1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 /// Whether a metadata node is allowed to be, or contain, a DILocation. 401 enum class AreDebugLocsAllowed { No, Yes }; 402 403 // Verification methods... 404 void visitGlobalValue(const GlobalValue &GV); 405 void visitGlobalVariable(const GlobalVariable &GV); 406 void visitGlobalAlias(const GlobalAlias &GA); 407 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 408 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 409 const GlobalAlias &A, const Constant &C); 410 void visitNamedMDNode(const NamedMDNode &NMD); 411 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 412 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 413 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 414 void visitComdat(const Comdat &C); 415 void visitModuleIdents(const Module &M); 416 void visitModuleCommandLines(const Module &M); 417 void visitModuleFlags(const Module &M); 418 void visitModuleFlag(const MDNode *Op, 419 DenseMap<const MDString *, const MDNode *> &SeenIDs, 420 SmallVectorImpl<const MDNode *> &Requirements); 421 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 422 void visitFunction(const Function &F); 423 void visitBasicBlock(BasicBlock &BB); 424 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 425 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 426 void visitProfMetadata(Instruction &I, MDNode *MD); 427 428 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 429 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 430 #include "llvm/IR/Metadata.def" 431 void visitDIScope(const DIScope &N); 432 void visitDIVariable(const DIVariable &N); 433 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 434 void visitDITemplateParameter(const DITemplateParameter &N); 435 436 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 437 438 // InstVisitor overrides... 439 using InstVisitor<Verifier>::visit; 440 void visit(Instruction &I); 441 442 void visitTruncInst(TruncInst &I); 443 void visitZExtInst(ZExtInst &I); 444 void visitSExtInst(SExtInst &I); 445 void visitFPTruncInst(FPTruncInst &I); 446 void visitFPExtInst(FPExtInst &I); 447 void visitFPToUIInst(FPToUIInst &I); 448 void visitFPToSIInst(FPToSIInst &I); 449 void visitUIToFPInst(UIToFPInst &I); 450 void visitSIToFPInst(SIToFPInst &I); 451 void visitIntToPtrInst(IntToPtrInst &I); 452 void visitPtrToIntInst(PtrToIntInst &I); 453 void visitBitCastInst(BitCastInst &I); 454 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 455 void visitPHINode(PHINode &PN); 456 void visitCallBase(CallBase &Call); 457 void visitUnaryOperator(UnaryOperator &U); 458 void visitBinaryOperator(BinaryOperator &B); 459 void visitICmpInst(ICmpInst &IC); 460 void visitFCmpInst(FCmpInst &FC); 461 void visitExtractElementInst(ExtractElementInst &EI); 462 void visitInsertElementInst(InsertElementInst &EI); 463 void visitShuffleVectorInst(ShuffleVectorInst &EI); 464 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 465 void visitCallInst(CallInst &CI); 466 void visitInvokeInst(InvokeInst &II); 467 void visitGetElementPtrInst(GetElementPtrInst &GEP); 468 void visitLoadInst(LoadInst &LI); 469 void visitStoreInst(StoreInst &SI); 470 void verifyDominatesUse(Instruction &I, unsigned i); 471 void visitInstruction(Instruction &I); 472 void visitTerminator(Instruction &I); 473 void visitBranchInst(BranchInst &BI); 474 void visitReturnInst(ReturnInst &RI); 475 void visitSwitchInst(SwitchInst &SI); 476 void visitIndirectBrInst(IndirectBrInst &BI); 477 void visitCallBrInst(CallBrInst &CBI); 478 void visitSelectInst(SelectInst &SI); 479 void visitUserOp1(Instruction &I); 480 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 481 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 482 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 483 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 484 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 485 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 486 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 487 void visitFenceInst(FenceInst &FI); 488 void visitAllocaInst(AllocaInst &AI); 489 void visitExtractValueInst(ExtractValueInst &EVI); 490 void visitInsertValueInst(InsertValueInst &IVI); 491 void visitEHPadPredecessors(Instruction &I); 492 void visitLandingPadInst(LandingPadInst &LPI); 493 void visitResumeInst(ResumeInst &RI); 494 void visitCatchPadInst(CatchPadInst &CPI); 495 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 496 void visitCleanupPadInst(CleanupPadInst &CPI); 497 void visitFuncletPadInst(FuncletPadInst &FPI); 498 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 499 void visitCleanupReturnInst(CleanupReturnInst &CRI); 500 501 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 502 void verifySwiftErrorValue(const Value *SwiftErrorVal); 503 void verifyMustTailCall(CallInst &CI); 504 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 505 unsigned ArgNo, std::string &Suffix); 506 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 507 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 508 const Value *V); 509 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 510 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 511 const Value *V, bool IsIntrinsic); 512 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 513 514 void visitConstantExprsRecursively(const Constant *EntryC); 515 void visitConstantExpr(const ConstantExpr *CE); 516 void verifyStatepoint(const CallBase &Call); 517 void verifyFrameRecoverIndices(); 518 void verifySiblingFuncletUnwinds(); 519 520 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 521 template <typename ValueOrMetadata> 522 void verifyFragmentExpression(const DIVariable &V, 523 DIExpression::FragmentInfo Fragment, 524 ValueOrMetadata *Desc); 525 void verifyFnArgs(const DbgVariableIntrinsic &I); 526 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 527 528 /// Module-level debug info verification... 529 void verifyCompileUnits(); 530 531 /// Module-level verification that all @llvm.experimental.deoptimize 532 /// declarations share the same calling convention. 533 void verifyDeoptimizeCallingConvs(); 534 535 /// Verify all-or-nothing property of DIFile source attribute within a CU. 536 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 537 }; 538 539 } // end anonymous namespace 540 541 /// We know that cond should be true, if not print an error message. 542 #define Assert(C, ...) \ 543 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 544 545 /// We know that a debug info condition should be true, if not print 546 /// an error message. 547 #define AssertDI(C, ...) \ 548 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 549 550 void Verifier::visit(Instruction &I) { 551 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 552 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 553 InstVisitor<Verifier>::visit(I); 554 } 555 556 // Helper to recursively iterate over indirect users. By 557 // returning false, the callback can ask to stop recursing 558 // further. 559 static void forEachUser(const Value *User, 560 SmallPtrSet<const Value *, 32> &Visited, 561 llvm::function_ref<bool(const Value *)> Callback) { 562 if (!Visited.insert(User).second) 563 return; 564 for (const Value *TheNextUser : User->materialized_users()) 565 if (Callback(TheNextUser)) 566 forEachUser(TheNextUser, Visited, Callback); 567 } 568 569 void Verifier::visitGlobalValue(const GlobalValue &GV) { 570 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 571 "Global is external, but doesn't have external or weak linkage!", &GV); 572 573 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 574 Assert(GO->getAlignment() <= Value::MaximumAlignment, 575 "huge alignment values are unsupported", GO); 576 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 577 "Only global variables can have appending linkage!", &GV); 578 579 if (GV.hasAppendingLinkage()) { 580 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 581 Assert(GVar && GVar->getValueType()->isArrayTy(), 582 "Only global arrays can have appending linkage!", GVar); 583 } 584 585 if (GV.isDeclarationForLinker()) 586 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 587 588 if (GV.hasDLLImportStorageClass()) { 589 Assert(!GV.isDSOLocal(), 590 "GlobalValue with DLLImport Storage is dso_local!", &GV); 591 592 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 593 GV.hasAvailableExternallyLinkage(), 594 "Global is marked as dllimport, but not external", &GV); 595 } 596 597 if (GV.isImplicitDSOLocal()) 598 Assert(GV.isDSOLocal(), 599 "GlobalValue with local linkage or non-default " 600 "visibility must be dso_local!", 601 &GV); 602 603 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 604 if (const Instruction *I = dyn_cast<Instruction>(V)) { 605 if (!I->getParent() || !I->getParent()->getParent()) 606 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 607 I); 608 else if (I->getParent()->getParent()->getParent() != &M) 609 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 610 I->getParent()->getParent(), 611 I->getParent()->getParent()->getParent()); 612 return false; 613 } else if (const Function *F = dyn_cast<Function>(V)) { 614 if (F->getParent() != &M) 615 CheckFailed("Global is used by function in a different module", &GV, &M, 616 F, F->getParent()); 617 return false; 618 } 619 return true; 620 }); 621 } 622 623 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 624 if (GV.hasInitializer()) { 625 Assert(GV.getInitializer()->getType() == GV.getValueType(), 626 "Global variable initializer type does not match global " 627 "variable type!", 628 &GV); 629 // If the global has common linkage, it must have a zero initializer and 630 // cannot be constant. 631 if (GV.hasCommonLinkage()) { 632 Assert(GV.getInitializer()->isNullValue(), 633 "'common' global must have a zero initializer!", &GV); 634 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 635 &GV); 636 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 637 } 638 } 639 640 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 641 GV.getName() == "llvm.global_dtors")) { 642 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 643 "invalid linkage for intrinsic global variable", &GV); 644 // Don't worry about emitting an error for it not being an array, 645 // visitGlobalValue will complain on appending non-array. 646 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 647 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 648 PointerType *FuncPtrTy = 649 FunctionType::get(Type::getVoidTy(Context), false)-> 650 getPointerTo(DL.getProgramAddressSpace()); 651 Assert(STy && 652 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 653 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 654 STy->getTypeAtIndex(1) == FuncPtrTy, 655 "wrong type for intrinsic global variable", &GV); 656 Assert(STy->getNumElements() == 3, 657 "the third field of the element type is mandatory, " 658 "specify i8* null to migrate from the obsoleted 2-field form"); 659 Type *ETy = STy->getTypeAtIndex(2); 660 Assert(ETy->isPointerTy() && 661 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 662 "wrong type for intrinsic global variable", &GV); 663 } 664 } 665 666 if (GV.hasName() && (GV.getName() == "llvm.used" || 667 GV.getName() == "llvm.compiler.used")) { 668 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 669 "invalid linkage for intrinsic global variable", &GV); 670 Type *GVType = GV.getValueType(); 671 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 672 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 673 Assert(PTy, "wrong type for intrinsic global variable", &GV); 674 if (GV.hasInitializer()) { 675 const Constant *Init = GV.getInitializer(); 676 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 677 Assert(InitArray, "wrong initalizer for intrinsic global variable", 678 Init); 679 for (Value *Op : InitArray->operands()) { 680 Value *V = Op->stripPointerCasts(); 681 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 682 isa<GlobalAlias>(V), 683 "invalid llvm.used member", V); 684 Assert(V->hasName(), "members of llvm.used must be named", V); 685 } 686 } 687 } 688 } 689 690 // Visit any debug info attachments. 691 SmallVector<MDNode *, 1> MDs; 692 GV.getMetadata(LLVMContext::MD_dbg, MDs); 693 for (auto *MD : MDs) { 694 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 695 visitDIGlobalVariableExpression(*GVE); 696 else 697 AssertDI(false, "!dbg attachment of global variable must be a " 698 "DIGlobalVariableExpression"); 699 } 700 701 // Scalable vectors cannot be global variables, since we don't know 702 // the runtime size. If the global is a struct or an array containing 703 // scalable vectors, that will be caught by the isValidElementType methods 704 // in StructType or ArrayType instead. 705 Assert(!isa<ScalableVectorType>(GV.getValueType()), 706 "Globals cannot contain scalable vectors", &GV); 707 708 if (!GV.hasInitializer()) { 709 visitGlobalValue(GV); 710 return; 711 } 712 713 // Walk any aggregate initializers looking for bitcasts between address spaces 714 visitConstantExprsRecursively(GV.getInitializer()); 715 716 visitGlobalValue(GV); 717 } 718 719 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 720 SmallPtrSet<const GlobalAlias*, 4> Visited; 721 Visited.insert(&GA); 722 visitAliaseeSubExpr(Visited, GA, C); 723 } 724 725 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 726 const GlobalAlias &GA, const Constant &C) { 727 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 728 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 729 &GA); 730 731 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 732 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 733 734 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 735 &GA); 736 } else { 737 // Only continue verifying subexpressions of GlobalAliases. 738 // Do not recurse into global initializers. 739 return; 740 } 741 } 742 743 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 744 visitConstantExprsRecursively(CE); 745 746 for (const Use &U : C.operands()) { 747 Value *V = &*U; 748 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 749 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 750 else if (const auto *C2 = dyn_cast<Constant>(V)) 751 visitAliaseeSubExpr(Visited, GA, *C2); 752 } 753 } 754 755 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 756 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 757 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 758 "weak_odr, or external linkage!", 759 &GA); 760 const Constant *Aliasee = GA.getAliasee(); 761 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 762 Assert(GA.getType() == Aliasee->getType(), 763 "Alias and aliasee types should match!", &GA); 764 765 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 766 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 767 768 visitAliaseeSubExpr(GA, *Aliasee); 769 770 visitGlobalValue(GA); 771 } 772 773 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 774 // There used to be various other llvm.dbg.* nodes, but we don't support 775 // upgrading them and we want to reserve the namespace for future uses. 776 if (NMD.getName().startswith("llvm.dbg.")) 777 AssertDI(NMD.getName() == "llvm.dbg.cu", 778 "unrecognized named metadata node in the llvm.dbg namespace", 779 &NMD); 780 for (const MDNode *MD : NMD.operands()) { 781 if (NMD.getName() == "llvm.dbg.cu") 782 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 783 784 if (!MD) 785 continue; 786 787 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 788 } 789 } 790 791 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 792 // Only visit each node once. Metadata can be mutually recursive, so this 793 // avoids infinite recursion here, as well as being an optimization. 794 if (!MDNodes.insert(&MD).second) 795 return; 796 797 switch (MD.getMetadataID()) { 798 default: 799 llvm_unreachable("Invalid MDNode subclass"); 800 case Metadata::MDTupleKind: 801 break; 802 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 803 case Metadata::CLASS##Kind: \ 804 visit##CLASS(cast<CLASS>(MD)); \ 805 break; 806 #include "llvm/IR/Metadata.def" 807 } 808 809 for (const Metadata *Op : MD.operands()) { 810 if (!Op) 811 continue; 812 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 813 &MD, Op); 814 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 815 "DILocation not allowed within this metadata node", &MD, Op); 816 if (auto *N = dyn_cast<MDNode>(Op)) { 817 visitMDNode(*N, AllowLocs); 818 continue; 819 } 820 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 821 visitValueAsMetadata(*V, nullptr); 822 continue; 823 } 824 } 825 826 // Check these last, so we diagnose problems in operands first. 827 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 828 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 829 } 830 831 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 832 Assert(MD.getValue(), "Expected valid value", &MD); 833 Assert(!MD.getValue()->getType()->isMetadataTy(), 834 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 835 836 auto *L = dyn_cast<LocalAsMetadata>(&MD); 837 if (!L) 838 return; 839 840 Assert(F, "function-local metadata used outside a function", L); 841 842 // If this was an instruction, bb, or argument, verify that it is in the 843 // function that we expect. 844 Function *ActualF = nullptr; 845 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 846 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 847 ActualF = I->getParent()->getParent(); 848 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 849 ActualF = BB->getParent(); 850 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 851 ActualF = A->getParent(); 852 assert(ActualF && "Unimplemented function local metadata case!"); 853 854 Assert(ActualF == F, "function-local metadata used in wrong function", L); 855 } 856 857 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 858 Metadata *MD = MDV.getMetadata(); 859 if (auto *N = dyn_cast<MDNode>(MD)) { 860 visitMDNode(*N, AreDebugLocsAllowed::No); 861 return; 862 } 863 864 // Only visit each node once. Metadata can be mutually recursive, so this 865 // avoids infinite recursion here, as well as being an optimization. 866 if (!MDNodes.insert(MD).second) 867 return; 868 869 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 870 visitValueAsMetadata(*V, F); 871 } 872 873 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 874 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 875 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 876 877 void Verifier::visitDILocation(const DILocation &N) { 878 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 879 "location requires a valid scope", &N, N.getRawScope()); 880 if (auto *IA = N.getRawInlinedAt()) 881 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 882 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 883 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 884 } 885 886 void Verifier::visitGenericDINode(const GenericDINode &N) { 887 AssertDI(N.getTag(), "invalid tag", &N); 888 } 889 890 void Verifier::visitDIScope(const DIScope &N) { 891 if (auto *F = N.getRawFile()) 892 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 893 } 894 895 void Verifier::visitDISubrange(const DISubrange &N) { 896 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 897 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 898 "Subrange must contain count or upperBound", &N); 899 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 900 "Subrange can have any one of count or upperBound", &N); 901 AssertDI(!N.getRawCountNode() || N.getCount(), 902 "Count must either be a signed constant or a DIVariable", &N); 903 auto Count = N.getCount(); 904 AssertDI(!Count || !Count.is<ConstantInt *>() || 905 Count.get<ConstantInt *>()->getSExtValue() >= -1, 906 "invalid subrange count", &N); 907 auto *LBound = N.getRawLowerBound(); 908 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 909 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 910 "LowerBound must be signed constant or DIVariable or DIExpression", 911 &N); 912 auto *UBound = N.getRawUpperBound(); 913 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 914 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 915 "UpperBound must be signed constant or DIVariable or DIExpression", 916 &N); 917 auto *Stride = N.getRawStride(); 918 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 919 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 920 "Stride must be signed constant or DIVariable or DIExpression", &N); 921 } 922 923 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 924 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 925 } 926 927 void Verifier::visitDIBasicType(const DIBasicType &N) { 928 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 929 N.getTag() == dwarf::DW_TAG_unspecified_type, 930 "invalid tag", &N); 931 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 932 "has conflicting flags", &N); 933 } 934 935 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 936 // Common scope checks. 937 visitDIScope(N); 938 939 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 940 N.getTag() == dwarf::DW_TAG_pointer_type || 941 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 942 N.getTag() == dwarf::DW_TAG_reference_type || 943 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 944 N.getTag() == dwarf::DW_TAG_const_type || 945 N.getTag() == dwarf::DW_TAG_volatile_type || 946 N.getTag() == dwarf::DW_TAG_restrict_type || 947 N.getTag() == dwarf::DW_TAG_atomic_type || 948 N.getTag() == dwarf::DW_TAG_member || 949 N.getTag() == dwarf::DW_TAG_inheritance || 950 N.getTag() == dwarf::DW_TAG_friend, 951 "invalid tag", &N); 952 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 953 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 954 N.getRawExtraData()); 955 } 956 957 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 958 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 959 N.getRawBaseType()); 960 961 if (N.getDWARFAddressSpace()) { 962 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 963 N.getTag() == dwarf::DW_TAG_reference_type || 964 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 965 "DWARF address space only applies to pointer or reference types", 966 &N); 967 } 968 } 969 970 /// Detect mutually exclusive flags. 971 static bool hasConflictingReferenceFlags(unsigned Flags) { 972 return ((Flags & DINode::FlagLValueReference) && 973 (Flags & DINode::FlagRValueReference)) || 974 ((Flags & DINode::FlagTypePassByValue) && 975 (Flags & DINode::FlagTypePassByReference)); 976 } 977 978 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 979 auto *Params = dyn_cast<MDTuple>(&RawParams); 980 AssertDI(Params, "invalid template params", &N, &RawParams); 981 for (Metadata *Op : Params->operands()) { 982 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 983 &N, Params, Op); 984 } 985 } 986 987 void Verifier::visitDICompositeType(const DICompositeType &N) { 988 // Common scope checks. 989 visitDIScope(N); 990 991 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 992 N.getTag() == dwarf::DW_TAG_structure_type || 993 N.getTag() == dwarf::DW_TAG_union_type || 994 N.getTag() == dwarf::DW_TAG_enumeration_type || 995 N.getTag() == dwarf::DW_TAG_class_type || 996 N.getTag() == dwarf::DW_TAG_variant_part, 997 "invalid tag", &N); 998 999 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1000 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1001 N.getRawBaseType()); 1002 1003 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1004 "invalid composite elements", &N, N.getRawElements()); 1005 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1006 N.getRawVTableHolder()); 1007 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1008 "invalid reference flags", &N); 1009 unsigned DIBlockByRefStruct = 1 << 4; 1010 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1011 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1012 1013 if (N.isVector()) { 1014 const DINodeArray Elements = N.getElements(); 1015 AssertDI(Elements.size() == 1 && 1016 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1017 "invalid vector, expected one element of type subrange", &N); 1018 } 1019 1020 if (auto *Params = N.getRawTemplateParams()) 1021 visitTemplateParams(N, *Params); 1022 1023 if (N.getTag() == dwarf::DW_TAG_class_type || 1024 N.getTag() == dwarf::DW_TAG_union_type) { 1025 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1026 "class/union requires a filename", &N, N.getFile()); 1027 } 1028 1029 if (auto *D = N.getRawDiscriminator()) { 1030 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1031 "discriminator can only appear on variant part"); 1032 } 1033 1034 if (N.getRawDataLocation()) { 1035 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1036 "dataLocation can only appear in array type"); 1037 } 1038 1039 if (N.getRawAssociated()) { 1040 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1041 "associated can only appear in array type"); 1042 } 1043 1044 if (N.getRawAllocated()) { 1045 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1046 "allocated can only appear in array type"); 1047 } 1048 } 1049 1050 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1051 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1052 if (auto *Types = N.getRawTypeArray()) { 1053 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1054 for (Metadata *Ty : N.getTypeArray()->operands()) { 1055 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1056 } 1057 } 1058 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1059 "invalid reference flags", &N); 1060 } 1061 1062 void Verifier::visitDIFile(const DIFile &N) { 1063 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1064 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1065 if (Checksum) { 1066 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1067 "invalid checksum kind", &N); 1068 size_t Size; 1069 switch (Checksum->Kind) { 1070 case DIFile::CSK_MD5: 1071 Size = 32; 1072 break; 1073 case DIFile::CSK_SHA1: 1074 Size = 40; 1075 break; 1076 case DIFile::CSK_SHA256: 1077 Size = 64; 1078 break; 1079 } 1080 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1081 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1082 "invalid checksum", &N); 1083 } 1084 } 1085 1086 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1087 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1088 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1089 1090 // Don't bother verifying the compilation directory or producer string 1091 // as those could be empty. 