested pads that we've found an unwind
3551       // destination for.  The pads on the worklist are the uncles,
3552       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3553       // for all ancestors of CurrentPad up to but not including
3554       // UnresolvedAncestorPad.
3555       Value *ResolvedPad = CurrentPad;
3556       while (!Worklist.empty()) {
3557         Value *UnclePad = Worklist.back();
3558         Value *AncestorPad = getParentPad(UnclePad);
3559         // Walk ResolvedPad up the ancestor list until we either find the
3560         // uncle's parent or the last resolved ancestor.
3561         while (ResolvedPad != AncestorPad) {
3562           Value *ResolvedParent = getParentPad(ResolvedPad);
3563           if (ResolvedParent == UnresolvedAncestorPad) {
3564             break;
3565           }
3566           ResolvedPad = ResolvedParent;
3567         }
3568         // If the resolved ancestor search didn't find the uncle's parent,
3569         // then the uncle is not yet resolved.
3570         if (ResolvedPad != AncestorPad)
3571           break;
3572         // This uncle is resolved, so pop it from the worklist.
3573         Worklist.pop_back();
3574       }
3575     }
3576   }
3577 
3578   if (FirstUnwindPad) {
3579     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3580       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3581       Value *SwitchUnwindPad;
3582       if (SwitchUnwindDest)
3583         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3584       else
3585         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3586       Assert(SwitchUnwindPad == FirstUnwindPad,
3587              "Unwind edges out of a catch must have the same unwind dest as "
3588              "the parent catchswitch",
3589              &FPI, FirstUser, CatchSwitch);
3590     }
3591   }
3592 
3593   visitInstruction(FPI);
3594 }
3595 
3596 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3597   BasicBlock *BB = CatchSwitch.getParent();
3598 
3599   Function *F = BB->getParent();
3600   Assert(F->hasPersonalityFn(),
3601          "CatchSwitchInst needs to be in a function with a personality.",
3602          &CatchSwitch);
3603 
3604   // The catchswitch instruction must be the first non-PHI instruction in the
3605   // block.
3606   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3607          "CatchSwitchInst not the first non-PHI instruction in the block.",
3608          &CatchSwitch);
3609 
3610   auto *ParentPad = CatchSwitch.getParentPad();
3611   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3612          "CatchSwitchInst has an invalid parent.", ParentPad);
3613 
3614   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3615     Instruction *I = UnwindDest->getFirstNonPHI();
3616     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3617            "CatchSwitchInst must unwind to an EH block which is not a "
3618            "landingpad.",
3619            &CatchSwitch);
3620 
3621     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3622     if (getParentPad(I) == ParentPad)
3623       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3624   }
3625 
3626   Assert(CatchSwitch.getNumHandlers() != 0,
3627          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3628 
3629   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3630     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3631            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3632   }
3633 
3634   visitEHPadPredecessors(CatchSwitch);
3635   visitTerminatorInst(CatchSwitch);
3636 }
3637 
3638 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3639   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3640          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3641          CRI.getOperand(0));
3642 
3643   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3644     Instruction *I = UnwindDest->getFirstNonPHI();
3645     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3646            "CleanupReturnInst must unwind to an EH block which is not a "
3647            "landingpad.",
3648            &CRI);
3649   }
3650 
3651   visitTerminatorInst(CRI);
3652 }
3653 
3654 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3655   Instruction *Op = cast<Instruction>(I.getOperand(i));
3656   // If the we have an invalid invoke, don't try to compute the dominance.
3657   // We already reject it in the invoke specific checks and the dominance
3658   // computation doesn't handle multiple edges.
3659   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3660     if (II->getNormalDest() == II->getUnwindDest())
3661       return;
3662   }
3663 
3664   // Quick check whether the def has already been encountered in the same block.
3665   // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3666   // uses are defined to happen on the incoming edge, not at the instruction.
3667   //
3668   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3669   // wrapping an SSA value, assert that we've already encountered it.  See
3670   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3671   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3672     return;
3673 
3674   const Use &U = I.getOperandUse(i);
3675   Assert(DT.dominates(Op, U),
3676          "Instruction does not dominate all uses!", Op, &I);
3677 }
3678 
3679 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3680   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3681          "apply only to pointer types", &I);
3682   Assert(isa<LoadInst>(I),
3683          "dereferenceable, dereferenceable_or_null apply only to load"
3684          " instructions, use attributes for calls or invokes", &I);
3685   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3686          "take one operand!", &I);
3687   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3688   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3689          "dereferenceable_or_null metadata value must be an i64!", &I);
3690 }
3691 
3692 /// verifyInstruction - Verify that an instruction is well formed.
3693 ///
3694 void Verifier::visitInstruction(Instruction &I) {
3695   BasicBlock *BB = I.getParent();
3696   Assert(BB, "Instruction not embedded in basic block!", &I);
3697 
3698   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
3699     for (User *U : I.users()) {
3700       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3701              "Only PHI nodes may reference their own value!", &I);
3702     }
3703   }
3704 
3705   // Check that void typed values don't have names
3706   Assert(!I.getType()->isVoidTy() || !I.hasName(),
3707          "Instruction has a name, but provides a void value!", &I);
3708 
3709   // Check that the return value of the instruction is either void or a legal
3710   // value type.
3711   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3712          "Instruction returns a non-scalar type!", &I);
3713 
3714   // Check that the instruction doesn't produce metadata. Calls are already
3715   // checked against the callee type.
