1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/LLVMContext.h" 90 #include "llvm/IR/Metadata.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/ModuleSlotTracker.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Statepoint.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/AtomicOrdering.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include <algorithm> 108 #include <cassert> 109 #include <cstdint> 110 #include <memory> 111 #include <string> 112 #include <utility> 113 114 using namespace llvm; 115 116 namespace llvm { 117 118 struct VerifierSupport { 119 raw_ostream *OS; 120 const Module &M; 121 ModuleSlotTracker MST; 122 Triple TT; 123 const DataLayout &DL; 124 LLVMContext &Context; 125 126 /// Track the brokenness of the module while recursively visiting. 127 bool Broken = false; 128 /// Broken debug info can be "recovered" from by stripping the debug info. 129 bool BrokenDebugInfo = false; 130 /// Whether to treat broken debug info as an error. 131 bool TreatBrokenDebugInfoAsError = true; 132 133 explicit VerifierSupport(raw_ostream *OS, const Module &M) 134 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 135 Context(M.getContext()) {} 136 137 private: 138 void Write(const Module *M) { 139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 140 } 141 142 void Write(const Value *V) { 143 if (V) 144 Write(*V); 145 } 146 147 void Write(const Value &V) { 148 if (isa<Instruction>(V)) { 149 V.print(*OS, MST); 150 *OS << '\n'; 151 } else { 152 V.printAsOperand(*OS, true, MST); 153 *OS << '\n'; 154 } 155 } 156 157 void Write(const Metadata *MD) { 158 if (!MD) 159 return; 160 MD->print(*OS, MST, &M); 161 *OS << '\n'; 162 } 163 164 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 165 Write(MD.get()); 166 } 167 168 void Write(const NamedMDNode *NMD) { 169 if (!NMD) 170 return; 171 NMD->print(*OS, MST); 172 *OS << '\n'; 173 } 174 175 void Write(Type *T) { 176 if (!T) 177 return; 178 *OS << ' ' << *T; 179 } 180 181 void Write(const Comdat *C) { 182 if (!C) 183 return; 184 *OS << *C; 185 } 186 187 void Write(const APInt *AI) { 188 if (!AI) 189 return; 190 *OS << *AI << '\n'; 191 } 192 193 void Write(const unsigned i) { *OS << i << '\n'; } 194 195 template <typename T> void Write(ArrayRef<T> Vs) { 196 for (const T &V : Vs) 197 Write(V); 198 } 199 200 template <typename T1, typename... Ts> 201 void WriteTs(const T1 &V1, const Ts &... Vs) { 202 Write(V1); 203 WriteTs(Vs...); 204 } 205 206 template <typename... Ts> void WriteTs() {} 207 208 public: 209 /// A check failed, so printout out the condition and the message. 210 /// 211 /// This provides a nice place to put a breakpoint if you want to see why 212 /// something is not correct. 213 void CheckFailed(const Twine &Message) { 214 if (OS) 215 *OS << Message << '\n'; 216 Broken = true; 217 } 218 219 /// A check failed (with values to print). 220 /// 221 /// This calls the Message-only version so that the above is easier to set a 222 /// breakpoint on. 223 template <typename T1, typename... Ts> 224 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 225 CheckFailed(Message); 226 if (OS) 227 WriteTs(V1, Vs...); 228 } 229 230 /// A debug info check failed. 231 void DebugInfoCheckFailed(const Twine &Message) { 232 if (OS) 233 *OS << Message << '\n'; 234 Broken |= TreatBrokenDebugInfoAsError; 235 BrokenDebugInfo = true; 236 } 237 238 /// A debug info check failed (with values to print). 239 template <typename T1, typename... Ts> 240 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 241 const Ts &... Vs) { 242 DebugInfoCheckFailed(Message); 243 if (OS) 244 WriteTs(V1, Vs...); 245 } 246 }; 247 248 } // namespace llvm 249 250 namespace { 251 252 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 253 friend class InstVisitor<Verifier>; 254 255 DominatorTree DT; 256 257 /// When verifying a basic block, keep track of all of the 258 /// instructions we have seen so far. 259 /// 260 /// This allows us to do efficient dominance checks for the case when an 261 /// instruction has an operand that is an instruction in the same block. 262 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 263 264 /// Keep track of the metadata nodes that have been checked already. 265 SmallPtrSet<const Metadata *, 32> MDNodes; 266 267 /// Keep track which DISubprogram is attached to which function. 268 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 269 270 /// Track all DICompileUnits visited. 271 SmallPtrSet<const Metadata *, 2> CUVisited; 272 273 /// The result type for a landingpad. 274 Type *LandingPadResultTy; 275 276 /// Whether we've seen a call to @llvm.localescape in this function 277 /// already. 278 bool SawFrameEscape; 279 280 /// Whether the current function has a DISubprogram attached to it. 281 bool HasDebugInfo = false; 282 283 /// Whether source was present on the first DIFile encountered in each CU. 284 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 285 286 /// Stores the count of how many objects were passed to llvm.localescape for a 287 /// given function and the largest index passed to llvm.localrecover. 288 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 289 290 // Maps catchswitches and cleanuppads that unwind to siblings to the 291 // terminators that indicate the unwind, used to detect cycles therein. 292 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 293 294 /// Cache of constants visited in search of ConstantExprs. 295 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 296 297 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 298 SmallVector<const Function *, 4> DeoptimizeDeclarations; 299 300 // Verify that this GlobalValue is only used in this module. 301 // This map is used to avoid visiting uses twice. We can arrive at a user 302 // twice, if they have multiple operands. In particular for very large 303 // constant expressions, we can arrive at a particular user many times. 304 SmallPtrSet<const Value *, 32> GlobalValueVisited; 305 306 // Keeps track of duplicate function argument debug info. 307 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 308 309 TBAAVerifier TBAAVerifyHelper; 310 311 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 312 313 public: 314 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 315 const Module &M) 316 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 317 SawFrameEscape(false), TBAAVerifyHelper(this) { 318 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 319 } 320 321 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 322 323 bool verify(const Function &F) { 324 assert(F.getParent() == &M && 325 "An instance of this class only works with a specific module!"); 326 327 // First ensure the function is well-enough formed to compute dominance 328 // information, and directly compute a dominance tree. We don't rely on the 329 // pass manager to provide this as it isolates us from a potentially 330 // out-of-date dominator tree and makes it significantly more complex to run 331 // this code outside of a pass manager. 332 // FIXME: It's really gross that we have to cast away constness here. 333 if (!F.empty()) 334 DT.recalculate(const_cast<Function &>(F)); 335 336 for (const BasicBlock &BB : F) { 337 if (!BB.empty() && BB.back().isTerminator()) 338 continue; 339 340 if (OS) { 341 *OS << "Basic Block in function '" << F.getName() 342 << "' does not have terminator!\n"; 343 BB.printAsOperand(*OS, true, MST); 344 *OS << "\n"; 345 } 346 return false; 347 } 348 349 Broken = false; 350 // FIXME: We strip const here because the inst visitor strips const. 351 visit(const_cast<Function &>(F)); 352 verifySiblingFuncletUnwinds(); 353 InstsInThisBlock.clear(); 354 DebugFnArgs.clear(); 355 LandingPadResultTy = nullptr; 356 SawFrameEscape = false; 357 SiblingFuncletInfo.clear(); 358 359 return !Broken; 360 } 361 362 /// Verify the module that this instance of \c Verifier was initialized with. 363 bool verify() { 364 Broken = false; 365 366 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 367 for (const Function &F : M) 368 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 369 DeoptimizeDeclarations.push_back(&F); 370 371 // Now that we've visited every function, verify that we never asked to 372 // recover a frame index that wasn't escaped. 373 verifyFrameRecoverIndices(); 374 for (const GlobalVariable &GV : M.globals()) 375 visitGlobalVariable(GV); 376 377 for (const GlobalAlias &GA : M.aliases()) 378 visitGlobalAlias(GA); 379 380 for (const NamedMDNode &NMD : M.named_metadata()) 381 visitNamedMDNode(NMD); 382 383 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 384 visitComdat(SMEC.getValue()); 385 386 visitModuleFlags(M); 387 visitModuleIdents(M); 388 visitModuleCommandLines(M); 389 390 verifyCompileUnits(); 391 392 verifyDeoptimizeCallingConvs(); 393 DISubprogramAttachments.clear(); 394 return !Broken; 395 } 396 397 private: 398 // Verification methods... 399 void visitGlobalValue(const GlobalValue &GV); 400 void visitGlobalVariable(const GlobalVariable &GV); 401 void visitGlobalAlias(const GlobalAlias &GA); 402 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 403 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 404 const GlobalAlias &A, const Constant &C); 405 void visitNamedMDNode(const NamedMDNode &NMD); 406 void visitMDNode(const MDNode &MD); 407 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 408 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 409 void visitComdat(const Comdat &C); 410 void visitModuleIdents(const Module &M); 411 void visitModuleCommandLines(const Module &M); 412 void visitModuleFlags(const Module &M); 413 void visitModuleFlag(const MDNode *Op, 414 DenseMap<const MDString *, const MDNode *> &SeenIDs, 415 SmallVectorImpl<const MDNode *> &Requirements); 416 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 417 void visitFunction(const Function &F); 418 void visitBasicBlock(BasicBlock &BB); 419 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 420 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 421 void visitProfMetadata(Instruction &I, MDNode *MD); 422 423 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 425 #include "llvm/IR/Metadata.def" 426 void visitDIScope(const DIScope &N); 427 void visitDIVariable(const DIVariable &N); 428 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 429 void visitDITemplateParameter(const DITemplateParameter &N); 430 431 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 432 433 // InstVisitor overrides... 434 using InstVisitor<Verifier>::visit; 435 void visit(Instruction &I); 436 437 void visitTruncInst(TruncInst &I); 438 void visitZExtInst(ZExtInst &I); 439 void visitSExtInst(SExtInst &I); 440 void visitFPTruncInst(FPTruncInst &I); 441 void visitFPExtInst(FPExtInst &I); 442 void visitFPToUIInst(FPToUIInst &I); 443 void visitFPToSIInst(FPToSIInst &I); 444 void visitUIToFPInst(UIToFPInst &I); 445 void visitSIToFPInst(SIToFPInst &I); 446 void visitIntToPtrInst(IntToPtrInst &I); 447 void visitPtrToIntInst(PtrToIntInst &I); 448 void visitBitCastInst(BitCastInst &I); 449 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 450 void visitPHINode(PHINode &PN); 451 void visitCallBase(CallBase &Call); 452 void visitUnaryOperator(UnaryOperator &U); 453 void visitBinaryOperator(BinaryOperator &B); 454 void visitICmpInst(ICmpInst &IC); 455 void visitFCmpInst(FCmpInst &FC); 456 void visitExtractElementInst(ExtractElementInst &EI); 457 void visitInsertElementInst(InsertElementInst &EI); 458 void visitShuffleVectorInst(ShuffleVectorInst &EI); 459 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 460 void visitCallInst(CallInst &CI); 461 void visitInvokeInst(InvokeInst &II); 462 void visitGetElementPtrInst(GetElementPtrInst &GEP); 463 void visitLoadInst(LoadInst &LI); 464 void visitStoreInst(StoreInst &SI); 465 void verifyDominatesUse(Instruction &I, unsigned i); 466 void visitInstruction(Instruction &I); 467 void visitTerminator(Instruction &I); 468 void visitBranchInst(BranchInst &BI); 469 void visitReturnInst(ReturnInst &RI); 470 void visitSwitchInst(SwitchInst &SI); 471 void visitIndirectBrInst(IndirectBrInst &BI); 472 void visitCallBrInst(CallBrInst &CBI); 473 void visitSelectInst(SelectInst &SI); 474 void visitUserOp1(Instruction &I); 475 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 476 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 477 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 478 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 479 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 480 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 481 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 482 void visitFenceInst(FenceInst &FI); 483 void visitAllocaInst(AllocaInst &AI); 484 void visitExtractValueInst(ExtractValueInst &EVI); 485 void visitInsertValueInst(InsertValueInst &IVI); 486 void visitEHPadPredecessors(Instruction &I); 487 void visitLandingPadInst(LandingPadInst &LPI); 488 void visitResumeInst(ResumeInst &RI); 489 void visitCatchPadInst(CatchPadInst &CPI); 490 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 491 void visitCleanupPadInst(CleanupPadInst &CPI); 492 void visitFuncletPadInst(FuncletPadInst &FPI); 493 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 494 void visitCleanupReturnInst(CleanupReturnInst &CRI); 495 496 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 497 void verifySwiftErrorValue(const Value *SwiftErrorVal); 498 void verifyMustTailCall(CallInst &CI); 499 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 500 unsigned ArgNo, std::string &Suffix); 501 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 502 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 503 const Value *V); 504 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 505 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 506 const Value *V, bool IsIntrinsic); 507 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 508 509 void visitConstantExprsRecursively(const Constant *EntryC); 510 void visitConstantExpr(const ConstantExpr *CE); 511 void verifyStatepoint(const CallBase &Call); 512 void verifyFrameRecoverIndices(); 513 void verifySiblingFuncletUnwinds(); 514 515 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 516 template <typename ValueOrMetadata> 517 void verifyFragmentExpression(const DIVariable &V, 518 DIExpression::FragmentInfo Fragment, 519 ValueOrMetadata *Desc); 520 void verifyFnArgs(const DbgVariableIntrinsic &I); 521 522 /// Module-level debug info verification... 523 void verifyCompileUnits(); 524 525 /// Module-level verification that all @llvm.experimental.deoptimize 526 /// declarations share the same calling convention. 527 void verifyDeoptimizeCallingConvs(); 528 529 /// Verify all-or-nothing property of DIFile source attribute within a CU. 530 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 531 }; 532 533 } // end anonymous namespace 534 535 /// We know that cond should be true, if not print an error message. 536 #define Assert(C, ...) \ 537 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 538 539 /// We know that a debug info condition should be true, if not print 540 /// an error message. 541 #define AssertDI(C, ...) \ 542 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 543 544 void Verifier::visit(Instruction &I) { 545 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 546 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 547 InstVisitor<Verifier>::visit(I); 548 } 549 550 // Helper to recursively iterate over indirect users. By 551 // returning false, the callback can ask to stop recursing 552 // further. 553 static void forEachUser(const Value *User, 554 SmallPtrSet<const Value *, 32> &Visited, 555 llvm::function_ref<bool(const Value *)> Callback) { 556 if (!Visited.insert(User).second) 557 return; 558 for (const Value *TheNextUser : User->materialized_users()) 559 if (Callback(TheNextUser)) 560 forEachUser(TheNextUser, Visited, Callback); 561 } 562 563 void Verifier::visitGlobalValue(const GlobalValue &GV) { 564 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 565 "Global is external, but doesn't have external or weak linkage!", &GV); 566 567 Assert(GV.getAlignment() <= Value::MaximumAlignment, 568 "huge alignment values are unsupported", &GV); 569 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 570 "Only global variables can have appending linkage!", &GV); 571 572 if (GV.hasAppendingLinkage()) { 573 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 574 Assert(GVar && GVar->getValueType()->isArrayTy(), 575 "Only global arrays can have appending linkage!", GVar); 576 } 577 578 if (GV.isDeclarationForLinker()) 579 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 580 581 if (GV.hasDLLImportStorageClass()) { 582 Assert(!GV.isDSOLocal(), 583 "GlobalValue with DLLImport Storage is dso_local!", &GV); 584 585 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 586 GV.hasAvailableExternallyLinkage(), 587 "Global is marked as dllimport, but not external", &GV); 588 } 589 590 if (GV.hasLocalLinkage()) 591 Assert(GV.isDSOLocal(), 592 "GlobalValue with private or internal linkage must be dso_local!", 593 &GV); 594 595 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 596 Assert(GV.isDSOLocal(), 597 "GlobalValue with non default visibility must be dso_local!", &GV); 598 599 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 600 if (const Instruction *I = dyn_cast<Instruction>(V)) { 601 if (!I->getParent() || !I->getParent()->getParent()) 602 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 603 I); 604 else if (I->getParent()->getParent()->getParent() != &M) 605 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 606 I->getParent()->getParent(), 607 I->getParent()->getParent()->getParent()); 608 return false; 609 } else if (const Function *F = dyn_cast<Function>(V)) { 610 if (F->getParent() != &M) 611 CheckFailed("Global is used by function in a different module", &GV, &M, 612 F, F->getParent()); 613 return false; 614 } 615 return true; 616 }); 617 } 618 619 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 620 if (GV.hasInitializer()) { 621 Assert(GV.getInitializer()->getType() == GV.getValueType(), 622 "Global variable initializer type does not match global " 623 "variable type!", 624 &GV); 625 // If the global has common linkage, it must have a zero initializer and 626 // cannot be constant. 627 if (GV.hasCommonLinkage()) { 628 Assert(GV.getInitializer()->isNullValue(), 629 "'common' global must have a zero initializer!", &GV); 630 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 631 &GV); 632 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 633 } 634 } 635 636 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 637 GV.getName() == "llvm.global_dtors")) { 638 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 639 "invalid linkage for intrinsic global variable", &GV); 640 // Don't worry about emitting an error for it not being an array, 641 // visitGlobalValue will complain on appending non-array. 642 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 643 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 644 PointerType *FuncPtrTy = 645 FunctionType::get(Type::getVoidTy(Context), false)-> 646 getPointerTo(DL.getProgramAddressSpace()); 647 Assert(STy && 648 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 649 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 650 STy->getTypeAtIndex(1) == FuncPtrTy, 651 "wrong type for intrinsic global variable", &GV); 652 Assert(STy->getNumElements() == 3, 653 "the third field of the element type is mandatory, " 654 "specify i8* null to migrate from the obsoleted 2-field form"); 655 Type *ETy = STy->getTypeAtIndex(2); 656 Assert(ETy->isPointerTy() && 657 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 658 "wrong type for intrinsic global variable", &GV); 659 } 660 } 661 662 if (GV.hasName() && (GV.getName() == "llvm.used" || 663 GV.getName() == "llvm.compiler.used")) { 664 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 665 "invalid linkage for intrinsic global variable", &GV); 666 Type *GVType = GV.getValueType(); 667 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 668 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 669 Assert(PTy, "wrong type for intrinsic global variable", &GV); 670 if (GV.hasInitializer()) { 671 const Constant *Init = GV.getInitializer(); 672 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 673 Assert(InitArray, "wrong initalizer for intrinsic global variable", 674 Init); 675 for (Value *Op : InitArray->operands()) { 676 Value *V = Op->stripPointerCasts(); 677 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 678 isa<GlobalAlias>(V), 679 "invalid llvm.used member", V); 680 Assert(V->hasName(), "members of llvm.used must be named", V); 681 } 682 } 683 } 684 } 685 686 // Visit any debug info attachments. 687 SmallVector<MDNode *, 1> MDs; 688 GV.getMetadata(LLVMContext::MD_dbg, MDs); 689 for (auto *MD : MDs) { 690 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 691 visitDIGlobalVariableExpression(*GVE); 692 else 693 AssertDI(false, "!dbg attachment of global variable must be a " 694 "DIGlobalVariableExpression"); 695 } 696 697 // Scalable vectors cannot be global variables, since we don't know 698 // the runtime size. If the global is a struct or an array containing 699 // scalable vectors, that will be caught by the isValidElementType methods 700 // in StructType or ArrayType instead. 701 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) 702 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); 703 704 if (!GV.hasInitializer()) { 705 visitGlobalValue(GV); 706 return; 707 } 708 709 // Walk any aggregate initializers looking for bitcasts between address spaces 710 visitConstantExprsRecursively(GV.getInitializer()); 711 712 visitGlobalValue(GV); 713 } 714 715 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 716 SmallPtrSet<const GlobalAlias*, 4> Visited; 717 Visited.insert(&GA); 718 visitAliaseeSubExpr(Visited, GA, C); 719 } 720 721 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 722 const GlobalAlias &GA, const Constant &C) { 723 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 724 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 725 &GA); 726 727 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 728 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 729 730 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 731 &GA); 732 } else { 733 // Only continue verifying subexpressions of GlobalAliases. 734 // Do not recurse into global initializers. 735 return; 736 } 737 } 738 739 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 740 visitConstantExprsRecursively(CE); 741 742 for (const Use &U : C.operands()) { 743 Value *V = &*U; 744 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 745 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 746 else if (const auto *C2 = dyn_cast<Constant>(V)) 747 visitAliaseeSubExpr(Visited, GA, *C2); 748 } 749 } 750 751 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 752 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 753 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 754 "weak_odr, or external linkage!", 755 &GA); 756 const Constant *Aliasee = GA.getAliasee(); 757 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 758 Assert(GA.getType() == Aliasee->getType(), 759 "Alias and aliasee types should match!", &GA); 760 761 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 762 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 763 764 visitAliaseeSubExpr(GA, *Aliasee); 765 766 visitGlobalValue(GA); 767 } 768 769 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 770 // There used to be various other llvm.dbg.* nodes, but we don't support 771 // upgrading them and we want to reserve the namespace for future uses. 772 if (NMD.getName().startswith("llvm.dbg.")) 773 AssertDI(NMD.getName() == "llvm.dbg.cu", 774 "unrecognized named metadata node in the llvm.dbg namespace", 775 &NMD); 776 for (const MDNode *MD : NMD.operands()) { 777 if (NMD.getName() == "llvm.dbg.cu") 778 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 779 780 if (!MD) 781 continue; 782 783 visitMDNode(*MD); 784 } 785 } 786 787 void Verifier::visitMDNode(const MDNode &MD) { 788 // Only visit each node once. Metadata can be mutually recursive, so this 789 // avoids infinite recursion here, as well as being an optimization. 790 if (!MDNodes.insert(&MD).second) 791 return; 792 793 switch (MD.getMetadataID()) { 794 default: 795 llvm_unreachable("Invalid MDNode subclass"); 796 case Metadata::MDTupleKind: 797 break; 798 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 799 case Metadata::CLASS##Kind: \ 800 visit##CLASS(cast<CLASS>(MD)); \ 801 break; 802 #include "llvm/IR/Metadata.def" 803 } 804 805 for (const Metadata *Op : MD.operands()) { 806 if (!Op) 807 continue; 808 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 809 &MD, Op); 810 if (auto *N = dyn_cast<MDNode>(Op)) { 811 visitMDNode(*N); 812 continue; 813 } 814 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 815 visitValueAsMetadata(*V, nullptr); 816 continue; 817 } 818 } 819 820 // Check these last, so we diagnose problems in operands first. 