1092 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1093 N.getRawFile()); 1094 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1095 N.getFile()); 1096 1097 verifySourceDebugInfo(N, *N.getFile()); 1098 1099 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1100 "invalid emission kind", &N); 1101 1102 if (auto *Array = N.getRawEnumTypes()) { 1103 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1104 for (Metadata *Op : N.getEnumTypes()->operands()) { 1105 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1106 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1107 "invalid enum type", &N, N.getEnumTypes(), Op); 1108 } 1109 } 1110 if (auto *Array = N.getRawRetainedTypes()) { 1111 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1112 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1113 AssertDI(Op && (isa<DIType>(Op) || 1114 (isa<DISubprogram>(Op) && 1115 !cast<DISubprogram>(Op)->isDefinition())), 1116 "invalid retained type", &N, Op); 1117 } 1118 } 1119 if (auto *Array = N.getRawGlobalVariables()) { 1120 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1121 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1122 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1123 "invalid global variable ref", &N, Op); 1124 } 1125 } 1126 if (auto *Array = N.getRawImportedEntities()) { 1127 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1128 for (Metadata *Op : N.getImportedEntities()->operands()) { 1129 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1130 &N, Op); 1131 } 1132 } 1133 if (auto *Array = N.getRawMacros()) { 1134 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1135 for (Metadata *Op : N.getMacros()->operands()) { 1136 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1137 } 1138 } 1139 CUVisited.insert(&N); 1140 } 1141 1142 void Verifier::visitDISubprogram(const DISubprogram &N) { 1143 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1144 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1145 if (auto *F = N.getRawFile()) 1146 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1147 else 1148 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1149 if (auto *T = N.getRawType()) 1150 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1151 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1152 N.getRawContainingType()); 1153 if (auto *Params = N.getRawTemplateParams()) 1154 visitTemplateParams(N, *Params); 1155 if (auto *S = N.getRawDeclaration()) 1156 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1157 "invalid subprogram declaration", &N, S); 1158 if (auto *RawNode = N.getRawRetainedNodes()) { 1159 auto *Node = dyn_cast<MDTuple>(RawNode); 1160 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1161 for (Metadata *Op : Node->operands()) { 1162 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1163 "invalid retained nodes, expected DILocalVariable or DILabel", 1164 &N, Node, Op); 1165 } 1166 } 1167 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1168 "invalid reference flags", &N); 1169 1170 auto *Unit = N.getRawUnit(); 1171 if (N.isDefinition()) { 1172 // Subprogram definitions (not part of the type hierarchy). 1173 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1174 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1175 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1176 if (N.getFile()) 1177 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1178 } else { 1179 // Subprogram declarations (part of the type hierarchy). 1180 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1181 } 1182 1183 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1184 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1185 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1186 for (Metadata *Op : ThrownTypes->operands()) 1187 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1188 Op); 1189 } 1190 1191 if (N.areAllCallsDescribed()) 1192 AssertDI(N.isDefinition(), 1193 "DIFlagAllCallsDescribed must be attached to a definition"); 1194 } 1195 1196 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1197 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1198 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1199 "invalid local scope", &N, N.getRawScope()); 1200 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1201 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1202 } 1203 1204 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1205 visitDILexicalBlockBase(N); 1206 1207 AssertDI(N.getLine() || !N.getColumn(), 1208 "cannot have column info without line info", &N); 1209 } 1210 1211 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1212 visitDILexicalBlockBase(N); 1213 } 1214 1215 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1216 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1217 if (auto *S = N.getRawScope()) 1218 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1219 if (auto *S = N.getRawDecl()) 1220 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1221 } 1222 1223 void Verifier::visitDINamespace(const DINamespace &N) { 1224 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1225 if (auto *S = N.getRawScope()) 1226 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1227 } 1228 1229 void Verifier::visitDIMacro(const DIMacro &N) { 1230 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1231 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1232 "invalid macinfo type", &N); 1233 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1234 if (!N.getValue().empty()) { 1235 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1236 } 1237 } 1238 1239 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1240 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1241 "invalid macinfo type", &N); 1242 if (auto *F = N.getRawFile()) 1243 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1244 1245 if (auto *Array = N.getRawElements()) { 1246 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1247 for (Metadata *Op : N.getElements()->operands()) { 1248 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1249 } 1250 } 1251 } 1252 1253 void Verifier::visitDIModule(const DIModule &N) { 1254 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1255 AssertDI(!N.getName().empty(), "anonymous module", &N); 1256 } 1257 1258 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1259 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1260 } 1261 1262 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1263 visitDITemplateParameter(N); 1264 1265 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1266 &N); 1267 } 1268 1269 void Verifier::visitDITemplateValueParameter( 1270 const DITemplateValueParameter &N) { 1271 visitDITemplateParameter(N); 1272 1273 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1274 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1275 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1276 "invalid tag", &N); 1277 } 1278 1279 void Verifier::visitDIVariable(const DIVariable &N) { 1280 if (auto *S = N.getRawScope()) 1281 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1282 if (auto *F = N.getRawFile()) 1283 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1284 } 1285 1286 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1287 // Checks common to all variables. 1288 visitDIVariable(N); 1289 1290 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1291 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1292 // Assert only if the global variable is not an extern 1293 if (N.isDefinition()) 1294 AssertDI(N.getType(), "missing global variable type", &N); 1295 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1296 AssertDI(isa<DIDerivedType>(Member), 1297 "invalid static data member declaration", &N, Member); 1298 } 1299 } 1300 1301 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1302 // Checks common to all variables. 1303 visitDIVariable(N); 1304 1305 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1306 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1307 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1308 "local variable requires a valid scope", &N, N.getRawScope()); 1309 if (auto Ty = N.getType()) 1310 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1311 } 1312 1313 void Verifier::visitDILabel(const DILabel &N) { 1314 if (auto *S = N.getRawScope()) 1315 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1316 if (auto *F = N.getRawFile()) 1317 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1318 1319 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1320 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1321 "label requires a valid scope", &N, N.getRawScope()); 1322 } 1323 1324 void Verifier::visitDIExpression(const DIExpression &N) { 1325 AssertDI(N.isValid(), "invalid expression", &N); 1326 } 1327 1328 void Verifier::visitDIGlobalVariableExpression( 1329 const DIGlobalVariableExpression &GVE) { 1330 AssertDI(GVE.getVariable(), "missing variable"); 1331 if (auto *Var = GVE.getVariable()) 1332 visitDIGlobalVariable(*Var); 1333 if (auto *Expr = GVE.getExpression()) { 1334 visitDIExpression(*Expr); 1335 if (auto Fragment = Expr->getFragmentInfo()) 1336 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1337 } 1338 } 1339 1340 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1341 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1342 if (auto *T = N.getRawType()) 1343 AssertDI(isType(T), "invalid type ref", &N, T); 1344 if (auto *F = N.getRawFile()) 1345 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1346 } 1347 1348 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1349 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1350 N.getTag() == dwarf::DW_TAG_imported_declaration, 1351 "invalid tag", &N); 1352 if (auto *S = N.getRawScope()) 1353 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1354 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1355 N.getRawEntity()); 1356 } 1357 1358 void Verifier::visitComdat(const Comdat &C) { 1359 // In COFF the Module is invalid if the GlobalValue has private linkage. 1360 // Entities with private linkage don't have entries in the symbol table. 1361 if (TT.isOSBinFormatCOFF()) 1362 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1363 Assert(!GV->hasPrivateLinkage(), 1364 "comdat global value has private linkage", GV); 1365 } 1366 1367 void Verifier::visitModuleIdents(const Module &M) { 1368 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1369 if (!Idents) 1370 return; 1371 1372 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1373 // Scan each llvm.ident entry and make sure that this requirement is met. 1374 for (const MDNode *N : Idents->operands()) { 1375 Assert(N->getNumOperands() == 1, 1376 "incorrect number of operands in llvm.ident metadata", N); 1377 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1378 ("invalid value for llvm.ident metadata entry operand" 1379 "(the operand should be a string)"), 1380 N->getOperand(0)); 1381 } 1382 } 1383 1384 void Verifier::visitModuleCommandLines(const Module &M) { 1385 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1386 if (!CommandLines) 1387 return; 1388 1389 // llvm.commandline takes a list of metadata entry. Each entry has only one 1390 // string. Scan each llvm.commandline entry and make sure that this 1391 // requirement is met. 1392 for (const MDNode *N : CommandLines->operands()) { 1393 Assert(N->getNumOperands() == 1, 1394 "incorrect number of operands in llvm.commandline metadata", N); 1395 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1396 ("invalid value for llvm.commandline metadata entry operand" 1397 "(the operand should be a string)"), 1398 N->getOperand(0)); 1399 } 1400 } 1401 1402 void Verifier::visitModuleFlags(const Module &M) { 1403 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1404 if (!Flags) return; 1405 1406 // Scan each flag, and track the flags and requirements. 1407 DenseMap<const MDString*, const MDNode*> SeenIDs; 1408 SmallVector<const MDNode*, 16> Requirements; 1409 for (const MDNode *MDN : Flags->operands()) 1410 visitModuleFlag(MDN, SeenIDs, Requirements); 1411 1412 // Validate that the requirements in the module are valid. 1413 for (const MDNode *Requirement : Requirements) { 1414 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1415 const Metadata *ReqValue = Requirement->getOperand(1); 1416 1417 const MDNode *Op = SeenIDs.lookup(Flag); 1418 if (!Op) { 1419 CheckFailed("invalid requirement on flag, flag is not present in module", 1420 Flag); 1421 continue; 1422 } 1423 1424 if (Op->getOperand(2) != ReqValue) { 1425 CheckFailed(("invalid requirement on flag, " 1426 "flag does not have the required value"), 1427 Flag); 1428 continue; 1429 } 1430 } 1431 } 1432 1433 void 1434 Verifier::visitModuleFlag(const MDNode *Op, 1435 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1436 SmallVectorImpl<const MDNode *> &Requirements) { 1437 // Each module flag should have three arguments, the merge behavior (a 1438 // constant int), the flag ID (an MDString), and the value. 1439 Assert(Op->getNumOperands() == 3, 1440 "incorrect number of operands in module flag", Op); 1441 Module::ModFlagBehavior MFB; 1442 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1443 Assert( 1444 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1445 "invalid behavior operand in module flag (expected constant integer)", 1446 Op->getOperand(0)); 1447 Assert(false, 1448 "invalid behavior operand in module flag (unexpected constant)", 1449 Op->getOperand(0)); 1450 } 1451 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1452 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1453 Op->getOperand(1)); 1454 1455 // Sanity check the values for behaviors with additional requirements. 1456 switch (MFB) { 1457 case Module::Error: 1458 case Module::Warning: 1459 case Module::Override: 1460 // These behavior types accept any value. 1461 break; 1462 1463 case Module::Max: { 1464 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1465 "invalid value for 'max' module flag (expected constant integer)", 1466 Op->getOperand(2)); 1467 break; 1468 } 1469 1470 case Module::Require: { 1471 // The value should itself be an MDNode with two operands, a flag ID (an 1472 // MDString), and a value. 1473 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1474 Assert(Value && Value->getNumOperands() == 2, 1475 "invalid value for 'require' module flag (expected metadata pair)", 1476 Op->getOperand(2)); 1477 Assert(isa<MDString>(Value->getOperand(0)), 1478 ("invalid value for 'require' module flag " 1479 "(first value operand should be a string)"), 1480 Value->getOperand(0)); 1481 1482 // Append it to the list of requirements, to check once all module flags are 1483 // scanned. 1484 Requirements.push_back(Value); 1485 break; 1486 } 1487 1488 case Module::Append: 1489 case Module::AppendUnique: { 1490 // These behavior types require the operand be an MDNode. 1491 Assert(isa<MDNode>(Op->getOperand(2)), 1492 "invalid value for 'append'-type module flag " 1493 "(expected a metadata node)", 1494 Op->getOperand(2)); 1495 break; 1496 } 1497 } 1498 1499 // Unless this is a "requires" flag, check the ID is unique. 1500 if (MFB != Module::Require) { 1501 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1502 Assert(Inserted, 1503 "module flag identifiers must be unique (or of 'require' type)", ID); 1504 } 1505 1506 if (ID->getString() == "wchar_size") { 1507 ConstantInt *Value 1508 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1509 Assert(Value, "wchar_size metadata requires constant integer argument"); 1510 } 1511 1512 if (ID->getString() == "Linker Options") { 1513 // If the llvm.linker.options named metadata exists, we assume that the 1514 // bitcode reader has upgraded the module flag. Otherwise the flag might 1515 // have been created by a client directly. 1516 Assert(M.getNamedMetadata("llvm.linker.options"), 1517 "'Linker Options' named metadata no longer supported"); 1518 } 1519 1520 if (ID->getString() == "SemanticInterposition") { 1521 ConstantInt *Value = 1522 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1523 Assert(Value, 1524 "SemanticInterposition metadata requires constant integer argument"); 1525 } 1526 1527 if (ID->getString() == "CG Profile") { 1528 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1529 visitModuleFlagCGProfileEntry(MDO); 1530 } 1531 } 1532 1533 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1534 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1535 if (!FuncMDO) 1536 return; 1537 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1538 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1539 FuncMDO); 1540 }; 1541 auto Node = dyn_cast_or_null<MDNode>(MDO); 1542 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1543 CheckFunction(Node->getOperand(0)); 1544 CheckFunction(Node->getOperand(1)); 1545 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1546 Assert(Count && Count->getType()->isIntegerTy(), 1547 "expected an integer constant", Node->getOperand(2)); 1548 } 1549 1550 /// Return true if this attribute kind only applies to functions. 1551 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1552 switch (Kind) { 1553 case Attribute::NoMerge: 1554 case Attribute::NoReturn: 1555 case Attribute::NoSync: 1556 case Attribute::WillReturn: 1557 case Attribute::NoCfCheck: 1558 case Attribute::NoUnwind: 1559 case Attribute::NoInline: 1560 case Attribute::AlwaysInline: 1561 case Attribute::OptimizeForSize: 1562 case Attribute::StackProtect: 1563 case Attribute::StackProtectReq: 1564 case Attribute::StackProtectStrong: 1565 case Attribute::SafeStack: 1566 case Attribute::ShadowCallStack: 1567 case Attribute::NoRedZone: 1568 case Attribute::NoImplicitFloat: 1569 case Attribute::Naked: 1570 case Attribute::InlineHint: 1571 case Attribute::StackAlignment: 1572 case Attribute::UWTable: 1573 case Attribute::NonLazyBind: 1574 case Attribute::ReturnsTwice: 1575 case Attribute::SanitizeAddress: 1576 case Attribute::SanitizeHWAddress: 1577 case Attribute::SanitizeMemTag: 1578 case Attribute::SanitizeThread: 1579 case Attribute::SanitizeMemory: 1580 case Attribute::MinSize: 1581 case Attribute::NoDuplicate: 1582 case Attribute::Builtin: 1583 case Attribute::NoBuiltin: 1584 case Attribute::Cold: 1585 case Attribute::OptForFuzzing: 1586 case Attribute::OptimizeNone: 1587 case Attribute::JumpTable: 1588 case Attribute::Convergent: 1589 case Attribute::ArgMemOnly: 1590 case Attribute::NoRecurse: 1591 case Attribute::InaccessibleMemOnly: 1592 case Attribute::InaccessibleMemOrArgMemOnly: 1593 case Attribute::AllocSize: 1594 case Attribute::SpeculativeLoadHardening: 1595 case Attribute::Speculatable: 1596 case Attribute::StrictFP: 1597 case Attribute::NullPointerIsValid: 1598 return true; 1599 default: 1600 break; 1601 } 1602 return false; 1603 } 1604 1605 /// Return true if this is a function attribute that can also appear on 1606 /// arguments. 1607 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1608 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1609 Kind == Attribute::ReadNone || Kind == Attribute::NoFree || 1610 Kind == Attribute::Preallocated; 1611 } 1612 1613 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1614 const Value *V) { 1615 for (Attribute A : Attrs) { 1616 if (A.isStringAttribute()) 1617 continue; 1618 1619 if (A.isIntAttribute() != 1620 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1621 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1622 V); 1623 return; 1624 } 1625 1626 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1627 if (!IsFunction) { 1628 CheckFailed("Attribute '" + A.getAsString() + 1629 "' only applies to functions!", 1630 V); 1631 return; 1632 } 1633 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1634 CheckFailed("Attribute '" + A.getAsString() + 1635 "' does not apply to functions!", 1636 V); 1637 return; 1638 } 1639 } 1640 } 1641 1642 // VerifyParameterAttrs - Check the given attributes for an argument or return 1643 // value of the specified type. The value V is printed in error messages. 1644 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1645 const Value *V) { 1646 if (!Attrs.hasAttributes()) 1647 return; 1648 1649 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1650 1651 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1652 Assert(Attrs.getNumAttributes() == 1, 1653 "Attribute 'immarg' is incompatible with other attributes", V); 1654 } 1655 1656 // Check for mutually incompatible attributes. Only inreg is compatible with 1657 // sret. 1658 unsigned AttrCount = 0; 1659 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1660 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1661 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1662 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1663 Attrs.hasAttribute(Attribute::InReg); 1664 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1665 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1666 Assert(AttrCount <= 1, 1667 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1668 "'byref', and 'sret' are incompatible!", 1669 V); 1670 1671 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1672 Attrs.hasAttribute(Attribute::ReadOnly)), 1673 "Attributes " 1674 "'inalloca and readonly' are incompatible!", 1675 V); 1676 1677 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1678 Attrs.hasAttribute(Attribute::Returned)), 1679 "Attributes " 1680 "'sret and returned' are incompatible!", 1681 V); 1682 1683 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1684 Attrs.hasAttribute(Attribute::SExt)), 1685 "Attributes " 1686 "'zeroext and signext' are incompatible!", 1687 V); 1688 1689 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1690 Attrs.hasAttribute(Attribute::ReadOnly)), 1691 "Attributes " 1692 "'readnone and readonly' are incompatible!", 1693 V); 1694 1695 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1696 Attrs.hasAttribute(Attribute::WriteOnly)), 1697 "Attributes " 1698 "'readnone and writeonly' are incompatible!", 1699 V); 1700 1701 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1702 Attrs.hasAttribute(Attribute::WriteOnly)), 1703 "Attributes " 1704 "'readonly and writeonly' are incompatible!", 1705 V); 1706 1707 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1708 Attrs.hasAttribute(Attribute::AlwaysInline)), 1709 "Attributes " 1710 "'noinline and alwaysinline' are incompatible!", 1711 V); 1712 1713 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1714 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1715 "Attribute 'byval' type does not match parameter!", V); 1716 } 1717 1718 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1719 Assert(Attrs.getPreallocatedType() == 1720 cast<PointerType>(Ty)->getElementType(), 1721 "Attribute 'preallocated' type does not match parameter!", V); 1722 } 1723 1724 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1725 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1726 "Wrong types for attribute: " + 1727 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1728 V); 1729 1730 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1731 SmallPtrSet<Type*, 4> Visited; 1732 if (!PTy->getElementType()->isSized(&Visited)) { 1733 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1734 !Attrs.hasAttribute(Attribute::ByRef) && 1735 !Attrs.hasAttribute(Attribute::InAlloca) && 1736 !Attrs.hasAttribute(Attribute::Preallocated), 1737 "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not " 1738 "support unsized types!", 1739 V); 1740 } 1741 if (!isa<PointerType>(PTy->getElementType())) 1742 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1743 "Attribute 'swifterror' only applies to parameters " 1744 "with pointer to pointer type!", 1745 V); 1746 1747 if (Attrs.hasAttribute(Attribute::ByRef)) { 1748 Assert(Attrs.getByRefType() == PTy->getElementType(), 1749 "Attribute 'byref' type does not match parameter!", V); 1750 } 1751 } else { 1752 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1753 "Attribute 'byval' only applies to parameters with pointer type!", 1754 V); 1755 Assert(!Attrs.hasAttribute(Attribute::ByRef), 1756 "Attribute 'byref' only applies to parameters with pointer type!", 1757 V); 1758 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1759 "Attribute 'swifterror' only applies to parameters " 1760 "with pointer type!", 1761 V); 1762 } 1763 } 1764 1765 // Check parameter attributes against a function type. 1766 // The value V is printed in error messages. 1767 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1768 const Value *V, bool IsIntrinsic) { 1769 if (Attrs.isEmpty()) 1770 return; 1771 1772 bool SawNest = false; 1773 bool SawReturned = false; 1774 bool SawSRet = false; 1775 bool SawSwiftSelf = false; 1776 bool SawSwiftError = false; 1777 1778 // Verify return value attributes. 