3716   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3717          "Invalid use of metadata!", &I);
3718 
3719   // Check that all uses of the instruction, if they are instructions
3720   // themselves, actually have parent basic blocks.  If the use is not an
3721   // instruction, it is an error!
3722   for (Use &U : I.uses()) {
3723     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3724       Assert(Used->getParent() != nullptr,
3725              "Instruction referencing"
3726              " instruction not embedded in a basic block!",
3727              &I, Used);
3728     else {
3729       CheckFailed("Use of instruction is not an instruction!", U);
3730       return;
3731     }
3732   }
3733 
3734   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3735     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3736 
3737     // Check to make sure that only first-class-values are operands to
3738     // instructions.
3739     if (!I.getOperand(i)->getType()->isFirstClassType()) {
3740       Assert(false, "Instruction operands must be first-class values!", &I);
3741     }
3742 
3743     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3744       // Check to make sure that the "address of" an intrinsic function is never
3745       // taken.
3746       Assert(
3747           !F->isIntrinsic() ||
3748               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3749           "Cannot take the address of an intrinsic!", &I);
3750       Assert(
3751           !F->isIntrinsic() || isa<CallInst>(I) ||
3752               F->getIntrinsicID() == Intrinsic::donothing ||
3753               F->getIntrinsicID() == Intrinsic::coro_resume ||
3754               F->getIntrinsicID() == Intrinsic::coro_destroy ||
3755               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3756               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3757               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3758           "Cannot invoke an intrinsic other than donothing, patchpoint, "
3759           "statepoint, coro_resume or coro_destroy",
3760           &I);
3761       Assert(F->getParent() == &M, "Referencing function in another module!",
3762              &I, &M, F, F->getParent());
3763     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3764       Assert(OpBB->getParent() == BB->getParent(),
3765              "Referring to a basic block in another function!", &I);
3766     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3767       Assert(OpArg->getParent() == BB->getParent(),
3768              "Referring to an argument in another function!", &I);
3769     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3770       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3771              &M, GV, GV->getParent());
3772     } else if (isa<Instruction>(I.getOperand(i))) {
3773       verifyDominatesUse(I, i);
3774     } else if (isa<InlineAsm>(I.getOperand(i))) {
3775       Assert((i + 1 == e && isa<CallInst>(I)) ||
3776                  (i + 3 == e && isa<InvokeInst>(I)),
3777              "Cannot take the address of an inline asm!", &I);
3778     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3779       if (CE->getType()->isPtrOrPtrVectorTy() ||
3780           !DL.getNonIntegralAddressSpaces().empty()) {
3781         // If we have a ConstantExpr pointer, we need to see if it came from an
3782         // illegal bitcast.  If the datalayout string specifies non-integral
3783         // address spaces then we also need to check for illegal ptrtoint and
3784         // inttoptr expressions.
3785         visitConstantExprsRecursively(CE);
3786       }
3787     }
3788   }
3789 
3790   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3791     Assert(I.getType()->isFPOrFPVectorTy(),
3792            "fpmath requires a floating point result!", &I);
3793     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3794     if (ConstantFP *CFP0 =
3795             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3796       const APFloat &Accuracy = CFP0->getValueAPF();
3797       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3798              "fpmath accuracy must have float type", &I);
3799       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3800              "fpmath accuracy not a positive number!", &I);
3801     } else {
3802       Assert(false, "invalid fpmath accuracy!", &I);
3803     }
3804   }
3805 
3806   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3807     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3808            "Ranges are only for loads, calls and invokes!", &I);
3809     visitRangeMetadata(I, Range, I.getType());
3810   }
3811 
3812   if (I.getMetadata(LLVMContext::MD_nonnull)) {
3813     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3814            &I);
3815     Assert(isa<LoadInst>(I),
3816            "nonnull applies only to load instructions, use attributes"
3817            " for calls or invokes",
3818            &I);
3819   }
3820 
3821   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3822     visitDereferenceableMetadata(I, MD);
3823 
3824   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3825     visitDereferenceableMetadata(I, MD);
3826 
3827   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3828     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3829 
3830   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3831     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3832            &I);
3833     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3834            "use attributes for calls or invokes", &I);
3835     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3836     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3837     Assert(CI && CI->getType()->isIntegerTy(64),
3838            "align metadata value must be an i64!", &I);
3839     uint64_t Align = CI->getZExtValue();
3840     Assert(isPowerOf2_64(Align),
3841            "align metadata value must be a power of 2!", &I);
3842     Assert(Align <= Value::MaximumAlignment,
3843            "alignment is larger that implementation defined limit", &I);
3844   }
3845 
3846   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3847     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3848     visitMDNode(*N);
3849   }
3850 
3851   if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3852     verifyFragmentExpression(*DII);
3853 
3854   InstsInThisBlock.insert(&I);
3855 }
3856 
3857 /// Allow intrinsics to be verified in different ways.
3858 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3859   Function *IF = CS.getCalledFunction();
3860   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3861          IF);
3862 
3863   // Verify that the intrinsic prototype lines up with what the .td files
3864   // describe.
3865   FunctionType *IFTy = IF->getFunctionType();
3866   bool IsVarArg = IFTy->isVarArg();
3867 
3868   SmallVector<Intrinsic::IITDescriptor, 8> Table;
3869   getIntrinsicInfoTableEntries(ID, Table);
3870   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3871 
3872   SmallVector<Type *, 4> ArgTys;
3873   Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3874                                         TableRef, ArgTys),
3875          "Intrinsic has incorrect return type!", IF);
3876   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3877     Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3878                                           TableRef, ArgTys),
3879            "Intrinsic has incorrect argument type!", IF);
3880 
3881   // Verify if the intrinsic call matches the vararg property.