821 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 822 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 823 } 824 825 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 826 Assert(MD.getValue(), "Expected valid value", &MD); 827 Assert(!MD.getValue()->getType()->isMetadataTy(), 828 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 829 830 auto *L = dyn_cast<LocalAsMetadata>(&MD); 831 if (!L) 832 return; 833 834 Assert(F, "function-local metadata used outside a function", L); 835 836 // If this was an instruction, bb, or argument, verify that it is in the 837 // function that we expect. 838 Function *ActualF = nullptr; 839 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 840 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 841 ActualF = I->getParent()->getParent(); 842 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 843 ActualF = BB->getParent(); 844 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 845 ActualF = A->getParent(); 846 assert(ActualF && "Unimplemented function local metadata case!"); 847 848 Assert(ActualF == F, "function-local metadata used in wrong function", L); 849 } 850 851 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 852 Metadata *MD = MDV.getMetadata(); 853 if (auto *N = dyn_cast<MDNode>(MD)) { 854 visitMDNode(*N); 855 return; 856 } 857 858 // Only visit each node once. Metadata can be mutually recursive, so this 859 // avoids infinite recursion here, as well as being an optimization. 860 if (!MDNodes.insert(MD).second) 861 return; 862 863 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 864 visitValueAsMetadata(*V, F); 865 } 866 867 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 868 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 869 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 870 871 void Verifier::visitDILocation(const DILocation &N) { 872 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 873 "location requires a valid scope", &N, N.getRawScope()); 874 if (auto *IA = N.getRawInlinedAt()) 875 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 876 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 877 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 878 } 879 880 void Verifier::visitGenericDINode(const GenericDINode &N) { 881 AssertDI(N.getTag(), "invalid tag", &N); 882 } 883 884 void Verifier::visitDIScope(const DIScope &N) { 885 if (auto *F = N.getRawFile()) 886 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 887 } 888 889 void Verifier::visitDISubrange(const DISubrange &N) { 890 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 891 auto Count = N.getCount(); 892 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 893 &N); 894 AssertDI(!Count.is<ConstantInt*>() || 895 Count.get<ConstantInt*>()->getSExtValue() >= -1, 896 "invalid subrange count", &N); 897 } 898 899 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 900 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 901 } 902 903 void Verifier::visitDIBasicType(const DIBasicType &N) { 904 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 905 N.getTag() == dwarf::DW_TAG_unspecified_type, 906 "invalid tag", &N); 907 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 908 "has conflicting flags", &N); 909 } 910 911 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 912 // Common scope checks. 913 visitDIScope(N); 914 915 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 916 N.getTag() == dwarf::DW_TAG_pointer_type || 917 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 918 N.getTag() == dwarf::DW_TAG_reference_type || 919 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 920 N.getTag() == dwarf::DW_TAG_const_type || 921 N.getTag() == dwarf::DW_TAG_volatile_type || 922 N.getTag() == dwarf::DW_TAG_restrict_type || 923 N.getTag() == dwarf::DW_TAG_atomic_type || 924 N.getTag() == dwarf::DW_TAG_member || 925 N.getTag() == dwarf::DW_TAG_inheritance || 926 N.getTag() == dwarf::DW_TAG_friend, 927 "invalid tag", &N); 928 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 929 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 930 N.getRawExtraData()); 931 } 932 933 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 934 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 935 N.getRawBaseType()); 936 937 if (N.getDWARFAddressSpace()) { 938 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 939 N.getTag() == dwarf::DW_TAG_reference_type || 940 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 941 "DWARF address space only applies to pointer or reference types", 942 &N); 943 } 944 } 945 946 /// Detect mutually exclusive flags. 947 static bool hasConflictingReferenceFlags(unsigned Flags) { 948 return ((Flags & DINode::FlagLValueReference) && 949 (Flags & DINode::FlagRValueReference)) || 950 ((Flags & DINode::FlagTypePassByValue) && 951 (Flags & DINode::FlagTypePassByReference)); 952 } 953 954 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 955 auto *Params = dyn_cast<MDTuple>(&RawParams); 956 AssertDI(Params, "invalid template params", &N, &RawParams); 957 for (Metadata *Op : Params->operands()) { 958 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 959 &N, Params, Op); 960 } 961 } 962 963 void Verifier::visitDICompositeType(const DICompositeType &N) { 964 // Common scope checks. 965 visitDIScope(N); 966 967 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 968 N.getTag() == dwarf::DW_TAG_structure_type || 969 N.getTag() == dwarf::DW_TAG_union_type || 970 N.getTag() == dwarf::DW_TAG_enumeration_type || 971 N.getTag() == dwarf::DW_TAG_class_type || 972 N.getTag() == dwarf::DW_TAG_variant_part, 973 "invalid tag", &N); 974 975 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 976 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 977 N.getRawBaseType()); 978 979 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 980 "invalid composite elements", &N, N.getRawElements()); 981 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 982 N.getRawVTableHolder()); 983 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 984 "invalid reference flags", &N); 985 unsigned DIBlockByRefStruct = 1 << 4; 986 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 987 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 988 989 if (N.isVector()) { 990 const DINodeArray Elements = N.getElements(); 991 AssertDI(Elements.size() == 1 && 992 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 993 "invalid vector, expected one element of type subrange", &N); 994 } 995 996 if (auto *Params = N.getRawTemplateParams()) 997 visitTemplateParams(N, *Params); 998 999 if (N.getTag() == dwarf::DW_TAG_class_type || 1000 N.getTag() == dwarf::DW_TAG_union_type) { 1001 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1002 "class/union requires a filename", &N, N.getFile()); 1003 } 1004 1005 if (auto *D = N.getRawDiscriminator()) { 1006 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1007 "discriminator can only appear on variant part"); 1008 } 1009 } 1010 1011 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1012 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1013 if (auto *Types = N.getRawTypeArray()) { 1014 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1015 for (Metadata *Ty : N.getTypeArray()->operands()) { 1016 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1017 } 1018 } 1019 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1020 "invalid reference flags", &N); 1021 } 1022 1023 void Verifier::visitDIFile(const DIFile &N) { 1024 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1025 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1026 if (Checksum) { 1027 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1028 "invalid checksum kind", &N); 1029 size_t Size; 1030 switch (Checksum->Kind) { 1031 case DIFile::CSK_MD5: 1032 Size = 32; 1033 break; 1034 case DIFile::CSK_SHA1: 1035 Size = 40; 1036 break; 1037 } 1038 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1039 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1040 "invalid checksum", &N); 1041 } 1042 } 1043 1044 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1045 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1046 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1047 1048 // Don't bother verifying the compilation directory or producer string 1049 // as those could be empty. 1050 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1051 N.getRawFile()); 1052 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1053 N.getFile()); 1054 1055 verifySourceDebugInfo(N, *N.getFile()); 1056 1057 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1058 "invalid emission kind", &N); 1059 1060 if (auto *Array = N.getRawEnumTypes()) { 1061 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1062 for (Metadata *Op : N.getEnumTypes()->operands()) { 1063 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1064 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1065 "invalid enum type", &N, N.getEnumTypes(), Op); 1066 } 1067 } 1068 if (auto *Array = N.getRawRetainedTypes()) { 1069 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1070 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1071 AssertDI(Op && (isa<DIType>(Op) || 1072 (isa<DISubprogram>(Op) && 1073 !cast<DISubprogram>(Op)->isDefinition())), 1074 "invalid retained type", &N, Op); 1075 } 1076 } 1077 if (auto *Array = N.getRawGlobalVariables()) { 1078 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1079 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1080 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1081 "invalid global variable ref", &N, Op); 1082 } 1083 } 1084 if (auto *Array = N.getRawImportedEntities()) { 1085 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1086 for (Metadata *Op : N.getImportedEntities()->operands()) { 1087 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1088 &N, Op); 1089 } 1090 } 1091 if (auto *Array = N.getRawMacros()) { 1092 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1093 for (Metadata *Op : N.getMacros()->operands()) { 1094 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1095 } 1096 } 1097 CUVisited.insert(&N); 1098 } 1099 1100 void Verifier::visitDISubprogram(const DISubprogram &N) { 1101 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1102 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1103 if (auto *F = N.getRawFile()) 1104 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1105 else 1106 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1107 if (auto *T = N.getRawType()) 1108 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1109 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1110 N.getRawContainingType()); 1111 if (auto *Params = N.getRawTemplateParams()) 1112 visitTemplateParams(N, *Params); 1113 if (auto *S = N.getRawDeclaration()) 1114 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1115 "invalid subprogram declaration", &N, S); 1116 if (auto *RawNode = N.getRawRetainedNodes()) { 1117 auto *Node = dyn_cast<MDTuple>(RawNode); 1118 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1119 for (Metadata *Op : Node->operands()) { 1120 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1121 "invalid retained nodes, expected DILocalVariable or DILabel", 1122 &N, Node, Op); 1123 } 1124 } 1125 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1126 "invalid reference flags", &N); 1127 1128 auto *Unit = N.getRawUnit(); 1129 if (N.isDefinition()) { 1130 // Subprogram definitions (not part of the type hierarchy). 1131 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1132 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1133 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1134 if (N.getFile()) 1135 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1136 } else { 1137 // Subprogram declarations (part of the type hierarchy). 1138 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1139 } 1140 1141 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1142 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1143 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1144 for (Metadata *Op : ThrownTypes->operands()) 1145 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1146 Op); 1147 } 1148 1149 if (N.areAllCallsDescribed()) 1150 AssertDI(N.isDefinition(), 1151 "DIFlagAllCallsDescribed must be attached to a definition"); 1152 } 1153 1154 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1155 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1156 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1157 "invalid local scope", &N, N.getRawScope()); 1158 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1159 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1160 } 1161 1162 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1163 visitDILexicalBlockBase(N); 1164 1165 AssertDI(N.getLine() || !N.getColumn(), 1166 "cannot have column info without line info", &N); 1167 } 1168 1169 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1170 visitDILexicalBlockBase(N); 1171 } 1172 1173 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1174 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1175 if (auto *S = N.getRawScope()) 1176 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1177 if (auto *S = N.getRawDecl()) 1178 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1179 } 1180 1181 void Verifier::visitDINamespace(const DINamespace &N) { 1182 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1183 if (auto *S = N.getRawScope()) 1184 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1185 } 1186 1187 void Verifier::visitDIMacro(const DIMacro &N) { 1188 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1189 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1190 "invalid macinfo type", &N); 1191 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1192 if (!N.getValue().empty()) { 1193 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1194 } 1195 } 1196 1197 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1198 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1199 "invalid macinfo type", &N); 1200 if (auto *F = N.getRawFile()) 1201 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1202 1203 if (auto *Array = N.getRawElements()) { 1204 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1205 for (Metadata *Op : N.getElements()->operands()) { 1206 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1207 } 1208 } 1209 } 1210 1211 void Verifier::visitDIModule(const DIModule &N) { 1212 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1213 AssertDI(!N.getName().empty(), "anonymous module", &N); 1214 } 1215 1216 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1217 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1218 } 1219 1220 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1221 visitDITemplateParameter(N); 1222 1223 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1224 &N); 1225 } 1226 1227 void Verifier::visitDITemplateValueParameter( 1228 const DITemplateValueParameter &N) { 1229 visitDITemplateParameter(N); 1230 1231 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1232 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1233 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1234 "invalid tag", &N); 1235 } 1236 1237 void Verifier::visitDIVariable(const DIVariable &N) { 1238 if (auto *S = N.getRawScope()) 1239 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1240 if (auto *F = N.getRawFile()) 1241 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1242 } 1243 1244 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1245 // Checks common to all variables. 1246 visitDIVariable(N); 1247 1248 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1249 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1250 AssertDI(N.getType(), "missing global variable type", &N); 1251 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1252 AssertDI(isa<DIDerivedType>(Member), 1253 "invalid static data member declaration", &N, Member); 1254 } 1255 } 1256 1257 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1258 // Checks common to all variables. 1259 visitDIVariable(N); 1260 1261 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1262 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1263 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1264 "local variable requires a valid scope", &N, N.getRawScope()); 1265 if (auto Ty = N.getType()) 1266 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1267 } 1268 1269 void Verifier::visitDILabel(const DILabel &N) { 1270 if (auto *S = N.getRawScope()) 1271 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1272 if (auto *F = N.getRawFile()) 1273 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1274 1275 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1276 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1277 "label requires a valid scope", &N, N.getRawScope()); 1278 } 1279 1280 void Verifier::visitDIExpression(const DIExpression &N) { 1281 AssertDI(N.isValid(), "invalid expression", &N); 1282 } 1283 1284 void Verifier::visitDIGlobalVariableExpression( 1285 const DIGlobalVariableExpression &GVE) { 1286 AssertDI(GVE.getVariable(), "missing variable"); 1287 if (auto *Var = GVE.getVariable()) 1288 visitDIGlobalVariable(*Var); 1289 if (auto *Expr = GVE.getExpression()) { 1290 visitDIExpression(*Expr); 1291 if (auto Fragment = Expr->getFragmentInfo()) 1292 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1293 } 1294 } 1295 1296 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1297 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1298 if (auto *T = N.getRawType()) 1299 AssertDI(isType(T), "invalid type ref", &N, T); 1300 if (auto *F = N.getRawFile()) 1301 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1302 } 1303 1304 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1305 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1306 N.getTag() == dwarf::DW_TAG_imported_declaration, 1307 "invalid tag", &N); 1308 if (auto *S = N.getRawScope()) 1309 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1310 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1311 N.getRawEntity()); 1312 } 1313 1314 void Verifier::visitComdat(const Comdat &C) { 1315 // In COFF the Module is invalid if the GlobalValue has private linkage. 1316 // Entities with private linkage don't have entries in the symbol table. 1317 if (TT.isOSBinFormatCOFF()) 1318 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1319 Assert(!GV->hasPrivateLinkage(), 1320 "comdat global value has private linkage", GV); 1321 } 1322 1323 void Verifier::visitModuleIdents(const Module &M) { 1324 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1325 if (!Idents) 1326 return; 1327 1328 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1329 // Scan each llvm.ident entry and make sure that this requirement is met. 1330 for (const MDNode *N : Idents->operands()) { 1331 Assert(N->getNumOperands() == 1, 1332 "incorrect number of operands in llvm.ident metadata", N); 1333 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1334 ("invalid value for llvm.ident metadata entry operand" 1335 "(the operand should be a string)"), 1336 N->getOperand(0)); 1337 } 1338 } 1339 1340 void Verifier::visitModuleCommandLines(const Module &M) { 1341 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1342 if (!CommandLines) 1343 return; 1344 1345 // llvm.commandline takes a list of metadata entry. Each entry has only one 1346 // string. Scan each llvm.commandline entry and make sure that this 1347 // requirement is met. 1348 for (const MDNode *N : CommandLines->operands()) { 1349 Assert(N->getNumOperands() == 1, 1350 "incorrect number of operands in llvm.commandline metadata", N); 1351 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1352 ("invalid value for llvm.commandline metadata entry operand" 1353 "(the operand should be a string)"), 1354 N->getOperand(0)); 1355 } 1356 } 1357 1358 void Verifier::visitModuleFlags(const Module &M) { 1359 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1360 if (!Flags) return; 1361 1362 // Scan each flag, and track the flags and requirements. 1363 DenseMap<const MDString*, const MDNode*> SeenIDs; 1364 SmallVector<const MDNode*, 16> Requirements; 1365 for (const MDNode *MDN : Flags->operands()) 1366 visitModuleFlag(MDN, SeenIDs, Requirements); 1367 1368 // Validate that the requirements in the module are valid. 1369 for (const MDNode *Requirement : Requirements) { 1370 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1371 const Metadata *ReqValue = Requirement->getOperand(1); 1372 1373 const MDNode *Op = SeenIDs.lookup(Flag); 1374 if (!Op) { 1375 CheckFailed("invalid requirement on flag, flag is not present in module", 1376 Flag); 1377 continue; 1378 } 1379 1380 if (Op->getOperand(2) != ReqValue) { 1381 CheckFailed(("invalid requirement on flag, " 1382 "flag does not have the required value"), 1383 Flag); 1384 continue; 1385 } 1386 } 1387 } 1388 1389 void 1390 Verifier::visitModuleFlag(const MDNode *Op, 1391 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1392 SmallVectorImpl<const MDNode *> &Requirements) { 1393 // Each module flag should have three arguments, the merge behavior (a 1394 // constant int), the flag ID (an MDString), and the value. 1395 Assert(Op->getNumOperands() == 3, 1396 "incorrect number of operands in module flag", Op); 1397 Module::ModFlagBehavior MFB; 1398 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1399 Assert( 1400 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1401 "invalid behavior operand in module flag (expected constant integer)", 1402 Op->getOperand(0)); 1403 Assert(false, 1404 "invalid behavior operand in module flag (unexpected constant)", 1405 Op->getOperand(0)); 1406 } 1407 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1408 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1409 Op->getOperand(1)); 1410 1411 // Sanity check the values for behaviors with additional requirements. 1412 switch (MFB) { 1413 case Module::Error: 1414 case Module::Warning: 1415 case Module::Override: 1416 // These behavior types accept any value. 1417 break; 1418 1419 case Module::Max: { 1420 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1421 "invalid value for 'max' module flag (expected constant integer)", 1422 Op->getOperand(2)); 1423 break; 1424 } 1425 1426 case Module::Require: { 1427 // The value should itself be an MDNode with two operands, a flag ID (an 1428 // MDString), and a value. 1429 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1430 Assert(Value && Value->getNumOperands() == 2, 1431 "invalid value for 'require' module flag (expected metadata pair)", 1432 Op->getOperand(2)); 1433 Assert(isa<MDString>(Value->getOperand(0)), 1434 ("invalid value for 'require' module flag " 1435 "(first value operand should be a string)"), 1436 Value->getOperand(0)); 1437 1438 // Append it to the list of requirements, to check once all module flags are 1439 // scanned. 1440 Requirements.push_back(Value); 1441 break; 1442 } 1443 1444 case Module::Append: 1445 case Module::AppendUnique: { 1446 // These behavior types require the operand be an MDNode. 1447 Assert(isa<MDNode>(Op->getOperand(2)), 1448 "invalid value for 'append'-type module flag " 1449 "(expected a metadata node)", 1450 Op->getOperand(2)); 1451 break; 1452 } 1453 } 1454 1455 // Unless this is a "requires" flag, check the ID is unique. 1456 if (MFB != Module::Require) { 1457 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1458 Assert(Inserted, 1459 "module flag identifiers must be unique (or of 'require' type)", ID); 1460 } 1461 1462 if (ID->getString() == "wchar_size") { 1463 ConstantInt *Value 1464 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1465 Assert(Value, "wchar_size metadata requires constant integer argument"); 1466 } 1467 1468 if (ID->getString() == "Linker Options") { 1469 // If the llvm.linker.options named metadata exists, we assume that the 1470 // bitcode reader has upgraded the module flag. Otherwise the flag might 1471 // have been created by a client directly. 1472 Assert(M.getNamedMetadata("llvm.linker.options"), 1473 "'Linker Options' named metadata no longer supported"); 1474 } 1475 1476 if (ID->getString() == "CG Profile") { 1477 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1478 visitModuleFlagCGProfileEntry(MDO); 1479 } 1480 } 1481 1482 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1483 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1484 if (!FuncMDO) 1485 return; 1486 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1487 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1488 FuncMDO); 1489 }; 1490 auto Node = dyn_cast_or_null<MDNode>(MDO); 1491 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1492 CheckFunction(Node->getOperand(0)); 1493 CheckFunction(Node->getOperand(1)); 1494 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1495 Assert(Count && Count->getType()->isIntegerTy(), 1496 "expected an integer constant", Node->getOperand(2)); 1497 } 1498 1499 /// Return true if this attribute kind only applies to functions. 