1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * Landingpad instructions must be in a function with a personality function. 43 // * All other things that are tested by asserts spread about the code... 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/ADT/APFloat.h" 49 #include "llvm/ADT/APInt.h" 50 #include "llvm/ADT/ArrayRef.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/ADT/StringMap.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/Twine.h" 62 #include "llvm/ADT/ilist.h" 63 #include "llvm/BinaryFormat/Dwarf.h" 64 #include "llvm/IR/Argument.h" 65 #include "llvm/IR/Attributes.h" 66 #include "llvm/IR/BasicBlock.h" 67 #include "llvm/IR/CFG.h" 68 #include "llvm/IR/CallSite.h" 69 #include "llvm/IR/CallingConv.h" 70 #include "llvm/IR/Comdat.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalValue.h" 83 #include "llvm/IR/GlobalVariable.h" 84 #include "llvm/IR/InlineAsm.h" 85 #include "llvm/IR/InstVisitor.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/ModuleSlotTracker.h" 95 #include "llvm/IR/PassManager.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Use.h" 99 #include "llvm/IR/User.h" 100 #include "llvm/IR/Value.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 const DataLayout &DL; 125 LLVMContext &Context; 126 127 /// Track the brokenness of the module while recursively visiting. 128 bool Broken = false; 129 /// Broken debug info can be "recovered" from by stripping the debug info. 130 bool BrokenDebugInfo = false; 131 /// Whether to treat broken debug info as an error. 132 bool TreatBrokenDebugInfoAsError = true; 133 134 explicit VerifierSupport(raw_ostream *OS, const Module &M) 135 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {} 136 137 private: 138 void Write(const Module *M) { 139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 140 } 141 142 void Write(const Value *V) { 143 if (!V) 144 return; 145 if (isa<Instruction>(V)) { 146 V->print(*OS, MST); 147 *OS << '\n'; 148 } else { 149 V->printAsOperand(*OS, true, MST); 150 *OS << '\n'; 151 } 152 } 153 154 void Write(ImmutableCallSite CS) { 155 Write(CS.getInstruction()); 156 } 157 158 void Write(const Metadata *MD) { 159 if (!MD) 160 return; 161 MD->print(*OS, MST, &M); 162 *OS << '\n'; 163 } 164 165 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 166 Write(MD.get()); 167 } 168 169 void Write(const NamedMDNode *NMD) { 170 if (!NMD) 171 return; 172 NMD->print(*OS, MST); 173 *OS << '\n'; 174 } 175 176 void Write(Type *T) { 177 if (!T) 178 return; 179 *OS << ' ' << *T; 180 } 181 182 void Write(const Comdat *C) { 183 if (!C) 184 return; 185 *OS << *C; 186 } 187 188 void Write(const APInt *AI) { 189 if (!AI) 190 return; 191 *OS << *AI << '\n'; 192 } 193 194 void Write(const unsigned i) { *OS << i << '\n'; } 195 196 template <typename T> void Write(ArrayRef<T> Vs) { 197 for (const T &V : Vs) 198 Write(V); 199 } 200 201 template <typename T1, typename... Ts> 202 void WriteTs(const T1 &V1, const Ts &... Vs) { 203 Write(V1); 204 WriteTs(Vs...); 205 } 206 207 template <typename... Ts> void WriteTs() {} 208 209 public: 210 /// A check failed, so printout out the condition and the message. 211 /// 212 /// This provides a nice place to put a breakpoint if you want to see why 213 /// something is not correct. 214 void CheckFailed(const Twine &Message) { 215 if (OS) 216 *OS << Message << '\n'; 217 Broken = true; 218 } 219 220 /// A check failed (with values to print). 221 /// 222 /// This calls the Message-only version so that the above is easier to set a 223 /// breakpoint on. 224 template <typename T1, typename... Ts> 225 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 226 CheckFailed(Message); 227 if (OS) 228 WriteTs(V1, Vs...); 229 } 230 231 /// A debug info check failed. 232 void DebugInfoCheckFailed(const Twine &Message) { 233 if (OS) 234 *OS << Message << '\n'; 235 Broken |= TreatBrokenDebugInfoAsError; 236 BrokenDebugInfo = true; 237 } 238 239 /// A debug info check failed (with values to print). 240 template <typename T1, typename... Ts> 241 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 242 const Ts &... Vs) { 243 DebugInfoCheckFailed(Message); 244 if (OS) 245 WriteTs(V1, Vs...); 246 } 247 }; 248 249 } // namespace llvm 250 251 namespace { 252 253 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 254 friend class InstVisitor<Verifier>; 255 256 DominatorTree DT; 257 258 /// When verifying a basic block, keep track of all of the 259 /// instructions we have seen so far. 260 /// 261 /// This allows us to do efficient dominance checks for the case when an 262 /// instruction has an operand that is an instruction in the same block. 