3882   if (IsVarArg)
3883     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3884            "Intrinsic was not defined with variable arguments!", IF);
3885   else
3886     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3887            "Callsite was not defined with variable arguments!", IF);
3888 
3889   // All descriptors should be absorbed by now.
3890   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3891 
3892   // Now that we have the intrinsic ID and the actual argument types (and we
3893   // know they are legal for the intrinsic!) get the intrinsic name through the
3894   // usual means.  This allows us to verify the mangling of argument types into
3895   // the name.
3896   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3897   Assert(ExpectedName == IF->getName(),
3898          "Intrinsic name not mangled correctly for type arguments! "
3899          "Should be: " +
3900              ExpectedName,
3901          IF);
3902 
3903   // If the intrinsic takes MDNode arguments, verify that they are either global
3904   // or are local to *this* function.
3905   for (Value *V : CS.args())
3906     if (auto *MD = dyn_cast<MetadataAsValue>(V))
3907       visitMetadataAsValue(*MD, CS.getCaller());
3908 
3909   switch (ID) {
3910   default:
3911     break;
3912   case Intrinsic::coro_id: {
3913     auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3914     if (isa<ConstantPointerNull>(InfoArg))
3915       break;
3916     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3917     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
3918       "info argument of llvm.coro.begin must refer to an initialized "
3919       "constant");
3920     Constant *Init = GV->getInitializer();
3921     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
3922       "info argument of llvm.coro.begin must refer to either a struct or "
3923       "an array");
3924     break;
3925   }
3926   case Intrinsic::ctlz:  // llvm.ctlz
3927   case Intrinsic::cttz:  // llvm.cttz
3928     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3929            "is_zero_undef argument of bit counting intrinsics must be a "
3930            "constant int",
3931            CS);
3932     break;
3933   case Intrinsic::experimental_constrained_fadd:
3934   case Intrinsic::experimental_constrained_fsub:
3935   case Intrinsic::experimental_constrained_fmul:
3936   case Intrinsic::experimental_constrained_fdiv:
3937   case Intrinsic::experimental_constrained_frem:
3938     visitConstrainedFPIntrinsic(
3939         cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
3940     break;
3941   case Intrinsic::dbg_declare: // llvm.dbg.declare
3942     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3943            "invalid llvm.dbg.declare intrinsic call 1", CS);
3944     visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3945     break;
3946   case Intrinsic::dbg_value: // llvm.dbg.value
3947     visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3948     break;
3949   case Intrinsic::memcpy:
3950   case Intrinsic::memmove:
3951   case Intrinsic::memset: {
3952     ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3953     Assert(AlignCI,
3954            "alignment argument of memory intrinsics must be a constant int",
3955            CS);
3956     const APInt &AlignVal = AlignCI->getValue();
3957     Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3958            "alignment argument of memory intrinsics must be a power of 2", CS);
3959     Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3960            "isvolatile argument of memory intrinsics must be a constant int",
3961            CS);
3962     break;
3963   }
3964   case Intrinsic::memcpy_element_atomic: {
3965     ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3966     Assert(ElementSizeCI, "element size of the element-wise atomic memory "
3967                           "intrinsic must be a constant int",
3968            CS);
3969     const APInt &ElementSizeVal = ElementSizeCI->getValue();
3970     Assert(ElementSizeVal.isPowerOf2(),
3971            "element size of the element-wise atomic memory intrinsic "
3972            "must be a power of 2",
3973            CS);
3974 
3975     auto IsValidAlignment = [&](uint64_t Alignment) {
3976       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
3977     };
3978 
3979     uint64_t DstAlignment = CS.getParamAlignment(1),
3980              SrcAlignment = CS.getParamAlignment(2);
3981 
3982     Assert(IsValidAlignment(DstAlignment),
3983            "incorrect alignment of the destination argument",
3984            CS);
3985     Assert(IsValidAlignment(SrcAlignment),
3986            "incorrect alignment of the source argument",
3987            CS);
3988     break;
3989   }
3990   case Intrinsic::gcroot:
3991   case Intrinsic::gcwrite:
3992   case Intrinsic::gcread:
3993     if (ID == Intrinsic::gcroot) {
3994       AllocaInst *AI =
3995         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3996       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3997       Assert(isa<Constant>(CS.getArgOperand(1)),
3998              "llvm.gcroot parameter #2 must be a constant.", CS);
3999       if (!AI->getAllocatedType()->isPointerTy()) {
4000         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4001                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4002                "or argument #2 must be a non-null constant.",
4003                CS);
4004       }
4005     }
4006 
4007     Assert(CS.getParent()->getParent()->hasGC(),
4008            "Enclosing function does not use GC.", CS);
4009     break;
4010   case Intrinsic::init_trampoline:
4011     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4012            "llvm.init_trampoline parameter #2 must resolve to a function.",
4013            CS);
4014     break;
4015   case Intrinsic::prefetch:
4016     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4017                isa<ConstantInt>(CS.getArgOperand(2)) &&
4018                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4019                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4020            "invalid arguments to llvm.prefetch", CS);
4021     break;
4022   case Intrinsic::stackprotector:
4023     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4024            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4025     break;
4026   case Intrinsic::lifetime_start:
4027   case Intrinsic::lifetime_end:
4028   case Intrinsic::invariant_start:
4029     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4030            "size argument of memory use markers must be a constant integer",
4031            CS);
4032     break;
4033   case Intrinsic::invariant_end:
4034     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4035            "llvm.invariant.end parameter #2 must be a constant integer", CS);
4036     break;
4037 
4038   case Intrinsic::localescape: {
4039     BasicBlock *BB = CS.getParent();
4040     Assert(BB == &BB->getParent()->front(),
4041            "llvm.localescape used outside of entry block", CS);
4042     Assert(!SawFrameEscape,
4043            "multiple calls to llvm.localescape in one function", CS);
4044     for (Value *Arg : CS.args()) {
4045       if (isa<ConstantPointerNull>(Arg))
4046         continue; // Null values are allowed as placeholders.