1779 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1780 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1781 !RetAttrs.hasAttribute(Attribute::Nest) && 1782 !RetAttrs.hasAttribute(Attribute::StructRet) && 1783 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1784 !RetAttrs.hasAttribute(Attribute::NoFree) && 1785 !RetAttrs.hasAttribute(Attribute::Returned) && 1786 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1787 !RetAttrs.hasAttribute(Attribute::Preallocated) && 1788 !RetAttrs.hasAttribute(Attribute::ByRef) && 1789 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1790 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1791 "Attributes 'byval', 'inalloca', 'preallocated', 'byref', " 1792 "'nest', 'sret', 'nocapture', 'nofree', " 1793 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1794 "values!", 1795 V); 1796 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1797 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1798 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1799 "Attribute '" + RetAttrs.getAsString() + 1800 "' does not apply to function returns", 1801 V); 1802 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1803 1804 // Verify parameter attributes. 1805 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1806 Type *Ty = FT->getParamType(i); 1807 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1808 1809 if (!IsIntrinsic) { 1810 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1811 "immarg attribute only applies to intrinsics",V); 1812 } 1813 1814 verifyParameterAttrs(ArgAttrs, Ty, V); 1815 1816 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1817 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1818 SawNest = true; 1819 } 1820 1821 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1822 Assert(!SawReturned, "More than one parameter has attribute returned!", 1823 V); 1824 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1825 "Incompatible argument and return types for 'returned' attribute", 1826 V); 1827 SawReturned = true; 1828 } 1829 1830 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1831 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1832 Assert(i == 0 || i == 1, 1833 "Attribute 'sret' is not on first or second parameter!", V); 1834 SawSRet = true; 1835 } 1836 1837 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1838 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1839 SawSwiftSelf = true; 1840 } 1841 1842 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1843 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1844 V); 1845 SawSwiftError = true; 1846 } 1847 1848 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1849 Assert(i == FT->getNumParams() - 1, 1850 "inalloca isn't on the last parameter!", V); 1851 } 1852 } 1853 1854 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1855 return; 1856 1857 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1858 1859 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1860 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1861 "Attributes 'readnone and readonly' are incompatible!", V); 1862 1863 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1864 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1865 "Attributes 'readnone and writeonly' are incompatible!", V); 1866 1867 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1868 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1869 "Attributes 'readonly and writeonly' are incompatible!", V); 1870 1871 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1872 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1873 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1874 "incompatible!", 1875 V); 1876 1877 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1878 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1879 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1880 1881 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1882 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1883 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1884 1885 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1886 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1887 "Attribute 'optnone' requires 'noinline'!", V); 1888 1889 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1890 "Attributes 'optsize and optnone' are incompatible!", V); 1891 1892 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1893 "Attributes 'minsize and optnone' are incompatible!", V); 1894 } 1895 1896 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1897 const GlobalValue *GV = cast<GlobalValue>(V); 1898 Assert(GV->hasGlobalUnnamedAddr(), 1899 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1900 } 1901 1902 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1903 std::pair<unsigned, Optional<unsigned>> Args = 1904 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1905 1906 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1907 if (ParamNo >= FT->getNumParams()) { 1908 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1909 return false; 1910 } 1911 1912 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1913 CheckFailed("'allocsize' " + Name + 1914 " argument must refer to an integer parameter", 1915 V); 1916 return false; 1917 } 1918 1919 return true; 1920 }; 1921 1922 if (!CheckParam("element size", Args.first)) 1923 return; 1924 1925 if (Args.second && !CheckParam("number of elements", *Args.second)) 1926 return; 1927 } 1928 1929 if (Attrs.hasFnAttribute("frame-pointer")) { 1930 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1931 "frame-pointer").getValueAsString(); 1932 if (FP != "all" && FP != "non-leaf" && FP != "none") 1933 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1934 } 1935 1936 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1937 StringRef S = Attrs 1938 .getAttribute(AttributeList::FunctionIndex, 1939 "patchable-function-prefix") 1940 .getValueAsString(); 1941 unsigned N; 1942 if (S.getAsInteger(10, N)) 1943 CheckFailed( 1944 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1945 } 1946 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1947 StringRef S = Attrs 1948 .getAttribute(AttributeList::FunctionIndex, 1949 "patchable-function-entry") 1950 .getValueAsString(); 1951 unsigned N; 1952 if (S.getAsInteger(10, N)) 1953 CheckFailed( 1954 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1955 } 1956 } 1957 1958 void Verifier::verifyFunctionMetadata( 1959 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1960 for (const auto &Pair : MDs) { 1961 if (Pair.first == LLVMContext::MD_prof) { 1962 MDNode *MD = Pair.second; 1963 Assert(MD->getNumOperands() >= 2, 1964 "!prof annotations should have no less than 2 operands", MD); 1965 1966 // Check first operand. 1967 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1968 MD); 1969 Assert(isa<MDString>(MD->getOperand(0)), 1970 "expected string with name of the !prof annotation", MD); 1971 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1972 StringRef ProfName = MDS->getString(); 1973 Assert(ProfName.equals("function_entry_count") || 1974 ProfName.equals("synthetic_function_entry_count"), 1975 "first operand should be 'function_entry_count'" 1976 " or 'synthetic_function_entry_count'", 1977 MD); 1978 1979 // Check second operand. 1980 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1981 MD); 1982 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1983 "expected integer argument to function_entry_count", MD); 1984 } 1985 } 1986 } 1987 1988 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1989 if (!ConstantExprVisited.insert(EntryC).second) 1990 return; 1991 1992 SmallVector<const Constant *, 16> Stack; 1993 Stack.push_back(EntryC); 1994 1995 while (!Stack.empty()) { 1996 const Constant *C = Stack.pop_back_val(); 1997 1998 // Check this constant expression. 1999 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2000 visitConstantExpr(CE); 2001 2002 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2003 // Global Values get visited separately, but we do need to make sure 2004 // that the global value is in the correct module 2005 Assert(GV->getParent() == &M, "Referencing global in another module!", 2006 EntryC, &M, GV, GV->getParent()); 2007 continue; 2008 } 2009 2010 // Visit all sub-expressions. 2011 for (const Use &U : C->operands()) { 2012 const auto *OpC = dyn_cast<Constant>(U); 2013 if (!OpC) 2014 continue; 2015 if (!ConstantExprVisited.insert(OpC).second) 2016 continue; 2017 Stack.push_back(OpC); 2018 } 2019 } 2020 } 2021 2022 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2023 if (CE->getOpcode() == Instruction::BitCast) 2024 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2025 CE->getType()), 2026 "Invalid bitcast", CE); 2027 2028 if (CE->getOpcode() == Instruction::IntToPtr || 2029 CE->getOpcode() == Instruction::PtrToInt) { 2030 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 2031 ? CE->getType() 2032 : CE->getOperand(0)->getType(); 2033 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 2034 ? "inttoptr not supported for non-integral pointers" 2035 : "ptrtoint not supported for non-integral pointers"; 2036 Assert( 2037 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 2038 Msg); 2039 } 2040 } 2041 2042 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2043 // There shouldn't be more attribute sets than there are parameters plus the 2044 // function and return value. 2045 return Attrs.getNumAttrSets() <= Params + 2; 2046 } 2047 2048 /// Verify that statepoint intrinsic is well formed. 2049 void Verifier::verifyStatepoint(const CallBase &Call) { 2050 assert(Call.getCalledFunction() && 2051 Call.getCalledFunction()->getIntrinsicID() == 2052 Intrinsic::experimental_gc_statepoint); 2053 2054 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2055 !Call.onlyAccessesArgMemory(), 2056 "gc.statepoint must read and write all memory to preserve " 2057 "reordering restrictions required by safepoint semantics", 2058 Call); 2059 2060 const int64_t NumPatchBytes = 2061 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2062 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2063 Assert(NumPatchBytes >= 0, 2064 "gc.statepoint number of patchable bytes must be " 2065 "positive", 2066 Call); 2067 2068 const Value *Target = Call.getArgOperand(2); 2069 auto *PT = dyn_cast<PointerType>(Target->getType()); 2070 Assert(PT && PT->getElementType()->isFunctionTy(), 2071 "gc.statepoint callee must be of function pointer type", Call, Target); 2072 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2073 2074 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2075 Assert(NumCallArgs >= 0, 2076 "gc.statepoint number of arguments to underlying call " 2077 "must be positive", 2078 Call); 2079 const int NumParams = (int)TargetFuncType->getNumParams(); 2080 if (TargetFuncType->isVarArg()) { 2081 Assert(NumCallArgs >= NumParams, 2082 "gc.statepoint mismatch in number of vararg call args", Call); 2083 2084 // TODO: Remove this limitation 2085 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2086 "gc.statepoint doesn't support wrapping non-void " 2087 "vararg functions yet", 2088 Call); 2089 } else 2090 Assert(NumCallArgs == NumParams, 2091 "gc.statepoint mismatch in number of call args", Call); 2092 2093 const uint64_t Flags 2094 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2095 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2096 "unknown flag used in gc.statepoint flags argument", Call); 2097 2098 // Verify that the types of the call parameter arguments match 2099 // the type of the wrapped callee. 2100 AttributeList Attrs = Call.getAttributes(); 2101 for (int i = 0; i < NumParams; i++) { 2102 Type *ParamType = TargetFuncType->getParamType(i); 2103 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2104 Assert(ArgType == ParamType, 2105 "gc.statepoint call argument does not match wrapped " 2106 "function type", 2107 Call); 2108 2109 if (TargetFuncType->isVarArg()) { 2110 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2111 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2112 "Attribute 'sret' cannot be used for vararg call arguments!", 2113 Call); 2114 } 2115 } 2116 2117 const int EndCallArgsInx = 4 + NumCallArgs; 2118 2119 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2120 Assert(isa<ConstantInt>(NumTransitionArgsV), 2121 "gc.statepoint number of transition arguments " 2122 "must be constant integer", 2123 Call); 2124 const int NumTransitionArgs = 2125 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2126 Assert(NumTransitionArgs >= 0, 2127 "gc.statepoint number of transition arguments must be positive", Call); 2128 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2129 2130 // We're migrating away from inline operands to operand bundles, enforce 2131 // the either/or property during transition. 2132 if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) { 2133 Assert(NumTransitionArgs == 0, 2134 "can't use both deopt operands and deopt bundle on a statepoint"); 2135 } 2136 2137 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2138 Assert(isa<ConstantInt>(NumDeoptArgsV), 2139 "gc.statepoint number of deoptimization arguments " 2140 "must be constant integer", 2141 Call); 2142 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2143 Assert(NumDeoptArgs >= 0, 2144 "gc.statepoint number of deoptimization arguments " 2145 "must be positive", 2146 Call); 2147 2148 // We're migrating away from inline operands to operand bundles, enforce 2149 // the either/or property during transition. 2150 if (Call.getOperandBundle(LLVMContext::OB_deopt)) { 2151 Assert(NumDeoptArgs == 0, 2152 "can't use both deopt operands and deopt bundle on a statepoint"); 2153 } 2154 2155 const int ExpectedNumArgs = 2156 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2157 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2158 "gc.statepoint too few arguments according to length fields", Call); 2159 2160 // Check that the only uses of this gc.statepoint are gc.result or 2161 // gc.relocate calls which are tied to this statepoint and thus part 2162 // of the same statepoint sequence 2163 for (const User *U : Call.users()) { 2164 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2165 Assert(UserCall, "illegal use of statepoint token", Call, U); 2166 if (!UserCall) 2167 continue; 2168 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2169 "gc.result or gc.relocate are the only value uses " 2170 "of a gc.statepoint", 2171 Call, U); 2172 if (isa<GCResultInst>(UserCall)) { 2173 Assert(UserCall->getArgOperand(0) == &Call, 2174 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2175 } else if (isa<GCRelocateInst>(Call)) { 2176 Assert(UserCall->getArgOperand(0) == &Call, 2177 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2178 } 2179 } 2180 2181 // Note: It is legal for a single derived pointer to be listed multiple 2182 // times. It's non-optimal, but it is legal. It can also happen after 2183 // insertion if we strip a bitcast away. 2184 // Note: It is really tempting to check that each base is relocated and 2185 // that a derived pointer is never reused as a base pointer. This turns 2186 // out to be problematic since optimizations run after safepoint insertion 2187 // can recognize equality properties that the insertion logic doesn't know 2188 // about. See example statepoint.ll in the verifier subdirectory 2189 } 2190 2191 void Verifier::verifyFrameRecoverIndices() { 2192 for (auto &Counts : FrameEscapeInfo) { 2193 Function *F = Counts.first; 2194 unsigned EscapedObjectCount = Counts.second.first; 2195 unsigned MaxRecoveredIndex = Counts.second.second; 2196 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2197 "all indices passed to llvm.localrecover must be less than the " 2198 "number of arguments passed to llvm.localescape in the parent " 2199 "function", 2200 F); 2201 } 2202 } 2203 2204 static Instruction *getSuccPad(Instruction *Terminator) { 2205 BasicBlock *UnwindDest; 2206 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2207 UnwindDest = II->getUnwindDest(); 2208 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2209 UnwindDest = CSI->getUnwindDest(); 2210 else 2211 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2212 return UnwindDest->getFirstNonPHI(); 2213 } 2214 2215 void Verifier::verifySiblingFuncletUnwinds() { 2216 SmallPtrSet<Instruction *, 8> Visited; 2217 SmallPtrSet<Instruction *, 8> Active; 2218 for (const auto &Pair : SiblingFuncletInfo) { 2219 Instruction *PredPad = Pair.first; 2220 if (Visited.count(PredPad)) 2221 continue; 2222 Active.insert(PredPad); 2223 Instruction *Terminator = Pair.second; 2224 do { 2225 Instruction *SuccPad = getSuccPad(Terminator); 2226 if (Active.count(SuccPad)) { 2227 // Found a cycle; report error 2228 Instruction *CyclePad = SuccPad; 2229 SmallVector<Instruction *, 8> CycleNodes; 2230 do { 2231 CycleNodes.push_back(CyclePad); 2232 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2233 if (CycleTerminator != CyclePad) 2234 CycleNodes.push_back(CycleTerminator); 2235 CyclePad = getSuccPad(CycleTerminator); 2236 } while (CyclePad != SuccPad); 2237 Assert(false, "EH pads can't handle each other's exceptions", 2238 ArrayRef<Instruction *>(CycleNodes)); 2239 } 2240 // Don't re-walk a node we've already checked 2241 if (!Visited.insert(SuccPad).second) 2242 break; 2243 // Walk to this successor if it has a map entry. 2244 PredPad = SuccPad; 2245 auto TermI = SiblingFuncletInfo.find(PredPad); 2246 if (TermI == SiblingFuncletInfo.end()) 2247 break; 2248 Terminator = TermI->second; 2249 Active.insert(PredPad); 2250 } while (true); 2251 // Each node only has one successor, so we've walked all the active 2252 // nodes' successors. 2253 Active.clear(); 2254 } 2255 } 2256 2257 // visitFunction - Verify that a function is ok. 2258 // 2259 void Verifier::visitFunction(const Function &F) { 2260 visitGlobalValue(F); 2261 2262 // Check function arguments. 2263 FunctionType *FT = F.getFunctionType(); 2264 unsigned NumArgs = F.arg_size(); 2265 2266 Assert(&Context == &F.getContext(), 2267 "Function context does not match Module context!", &F); 2268 2269 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2270 Assert(FT->getNumParams() == NumArgs, 2271 "# formal arguments must match # of arguments for function type!", &F, 2272 FT); 2273 Assert(F.getReturnType()->isFirstClassType() || 2274 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2275 "Functions cannot return aggregate values!", &F); 2276 2277 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2278 "Invalid struct return type!", &F); 2279 2280 AttributeList Attrs = F.getAttributes(); 2281 2282 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2283 "Attribute after last parameter!", &F); 2284 2285 bool isLLVMdotName = F.getName().size() >= 5 && 2286 F.getName().substr(0, 5) == "llvm."; 2287 2288 // Check function attributes. 2289 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2290 2291 // On function declarations/definitions, we do not support the builtin 2292 // attribute. We do not check this in VerifyFunctionAttrs since that is 2293 // checking for Attributes that can/can not ever be on functions. 2294 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2295 "Attribute 'builtin' can only be applied to a callsite.", &F); 2296 2297 // Check that this function meets the restrictions on this calling convention. 2298 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2299 // restrictions can be lifted. 2300 switch (F.getCallingConv()) { 2301 default: 2302 case CallingConv::C: 2303 break; 2304 case CallingConv::AMDGPU_KERNEL: 2305 case CallingConv::SPIR_KERNEL: 2306 Assert(F.getReturnType()->isVoidTy(), 2307 "Calling convention requires void return type", &F); 2308 LLVM_FALLTHROUGH; 2309 case CallingConv::AMDGPU_VS: 2310 case CallingConv::AMDGPU_HS: 2311 case CallingConv::AMDGPU_GS: 2312 case CallingConv::AMDGPU_PS: 2313 case CallingConv::AMDGPU_CS: 2314 Assert(!F.hasStructRetAttr(), 2315 "Calling convention does not allow sret", &F); 2316 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2317 const unsigned StackAS = DL.getAllocaAddrSpace(); 2318 unsigned i = 0; 2319 for (const Argument &Arg : F.args()) { 2320 Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal), 2321 "Calling convention disallows byval", &F); 2322 Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated), 2323 "Calling convention disallows preallocated", &F); 2324 Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca), 2325 "Calling convention disallows inalloca", &F); 2326 2327 if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { 2328 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2329 // value here. 2330 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2331 "Calling convention disallows stack byref", &F); 2332 } 2333 2334 ++i; 2335 } 2336 } 2337 2338 LLVM_FALLTHROUGH; 2339 case CallingConv::Fast: 2340 case CallingConv::Cold: 2341 case CallingConv::Intel_OCL_BI: 2342 case CallingConv::PTX_Kernel: 2343 case CallingConv::PTX_Device: 2344 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2345 "perfect forwarding!", 2346 &F); 2347 break; 2348 } 2349 2350 // Check that the argument values match the function type for this function... 2351 unsigned i = 0; 2352 for (const Argument &Arg : F.args()) { 2353 Assert(Arg.getType() == FT->getParamType(i), 2354 "Argument value does not match function argument type!", &Arg, 2355 FT->getParamType(i)); 2356 Assert(Arg.getType()->isFirstClassType(), 2357 "Function arguments must have first-class types!", &Arg); 2358 if (!isLLVMdotName) { 2359 Assert(!Arg.getType()->isMetadataTy(), 2360 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2361 Assert(!Arg.getType()->isTokenTy(), 2362 "Function takes token but isn't an intrinsic", &Arg, &F); 2363 } 2364 2365 // Check that swifterror argument is only used by loads and stores. 2366 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2367 verifySwiftErrorValue(&Arg); 2368 } 2369 ++i; 2370 } 2371 2372 if (!isLLVMdotName) 2373 Assert(!F.getReturnType()->isTokenTy(), 2374 "Functions returns a token but isn't an intrinsic", &F); 2375 2376 // Get the function metadata attachments. 2377 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2378 F.getAllMetadata(MDs); 2379 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2380 verifyFunctionMetadata(MDs); 2381 2382 // Check validity of the personality function 2383 if (F.hasPersonalityFn()) { 2384 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2385 if (Per) 2386 Assert(Per->getParent() == F.getParent(), 2387 "Referencing personality function in another module!", 2388 &F, F.getParent(), Per, Per->getParent()); 2389 } 2390 2391 if (F.isMaterializable()) { 2392 // Function has a body somewhere we can't see. 2393 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2394 MDs.empty() ? nullptr : MDs.front().second); 2395 } else if (F.isDeclaration()) { 2396 for (const auto &I : MDs) { 2397 // This is used for call site debug information. 2398 AssertDI(I.first != LLVMContext::MD_dbg || 2399 !cast<DISubprogram>(I.second)->isDistinct(), 2400 "function declaration may only have a unique !dbg attachment", 2401 &F); 2402 Assert(I.first != LLVMContext::MD_prof, 2403 "function declaration may not have a !prof attachment", &F); 2404 2405 // Verify the metadata itself. 2406 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2407 } 2408 Assert(!F.hasPersonalityFn(), 2409 "Function declaration shouldn't have a personality routine", &F); 2410 } else { 2411 // Verify that this function (which has a body) is not named "llvm.*". It 2412 // is not legal to define intrinsics. 2413 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2414 2415 // Check the entry node 2416 const BasicBlock *Entry = &F.getEntryBlock(); 2417 Assert(pred_empty(Entry), 2418 "Entry block to function must not have predecessors!", Entry); 2419 2420 // The address of the entry block cannot be taken, unless it is dead. 2421 if (Entry->hasAddressTaken()) { 2422 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2423 "blockaddress may not be used with the entry block!", Entry); 2424 } 2425 2426 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2427 // Visit metadata attachments. 2428 for (const auto &I : MDs) { 2429 // Verify that the attachment is legal. 2430 auto AllowLocs = AreDebugLocsAllowed::No; 2431 switch (I.first) { 2432 default: 2433 break; 2434 case LLVMContext::MD_dbg: { 2435 ++NumDebugAttachments; 2436 AssertDI(NumDebugAttachments == 1, 2437 "function must have a single !dbg attachment", &F, I.second); 2438 AssertDI(isa<DISubprogram>(I.second), 2439 "function !dbg attachment must be a subprogram", &F, I.second); 2440 auto *SP = cast<DISubprogram>(I.second); 2441 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2442 AssertDI(!AttachedTo || AttachedTo == &F, 2443 "DISubprogram attached to more than one function", SP, &F); 2444 AttachedTo = &F; 2445 AllowLocs = AreDebugLocsAllowed::Yes; 2446 break; 2447 } 2448 case LLVMContext::MD_prof: 2449 ++NumProfAttachments; 2450 Assert(NumProfAttachments == 1, 2451 "function must have a single !prof attachment", &F, I.second); 2452 break; 2453 } 2454 2455 // Verify the metadata itself. 2456 visitMDNode(*I.second, AllowLocs); 2457 } 2458 } 2459 2460 // If this function is actually an intrinsic, verify that it is only used in 2461 // direct call/invokes, never having its "address taken". 2462 // Only do this if the module is materialized, otherwise we don't have all the 2463 // uses. 2464 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2465 const User *U; 2466 if (F.hasAddressTaken(&U)) 2467 Assert(false, "Invalid user of intrinsic instruction!", U); 2468 } 2469 2470 auto *N = F.getSubprogram(); 2471 HasDebugInfo = (N != nullptr); 2472 if (!HasDebugInfo) 2473 return; 2474 2475 // Check that all !dbg attachments lead to back to N. 2476 // 2477 // FIXME: Check this incrementally while visiting !dbg attachments. 2478 // FIXME: Only check when N is the canonical subprogram for F. 2479 SmallPtrSet<const MDNode *, 32> Seen; 2480 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2481 // Be careful about using DILocation here since we might be dealing with 2482 // broken code (this is the Verifier after all). 