263 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 264 265 /// Keep track of the metadata nodes that have been checked already. 266 SmallPtrSet<const Metadata *, 32> MDNodes; 267 268 /// Keep track which DISubprogram is attached to which function. 269 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 270 271 /// Track all DICompileUnits visited. 272 SmallPtrSet<const Metadata *, 2> CUVisited; 273 274 /// The result type for a landingpad. 275 Type *LandingPadResultTy; 276 277 /// Whether we've seen a call to @llvm.localescape in this function 278 /// already. 279 bool SawFrameEscape; 280 281 /// Whether the current function has a DISubprogram attached to it. 282 bool HasDebugInfo = false; 283 284 /// Whether source was present on the first DIFile encountered in each CU. 285 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 286 287 /// Stores the count of how many objects were passed to llvm.localescape for a 288 /// given function and the largest index passed to llvm.localrecover. 289 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 290 291 // Maps catchswitches and cleanuppads that unwind to siblings to the 292 // terminators that indicate the unwind, used to detect cycles therein. 293 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 294 295 /// Cache of constants visited in search of ConstantExprs. 296 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 297 298 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 299 SmallVector<const Function *, 4> DeoptimizeDeclarations; 300 301 // Verify that this GlobalValue is only used in this module. 302 // This map is used to avoid visiting uses twice. We can arrive at a user 303 // twice, if they have multiple operands. In particular for very large 304 // constant expressions, we can arrive at a particular user many times. 305 SmallPtrSet<const Value *, 32> GlobalValueVisited; 306 307 // Keeps track of duplicate function argument debug info. 308 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 309 310 TBAAVerifier TBAAVerifyHelper; 311 312 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 313 314 public: 315 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 316 const Module &M) 317 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 318 SawFrameEscape(false), TBAAVerifyHelper(this) { 319 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 320 } 321 322 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 323 324 bool verify(const Function &F) { 325 assert(F.getParent() == &M && 326 "An instance of this class only works with a specific module!"); 327 328 // First ensure the function is well-enough formed to compute dominance 329 // information, and directly compute a dominance tree. We don't rely on the 330 // pass manager to provide this as it isolates us from a potentially 331 // out-of-date dominator tree and makes it significantly more complex to run 332 // this code outside of a pass manager. 333 // FIXME: It's really gross that we have to cast away constness here. 334 if (!F.empty()) 335 DT.recalculate(const_cast<Function &>(F)); 336 337 for (const BasicBlock &BB : F) { 338 if (!BB.empty() && BB.back().isTerminator()) 339 continue; 340 341 if (OS) { 342 *OS << "Basic Block in function '" << F.getName() 343 << "' does not have terminator!\n"; 344 BB.printAsOperand(*OS, true, MST); 345 *OS << "\n"; 346 } 347 return false; 348 } 349 350 Broken = false; 351 // FIXME: We strip const here because the inst visitor strips const. 352 visit(const_cast<Function &>(F)); 353 verifySiblingFuncletUnwinds(); 354 InstsInThisBlock.clear(); 355 DebugFnArgs.clear(); 356 LandingPadResultTy = nullptr; 357 SawFrameEscape = false; 358 SiblingFuncletInfo.clear(); 359 360 return !Broken; 361 } 362 363 /// Verify the module that this instance of \c Verifier was initialized with. 364 bool verify() { 365 Broken = false; 366 367 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 368 for (const Function &F : M) 369 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 370 DeoptimizeDeclarations.push_back(&F); 371 372 // Now that we've visited every function, verify that we never asked to 373 // recover a frame index that wasn't escaped. 