4047       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4048       Assert(AI && AI->isStaticAlloca(),
4049              "llvm.localescape only accepts static allocas", CS);
4050     }
4051     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4052     SawFrameEscape = true;
4053     break;
4054   }
4055   case Intrinsic::localrecover: {
4056     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4057     Function *Fn = dyn_cast<Function>(FnArg);
4058     Assert(Fn && !Fn->isDeclaration(),
4059            "llvm.localrecover first "
4060            "argument must be function defined in this module",
4061            CS);
4062     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4063     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4064            CS);
4065     auto &Entry = FrameEscapeInfo[Fn];
4066     Entry.second = unsigned(
4067         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4068     break;
4069   }
4070 
4071   case Intrinsic::experimental_gc_statepoint:
4072     Assert(!CS.isInlineAsm(),
4073            "gc.statepoint support for inline assembly unimplemented", CS);
4074     Assert(CS.getParent()->getParent()->hasGC(),
4075            "Enclosing function does not use GC.", CS);
4076 
4077     verifyStatepoint(CS);
4078     break;
4079   case Intrinsic::experimental_gc_result: {
4080     Assert(CS.getParent()->getParent()->hasGC(),
4081            "Enclosing function does not use GC.", CS);
4082     // Are we tied to a statepoint properly?
4083     CallSite StatepointCS(CS.getArgOperand(0));
4084     const Function *StatepointFn =
4085       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4086     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4087                StatepointFn->getIntrinsicID() ==
4088                    Intrinsic::experimental_gc_statepoint,
4089            "gc.result operand #1 must be from a statepoint", CS,
4090            CS.getArgOperand(0));
4091 
4092     // Assert that result type matches wrapped callee.
4093     const Value *Target = StatepointCS.getArgument(2);
4094     auto *PT = cast<PointerType>(Target->getType());
4095     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4096     Assert(CS.getType() == TargetFuncType->getReturnType(),
4097            "gc.result result type does not match wrapped callee", CS);
4098     break;
4099   }
4100   case Intrinsic::experimental_gc_relocate: {
4101     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4102 
4103     Assert(isa<PointerType>(CS.getType()->getScalarType()),
4104            "gc.relocate must return a pointer or a vector of pointers", CS);
4105 
4106     // Check that this relocate is correctly tied to the statepoint
4107 
4108     // This is case for relocate on the unwinding path of an invoke statepoint
4109     if (LandingPadInst *LandingPad =
4110           dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4111 
4112       const BasicBlock *InvokeBB =
4113           LandingPad->getParent()->getUniquePredecessor();
4114 
4115       // Landingpad relocates should have only one predecessor with invoke
4116       // statepoint terminator
4117       Assert(InvokeBB, "safepoints should have unique landingpads",
4118              LandingPad->getParent());
4119       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4120              InvokeBB);
4121       Assert(isStatepoint(InvokeBB->getTerminator()),
4122              "gc relocate should be linked to a statepoint", InvokeBB);
4123     }
4124     else {
4125       // In all other cases relocate should be tied to the statepoint directly.
4126       // This covers relocates on a normal return path of invoke statepoint and
4127       // relocates of a call statepoint.
4128       auto Token = CS.getArgOperand(0);
4129       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4130              "gc relocate is incorrectly tied to the statepoint", CS, Token);
4131     }
4132 
4133     // Verify rest of the relocate arguments.
4134 
4135     ImmutableCallSite StatepointCS(
4136         cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4137 
4138     // Both the base and derived must be piped through the safepoint.
4139     Value* Base = CS.getArgOperand(1);
4140     Assert(isa<ConstantInt>(Base),
4141            "gc.relocate operand #2 must be integer offset", CS);
4142 
4143     Value* Derived = CS.getArgOperand(2);
4144     Assert(isa<ConstantInt>(Derived),
4145            "gc.relocate operand #3 must be integer offset", CS);
4146 
4147     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4148     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4149     // Check the bounds
4150     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4151            "gc.relocate: statepoint base index out of bounds", CS);
4152     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4153            "gc.relocate: statepoint derived index out of bounds", CS);
4154 
4155     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4156     // section of the statepoint's argument.