2483 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2484 if (!DL) 2485 return; 2486 if (!Seen.insert(DL).second) 2487 return; 2488 2489 Metadata *Parent = DL->getRawScope(); 2490 AssertDI(Parent && isa<DILocalScope>(Parent), 2491 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2492 Parent); 2493 2494 DILocalScope *Scope = DL->getInlinedAtScope(); 2495 Assert(Scope, "Failed to find DILocalScope", DL); 2496 2497 if (!Seen.insert(Scope).second) 2498 return; 2499 2500 DISubprogram *SP = Scope->getSubprogram(); 2501 2502 // Scope and SP could be the same MDNode and we don't want to skip 2503 // validation in that case 2504 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2505 return; 2506 2507 AssertDI(SP->describes(&F), 2508 "!dbg attachment points at wrong subprogram for function", N, &F, 2509 &I, DL, Scope, SP); 2510 }; 2511 for (auto &BB : F) 2512 for (auto &I : BB) { 2513 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2514 // The llvm.loop annotations also contain two DILocations. 2515 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2516 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2517 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2518 if (BrokenDebugInfo) 2519 return; 2520 } 2521 } 2522 2523 // verifyBasicBlock - Verify that a basic block is well formed... 2524 // 2525 void Verifier::visitBasicBlock(BasicBlock &BB) { 2526 InstsInThisBlock.clear(); 2527 2528 // Ensure that basic blocks have terminators! 2529 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2530 2531 // Check constraints that this basic block imposes on all of the PHI nodes in 2532 // it. 2533 if (isa<PHINode>(BB.front())) { 2534 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2535 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2536 llvm::sort(Preds); 2537 for (const PHINode &PN : BB.phis()) { 2538 // Ensure that PHI nodes have at least one entry! 2539 Assert(PN.getNumIncomingValues() != 0, 2540 "PHI nodes must have at least one entry. If the block is dead, " 2541 "the PHI should be removed!", 2542 &PN); 2543 Assert(PN.getNumIncomingValues() == Preds.size(), 2544 "PHINode should have one entry for each predecessor of its " 2545 "parent basic block!", 2546 &PN); 2547 2548 // Get and sort all incoming values in the PHI node... 2549 Values.clear(); 2550 Values.reserve(PN.getNumIncomingValues()); 2551 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2552 Values.push_back( 2553 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2554 llvm::sort(Values); 2555 2556 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2557 // Check to make sure that if there is more than one entry for a 2558 // particular basic block in this PHI node, that the incoming values are 2559 // all identical. 2560 // 2561 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2562 Values[i].second == Values[i - 1].second, 2563 "PHI node has multiple entries for the same basic block with " 2564 "different incoming values!", 2565 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2566 2567 // Check to make sure that the predecessors and PHI node entries are 2568 // matched up. 2569 Assert(Values[i].first == Preds[i], 2570 "PHI node entries do not match predecessors!", &PN, 2571 Values[i].first, Preds[i]); 2572 } 2573 } 2574 } 2575 2576 // Check that all instructions have their parent pointers set up correctly. 2577 for (auto &I : BB) 2578 { 2579 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2580 } 2581 } 2582 2583 void Verifier::visitTerminator(Instruction &I) { 2584 // Ensure that terminators only exist at the end of the basic block. 2585 Assert(&I == I.getParent()->getTerminator(), 2586 "Terminator found in the middle of a basic block!", I.getParent()); 2587 visitInstruction(I); 2588 } 2589 2590 void Verifier::visitBranchInst(BranchInst &BI) { 2591 if (BI.isConditional()) { 2592 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2593 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2594 } 2595 visitTerminator(BI); 2596 } 2597 2598 void Verifier::visitReturnInst(ReturnInst &RI) { 2599 Function *F = RI.getParent()->getParent(); 2600 unsigned N = RI.getNumOperands(); 2601 if (F->getReturnType()->isVoidTy()) 2602 Assert(N == 0, 2603 "Found return instr that returns non-void in Function of void " 2604 "return type!", 2605 &RI, F->getReturnType()); 2606 else 2607 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2608 "Function return type does not match operand " 2609 "type of return inst!", 2610 &RI, F->getReturnType()); 2611 2612 // Check to make sure that the return value has necessary properties for 2613 // terminators... 2614 visitTerminator(RI); 2615 } 2616 2617 void Verifier::visitSwitchInst(SwitchInst &SI) { 2618 // Check to make sure that all of the constants in the switch instruction 2619 // have the same type as the switched-on value. 2620 Type *SwitchTy = SI.getCondition()->getType(); 2621 SmallPtrSet<ConstantInt*, 32> Constants; 2622 for (auto &Case : SI.cases()) { 2623 Assert(Case.getCaseValue()->getType() == SwitchTy, 2624 "Switch constants must all be same type as switch value!", &SI); 2625 Assert(Constants.insert(Case.getCaseValue()).second, 2626 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2627 } 2628 2629 visitTerminator(SI); 2630 } 2631 2632 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2633 Assert(BI.getAddress()->getType()->isPointerTy(), 2634 "Indirectbr operand must have pointer type!", &BI); 2635 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2636 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2637 "Indirectbr destinations must all have pointer type!", &BI); 2638 2639 visitTerminator(BI); 2640 } 2641 2642 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2643 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2644 &CBI); 2645 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2646 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2647 "Callbr successors must all have pointer type!", &CBI); 2648 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2649 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2650 "Using an unescaped label as a callbr argument!", &CBI); 2651 if (isa<BasicBlock>(CBI.getOperand(i))) 2652 for (unsigned j = i + 1; j != e; ++j) 2653 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2654 "Duplicate callbr destination!", &CBI); 2655 } 2656 { 2657 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2658 for (Value *V : CBI.args()) 2659 if (auto *BA = dyn_cast<BlockAddress>(V)) 2660 ArgBBs.insert(BA->getBasicBlock()); 2661 for (BasicBlock *BB : CBI.getIndirectDests()) 2662 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2663 } 2664 2665 visitTerminator(CBI); 2666 } 2667 2668 void Verifier::visitSelectInst(SelectInst &SI) { 2669 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2670 SI.getOperand(2)), 2671 "Invalid operands for select instruction!", &SI); 2672 2673 Assert(SI.getTrueValue()->getType() == SI.getType(), 2674 "Select values must have same type as select instruction!", &SI); 2675 visitInstruction(SI); 2676 } 2677 2678 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2679 /// a pass, if any exist, it's an error. 2680 /// 2681 void Verifier::visitUserOp1(Instruction &I) { 2682 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2683 } 2684 2685 void Verifier::visitTruncInst(TruncInst &I) { 2686 // Get the source and destination types 2687 Type *SrcTy = I.getOperand(0)->getType(); 2688 Type *DestTy = I.getType(); 2689 2690 // Get the size of the types in bits, we'll need this later 2691 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2692 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2693 2694 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2695 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2696 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2697 "trunc source and destination must both be a vector or neither", &I); 2698 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2699 2700 visitInstruction(I); 2701 } 2702 2703 void Verifier::visitZExtInst(ZExtInst &I) { 2704 // Get the source and destination types 2705 Type *SrcTy = I.getOperand(0)->getType(); 2706 Type *DestTy = I.getType(); 2707 2708 // Get the size of the types in bits, we'll need this later 2709 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2710 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2711 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2712 "zext source and destination must both be a vector or neither", &I); 2713 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2714 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2715 2716 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2717 2718 visitInstruction(I); 2719 } 2720 2721 void Verifier::visitSExtInst(SExtInst &I) { 2722 // Get the source and destination types 2723 Type *SrcTy = I.getOperand(0)->getType(); 2724 Type *DestTy = I.getType(); 2725 2726 // Get the size of the types in bits, we'll need this later 2727 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2728 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2729 2730 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2731 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2732 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2733 "sext source and destination must both be a vector or neither", &I); 2734 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2735 2736 visitInstruction(I); 2737 } 2738 2739 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2740 // Get the source and destination types 2741 Type *SrcTy = I.getOperand(0)->getType(); 2742 Type *DestTy = I.getType(); 2743 // Get the size of the types in bits, we'll need this later 2744 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2745 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2746 2747 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2748 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2749 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2750 "fptrunc source and destination must both be a vector or neither", &I); 2751 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2752 2753 visitInstruction(I); 2754 } 2755 2756 void Verifier::visitFPExtInst(FPExtInst &I) { 2757 // Get the source and destination types 2758 Type *SrcTy = I.getOperand(0)->getType(); 2759 Type *DestTy = I.getType(); 2760 2761 // Get the size of the types in bits, we'll need this later 2762 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2763 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2764 2765 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2766 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2767 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2768 "fpext source and destination must both be a vector or neither", &I); 2769 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2770 2771 visitInstruction(I); 2772 } 2773 2774 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2775 // Get the source and destination types 2776 Type *SrcTy = I.getOperand(0)->getType(); 2777 Type *DestTy = I.getType(); 2778 2779 bool SrcVec = SrcTy->isVectorTy(); 2780 bool DstVec = DestTy->isVectorTy(); 2781 2782 Assert(SrcVec == DstVec, 2783 "UIToFP source and dest must both be vector or scalar", &I); 2784 Assert(SrcTy->isIntOrIntVectorTy(), 2785 "UIToFP source must be integer or integer vector", &I); 2786 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2787 &I); 2788 2789 if (SrcVec && DstVec) 2790 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2791 cast<VectorType>(DestTy)->getElementCount(), 2792 "UIToFP source and dest vector length mismatch", &I); 2793 2794 visitInstruction(I); 2795 } 2796 2797 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2798 // Get the source and destination types 2799 Type *SrcTy = I.getOperand(0)->getType(); 2800 Type *DestTy = I.getType(); 2801 2802 bool SrcVec = SrcTy->isVectorTy(); 2803 bool DstVec = DestTy->isVectorTy(); 2804 2805 Assert(SrcVec == DstVec, 2806 "SIToFP source and dest must both be vector or scalar", &I); 2807 Assert(SrcTy->isIntOrIntVectorTy(), 2808 "SIToFP source must be integer or integer vector", &I); 2809 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2810 &I); 2811 2812 if (SrcVec && DstVec) 2813 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2814 cast<VectorType>(DestTy)->getElementCount(), 2815 "SIToFP source and dest vector length mismatch", &I); 2816 2817 visitInstruction(I); 2818 } 2819 2820 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2821 // Get the source and destination types 2822 Type *SrcTy = I.getOperand(0)->getType(); 2823 Type *DestTy = I.getType(); 2824 2825 bool SrcVec = SrcTy->isVectorTy(); 2826 bool DstVec = DestTy->isVectorTy(); 2827 2828 Assert(SrcVec == DstVec, 2829 "FPToUI source and dest must both be vector or scalar", &I); 2830 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2831 &I); 2832 Assert(DestTy->isIntOrIntVectorTy(), 2833 "FPToUI result must be integer or integer vector", &I); 2834 2835 if (SrcVec && DstVec) 2836 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2837 cast<VectorType>(DestTy)->getElementCount(), 2838 "FPToUI source and dest vector length mismatch", &I); 2839 2840 visitInstruction(I); 2841 } 2842 2843 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2844 // Get the source and destination types 2845 Type *SrcTy = I.getOperand(0)->getType(); 2846 Type *DestTy = I.getType(); 2847 2848 bool SrcVec = SrcTy->isVectorTy(); 2849 bool DstVec = DestTy->isVectorTy(); 2850 2851 Assert(SrcVec == DstVec, 2852 "FPToSI source and dest must both be vector or scalar", &I); 2853 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2854 &I); 2855 Assert(DestTy->isIntOrIntVectorTy(), 2856 "FPToSI result must be integer or integer vector", &I); 2857 2858 if (SrcVec && DstVec) 2859 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2860 cast<VectorType>(DestTy)->getElementCount(), 2861 "FPToSI source and dest vector length mismatch", &I); 2862 2863 visitInstruction(I); 2864 } 2865 2866 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2867 // Get the source and destination types 2868 Type *SrcTy = I.getOperand(0)->getType(); 2869 Type *DestTy = I.getType(); 2870 2871 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2872 2873 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2874 Assert(!DL.isNonIntegralPointerType(PTy), 2875 "ptrtoint not supported for non-integral pointers"); 2876 2877 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2878 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2879 &I); 2880 2881 if (SrcTy->isVectorTy()) { 2882 auto *VSrc = cast<VectorType>(SrcTy); 2883 auto *VDest = cast<VectorType>(DestTy); 2884 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2885 "PtrToInt Vector width mismatch", &I); 2886 } 2887 2888 visitInstruction(I); 2889 } 2890 2891 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2892 // Get the source and destination types 2893 Type *SrcTy = I.getOperand(0)->getType(); 2894 Type *DestTy = I.getType(); 2895 2896 Assert(SrcTy->isIntOrIntVectorTy(), 2897 "IntToPtr source must be an integral", &I); 2898 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2899 2900 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2901 Assert(!DL.isNonIntegralPointerType(PTy), 2902 "inttoptr not supported for non-integral pointers"); 2903 2904 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2905 &I); 2906 if (SrcTy->isVectorTy()) { 2907 auto *VSrc = cast<VectorType>(SrcTy); 2908 auto *VDest = cast<VectorType>(DestTy); 2909 Assert(VSrc->getElementCount() == VDest->getElementCount(), 2910 "IntToPtr Vector width mismatch", &I); 2911 } 2912 visitInstruction(I); 2913 } 2914 2915 void Verifier::visitBitCastInst(BitCastInst &I) { 2916 Assert( 2917 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2918 "Invalid bitcast", &I); 2919 visitInstruction(I); 2920 } 2921 2922 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2923 Type *SrcTy = I.getOperand(0)->getType(); 2924 Type *DestTy = I.getType(); 2925 2926 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2927 &I); 2928 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2929 &I); 2930 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2931 "AddrSpaceCast must be between different address spaces", &I); 2932 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 2933 Assert(SrcVTy->getNumElements() == 2934 cast<VectorType>(DestTy)->getNumElements(), 2935 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2936 visitInstruction(I); 2937 } 2938 2939 /// visitPHINode - Ensure that a PHI node is well formed. 2940 /// 2941 void Verifier::visitPHINode(PHINode &PN) { 2942 // Ensure that the PHI nodes are all grouped together at the top of the block. 2943 // This can be tested by checking whether the instruction before this is 2944 // either nonexistent (because this is begin()) or is a PHI node. If not, 2945 // then there is some other instruction before a PHI. 2946 Assert(&PN == &PN.getParent()->front() || 2947 isa<PHINode>(--BasicBlock::iterator(&PN)), 2948 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2949 2950 // Check that a PHI doesn't yield a Token. 2951 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2952 2953 // Check that all of the values of the PHI node have the same type as the 2954 // result, and that the incoming blocks are really basic blocks. 2955 for (Value *IncValue : PN.incoming_values()) { 2956 Assert(PN.getType() == IncValue->getType(), 2957 "PHI node operands are not the same type as the result!", &PN); 2958 } 2959 2960 // All other PHI node constraints are checked in the visitBasicBlock method. 2961 2962 visitInstruction(PN); 2963 } 2964 2965 void Verifier::visitCallBase(CallBase &Call) { 2966 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 2967 "Called function must be a pointer!", Call); 2968 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2969 2970 Assert(FPTy->getElementType()->isFunctionTy(), 2971 "Called function is not pointer to function type!", Call); 2972 2973 Assert(FPTy->getElementType() == Call.getFunctionType(), 2974 "Called function is not the same type as the call!", Call); 2975 2976 FunctionType *FTy = Call.getFunctionType(); 2977 2978 // Verify that the correct number of arguments are being passed 2979 if (FTy->isVarArg()) 2980 Assert(Call.arg_size() >= FTy->getNumParams(), 2981 "Called function requires more parameters than were provided!", 2982 Call); 2983 else 2984 Assert(Call.arg_size() == FTy->getNumParams(), 2985 "Incorrect number of arguments passed to called function!", Call); 2986 2987 // Verify that all arguments to the call match the function type. 2988 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2989 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2990 "Call parameter type does not match function signature!", 2991 Call.getArgOperand(i), FTy->getParamType(i), Call); 2992 2993 AttributeList Attrs = Call.getAttributes(); 2994 2995 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2996 "Attribute after last parameter!", Call); 2997 2998 bool IsIntrinsic = Call.getCalledFunction() && 2999 Call.getCalledFunction()->getName().startswith("llvm."); 3000 3001 Function *Callee = 3002 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3003 3004 if (Attrs.hasFnAttribute(Attribute::Speculatable)) { 3005 // Don't allow speculatable on call sites, unless the underlying function 3006 // declaration is also speculatable. 3007 Assert(Callee && Callee->isSpeculatable(), 3008 "speculatable attribute may not apply to call sites", Call); 3009 } 3010 3011 if (Attrs.hasFnAttribute(Attribute::Preallocated)) { 3012 Assert(Call.getCalledFunction()->getIntrinsicID() == 3013 Intrinsic::call_preallocated_arg, 3014 "preallocated as a call site attribute can only be on " 3015 "llvm.call.preallocated.arg"); 3016 } 3017 3018 // Verify call attributes. 3019 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3020 3021 // Conservatively check the inalloca argument. 3022 // We have a bug if we can find that there is an underlying alloca without 3023 // inalloca. 3024 if (Call.hasInAllocaArgument()) { 3025 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3026 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3027 Assert(AI->isUsedWithInAlloca(), 3028 "inalloca argument for call has mismatched alloca", AI, Call); 3029 } 3030 3031 // For each argument of the callsite, if it has the swifterror argument, 3032 // make sure the underlying alloca/parameter it comes from has a swifterror as 3033 // well. 3034 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3035 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3036 Value *SwiftErrorArg = Call.getArgOperand(i); 3037 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3038 Assert(AI->isSwiftError(), 3039 "swifterror argument for call has mismatched alloca", AI, Call); 3040 continue; 3041 } 3042 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3043 Assert(ArgI, 3044 "swifterror argument should come from an alloca or parameter", 3045 SwiftErrorArg, Call); 3046 Assert(ArgI->hasSwiftErrorAttr(), 3047 "swifterror argument for call has mismatched parameter", ArgI, 3048 Call); 3049 } 3050 3051 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 3052 // Don't allow immarg on call sites, unless the underlying declaration 3053 // also has the matching immarg. 3054 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3055 "immarg may not apply only to call sites", 3056 Call.getArgOperand(i), Call); 3057 } 3058 3059 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3060 Value *ArgVal = Call.getArgOperand(i); 3061 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3062 "immarg operand has non-immediate parameter", ArgVal, Call); 3063 } 3064 3065 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3066 Value *ArgVal = Call.getArgOperand(i); 3067 bool hasOB = 3068 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3069 bool isMustTail = Call.isMustTailCall(); 3070 Assert(hasOB != isMustTail, 3071 "preallocated operand either requires a preallocated bundle or " 3072 "the call to be musttail (but not both)", 3073 ArgVal, Call); 3074 } 3075 } 3076 3077 if (FTy->isVarArg()) { 3078 // FIXME? is 'nest' even legal here? 3079 bool SawNest = false; 3080 bool SawReturned = false; 3081 3082 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3083 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 3084 SawNest = true; 3085 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 3086 SawReturned = true; 3087 } 3088 3089 // Check attributes on the varargs part. 3090 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3091 Type *Ty = Call.getArgOperand(Idx)->getType(); 3092 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 3093 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3094 3095 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3096 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3097 SawNest = true; 3098 } 3099 3100 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3101 Assert(!SawReturned, "More than one parameter has attribute returned!", 3102 Call); 3103 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3104 "Incompatible argument and return types for 'returned' " 3105 "attribute", 3106 Call); 3107 SawReturned = true; 3108 } 3109 3110 // Statepoint intrinsic is vararg but the wrapped function may be not. 3111 // Allow sret here and check the wrapped function in verifyStatepoint. 3112 if (!Call.getCalledFunction() || 3113 Call.getCalledFunction()->getIntrinsicID() != 3114 Intrinsic::experimental_gc_statepoint) 3115 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3116 "Attribute 'sret' cannot be used for vararg call arguments!", 3117 Call); 3118 3119 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3120 Assert(Idx == Call.arg_size() - 1, 3121 "inalloca isn't on the last argument!", Call); 3122 } 3123 } 3124 3125 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3126 if (!IsIntrinsic) { 3127 for (Type *ParamTy : FTy->params()) { 3128 Assert(!ParamTy->isMetadataTy(), 3129 "Function has metadata parameter but isn't an intrinsic", Call); 3130 Assert(!ParamTy->isTokenTy(), 3131 "Function has token parameter but isn't an intrinsic", Call); 3132 } 3133 } 3134 3135 // Verify that indirect calls don't return tokens. 3136 if (!Call.getCalledFunction()) 3137 Assert(!FTy->getReturnType()->isTokenTy(), 3138 "Return type cannot be token for indirect call!"); 3139 3140 if (Function *F = Call.getCalledFunction()) 3141 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3142 visitIntrinsicCall(ID, Call); 3143 3144 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3145 // most one "gc-transition", at most one "cfguardtarget", 3146 // and at most one "preallocated" operand bundle. 3147 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3148 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3149 FoundPreallocatedBundle = false, FoundGCLiveBundle = false;; 3150 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3151 OperandBundleUse BU = Call.getOperandBundleAt(i); 3152 uint32_t Tag = BU.getTagID(); 3153 if (Tag == LLVMContext::OB_deopt) { 3154 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3155 FoundDeoptBundle = true; 3156 } else if (Tag == LLVMContext::OB_gc_transition) { 3157 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3158 Call); 3159 FoundGCTransitionBundle = true; 3160 } else if (Tag == LLVMContext::OB_funclet) { 3161 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3162 FoundFuncletBundle = true; 3163 Assert(BU.Inputs.size() == 1, 3164 "Expected exactly one funclet bundle operand", Call); 3165 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3166 "Funclet bundle operands should correspond to a FuncletPadInst", 3167 Call); 3168 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3169 Assert(!FoundCFGuardTargetBundle, 3170 "Multiple CFGuardTarget operand bundles", Call); 3171 FoundCFGuardTargetBundle = true; 3172 Assert(BU.Inputs.size() == 1, 3173 "Expected exactly one cfguardtarget bundle operand", Call); 3174 } else if (Tag == LLVMContext::OB_preallocated) { 3175 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3176 Call); 3177 FoundPreallocatedBundle = true; 3178 Assert(BU.Inputs.size() == 1, 3179 "Expected exactly one preallocated bundle operand", Call); 3180 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3181 Assert(Input && 3182 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3183 "\"preallocated\" argument must be a token from " 3184 "llvm.call.preallocated.setup", 3185 Call); 3186 } else if (Tag == LLVMContext::OB_gc_live) { 3187 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3188 Call); 3189 FoundGCLiveBundle = true; 3190 } 3191 } 3192 3193 // Verify that each inlinable callsite of a debug-info-bearing function in a 3194 // debug-info-bearing function has a debug location attached to it. Failure to 3195 // do so causes assertion failures when the inliner sets up inline scope info. 3196 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3197 Call.getCalledFunction()->getSubprogram()) 3198 AssertDI(Call.getDebugLoc(), 3199 "inlinable function call in a function with " 3200 "debug info must have a !dbg location", 3201 Call); 3202 3203 visitInstruction(Call); 3204 } 3205 3206 /// Two types are "congruent" if they are identical, or if they are both pointer 3207 /// types with different pointee types and the same address space. 