374 verifyFrameRecoverIndices(); 375 for (const GlobalVariable &GV : M.globals()) 376 visitGlobalVariable(GV); 377 378 for (const GlobalAlias &GA : M.aliases()) 379 visitGlobalAlias(GA); 380 381 for (const NamedMDNode &NMD : M.named_metadata()) 382 visitNamedMDNode(NMD); 383 384 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 385 visitComdat(SMEC.getValue()); 386 387 visitModuleFlags(M); 388 visitModuleIdents(M); 389 visitModuleCommandLines(M); 390 391 verifyCompileUnits(); 392 393 verifyDeoptimizeCallingConvs(); 394 DISubprogramAttachments.clear(); 395 return !Broken; 396 } 397 398 private: 399 // Verification methods... 400 void visitGlobalValue(const GlobalValue &GV); 401 void visitGlobalVariable(const GlobalVariable &GV); 402 void visitGlobalAlias(const GlobalAlias &GA); 403 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 404 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 405 const GlobalAlias &A, const Constant &C); 406 void visitNamedMDNode(const NamedMDNode &NMD); 407 void visitMDNode(const MDNode &MD); 408 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 409 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 410 void visitComdat(const Comdat &C); 411 void visitModuleIdents(const Module &M); 412 void visitModuleCommandLines(const Module &M); 413 void visitModuleFlags(const Module &M); 414 void visitModuleFlag(const MDNode *Op, 415 DenseMap<const MDString *, const MDNode *> &SeenIDs, 416 SmallVectorImpl<const MDNode *> &Requirements); 417 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 418 void visitFunction(const Function &F); 419 void visitBasicBlock(BasicBlock &BB); 420 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 421 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 422 423 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 425 #include "llvm/IR/Metadata.def" 426 void visitDIScope(const DIScope &N); 427 void visitDIVariable(const DIVariable &N); 428 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 429 void visitDITemplateParameter(const DITemplateParameter &N); 430 431 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 432 433 // InstVisitor overrides... 434 using InstVisitor<Verifier>::visit; 435 void visit(Instruction &I); 436 437 void visitTruncInst(TruncInst &I); 438 void visitZExtInst(ZExtInst &I); 439 void visitSExtInst(SExtInst &I); 440 void visitFPTruncInst(FPTruncInst &I); 441 void visitFPExtInst(FPExtInst &I); 442 void visitFPToUIInst(FPToUIInst &I); 443 void visitFPToSIInst(FPToSIInst &I); 444 void visitUIToFPInst(UIToFPInst &I); 445 void visitSIToFPInst(SIToFPInst &I); 446 void visitIntToPtrInst(IntToPtrInst &I); 447 void visitPtrToIntInst(PtrToIntInst &I); 448 void visitBitCastInst(BitCastInst &I); 449 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 450 void visitPHINode(PHINode &PN); 451 void visitUnaryOperator(UnaryOperator &U); 452 void visitBinaryOperator(BinaryOperator &B); 453 void visitICmpInst(ICmpInst &IC); 454 void visitFCmpInst(FCmpInst &FC); 455 void visitExtractElementInst(ExtractElementInst &EI); 456 void visitInsertElementInst(InsertElementInst &EI); 457 void visitShuffleVectorInst(ShuffleVectorInst &EI); 458 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 459 void visitCallInst(CallInst &CI); 460 void visitInvokeInst(InvokeInst &II); 461 void visitGetElementPtrInst(GetElementPtrInst &GEP); 462 void visitLoadInst(LoadInst &LI); 463 void visitStoreInst(StoreInst &SI); 464 void verifyDominatesUse(Instruction &I, unsigned i); 465 void visitInstruction(Instruction &I); 466 void visitTerminator(Instruction &I); 467 void visitBranchInst(BranchInst &BI); 468 void visitReturnInst(ReturnInst &RI); 469 void visitSwitchInst(SwitchInst &SI); 470 void visitIndirectBrInst(IndirectBrInst &BI); 471 void visitSelectInst(SelectInst &SI); 472 void visitUserOp1(Instruction &I); 473 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 474 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); 475 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 476 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 477 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 478 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 479 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 480 void visitFenceInst(FenceInst &FI); 481 void visitAllocaInst(AllocaInst &AI); 482 void