4157     Assert(StatepointCS.arg_size() > 0,
4158            "gc.statepoint: insufficient arguments");
4159     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4160            "gc.statement: number of call arguments must be constant integer");
4161     const unsigned NumCallArgs =
4162         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4163     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4164            "gc.statepoint: mismatch in number of call arguments");
4165     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4166            "gc.statepoint: number of transition arguments must be "
4167            "a constant integer");
4168     const int NumTransitionArgs =
4169         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4170             ->getZExtValue();
4171     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4172     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4173            "gc.statepoint: number of deoptimization arguments must be "
4174            "a constant integer");
4175     const int NumDeoptArgs =
4176         cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4177             ->getZExtValue();
4178     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4179     const int GCParamArgsEnd = StatepointCS.arg_size();
4180     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4181            "gc.relocate: statepoint base index doesn't fall within the "
4182            "'gc parameters' section of the statepoint call",
4183            CS);
4184     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4185            "gc.relocate: statepoint derived index doesn't fall within the "
4186            "'gc parameters' section of the statepoint call",
4187            CS);
4188 
4189     // Relocated value must be either a pointer type or vector-of-pointer type,
4190     // but gc_relocate does not need to return the same pointer type as the
4191     // relocated pointer. It can be casted to the correct type later if it's
4192     // desired. However, they must have the same address space and 'vectorness'
4193     GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4194     Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
4195            "gc.relocate: relocated value must be a gc pointer", CS);
4196 
4197     auto ResultType = CS.getType();
4198     auto DerivedType = Relocate.getDerivedPtr()->getType();
4199     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4200            "gc.relocate: vector relocates to vector and pointer to pointer",
4201            CS);
4202     Assert(
4203         ResultType->getPointerAddressSpace() ==
4204             DerivedType->getPointerAddressSpace(),
4205         "gc.relocate: relocating a pointer shouldn't change its address space",
4206         CS);
4207     break;
4208   }
4209   case Intrinsic::eh_exceptioncode:
4210   case Intrinsic::eh_exceptionpointer: {
4211     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4212            "eh.exceptionpointer argument must be a catchpad", CS);
4213     break;
4214   }
4215   case Intrinsic::masked_load: {
4216     Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4217 
4218     Value *Ptr = CS.getArgOperand(0);
4219     //Value *Alignment = CS.getArgOperand(1);
4220     Value *Mask = CS.getArgOperand(2);
4221     Value *PassThru = CS.getArgOperand(3);
4222     Assert(Mask->getType()->isVectorTy(),
4223            "masked_load: mask must be vector", CS);
4224 
4225     // DataTy is the overloaded type
4226     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4227     Assert(DataTy == CS.getType(),
4228            "masked_load: return must match pointer type", CS);
4229     Assert(PassThru->getType() == DataTy,
4230            "masked_load: pass through and data type must match", CS);
4231     Assert(Mask->getType()->getVectorNumElements() ==
4232            DataTy->getVectorNumElements(),
4233            "masked_load: vector mask must be same length as data", CS);
4234     break;
4235   }
4236   case Intrinsic::masked_store: {
4237     Value *Val = CS.getArgOperand(0);
4238     Value *Ptr = CS.getArgOperand(1);
4239     //Value *Alignment = CS.getArgOperand(2);
4240     Value *Mask = CS.getArgOperand(3);
4241     Assert(Mask->getType()->isVectorTy(),
4242            "masked_store: mask must be vector", CS);
4243 
4244     // DataTy is the overloaded type
4245     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4246     Assert(DataTy == Val->getType(),
4247            "masked_store: storee must match pointer type", CS);
4248     Assert(Mask->getType()->getVectorNumElements() ==
4249            DataTy->getVectorNumElements(),
4250            "masked_store: vector mask must be same length as data", CS);
4251     break;
4252   }
4253 
4254   case Intrinsic::experimental_guard: {
4255     Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4256     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4257            "experimental_guard must have exactly one "
4258            "\"deopt\" operand bundle");
4259     break;
4260   }
4261 
4262   case Intrinsic::experimental_deoptimize: {
4263     Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4264     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4265            "experimental_deoptimize must have exactly one "
4266            "\"deopt\" operand bundle");
4267     Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4268            "experimental_deoptimize return type must match caller return type");
4269 
4270     if (CS.isCall()) {
4271       auto *DeoptCI = CS.getInstruction();
4272       auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4273       Assert(RI,
4274              "calls to experimental_deoptimize must be followed by a return");
4275 
4276       if (!CS.getType()->isVoidTy() && RI)
4277         Assert(RI->getReturnValue() == DeoptCI,
4278                "calls to experimental_deoptimize must be followed by a return "
4279                "of the value computed by experimental_deoptimize");
4280     }
4281 
4282     break;
4283   }
4284   };
4285 }
4286 
4287 /// \brief Carefully grab the subprogram from a local scope.
4288 ///
4289 /// This carefully grabs the subprogram from a local scope, avoiding the
4290 /// built-in assertions that would typically fire.
4291 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4292   if (!LocalScope)
4293     return nullptr;
4294 
4295   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4296     return SP;
4297 
4298   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4299     return getSubprogram(LB->getRawScope());
4300 
4301   // Just return null; broken scope chains are checked elsewhere.
4302   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4303   return nullptr;
4304 }
4305 
4306 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4307   Assert(isa<MetadataAsValue>(FPI.getOperand(2)),
4308          "invalid rounding mode argument", &FPI);
4309   Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4310          "invalid rounding mode argument", &FPI);
4311   Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4312          "invalid exception behavior argument", &FPI);
4313 }
4314 
4315 template <class DbgIntrinsicTy>
4316 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4317   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4318   AssertDI(isa<ValueAsMetadata>(MD) ||
4319              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4320          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4321   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4322          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4323          DII.getRawVariable());
4324   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4325          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4326          DII.getRawExpression());
4327 
4328   // Ignore broken !dbg attachments; they're checked elsewhere.