1500 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1501 switch (Kind) { 1502 case Attribute::NoReturn: 1503 case Attribute::NoSync: 1504 case Attribute::WillReturn: 1505 case Attribute::NoCfCheck: 1506 case Attribute::NoUnwind: 1507 case Attribute::NoInline: 1508 case Attribute::NoFree: 1509 case Attribute::AlwaysInline: 1510 case Attribute::OptimizeForSize: 1511 case Attribute::StackProtect: 1512 case Attribute::StackProtectReq: 1513 case Attribute::StackProtectStrong: 1514 case Attribute::SafeStack: 1515 case Attribute::ShadowCallStack: 1516 case Attribute::NoRedZone: 1517 case Attribute::NoImplicitFloat: 1518 case Attribute::Naked: 1519 case Attribute::InlineHint: 1520 case Attribute::StackAlignment: 1521 case Attribute::UWTable: 1522 case Attribute::NonLazyBind: 1523 case Attribute::ReturnsTwice: 1524 case Attribute::SanitizeAddress: 1525 case Attribute::SanitizeHWAddress: 1526 case Attribute::SanitizeMemTag: 1527 case Attribute::SanitizeThread: 1528 case Attribute::SanitizeMemory: 1529 case Attribute::MinSize: 1530 case Attribute::NoDuplicate: 1531 case Attribute::Builtin: 1532 case Attribute::NoBuiltin: 1533 case Attribute::Cold: 1534 case Attribute::OptForFuzzing: 1535 case Attribute::OptimizeNone: 1536 case Attribute::JumpTable: 1537 case Attribute::Convergent: 1538 case Attribute::ArgMemOnly: 1539 case Attribute::NoRecurse: 1540 case Attribute::InaccessibleMemOnly: 1541 case Attribute::InaccessibleMemOrArgMemOnly: 1542 case Attribute::AllocSize: 1543 case Attribute::SpeculativeLoadHardening: 1544 case Attribute::Speculatable: 1545 case Attribute::StrictFP: 1546 return true; 1547 default: 1548 break; 1549 } 1550 return false; 1551 } 1552 1553 /// Return true if this is a function attribute that can also appear on 1554 /// arguments. 1555 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1556 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1557 Kind == Attribute::ReadNone; 1558 } 1559 1560 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1561 const Value *V) { 1562 for (Attribute A : Attrs) { 1563 if (A.isStringAttribute()) 1564 continue; 1565 1566 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1567 if (!IsFunction) { 1568 CheckFailed("Attribute '" + A.getAsString() + 1569 "' only applies to functions!", 1570 V); 1571 return; 1572 } 1573 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1574 CheckFailed("Attribute '" + A.getAsString() + 1575 "' does not apply to functions!", 1576 V); 1577 return; 1578 } 1579 } 1580 } 1581 1582 // VerifyParameterAttrs - Check the given attributes for an argument or return 1583 // value of the specified type. The value V is printed in error messages. 1584 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1585 const Value *V) { 1586 if (!Attrs.hasAttributes()) 1587 return; 1588 1589 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1590 1591 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1592 Assert(Attrs.getNumAttributes() == 1, 1593 "Attribute 'immarg' is incompatible with other attributes", V); 1594 } 1595 1596 // Check for mutually incompatible attributes. Only inreg is compatible with 1597 // sret. 1598 unsigned AttrCount = 0; 1599 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1600 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1601 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1602 Attrs.hasAttribute(Attribute::InReg); 1603 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1604 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1605 "and 'sret' are incompatible!", 1606 V); 1607 1608 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1609 Attrs.hasAttribute(Attribute::ReadOnly)), 1610 "Attributes " 1611 "'inalloca and readonly' are incompatible!", 1612 V); 1613 1614 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1615 Attrs.hasAttribute(Attribute::Returned)), 1616 "Attributes " 1617 "'sret and returned' are incompatible!", 1618 V); 1619 1620 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1621 Attrs.hasAttribute(Attribute::SExt)), 1622 "Attributes " 1623 "'zeroext and signext' are incompatible!", 1624 V); 1625 1626 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1627 Attrs.hasAttribute(Attribute::ReadOnly)), 1628 "Attributes " 1629 "'readnone and readonly' are incompatible!", 1630 V); 1631 1632 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1633 Attrs.hasAttribute(Attribute::WriteOnly)), 1634 "Attributes " 1635 "'readnone and writeonly' are incompatible!", 1636 V); 1637 1638 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1639 Attrs.hasAttribute(Attribute::WriteOnly)), 1640 "Attributes " 1641 "'readonly and writeonly' are incompatible!", 1642 V); 1643 1644 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1645 Attrs.hasAttribute(Attribute::AlwaysInline)), 1646 "Attributes " 1647 "'noinline and alwaysinline' are incompatible!", 1648 V); 1649 1650 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1651 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1652 "Attribute 'byval' type does not match parameter!", V); 1653 } 1654 1655 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1656 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1657 "Wrong types for attribute: " + 1658 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1659 V); 1660 1661 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1662 SmallPtrSet<Type*, 4> Visited; 1663 if (!PTy->getElementType()->isSized(&Visited)) { 1664 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1665 !Attrs.hasAttribute(Attribute::InAlloca), 1666 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1667 V); 1668 } 1669 if (!isa<PointerType>(PTy->getElementType())) 1670 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1671 "Attribute 'swifterror' only applies to parameters " 1672 "with pointer to pointer type!", 1673 V); 1674 } else { 1675 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1676 "Attribute 'byval' only applies to parameters with pointer type!", 1677 V); 1678 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1679 "Attribute 'swifterror' only applies to parameters " 1680 "with pointer type!", 1681 V); 1682 } 1683 } 1684 1685 // Check parameter attributes against a function type. 1686 // The value V is printed in error messages. 1687 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1688 const Value *V, bool IsIntrinsic) { 1689 if (Attrs.isEmpty()) 1690 return; 1691 1692 bool SawNest = false; 1693 bool SawReturned = false; 1694 bool SawSRet = false; 1695 bool SawSwiftSelf = false; 1696 bool SawSwiftError = false; 1697 1698 // Verify return value attributes. 1699 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1700 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1701 !RetAttrs.hasAttribute(Attribute::Nest) && 1702 !RetAttrs.hasAttribute(Attribute::StructRet) && 1703 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1704 !RetAttrs.hasAttribute(Attribute::Returned) && 1705 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1706 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1707 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1708 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1709 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1710 "values!", 1711 V); 1712 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1713 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1714 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1715 "Attribute '" + RetAttrs.getAsString() + 1716 "' does not apply to function returns", 1717 V); 1718 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1719 1720 // Verify parameter attributes. 1721 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1722 Type *Ty = FT->getParamType(i); 1723 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1724 1725 if (!IsIntrinsic) { 1726 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1727 "immarg attribute only applies to intrinsics",V); 1728 } 1729 1730 verifyParameterAttrs(ArgAttrs, Ty, V); 1731 1732 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1733 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1734 SawNest = true; 1735 } 1736 1737 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1738 Assert(!SawReturned, "More than one parameter has attribute returned!", 1739 V); 1740 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1741 "Incompatible argument and return types for 'returned' attribute", 1742 V); 1743 SawReturned = true; 1744 } 1745 1746 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1747 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1748 Assert(i == 0 || i == 1, 1749 "Attribute 'sret' is not on first or second parameter!", V); 1750 SawSRet = true; 1751 } 1752 1753 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1754 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1755 SawSwiftSelf = true; 1756 } 1757 1758 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1759 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1760 V); 1761 SawSwiftError = true; 1762 } 1763 1764 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1765 Assert(i == FT->getNumParams() - 1, 1766 "inalloca isn't on the last parameter!", V); 1767 } 1768 } 1769 1770 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1771 return; 1772 1773 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1774 1775 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1776 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1777 "Attributes 'readnone and readonly' are incompatible!", V); 1778 1779 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1780 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1781 "Attributes 'readnone and writeonly' are incompatible!", V); 1782 1783 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1784 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1785 "Attributes 'readonly and writeonly' are incompatible!", V); 1786 1787 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1788 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1789 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1790 "incompatible!", 1791 V); 1792 1793 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1794 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1795 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1796 1797 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1798 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1799 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1800 1801 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1802 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1803 "Attribute 'optnone' requires 'noinline'!", V); 1804 1805 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1806 "Attributes 'optsize and optnone' are incompatible!", V); 1807 1808 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1809 "Attributes 'minsize and optnone' are incompatible!", V); 1810 } 1811 1812 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1813 const GlobalValue *GV = cast<GlobalValue>(V); 1814 Assert(GV->hasGlobalUnnamedAddr(), 1815 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1816 } 1817 1818 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1819 std::pair<unsigned, Optional<unsigned>> Args = 1820 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1821 1822 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1823 if (ParamNo >= FT->getNumParams()) { 1824 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1825 return false; 1826 } 1827 1828 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1829 CheckFailed("'allocsize' " + Name + 1830 " argument must refer to an integer parameter", 1831 V); 1832 return false; 1833 } 1834 1835 return true; 1836 }; 1837 1838 if (!CheckParam("element size", Args.first)) 1839 return; 1840 1841 if (Args.second && !CheckParam("number of elements", *Args.second)) 1842 return; 1843 } 1844 } 1845 1846 void Verifier::verifyFunctionMetadata( 1847 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1848 for (const auto &Pair : MDs) { 1849 if (Pair.first == LLVMContext::MD_prof) { 1850 MDNode *MD = Pair.second; 1851 Assert(MD->getNumOperands() >= 2, 1852 "!prof annotations should have no less than 2 operands", MD); 1853 1854 // Check first operand. 1855 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1856 MD); 1857 Assert(isa<MDString>(MD->getOperand(0)), 1858 "expected string with name of the !prof annotation", MD); 1859 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1860 StringRef ProfName = MDS->getString(); 1861 Assert(ProfName.equals("function_entry_count") || 1862 ProfName.equals("synthetic_function_entry_count"), 1863 "first operand should be 'function_entry_count'" 1864 " or 'synthetic_function_entry_count'", 1865 MD); 1866 1867 // Check second operand. 1868 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1869 MD); 1870 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1871 "expected integer argument to function_entry_count", MD); 1872 } 1873 } 1874 } 1875 1876 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1877 if (!ConstantExprVisited.insert(EntryC).second) 1878 return; 1879 1880 SmallVector<const Constant *, 16> Stack; 1881 Stack.push_back(EntryC); 1882 1883 while (!Stack.empty()) { 1884 const Constant *C = Stack.pop_back_val(); 1885 1886 // Check this constant expression. 1887 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1888 visitConstantExpr(CE); 1889 1890 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1891 // Global Values get visited separately, but we do need to make sure 1892 // that the global value is in the correct module 1893 Assert(GV->getParent() == &M, "Referencing global in another module!", 1894 EntryC, &M, GV, GV->getParent()); 1895 continue; 1896 } 1897 1898 // Visit all sub-expressions. 1899 for (const Use &U : C->operands()) { 1900 const auto *OpC = dyn_cast<Constant>(U); 1901 if (!OpC) 1902 continue; 1903 if (!ConstantExprVisited.insert(OpC).second) 1904 continue; 1905 Stack.push_back(OpC); 1906 } 1907 } 1908 } 1909 1910 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1911 if (CE->getOpcode() == Instruction::BitCast) 1912 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1913 CE->getType()), 1914 "Invalid bitcast", CE); 1915 1916 if (CE->getOpcode() == Instruction::IntToPtr || 1917 CE->getOpcode() == Instruction::PtrToInt) { 1918 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1919 ? CE->getType() 1920 : CE->getOperand(0)->getType(); 1921 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1922 ? "inttoptr not supported for non-integral pointers" 1923 : "ptrtoint not supported for non-integral pointers"; 1924 Assert( 1925 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1926 Msg); 1927 } 1928 } 1929 1930 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1931 // There shouldn't be more attribute sets than there are parameters plus the 1932 // function and return value. 1933 return Attrs.getNumAttrSets() <= Params + 2; 1934 } 1935 1936 /// Verify that statepoint intrinsic is well formed. 1937 void Verifier::verifyStatepoint(const CallBase &Call) { 1938 assert(Call.getCalledFunction() && 1939 Call.getCalledFunction()->getIntrinsicID() == 1940 Intrinsic::experimental_gc_statepoint); 1941 1942 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1943 !Call.onlyAccessesArgMemory(), 1944 "gc.statepoint must read and write all memory to preserve " 1945 "reordering restrictions required by safepoint semantics", 1946 Call); 1947 1948 const int64_t NumPatchBytes = 1949 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1950 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1951 Assert(NumPatchBytes >= 0, 1952 "gc.statepoint number of patchable bytes must be " 1953 "positive", 1954 Call); 1955 1956 const Value *Target = Call.getArgOperand(2); 1957 auto *PT = dyn_cast<PointerType>(Target->getType()); 1958 Assert(PT && PT->getElementType()->isFunctionTy(), 1959 "gc.statepoint callee must be of function pointer type", Call, Target); 1960 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1961 1962 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1963 Assert(NumCallArgs >= 0, 1964 "gc.statepoint number of arguments to underlying call " 1965 "must be positive", 1966 Call); 1967 const int NumParams = (int)TargetFuncType->getNumParams(); 1968 if (TargetFuncType->isVarArg()) { 1969 Assert(NumCallArgs >= NumParams, 1970 "gc.statepoint mismatch in number of vararg call args", Call); 1971 1972 // TODO: Remove this limitation 1973 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1974 "gc.statepoint doesn't support wrapping non-void " 1975 "vararg functions yet", 1976 Call); 1977 } else 1978 Assert(NumCallArgs == NumParams, 1979 "gc.statepoint mismatch in number of call args", Call); 1980 1981 const uint64_t Flags 1982 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 1983 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1984 "unknown flag used in gc.statepoint flags argument", Call); 1985 1986 // Verify that the types of the call parameter arguments match 1987 // the type of the wrapped callee. 1988 AttributeList Attrs = Call.getAttributes(); 1989 for (int i = 0; i < NumParams; i++) { 1990 Type *ParamType = TargetFuncType->getParamType(i); 1991 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 1992 Assert(ArgType == ParamType, 1993 "gc.statepoint call argument does not match wrapped " 1994 "function type", 1995 Call); 1996 1997 if (TargetFuncType->isVarArg()) { 1998 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 1999 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2000 "Attribute 'sret' cannot be used for vararg call arguments!", 2001 Call); 2002 } 2003 } 2004 2005 const int EndCallArgsInx = 4 + NumCallArgs; 2006 2007 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2008 Assert(isa<ConstantInt>(NumTransitionArgsV), 2009 "gc.statepoint number of transition arguments " 2010 "must be constant integer", 2011 Call); 2012 const int NumTransitionArgs = 2013 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2014 Assert(NumTransitionArgs >= 0, 2015 "gc.statepoint number of transition arguments must be positive", Call); 2016 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2017 2018 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2019 Assert(isa<ConstantInt>(NumDeoptArgsV), 2020 "gc.statepoint number of deoptimization arguments " 2021 "must be constant integer", 2022 Call); 2023 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2024 Assert(NumDeoptArgs >= 0, 2025 "gc.statepoint number of deoptimization arguments " 2026 "must be positive", 2027 Call); 2028 2029 const int ExpectedNumArgs = 2030 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2031 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2032 "gc.statepoint too few arguments according to length fields", Call); 2033 2034 // Check that the only uses of this gc.statepoint are gc.result or 2035 // gc.relocate calls which are tied to this statepoint and thus part 2036 // of the same statepoint sequence 2037 for (const User *U : Call.users()) { 2038 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2039 Assert(UserCall, "illegal use of statepoint token", Call, U); 2040 if (!UserCall) 2041 continue; 2042 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2043 "gc.result or gc.relocate are the only value uses " 2044 "of a gc.statepoint", 2045 Call, U); 2046 if (isa<GCResultInst>(UserCall)) { 2047 Assert(UserCall->getArgOperand(0) == &Call, 2048 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2049 } else if (isa<GCRelocateInst>(Call)) { 2050 Assert(UserCall->getArgOperand(0) == &Call, 2051 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2052 } 2053 } 2054 2055 // Note: It is legal for a single derived pointer to be listed multiple 2056 // times. It's non-optimal, but it is legal. It can also happen after 2057 // insertion if we strip a bitcast away. 2058 // Note: It is really tempting to check that each base is relocated and 2059 // that a derived pointer is never reused as a base pointer. This turns 2060 // out to be problematic since optimizations run after safepoint insertion 2061 // can recognize equality properties that the insertion logic doesn't know 2062 // about. See example statepoint.ll in the verifier subdirectory 2063 } 2064 2065 void Verifier::verifyFrameRecoverIndices() { 2066 for (auto &Counts : FrameEscapeInfo) { 2067 Function *F = Counts.first; 2068 unsigned EscapedObjectCount = Counts.second.first; 2069 unsigned MaxRecoveredIndex = Counts.second.second; 2070 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2071 "all indices passed to llvm.localrecover must be less than the " 2072 "number of arguments passed to llvm.localescape in the parent " 2073 "function", 2074 F); 2075 } 2076 } 2077 2078 static Instruction *getSuccPad(Instruction *Terminator) { 2079 BasicBlock *UnwindDest; 2080 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2081 UnwindDest = II->getUnwindDest(); 2082 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2083 UnwindDest = CSI->getUnwindDest(); 2084 else 2085 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2086 return UnwindDest->getFirstNonPHI(); 2087 } 2088 2089 void Verifier::verifySiblingFuncletUnwinds() { 2090 SmallPtrSet<Instruction *, 8> Visited; 2091 SmallPtrSet<Instruction *, 8> Active; 2092 for (const auto &Pair : SiblingFuncletInfo) { 2093 Instruction *PredPad = Pair.first; 2094 if (Visited.count(PredPad)) 2095 continue; 2096 Active.insert(PredPad); 2097 Instruction *Terminator = Pair.second; 2098 do { 2099 Instruction *SuccPad = getSuccPad(Terminator); 2100 if (Active.count(SuccPad)) { 2101 // Found a cycle; report error 2102 Instruction *CyclePad = SuccPad; 2103 SmallVector<Instruction *, 8> CycleNodes; 2104 do { 2105 CycleNodes.push_back(CyclePad); 2106 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2107 if (CycleTerminator != CyclePad) 2108 CycleNodes.push_back(CycleTerminator); 2109 CyclePad = getSuccPad(CycleTerminator); 2110 } while (CyclePad != SuccPad); 2111 Assert(false, "EH pads can't handle each other's exceptions", 2112 ArrayRef<Instruction *>(CycleNodes)); 2113 } 2114 // Don't re-walk a node we've already checked 2115 if (!Visited.insert(SuccPad).second) 2116 break; 2117 // Walk to this successor if it has a map entry. 2118 PredPad = SuccPad; 2119 auto TermI = SiblingFuncletInfo.find(PredPad); 2120 if (TermI == SiblingFuncletInfo.end()) 2121 break; 2122 Terminator = TermI->second; 2123 Active.insert(PredPad); 2124 } while (true); 2125 // Each node only has one successor, so we've walked all the active 2126 // nodes' successors. 2127 Active.clear(); 2128 } 2129 } 2130 2131 // visitFunction - Verify that a function is ok. 2132 // 2133 void Verifier::visitFunction(const Function &F) { 2134 visitGlobalValue(F); 2135 2136 // Check function arguments. 2137 FunctionType *FT = F.getFunctionType(); 2138 unsigned NumArgs = F.arg_size(); 2139 2140 Assert(&Context == &F.getContext(), 2141 "Function context does not match Module context!", &F); 2142 2143 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2144 Assert(FT->getNumParams() == NumArgs, 2145 "# formal arguments must match # of arguments for function type!", &F, 2146 FT); 2147 Assert(F.getReturnType()->isFirstClassType() || 2148 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2149 "Functions cannot return aggregate values!", &F); 2150 2151 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2152 "Invalid struct return type!", &F); 2153 2154 AttributeList Attrs = F.getAttributes(); 2155 2156 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2157 "Attribute after last parameter!", &F); 2158 2159 bool isLLVMdotName = F.getName().size() >= 5 && 2160 F.getName().substr(0, 5) == "llvm."; 2161 2162 // Check function attributes. 2163 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2164 2165 // On function declarations/definitions, we do not support the builtin 2166 // attribute. We do not check this in VerifyFunctionAttrs since that is 2167 // checking for Attributes that can/can not ever be on functions. 2168 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2169 "Attribute 'builtin' can only be applied to a callsite.", &F); 2170 2171 // Check that this function meets the restrictions on this calling convention. 2172 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2173 // restrictions can be lifted. 