visitExtractValueInst(ExtractValueInst &EVI); 483 void visitInsertValueInst(InsertValueInst &IVI); 484 void visitEHPadPredecessors(Instruction &I); 485 void visitLandingPadInst(LandingPadInst &LPI); 486 void visitResumeInst(ResumeInst &RI); 487 void visitCatchPadInst(CatchPadInst &CPI); 488 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 489 void visitCleanupPadInst(CleanupPadInst &CPI); 490 void visitFuncletPadInst(FuncletPadInst &FPI); 491 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 492 void visitCleanupReturnInst(CleanupReturnInst &CRI); 493 494 void verifyCallSite(CallSite CS); 495 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal); 496 void verifySwiftErrorValue(const Value *SwiftErrorVal); 497 void verifyMustTailCall(CallInst &CI); 498 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 499 unsigned ArgNo, std::string &Suffix); 500 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 501 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 502 const Value *V); 503 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 504 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 505 const Value *V); 506 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 507 508 void visitConstantExprsRecursively(const Constant *EntryC); 509 void visitConstantExpr(const ConstantExpr *CE); 510 void verifyStatepoint(ImmutableCallSite CS); 511 void verifyFrameRecoverIndices(); 512 void verifySiblingFuncletUnwinds(); 513 514 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 515 template <typename ValueOrMetadata> 516 void verifyFragmentExpression(const DIVariable &V, 517 DIExpression::FragmentInfo Fragment, 518 ValueOrMetadata *Desc); 519 void verifyFnArgs(const DbgVariableIntrinsic &I); 520 521 /// Module-level debug info verification... 522 void verifyCompileUnits(); 523 524 /// Module-level verification that all @llvm.experimental.deoptimize 525 /// declarations share the same calling convention. 526 void verifyDeoptimizeCallingConvs(); 527 528 /// Verify all-or-nothing property of DIFile source attribute within a CU. 529 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 530 }; 531 532 } // end anonymous namespace 533 534 /// We know that cond should be true, if not print an error message. 535 #define Assert(C, ...) \ 536 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 537 538 /// We know that a debug info condition should be true, if not print 539 /// an error message. 540 #define AssertDI(C, ...) \ 541 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 542 543 void Verifier::visit(Instruction &I) { 544 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 545 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 546 InstVisitor<Verifier>::visit(I); 547 } 548 549 // Helper to recursively iterate over indirect users. By 550 // returning false, the callback can ask to stop recursing 551 // further. 552 static void forEachUser(const Value *User, 553 SmallPtrSet<const Value *, 32> &Visited, 554 llvm::function_ref<bool(const Value *)> Callback) { 555 if (!Visited.insert(User).second) 556 return; 557 for (const Value *TheNextUser : User->materialized_users()) 558 if (Callback(TheNextUser)) 559 forEachUser(TheNextUser, Visited, Callback); 560 } 561 562 void Verifier::visitGlobalValue(const GlobalValue &GV) { 563 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 564 "Global is external, but doesn't have external or weak linkage!", &GV); 565 566 Assert(GV.getAlignment() <= Value::MaximumAlignment, 567 "huge alignment values are unsupported", &GV); 568 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 569 "Only global variables can have appending linkage!", &GV); 570 571 if (GV.hasAppendingLinkage()) { 572 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 573 Assert(GVar && GVar->getValueType()->isArrayTy(), 574 "Only global arrays can have appending linkage!", GVar); 575 } 576 577 if (GV.isDeclarationForLinker()) 578 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 579 580 if (GV.hasDLLImportStorageClass()) { 581 Assert(!GV.isDSOLocal(), 582 "GlobalValue with DLLImport Storage is dso_local!", &GV); 583 584 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 585 GV.hasAvailableExternallyLinkage(), 586 "Global is marked as dllimport, but not external", &GV); 587 } 588 589 if (GV.hasLocalLinkage()) 590 Assert(GV.isDSOLocal(), 591 "GlobalValue with private or internal