3208 static bool isTypeCongruent(Type *L, Type *R) { 3209 if (L == R) 3210 return true; 3211 PointerType *PL = dyn_cast<PointerType>(L); 3212 PointerType *PR = dyn_cast<PointerType>(R); 3213 if (!PL || !PR) 3214 return false; 3215 return PL->getAddressSpace() == PR->getAddressSpace(); 3216 } 3217 3218 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3219 static const Attribute::AttrKind ABIAttrs[] = { 3220 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3221 Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError, 3222 Attribute::Preallocated, Attribute::ByRef}; 3223 AttrBuilder Copy; 3224 for (auto AK : ABIAttrs) { 3225 if (Attrs.hasParamAttribute(I, AK)) 3226 Copy.addAttribute(AK); 3227 } 3228 3229 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3230 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3231 (Attrs.hasParamAttribute(I, Attribute::ByVal) || 3232 Attrs.hasParamAttribute(I, Attribute::ByRef))) 3233 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3234 return Copy; 3235 } 3236 3237 void Verifier::verifyMustTailCall(CallInst &CI) { 3238 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3239 3240 // - The caller and callee prototypes must match. Pointer types of 3241 // parameters or return types may differ in pointee type, but not 3242 // address space. 3243 Function *F = CI.getParent()->getParent(); 3244 FunctionType *CallerTy = F->getFunctionType(); 3245 FunctionType *CalleeTy = CI.getFunctionType(); 3246 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3247 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3248 "cannot guarantee tail call due to mismatched parameter counts", 3249 &CI); 3250 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3251 Assert( 3252 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3253 "cannot guarantee tail call due to mismatched parameter types", &CI); 3254 } 3255 } 3256 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3257 "cannot guarantee tail call due to mismatched varargs", &CI); 3258 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3259 "cannot guarantee tail call due to mismatched return types", &CI); 3260 3261 // - The calling conventions of the caller and callee must match. 3262 Assert(F->getCallingConv() == CI.getCallingConv(), 3263 "cannot guarantee tail call due to mismatched calling conv", &CI); 3264 3265 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3266 // returned, preallocated, and inalloca, must match. 3267 AttributeList CallerAttrs = F->getAttributes(); 3268 AttributeList CalleeAttrs = CI.getAttributes(); 3269 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3270 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3271 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3272 Assert(CallerABIAttrs == CalleeABIAttrs, 3273 "cannot guarantee tail call due to mismatched ABI impacting " 3274 "function attributes", 3275 &CI, CI.getOperand(I)); 3276 } 3277 3278 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3279 // or a pointer bitcast followed by a ret instruction. 3280 // - The ret instruction must return the (possibly bitcasted) value 3281 // produced by the call or void. 3282 Value *RetVal = &CI; 3283 Instruction *Next = CI.getNextNode(); 3284 3285 // Handle the optional bitcast. 3286 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3287 Assert(BI->getOperand(0) == RetVal, 3288 "bitcast following musttail call must use the call", BI); 3289 RetVal = BI; 3290 Next = BI->getNextNode(); 3291 } 3292 3293 // Check the return. 3294 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3295 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3296 &CI); 3297 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3298 "musttail call result must be returned", Ret); 3299 } 3300 3301 void Verifier::visitCallInst(CallInst &CI) { 3302 visitCallBase(CI); 3303 3304 if (CI.isMustTailCall()) 3305 verifyMustTailCall(CI); 3306 } 3307 3308 void Verifier::visitInvokeInst(InvokeInst &II) { 3309 visitCallBase(II); 3310 3311 // Verify that the first non-PHI instruction of the unwind destination is an 3312 // exception handling instruction. 3313 Assert( 3314 II.getUnwindDest()->isEHPad(), 3315 "The unwind destination does not have an exception handling instruction!", 3316 &II); 3317 3318 visitTerminator(II); 3319 } 3320 3321 /// visitUnaryOperator - Check the argument to the unary operator. 3322 /// 3323 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3324 Assert(U.getType() == U.getOperand(0)->getType(), 3325 "Unary operators must have same type for" 3326 "operands and result!", 3327 &U); 3328 3329 switch (U.getOpcode()) { 3330 // Check that floating-point arithmetic operators are only used with 3331 // floating-point operands. 3332 case Instruction::FNeg: 3333 Assert(U.getType()->isFPOrFPVectorTy(), 3334 "FNeg operator only works with float types!", &U); 3335 break; 3336 default: 3337 llvm_unreachable("Unknown UnaryOperator opcode!"); 3338 } 3339 3340 visitInstruction(U); 3341 } 3342 3343 /// visitBinaryOperator - Check that both arguments to the binary operator are 3344 /// of the same type! 3345 /// 3346 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3347 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3348 "Both operands to a binary operator are not of the same type!", &B); 3349 3350 switch (B.getOpcode()) { 3351 // Check that integer arithmetic operators are only used with 3352 // integral operands. 3353 case Instruction::Add: 3354 case Instruction::Sub: 3355 case Instruction::Mul: 3356 case Instruction::SDiv: 3357 case Instruction::UDiv: 3358 case Instruction::SRem: 3359 case Instruction::URem: 3360 Assert(B.getType()->isIntOrIntVectorTy(), 3361 "Integer arithmetic operators only work with integral types!", &B); 3362 Assert(B.getType() == B.getOperand(0)->getType(), 3363 "Integer arithmetic operators must have same type " 3364 "for operands and result!", 3365 &B); 3366 break; 3367 // Check that floating-point arithmetic operators are only used with 3368 // floating-point operands. 3369 case Instruction::FAdd: 3370 case Instruction::FSub: 3371 case Instruction::FMul: 3372 case Instruction::FDiv: 3373 case Instruction::FRem: 3374 Assert(B.getType()->isFPOrFPVectorTy(), 3375 "Floating-point arithmetic operators only work with " 3376 "floating-point types!", 3377 &B); 3378 Assert(B.getType() == B.getOperand(0)->getType(), 3379 "Floating-point arithmetic operators must have same type " 3380 "for operands and result!", 3381 &B); 3382 break; 3383 // Check that logical operators are only used with integral operands. 3384 case Instruction::And: 3385 case Instruction::Or: 3386 case Instruction::Xor: 3387 Assert(B.getType()->isIntOrIntVectorTy(), 3388 "Logical operators only work with integral types!", &B); 3389 Assert(B.getType() == B.getOperand(0)->getType(), 3390 "Logical operators must have same type for operands and result!", 3391 &B); 3392 break; 3393 case Instruction::Shl: 3394 case Instruction::LShr: 3395 case Instruction::AShr: 3396 Assert(B.getType()->isIntOrIntVectorTy(), 3397 "Shifts only work with integral types!", &B); 3398 Assert(B.getType() == B.getOperand(0)->getType(), 3399 "Shift return type must be same as operands!", &B); 3400 break; 3401 default: 3402 llvm_unreachable("Unknown BinaryOperator opcode!"); 3403 } 3404 3405 visitInstruction(B); 3406 } 3407 3408 void Verifier::visitICmpInst(ICmpInst &IC) { 3409 // Check that the operands are the same type 3410 Type *Op0Ty = IC.getOperand(0)->getType(); 3411 Type *Op1Ty = IC.getOperand(1)->getType(); 3412 Assert(Op0Ty == Op1Ty, 3413 "Both operands to ICmp instruction are not of the same type!", &IC); 3414 // Check that the operands are the right type 3415 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3416 "Invalid operand types for ICmp instruction", &IC); 3417 // Check that the predicate is valid. 3418 Assert(IC.isIntPredicate(), 3419 "Invalid predicate in ICmp instruction!", &IC); 3420 3421 visitInstruction(IC); 3422 } 3423 3424 void Verifier::visitFCmpInst(FCmpInst &FC) { 3425 // Check that the operands are the same type 3426 Type *Op0Ty = FC.getOperand(0)->getType(); 3427 Type *Op1Ty = FC.getOperand(1)->getType(); 3428 Assert(Op0Ty == Op1Ty, 3429 "Both operands to FCmp instruction are not of the same type!", &FC); 3430 // Check that the operands are the right type 3431 Assert(Op0Ty->isFPOrFPVectorTy(), 3432 "Invalid operand types for FCmp instruction", &FC); 3433 // Check that the predicate is valid. 3434 Assert(FC.isFPPredicate(), 3435 "Invalid predicate in FCmp instruction!", &FC); 3436 3437 visitInstruction(FC); 3438 } 3439 3440 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3441 Assert( 3442 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3443 "Invalid extractelement operands!", &EI); 3444 visitInstruction(EI); 3445 } 3446 3447 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3448 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3449 IE.getOperand(2)), 3450 "Invalid insertelement operands!", &IE); 3451 visitInstruction(IE); 3452 } 3453 3454 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3455 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3456 SV.getShuffleMask()), 3457 "Invalid shufflevector operands!", &SV); 3458 visitInstruction(SV); 3459 } 3460 3461 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3462 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3463 3464 Assert(isa<PointerType>(TargetTy), 3465 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3466 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3467 3468 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3469 Assert(all_of( 3470 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3471 "GEP indexes must be integers", &GEP); 3472 Type *ElTy = 3473 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3474 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3475 3476 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3477 GEP.getResultElementType() == ElTy, 3478 "GEP is not of right type for indices!", &GEP, ElTy); 3479 3480 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3481 // Additional checks for vector GEPs. 3482 ElementCount GEPWidth = GEPVTy->getElementCount(); 3483 if (GEP.getPointerOperandType()->isVectorTy()) 3484 Assert( 3485 GEPWidth == 3486 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3487 "Vector GEP result width doesn't match operand's", &GEP); 3488 for (Value *Idx : Idxs) { 3489 Type *IndexTy = Idx->getType(); 3490 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3491 ElementCount IndexWidth = IndexVTy->getElementCount(); 3492 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3493 } 3494 Assert(IndexTy->isIntOrIntVectorTy(), 3495 "All GEP indices should be of integer type"); 3496 } 3497 } 3498 3499 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3500 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3501 "GEP address space doesn't match type", &GEP); 3502 } 3503 3504 visitInstruction(GEP); 3505 } 3506 3507 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3508 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3509 } 3510 3511 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3512 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3513 "precondition violation"); 3514 3515 unsigned NumOperands = Range->getNumOperands(); 3516 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3517 unsigned NumRanges = NumOperands / 2; 3518 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3519 3520 ConstantRange LastRange(1, true); // Dummy initial value 3521 for (unsigned i = 0; i < NumRanges; ++i) { 3522 ConstantInt *Low = 3523 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3524 Assert(Low, "The lower limit must be an integer!", Low); 3525 ConstantInt *High = 3526 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3527 Assert(High, "The upper limit must be an integer!", High); 3528 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3529 "Range types must match instruction type!", &I); 3530 3531 APInt HighV = High->getValue(); 3532 APInt LowV = Low->getValue(); 3533 ConstantRange CurRange(LowV, HighV); 3534 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3535 "Range must not be empty!", Range); 3536 if (i != 0) { 3537 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3538 "Intervals are overlapping", Range); 3539 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3540 Range); 3541 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3542 Range); 3543 } 3544 LastRange = ConstantRange(LowV, HighV); 3545 } 3546 if (NumRanges > 2) { 3547 APInt FirstLow = 3548 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3549 APInt FirstHigh = 3550 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3551 ConstantRange FirstRange(FirstLow, FirstHigh); 3552 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3553 "Intervals are overlapping", Range); 3554 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3555 Range); 3556 } 3557 } 3558 3559 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3560 unsigned Size = DL.getTypeSizeInBits(Ty); 3561 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3562 Assert(!(Size & (Size - 1)), 3563 "atomic memory access' operand must have a power-of-two size", Ty, I); 3564 } 3565 3566 void Verifier::visitLoadInst(LoadInst &LI) { 3567 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3568 Assert(PTy, "Load operand must be a pointer.", &LI); 3569 Type *ElTy = LI.getType(); 3570 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3571 "huge alignment values are unsupported", &LI); 3572 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3573 if (LI.isAtomic()) { 3574 Assert(LI.getOrdering() != AtomicOrdering::Release && 3575 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3576 "Load cannot have Release ordering", &LI); 3577 Assert(LI.getAlignment() != 0, 3578 "Atomic load must specify explicit alignment", &LI); 3579 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3580 "atomic load operand must have integer, pointer, or floating point " 3581 "type!", 3582 ElTy, &LI); 3583 checkAtomicMemAccessSize(ElTy, &LI); 3584 } else { 3585 Assert(LI.getSyncScopeID() == SyncScope::System, 3586 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3587 } 3588 3589 visitInstruction(LI); 3590 } 3591 3592 void Verifier::visitStoreInst(StoreInst &SI) { 3593 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3594 Assert(PTy, "Store operand must be a pointer.", &SI); 3595 Type *ElTy = PTy->getElementType(); 3596 Assert(ElTy == SI.getOperand(0)->getType(), 3597 "Stored value type does not match pointer operand type!", &SI, ElTy); 3598 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3599 "huge alignment values are unsupported", &SI); 3600 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3601 if (SI.isAtomic()) { 3602 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3603 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3604 "Store cannot have Acquire ordering", &SI); 3605 Assert(SI.getAlignment() != 0, 3606 "Atomic store must specify explicit alignment", &SI); 3607 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3608 "atomic store operand must have integer, pointer, or floating point " 3609 "type!", 3610 ElTy, &SI); 3611 checkAtomicMemAccessSize(ElTy, &SI); 3612 } else { 3613 Assert(SI.getSyncScopeID() == SyncScope::System, 3614 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3615 } 3616 visitInstruction(SI); 3617 } 3618 3619 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3620 void Verifier::verifySwiftErrorCall(CallBase &Call, 3621 const Value *SwiftErrorVal) { 3622 unsigned Idx = 0; 3623 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3624 if (*I == SwiftErrorVal) { 3625 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3626 "swifterror value when used in a callsite should be marked " 3627 "with swifterror attribute", 3628 SwiftErrorVal, Call); 3629 } 3630 } 3631 } 3632 3633 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3634 // Check that swifterror value is only used by loads, stores, or as 3635 // a swifterror argument. 3636 for (const User *U : SwiftErrorVal->users()) { 3637 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3638 isa<InvokeInst>(U), 3639 "swifterror value can only be loaded and stored from, or " 3640 "as a swifterror argument!", 3641 SwiftErrorVal, U); 3642 // If it is used by a store, check it is the second operand. 3643 if (auto StoreI = dyn_cast<StoreInst>(U)) 3644 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3645 "swifterror value should be the second operand when used " 3646 "by stores", SwiftErrorVal, U); 3647 if (auto *Call = dyn_cast<CallBase>(U)) 3648 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3649 } 3650 } 3651 3652 void Verifier::visitAllocaInst(AllocaInst &AI) { 3653 SmallPtrSet<Type*, 4> Visited; 3654 PointerType *PTy = AI.getType(); 3655 // TODO: Relax this restriction? 3656 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3657 "Allocation instruction pointer not in the stack address space!", 3658 &AI); 3659 Assert(AI.getAllocatedType()->isSized(&Visited), 3660 "Cannot allocate unsized type", &AI); 3661 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3662 "Alloca array size must have integer type", &AI); 3663 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3664 "huge alignment values are unsupported", &AI); 3665 3666 if (AI.isSwiftError()) { 3667 verifySwiftErrorValue(&AI); 3668 } 3669 3670 visitInstruction(AI); 3671 } 3672 3673 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3674 3675 // FIXME: more conditions??? 3676 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3677 "cmpxchg instructions must be atomic.", &CXI); 3678 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3679 "cmpxchg instructions must be atomic.", &CXI); 3680 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3681 "cmpxchg instructions cannot be unordered.", &CXI); 3682 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3683 "cmpxchg instructions cannot be unordered.", &CXI); 3684 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3685 "cmpxchg instructions failure argument shall be no stronger than the " 3686 "success argument", 3687 &CXI); 3688 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3689 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3690 "cmpxchg failure ordering cannot include release semantics", &CXI); 3691 3692 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3693 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3694 Type *ElTy = PTy->getElementType(); 3695 Assert(ElTy->isIntOrPtrTy(), 3696 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3697 checkAtomicMemAccessSize(ElTy, &CXI); 3698 Assert(ElTy == CXI.getOperand(1)->getType(), 3699 "Expected value type does not match pointer operand type!", &CXI, 3700 ElTy); 3701 Assert(ElTy == CXI.getOperand(2)->getType(), 3702 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3703 visitInstruction(CXI); 3704 } 3705 3706 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3707 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3708 "atomicrmw instructions must be atomic.", &RMWI); 3709 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3710 "atomicrmw instructions cannot be unordered.", &RMWI); 3711 auto Op = RMWI.getOperation(); 3712 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3713 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3714 Type *ElTy = PTy->getElementType(); 3715 if (Op == AtomicRMWInst::Xchg) { 3716 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3717 AtomicRMWInst::getOperationName(Op) + 3718 " operand must have integer or floating point type!", 3719 &RMWI, ElTy); 3720 } else if (AtomicRMWInst::isFPOperation(Op)) { 3721 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3722 AtomicRMWInst::getOperationName(Op) + 3723 " operand must have floating point type!", 3724 &RMWI, ElTy); 3725 } else { 3726 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3727 AtomicRMWInst::getOperationName(Op) + 3728 " operand must have integer type!", 3729 &RMWI, ElTy); 3730 } 3731 checkAtomicMemAccessSize(ElTy, &RMWI); 3732 Assert(ElTy == RMWI.getOperand(1)->getType(), 3733 "Argument value type does not match pointer operand type!", &RMWI, 3734 ElTy); 3735 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3736 "Invalid binary operation!", &RMWI); 3737 visitInstruction(RMWI); 3738 } 3739 3740 void Verifier::visitFenceInst(FenceInst &FI) { 3741 const AtomicOrdering Ordering = FI.getOrdering(); 3742 Assert(Ordering == AtomicOrdering::Acquire || 3743 Ordering == AtomicOrdering::Release || 3744 Ordering == AtomicOrdering::AcquireRelease || 3745 Ordering == AtomicOrdering::SequentiallyConsistent, 3746 "fence instructions may only have acquire, release, acq_rel, or " 3747 "seq_cst ordering.", 3748 &FI); 3749 visitInstruction(FI); 3750 } 3751 3752 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3753 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3754 EVI.getIndices()) == EVI.getType(), 3755 "Invalid ExtractValueInst operands!", &EVI); 3756 3757 visitInstruction(EVI); 3758 } 3759 3760 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3761 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3762 IVI.getIndices()) == 3763 IVI.getOperand(1)->getType(), 3764 "Invalid InsertValueInst operands!", &IVI); 3765 3766 visitInstruction(IVI); 3767 } 3768 3769 static Value *getParentPad(Value *EHPad) { 3770 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3771 return FPI->getParentPad(); 3772 3773 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3774 } 3775 3776 void Verifier::visitEHPadPredecessors(Instruction &I) { 3777 assert(I.isEHPad()); 3778 3779 BasicBlock *BB = I.getParent(); 3780 Function *F = BB->getParent(); 3781 3782 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3783 3784 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3785 // The landingpad instruction defines its parent as a landing pad block. The 3786 // landing pad block may be branched to only by the unwind edge of an 3787 // invoke. 3788 for (BasicBlock *PredBB : predecessors(BB)) { 3789 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3790 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3791 "Block containing LandingPadInst must be jumped to " 3792 "only by the unwind edge of an invoke.", 3793 LPI); 3794 } 3795 return; 3796 } 3797 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3798 if (!pred_empty(BB)) 3799 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3800 "Block containg CatchPadInst must be jumped to " 3801 "only by its catchswitch.", 3802 CPI); 3803 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3804 "Catchswitch cannot unwind to one of its catchpads", 3805 CPI->getCatchSwitch(), CPI); 3806 return; 3807 } 3808 3809 // Verify that each pred has a legal terminator with a legal to/from EH 3810 // pad relationship. 3811 Instruction *ToPad = &I; 3812 Value *ToPadParent = getParentPad(ToPad); 3813 for (BasicBlock *PredBB : predecessors(BB)) { 3814 Instruction *TI = PredBB->getTerminator(); 3815 Value *FromPad; 3816 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3817 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3818 "EH pad must be jumped to via an unwind edge", ToPad, II); 3819 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3820 FromPad = Bundle->Inputs[0]; 3821 else 3822 FromPad = ConstantTokenNone::get(II->getContext()); 3823 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3824 FromPad = CRI->getOperand(0); 3825 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3826 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3827 FromPad = CSI; 3828 } else { 3829 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3830 } 3831 3832 // The edge may exit from zero or more nested pads. 3833 SmallSet<Value *, 8> Seen; 3834 for (;; FromPad = getParentPad(FromPad)) { 3835 Assert(FromPad != ToPad, 3836 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3837 if (FromPad == ToPadParent) { 3838 // This is a legal unwind edge. 3839 break; 3840 } 3841 Assert(!isa<ConstantTokenNone>(FromPad), 3842 "A single unwind edge may only enter one EH pad", TI); 3843 Assert(Seen.insert(FromPad).second, 3844 "EH pad jumps through a cycle of pads", FromPad); 3845 } 3846 } 3847 } 3848 3849 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3850 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3851 // isn't a cleanup. 