2174 switch (F.getCallingConv()) { 2175 default: 2176 case CallingConv::C: 2177 break; 2178 case CallingConv::AMDGPU_KERNEL: 2179 case CallingConv::SPIR_KERNEL: 2180 Assert(F.getReturnType()->isVoidTy(), 2181 "Calling convention requires void return type", &F); 2182 LLVM_FALLTHROUGH; 2183 case CallingConv::AMDGPU_VS: 2184 case CallingConv::AMDGPU_HS: 2185 case CallingConv::AMDGPU_GS: 2186 case CallingConv::AMDGPU_PS: 2187 case CallingConv::AMDGPU_CS: 2188 Assert(!F.hasStructRetAttr(), 2189 "Calling convention does not allow sret", &F); 2190 LLVM_FALLTHROUGH; 2191 case CallingConv::Fast: 2192 case CallingConv::Cold: 2193 case CallingConv::Intel_OCL_BI: 2194 case CallingConv::PTX_Kernel: 2195 case CallingConv::PTX_Device: 2196 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2197 "perfect forwarding!", 2198 &F); 2199 break; 2200 } 2201 2202 // Check that the argument values match the function type for this function... 2203 unsigned i = 0; 2204 for (const Argument &Arg : F.args()) { 2205 Assert(Arg.getType() == FT->getParamType(i), 2206 "Argument value does not match function argument type!", &Arg, 2207 FT->getParamType(i)); 2208 Assert(Arg.getType()->isFirstClassType(), 2209 "Function arguments must have first-class types!", &Arg); 2210 if (!isLLVMdotName) { 2211 Assert(!Arg.getType()->isMetadataTy(), 2212 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2213 Assert(!Arg.getType()->isTokenTy(), 2214 "Function takes token but isn't an intrinsic", &Arg, &F); 2215 } 2216 2217 // Check that swifterror argument is only used by loads and stores. 2218 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2219 verifySwiftErrorValue(&Arg); 2220 } 2221 ++i; 2222 } 2223 2224 if (!isLLVMdotName) 2225 Assert(!F.getReturnType()->isTokenTy(), 2226 "Functions returns a token but isn't an intrinsic", &F); 2227 2228 // Get the function metadata attachments. 2229 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2230 F.getAllMetadata(MDs); 2231 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2232 verifyFunctionMetadata(MDs); 2233 2234 // Check validity of the personality function 2235 if (F.hasPersonalityFn()) { 2236 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2237 if (Per) 2238 Assert(Per->getParent() == F.getParent(), 2239 "Referencing personality function in another module!", 2240 &F, F.getParent(), Per, Per->getParent()); 2241 } 2242 2243 if (F.isMaterializable()) { 2244 // Function has a body somewhere we can't see. 2245 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2246 MDs.empty() ? nullptr : MDs.front().second); 2247 } else if (F.isDeclaration()) { 2248 for (const auto &I : MDs) { 2249 // This is used for call site debug information. 2250 AssertDI(I.first != LLVMContext::MD_dbg || 2251 !cast<DISubprogram>(I.second)->isDistinct(), 2252 "function declaration may only have a unique !dbg attachment", 2253 &F); 2254 Assert(I.first != LLVMContext::MD_prof, 2255 "function declaration may not have a !prof attachment", &F); 2256 2257 // Verify the metadata itself. 2258 visitMDNode(*I.second); 2259 } 2260 Assert(!F.hasPersonalityFn(), 2261 "Function declaration shouldn't have a personality routine", &F); 2262 } else { 2263 // Verify that this function (which has a body) is not named "llvm.*". It 2264 // is not legal to define intrinsics. 2265 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2266 2267 // Check the entry node 2268 const BasicBlock *Entry = &F.getEntryBlock(); 2269 Assert(pred_empty(Entry), 2270 "Entry block to function must not have predecessors!", Entry); 2271 2272 // The address of the entry block cannot be taken, unless it is dead. 2273 if (Entry->hasAddressTaken()) { 2274 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2275 "blockaddress may not be used with the entry block!", Entry); 2276 } 2277 2278 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2279 // Visit metadata attachments. 2280 for (const auto &I : MDs) { 2281 // Verify that the attachment is legal. 2282 switch (I.first) { 2283 default: 2284 break; 2285 case LLVMContext::MD_dbg: { 2286 ++NumDebugAttachments; 2287 AssertDI(NumDebugAttachments == 1, 2288 "function must have a single !dbg attachment", &F, I.second); 2289 AssertDI(isa<DISubprogram>(I.second), 2290 "function !dbg attachment must be a subprogram", &F, I.second); 2291 auto *SP = cast<DISubprogram>(I.second); 2292 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2293 AssertDI(!AttachedTo || AttachedTo == &F, 2294 "DISubprogram attached to more than one function", SP, &F); 2295 AttachedTo = &F; 2296 break; 2297 } 2298 case LLVMContext::MD_prof: 2299 ++NumProfAttachments; 2300 Assert(NumProfAttachments == 1, 2301 "function must have a single !prof attachment", &F, I.second); 2302 break; 2303 } 2304 2305 // Verify the metadata itself. 2306 visitMDNode(*I.second); 2307 } 2308 } 2309 2310 // If this function is actually an intrinsic, verify that it is only used in 2311 // direct call/invokes, never having its "address taken". 2312 // Only do this if the module is materialized, otherwise we don't have all the 2313 // uses. 2314 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2315 const User *U; 2316 if (F.hasAddressTaken(&U)) 2317 Assert(false, "Invalid user of intrinsic instruction!", U); 2318 } 2319 2320 auto *N = F.getSubprogram(); 2321 HasDebugInfo = (N != nullptr); 2322 if (!HasDebugInfo) 2323 return; 2324 2325 // Check that all !dbg attachments lead to back to N (or, at least, another 2326 // subprogram that describes the same function). 2327 // 2328 // FIXME: Check this incrementally while visiting !dbg attachments. 2329 // FIXME: Only check when N is the canonical subprogram for F. 2330 SmallPtrSet<const MDNode *, 32> Seen; 2331 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2332 // Be careful about using DILocation here since we might be dealing with 2333 // broken code (this is the Verifier after all). 2334 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2335 if (!DL) 2336 return; 2337 if (!Seen.insert(DL).second) 2338 return; 2339 2340 Metadata *Parent = DL->getRawScope(); 2341 AssertDI(Parent && isa<DILocalScope>(Parent), 2342 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2343 Parent); 2344 DILocalScope *Scope = DL->getInlinedAtScope(); 2345 if (Scope && !Seen.insert(Scope).second) 2346 return; 2347 2348 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2349 2350 // Scope and SP could be the same MDNode and we don't want to skip 2351 // validation in that case 2352 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2353 return; 2354 2355 // FIXME: Once N is canonical, check "SP == &N". 2356 AssertDI(SP->describes(&F), 2357 "!dbg attachment points at wrong subprogram for function", N, &F, 2358 &I, DL, Scope, SP); 2359 }; 2360 for (auto &BB : F) 2361 for (auto &I : BB) { 2362 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2363 // The llvm.loop annotations also contain two DILocations. 2364 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2365 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2366 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2367 if (BrokenDebugInfo) 2368 return; 2369 } 2370 } 2371 2372 // verifyBasicBlock - Verify that a basic block is well formed... 2373 // 2374 void Verifier::visitBasicBlock(BasicBlock &BB) { 2375 InstsInThisBlock.clear(); 2376 2377 // Ensure that basic blocks have terminators! 2378 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2379 2380 // Check constraints that this basic block imposes on all of the PHI nodes in 2381 // it. 2382 if (isa<PHINode>(BB.front())) { 2383 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2384 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2385 llvm::sort(Preds); 2386 for (const PHINode &PN : BB.phis()) { 2387 // Ensure that PHI nodes have at least one entry! 2388 Assert(PN.getNumIncomingValues() != 0, 2389 "PHI nodes must have at least one entry. If the block is dead, " 2390 "the PHI should be removed!", 2391 &PN); 2392 Assert(PN.getNumIncomingValues() == Preds.size(), 2393 "PHINode should have one entry for each predecessor of its " 2394 "parent basic block!", 2395 &PN); 2396 2397 // Get and sort all incoming values in the PHI node... 2398 Values.clear(); 2399 Values.reserve(PN.getNumIncomingValues()); 2400 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2401 Values.push_back( 2402 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2403 llvm::sort(Values); 2404 2405 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2406 // Check to make sure that if there is more than one entry for a 2407 // particular basic block in this PHI node, that the incoming values are 2408 // all identical. 2409 // 2410 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2411 Values[i].second == Values[i - 1].second, 2412 "PHI node has multiple entries for the same basic block with " 2413 "different incoming values!", 2414 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2415 2416 // Check to make sure that the predecessors and PHI node entries are 2417 // matched up. 2418 Assert(Values[i].first == Preds[i], 2419 "PHI node entries do not match predecessors!", &PN, 2420 Values[i].first, Preds[i]); 2421 } 2422 } 2423 } 2424 2425 // Check that all instructions have their parent pointers set up correctly. 2426 for (auto &I : BB) 2427 { 2428 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2429 } 2430 } 2431 2432 void Verifier::visitTerminator(Instruction &I) { 2433 // Ensure that terminators only exist at the end of the basic block. 2434 Assert(&I == I.getParent()->getTerminator(), 2435 "Terminator found in the middle of a basic block!", I.getParent()); 2436 visitInstruction(I); 2437 } 2438 2439 void Verifier::visitBranchInst(BranchInst &BI) { 2440 if (BI.isConditional()) { 2441 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2442 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2443 } 2444 visitTerminator(BI); 2445 } 2446 2447 void Verifier::visitReturnInst(ReturnInst &RI) { 2448 Function *F = RI.getParent()->getParent(); 2449 unsigned N = RI.getNumOperands(); 2450 if (F->getReturnType()->isVoidTy()) 2451 Assert(N == 0, 2452 "Found return instr that returns non-void in Function of void " 2453 "return type!", 2454 &RI, F->getReturnType()); 2455 else 2456 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2457 "Function return type does not match operand " 2458 "type of return inst!", 2459 &RI, F->getReturnType()); 2460 2461 // Check to make sure that the return value has necessary properties for 2462 // terminators... 2463 visitTerminator(RI); 2464 } 2465 2466 void Verifier::visitSwitchInst(SwitchInst &SI) { 2467 // Check to make sure that all of the constants in the switch instruction 2468 // have the same type as the switched-on value. 2469 Type *SwitchTy = SI.getCondition()->getType(); 2470 SmallPtrSet<ConstantInt*, 32> Constants; 2471 for (auto &Case : SI.cases()) { 2472 Assert(Case.getCaseValue()->getType() == SwitchTy, 2473 "Switch constants must all be same type as switch value!", &SI); 2474 Assert(Constants.insert(Case.getCaseValue()).second, 2475 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2476 } 2477 2478 visitTerminator(SI); 2479 } 2480 2481 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2482 Assert(BI.getAddress()->getType()->isPointerTy(), 2483 "Indirectbr operand must have pointer type!", &BI); 2484 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2485 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2486 "Indirectbr destinations must all have pointer type!", &BI); 2487 2488 visitTerminator(BI); 2489 } 2490 2491 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2492 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2493 &CBI); 2494 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2495 &CBI); 2496 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2497 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2498 "Callbr successors must all have pointer type!", &CBI); 2499 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2500 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2501 "Using an unescaped label as a callbr argument!", &CBI); 2502 if (isa<BasicBlock>(CBI.getOperand(i))) 2503 for (unsigned j = i + 1; j != e; ++j) 2504 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2505 "Duplicate callbr destination!", &CBI); 2506 } 2507 2508 visitTerminator(CBI); 2509 } 2510 2511 void Verifier::visitSelectInst(SelectInst &SI) { 2512 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2513 SI.getOperand(2)), 2514 "Invalid operands for select instruction!", &SI); 2515 2516 Assert(SI.getTrueValue()->getType() == SI.getType(), 2517 "Select values must have same type as select instruction!", &SI); 2518 visitInstruction(SI); 2519 } 2520 2521 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2522 /// a pass, if any exist, it's an error. 2523 /// 2524 void Verifier::visitUserOp1(Instruction &I) { 2525 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2526 } 2527 2528 void Verifier::visitTruncInst(TruncInst &I) { 2529 // Get the source and destination types 2530 Type *SrcTy = I.getOperand(0)->getType(); 2531 Type *DestTy = I.getType(); 2532 2533 // Get the size of the types in bits, we'll need this later 2534 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2535 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2536 2537 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2538 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2539 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2540 "trunc source and destination must both be a vector or neither", &I); 2541 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2542 2543 visitInstruction(I); 2544 } 2545 2546 void Verifier::visitZExtInst(ZExtInst &I) { 2547 // Get the source and destination types 2548 Type *SrcTy = I.getOperand(0)->getType(); 2549 Type *DestTy = I.getType(); 2550 2551 // Get the size of the types in bits, we'll need this later 2552 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2553 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2554 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2555 "zext source and destination must both be a vector or neither", &I); 2556 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2557 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2558 2559 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2560 2561 visitInstruction(I); 2562 } 2563 2564 void Verifier::visitSExtInst(SExtInst &I) { 2565 // Get the source and destination types 2566 Type *SrcTy = I.getOperand(0)->getType(); 2567 Type *DestTy = I.getType(); 2568 2569 // Get the size of the types in bits, we'll need this later 2570 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2571 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2572 2573 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2574 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2575 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2576 "sext source and destination must both be a vector or neither", &I); 2577 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2578 2579 visitInstruction(I); 2580 } 2581 2582 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2583 // Get the source and destination types 2584 Type *SrcTy = I.getOperand(0)->getType(); 2585 Type *DestTy = I.getType(); 2586 // Get the size of the types in bits, we'll need this later 2587 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2588 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2589 2590 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2591 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2592 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2593 "fptrunc source and destination must both be a vector or neither", &I); 2594 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2595 2596 visitInstruction(I); 2597 } 2598 2599 void Verifier::visitFPExtInst(FPExtInst &I) { 2600 // Get the source and destination types 2601 Type *SrcTy = I.getOperand(0)->getType(); 2602 Type *DestTy = I.getType(); 2603 2604 // Get the size of the types in bits, we'll need this later 2605 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2606 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2607 2608 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2609 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2610 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2611 "fpext source and destination must both be a vector or neither", &I); 2612 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2613 2614 visitInstruction(I); 2615 } 2616 2617 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2618 // Get the source and destination types 2619 Type *SrcTy = I.getOperand(0)->getType(); 2620 Type *DestTy = I.getType(); 2621 2622 bool SrcVec = SrcTy->isVectorTy(); 2623 bool DstVec = DestTy->isVectorTy(); 2624 2625 Assert(SrcVec == DstVec, 2626 "UIToFP source and dest must both be vector or scalar", &I); 2627 Assert(SrcTy->isIntOrIntVectorTy(), 2628 "UIToFP source must be integer or integer vector", &I); 2629 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2630 &I); 2631 2632 if (SrcVec && DstVec) 2633 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2634 cast<VectorType>(DestTy)->getNumElements(), 2635 "UIToFP source and dest vector length mismatch", &I); 2636 2637 visitInstruction(I); 2638 } 2639 2640 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2641 // Get the source and destination types 2642 Type *SrcTy = I.getOperand(0)->getType(); 2643 Type *DestTy = I.getType(); 2644 2645 bool SrcVec = SrcTy->isVectorTy(); 2646 bool DstVec = DestTy->isVectorTy(); 2647 2648 Assert(SrcVec == DstVec, 2649 "SIToFP source and dest must both be vector or scalar", &I); 2650 Assert(SrcTy->isIntOrIntVectorTy(), 2651 "SIToFP source must be integer or integer vector", &I); 2652 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2653 &I); 2654 2655 if (SrcVec && DstVec) 2656 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2657 cast<VectorType>(DestTy)->getNumElements(), 2658 "SIToFP source and dest vector length mismatch", &I); 2659 2660 visitInstruction(I); 2661 } 2662 2663 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2664 // Get the source and destination types 2665 Type *SrcTy = I.getOperand(0)->getType(); 2666 Type *DestTy = I.getType(); 2667 2668 bool SrcVec = SrcTy->isVectorTy(); 2669 bool DstVec = DestTy->isVectorTy(); 2670 2671 Assert(SrcVec == DstVec, 2672 "FPToUI source and dest must both be vector or scalar", &I); 2673 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2674 &I); 2675 Assert(DestTy->isIntOrIntVectorTy(), 2676 "FPToUI result must be integer or integer vector", &I); 2677 2678 if (SrcVec && DstVec) 2679 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2680 cast<VectorType>(DestTy)->getNumElements(), 2681 "FPToUI source and dest vector length mismatch", &I); 2682 2683 visitInstruction(I); 2684 } 2685 2686 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2687 // Get the source and destination types 2688 Type *SrcTy = I.getOperand(0)->getType(); 2689 Type *DestTy = I.getType(); 2690 2691 bool SrcVec = SrcTy->isVectorTy(); 2692 bool DstVec = DestTy->isVectorTy(); 2693 2694 Assert(SrcVec == DstVec, 2695 "FPToSI source and dest must both be vector or scalar", &I); 2696 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2697 &I); 2698 Assert(DestTy->isIntOrIntVectorTy(), 2699 "FPToSI result must be integer or integer vector", &I); 2700 2701 if (SrcVec && DstVec) 2702 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2703 cast<VectorType>(DestTy)->getNumElements(), 2704 "FPToSI source and dest vector length mismatch", &I); 2705 2706 visitInstruction(I); 2707 } 2708 2709 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2710 // Get the source and destination types 2711 Type *SrcTy = I.getOperand(0)->getType(); 2712 Type *DestTy = I.getType(); 2713 2714 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2715 2716 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2717 Assert(!DL.isNonIntegralPointerType(PTy), 2718 "ptrtoint not supported for non-integral pointers"); 2719 2720 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2721 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2722 &I); 2723 2724 if (SrcTy->isVectorTy()) { 2725 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2726 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2727 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2728 "PtrToInt Vector width mismatch", &I); 2729 } 2730 2731 visitInstruction(I); 2732 } 2733 2734 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2735 // Get the source and destination types 2736 Type *SrcTy = I.getOperand(0)->getType(); 2737 Type *DestTy = I.getType(); 2738 2739 Assert(SrcTy->isIntOrIntVectorTy(), 2740 "IntToPtr source must be an integral", &I); 2741 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2742 2743 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2744 Assert(!DL.isNonIntegralPointerType(PTy), 2745 "inttoptr not supported for non-integral pointers"); 2746 2747 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2748 &I); 2749 if (SrcTy->isVectorTy()) { 2750 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2751 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2752 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2753 "IntToPtr Vector width mismatch", &I); 2754 } 2755 visitInstruction(I); 2756 } 2757 2758 void Verifier::visitBitCastInst(BitCastInst &I) { 2759 Assert( 2760 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2761 "Invalid bitcast", &I); 2762 visitInstruction(I); 2763 } 2764 2765 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2766 Type *SrcTy = I.getOperand(0)->getType(); 2767 Type *DestTy = I.getType(); 2768 2769 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2770 &I); 2771 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2772 &I); 2773 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2774 "AddrSpaceCast must be between different address spaces", &I); 2775 if (SrcTy->isVectorTy()) 2776 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2777 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2778 visitInstruction(I); 2779 } 2780 2781 /// visitPHINode - Ensure that a PHI node is well formed. 2782 /// 2783 void Verifier::visitPHINode(PHINode &PN) { 2784 // Ensure that the PHI nodes are all grouped together at the top of the block. 2785 // This can be tested by checking whether the instruction before this is 2786 // either nonexistent (because this is begin()) or is a PHI node. If not, 2787 // then there is some other instruction before a PHI. 2788 Assert(&PN == &PN.getParent()->front() || 2789 isa<PHINode>(--BasicBlock::iterator(&PN)), 2790 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2791 2792 // Check that a PHI doesn't yield a Token. 2793 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2794 2795 // Check that all of the values of the PHI node have the same type as the 2796 // result, and that the incoming blocks are really basic blocks. 2797 for (Value *IncValue : PN.incoming_values()) { 2798 Assert(PN.getType() == IncValue->getType(), 2799 "PHI node operands are not the same type as the result!", &PN); 2800 } 2801 2802 // All other PHI node constraints are checked in the visitBasicBlock method. 2803 2804 visitInstruction(PN); 2805 } 2806 2807 void Verifier::visitCallBase(CallBase &Call) { 2808 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2809 "Called function must be a pointer!", Call); 2810 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2811 2812 Assert(FPTy->getElementType()->isFunctionTy(), 2813 "Called function is not pointer to function type!", Call); 2814 2815 Assert(FPTy->getElementType() == Call.getFunctionType(), 2816 "Called function is not the same type as the call!", Call); 2817 2818 FunctionType *FTy = Call.getFunctionType(); 2819 2820 // Verify that the correct number of arguments are being passed 2821 if (FTy->isVarArg()) 2822 Assert(Call.arg_size() >= FTy->getNumParams(), 2823 "Called function requires more parameters than were provided!", 2824 Call); 2825 else 2826 Assert(Call.arg_size() == FTy->getNumParams(), 2827 "Incorrect number of arguments passed to called function!", Call); 2828 2829 // Verify that all arguments to the call match the function type. 2830 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2831 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2832 "Call parameter type does not match function signature!", 2833 Call.getArgOperand(i), FTy->getParamType(i), Call); 2834 2835 AttributeList Attrs = Call.getAttributes(); 2836 2837 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2838 "Attribute after last parameter!", Call); 2839 2840 bool IsIntrinsic = Call.getCalledFunction() && 2841 Call.getCalledFunction()->getName().startswith("llvm."); 2842 2843 Function *Callee 2844 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2845 2846 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2847 // Don't allow speculatable on call sites, unless the underlying function 2848 // declaration is also speculatable. 2849 Assert(Callee && Callee->isSpeculatable(), 2850 "speculatable attribute may not apply to call sites", Call); 2851 } 2852 2853 // Verify call attributes. 2854 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2855 2856 // Conservatively check the inalloca argument. 2857 // We have a bug if we can find that there is an underlying alloca without 2858 // inalloca. 