4329   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4330     if (!isa<DILocation>(N))
4331       return;
4332 
4333   BasicBlock *BB = DII.getParent();
4334   Function *F = BB ? BB->getParent() : nullptr;
4335 
4336   // The scopes for variables and !dbg attachments must agree.
4337   DILocalVariable *Var = DII.getVariable();
4338   DILocation *Loc = DII.getDebugLoc();
4339   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4340          &DII, BB, F);
4341 
4342   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4343   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4344   if (!VarSP || !LocSP)
4345     return; // Broken scope chains are checked elsewhere.
4346 
4347   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4348                                " variable and !dbg attachment",
4349            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4350            Loc->getScope()->getSubprogram());
4351 }
4352 
4353 static uint64_t getVariableSize(const DILocalVariable &V) {
4354   // Be careful of broken types (checked elsewhere).
4355   const Metadata *RawType = V.getRawType();
4356   while (RawType) {
4357     // Try to get the size directly.
4358     if (auto *T = dyn_cast<DIType>(RawType))
4359       if (uint64_t Size = T->getSizeInBits())
4360         return Size;
4361 
4362     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4363       // Look at the base type.
4364       RawType = DT->getRawBaseType();
4365       continue;
4366     }
4367 
4368     // Missing type or size.
4369     break;
4370   }
4371 
4372   // Fail gracefully.
4373   return 0;
4374 }
4375 
4376 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4377   DILocalVariable *V;
4378   DIExpression *E;
4379   if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4380     V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4381     E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4382   } else {
4383     auto *DDI = cast<DbgDeclareInst>(&I);
4384     V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4385     E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4386   }
4387 
4388   // We don't know whether this intrinsic verified correctly.
4389   if (!V || !E || !E->isValid())
4390     return;
4391 
4392   // Nothing to do if this isn't a bit piece expression.
4393   auto Fragment = E->getFragmentInfo();
4394   if (!Fragment)
4395     return;
4396 
4397   // The frontend helps out GDB by emitting the members of local anonymous
4398   // unions as artificial local variables with shared storage. When SROA splits
4399   // the storage for artificial local variables that are smaller than the entire
4400   // union, the overhang piece will be outside of the allotted space for the
4401   // variable and this check fails.
4402   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4403   if (V->isArtificial())
4404     return;
4405 
4406   // If there's no size, the type is broken, but that should be checked
4407   // elsewhere.
4408   uint64_t VarSize = getVariableSize(*V);
4409   if (!VarSize)
4410     return;
4411 
4412   unsigned FragSize = Fragment->SizeInBits;
4413   unsigned FragOffset = Fragment->OffsetInBits;
4414   AssertDI(FragSize + FragOffset <= VarSize,
4415          "fragment is larger than or outside of variable", &I, V, E);
4416   AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E);
4417 }
4418 
4419 void Verifier::verifyCompileUnits() {
4420   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4421   SmallPtrSet<const Metadata *, 2> Listed;
4422   if (CUs)
4423     Listed.insert(CUs->op_begin(), CUs->op_end());
4424   AssertDI(
4425       all_of(CUVisited,
4426              [&Listed](const Metadata *CU) { return Listed.count(CU); }),
4427       "All DICompileUnits must be listed in llvm.dbg.cu");
4428   CUVisited.clear();
4429 }
4430 
4431 void Verifier::verifyDeoptimizeCallingConvs() {
4432   if (DeoptimizeDeclarations.empty())
4433     return;
4434 
4435   const Function *First = DeoptimizeDeclarations[0];
4436   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4437     Assert(First->getCallingConv() == F->getCallingConv(),
4438            "All llvm.experimental.deoptimize declarations must have the same "
4439            "calling convention",
4440            First, F);
4441   }
4442 }
4443 
4444 //===----------------------------------------------------------------------===//
4445 //  Implement the public interfaces to this file...
4446 //===----------------------------------------------------------------------===//
4447 
4448 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4449   Function &F = const_cast<Function &>(f);
4450 
4451   // Don't use a raw_null_ostream.  Printing IR is expensive.
4452   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4453 
4454   // Note that this function's return value is inverted from what you would
4455   // expect of a function called "verify".
4456   return !V.verify(F);
4457 }
4458 
4459 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4460                         bool *BrokenDebugInfo) {
4461   // Don't use a raw_null_ostream.  Printing IR is expensive.
4462   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4463 
4464   bool Broken = false;
4465   for (const Function &F : M)
4466     Broken |= !V.verify(F);
4467 
4468   Broken |= !V.verify();
4469   if (BrokenDebugInfo)
4470     *BrokenDebugInfo = V.hasBrokenDebugInfo();
4471   // Note that this function's return value is inverted from what you would
4472   // expect of a function called "verify".