3852 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3853 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3854 3855 visitEHPadPredecessors(LPI); 3856 3857 if (!LandingPadResultTy) 3858 LandingPadResultTy = LPI.getType(); 3859 else 3860 Assert(LandingPadResultTy == LPI.getType(), 3861 "The landingpad instruction should have a consistent result type " 3862 "inside a function.", 3863 &LPI); 3864 3865 Function *F = LPI.getParent()->getParent(); 3866 Assert(F->hasPersonalityFn(), 3867 "LandingPadInst needs to be in a function with a personality.", &LPI); 3868 3869 // The landingpad instruction must be the first non-PHI instruction in the 3870 // block. 3871 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3872 "LandingPadInst not the first non-PHI instruction in the block.", 3873 &LPI); 3874 3875 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3876 Constant *Clause = LPI.getClause(i); 3877 if (LPI.isCatch(i)) { 3878 Assert(isa<PointerType>(Clause->getType()), 3879 "Catch operand does not have pointer type!", &LPI); 3880 } else { 3881 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3882 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3883 "Filter operand is not an array of constants!", &LPI); 3884 } 3885 } 3886 3887 visitInstruction(LPI); 3888 } 3889 3890 void Verifier::visitResumeInst(ResumeInst &RI) { 3891 Assert(RI.getFunction()->hasPersonalityFn(), 3892 "ResumeInst needs to be in a function with a personality.", &RI); 3893 3894 if (!LandingPadResultTy) 3895 LandingPadResultTy = RI.getValue()->getType(); 3896 else 3897 Assert(LandingPadResultTy == RI.getValue()->getType(), 3898 "The resume instruction should have a consistent result type " 3899 "inside a function.", 3900 &RI); 3901 3902 visitTerminator(RI); 3903 } 3904 3905 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3906 BasicBlock *BB = CPI.getParent(); 3907 3908 Function *F = BB->getParent(); 3909 Assert(F->hasPersonalityFn(), 3910 "CatchPadInst needs to be in a function with a personality.", &CPI); 3911 3912 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3913 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3914 CPI.getParentPad()); 3915 3916 // The catchpad instruction must be the first non-PHI instruction in the 3917 // block. 3918 Assert(BB->getFirstNonPHI() == &CPI, 3919 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3920 3921 visitEHPadPredecessors(CPI); 3922 visitFuncletPadInst(CPI); 3923 } 3924 3925 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3926 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3927 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3928 CatchReturn.getOperand(0)); 3929 3930 visitTerminator(CatchReturn); 3931 } 3932 3933 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3934 BasicBlock *BB = CPI.getParent(); 3935 3936 Function *F = BB->getParent(); 3937 Assert(F->hasPersonalityFn(), 3938 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3939 3940 // The cleanuppad instruction must be the first non-PHI instruction in the 3941 // block. 3942 Assert(BB->getFirstNonPHI() == &CPI, 3943 "CleanupPadInst not the first non-PHI instruction in the block.", 3944 &CPI); 3945 3946 auto *ParentPad = CPI.getParentPad(); 3947 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3948 "CleanupPadInst has an invalid parent.", &CPI); 3949 3950 visitEHPadPredecessors(CPI); 3951 visitFuncletPadInst(CPI); 3952 } 3953 3954 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3955 User *FirstUser = nullptr; 3956 Value *FirstUnwindPad = nullptr; 3957 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3958 SmallSet<FuncletPadInst *, 8> Seen; 3959 3960 while (!Worklist.empty()) { 3961 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3962 Assert(Seen.insert(CurrentPad).second, 3963 "FuncletPadInst must not be nested within itself", CurrentPad); 3964 Value *UnresolvedAncestorPad = nullptr; 3965 for (User *U : CurrentPad->users()) { 3966 BasicBlock *UnwindDest; 3967 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3968 UnwindDest = CRI->getUnwindDest(); 3969 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3970 // We allow catchswitch unwind to caller to nest 3971 // within an outer pad that unwinds somewhere else, 3972 // because catchswitch doesn't have a nounwind variant. 3973 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3974 if (CSI->unwindsToCaller()) 3975 continue; 3976 UnwindDest = CSI->getUnwindDest(); 3977 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3978 UnwindDest = II->getUnwindDest(); 3979 } else if (isa<CallInst>(U)) { 3980 // Calls which don't unwind may be found inside funclet 3981 // pads that unwind somewhere else. We don't *require* 3982 // such calls to be annotated nounwind. 3983 continue; 3984 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3985 // The unwind dest for a cleanup can only be found by 3986 // recursive search. Add it to the worklist, and we'll 3987 // search for its first use that determines where it unwinds. 3988 Worklist.push_back(CPI); 3989 continue; 3990 } else { 3991 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3992 continue; 3993 } 3994 3995 Value *UnwindPad; 3996 bool ExitsFPI; 3997 if (UnwindDest) { 3998 UnwindPad = UnwindDest->getFirstNonPHI(); 3999 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4000 continue; 4001 Value *UnwindParent = getParentPad(UnwindPad); 4002 // Ignore unwind edges that don't exit CurrentPad. 4003 if (UnwindParent == CurrentPad) 4004 continue; 4005 // Determine whether the original funclet pad is exited, 4006 // and if we are scanning nested pads determine how many 4007 // of them are exited so we can stop searching their 4008 // children. 4009 Value *ExitedPad = CurrentPad; 4010 ExitsFPI = false; 4011 do { 4012 if (ExitedPad == &FPI) { 4013 ExitsFPI = true; 4014 // Now we can resolve any ancestors of CurrentPad up to 4015 // FPI, but not including FPI since we need to make sure 4016 // to check all direct users of FPI for consistency. 4017 UnresolvedAncestorPad = &FPI; 4018 break; 4019 } 4020 Value *ExitedParent = getParentPad(ExitedPad); 4021 if (ExitedParent == UnwindParent) { 4022 // ExitedPad is the ancestor-most pad which this unwind 4023 // edge exits, so we can resolve up to it, meaning that 4024 // ExitedParent is the first ancestor still unresolved. 4025 UnresolvedAncestorPad = ExitedParent; 4026 break; 4027 } 4028 ExitedPad = ExitedParent; 4029 } while (!isa<ConstantTokenNone>(ExitedPad)); 4030 } else { 4031 // Unwinding to caller exits all pads. 4032 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4033 ExitsFPI = true; 4034 UnresolvedAncestorPad = &FPI; 4035 } 4036 4037 if (ExitsFPI) { 4038 // This unwind edge exits FPI. Make sure it agrees with other 4039 // such edges. 4040 if (FirstUser) { 4041 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4042 "pad must have the same unwind " 4043 "dest", 4044 &FPI, U, FirstUser); 4045 } else { 4046 FirstUser = U; 4047 FirstUnwindPad = UnwindPad; 4048 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4049 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4050 getParentPad(UnwindPad) == getParentPad(&FPI)) 4051 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4052 } 4053 } 4054 // Make sure we visit all uses of FPI, but for nested pads stop as 4055 // soon as we know where they unwind to. 4056 if (CurrentPad != &FPI) 4057 break; 4058 } 4059 if (UnresolvedAncestorPad) { 4060 if (CurrentPad == UnresolvedAncestorPad) { 4061 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4062 // we've found an unwind edge that exits it, because we need to verify 4063 // all direct uses of FPI. 4064 assert(CurrentPad == &FPI); 4065 continue; 4066 } 4067 // Pop off the worklist any nested pads that we've found an unwind 4068 // destination for. The pads on the worklist are the uncles, 4069 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4070 // for all ancestors of CurrentPad up to but not including 4071 // UnresolvedAncestorPad. 4072 Value *ResolvedPad = CurrentPad; 4073 while (!Worklist.empty()) { 4074 Value *UnclePad = Worklist.back(); 4075 Value *AncestorPad = getParentPad(UnclePad); 4076 // Walk ResolvedPad up the ancestor list until we either find the 4077 // uncle's parent or the last resolved ancestor. 4078 while (ResolvedPad != AncestorPad) { 4079 Value *ResolvedParent = getParentPad(ResolvedPad); 4080 if (ResolvedParent == UnresolvedAncestorPad) { 4081 break; 4082 } 4083 ResolvedPad = ResolvedParent; 4084 } 4085 // If the resolved ancestor search didn't find the uncle's parent, 4086 // then the uncle is not yet resolved. 4087 if (ResolvedPad != AncestorPad) 4088 break; 4089 // This uncle is resolved, so pop it from the worklist. 4090 Worklist.pop_back(); 4091 } 4092 } 4093 } 4094 4095 if (FirstUnwindPad) { 4096 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4097 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4098 Value *SwitchUnwindPad; 4099 if (SwitchUnwindDest) 4100 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4101 else 4102 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4103 Assert(SwitchUnwindPad == FirstUnwindPad, 4104 "Unwind edges out of a catch must have the same unwind dest as " 4105 "the parent catchswitch", 4106 &FPI, FirstUser, CatchSwitch); 4107 } 4108 } 4109 4110 visitInstruction(FPI); 4111 } 4112 4113 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4114 BasicBlock *BB = CatchSwitch.getParent(); 4115 4116 Function *F = BB->getParent(); 4117 Assert(F->hasPersonalityFn(), 4118 "CatchSwitchInst needs to be in a function with a personality.", 4119 &CatchSwitch); 4120 4121 // The catchswitch instruction must be the first non-PHI instruction in the 4122 // block. 4123 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4124 "CatchSwitchInst not the first non-PHI instruction in the block.", 4125 &CatchSwitch); 4126 4127 auto *ParentPad = CatchSwitch.getParentPad(); 4128 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4129 "CatchSwitchInst has an invalid parent.", ParentPad); 4130 4131 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4132 Instruction *I = UnwindDest->getFirstNonPHI(); 4133 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4134 "CatchSwitchInst must unwind to an EH block which is not a " 4135 "landingpad.", 4136 &CatchSwitch); 4137 4138 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4139 if (getParentPad(I) == ParentPad) 4140 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4141 } 4142 4143 Assert(CatchSwitch.getNumHandlers() != 0, 4144 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4145 4146 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4147 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4148 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4149 } 4150 4151 visitEHPadPredecessors(CatchSwitch); 4152 visitTerminator(CatchSwitch); 4153 } 4154 4155 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4156 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4157 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4158 CRI.getOperand(0)); 4159 4160 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4161 Instruction *I = UnwindDest->getFirstNonPHI(); 4162 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4163 "CleanupReturnInst must unwind to an EH block which is not a " 4164 "landingpad.", 4165 &CRI); 4166 } 4167 4168 visitTerminator(CRI); 4169 } 4170 4171 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4172 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4173 // If the we have an invalid invoke, don't try to compute the dominance. 4174 // We already reject it in the invoke specific checks and the dominance 4175 // computation doesn't handle multiple edges. 4176 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4177 if (II->getNormalDest() == II->getUnwindDest()) 4178 return; 4179 } 4180 4181 // Quick check whether the def has already been encountered in the same block. 4182 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4183 // uses are defined to happen on the incoming edge, not at the instruction. 4184 // 4185 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4186 // wrapping an SSA value, assert that we've already encountered it. See 4187 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4188 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4189 return; 4190 4191 const Use &U = I.getOperandUse(i); 4192 Assert(DT.dominates(Op, U), 4193 "Instruction does not dominate all uses!", Op, &I); 4194 } 4195 4196 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4197 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4198 "apply only to pointer types", &I); 4199 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4200 "dereferenceable, dereferenceable_or_null apply only to load" 4201 " and inttoptr instructions, use attributes for calls or invokes", &I); 4202 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4203 "take one operand!", &I); 4204 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4205 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4206 "dereferenceable_or_null metadata value must be an i64!", &I); 4207 } 4208 4209 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4210 Assert(MD->getNumOperands() >= 2, 4211 "!prof annotations should have no less than 2 operands", MD); 4212 4213 // Check first operand. 4214 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4215 Assert(isa<MDString>(MD->getOperand(0)), 4216 "expected string with name of the !prof annotation", MD); 4217 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4218 StringRef ProfName = MDS->getString(); 4219 4220 // Check consistency of !prof branch_weights metadata. 4221 if (ProfName.equals("branch_weights")) { 4222 if (isa<InvokeInst>(&I)) { 4223 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4224 "Wrong number of InvokeInst branch_weights operands", MD); 4225 } else { 4226 unsigned ExpectedNumOperands = 0; 4227 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4228 ExpectedNumOperands = BI->getNumSuccessors(); 4229 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4230 ExpectedNumOperands = SI->getNumSuccessors(); 4231 else if (isa<CallInst>(&I)) 4232 ExpectedNumOperands = 1; 4233 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4234 ExpectedNumOperands = IBI->getNumDestinations(); 4235 else if (isa<SelectInst>(&I)) 4236 ExpectedNumOperands = 2; 4237 else 4238 CheckFailed("!prof branch_weights are not allowed for this instruction", 4239 MD); 4240 4241 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4242 "Wrong number of operands", MD); 4243 } 4244 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4245 auto &MDO = MD->getOperand(i); 4246 Assert(MDO, "second operand should not be null", MD); 4247 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4248 "!prof brunch_weights operand is not a const int"); 4249 } 4250 } 4251 } 4252 4253 /// verifyInstruction - Verify that an instruction is well formed. 4254 /// 4255 void Verifier::visitInstruction(Instruction &I) { 4256 BasicBlock *BB = I.getParent(); 4257 Assert(BB, "Instruction not embedded in basic block!", &I); 4258 4259 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4260 for (User *U : I.users()) { 4261 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4262 "Only PHI nodes may reference their own value!", &I); 4263 } 4264 } 4265 4266 // Check that void typed values don't have names 4267 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4268 "Instruction has a name, but provides a void value!", &I); 4269 4270 // Check that the return value of the instruction is either void or a legal 4271 // value type. 4272 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4273 "Instruction returns a non-scalar type!", &I); 4274 4275 // Check that the instruction doesn't produce metadata. Calls are already 4276 // checked against the callee type. 4277 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4278 "Invalid use of metadata!", &I); 4279 4280 // Check that all uses of the instruction, if they are instructions 4281 // themselves, actually have parent basic blocks. If the use is not an 4282 // instruction, it is an error! 4283 for (Use &U : I.uses()) { 4284 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4285 Assert(Used->getParent() != nullptr, 4286 "Instruction referencing" 4287 " instruction not embedded in a basic block!", 4288 &I, Used); 4289 else { 4290 CheckFailed("Use of instruction is not an instruction!", U); 4291 return; 4292 } 4293 } 4294 4295 // Get a pointer to the call base of the instruction if it is some form of 4296 // call. 4297 const CallBase *CBI = dyn_cast<CallBase>(&I); 4298 4299 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4300 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4301 4302 // Check to make sure that only first-class-values are operands to 4303 // instructions. 4304 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4305 Assert(false, "Instruction operands must be first-class values!", &I); 4306 } 4307 4308 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4309 // Check to make sure that the "address of" an intrinsic function is never 4310 // taken. 4311 Assert(!F->isIntrinsic() || 4312 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4313 "Cannot take the address of an intrinsic!", &I); 4314 Assert( 4315 !F->isIntrinsic() || isa<CallInst>(I) || 4316 F->getIntrinsicID() == Intrinsic::donothing || 4317 F->getIntrinsicID() == Intrinsic::coro_resume || 4318 F->getIntrinsicID() == Intrinsic::coro_destroy || 4319 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4320 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4321 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4322 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4323 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4324 "statepoint, coro_resume or coro_destroy", 4325 &I); 4326 Assert(F->getParent() == &M, "Referencing function in another module!", 4327 &I, &M, F, F->getParent()); 4328 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4329 Assert(OpBB->getParent() == BB->getParent(), 4330 "Referring to a basic block in another function!", &I); 4331 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4332 Assert(OpArg->getParent() == BB->getParent(), 4333 "Referring to an argument in another function!", &I); 4334 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4335 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4336 &M, GV, GV->getParent()); 4337 } else if (isa<Instruction>(I.getOperand(i))) { 4338 verifyDominatesUse(I, i); 4339 } else if (isa<InlineAsm>(I.getOperand(i))) { 4340 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4341 "Cannot take the address of an inline asm!", &I); 4342 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4343 if (CE->getType()->isPtrOrPtrVectorTy() || 4344 !DL.getNonIntegralAddressSpaces().empty()) { 4345 // If we have a ConstantExpr pointer, we need to see if it came from an 4346 // illegal bitcast. If the datalayout string specifies non-integral 4347 // address spaces then we also need to check for illegal ptrtoint and 4348 // inttoptr expressions. 4349 visitConstantExprsRecursively(CE); 4350 } 4351 } 4352 } 4353 4354 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4355 Assert(I.getType()->isFPOrFPVectorTy(), 4356 "fpmath requires a floating point result!", &I); 4357 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4358 if (ConstantFP *CFP0 = 4359 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4360 const APFloat &Accuracy = CFP0->getValueAPF(); 4361 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4362 "fpmath accuracy must have float type", &I); 4363 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4364 "fpmath accuracy not a positive number!", &I); 4365 } else { 4366 Assert(false, "invalid fpmath accuracy!", &I); 4367 } 4368 } 4369 4370 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4371 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4372 "Ranges are only for loads, calls and invokes!", &I); 4373 visitRangeMetadata(I, Range, I.getType()); 4374 } 4375 4376 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4377 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4378 &I); 4379 Assert(isa<LoadInst>(I), 4380 "nonnull applies only to load instructions, use attributes" 4381 " for calls or invokes", 4382 &I); 4383 } 4384 4385 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4386 visitDereferenceableMetadata(I, MD); 4387 4388 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4389 visitDereferenceableMetadata(I, MD); 4390 4391 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4392 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4393 4394 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4395 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4396 &I); 4397 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4398 "use attributes for calls or invokes", &I); 4399 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4400 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4401 Assert(CI && CI->getType()->isIntegerTy(64), 4402 "align metadata value must be an i64!", &I); 4403 uint64_t Align = CI->getZExtValue(); 4404 Assert(isPowerOf2_64(Align), 4405 "align metadata value must be a power of 2!", &I); 4406 Assert(Align <= Value::MaximumAlignment, 4407 "alignment is larger that implementation defined limit", &I); 4408 } 4409 4410 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4411 visitProfMetadata(I, MD); 4412 4413 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4414 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4415 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4416 } 4417 4418 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4419 verifyFragmentExpression(*DII); 4420 verifyNotEntryValue(*DII); 4421 } 4422 4423 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4424 I.getAllMetadata(MDs); 4425 for (auto Attachment : MDs) { 4426 unsigned Kind = Attachment.first; 4427 auto AllowLocs = 4428 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4429 ? AreDebugLocsAllowed::Yes 4430 : AreDebugLocsAllowed::No; 4431 visitMDNode(*Attachment.second, AllowLocs); 4432 } 4433 4434 InstsInThisBlock.insert(&I); 4435 } 4436 4437 /// Allow intrinsics to be verified in different ways. 4438 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4439 Function *IF = Call.getCalledFunction(); 4440 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4441 IF); 4442 4443 // Verify that the intrinsic prototype lines up with what the .td files 4444 // describe. 4445 FunctionType *IFTy = IF->getFunctionType(); 4446 bool IsVarArg = IFTy->isVarArg(); 4447 4448 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4449 getIntrinsicInfoTableEntries(ID, Table); 4450 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4451 4452 // Walk the descriptors to extract overloaded types. 4453 SmallVector<Type *, 4> ArgTys; 4454 Intrinsic::MatchIntrinsicTypesResult Res = 4455 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4456 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4457 "Intrinsic has incorrect return type!", IF); 4458 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4459 "Intrinsic has incorrect argument type!", IF); 4460 4461 // Verify if the intrinsic call matches the vararg property. 4462 if (IsVarArg) 4463 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4464 "Intrinsic was not defined with variable arguments!", IF); 4465 else 4466 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4467 "Callsite was not defined with variable arguments!", IF); 4468 4469 // All descriptors should be absorbed by now. 4470 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4471 4472 // Now that we have the intrinsic ID and the actual argument types (and we 4473 // know they are legal for the intrinsic!) get the intrinsic name through the 4474 // usual means. This allows us to verify the mangling of argument types into 4475 // the name. 4476 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4477 Assert(ExpectedName == IF->getName(), 4478 "Intrinsic name not mangled correctly for type arguments! " 4479 "Should be: " + 4480 ExpectedName, 4481 IF); 4482 4483 // If the intrinsic takes MDNode arguments, verify that they are either global 4484 // or are local to *this* function. 