2859 if (Call.hasInAllocaArgument()) { 2860 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2861 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2862 Assert(AI->isUsedWithInAlloca(), 2863 "inalloca argument for call has mismatched alloca", AI, Call); 2864 } 2865 2866 // For each argument of the callsite, if it has the swifterror argument, 2867 // make sure the underlying alloca/parameter it comes from has a swifterror as 2868 // well. 2869 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2870 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2871 Value *SwiftErrorArg = Call.getArgOperand(i); 2872 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2873 Assert(AI->isSwiftError(), 2874 "swifterror argument for call has mismatched alloca", AI, Call); 2875 continue; 2876 } 2877 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2878 Assert(ArgI, 2879 "swifterror argument should come from an alloca or parameter", 2880 SwiftErrorArg, Call); 2881 Assert(ArgI->hasSwiftErrorAttr(), 2882 "swifterror argument for call has mismatched parameter", ArgI, 2883 Call); 2884 } 2885 2886 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2887 // Don't allow immarg on call sites, unless the underlying declaration 2888 // also has the matching immarg. 2889 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2890 "immarg may not apply only to call sites", 2891 Call.getArgOperand(i), Call); 2892 } 2893 2894 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2895 Value *ArgVal = Call.getArgOperand(i); 2896 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2897 "immarg operand has non-immediate parameter", ArgVal, Call); 2898 } 2899 } 2900 2901 if (FTy->isVarArg()) { 2902 // FIXME? is 'nest' even legal here? 2903 bool SawNest = false; 2904 bool SawReturned = false; 2905 2906 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2907 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2908 SawNest = true; 2909 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2910 SawReturned = true; 2911 } 2912 2913 // Check attributes on the varargs part. 2914 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2915 Type *Ty = Call.getArgOperand(Idx)->getType(); 2916 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2917 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2918 2919 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2920 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2921 SawNest = true; 2922 } 2923 2924 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2925 Assert(!SawReturned, "More than one parameter has attribute returned!", 2926 Call); 2927 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2928 "Incompatible argument and return types for 'returned' " 2929 "attribute", 2930 Call); 2931 SawReturned = true; 2932 } 2933 2934 // Statepoint intrinsic is vararg but the wrapped function may be not. 2935 // Allow sret here and check the wrapped function in verifyStatepoint. 2936 if (!Call.getCalledFunction() || 2937 Call.getCalledFunction()->getIntrinsicID() != 2938 Intrinsic::experimental_gc_statepoint) 2939 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2940 "Attribute 'sret' cannot be used for vararg call arguments!", 2941 Call); 2942 2943 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2944 Assert(Idx == Call.arg_size() - 1, 2945 "inalloca isn't on the last argument!", Call); 2946 } 2947 } 2948 2949 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2950 if (!IsIntrinsic) { 2951 for (Type *ParamTy : FTy->params()) { 2952 Assert(!ParamTy->isMetadataTy(), 2953 "Function has metadata parameter but isn't an intrinsic", Call); 2954 Assert(!ParamTy->isTokenTy(), 2955 "Function has token parameter but isn't an intrinsic", Call); 2956 } 2957 } 2958 2959 // Verify that indirect calls don't return tokens. 2960 if (!Call.getCalledFunction()) 2961 Assert(!FTy->getReturnType()->isTokenTy(), 2962 "Return type cannot be token for indirect call!"); 2963 2964 if (Function *F = Call.getCalledFunction()) 2965 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2966 visitIntrinsicCall(ID, Call); 2967 2968 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2969 // at most one "gc-transition" operand bundle. 2970 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2971 FoundGCTransitionBundle = false; 2972 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 2973 OperandBundleUse BU = Call.getOperandBundleAt(i); 2974 uint32_t Tag = BU.getTagID(); 2975 if (Tag == LLVMContext::OB_deopt) { 2976 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 2977 FoundDeoptBundle = true; 2978 } else if (Tag == LLVMContext::OB_gc_transition) { 2979 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2980 Call); 2981 FoundGCTransitionBundle = true; 2982 } else if (Tag == LLVMContext::OB_funclet) { 2983 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 2984 FoundFuncletBundle = true; 2985 Assert(BU.Inputs.size() == 1, 2986 "Expected exactly one funclet bundle operand", Call); 2987 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2988 "Funclet bundle operands should correspond to a FuncletPadInst", 2989 Call); 2990 } 2991 } 2992 2993 // Verify that each inlinable callsite of a debug-info-bearing function in a 2994 // debug-info-bearing function has a debug location attached to it. Failure to 2995 // do so causes assertion failures when the inliner sets up inline scope info. 2996 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 2997 Call.getCalledFunction()->getSubprogram()) 2998 AssertDI(Call.getDebugLoc(), 2999 "inlinable function call in a function with " 3000 "debug info must have a !dbg location", 3001 Call); 3002 3003 visitInstruction(Call); 3004 } 3005 3006 /// Two types are "congruent" if they are identical, or if they are both pointer 3007 /// types with different pointee types and the same address space. 3008 static bool isTypeCongruent(Type *L, Type *R) { 3009 if (L == R) 3010 return true; 3011 PointerType *PL = dyn_cast<PointerType>(L); 3012 PointerType *PR = dyn_cast<PointerType>(R); 3013 if (!PL || !PR) 3014 return false; 3015 return PL->getAddressSpace() == PR->getAddressSpace(); 3016 } 3017 3018 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3019 static const Attribute::AttrKind ABIAttrs[] = { 3020 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3021 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 3022 Attribute::SwiftError}; 3023 AttrBuilder Copy; 3024 for (auto AK : ABIAttrs) { 3025 if (Attrs.hasParamAttribute(I, AK)) 3026 Copy.addAttribute(AK); 3027 } 3028 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 3029 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3030 return Copy; 3031 } 3032 3033 void Verifier::verifyMustTailCall(CallInst &CI) { 3034 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3035 3036 // - The caller and callee prototypes must match. Pointer types of 3037 // parameters or return types may differ in pointee type, but not 3038 // address space. 3039 Function *F = CI.getParent()->getParent(); 3040 FunctionType *CallerTy = F->getFunctionType(); 3041 FunctionType *CalleeTy = CI.getFunctionType(); 3042 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3043 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3044 "cannot guarantee tail call due to mismatched parameter counts", 3045 &CI); 3046 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3047 Assert( 3048 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3049 "cannot guarantee tail call due to mismatched parameter types", &CI); 3050 } 3051 } 3052 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3053 "cannot guarantee tail call due to mismatched varargs", &CI); 3054 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3055 "cannot guarantee tail call due to mismatched return types", &CI); 3056 3057 // - The calling conventions of the caller and callee must match. 3058 Assert(F->getCallingConv() == CI.getCallingConv(), 3059 "cannot guarantee tail call due to mismatched calling conv", &CI); 3060 3061 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3062 // returned, and inalloca, must match. 3063 AttributeList CallerAttrs = F->getAttributes(); 3064 AttributeList CalleeAttrs = CI.getAttributes(); 3065 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3066 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3067 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3068 Assert(CallerABIAttrs == CalleeABIAttrs, 3069 "cannot guarantee tail call due to mismatched ABI impacting " 3070 "function attributes", 3071 &CI, CI.getOperand(I)); 3072 } 3073 3074 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3075 // or a pointer bitcast followed by a ret instruction. 3076 // - The ret instruction must return the (possibly bitcasted) value 3077 // produced by the call or void. 3078 Value *RetVal = &CI; 3079 Instruction *Next = CI.getNextNode(); 3080 3081 // Handle the optional bitcast. 3082 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3083 Assert(BI->getOperand(0) == RetVal, 3084 "bitcast following musttail call must use the call", BI); 3085 RetVal = BI; 3086 Next = BI->getNextNode(); 3087 } 3088 3089 // Check the return. 3090 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3091 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3092 &CI); 3093 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3094 "musttail call result must be returned", Ret); 3095 } 3096 3097 void Verifier::visitCallInst(CallInst &CI) { 3098 visitCallBase(CI); 3099 3100 if (CI.isMustTailCall()) 3101 verifyMustTailCall(CI); 3102 } 3103 3104 void Verifier::visitInvokeInst(InvokeInst &II) { 3105 visitCallBase(II); 3106 3107 // Verify that the first non-PHI instruction of the unwind destination is an 3108 // exception handling instruction. 3109 Assert( 3110 II.getUnwindDest()->isEHPad(), 3111 "The unwind destination does not have an exception handling instruction!", 3112 &II); 3113 3114 visitTerminator(II); 3115 } 3116 3117 /// visitUnaryOperator - Check the argument to the unary operator. 3118 /// 3119 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3120 Assert(U.getType() == U.getOperand(0)->getType(), 3121 "Unary operators must have same type for" 3122 "operands and result!", 3123 &U); 3124 3125 switch (U.getOpcode()) { 3126 // Check that floating-point arithmetic operators are only used with 3127 // floating-point operands. 3128 case Instruction::FNeg: 3129 Assert(U.getType()->isFPOrFPVectorTy(), 3130 "FNeg operator only works with float types!", &U); 3131 break; 3132 default: 3133 llvm_unreachable("Unknown UnaryOperator opcode!"); 3134 } 3135 3136 visitInstruction(U); 3137 } 3138 3139 /// visitBinaryOperator - Check that both arguments to the binary operator are 3140 /// of the same type! 3141 /// 3142 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3143 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3144 "Both operands to a binary operator are not of the same type!", &B); 3145 3146 switch (B.getOpcode()) { 3147 // Check that integer arithmetic operators are only used with 3148 // integral operands. 3149 case Instruction::Add: 3150 case Instruction::Sub: 3151 case Instruction::Mul: 3152 case Instruction::SDiv: 3153 case Instruction::UDiv: 3154 case Instruction::SRem: 3155 case Instruction::URem: 3156 Assert(B.getType()->isIntOrIntVectorTy(), 3157 "Integer arithmetic operators only work with integral types!", &B); 3158 Assert(B.getType() == B.getOperand(0)->getType(), 3159 "Integer arithmetic operators must have same type " 3160 "for operands and result!", 3161 &B); 3162 break; 3163 // Check that floating-point arithmetic operators are only used with 3164 // floating-point operands. 3165 case Instruction::FAdd: 3166 case Instruction::FSub: 3167 case Instruction::FMul: 3168 case Instruction::FDiv: 3169 case Instruction::FRem: 3170 Assert(B.getType()->isFPOrFPVectorTy(), 3171 "Floating-point arithmetic operators only work with " 3172 "floating-point types!", 3173 &B); 3174 Assert(B.getType() == B.getOperand(0)->getType(), 3175 "Floating-point arithmetic operators must have same type " 3176 "for operands and result!", 3177 &B); 3178 break; 3179 // Check that logical operators are only used with integral operands. 3180 case Instruction::And: 3181 case Instruction::Or: 3182 case Instruction::Xor: 3183 Assert(B.getType()->isIntOrIntVectorTy(), 3184 "Logical operators only work with integral types!", &B); 3185 Assert(B.getType() == B.getOperand(0)->getType(), 3186 "Logical operators must have same type for operands and result!", 3187 &B); 3188 break; 3189 case Instruction::Shl: 3190 case Instruction::LShr: 3191 case Instruction::AShr: 3192 Assert(B.getType()->isIntOrIntVectorTy(), 3193 "Shifts only work with integral types!", &B); 3194 Assert(B.getType() == B.getOperand(0)->getType(), 3195 "Shift return type must be same as operands!", &B); 3196 break; 3197 default: 3198 llvm_unreachable("Unknown BinaryOperator opcode!"); 3199 } 3200 3201 visitInstruction(B); 3202 } 3203 3204 void Verifier::visitICmpInst(ICmpInst &IC) { 3205 // Check that the operands are the same type 3206 Type *Op0Ty = IC.getOperand(0)->getType(); 3207 Type *Op1Ty = IC.getOperand(1)->getType(); 3208 Assert(Op0Ty == Op1Ty, 3209 "Both operands to ICmp instruction are not of the same type!", &IC); 3210 // Check that the operands are the right type 3211 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3212 "Invalid operand types for ICmp instruction", &IC); 3213 // Check that the predicate is valid. 3214 Assert(IC.isIntPredicate(), 3215 "Invalid predicate in ICmp instruction!", &IC); 3216 3217 visitInstruction(IC); 3218 } 3219 3220 void Verifier::visitFCmpInst(FCmpInst &FC) { 3221 // Check that the operands are the same type 3222 Type *Op0Ty = FC.getOperand(0)->getType(); 3223 Type *Op1Ty = FC.getOperand(1)->getType(); 3224 Assert(Op0Ty == Op1Ty, 3225 "Both operands to FCmp instruction are not of the same type!", &FC); 3226 // Check that the operands are the right type 3227 Assert(Op0Ty->isFPOrFPVectorTy(), 3228 "Invalid operand types for FCmp instruction", &FC); 3229 // Check that the predicate is valid. 3230 Assert(FC.isFPPredicate(), 3231 "Invalid predicate in FCmp instruction!", &FC); 3232 3233 visitInstruction(FC); 3234 } 3235 3236 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3237 Assert( 3238 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3239 "Invalid extractelement operands!", &EI); 3240 visitInstruction(EI); 3241 } 3242 3243 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3244 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3245 IE.getOperand(2)), 3246 "Invalid insertelement operands!", &IE); 3247 visitInstruction(IE); 3248 } 3249 3250 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3251 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3252 SV.getOperand(2)), 3253 "Invalid shufflevector operands!", &SV); 3254 visitInstruction(SV); 3255 } 3256 3257 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3258 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3259 3260 Assert(isa<PointerType>(TargetTy), 3261 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3262 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3263 3264 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3265 Assert(all_of( 3266 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3267 "GEP indexes must be integers", &GEP); 3268 Type *ElTy = 3269 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3270 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3271 3272 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3273 GEP.getResultElementType() == ElTy, 3274 "GEP is not of right type for indices!", &GEP, ElTy); 3275 3276 if (GEP.getType()->isVectorTy()) { 3277 // Additional checks for vector GEPs. 3278 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3279 if (GEP.getPointerOperandType()->isVectorTy()) 3280 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3281 "Vector GEP result width doesn't match operand's", &GEP); 3282 for (Value *Idx : Idxs) { 3283 Type *IndexTy = Idx->getType(); 3284 if (IndexTy->isVectorTy()) { 3285 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3286 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3287 } 3288 Assert(IndexTy->isIntOrIntVectorTy(), 3289 "All GEP indices should be of integer type"); 3290 } 3291 } 3292 3293 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3294 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3295 "GEP address space doesn't match type", &GEP); 3296 } 3297 3298 visitInstruction(GEP); 3299 } 3300 3301 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3302 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3303 } 3304 3305 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3306 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3307 "precondition violation"); 3308 3309 unsigned NumOperands = Range->getNumOperands(); 3310 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3311 unsigned NumRanges = NumOperands / 2; 3312 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3313 3314 ConstantRange LastRange(1, true); // Dummy initial value 3315 for (unsigned i = 0; i < NumRanges; ++i) { 3316 ConstantInt *Low = 3317 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3318 Assert(Low, "The lower limit must be an integer!", Low); 3319 ConstantInt *High = 3320 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3321 Assert(High, "The upper limit must be an integer!", High); 3322 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3323 "Range types must match instruction type!", &I); 3324 3325 APInt HighV = High->getValue(); 3326 APInt LowV = Low->getValue(); 3327 ConstantRange CurRange(LowV, HighV); 3328 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3329 "Range must not be empty!", Range); 3330 if (i != 0) { 3331 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3332 "Intervals are overlapping", Range); 3333 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3334 Range); 3335 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3336 Range); 3337 } 3338 LastRange = ConstantRange(LowV, HighV); 3339 } 3340 if (NumRanges > 2) { 3341 APInt FirstLow = 3342 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3343 APInt FirstHigh = 3344 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3345 ConstantRange FirstRange(FirstLow, FirstHigh); 3346 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3347 "Intervals are overlapping", Range); 3348 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3349 Range); 3350 } 3351 } 3352 3353 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3354 unsigned Size = DL.getTypeSizeInBits(Ty); 3355 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3356 Assert(!(Size & (Size - 1)), 3357 "atomic memory access' operand must have a power-of-two size", Ty, I); 3358 } 3359 3360 void Verifier::visitLoadInst(LoadInst &LI) { 3361 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3362 Assert(PTy, "Load operand must be a pointer.", &LI); 3363 Type *ElTy = LI.getType(); 3364 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3365 "huge alignment values are unsupported", &LI); 3366 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3367 if (LI.isAtomic()) { 3368 Assert(LI.getOrdering() != AtomicOrdering::Release && 3369 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3370 "Load cannot have Release ordering", &LI); 3371 Assert(LI.getAlignment() != 0, 3372 "Atomic load must specify explicit alignment", &LI); 3373 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3374 "atomic load operand must have integer, pointer, or floating point " 3375 "type!", 3376 ElTy, &LI); 3377 checkAtomicMemAccessSize(ElTy, &LI); 3378 } else { 3379 Assert(LI.getSyncScopeID() == SyncScope::System, 3380 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3381 } 3382 3383 visitInstruction(LI); 3384 } 3385 3386 void Verifier::visitStoreInst(StoreInst &SI) { 3387 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3388 Assert(PTy, "Store operand must be a pointer.", &SI); 3389 Type *ElTy = PTy->getElementType(); 3390 Assert(ElTy == SI.getOperand(0)->getType(), 3391 "Stored value type does not match pointer operand type!", &SI, ElTy); 3392 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3393 "huge alignment values are unsupported", &SI); 3394 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3395 if (SI.isAtomic()) { 3396 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3397 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3398 "Store cannot have Acquire ordering", &SI); 3399 Assert(SI.getAlignment() != 0, 3400 "Atomic store must specify explicit alignment", &SI); 3401 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3402 "atomic store operand must have integer, pointer, or floating point " 3403 "type!", 3404 ElTy, &SI); 3405 checkAtomicMemAccessSize(ElTy, &SI); 3406 } else { 3407 Assert(SI.getSyncScopeID() == SyncScope::System, 3408 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3409 } 3410 visitInstruction(SI); 3411 } 3412 3413 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3414 void Verifier::verifySwiftErrorCall(CallBase &Call, 3415 const Value *SwiftErrorVal) { 3416 unsigned Idx = 0; 3417 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3418 if (*I == SwiftErrorVal) { 3419 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3420 "swifterror value when used in a callsite should be marked " 3421 "with swifterror attribute", 3422 SwiftErrorVal, Call); 3423 } 3424 } 3425 } 3426 3427 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3428 // Check that swifterror value is only used by loads, stores, or as 3429 // a swifterror argument. 3430 for (const User *U : SwiftErrorVal->users()) { 3431 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3432 isa<InvokeInst>(U), 3433 "swifterror value can only be loaded and stored from, or " 3434 "as a swifterror argument!", 3435 SwiftErrorVal, U); 3436 // If it is used by a store, check it is the second operand. 3437 if (auto StoreI = dyn_cast<StoreInst>(U)) 3438 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3439 "swifterror value should be the second operand when used " 3440 "by stores", SwiftErrorVal, U); 3441 if (auto *Call = dyn_cast<CallBase>(U)) 3442 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3443 } 3444 } 3445 3446 void Verifier::visitAllocaInst(AllocaInst &AI) { 3447 SmallPtrSet<Type*, 4> Visited; 3448 PointerType *PTy = AI.getType(); 3449 // TODO: Relax this restriction? 3450 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3451 "Allocation instruction pointer not in the stack address space!", 3452 &AI); 3453 Assert(AI.getAllocatedType()->isSized(&Visited), 3454 "Cannot allocate unsized type", &AI); 3455 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3456 "Alloca array size must have integer type", &AI); 3457 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3458 "huge alignment values are unsupported", &AI); 3459 3460 if (AI.isSwiftError()) { 3461 verifySwiftErrorValue(&AI); 3462 } 3463 3464 visitInstruction(AI); 3465 } 3466 3467 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3468 3469 // FIXME: more conditions??? 