4473   return Broken;
4474 }
4475 
4476 namespace {
4477 
4478 struct VerifierLegacyPass : public FunctionPass {
4479   static char ID;
4480 
4481   std::unique_ptr<Verifier> V;
4482   bool FatalErrors = true;
4483 
4484   VerifierLegacyPass() : FunctionPass(ID) {
4485     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4486   }
4487   explicit VerifierLegacyPass(bool FatalErrors)
4488       : FunctionPass(ID),
4489         FatalErrors(FatalErrors) {
4490     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4491   }
4492 
4493   bool doInitialization(Module &M) override {
4494     V = llvm::make_unique<Verifier>(
4495         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4496     return false;
4497   }
4498 
4499   bool runOnFunction(Function &F) override {
4500     if (!V->verify(F) && FatalErrors)
4501       report_fatal_error("Broken function found, compilation aborted!");
4502 
4503     return false;
4504   }
4505 
4506   bool doFinalization(Module &M) override {
4507     bool HasErrors = false;
4508     for (Function &F : M)
4509       if (F.isDeclaration())
4510         HasErrors |= !V->verify(F);
4511 
4512     HasErrors |= !V->verify();
4513     if (FatalErrors) {
4514       if (HasErrors)
4515         report_fatal_error("Broken module found, compilation aborted!");
4516       assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info");
4517     }
4518 
4519     // Strip broken debug info.
4520     if (V->hasBrokenDebugInfo()) {
4521       DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4522       M.getContext().diagnose(DiagInvalid);
4523       if (!StripDebugInfo(M))
4524         report_fatal_error("Failed to strip malformed debug info");
4525     }
4526     return false;
4527   }
4528 
4529   void getAnalysisUsage(AnalysisUsage &AU) const override {
4530     AU.setPreservesAll();
4531   }
4532 };
4533 
4534 } // end anonymous namespace
4535 
4536 /// Helper to issue failure from the TBAA verification
4537 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4538   if (Diagnostic)
4539     return Diagnostic->CheckFailed(Args...);
4540 }
4541 
4542 #define AssertTBAA(C, ...)                                                     \
4543   do {                                                                         \
4544     if (!(C)) {                                                                \
4545       CheckFailed(__VA_ARGS__);                                                \
4546       return false;                                                            \
4547     }                                                                          \
4548   } while (false)
4549 
4550 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4551 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
4552 /// struct-type node describing an aggregate data structure (like a struct).
4553 TBAAVerifier::TBAABaseNodeSummary
4554 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4555   if (BaseNode->getNumOperands() < 2) {
4556     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4557     return {true, ~0u};
4558   }
4559 
4560   auto Itr = TBAABaseNodes.find(BaseNode);
4561   if (Itr != TBAABaseNodes.end())
4562     return Itr->second;
4563 
4564   auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4565   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4566   (void)InsertResult;
4567   assert(InsertResult.second && "We just checked!");
4568   return Result;
4569 }
4570 
4571 TBAAVerifier::TBAABaseNodeSummary
4572 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4573   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4574 
4575   if (BaseNode->getNumOperands() == 2) {
4576     // Scalar nodes can only be accessed at offset 0.
4577     return isValidScalarTBAANode(BaseNode)
4578                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4579                : InvalidNode;
4580   }
4581 
4582   if (BaseNode->getNumOperands() % 2 != 1) {
4583     CheckFailed("Struct tag nodes must have an odd number of operands!",
4584                 BaseNode);
4585     return InvalidNode;
4586   }
4587 
4588   if (!isa<MDString>(BaseNode->getOperand(0))) {
4589     CheckFailed("Struct tag nodes have a string as their first operand",
4590                 BaseNode);
4591     return InvalidNode;
4592   }
4593 
4594   bool Failed = false;
4595 
4596   Optional<APInt> PrevOffset;
4597   unsigned BitWidth = ~0u;
4598 
4599   // We've already checked that BaseNode is not a degenerate root node with one
4600   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4601   for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4602     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4603     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4604     if (!isa<MDNode>(FieldTy)) {
4605       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4606       Failed = true;
4607       continue;
4608     }
4609 
4610     auto *OffsetEntryCI =
4611         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4612     if (!OffsetEntryCI) {
4613       CheckFailed("Offset entries must be constants!", &I, BaseNode);
4614       Failed = true;
4615       continue;
4616     }
4617 
4618     if (BitWidth == ~0u)
4619       BitWidth = OffsetEntryCI->getBitWidth();
4620 
4621     if (OffsetEntryCI->getBitWidth() != BitWidth) {
4622       CheckFailed(
4623           "Bitwidth between the offsets and struct type entries must match", &I,
4624           BaseNode);
4625       Failed = true;
4626       continue;
4627     }
4628 
4629     // NB! As far as I can tell, we generate a non-strictly increasing offset
4630     // sequence only from structs that have zero size bit fields.  When
4631     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4632     // pick the field lexically the latest in struct type metadata node.  This
4633     // mirrors the actual behavior of the alias analysis implementation.
4634     bool IsAscending =
4635         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4636 
4637     if (!IsAscending) {
4638       CheckFailed("Offsets must be increasing!", &I, BaseNode);
4639       Failed = true;
4640     }
4641 
4642     PrevOffset = OffsetEntryCI->getValue();
4643   }
4644 
4645   return Failed ? InvalidNode
4646                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4647 }
4648 
4649 static bool IsRootTBAANode(const MDNode *MD) {
4650   return MD->getNumOperands() < 2;
4651 }
4652 
4653 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4654                                  SmallPtrSetImpl<const MDNode *> &Visited) {
4655   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4656     return false;
4657 
4658   if (!isa<MDString>(MD->getOperand(0)))
4659     return false;
4660 
4661   if (MD->getNumOperands() == 3) {
4662     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4663     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4664       return false;
4665   }
4666 
4667   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4668   return Parent && Visited.insert(Parent).second &&
4669          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4670 }
4671 
4672 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4673   auto ResultIt = TBAAScalarNodes.find(MD);
4674   if (ResultIt != TBAAScalarNodes.end())
4675     return ResultIt->second;
4676 
4677   SmallPtrSet<const MDNode *, 4> Visited;
4678   bool Result = IsScalarTBAANodeImpl(MD, Visited);
4679   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4680   (void)InsertResult;
4681   assert(InsertResult.second && "Just checked!");
4682 
4683   return Result;
4684 }
4685 
4686 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
4687 /// Offset in place to be the offset within the field node returned.