4485 for (Value *V : Call.args()) 4486 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4487 visitMetadataAsValue(*MD, Call.getCaller()); 4488 4489 switch (ID) { 4490 default: 4491 break; 4492 case Intrinsic::assume: { 4493 for (auto &Elem : Call.bundle_op_infos()) { 4494 Assert(Elem.Tag->getKey() == "ignore" || 4495 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4496 "tags must be valid attribute names"); 4497 Assert(Elem.End - Elem.Begin <= 2, "to many arguments"); 4498 Attribute::AttrKind Kind = 4499 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4500 if (Kind == Attribute::None) 4501 break; 4502 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4503 Assert(Elem.End - Elem.Begin == 2, 4504 "this attribute should have 2 arguments"); 4505 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4506 "the second argument should be a constant integral value"); 4507 } else if (isFuncOnlyAttr(Kind)) { 4508 Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument"); 4509 } else if (!isFuncOrArgAttr(Kind)) { 4510 Assert((Elem.End - Elem.Begin) == 1, 4511 "this attribute should have one argument"); 4512 } 4513 } 4514 break; 4515 } 4516 case Intrinsic::coro_id: { 4517 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4518 if (isa<ConstantPointerNull>(InfoArg)) 4519 break; 4520 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4521 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4522 "info argument of llvm.coro.begin must refer to an initialized " 4523 "constant"); 4524 Constant *Init = GV->getInitializer(); 4525 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4526 "info argument of llvm.coro.begin must refer to either a struct or " 4527 "an array"); 4528 break; 4529 } 4530 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4531 case Intrinsic::INTRINSIC: 4532 #include "llvm/IR/ConstrainedOps.def" 4533 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4534 break; 4535 case Intrinsic::dbg_declare: // llvm.dbg.declare 4536 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4537 "invalid llvm.dbg.declare intrinsic call 1", Call); 4538 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4539 break; 4540 case Intrinsic::dbg_addr: // llvm.dbg.addr 4541 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4542 break; 4543 case Intrinsic::dbg_value: // llvm.dbg.value 4544 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4545 break; 4546 case Intrinsic::dbg_label: // llvm.dbg.label 4547 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4548 break; 4549 case Intrinsic::memcpy: 4550 case Intrinsic::memcpy_inline: 4551 case Intrinsic::memmove: 4552 case Intrinsic::memset: { 4553 const auto *MI = cast<MemIntrinsic>(&Call); 4554 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4555 return Alignment == 0 || isPowerOf2_32(Alignment); 4556 }; 4557 Assert(IsValidAlignment(MI->getDestAlignment()), 4558 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4559 Call); 4560 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4561 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4562 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4563 Call); 4564 } 4565 4566 break; 4567 } 4568 case Intrinsic::memcpy_element_unordered_atomic: 4569 case Intrinsic::memmove_element_unordered_atomic: 4570 case Intrinsic::memset_element_unordered_atomic: { 4571 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4572 4573 ConstantInt *ElementSizeCI = 4574 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4575 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4576 Assert(ElementSizeVal.isPowerOf2(), 4577 "element size of the element-wise atomic memory intrinsic " 4578 "must be a power of 2", 4579 Call); 4580 4581 auto IsValidAlignment = [&](uint64_t Alignment) { 4582 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4583 }; 4584 uint64_t DstAlignment = AMI->getDestAlignment(); 4585 Assert(IsValidAlignment(DstAlignment), 4586 "incorrect alignment of the destination argument", Call); 4587 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4588 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4589 Assert(IsValidAlignment(SrcAlignment), 4590 "incorrect alignment of the source argument", Call); 4591 } 4592 break; 4593 } 4594 case Intrinsic::call_preallocated_setup: { 4595 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4596 Assert(NumArgs != nullptr, 4597 "llvm.call.preallocated.setup argument must be a constant"); 4598 bool FoundCall = false; 4599 for (User *U : Call.users()) { 4600 auto *UseCall = dyn_cast<CallBase>(U); 4601 Assert(UseCall != nullptr, 4602 "Uses of llvm.call.preallocated.setup must be calls"); 4603 const Function *Fn = UseCall->getCalledFunction(); 4604 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4605 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4606 Assert(AllocArgIndex != nullptr, 4607 "llvm.call.preallocated.alloc arg index must be a constant"); 4608 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4609 Assert(AllocArgIndexInt.sge(0) && 4610 AllocArgIndexInt.slt(NumArgs->getValue()), 4611 "llvm.call.preallocated.alloc arg index must be between 0 and " 4612 "corresponding " 4613 "llvm.call.preallocated.setup's argument count"); 4614 } else if (Fn && Fn->getIntrinsicID() == 4615 Intrinsic::call_preallocated_teardown) { 4616 // nothing to do 4617 } else { 4618 Assert(!FoundCall, "Can have at most one call corresponding to a " 4619 "llvm.call.preallocated.setup"); 4620 FoundCall = true; 4621 size_t NumPreallocatedArgs = 0; 4622 for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { 4623 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4624 ++NumPreallocatedArgs; 4625 } 4626 } 4627 Assert(NumPreallocatedArgs != 0, 4628 "cannot use preallocated intrinsics on a call without " 4629 "preallocated arguments"); 4630 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4631 "llvm.call.preallocated.setup arg size must be equal to number " 4632 "of preallocated arguments " 4633 "at call site", 4634 Call, *UseCall); 4635 // getOperandBundle() cannot be called if more than one of the operand 4636 // bundle exists. There is already a check elsewhere for this, so skip 4637 // here if we see more than one. 4638 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4639 1) { 4640 return; 4641 } 4642 auto PreallocatedBundle = 4643 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4644 Assert(PreallocatedBundle, 4645 "Use of llvm.call.preallocated.setup outside intrinsics " 4646 "must be in \"preallocated\" operand bundle"); 4647 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4648 "preallocated bundle must have token from corresponding " 4649 "llvm.call.preallocated.setup"); 4650 } 4651 } 4652 break; 4653 } 4654 case Intrinsic::call_preallocated_arg: { 4655 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4656 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4657 Intrinsic::call_preallocated_setup, 4658 "llvm.call.preallocated.arg token argument must be a " 4659 "llvm.call.preallocated.setup"); 4660 Assert(Call.hasFnAttr(Attribute::Preallocated), 4661 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4662 "call site attribute"); 4663 break; 4664 } 4665 case Intrinsic::call_preallocated_teardown: { 4666 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4667 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4668 Intrinsic::call_preallocated_setup, 4669 "llvm.call.preallocated.teardown token argument must be a " 4670 "llvm.call.preallocated.setup"); 4671 break; 4672 } 4673 case Intrinsic::gcroot: 4674 case Intrinsic::gcwrite: 4675 case Intrinsic::gcread: 4676 if (ID == Intrinsic::gcroot) { 4677 AllocaInst *AI = 4678 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4679 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4680 Assert(isa<Constant>(Call.getArgOperand(1)), 4681 "llvm.gcroot parameter #2 must be a constant.", Call); 4682 if (!AI->getAllocatedType()->isPointerTy()) { 4683 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4684 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4685 "or argument #2 must be a non-null constant.", 4686 Call); 4687 } 4688 } 4689 4690 Assert(Call.getParent()->getParent()->hasGC(), 4691 "Enclosing function does not use GC.", Call); 4692 break; 4693 case Intrinsic::init_trampoline: 4694 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4695 "llvm.init_trampoline parameter #2 must resolve to a function.", 4696 Call); 4697 break; 4698 case Intrinsic::prefetch: 4699 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4700 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4701 "invalid arguments to llvm.prefetch", Call); 4702 break; 4703 case Intrinsic::stackprotector: 4704 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4705 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4706 break; 4707 case Intrinsic::localescape: { 4708 BasicBlock *BB = Call.getParent(); 4709 Assert(BB == &BB->getParent()->front(), 4710 "llvm.localescape used outside of entry block", Call); 4711 Assert(!SawFrameEscape, 4712 "multiple calls to llvm.localescape in one function", Call); 4713 for (Value *Arg : Call.args()) { 4714 if (isa<ConstantPointerNull>(Arg)) 4715 continue; // Null values are allowed as placeholders. 4716 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4717 Assert(AI && AI->isStaticAlloca(), 4718 "llvm.localescape only accepts static allocas", Call); 4719 } 4720 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4721 SawFrameEscape = true; 4722 break; 4723 } 4724 case Intrinsic::localrecover: { 4725 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4726 Function *Fn = dyn_cast<Function>(FnArg); 4727 Assert(Fn && !Fn->isDeclaration(), 4728 "llvm.localrecover first " 4729 "argument must be function defined in this module", 4730 Call); 4731 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4732 auto &Entry = FrameEscapeInfo[Fn]; 4733 Entry.second = unsigned( 4734 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4735 break; 4736 } 4737 4738 case Intrinsic::experimental_gc_statepoint: 4739 if (auto *CI = dyn_cast<CallInst>(&Call)) 4740 Assert(!CI->isInlineAsm(), 4741 "gc.statepoint support for inline assembly unimplemented", CI); 4742 Assert(Call.getParent()->getParent()->hasGC(), 4743 "Enclosing function does not use GC.", Call); 4744 4745 verifyStatepoint(Call); 4746 break; 4747 case Intrinsic::experimental_gc_result: { 4748 Assert(Call.getParent()->getParent()->hasGC(), 4749 "Enclosing function does not use GC.", Call); 4750 // Are we tied to a statepoint properly? 4751 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4752 const Function *StatepointFn = 4753 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4754 Assert(StatepointFn && StatepointFn->isDeclaration() && 4755 StatepointFn->getIntrinsicID() == 4756 Intrinsic::experimental_gc_statepoint, 4757 "gc.result operand #1 must be from a statepoint", Call, 4758 Call.getArgOperand(0)); 4759 4760 // Assert that result type matches wrapped callee. 4761 const Value *Target = StatepointCall->getArgOperand(2); 4762 auto *PT = cast<PointerType>(Target->getType()); 4763 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4764 Assert(Call.getType() == TargetFuncType->getReturnType(), 4765 "gc.result result type does not match wrapped callee", Call); 4766 break; 4767 } 4768 case Intrinsic::experimental_gc_relocate: { 4769 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4770 4771 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4772 "gc.relocate must return a pointer or a vector of pointers", Call); 4773 4774 // Check that this relocate is correctly tied to the statepoint 4775 4776 // This is case for relocate on the unwinding path of an invoke statepoint 4777 if (LandingPadInst *LandingPad = 4778 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4779 4780 const BasicBlock *InvokeBB = 4781 LandingPad->getParent()->getUniquePredecessor(); 4782 4783 // Landingpad relocates should have only one predecessor with invoke 4784 // statepoint terminator 4785 Assert(InvokeBB, "safepoints should have unique landingpads", 4786 LandingPad->getParent()); 4787 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4788 InvokeBB); 4789 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 4790 "gc relocate should be linked to a statepoint", InvokeBB); 4791 } else { 4792 // In all other cases relocate should be tied to the statepoint directly. 4793 // This covers relocates on a normal return path of invoke statepoint and 4794 // relocates of a call statepoint. 4795 auto Token = Call.getArgOperand(0); 4796 Assert(isa<GCStatepointInst>(Token), 4797 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4798 } 4799 4800 // Verify rest of the relocate arguments. 4801 const CallBase &StatepointCall = 4802 *cast<GCRelocateInst>(Call).getStatepoint(); 4803 4804 // Both the base and derived must be piped through the safepoint. 4805 Value *Base = Call.getArgOperand(1); 4806 Assert(isa<ConstantInt>(Base), 4807 "gc.relocate operand #2 must be integer offset", Call); 4808 4809 Value *Derived = Call.getArgOperand(2); 4810 Assert(isa<ConstantInt>(Derived), 4811 "gc.relocate operand #3 must be integer offset", Call); 4812 4813 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4814 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4815 4816 // Check the bounds 4817 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 4818 Assert(BaseIndex < Opt->Inputs.size(), 4819 "gc.relocate: statepoint base index out of bounds", Call); 4820 Assert(DerivedIndex < Opt->Inputs.size(), 4821 "gc.relocate: statepoint derived index out of bounds", Call); 4822 } else { 4823 Assert(BaseIndex < StatepointCall.arg_size(), 4824 "gc.relocate: statepoint base index out of bounds", Call); 4825 Assert(DerivedIndex < StatepointCall.arg_size(), 4826 "gc.relocate: statepoint derived index out of bounds", Call); 4827 4828 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4829 // section of the statepoint's argument. 4830 Assert(StatepointCall.arg_size() > 0, 4831 "gc.statepoint: insufficient arguments"); 4832 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4833 "gc.statement: number of call arguments must be constant integer"); 4834 const uint64_t NumCallArgs = 4835 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4836 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4837 "gc.statepoint: mismatch in number of call arguments"); 4838 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4839 "gc.statepoint: number of transition arguments must be " 4840 "a constant integer"); 4841 const uint64_t NumTransitionArgs = 4842 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4843 ->getZExtValue(); 4844 const uint64_t DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4845 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4846 "gc.statepoint: number of deoptimization arguments must be " 4847 "a constant integer"); 4848 const uint64_t NumDeoptArgs = 4849 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4850 ->getZExtValue(); 4851 const uint64_t GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4852 const uint64_t GCParamArgsEnd = StatepointCall.arg_size(); 4853 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4854 "gc.relocate: statepoint base index doesn't fall within the " 4855 "'gc parameters' section of the statepoint call", 4856 Call); 4857 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4858 "gc.relocate: statepoint derived index doesn't fall within the " 4859 "'gc parameters' section of the statepoint call", 4860 Call); 4861 } 4862 4863 // Relocated value must be either a pointer type or vector-of-pointer type, 4864 // but gc_relocate does not need to return the same pointer type as the 4865 // relocated pointer. It can be casted to the correct type later if it's 4866 // desired. However, they must have the same address space and 'vectorness' 4867 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4868 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4869 "gc.relocate: relocated value must be a gc pointer", Call); 4870 4871 auto ResultType = Call.getType(); 4872 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4873 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4874 "gc.relocate: vector relocates to vector and pointer to pointer", 4875 Call); 4876 Assert( 4877 ResultType->getPointerAddressSpace() == 4878 DerivedType->getPointerAddressSpace(), 4879 "gc.relocate: relocating a pointer shouldn't change its address space", 4880 Call); 4881 break; 4882 } 4883 case Intrinsic::eh_exceptioncode: 4884 case Intrinsic::eh_exceptionpointer: { 4885 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4886 "eh.exceptionpointer argument must be a catchpad", Call); 4887 break; 4888 } 4889 case Intrinsic::get_active_lane_mask: { 4890 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 4891 "vector", Call); 4892 auto *ElemTy = Call.getType()->getScalarType(); 4893 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 4894 "i1", Call); 4895 break; 4896 } 4897 case Intrinsic::masked_load: { 4898 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4899 Call); 4900 4901 Value *Ptr = Call.getArgOperand(0); 4902 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4903 Value *Mask = Call.getArgOperand(2); 4904 Value *PassThru = Call.getArgOperand(3); 4905 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4906 Call); 4907 Assert(Alignment->getValue().isPowerOf2(), 4908 "masked_load: alignment must be a power of 2", Call); 4909 4910 // DataTy is the overloaded type 4911 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4912 Assert(DataTy == Call.getType(), 4913 "masked_load: return must match pointer type", Call); 4914 Assert(PassThru->getType() == DataTy, 4915 "masked_load: pass through and data type must match", Call); 4916 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4917 cast<VectorType>(DataTy)->getElementCount(), 4918 "masked_load: vector mask must be same length as data", Call); 4919 break; 4920 } 4921 case Intrinsic::masked_store: { 4922 Value *Val = Call.getArgOperand(0); 4923 Value *Ptr = Call.getArgOperand(1); 4924 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4925 Value *Mask = Call.getArgOperand(3); 4926 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4927 Call); 4928 Assert(Alignment->getValue().isPowerOf2(), 4929 "masked_store: alignment must be a power of 2", Call); 4930 4931 // DataTy is the overloaded type 4932 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4933 Assert(DataTy == Val->getType(), 4934 "masked_store: storee must match pointer type", Call); 4935 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 4936 cast<VectorType>(DataTy)->getElementCount(), 4937 "masked_store: vector mask must be same length as data", Call); 4938 break; 4939 } 4940 4941 case Intrinsic::masked_gather: { 4942 const APInt &Alignment = 4943 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4944 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4945 "masked_gather: alignment must be 0 or a power of 2", Call); 4946 break; 4947 } 4948 case Intrinsic::masked_scatter: { 4949 const APInt &Alignment = 4950 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4951 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4952 "masked_scatter: alignment must be 0 or a power of 2", Call); 4953 break; 4954 } 4955 4956 case Intrinsic::experimental_guard: { 4957 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4958 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4959 "experimental_guard must have exactly one " 4960 "\"deopt\" operand bundle"); 4961 break; 4962 } 4963 4964 case Intrinsic::experimental_deoptimize: { 4965 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4966 Call); 4967 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4968 "experimental_deoptimize must have exactly one " 4969 "\"deopt\" operand bundle"); 4970 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4971 "experimental_deoptimize return type must match caller return type"); 4972 4973 if (isa<CallInst>(Call)) { 4974 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4975 Assert(RI, 4976 "calls to experimental_deoptimize must be followed by a return"); 4977 4978 if (!Call.getType()->isVoidTy() && RI) 4979 Assert(RI->getReturnValue() == &Call, 4980 "calls to experimental_deoptimize must be followed by a return " 4981 "of the value computed by experimental_deoptimize"); 4982 } 4983 4984 break; 4985 } 4986 case Intrinsic::sadd_sat: 4987 case Intrinsic::uadd_sat: 4988 case Intrinsic::ssub_sat: 4989 case Intrinsic::usub_sat: 4990 case Intrinsic::sshl_sat: 4991 case Intrinsic::ushl_sat: { 4992 Value *Op1 = Call.getArgOperand(0); 4993 Value *Op2 = Call.getArgOperand(1); 4994 Assert(Op1->getType()->isIntOrIntVectorTy(), 4995 "first operand of [us][add|sub|shl]_sat must be an int type or " 4996 "vector of ints"); 4997 Assert(Op2->getType()->isIntOrIntVectorTy(), 4998 "second operand of [us][add|sub|shl]_sat must be an int type or " 4999 "vector of ints"); 5000 break; 5001 } 5002 case Intrinsic::smul_fix: 5003 case Intrinsic::smul_fix_sat: 5004 case Intrinsic::umul_fix: 5005 case Intrinsic::umul_fix_sat: 5006 case Intrinsic::sdiv_fix: 5007 case Intrinsic::sdiv_fix_sat: 5008 case Intrinsic::udiv_fix: 5009 case Intrinsic::udiv_fix_sat: { 5010 Value *Op1 = Call.getArgOperand(0); 5011 Value *Op2 = Call.getArgOperand(1); 5012 Assert(Op1->getType()->isIntOrIntVectorTy(), 5013 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5014 "vector of ints"); 5015 Assert(Op2->getType()->isIntOrIntVectorTy(), 5016 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5017 "vector of ints"); 5018 5019 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5020 Assert(Op3->getType()->getBitWidth() <= 32, 5021 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5022 5023 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5024 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5025 Assert( 5026 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5027 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5028 "the operands"); 5029 } else { 5030 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5031 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5032 "to the width of the operands"); 5033 } 5034 break; 5035 } 5036 case Intrinsic::lround: 5037 case Intrinsic::llround: 5038 case Intrinsic::lrint: 5039 case Intrinsic::llrint: { 5040 Type *ValTy = Call.getArgOperand(0)->getType(); 5041 Type *ResultTy = Call.getType(); 5042 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5043 "Intrinsic does not support vectors", &Call); 5044 break; 5045 } 5046 case Intrinsic::bswap: { 5047 Type *Ty = Call.getType(); 5048 unsigned Size = Ty->getScalarSizeInBits(); 5049 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5050 break; 5051 } 5052 case Intrinsic::matrix_multiply: 5053 case Intrinsic::matrix_transpose: 5054 case Intrinsic::matrix_column_major_load: 5055 case Intrinsic::matrix_column_major_store: { 5056 Function *IF = Call.getCalledFunction(); 5057 ConstantInt *Stride = nullptr; 5058 ConstantInt *NumRows; 5059 ConstantInt *NumColumns; 5060 VectorType *ResultTy; 5061 Type *Op0ElemTy = nullptr; 5062 Type *Op1ElemTy = nullptr; 5063 switch (ID) { 5064 case Intrinsic::matrix_multiply: 5065 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5066 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5067 ResultTy = cast<VectorType>(Call.getType()); 5068 Op0ElemTy = 5069 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5070 Op1ElemTy = 5071 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5072 break; 5073 case Intrinsic::matrix_transpose: 5074 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5075 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5076 ResultTy = cast<VectorType>(Call.getType()); 5077 Op0ElemTy = 5078 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5079 break; 5080 case Intrinsic::matrix_column_major_load: 5081 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5082 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5083 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5084 ResultTy = cast<VectorType>(Call.getType()); 5085 Op0ElemTy = 5086 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5087 break; 5088 case Intrinsic::matrix_column_major_store: 5089 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5090 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5091 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5092 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5093 Op0ElemTy = 5094 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5095 Op1ElemTy = 5096 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5097 break; 5098 default: 5099 llvm_unreachable("unexpected intrinsic"); 5100 } 5101 5102 Assert(ResultTy->getElementType()->isIntegerTy() || 5103 ResultTy->getElementType()->isFloatingPointTy(), 5104 "Result type must be an integer or floating-point type!", IF); 5105 5106 Assert(ResultTy->getElementType() == Op0ElemTy, 5107 "Vector element type mismatch of the result and first operand " 5108 "vector!", IF); 5109 5110 if (Op1ElemTy) 5111 Assert(ResultTy->getElementType() == Op1ElemTy, 5112 "Vector element type mismatch of the result and second operand " 5113 "vector!", IF); 5114 5115 Assert(ResultTy->getNumElements() == 5116 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5117 "Result of a matrix operation does not fit in the returned vector!"); 5118 5119 if (Stride) 5120 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5121 "Stride must be greater or equal than the number of rows!", IF); 5122 5123 break; 5124 } 5125 }; 5126 } 5127 5128 /// Carefully grab the subprogram from a local scope. 5129 /// 5130 /// This carefully grabs the subprogram from a local scope, avoiding the 5131 /// built-in assertions that would typically fire. 5132 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5133 if (!LocalScope) 5134 return nullptr; 5135 5136 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5137 return SP; 5138 5139 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5140 return getSubprogram(LB->getRawScope()); 5141 5142 // Just return null; broken scope chains are checked elsewhere. 5143 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5144 return nullptr; 5145 } 5146 5147 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5148 unsigned NumOperands; 5149 bool HasRoundingMD; 5150 switch (FPI.getIntrinsicID()) { 5151 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5152 case Intrinsic::INTRINSIC: \ 5153 NumOperands = NARG; \ 5154 HasRoundingMD = ROUND_MODE; \ 5155 break; 5156 #include "llvm/IR/ConstrainedOps.def" 5157 default: 5158 llvm_unreachable("Invalid constrained FP intrinsic!"); 5159 } 5160 NumOperands += (1 + HasRoundingMD); 5161 // Compare intrinsics carry an extra predicate metadata operand. 