3470 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3471 "cmpxchg instructions must be atomic.", &CXI); 3472 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3473 "cmpxchg instructions must be atomic.", &CXI); 3474 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3475 "cmpxchg instructions cannot be unordered.", &CXI); 3476 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3477 "cmpxchg instructions cannot be unordered.", &CXI); 3478 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3479 "cmpxchg instructions failure argument shall be no stronger than the " 3480 "success argument", 3481 &CXI); 3482 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3483 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3484 "cmpxchg failure ordering cannot include release semantics", &CXI); 3485 3486 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3487 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3488 Type *ElTy = PTy->getElementType(); 3489 Assert(ElTy->isIntOrPtrTy(), 3490 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3491 checkAtomicMemAccessSize(ElTy, &CXI); 3492 Assert(ElTy == CXI.getOperand(1)->getType(), 3493 "Expected value type does not match pointer operand type!", &CXI, 3494 ElTy); 3495 Assert(ElTy == CXI.getOperand(2)->getType(), 3496 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3497 visitInstruction(CXI); 3498 } 3499 3500 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3501 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3502 "atomicrmw instructions must be atomic.", &RMWI); 3503 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3504 "atomicrmw instructions cannot be unordered.", &RMWI); 3505 auto Op = RMWI.getOperation(); 3506 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3507 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3508 Type *ElTy = PTy->getElementType(); 3509 if (Op == AtomicRMWInst::Xchg) { 3510 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3511 AtomicRMWInst::getOperationName(Op) + 3512 " operand must have integer or floating point type!", 3513 &RMWI, ElTy); 3514 } else if (AtomicRMWInst::isFPOperation(Op)) { 3515 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3516 AtomicRMWInst::getOperationName(Op) + 3517 " operand must have floating point type!", 3518 &RMWI, ElTy); 3519 } else { 3520 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3521 AtomicRMWInst::getOperationName(Op) + 3522 " operand must have integer type!", 3523 &RMWI, ElTy); 3524 } 3525 checkAtomicMemAccessSize(ElTy, &RMWI); 3526 Assert(ElTy == RMWI.getOperand(1)->getType(), 3527 "Argument value type does not match pointer operand type!", &RMWI, 3528 ElTy); 3529 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3530 "Invalid binary operation!", &RMWI); 3531 visitInstruction(RMWI); 3532 } 3533 3534 void Verifier::visitFenceInst(FenceInst &FI) { 3535 const AtomicOrdering Ordering = FI.getOrdering(); 3536 Assert(Ordering == AtomicOrdering::Acquire || 3537 Ordering == AtomicOrdering::Release || 3538 Ordering == AtomicOrdering::AcquireRelease || 3539 Ordering == AtomicOrdering::SequentiallyConsistent, 3540 "fence instructions may only have acquire, release, acq_rel, or " 3541 "seq_cst ordering.", 3542 &FI); 3543 visitInstruction(FI); 3544 } 3545 3546 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3547 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3548 EVI.getIndices()) == EVI.getType(), 3549 "Invalid ExtractValueInst operands!", &EVI); 3550 3551 visitInstruction(EVI); 3552 } 3553 3554 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3555 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3556 IVI.getIndices()) == 3557 IVI.getOperand(1)->getType(), 3558 "Invalid InsertValueInst operands!", &IVI); 3559 3560 visitInstruction(IVI); 3561 } 3562 3563 static Value *getParentPad(Value *EHPad) { 3564 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3565 return FPI->getParentPad(); 3566 3567 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3568 } 3569 3570 void Verifier::visitEHPadPredecessors(Instruction &I) { 3571 assert(I.isEHPad()); 3572 3573 BasicBlock *BB = I.getParent(); 3574 Function *F = BB->getParent(); 3575 3576 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3577 3578 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3579 // The landingpad instruction defines its parent as a landing pad block. The 3580 // landing pad block may be branched to only by the unwind edge of an 3581 // invoke. 3582 for (BasicBlock *PredBB : predecessors(BB)) { 3583 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3584 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3585 "Block containing LandingPadInst must be jumped to " 3586 "only by the unwind edge of an invoke.", 3587 LPI); 3588 } 3589 return; 3590 } 3591 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3592 if (!pred_empty(BB)) 3593 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3594 "Block containg CatchPadInst must be jumped to " 3595 "only by its catchswitch.", 3596 CPI); 3597 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3598 "Catchswitch cannot unwind to one of its catchpads", 3599 CPI->getCatchSwitch(), CPI); 3600 return; 3601 } 3602 3603 // Verify that each pred has a legal terminator with a legal to/from EH 3604 // pad relationship. 3605 Instruction *ToPad = &I; 3606 Value *ToPadParent = getParentPad(ToPad); 3607 for (BasicBlock *PredBB : predecessors(BB)) { 3608 Instruction *TI = PredBB->getTerminator(); 3609 Value *FromPad; 3610 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3611 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3612 "EH pad must be jumped to via an unwind edge", ToPad, II); 3613 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3614 FromPad = Bundle->Inputs[0]; 3615 else 3616 FromPad = ConstantTokenNone::get(II->getContext()); 3617 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3618 FromPad = CRI->getOperand(0); 3619 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3620 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3621 FromPad = CSI; 3622 } else { 3623 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3624 } 3625 3626 // The edge may exit from zero or more nested pads. 3627 SmallSet<Value *, 8> Seen; 3628 for (;; FromPad = getParentPad(FromPad)) { 3629 Assert(FromPad != ToPad, 3630 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3631 if (FromPad == ToPadParent) { 3632 // This is a legal unwind edge. 3633 break; 3634 } 3635 Assert(!isa<ConstantTokenNone>(FromPad), 3636 "A single unwind edge may only enter one EH pad", TI); 3637 Assert(Seen.insert(FromPad).second, 3638 "EH pad jumps through a cycle of pads", FromPad); 3639 } 3640 } 3641 } 3642 3643 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3644 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3645 // isn't a cleanup. 3646 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3647 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3648 3649 visitEHPadPredecessors(LPI); 3650 3651 if (!LandingPadResultTy) 3652 LandingPadResultTy = LPI.getType(); 3653 else 3654 Assert(LandingPadResultTy == LPI.getType(), 3655 "The landingpad instruction should have a consistent result type " 3656 "inside a function.", 3657 &LPI); 3658 3659 Function *F = LPI.getParent()->getParent(); 3660 Assert(F->hasPersonalityFn(), 3661 "LandingPadInst needs to be in a function with a personality.", &LPI); 3662 3663 // The landingpad instruction must be the first non-PHI instruction in the 3664 // block. 3665 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3666 "LandingPadInst not the first non-PHI instruction in the block.", 3667 &LPI); 3668 3669 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3670 Constant *Clause = LPI.getClause(i); 3671 if (LPI.isCatch(i)) { 3672 Assert(isa<PointerType>(Clause->getType()), 3673 "Catch operand does not have pointer type!", &LPI); 3674 } else { 3675 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3676 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3677 "Filter operand is not an array of constants!", &LPI); 3678 } 3679 } 3680 3681 visitInstruction(LPI); 3682 } 3683 3684 void Verifier::visitResumeInst(ResumeInst &RI) { 3685 Assert(RI.getFunction()->hasPersonalityFn(), 3686 "ResumeInst needs to be in a function with a personality.", &RI); 3687 3688 if (!LandingPadResultTy) 3689 LandingPadResultTy = RI.getValue()->getType(); 3690 else 3691 Assert(LandingPadResultTy == RI.getValue()->getType(), 3692 "The resume instruction should have a consistent result type " 3693 "inside a function.", 3694 &RI); 3695 3696 visitTerminator(RI); 3697 } 3698 3699 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3700 BasicBlock *BB = CPI.getParent(); 3701 3702 Function *F = BB->getParent(); 3703 Assert(F->hasPersonalityFn(), 3704 "CatchPadInst needs to be in a function with a personality.", &CPI); 3705 3706 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3707 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3708 CPI.getParentPad()); 3709 3710 // The catchpad instruction must be the first non-PHI instruction in the 3711 // block. 3712 Assert(BB->getFirstNonPHI() == &CPI, 3713 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3714 3715 visitEHPadPredecessors(CPI); 3716 visitFuncletPadInst(CPI); 3717 } 3718 3719 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3720 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3721 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3722 CatchReturn.getOperand(0)); 3723 3724 visitTerminator(CatchReturn); 3725 } 3726 3727 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3728 BasicBlock *BB = CPI.getParent(); 3729 3730 Function *F = BB->getParent(); 3731 Assert(F->hasPersonalityFn(), 3732 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3733 3734 // The cleanuppad instruction must be the first non-PHI instruction in the 3735 // block. 3736 Assert(BB->getFirstNonPHI() == &CPI, 3737 "CleanupPadInst not the first non-PHI instruction in the block.", 3738 &CPI); 3739 3740 auto *ParentPad = CPI.getParentPad(); 3741 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3742 "CleanupPadInst has an invalid parent.", &CPI); 3743 3744 visitEHPadPredecessors(CPI); 3745 visitFuncletPadInst(CPI); 3746 } 3747 3748 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3749 User *FirstUser = nullptr; 3750 Value *FirstUnwindPad = nullptr; 3751 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3752 SmallSet<FuncletPadInst *, 8> Seen; 3753 3754 while (!Worklist.empty()) { 3755 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3756 Assert(Seen.insert(CurrentPad).second, 3757 "FuncletPadInst must not be nested within itself", CurrentPad); 3758 Value *UnresolvedAncestorPad = nullptr; 3759 for (User *U : CurrentPad->users()) { 3760 BasicBlock *UnwindDest; 3761 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3762 UnwindDest = CRI->getUnwindDest(); 3763 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3764 // We allow catchswitch unwind to caller to nest 3765 // within an outer pad that unwinds somewhere else, 3766 // because catchswitch doesn't have a nounwind variant. 3767 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3768 if (CSI->unwindsToCaller()) 3769 continue; 3770 UnwindDest = CSI->getUnwindDest(); 3771 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3772 UnwindDest = II->getUnwindDest(); 3773 } else if (isa<CallInst>(U)) { 3774 // Calls which don't unwind may be found inside funclet 3775 // pads that unwind somewhere else. We don't *require* 3776 // such calls to be annotated nounwind. 3777 continue; 3778 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3779 // The unwind dest for a cleanup can only be found by 3780 // recursive search. Add it to the worklist, and we'll 3781 // search for its first use that determines where it unwinds. 3782 Worklist.push_back(CPI); 3783 continue; 3784 } else { 3785 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3786 continue; 3787 } 3788 3789 Value *UnwindPad; 3790 bool ExitsFPI; 3791 if (UnwindDest) { 3792 UnwindPad = UnwindDest->getFirstNonPHI(); 3793 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3794 continue; 3795 Value *UnwindParent = getParentPad(UnwindPad); 3796 // Ignore unwind edges that don't exit CurrentPad. 3797 if (UnwindParent == CurrentPad) 3798 continue; 3799 // Determine whether the original funclet pad is exited, 3800 // and if we are scanning nested pads determine how many 3801 // of them are exited so we can stop searching their 3802 // children. 3803 Value *ExitedPad = CurrentPad; 3804 ExitsFPI = false; 3805 do { 3806 if (ExitedPad == &FPI) { 3807 ExitsFPI = true; 3808 // Now we can resolve any ancestors of CurrentPad up to 3809 // FPI, but not including FPI since we need to make sure 3810 // to check all direct users of FPI for consistency. 3811 UnresolvedAncestorPad = &FPI; 3812 break; 3813 } 3814 Value *ExitedParent = getParentPad(ExitedPad); 3815 if (ExitedParent == UnwindParent) { 3816 // ExitedPad is the ancestor-most pad which this unwind 3817 // edge exits, so we can resolve up to it, meaning that 3818 // ExitedParent is the first ancestor still unresolved. 3819 UnresolvedAncestorPad = ExitedParent; 3820 break; 3821 } 3822 ExitedPad = ExitedParent; 3823 } while (!isa<ConstantTokenNone>(ExitedPad)); 3824 } else { 3825 // Unwinding to caller exits all pads. 3826 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3827 ExitsFPI = true; 3828 UnresolvedAncestorPad = &FPI; 3829 } 3830 3831 if (ExitsFPI) { 3832 // This unwind edge exits FPI. Make sure it agrees with other 3833 // such edges. 3834 if (FirstUser) { 3835 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3836 "pad must have the same unwind " 3837 "dest", 3838 &FPI, U, FirstUser); 3839 } else { 3840 FirstUser = U; 3841 FirstUnwindPad = UnwindPad; 3842 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3843 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3844 getParentPad(UnwindPad) == getParentPad(&FPI)) 3845 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3846 } 3847 } 3848 // Make sure we visit all uses of FPI, but for nested pads stop as 3849 // soon as we know where they unwind to. 3850 if (CurrentPad != &FPI) 3851 break; 3852 } 3853 if (UnresolvedAncestorPad) { 3854 if (CurrentPad == UnresolvedAncestorPad) { 3855 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3856 // we've found an unwind edge that exits it, because we need to verify 3857 // all direct uses of FPI. 3858 assert(CurrentPad == &FPI); 3859 continue; 3860 } 3861 // Pop off the worklist any nested pads that we've found an unwind 3862 // destination for. The pads on the worklist are the uncles, 3863 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3864 // for all ancestors of CurrentPad up to but not including 3865 // UnresolvedAncestorPad. 3866 Value *ResolvedPad = CurrentPad; 3867 while (!Worklist.empty()) { 3868 Value *UnclePad = Worklist.back(); 3869 Value *AncestorPad = getParentPad(UnclePad); 3870 // Walk ResolvedPad up the ancestor list until we either find the 3871 // uncle's parent or the last resolved ancestor. 3872 while (ResolvedPad != AncestorPad) { 3873 Value *ResolvedParent = getParentPad(ResolvedPad); 3874 if (ResolvedParent == UnresolvedAncestorPad) { 3875 break; 3876 } 3877 ResolvedPad = ResolvedParent; 3878 } 3879 // If the resolved ancestor search didn't find the uncle's parent, 3880 // then the uncle is not yet resolved. 3881 if (ResolvedPad != AncestorPad) 3882 break; 3883 // This uncle is resolved, so pop it from the worklist. 3884 Worklist.pop_back(); 3885 } 3886 } 3887 } 3888 3889 if (FirstUnwindPad) { 3890 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3891 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3892 Value *SwitchUnwindPad; 3893 if (SwitchUnwindDest) 3894 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3895 else 3896 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3897 Assert(SwitchUnwindPad == FirstUnwindPad, 3898 "Unwind edges out of a catch must have the same unwind dest as " 3899 "the parent catchswitch", 3900 &FPI, FirstUser, CatchSwitch); 3901 } 3902 } 3903 3904 visitInstruction(FPI); 3905 } 3906 3907 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3908 BasicBlock *BB = CatchSwitch.getParent(); 3909 3910 Function *F = BB->getParent(); 3911 Assert(F->hasPersonalityFn(), 3912 "CatchSwitchInst needs to be in a function with a personality.", 3913 &CatchSwitch); 3914 3915 // The catchswitch instruction must be the first non-PHI instruction in the 3916 // block. 3917 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3918 "CatchSwitchInst not the first non-PHI instruction in the block.", 3919 &CatchSwitch); 3920 3921 auto *ParentPad = CatchSwitch.getParentPad(); 3922 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3923 "CatchSwitchInst has an invalid parent.", ParentPad); 3924 3925 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3926 Instruction *I = UnwindDest->getFirstNonPHI(); 3927 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3928 "CatchSwitchInst must unwind to an EH block which is not a " 3929 "landingpad.", 3930 &CatchSwitch); 3931 3932 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3933 if (getParentPad(I) == ParentPad) 3934 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3935 } 3936 3937 Assert(CatchSwitch.getNumHandlers() != 0, 3938 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3939 3940 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3941 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3942 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3943 } 3944 3945 visitEHPadPredecessors(CatchSwitch); 3946 visitTerminator(CatchSwitch); 3947 } 3948 3949 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3950 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3951 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3952 CRI.getOperand(0)); 3953 3954 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3955 Instruction *I = UnwindDest->getFirstNonPHI(); 3956 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3957 "CleanupReturnInst must unwind to an EH block which is not a " 3958 "landingpad.", 3959 &CRI); 3960 } 3961 3962 visitTerminator(CRI); 3963 } 3964 3965 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3966 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3967 // If the we have an invalid invoke, don't try to compute the dominance. 3968 // We already reject it in the invoke specific checks and the dominance 3969 // computation doesn't handle multiple edges. 3970 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3971 if (II->getNormalDest() == II->getUnwindDest()) 3972 return; 3973 } 3974 3975 // Quick check whether the def has already been encountered in the same block. 3976 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 3977 // uses are defined to happen on the incoming edge, not at the instruction. 3978 // 3979 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3980 // wrapping an SSA value, assert that we've already encountered it. See 3981 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3982 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3983 return; 3984 3985 const Use &U = I.getOperandUse(i); 3986 Assert(DT.dominates(Op, U), 3987 "Instruction does not dominate all uses!", Op, &I); 3988 } 3989 3990 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3991 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3992 "apply only to pointer types", &I); 3993 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 3994 "dereferenceable, dereferenceable_or_null apply only to load" 3995 " and inttoptr instructions, use attributes for calls or invokes", &I); 3996 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3997 "take one operand!", &I); 3998 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3999 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4000 "dereferenceable_or_null metadata value must be an i64!", &I); 4001 } 4002 4003 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4004 Assert(MD->getNumOperands() >= 2, 4005 "!prof annotations should have no less than 2 operands", MD); 4006 4007 // Check first operand. 4008 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4009 Assert(isa<MDString>(MD->getOperand(0)), 4010 "expected string with name of the !prof annotation", MD); 4011 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4012 StringRef ProfName = MDS->getString(); 4013 4014 // Check consistency of !prof branch_weights metadata. 4015 if (ProfName.equals("branch_weights")) { 4016 unsigned ExpectedNumOperands = 0; 4017 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4018 ExpectedNumOperands = BI->getNumSuccessors(); 4019 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4020 ExpectedNumOperands = SI->getNumSuccessors(); 4021 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) 4022 ExpectedNumOperands = 1; 4023 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4024 ExpectedNumOperands = IBI->getNumDestinations(); 4025 else if (isa<SelectInst>(&I)) 4026 ExpectedNumOperands = 2; 4027 else 4028 CheckFailed("!prof branch_weights are not allowed for this instruction", 4029 MD); 4030 4031 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4032 "Wrong number of operands", MD); 4033 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4034 auto &MDO = MD->getOperand(i); 4035 Assert(MDO, "second operand should not be null", MD); 4036 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4037 "!prof brunch_weights operand is not a const int"); 4038 } 4039 } 4040 } 4041 4042 /// verifyInstruction - Verify that an instruction is well formed. 4043 /// 4044 void Verifier::visitInstruction(Instruction &I) { 4045 BasicBlock *BB = I.getParent(); 4046 Assert(BB, "Instruction not embedded in basic block!", &I); 4047 4048 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4049 for (User *U : I.users()) { 4050 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4051 "Only PHI nodes may reference their own value!", &I); 4052 } 4053 } 4054 4055 // Check that void typed values don't have names 4056 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4057 "Instruction has a name, but provides a void value!", &I); 4058 4059 // Check that the return value of the instruction is either void or a legal 4060 // value type. 4061 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4062 "Instruction returns a non-scalar type!", &I); 4063 4064 // Check that the instruction doesn't produce metadata. Calls are already 4065 // checked against the callee type. 4066 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4067 "Invalid use of metadata!", &I); 4068 4069 // Check that all uses of the instruction, if they are instructions 4070 // themselves, actually have parent basic blocks. If the use is not an 4071 // instruction, it is an error! 4072 for (Use &U : I.uses()) { 4073 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4074 Assert(Used->getParent() != nullptr, 4075 "Instruction referencing" 4076 " instruction not embedded in a basic block!", 4077 &I, Used); 4078 else { 4079 CheckFailed("Use of instruction is not an instruction!", U); 4080 return; 4081 } 4082 } 4083 4084 // Get a pointer to the call base of the instruction if it is some form of 4085 // call. 4086 const CallBase *CBI = dyn_cast<CallBase>(&I); 4087 4088 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4089 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4090 4091 // Check to make sure that only first-class-values are operands to 4092 // instructions. 4093 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4094 Assert(false, "Instruction operands must be first-class values!", &I); 4095 } 4096 4097 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4098 // Check to make sure that the "address of" an intrinsic function is never 4099 // taken. 4100 Assert(!F->isIntrinsic() || 4101 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4102 "Cannot take the address of an intrinsic!", &I); 4103 Assert( 4104 !F->isIntrinsic() || isa<CallInst>(I) || 4105 F->getIntrinsicID() == Intrinsic::donothing || 4106 F->getIntrinsicID() == Intrinsic::coro_resume || 4107 F->getIntrinsicID() == Intrinsic::coro_destroy || 4108 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4109 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4110 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4111 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4112 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4113 "statepoint, coro_resume or coro_destroy", 4114 &I); 4115 Assert(F->getParent() == &M, "Referencing function in another module!", 4116 &I, &M, F, F->getParent()); 4117 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4118 Assert(OpBB->getParent() == BB->getParent(), 4119 "Referring to a basic block in another function!", &I); 4120 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4121 Assert(OpArg->getParent() == BB->getParent(), 4122 "Referring to an argument in another function!", &I); 4123 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4124 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4125 &M, GV, GV->getParent()); 4126 } else if (isa<Instruction>(I.getOperand(i))) { 4127 verifyDominatesUse(I, i); 4128 } else if (isa<InlineAsm>(I.getOperand(i))) { 4129 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4130 "Cannot take the address of an inline asm!", &I); 4131 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4132 if (CE->getType()->isPtrOrPtrVectorTy() || 4133 !DL.getNonIntegralAddressSpaces().empty()) { 4134 // If we have a ConstantExpr pointer, we need to see if it came from an 4135 // illegal bitcast. If the datalayout string specifies non-integral 4136 // address spaces then we also need to check for illegal ptrtoint and 4137 // inttoptr expressions. 