4688 ///
4689 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4690 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4691                                                    const MDNode *BaseNode,
4692                                                    APInt &Offset) {
4693   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4694 
4695   // Scalar nodes have only one possible "field" -- their parent in the access
4696   // hierarchy.  Offset must be zero at this point, but our caller is supposed
4697   // to Assert that.
4698   if (BaseNode->getNumOperands() == 2)
4699     return cast<MDNode>(BaseNode->getOperand(1));
4700 
4701   for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4702     auto *OffsetEntryCI =
4703         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4704     if (OffsetEntryCI->getValue().ugt(Offset)) {
4705       if (Idx == 1) {
4706         CheckFailed("Could not find TBAA parent in struct type node", &I,
4707                     BaseNode, &Offset);
4708         return nullptr;
4709       }
4710 
4711       auto *PrevOffsetEntryCI =
4712           mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4713       Offset -= PrevOffsetEntryCI->getValue();
4714       return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4715     }
4716   }
4717 
4718   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4719       BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4720 
4721   Offset -= LastOffsetEntryCI->getValue();
4722   return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4723 }
4724 
4725 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4726   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4727                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4728                  isa<AtomicCmpXchgInst>(I),
4729              "TBAA is only for loads, stores and calls!", &I);
4730 
4731   bool IsStructPathTBAA =
4732       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4733 
4734   AssertTBAA(
4735       IsStructPathTBAA,
4736       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4737 
4738   AssertTBAA(MD->getNumOperands() < 5,
4739              "Struct tag metadata must have either 3 or 4 operands", &I, MD);
4740 
4741   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4742   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4743 
4744   if (MD->getNumOperands() == 4) {
4745     auto *IsImmutableCI =
4746         mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4747     AssertTBAA(IsImmutableCI,
4748                "Immutability tag on struct tag metadata must be a constant", &I,
4749                MD);
4750     AssertTBAA(
4751         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
4752         "Immutability part of the struct tag metadata must be either 0 or 1",
4753         &I, MD);
4754   }
4755 
4756   AssertTBAA(BaseNode && AccessType,
4757              "Malformed struct tag metadata:  base and access-type "
4758              "should be non-null and point to Metadata nodes",
4759              &I, MD, BaseNode, AccessType);
4760 
4761   AssertTBAA(isValidScalarTBAANode(AccessType),
4762              "Access type node must be a valid scalar type", &I, MD,
4763              AccessType);
4764 
4765   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4766   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
4767 
4768   APInt Offset = OffsetCI->getValue();
4769   bool SeenAccessTypeInPath = false;
4770 
4771   SmallPtrSet<MDNode *, 4> StructPath;
4772 
4773   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4774        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4775     if (!StructPath.insert(BaseNode).second) {
4776       CheckFailed("Cycle detected in struct path", &I, MD);
4777       return false;
4778     }
4779 
4780     bool Invalid;
4781     unsigned BaseNodeBitWidth;
4782     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4783 
4784     // If the base node is invalid in itself, then we've already printed all the
4785     // errors we wanted to print.
4786     if (Invalid)
4787       return false;
4788 
4789     SeenAccessTypeInPath |= BaseNode == AccessType;
4790 
4791     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4792       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
4793                  &I, MD, &Offset);
4794 
4795     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
4796                    (BaseNodeBitWidth == 0 && Offset == 0),
4797                "Access bit-width not the same as description bit-width", &I, MD,
4798                BaseNodeBitWidth, Offset.getBitWidth());
4799   }
4800 
4801   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
4802              &I, MD);
4803   return true;
4804 }
4805 
4806 char VerifierLegacyPass::ID = 0;
4807 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4808 
4809 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4810   return new VerifierLegacyPass(FatalErrors);
4811 }
4812 
4813 AnalysisKey VerifierAnalysis::Key;
4814 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4815                                                ModuleAnalysisManager &) {
4816   Result Res;
4817   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4818   return Res;
4819 }
4820 
4821 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4822                                                FunctionAnalysisManager &) {
4823   return { llvm::verifyFunction(F, &dbgs()), false };
4824 }
4825 
4826 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4827   auto Res = AM.getResult<VerifierAnalysis>(M);
4828   if (FatalErrors) {
4829     if (Res.IRBroken)
4830       report_fatal_error("Broken module found, compilation aborted!");
4831     assert(!Res.DebugInfoBroken && "Module contains invalid debug info");
4832   }
4833 
4834   // Strip broken debug info.
4835   if (Res.DebugInfoBroken) {
4836     DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4837     M.getContext().diagnose(DiagInvalid);
4838     if (!StripDebugInfo(M))
4839       report_fatal_error("Failed to strip malformed debug info");
4840   }
4841   return PreservedAnalyses::all();
4842 }
4843 
4844 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4845   auto res = AM.getResult<VerifierAnalysis>(F);
4846   if (res.IRBroken && FatalErrors)
4847     report_fatal_error("Broken function found, compilation aborted!");
4848 
4849   return PreservedAnalyses::all();
4850 }
4851