5162 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5163 NumOperands += 1; 5164 Assert((FPI.getNumArgOperands() == NumOperands), 5165 "invalid arguments for constrained FP intrinsic", &FPI); 5166 5167 switch (FPI.getIntrinsicID()) { 5168 case Intrinsic::experimental_constrained_lrint: 5169 case Intrinsic::experimental_constrained_llrint: { 5170 Type *ValTy = FPI.getArgOperand(0)->getType(); 5171 Type *ResultTy = FPI.getType(); 5172 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5173 "Intrinsic does not support vectors", &FPI); 5174 } 5175 break; 5176 5177 case Intrinsic::experimental_constrained_lround: 5178 case Intrinsic::experimental_constrained_llround: { 5179 Type *ValTy = FPI.getArgOperand(0)->getType(); 5180 Type *ResultTy = FPI.getType(); 5181 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5182 "Intrinsic does not support vectors", &FPI); 5183 break; 5184 } 5185 5186 case Intrinsic::experimental_constrained_fcmp: 5187 case Intrinsic::experimental_constrained_fcmps: { 5188 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5189 Assert(CmpInst::isFPPredicate(Pred), 5190 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5191 break; 5192 } 5193 5194 case Intrinsic::experimental_constrained_fptosi: 5195 case Intrinsic::experimental_constrained_fptoui: { 5196 Value *Operand = FPI.getArgOperand(0); 5197 uint64_t NumSrcElem = 0; 5198 Assert(Operand->getType()->isFPOrFPVectorTy(), 5199 "Intrinsic first argument must be floating point", &FPI); 5200 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5201 NumSrcElem = OperandT->getNumElements(); 5202 } 5203 5204 Operand = &FPI; 5205 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5206 "Intrinsic first argument and result disagree on vector use", &FPI); 5207 Assert(Operand->getType()->isIntOrIntVectorTy(), 5208 "Intrinsic result must be an integer", &FPI); 5209 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5210 Assert(NumSrcElem == OperandT->getNumElements(), 5211 "Intrinsic first argument and result vector lengths must be equal", 5212 &FPI); 5213 } 5214 } 5215 break; 5216 5217 case Intrinsic::experimental_constrained_sitofp: 5218 case Intrinsic::experimental_constrained_uitofp: { 5219 Value *Operand = FPI.getArgOperand(0); 5220 uint64_t NumSrcElem = 0; 5221 Assert(Operand->getType()->isIntOrIntVectorTy(), 5222 "Intrinsic first argument must be integer", &FPI); 5223 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5224 NumSrcElem = OperandT->getNumElements(); 5225 } 5226 5227 Operand = &FPI; 5228 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5229 "Intrinsic first argument and result disagree on vector use", &FPI); 5230 Assert(Operand->getType()->isFPOrFPVectorTy(), 5231 "Intrinsic result must be a floating point", &FPI); 5232 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5233 Assert(NumSrcElem == OperandT->getNumElements(), 5234 "Intrinsic first argument and result vector lengths must be equal", 5235 &FPI); 5236 } 5237 } break; 5238 5239 case Intrinsic::experimental_constrained_fptrunc: 5240 case Intrinsic::experimental_constrained_fpext: { 5241 Value *Operand = FPI.getArgOperand(0); 5242 Type *OperandTy = Operand->getType(); 5243 Value *Result = &FPI; 5244 Type *ResultTy = Result->getType(); 5245 Assert(OperandTy->isFPOrFPVectorTy(), 5246 "Intrinsic first argument must be FP or FP vector", &FPI); 5247 Assert(ResultTy->isFPOrFPVectorTy(), 5248 "Intrinsic result must be FP or FP vector", &FPI); 5249 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5250 "Intrinsic first argument and result disagree on vector use", &FPI); 5251 if (OperandTy->isVectorTy()) { 5252 auto *OperandVecTy = cast<VectorType>(OperandTy); 5253 auto *ResultVecTy = cast<VectorType>(ResultTy); 5254 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 5255 "Intrinsic first argument and result vector lengths must be equal", 5256 &FPI); 5257 } 5258 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5259 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5260 "Intrinsic first argument's type must be larger than result type", 5261 &FPI); 5262 } else { 5263 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5264 "Intrinsic first argument's type must be smaller than result type", 5265 &FPI); 5266 } 5267 } 5268 break; 5269 5270 default: 5271 break; 5272 } 5273 5274 // If a non-metadata argument is passed in a metadata slot then the 5275 // error will be caught earlier when the incorrect argument doesn't 5276 // match the specification in the intrinsic call table. Thus, no 5277 // argument type check is needed here. 5278 5279 Assert(FPI.getExceptionBehavior().hasValue(), 5280 "invalid exception behavior argument", &FPI); 5281 if (HasRoundingMD) { 5282 Assert(FPI.getRoundingMode().hasValue(), 5283 "invalid rounding mode argument", &FPI); 5284 } 5285 } 5286 5287 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5288 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 5289 AssertDI(isa<ValueAsMetadata>(MD) || 5290 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5291 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5292 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5293 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5294 DII.getRawVariable()); 5295 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5296 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5297 DII.getRawExpression()); 5298 5299 // Ignore broken !dbg attachments; they're checked elsewhere. 5300 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5301 if (!isa<DILocation>(N)) 5302 return; 5303 5304 BasicBlock *BB = DII.getParent(); 5305 Function *F = BB ? BB->getParent() : nullptr; 5306 5307 // The scopes for variables and !dbg attachments must agree. 5308 DILocalVariable *Var = DII.getVariable(); 5309 DILocation *Loc = DII.getDebugLoc(); 5310 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5311 &DII, BB, F); 5312 5313 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5314 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5315 if (!VarSP || !LocSP) 5316 return; // Broken scope chains are checked elsewhere. 5317 5318 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5319 " variable and !dbg attachment", 5320 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5321 Loc->getScope()->getSubprogram()); 5322 5323 // This check is redundant with one in visitLocalVariable(). 5324 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5325 Var->getRawType()); 5326 verifyFnArgs(DII); 5327 } 5328 5329 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5330 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5331 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5332 DLI.getRawLabel()); 5333 5334 // Ignore broken !dbg attachments; they're checked elsewhere. 5335 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5336 if (!isa<DILocation>(N)) 5337 return; 5338 5339 BasicBlock *BB = DLI.getParent(); 5340 Function *F = BB ? BB->getParent() : nullptr; 5341 5342 // The scopes for variables and !dbg attachments must agree. 5343 DILabel *Label = DLI.getLabel(); 5344 DILocation *Loc = DLI.getDebugLoc(); 5345 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5346 &DLI, BB, F); 5347 5348 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5349 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5350 if (!LabelSP || !LocSP) 5351 return; 5352 5353 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5354 " label and !dbg attachment", 5355 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5356 Loc->getScope()->getSubprogram()); 5357 } 5358 5359 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5360 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5361 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5362 5363 // We don't know whether this intrinsic verified correctly. 5364 if (!V || !E || !E->isValid()) 5365 return; 5366 5367 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5368 auto Fragment = E->getFragmentInfo(); 5369 if (!Fragment) 5370 return; 5371 5372 // The frontend helps out GDB by emitting the members of local anonymous 5373 // unions as artificial local variables with shared storage. When SROA splits 5374 // the storage for artificial local variables that are smaller than the entire 5375 // union, the overhang piece will be outside of the allotted space for the 5376 // variable and this check fails. 5377 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5378 if (V->isArtificial()) 5379 return; 5380 5381 verifyFragmentExpression(*V, *Fragment, &I); 5382 } 5383 5384 template <typename ValueOrMetadata> 5385 void Verifier::verifyFragmentExpression(const DIVariable &V, 5386 DIExpression::FragmentInfo Fragment, 5387 ValueOrMetadata *Desc) { 5388 // If there's no size, the type is broken, but that should be checked 5389 // elsewhere. 5390 auto VarSize = V.getSizeInBits(); 5391 if (!VarSize) 5392 return; 5393 5394 unsigned FragSize = Fragment.SizeInBits; 5395 unsigned FragOffset = Fragment.OffsetInBits; 5396 AssertDI(FragSize + FragOffset <= *VarSize, 5397 "fragment is larger than or outside of variable", Desc, &V); 5398 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5399 } 5400 5401 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5402 // This function does not take the scope of noninlined function arguments into 5403 // account. Don't run it if current function is nodebug, because it may 5404 // contain inlined debug intrinsics. 5405 if (!HasDebugInfo) 5406 return; 5407 5408 // For performance reasons only check non-inlined ones. 5409 if (I.getDebugLoc()->getInlinedAt()) 5410 return; 5411 5412 DILocalVariable *Var = I.getVariable(); 5413 AssertDI(Var, "dbg intrinsic without variable"); 5414 5415 unsigned ArgNo = Var->getArg(); 5416 if (!ArgNo) 5417 return; 5418 5419 // Verify there are no duplicate function argument debug info entries. 5420 // These will cause hard-to-debug assertions in the DWARF backend. 5421 if (DebugFnArgs.size() < ArgNo) 5422 DebugFnArgs.resize(ArgNo, nullptr); 5423 5424 auto *Prev = DebugFnArgs[ArgNo - 1]; 5425 DebugFnArgs[ArgNo - 1] = Var; 5426 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5427 Prev, Var); 5428 } 5429 5430 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5431 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5432 5433 // We don't know whether this intrinsic verified correctly. 5434 if (!E || !E->isValid()) 5435 return; 5436 5437 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5438 } 5439 5440 void Verifier::verifyCompileUnits() { 5441 // When more than one Module is imported into the same context, such as during 5442 // an LTO build before linking the modules, ODR type uniquing may cause types 5443 // to point to a different CU. This check does not make sense in this case. 5444 if (M.getContext().isODRUniquingDebugTypes()) 5445 return; 5446 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5447 SmallPtrSet<const Metadata *, 2> Listed; 5448 if (CUs) 5449 Listed.insert(CUs->op_begin(), CUs->op_end()); 5450 for (auto *CU : CUVisited) 5451 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5452 CUVisited.clear(); 5453 } 5454 5455 void Verifier::verifyDeoptimizeCallingConvs() { 5456 if (DeoptimizeDeclarations.empty()) 5457 return; 5458 5459 const Function *First = DeoptimizeDeclarations[0]; 5460 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5461 Assert(First->getCallingConv() == F->getCallingConv(), 5462 "All llvm.experimental.deoptimize declarations must have the same " 5463 "calling convention", 5464 First, F); 5465 } 5466 } 5467 5468 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5469 bool HasSource = F.getSource().hasValue(); 5470 if (!HasSourceDebugInfo.count(&U)) 5471 HasSourceDebugInfo[&U] = HasSource; 5472 AssertDI(HasSource == HasSourceDebugInfo[&U], 5473 "inconsistent use of embedded source"); 5474 } 5475 5476 //===----------------------------------------------------------------------===// 5477 // Implement the public interfaces to this file... 5478 //===----------------------------------------------------------------------===// 5479 5480 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5481 Function &F = const_cast<Function &>(f); 5482 5483 // Don't use a raw_null_ostream. Printing IR is expensive. 5484 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5485 5486 // Note that this function's return value is inverted from what you would 5487 // expect of a function called "verify". 5488 return !V.verify(F); 5489 } 5490 5491 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5492 bool *BrokenDebugInfo) { 5493 // Don't use a raw_null_ostream. Printing IR is expensive. 5494 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5495 5496 bool Broken = false; 5497 for (const Function &F : M) 5498 Broken |= !V.verify(F); 5499 5500 Broken |= !V.verify(); 5501 if (BrokenDebugInfo) 5502 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5503 // Note that this function's return value is inverted from what you would 5504 // expect of a function called "verify". 5505 return Broken; 5506 } 5507 5508 namespace { 5509 5510 struct VerifierLegacyPass : public FunctionPass { 5511 static char ID; 5512 5513 std::unique_ptr<Verifier> V; 5514 bool FatalErrors = true; 5515 5516 VerifierLegacyPass() : FunctionPass(ID) { 5517 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5518 } 5519 explicit VerifierLegacyPass(bool FatalErrors) 5520 : FunctionPass(ID), 5521 FatalErrors(FatalErrors) { 5522 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5523 } 5524 5525 bool doInitialization(Module &M) override { 5526 V = std::make_unique<Verifier>( 5527 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5528 return false; 5529 } 5530 5531 bool runOnFunction(Function &F) override { 5532 if (!V->verify(F) && FatalErrors) { 5533 errs() << "in function " << F.getName() << '\n'; 5534 report_fatal_error("Broken function found, compilation aborted!"); 5535 } 5536 return false; 5537 } 5538 5539 bool doFinalization(Module &M) override { 5540 bool HasErrors = false; 5541 for (Function &F : M) 5542 if (F.isDeclaration()) 5543 HasErrors |= !V->verify(F); 5544 5545 HasErrors |= !V->verify(); 5546 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5547 report_fatal_error("Broken module found, compilation aborted!"); 5548 return false; 5549 } 5550 5551 void getAnalysisUsage(AnalysisUsage &AU) const override { 5552 AU.setPreservesAll(); 5553 } 5554 }; 5555 5556 } // end anonymous namespace 5557 5558 /// Helper to issue failure from the TBAA verification 5559 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5560 if (Diagnostic) 5561 return Diagnostic->CheckFailed(Args...); 5562 } 5563 5564 #define AssertTBAA(C, ...) \ 5565 do { \ 5566 if (!(C)) { \ 5567 CheckFailed(__VA_ARGS__); \ 5568 return false; \ 5569 } \ 5570 } while (false) 5571 5572 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5573 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5574 /// struct-type node describing an aggregate data structure (like a struct). 5575 TBAAVerifier::TBAABaseNodeSummary 5576 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5577 bool IsNewFormat) { 5578 if (BaseNode->getNumOperands() < 2) { 5579 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5580 return {true, ~0u}; 5581 } 5582 5583 auto Itr = TBAABaseNodes.find(BaseNode); 5584 if (Itr != TBAABaseNodes.end()) 5585 return Itr->second; 5586 5587 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5588 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5589 (void)InsertResult; 5590 assert(InsertResult.second && "We just checked!"); 5591 return Result; 5592 } 5593 5594 TBAAVerifier::TBAABaseNodeSummary 5595 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5596 bool IsNewFormat) { 5597 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5598 5599 if (BaseNode->getNumOperands() == 2) { 5600 // Scalar nodes can only be accessed at offset 0. 5601 return isValidScalarTBAANode(BaseNode) 5602 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5603 : InvalidNode; 5604 } 5605 5606 if (IsNewFormat) { 5607 if (BaseNode->getNumOperands() % 3 != 0) { 5608 CheckFailed("Access tag nodes must have the number of operands that is a " 5609 "multiple of 3!", BaseNode); 5610 return InvalidNode; 5611 } 5612 } else { 5613 if (BaseNode->getNumOperands() % 2 != 1) { 5614 CheckFailed("Struct tag nodes must have an odd number of operands!", 5615 BaseNode); 5616 return InvalidNode; 5617 } 5618 } 5619 5620 // Check the type size field. 5621 if (IsNewFormat) { 5622 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5623 BaseNode->getOperand(1)); 5624 if (!TypeSizeNode) { 5625 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5626 return InvalidNode; 5627 } 5628 } 5629 5630 // Check the type name field. In the new format it can be anything. 5631 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5632 CheckFailed("Struct tag nodes have a string as their first operand", 5633 BaseNode); 5634 return InvalidNode; 5635 } 5636 5637 bool Failed = false; 5638 5639 Optional<APInt> PrevOffset; 5640 unsigned BitWidth = ~0u; 5641 5642 // We've already checked that BaseNode is not a degenerate root node with one 5643 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5644 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5645 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5646 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5647 Idx += NumOpsPerField) { 5648 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5649 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5650 if (!isa<MDNode>(FieldTy)) { 5651 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5652 Failed = true; 5653 continue; 5654 } 5655 5656 auto *OffsetEntryCI = 5657 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5658 if (!OffsetEntryCI) { 5659 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5660 Failed = true; 5661 continue; 5662 } 5663 5664 if (BitWidth == ~0u) 5665 BitWidth = OffsetEntryCI->getBitWidth(); 5666 5667 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5668 CheckFailed( 5669 "Bitwidth between the offsets and struct type entries must match", &I, 5670 BaseNode); 5671 Failed = true; 5672 continue; 5673 } 5674 5675 // NB! As far as I can tell, we generate a non-strictly increasing offset 5676 // sequence only from structs that have zero size bit fields. When 5677 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5678 // pick the field lexically the latest in struct type metadata node. This 5679 // mirrors the actual behavior of the alias analysis implementation. 5680 bool IsAscending = 5681 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5682 5683 if (!IsAscending) { 5684 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5685 Failed = true; 5686 } 5687 5688 PrevOffset = OffsetEntryCI->getValue(); 5689 5690 if (IsNewFormat) { 5691 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5692 BaseNode->getOperand(Idx + 2)); 5693 if (!MemberSizeNode) { 5694 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5695 Failed = true; 5696 continue; 5697 } 5698 } 5699 } 5700 5701 return Failed ? InvalidNode 5702 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5703 } 5704 5705 static bool IsRootTBAANode(const MDNode *MD) { 5706 return MD->getNumOperands() < 2; 5707 } 5708 5709 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5710 SmallPtrSetImpl<const MDNode *> &Visited) { 5711 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5712 return false; 5713 5714 if (!isa<MDString>(MD->getOperand(0))) 5715 return false; 5716 5717 if (MD->getNumOperands() == 3) { 5718 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5719 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5720 return false; 5721 } 5722 5723 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5724 return Parent && Visited.insert(Parent).second && 5725 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5726 } 5727 5728 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5729 auto ResultIt = TBAAScalarNodes.find(MD); 5730 if (ResultIt != TBAAScalarNodes.end()) 5731 return ResultIt->second; 5732 5733 SmallPtrSet<const MDNode *, 4> Visited; 5734 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5735 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5736 (void)InsertResult; 5737 assert(InsertResult.second && "Just checked!"); 5738 5739 return Result; 5740 } 5741 5742 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5743 /// Offset in place to be the offset within the field node returned. 5744 /// 5745 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5746 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5747 const MDNode *BaseNode, 5748 APInt &Offset, 5749 bool IsNewFormat) { 5750 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5751 5752 // Scalar nodes have only one possible "field" -- their parent in the access 5753 // hierarchy. Offset must be zero at this point, but our caller is supposed 5754 // to Assert that. 5755 if (BaseNode->getNumOperands() == 2) 5756 return cast<MDNode>(BaseNode->getOperand(1)); 5757 5758 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5759 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5760 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5761 Idx += NumOpsPerField) { 5762 auto *OffsetEntryCI = 5763 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5764 if (OffsetEntryCI->getValue().ugt(Offset)) { 5765 if (Idx == FirstFieldOpNo) { 5766 CheckFailed("Could not find TBAA parent in struct type node", &I, 5767 BaseNode, &Offset); 5768 return nullptr; 5769 } 5770 5771 unsigned PrevIdx = Idx - NumOpsPerField; 5772 auto *PrevOffsetEntryCI = 5773 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5774 Offset -= PrevOffsetEntryCI->getValue(); 5775 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5776 } 5777 } 5778 5779 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5780 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5781 BaseNode->getOperand(LastIdx + 1)); 5782 Offset -= LastOffsetEntryCI->getValue(); 5783 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5784 } 5785 5786 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5787 if (!Type || Type->getNumOperands() < 3) 5788 return false; 5789 5790 // In the new format type nodes shall have a reference to the parent type as 5791 // its first operand. 5792 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5793 if (!Parent) 5794 return false; 5795 5796 return true; 5797 } 5798 5799 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5800 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5801 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5802 isa<AtomicCmpXchgInst>(I), 5803 "This instruction shall not have a TBAA access tag!", &I); 5804 5805 bool IsStructPathTBAA = 5806 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5807 5808 AssertTBAA( 5809 IsStructPathTBAA, 5810 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5811 5812 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5813 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5814 5815 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5816 5817 if (IsNewFormat) { 5818 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5819 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5820 } else { 5821 AssertTBAA(MD->getNumOperands() < 5, 5822 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5823 } 5824 5825 // Check the access size field. 5826 if (IsNewFormat) { 5827 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5828 MD->getOperand(3)); 5829 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5830 } 5831 5832 // Check the immutability flag. 5833 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5834 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5835 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5836 MD->getOperand(ImmutabilityFlagOpNo)); 5837 AssertTBAA(IsImmutableCI, 5838 "Immutability tag on struct tag metadata must be a constant", 5839 &I, MD); 5840 AssertTBAA( 5841 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5842 "Immutability part of the struct tag metadata must be either 0 or 1", 5843 &I, MD); 5844 } 5845 5846 AssertTBAA(BaseNode && AccessType, 5847 "Malformed struct tag metadata: base and access-type " 5848 "should be non-null and point to Metadata nodes", 5849 &I, MD, BaseNode, AccessType); 5850 5851 if (!IsNewFormat) { 5852 AssertTBAA(isValidScalarTBAANode(AccessType), 5853 "Access type node must be a valid scalar type", &I, MD, 5854 AccessType); 5855 } 5856 5857 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5858 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5859 5860 APInt Offset = OffsetCI->getValue(); 5861 bool SeenAccessTypeInPath = false; 5862 5863 SmallPtrSet<MDNode *, 4> StructPath; 5864 5865 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5866 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5867 IsNewFormat)) { 5868 if (!StructPath.insert(BaseNode).second) { 5869 CheckFailed("Cycle detected in struct path", &I, MD); 5870 return false; 5871 } 5872 5873 bool Invalid; 5874 unsigned BaseNodeBitWidth; 5875 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5876 IsNewFormat); 5877 5878 // If the base node is invalid in itself, then we've already printed all the 5879 // errors we wanted to print. 5880 if (Invalid) 5881 return false; 5882 5883 SeenAccessTypeInPath |= BaseNode == AccessType; 5884 5885 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5886 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5887 &I, MD, &Offset); 5888 5889 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5890 (BaseNodeBitWidth == 0 && Offset == 0) || 5891 (IsNewFormat && BaseNodeBitWidth == ~0u), 5892 "Access bit-width not the same as description bit-width", &I, MD, 5893 BaseNodeBitWidth, Offset.getBitWidth()); 5894 5895 if (IsNewFormat && SeenAccessTypeInPath) 5896 break; 5897 } 5898 5899 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5900 &I, MD); 5901 return true; 5902 } 5903 5904 char VerifierLegacyPass::ID = 0; 5905 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5906 5907 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5908 return new VerifierLegacyPass(FatalErrors); 5909 } 5910 5911 AnalysisKey VerifierAnalysis::Key; 5912 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5913 ModuleAnalysisManager &) { 5914 Result Res; 5915 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5916 return Res; 5917 } 5918 5919 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5920 FunctionAnalysisManager &) { 5921 return { llvm::verifyFunction(F, &dbgs()), false }; 5922 } 5923 5924 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5925 auto Res = AM.getResult<VerifierAnalysis>(M); 5926 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5927 report_fatal_error("Broken module found, compilation aborted!"); 5928 5929 return PreservedAnalyses::all(); 5930 } 5931 5932 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5933 auto res = AM.getResult<VerifierAnalysis>(F); 5934 if (res.IRBroken && FatalErrors) 5935 report_fatal_error("Broken function found, compilation aborted!"); 5936 5937 return PreservedAnalyses::all(); 5938 } 5939