4138 visitConstantExprsRecursively(CE); 4139 } 4140 } 4141 } 4142 4143 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4144 Assert(I.getType()->isFPOrFPVectorTy(), 4145 "fpmath requires a floating point result!", &I); 4146 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4147 if (ConstantFP *CFP0 = 4148 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4149 const APFloat &Accuracy = CFP0->getValueAPF(); 4150 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4151 "fpmath accuracy must have float type", &I); 4152 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4153 "fpmath accuracy not a positive number!", &I); 4154 } else { 4155 Assert(false, "invalid fpmath accuracy!", &I); 4156 } 4157 } 4158 4159 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4160 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4161 "Ranges are only for loads, calls and invokes!", &I); 4162 visitRangeMetadata(I, Range, I.getType()); 4163 } 4164 4165 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4166 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4167 &I); 4168 Assert(isa<LoadInst>(I), 4169 "nonnull applies only to load instructions, use attributes" 4170 " for calls or invokes", 4171 &I); 4172 } 4173 4174 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4175 visitDereferenceableMetadata(I, MD); 4176 4177 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4178 visitDereferenceableMetadata(I, MD); 4179 4180 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4181 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4182 4183 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4184 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4185 &I); 4186 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4187 "use attributes for calls or invokes", &I); 4188 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4189 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4190 Assert(CI && CI->getType()->isIntegerTy(64), 4191 "align metadata value must be an i64!", &I); 4192 uint64_t Align = CI->getZExtValue(); 4193 Assert(isPowerOf2_64(Align), 4194 "align metadata value must be a power of 2!", &I); 4195 Assert(Align <= Value::MaximumAlignment, 4196 "alignment is larger that implementation defined limit", &I); 4197 } 4198 4199 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4200 visitProfMetadata(I, MD); 4201 4202 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4203 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4204 visitMDNode(*N); 4205 } 4206 4207 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 4208 verifyFragmentExpression(*DII); 4209 4210 InstsInThisBlock.insert(&I); 4211 } 4212 4213 /// Allow intrinsics to be verified in different ways. 4214 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4215 Function *IF = Call.getCalledFunction(); 4216 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4217 IF); 4218 4219 // Verify that the intrinsic prototype lines up with what the .td files 4220 // describe. 4221 FunctionType *IFTy = IF->getFunctionType(); 4222 bool IsVarArg = IFTy->isVarArg(); 4223 4224 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4225 getIntrinsicInfoTableEntries(ID, Table); 4226 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4227 4228 // Walk the descriptors to extract overloaded types. 4229 SmallVector<Type *, 4> ArgTys; 4230 Intrinsic::MatchIntrinsicTypesResult Res = 4231 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4232 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4233 "Intrinsic has incorrect return type!", IF); 4234 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4235 "Intrinsic has incorrect argument type!", IF); 4236 4237 // Verify if the intrinsic call matches the vararg property. 4238 if (IsVarArg) 4239 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4240 "Intrinsic was not defined with variable arguments!", IF); 4241 else 4242 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4243 "Callsite was not defined with variable arguments!", IF); 4244 4245 // All descriptors should be absorbed by now. 4246 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4247 4248 // Now that we have the intrinsic ID and the actual argument types (and we 4249 // know they are legal for the intrinsic!) get the intrinsic name through the 4250 // usual means. This allows us to verify the mangling of argument types into 4251 // the name. 4252 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4253 Assert(ExpectedName == IF->getName(), 4254 "Intrinsic name not mangled correctly for type arguments! " 4255 "Should be: " + 4256 ExpectedName, 4257 IF); 4258 4259 // If the intrinsic takes MDNode arguments, verify that they are either global 4260 // or are local to *this* function. 4261 for (Value *V : Call.args()) 4262 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4263 visitMetadataAsValue(*MD, Call.getCaller()); 4264 4265 switch (ID) { 4266 default: 4267 break; 4268 case Intrinsic::coro_id: { 4269 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4270 if (isa<ConstantPointerNull>(InfoArg)) 4271 break; 4272 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4273 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4274 "info argument of llvm.coro.begin must refer to an initialized " 4275 "constant"); 4276 Constant *Init = GV->getInitializer(); 4277 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4278 "info argument of llvm.coro.begin must refer to either a struct or " 4279 "an array"); 4280 break; 4281 } 4282 case Intrinsic::experimental_constrained_fadd: 4283 case Intrinsic::experimental_constrained_fsub: 4284 case Intrinsic::experimental_constrained_fmul: 4285 case Intrinsic::experimental_constrained_fdiv: 4286 case Intrinsic::experimental_constrained_frem: 4287 case Intrinsic::experimental_constrained_fma: 4288 case Intrinsic::experimental_constrained_fptosi: 4289 case Intrinsic::experimental_constrained_fptoui: 4290 case Intrinsic::experimental_constrained_fptrunc: 4291 case Intrinsic::experimental_constrained_fpext: 4292 case Intrinsic::experimental_constrained_sqrt: 4293 case Intrinsic::experimental_constrained_pow: 4294 case Intrinsic::experimental_constrained_powi: 4295 case Intrinsic::experimental_constrained_sin: 4296 case Intrinsic::experimental_constrained_cos: 4297 case Intrinsic::experimental_constrained_exp: 4298 case Intrinsic::experimental_constrained_exp2: 4299 case Intrinsic::experimental_constrained_log: 4300 case Intrinsic::experimental_constrained_log10: 4301 case Intrinsic::experimental_constrained_log2: 4302 case Intrinsic::experimental_constrained_rint: 4303 case Intrinsic::experimental_constrained_nearbyint: 4304 case Intrinsic::experimental_constrained_maxnum: 4305 case Intrinsic::experimental_constrained_minnum: 4306 case Intrinsic::experimental_constrained_ceil: 4307 case Intrinsic::experimental_constrained_floor: 4308 case Intrinsic::experimental_constrained_round: 4309 case Intrinsic::experimental_constrained_trunc: 4310 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4311 break; 4312 case Intrinsic::dbg_declare: // llvm.dbg.declare 4313 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4314 "invalid llvm.dbg.declare intrinsic call 1", Call); 4315 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4316 break; 4317 case Intrinsic::dbg_addr: // llvm.dbg.addr 4318 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4319 break; 4320 case Intrinsic::dbg_value: // llvm.dbg.value 4321 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4322 break; 4323 case Intrinsic::dbg_label: // llvm.dbg.label 4324 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4325 break; 4326 case Intrinsic::memcpy: 4327 case Intrinsic::memmove: 4328 case Intrinsic::memset: { 4329 const auto *MI = cast<MemIntrinsic>(&Call); 4330 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4331 return Alignment == 0 || isPowerOf2_32(Alignment); 4332 }; 4333 Assert(IsValidAlignment(MI->getDestAlignment()), 4334 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4335 Call); 4336 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4337 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4338 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4339 Call); 4340 } 4341 4342 break; 4343 } 4344 case Intrinsic::memcpy_element_unordered_atomic: 4345 case Intrinsic::memmove_element_unordered_atomic: 4346 case Intrinsic::memset_element_unordered_atomic: { 4347 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4348 4349 ConstantInt *ElementSizeCI = 4350 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4351 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4352 Assert(ElementSizeVal.isPowerOf2(), 4353 "element size of the element-wise atomic memory intrinsic " 4354 "must be a power of 2", 4355 Call); 4356 4357 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4358 uint64_t Length = LengthCI->getZExtValue(); 4359 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4360 Assert((Length % ElementSize) == 0, 4361 "constant length must be a multiple of the element size in the " 4362 "element-wise atomic memory intrinsic", 4363 Call); 4364 } 4365 4366 auto IsValidAlignment = [&](uint64_t Alignment) { 4367 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4368 }; 4369 uint64_t DstAlignment = AMI->getDestAlignment(); 4370 Assert(IsValidAlignment(DstAlignment), 4371 "incorrect alignment of the destination argument", Call); 4372 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4373 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4374 Assert(IsValidAlignment(SrcAlignment), 4375 "incorrect alignment of the source argument", Call); 4376 } 4377 break; 4378 } 4379 case Intrinsic::gcroot: 4380 case Intrinsic::gcwrite: 4381 case Intrinsic::gcread: 4382 if (ID == Intrinsic::gcroot) { 4383 AllocaInst *AI = 4384 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4385 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4386 Assert(isa<Constant>(Call.getArgOperand(1)), 4387 "llvm.gcroot parameter #2 must be a constant.", Call); 4388 if (!AI->getAllocatedType()->isPointerTy()) { 4389 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4390 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4391 "or argument #2 must be a non-null constant.", 4392 Call); 4393 } 4394 } 4395 4396 Assert(Call.getParent()->getParent()->hasGC(), 4397 "Enclosing function does not use GC.", Call); 4398 break; 4399 case Intrinsic::init_trampoline: 4400 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4401 "llvm.init_trampoline parameter #2 must resolve to a function.", 4402 Call); 4403 break; 4404 case Intrinsic::prefetch: 4405 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4406 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4407 "invalid arguments to llvm.prefetch", Call); 4408 break; 4409 case Intrinsic::stackprotector: 4410 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4411 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4412 break; 4413 case Intrinsic::localescape: { 4414 BasicBlock *BB = Call.getParent(); 4415 Assert(BB == &BB->getParent()->front(), 4416 "llvm.localescape used outside of entry block", Call); 4417 Assert(!SawFrameEscape, 4418 "multiple calls to llvm.localescape in one function", Call); 4419 for (Value *Arg : Call.args()) { 4420 if (isa<ConstantPointerNull>(Arg)) 4421 continue; // Null values are allowed as placeholders. 4422 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4423 Assert(AI && AI->isStaticAlloca(), 4424 "llvm.localescape only accepts static allocas", Call); 4425 } 4426 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4427 SawFrameEscape = true; 4428 break; 4429 } 4430 case Intrinsic::localrecover: { 4431 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4432 Function *Fn = dyn_cast<Function>(FnArg); 4433 Assert(Fn && !Fn->isDeclaration(), 4434 "llvm.localrecover first " 4435 "argument must be function defined in this module", 4436 Call); 4437 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4438 auto &Entry = FrameEscapeInfo[Fn]; 4439 Entry.second = unsigned( 4440 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4441 break; 4442 } 4443 4444 case Intrinsic::experimental_gc_statepoint: 4445 if (auto *CI = dyn_cast<CallInst>(&Call)) 4446 Assert(!CI->isInlineAsm(), 4447 "gc.statepoint support for inline assembly unimplemented", CI); 4448 Assert(Call.getParent()->getParent()->hasGC(), 4449 "Enclosing function does not use GC.", Call); 4450 4451 verifyStatepoint(Call); 4452 break; 4453 case Intrinsic::experimental_gc_result: { 4454 Assert(Call.getParent()->getParent()->hasGC(), 4455 "Enclosing function does not use GC.", Call); 4456 // Are we tied to a statepoint properly? 4457 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4458 const Function *StatepointFn = 4459 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4460 Assert(StatepointFn && StatepointFn->isDeclaration() && 4461 StatepointFn->getIntrinsicID() == 4462 Intrinsic::experimental_gc_statepoint, 4463 "gc.result operand #1 must be from a statepoint", Call, 4464 Call.getArgOperand(0)); 4465 4466 // Assert that result type matches wrapped callee. 4467 const Value *Target = StatepointCall->getArgOperand(2); 4468 auto *PT = cast<PointerType>(Target->getType()); 4469 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4470 Assert(Call.getType() == TargetFuncType->getReturnType(), 4471 "gc.result result type does not match wrapped callee", Call); 4472 break; 4473 } 4474 case Intrinsic::experimental_gc_relocate: { 4475 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4476 4477 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4478 "gc.relocate must return a pointer or a vector of pointers", Call); 4479 4480 // Check that this relocate is correctly tied to the statepoint 4481 4482 // This is case for relocate on the unwinding path of an invoke statepoint 4483 if (LandingPadInst *LandingPad = 4484 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4485 4486 const BasicBlock *InvokeBB = 4487 LandingPad->getParent()->getUniquePredecessor(); 4488 4489 // Landingpad relocates should have only one predecessor with invoke 4490 // statepoint terminator 4491 Assert(InvokeBB, "safepoints should have unique landingpads", 4492 LandingPad->getParent()); 4493 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4494 InvokeBB); 4495 Assert(isStatepoint(InvokeBB->getTerminator()), 4496 "gc relocate should be linked to a statepoint", InvokeBB); 4497 } else { 4498 // In all other cases relocate should be tied to the statepoint directly. 4499 // This covers relocates on a normal return path of invoke statepoint and 4500 // relocates of a call statepoint. 4501 auto Token = Call.getArgOperand(0); 4502 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4503 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4504 } 4505 4506 // Verify rest of the relocate arguments. 4507 const CallBase &StatepointCall = 4508 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4509 4510 // Both the base and derived must be piped through the safepoint. 4511 Value *Base = Call.getArgOperand(1); 4512 Assert(isa<ConstantInt>(Base), 4513 "gc.relocate operand #2 must be integer offset", Call); 4514 4515 Value *Derived = Call.getArgOperand(2); 4516 Assert(isa<ConstantInt>(Derived), 4517 "gc.relocate operand #3 must be integer offset", Call); 4518 4519 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4520 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4521 // Check the bounds 4522 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4523 "gc.relocate: statepoint base index out of bounds", Call); 4524 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4525 "gc.relocate: statepoint derived index out of bounds", Call); 4526 4527 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4528 // section of the statepoint's argument. 4529 Assert(StatepointCall.arg_size() > 0, 4530 "gc.statepoint: insufficient arguments"); 4531 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4532 "gc.statement: number of call arguments must be constant integer"); 4533 const unsigned NumCallArgs = 4534 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4535 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4536 "gc.statepoint: mismatch in number of call arguments"); 4537 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4538 "gc.statepoint: number of transition arguments must be " 4539 "a constant integer"); 4540 const int NumTransitionArgs = 4541 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4542 ->getZExtValue(); 4543 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4544 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4545 "gc.statepoint: number of deoptimization arguments must be " 4546 "a constant integer"); 4547 const int NumDeoptArgs = 4548 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4549 ->getZExtValue(); 4550 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4551 const int GCParamArgsEnd = StatepointCall.arg_size(); 4552 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4553 "gc.relocate: statepoint base index doesn't fall within the " 4554 "'gc parameters' section of the statepoint call", 4555 Call); 4556 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4557 "gc.relocate: statepoint derived index doesn't fall within the " 4558 "'gc parameters' section of the statepoint call", 4559 Call); 4560 4561 // Relocated value must be either a pointer type or vector-of-pointer type, 4562 // but gc_relocate does not need to return the same pointer type as the 4563 // relocated pointer. It can be casted to the correct type later if it's 4564 // desired. However, they must have the same address space and 'vectorness' 4565 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4566 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4567 "gc.relocate: relocated value must be a gc pointer", Call); 4568 4569 auto ResultType = Call.getType(); 4570 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4571 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4572 "gc.relocate: vector relocates to vector and pointer to pointer", 4573 Call); 4574 Assert( 4575 ResultType->getPointerAddressSpace() == 4576 DerivedType->getPointerAddressSpace(), 4577 "gc.relocate: relocating a pointer shouldn't change its address space", 4578 Call); 4579 break; 4580 } 4581 case Intrinsic::eh_exceptioncode: 4582 case Intrinsic::eh_exceptionpointer: { 4583 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4584 "eh.exceptionpointer argument must be a catchpad", Call); 4585 break; 4586 } 4587 case Intrinsic::masked_load: { 4588 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4589 Call); 4590 4591 Value *Ptr = Call.getArgOperand(0); 4592 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4593 Value *Mask = Call.getArgOperand(2); 4594 Value *PassThru = Call.getArgOperand(3); 4595 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4596 Call); 4597 Assert(Alignment->getValue().isPowerOf2(), 4598 "masked_load: alignment must be a power of 2", Call); 4599 4600 // DataTy is the overloaded type 4601 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4602 Assert(DataTy == Call.getType(), 4603 "masked_load: return must match pointer type", Call); 4604 Assert(PassThru->getType() == DataTy, 4605 "masked_load: pass through and data type must match", Call); 4606 Assert(Mask->getType()->getVectorNumElements() == 4607 DataTy->getVectorNumElements(), 4608 "masked_load: vector mask must be same length as data", Call); 4609 break; 4610 } 4611 case Intrinsic::masked_store: { 4612 Value *Val = Call.getArgOperand(0); 4613 Value *Ptr = Call.getArgOperand(1); 4614 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4615 Value *Mask = Call.getArgOperand(3); 4616 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4617 Call); 4618 Assert(Alignment->getValue().isPowerOf2(), 4619 "masked_store: alignment must be a power of 2", Call); 4620 4621 // DataTy is the overloaded type 4622 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4623 Assert(DataTy == Val->getType(), 4624 "masked_store: storee must match pointer type", Call); 4625 Assert(Mask->getType()->getVectorNumElements() == 4626 DataTy->getVectorNumElements(), 4627 "masked_store: vector mask must be same length as data", Call); 4628 break; 4629 } 4630 4631 case Intrinsic::experimental_guard: { 4632 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4633 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4634 "experimental_guard must have exactly one " 4635 "\"deopt\" operand bundle"); 4636 break; 4637 } 4638 4639 case Intrinsic::experimental_deoptimize: { 4640 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4641 Call); 4642 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4643 "experimental_deoptimize must have exactly one " 4644 "\"deopt\" operand bundle"); 4645 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4646 "experimental_deoptimize return type must match caller return type"); 4647 4648 if (isa<CallInst>(Call)) { 4649 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4650 Assert(RI, 4651 "calls to experimental_deoptimize must be followed by a return"); 4652 4653 if (!Call.getType()->isVoidTy() && RI) 4654 Assert(RI->getReturnValue() == &Call, 4655 "calls to experimental_deoptimize must be followed by a return " 4656 "of the value computed by experimental_deoptimize"); 4657 } 4658 4659 break; 4660 } 4661 case Intrinsic::sadd_sat: 4662 case Intrinsic::uadd_sat: 4663 case Intrinsic::ssub_sat: 4664 case Intrinsic::usub_sat: { 4665 Value *Op1 = Call.getArgOperand(0); 4666 Value *Op2 = Call.getArgOperand(1); 4667 Assert(Op1->getType()->isIntOrIntVectorTy(), 4668 "first operand of [us][add|sub]_sat must be an int type or vector " 4669 "of ints"); 4670 Assert(Op2->getType()->isIntOrIntVectorTy(), 4671 "second operand of [us][add|sub]_sat must be an int type or vector " 4672 "of ints"); 4673 break; 4674 } 4675 case Intrinsic::smul_fix: 4676 case Intrinsic::smul_fix_sat: 4677 case Intrinsic::umul_fix: 4678 case Intrinsic::umul_fix_sat: { 4679 Value *Op1 = Call.getArgOperand(0); 4680 Value *Op2 = Call.getArgOperand(1); 4681 Assert(Op1->getType()->isIntOrIntVectorTy(), 4682 "first operand of [us]mul_fix[_sat] must be an int type or vector " 4683 "of ints"); 4684 Assert(Op2->getType()->isIntOrIntVectorTy(), 4685 "second operand of [us]mul_fix_[sat] must be an int type or vector " 4686 "of ints"); 4687 4688 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4689 Assert(Op3->getType()->getBitWidth() <= 32, 4690 "third argument of [us]mul_fix[_sat] must fit within 32 bits"); 4691 4692 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { 4693 Assert( 4694 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4695 "the scale of smul_fix[_sat] must be less than the width of the operands"); 4696 } else { 4697 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4698 "the scale of umul_fix[_sat] must be less than or equal to the width of " 4699 "the operands"); 4700 } 4701 break; 4702 } 4703 case Intrinsic::lround: 4704 case Intrinsic::llround: 4705 case Intrinsic::lrint: 4706 case Intrinsic::llrint: { 4707 Type *ValTy = Call.getArgOperand(0)->getType(); 4708 Type *ResultTy = Call.getType(); 4709 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4710 "Intrinsic does not support vectors", &Call); 4711 break; 4712 } 4713 }; 4714 } 4715 4716 /// Carefully grab the subprogram from a local scope. 4717 /// 4718 /// This carefully grabs the subprogram from a local scope, avoiding the 4719 /// built-in assertions that would typically fire. 4720 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4721 if (!LocalScope) 4722 return nullptr; 4723 4724 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4725 return SP; 4726 4727 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4728 return getSubprogram(LB->getRawScope()); 4729 4730 // Just return null; broken scope chains are checked elsewhere. 4731 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4732 return nullptr; 4733 } 4734 4735 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4736 unsigned NumOperands = FPI.getNumArgOperands(); 4737 bool HasExceptionMD = false; 4738 bool HasRoundingMD = false; 4739 switch (FPI.getIntrinsicID()) { 4740 case Intrinsic::experimental_constrained_sqrt: 4741 case Intrinsic::experimental_constrained_sin: 4742 case Intrinsic::experimental_constrained_cos: 4743 case Intrinsic::experimental_constrained_exp: 4744 case Intrinsic::experimental_constrained_exp2: 4745 case Intrinsic::experimental_constrained_log: 4746 case Intrinsic::experimental_constrained_log10: 4747 case Intrinsic::experimental_constrained_log2: 4748 case Intrinsic::experimental_constrained_rint: 4749 case Intrinsic::experimental_constrained_nearbyint: 4750 case Intrinsic::experimental_constrained_ceil: 4751 case Intrinsic::experimental_constrained_floor: 4752 case Intrinsic::experimental_constrained_round: 4753 case Intrinsic::experimental_constrained_trunc: 4754 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", 4755 &FPI); 4756 HasExceptionMD = true; 4757 HasRoundingMD = true; 4758 break; 4759 4760 case Intrinsic::experimental_constrained_fma: 4761 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", 4762 &FPI); 4763 HasExceptionMD = true; 4764 HasRoundingMD = true; 4765 break; 4766 4767 case Intrinsic::experimental_constrained_fadd: 4768 case Intrinsic::experimental_constrained_fsub: 4769 case Intrinsic::experimental_constrained_fmul: 4770 case Intrinsic::experimental_constrained_fdiv: 4771 case Intrinsic::experimental_constrained_frem: 4772 case Intrinsic::experimental_constrained_pow: 4773 case Intrinsic::experimental_constrained_powi: 4774 case Intrinsic::experimental_constrained_maxnum: 4775 case Intrinsic::experimental_constrained_minnum: 4776 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", 4777 &FPI); 4778 HasExceptionMD = true; 4779 HasRoundingMD = true; 4780 break; 4781 4782 case Intrinsic::experimental_constrained_fptosi: 4783 case Intrinsic::experimental_constrained_fptoui: { 4784 Assert((NumOperands == 2), 4785 "invalid arguments for constrained FP intrinsic", &FPI); 4786 HasExceptionMD = true; 4787 4788 Value *Operand = FPI.getArgOperand(0); 4789 uint64_t NumSrcElem = 0; 4790 Assert(Operand->getType()->isFPOrFPVectorTy(), 4791 "Intrinsic first argument must be floating point", &FPI); 4792 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4793 NumSrcElem = OperandT->getNumElements(); 4794 } 4795 4796 Operand = &FPI; 4797 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4798 "Intrinsic first argument and result disagree on vector use", &FPI); 4799 Assert(Operand->getType()->isIntOrIntVectorTy(), 4800 "Intrinsic result must be an integer", &FPI); 4801 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4802 Assert(NumSrcElem == OperandT->getNumElements(), 4803 "Intrinsic first argument and result vector lengths must be equal", 4804 &FPI); 4805 } 4806 } 4807 break; 4808 4809 case Intrinsic::experimental_constrained_fptrunc: 4810 case Intrinsic::experimental_constrained_fpext: { 4811 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4812 Assert((NumOperands == 3), 4813 "invalid arguments for constrained FP intrinsic", &FPI); 4814 HasRoundingMD = true; 4815 } else { 4816 Assert((NumOperands == 2), 4817 "invalid arguments for constrained FP intrinsic", &FPI); 4818 } 4819 HasExceptionMD = true; 4820 4821 Value *Operand = FPI.getArgOperand(0); 4822 Type *OperandTy = Operand->getType(); 4823 Value *Result = &FPI; 4824 Type *ResultTy = Result->getType(); 4825 Assert(OperandTy->isFPOrFPVectorTy(), 4826 "Intrinsic first argument must be FP or FP vector", &FPI); 4827 Assert(ResultTy->isFPOrFPVectorTy(), 4828 "Intrinsic result must be FP or FP vector", &FPI); 4829 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4830 "Intrinsic first argument and result disagree on vector use", &FPI); 4831 if (OperandTy->isVectorTy()) { 4832 auto *OperandVecTy = cast<VectorType>(OperandTy); 4833 auto *ResultVecTy = cast<VectorType>(ResultTy); 4834 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4835 "Intrinsic first argument and result vector lengths must be equal", 4836 &FPI); 4837 } 4838 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4839 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4840 "Intrinsic first argument's type must be larger than result type", 4841 &FPI); 4842 } else { 4843 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4844 "Intrinsic first argument's type must be smaller than result type", 4845 &FPI); 4846 } 4847 } 4848 break; 4849 4850 default: 4851 llvm_unreachable("Invalid constrained FP intrinsic!"); 4852 } 4853 4854 // If a non-metadata argument is passed in a metadata slot then the 4855 // error will be caught earlier when the incorrect argument doesn't 4856 // match the specification in the intrinsic call table. Thus, no 4857 // argument type check is needed here. 4858 4859 if (HasExceptionMD) { 4860 Assert(FPI.getExceptionBehavior().hasValue(), 4861 "invalid exception behavior argument", &FPI); 4862 } 4863 if (HasRoundingMD) { 4864 Assert(FPI.getRoundingMode().hasValue(), 4865 "invalid rounding mode argument", &FPI); 4866 } 4867 } 4868 4869 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4870 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4871 AssertDI(isa<ValueAsMetadata>(MD) || 4872 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4873 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4874 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4875 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4876 DII.getRawVariable()); 4877 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4878 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4879 DII.getRawExpression()); 4880 4881 // Ignore broken !dbg attachments; they're checked elsewhere. 4882 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4883 if (!isa<DILocation>(N)) 4884 return; 4885 4886 BasicBlock *BB = DII.getParent(); 4887 Function *F = BB ? BB->getParent() : nullptr; 4888 4889 // The scopes for variables and !dbg attachments must agree. 4890 DILocalVariable *Var = DII.getVariable(); 4891 DILocation *Loc = DII.getDebugLoc(); 4892 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4893 &DII, BB, F); 4894 4895 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4896 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4897 if (!VarSP || !LocSP) 4898 return; // Broken scope chains are checked elsewhere. 4899 4900 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4901 " variable and !dbg attachment", 4902 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4903 Loc->getScope()->getSubprogram()); 4904 4905 // This check is redundant with one in visitLocalVariable(). 4906 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4907 Var->getRawType()); 4908 verifyFnArgs(DII); 4909 } 4910 4911 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4912 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4913 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4914 DLI.getRawLabel()); 4915 4916 // Ignore broken !dbg attachments; they're checked elsewhere. 4917 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4918 if (!isa<DILocation>(N)) 4919 return; 4920 4921 BasicBlock *BB = DLI.getParent(); 4922 Function *F = BB ? BB->getParent() : nullptr; 4923 4924 // The scopes for variables and !dbg attachments must agree. 4925 DILabel *Label = DLI.getLabel(); 4926 DILocation *Loc = DLI.getDebugLoc(); 4927 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4928 &DLI, BB, F); 4929 4930 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4931 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4932 if (!LabelSP || !LocSP) 4933 return; 4934 4935 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4936 " label and !dbg attachment", 4937 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4938 Loc->getScope()->getSubprogram()); 4939 } 4940 4941 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4942 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4943 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4944 4945 // We don't know whether this intrinsic verified correctly. 4946 if (!V || !E || !E->isValid()) 4947 return; 4948 4949 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4950 auto Fragment = E->getFragmentInfo(); 4951 if (!Fragment) 4952 return; 4953 4954 // The frontend helps out GDB by emitting the members of local anonymous 4955 // unions as artificial local variables with shared storage. When SROA splits 4956 // the storage for artificial local variables that are smaller than the entire 4957 // union, the overhang piece will be outside of the allotted space for the 4958 // variable and this check fails. 4959 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4960 if (V->isArtificial()) 4961 return; 4962 4963 verifyFragmentExpression(*V, *Fragment, &I); 4964 } 4965 4966 template <typename ValueOrMetadata> 4967 void Verifier::verifyFragmentExpression(const DIVariable &V, 4968 DIExpression::FragmentInfo Fragment, 4969 ValueOrMetadata *Desc) { 4970 // If there's no size, the type is broken, but that should be checked 4971 // elsewhere. 4972 auto VarSize = V.getSizeInBits(); 4973 if (!VarSize) 4974 return; 4975 4976 unsigned FragSize = Fragment.SizeInBits; 4977 unsigned FragOffset = Fragment.OffsetInBits; 4978 AssertDI(FragSize + FragOffset <= *VarSize, 4979 "fragment is larger than or outside of variable", Desc, &V); 4980 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4981 } 4982 4983 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 4984 // This function does not take the scope of noninlined function arguments into 4985 // account. Don't run it if current function is nodebug, because it may 4986 // contain inlined debug intrinsics. 4987 if (!HasDebugInfo) 4988 return; 4989 4990 // For performance reasons only check non-inlined ones. 4991 if (I.getDebugLoc()->getInlinedAt()) 4992 return; 4993 4994 DILocalVariable *Var = I.getVariable(); 4995 AssertDI(Var, "dbg intrinsic without variable"); 4996 4997 unsigned ArgNo = Var->getArg(); 4998 if (!ArgNo) 4999 return; 5000 5001 // Verify there are no duplicate function argument debug info entries. 5002 // These will cause hard-to-debug assertions in the DWARF backend. 5003 if (DebugFnArgs.size() < ArgNo) 5004 DebugFnArgs.resize(ArgNo, nullptr); 5005 5006 auto *Prev = DebugFnArgs[ArgNo - 1]; 5007 DebugFnArgs[ArgNo - 1] = Var; 5008 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5009 Prev, Var); 5010 } 5011 5012 void Verifier::verifyCompileUnits() { 5013 // When more than one Module is imported into the same context, such as during 5014 // an LTO build before linking the modules, ODR type uniquing may cause types 5015 // to point to a different CU. This check does not make sense in this case. 5016 if (M.getContext().isODRUniquingDebugTypes()) 5017 return; 5018 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5019 SmallPtrSet<const Metadata *, 2> Listed; 5020 if (CUs) 5021 Listed.insert(CUs->op_begin(), CUs->op_end()); 5022 for (auto *CU : CUVisited) 5023 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5024 CUVisited.clear(); 5025 } 5026 5027 void Verifier::verifyDeoptimizeCallingConvs() { 5028 if (DeoptimizeDeclarations.empty()) 5029 return; 5030 5031 const Function *First = DeoptimizeDeclarations[0]; 5032 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5033 Assert(First->getCallingConv() == F->getCallingConv(), 5034 "All llvm.experimental.deoptimize declarations must have the same " 5035 "calling convention", 5036 First, F); 5037 } 5038 } 5039 5040 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5041 bool HasSource = F.getSource().hasValue(); 5042 if (!HasSourceDebugInfo.count(&U)) 5043 HasSourceDebugInfo[&U] = HasSource; 5044 AssertDI(HasSource == HasSourceDebugInfo[&U], 5045 "inconsistent use of embedded source"); 5046 } 5047 5048 //===----------------------------------------------------------------------===// 5049 // Implement the public interfaces to this file... 5050 //===----------------------------------------------------------------------===// 5051 5052 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5053 Function &F = const_cast<Function &>(f); 5054 5055 // Don't use a raw_null_ostream. Printing IR is expensive. 5056 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5057 5058 // Note that this function's return value is inverted from what you would 5059 // expect of a function called "verify". 5060 return !V.verify(F); 5061 } 5062 5063 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5064 bool *BrokenDebugInfo) { 5065 // Don't use a raw_null_ostream. Printing IR is expensive. 5066 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5067 5068 bool Broken = false; 5069 for (const Function &F : M) 5070 Broken |= !V.verify(F); 5071 5072 Broken |= !V.verify(); 5073 if (BrokenDebugInfo) 5074 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5075 // Note that this function's return value is inverted from what you would 5076 // expect of a function called "verify". 5077 return Broken; 5078 } 5079 5080 namespace { 5081 5082 struct VerifierLegacyPass : public FunctionPass { 5083 static char ID; 5084 5085 std::unique_ptr<Verifier> V; 5086 bool FatalErrors = true; 5087 5088 VerifierLegacyPass() : FunctionPass(ID) { 5089 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5090 } 5091 explicit VerifierLegacyPass(bool FatalErrors) 5092 : FunctionPass(ID), 5093 FatalErrors(FatalErrors) { 5094 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5095 } 5096 5097 bool doInitialization(Module &M) override { 5098 V = std::make_unique<Verifier>( 5099 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5100 return false; 5101 } 5102 5103 bool runOnFunction(Function &F) override { 5104 if (!V->verify(F) && FatalErrors) { 5105 errs() << "in function " << F.getName() << '\n'; 5106 report_fatal_error("Broken function found, compilation aborted!"); 5107 } 5108 return false; 5109 } 5110 5111 bool doFinalization(Module &M) override { 5112 bool HasErrors = false; 5113 for (Function &F : M) 5114 if (F.isDeclaration()) 5115 HasErrors |= !V->verify(F); 5116 5117 HasErrors |= !V->verify(); 5118 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5119 report_fatal_error("Broken module found, compilation aborted!"); 5120 return false; 5121 } 5122 5123 void getAnalysisUsage(AnalysisUsage &AU) const override { 5124 AU.setPreservesAll(); 5125 } 5126 }; 5127 5128 } // end anonymous namespace 5129 5130 /// Helper to issue failure from the TBAA verification 5131 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5132 if (Diagnostic) 5133 return Diagnostic->CheckFailed(Args...); 5134 } 5135 5136 #define AssertTBAA(C, ...) \ 5137 do { \ 5138 if (!(C)) { \ 5139 CheckFailed(__VA_ARGS__); \ 5140 return false; \ 5141 } \ 5142 } while (false) 5143 5144 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5145 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5146 /// struct-type node describing an aggregate data structure (like a struct). 5147 TBAAVerifier::TBAABaseNodeSummary 5148 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5149 bool IsNewFormat) { 5150 if (BaseNode->getNumOperands() < 2) { 5151 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5152 return {true, ~0u}; 5153 } 5154 5155 auto Itr = TBAABaseNodes.find(BaseNode); 5156 if (Itr != TBAABaseNodes.end()) 5157 return Itr->second; 5158 5159 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5160 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5161 (void)InsertResult; 5162 assert(InsertResult.second && "We just checked!"); 5163 return Result; 5164 } 5165 5166 TBAAVerifier::TBAABaseNodeSummary 5167 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5168 bool IsNewFormat) { 5169 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5170 5171 if (BaseNode->getNumOperands() == 2) { 5172 // Scalar nodes can only be accessed at offset 0. 5173 return isValidScalarTBAANode(BaseNode) 5174 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5175 : InvalidNode; 5176 } 5177 5178 if (IsNewFormat) { 5179 if (BaseNode->getNumOperands() % 3 != 0) { 5180 CheckFailed("Access tag nodes must have the number of operands that is a " 5181 "multiple of 3!", BaseNode); 5182 return InvalidNode; 5183 } 5184 } else { 5185 if (BaseNode->getNumOperands() % 2 != 1) { 5186 CheckFailed("Struct tag nodes must have an odd number of operands!", 5187 BaseNode); 5188 return InvalidNode; 5189 } 5190 } 5191 5192 // Check the type size field. 5193 if (IsNewFormat) { 5194 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5195 BaseNode->getOperand(1)); 5196 if (!TypeSizeNode) { 5197 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5198 return InvalidNode; 5199 } 5200 } 5201 5202 // Check the type name field. In the new format it can be anything. 5203 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5204 CheckFailed("Struct tag nodes have a string as their first operand", 5205 BaseNode); 5206 return InvalidNode; 5207 } 5208 5209 bool Failed = false; 5210 5211 Optional<APInt> PrevOffset; 5212 unsigned BitWidth = ~0u; 5213 5214 // We've already checked that BaseNode is not a degenerate root node with one 5215 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5216 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5217 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5218 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5219 Idx += NumOpsPerField) { 5220 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5221 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5222 if (!isa<MDNode>(FieldTy)) { 5223 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5224 Failed = true; 5225 continue; 5226 } 5227 5228 auto *OffsetEntryCI = 5229 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5230 if (!OffsetEntryCI) { 5231 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5232 Failed = true; 5233 continue; 5234 } 5235 5236 if (BitWidth == ~0u) 5237 BitWidth = OffsetEntryCI->getBitWidth(); 5238 5239 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5240 CheckFailed( 5241 "Bitwidth between the offsets and struct type entries must match", &I, 5242 BaseNode); 5243 Failed = true; 5244 continue; 5245 } 5246 5247 // NB! As far as I can tell, we generate a non-strictly increasing offset 5248 // sequence only from structs that have zero size bit fields. When 5249 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5250 // pick the field lexically the latest in struct type metadata node. This 5251 // mirrors the actual behavior of the alias analysis implementation. 5252 bool IsAscending = 5253 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5254 5255 if (!IsAscending) { 5256 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5257 Failed = true; 5258 } 5259 5260 PrevOffset = OffsetEntryCI->getValue(); 5261 5262 if (IsNewFormat) { 5263 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5264 BaseNode->getOperand(Idx + 2)); 5265 if (!MemberSizeNode) { 5266 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5267 Failed = true; 5268 continue; 5269 } 5270 } 5271 } 5272 5273 return Failed ? InvalidNode 5274 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5275 } 5276 5277 static bool IsRootTBAANode(const MDNode *MD) { 5278 return MD->getNumOperands() < 2; 5279 } 5280 5281 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5282 SmallPtrSetImpl<const MDNode *> &Visited) { 5283 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5284 return false; 5285 5286 if (!isa<MDString>(MD->getOperand(0))) 5287 return false; 5288 5289 if (MD->getNumOperands() == 3) { 5290 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5291 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5292 return false; 5293 } 5294 5295 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5296 return Parent && Visited.insert(Parent).second && 5297 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5298 } 5299 5300 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5301 auto ResultIt = TBAAScalarNodes.find(MD); 5302 if (ResultIt != TBAAScalarNodes.end()) 5303 return ResultIt->second; 5304 5305 SmallPtrSet<const MDNode *, 4> Visited; 5306 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5307 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5308 (void)InsertResult; 5309 assert(InsertResult.second && "Just checked!"); 5310 5311 return Result; 5312 } 5313 5314 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5315 /// Offset in place to be the offset within the field node returned. 5316 /// 5317 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5318 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5319 const MDNode *BaseNode, 5320 APInt &Offset, 5321 bool IsNewFormat) { 5322 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5323 5324 // Scalar nodes have only one possible "field" -- their parent in the access 5325 // hierarchy. Offset must be zero at this point, but our caller is supposed 5326 // to Assert that. 5327 if (BaseNode->getNumOperands() == 2) 5328 return cast<MDNode>(BaseNode->getOperand(1)); 5329 5330 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5331 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5332 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5333 Idx += NumOpsPerField) { 5334 auto *OffsetEntryCI = 5335 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5336 if (OffsetEntryCI->getValue().ugt(Offset)) { 5337 if (Idx == FirstFieldOpNo) { 5338 CheckFailed("Could not find TBAA parent in struct type node", &I, 5339 BaseNode, &Offset); 5340 return nullptr; 5341 } 5342 5343 unsigned PrevIdx = Idx - NumOpsPerField; 5344 auto *PrevOffsetEntryCI = 5345 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5346 Offset -= PrevOffsetEntryCI->getValue(); 5347 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5348 } 5349 } 5350 5351 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5352 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5353 BaseNode->getOperand(LastIdx + 1)); 5354 Offset -= LastOffsetEntryCI->getValue(); 5355 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5356 } 5357 5358 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5359 if (!Type || Type->getNumOperands() < 3) 5360 return false; 5361 5362 // In the new format type nodes shall have a reference to the parent type as 5363 // its first operand. 5364 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5365 if (!Parent) 5366 return false; 5367 5368 return true; 5369 } 5370 5371 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5372 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5373 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5374 isa<AtomicCmpXchgInst>(I), 5375 "This instruction shall not have a TBAA access tag!", &I); 5376 5377 bool IsStructPathTBAA = 5378 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5379 5380 AssertTBAA( 5381 IsStructPathTBAA, 5382 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5383 5384 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5385 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5386 5387 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5388 5389 if (IsNewFormat) { 5390 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5391 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5392 } else { 5393 AssertTBAA(MD->getNumOperands() < 5, 5394 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5395 } 5396 5397 // Check the access size field. 5398 if (IsNewFormat) { 5399 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5400 MD->getOperand(3)); 5401 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5402 } 5403 5404 // Check the immutability flag. 5405 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5406 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5407 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5408 MD->getOperand(ImmutabilityFlagOpNo)); 5409 AssertTBAA(IsImmutableCI, 5410 "Immutability tag on struct tag metadata must be a constant", 5411 &I, MD); 5412 AssertTBAA( 5413 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5414 "Immutability part of the struct tag metadata must be either 0 or 1", 5415 &I, MD); 5416 } 5417 5418 AssertTBAA(BaseNode && AccessType, 5419 "Malformed struct tag metadata: base and access-type " 5420 "should be non-null and point to Metadata nodes", 5421 &I, MD, BaseNode, AccessType); 5422 5423 if (!IsNewFormat) { 5424 AssertTBAA(isValidScalarTBAANode(AccessType), 5425 "Access type node must be a valid scalar type", &I, MD, 5426 AccessType); 5427 } 5428 5429 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5430 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5431 5432 APInt Offset = OffsetCI->getValue(); 5433 bool SeenAccessTypeInPath = false; 5434 5435 SmallPtrSet<MDNode *, 4> StructPath; 5436 5437 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5438 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5439 IsNewFormat)) { 5440 if (!StructPath.insert(BaseNode).second) { 5441 CheckFailed("Cycle detected in struct path", &I, MD); 5442 return false; 5443 } 5444 5445 bool Invalid; 5446 unsigned BaseNodeBitWidth; 5447 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5448 IsNewFormat); 5449 5450 // If the base node is invalid in itself, then we've already printed all the 5451 // errors we wanted to print. 5452 if (Invalid) 5453 return false; 5454 5455 SeenAccessTypeInPath |= BaseNode == AccessType; 5456 5457 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5458 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5459 &I, MD, &Offset); 5460 5461 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5462 (BaseNodeBitWidth == 0 && Offset == 0) || 5463 (IsNewFormat && BaseNodeBitWidth == ~0u), 5464 "Access bit-width not the same as description bit-width", &I, MD, 5465 BaseNodeBitWidth, Offset.getBitWidth()); 5466 5467 if (IsNewFormat && SeenAccessTypeInPath) 5468 break; 5469 } 5470 5471 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5472 &I, MD); 5473 return true; 5474 } 5475 5476 char VerifierLegacyPass::ID = 0; 5477 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5478 5479 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5480 return new VerifierLegacyPass(FatalErrors); 5481 } 5482 5483 AnalysisKey VerifierAnalysis::Key; 5484 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5485 ModuleAnalysisManager &) { 5486 Result Res; 5487 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5488 return Res; 5489 } 5490 5491 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5492 FunctionAnalysisManager &) { 5493 return { llvm::verifyFunction(F, &dbgs()), false }; 5494 } 5495 5496 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5497 auto Res = AM.getResult<VerifierAnalysis>(M); 5498 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5499 report_fatal_error("Broken module found, compilation aborted!"); 5500 5501 return PreservedAnalyses::all(); 5502 } 5503 5504 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5505 auto res = AM.getResult<VerifierAnalysis>(F); 5506 if (res.IRBroken && FatalErrors) 5507 report_fatal_error("Broken function found, compilation aborted!"); 5508 5509 return PreservedAnalyses::all(); 5510 } 5511