linkage must be dso_local!", 592 &GV); 593 594 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 595 Assert(GV.isDSOLocal(), 596 "GlobalValue with non default visibility must be dso_local!", &GV); 597 598 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 599 if (const Instruction *I = dyn_cast<Instruction>(V)) { 600 if (!I->getParent() || !I->getParent()->getParent()) 601 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 602 I); 603 else if (I->getParent()->getParent()->getParent() != &M) 604 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 605 I->getParent()->getParent(), 606 I->getParent()->getParent()->getParent()); 607 return false; 608 } else if (const Function *F = dyn_cast<Function>(V)) { 609 if (F->getParent() != &M) 610 CheckFailed("Global is used by function in a different module", &GV, &M, 611 F, F->getParent()); 612 return false; 613 } 614 return true; 615 }); 616 } 617 618 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 619 if (GV.hasInitializer()) { 620 Assert(GV.getInitializer()->getType() == GV.getValueType(), 621 "Global variable initializer type does not match global " 622 "variable type!", 623 &GV); 624 // If the global has common linkage, it must have a zero initializer and 625 // cannot be constant. 626 if (GV.hasCommonLinkage()) { 627 Assert(GV.getInitializer()->isNullValue(), 628 "'common' global must have a zero initializer!", &GV); 629 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 630 &GV); 631 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 632 } 633 } 634 635 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 636 GV.getName() == "llvm.global_dtors")) { 637 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 638 "invalid linkage for intrinsic global variable", &GV); 639 // Don't worry about emitting an error for it not being an array, 640 // visitGlobalValue will complain on appending non-array. 641 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 642 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 643 PointerType *FuncPtrTy = 644 FunctionType::get(Type::getVoidTy(Context), false)-> 645 getPointerTo(DL.getProgramAddressSpace()); 646 // FIXME: Reject the 2-field form in LLVM 4.0. 647 Assert(STy && 648 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 649 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 650 STy->getTypeAtIndex(1) == FuncPtrTy, 651 "wrong type for intrinsic global variable", &GV); 652 if (STy->getNumElements() == 3) { 653 Type *ETy = STy->getTypeAtIndex(2); 654 Assert(ETy->isPointerTy() && 655 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 656 "wrong type for intrinsic global variable", &GV); 657 } 658 } 659 } 660 661 if (GV.hasName() && (GV.getName() == "llvm.used" || 662 GV.getName() == "llvm.compiler.used")) { 663 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 664 "invalid linkage for intrinsic global variable", &GV); 665 Type *GVType = GV.getValueType(); 666 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 667 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 668 Assert(PTy, "wrong type for intrinsic global variable", &GV); 669 if (GV.hasInitializer()) { 670 const Constant *Init = GV.getInitializer(); 671 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 672 Assert(InitArray, "wrong initalizer for intrinsic global variable", 673 Init); 674 for (Value *Op : InitArray->operands()) { 675 Value *V = Op->stripPointerCastsNoFollowAliases(); 676 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 677 isa<GlobalAlias>(V), 678 "invalid llvm.used member", V); 679 Assert(V->hasName(), "members of llvm.used must be named", V); 680 } 681 } 682 } 683 } 684 685 // Visit any debug info attachments. 686 SmallVector<MDNode *, 1> MDs; 687 GV.getMetadata(LLVMContext::MD_dbg, MDs); 688 for (auto *MD : MDs) { 689 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 690 visitDIGlobalVariableExpression(*GVE); 691 else 692 AssertDI(false, "!dbg attachment of global variable must be a " 693 "DIGlobalVariableExpression"); 694 } 695 696 if (!GV.hasInitializer()) { 697 visitGlobalValue(GV); 698 return; 699 } 700 701 // Walk any aggregate initializers looking for bitcasts between address spaces 702 visitConstantExprsRecursively(GV.getInitializer()); 703 704 visitGlobalValue(GV); 705 } 706 707 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 708 SmallPtrSet<const GlobalAlias*, 4> Visited; 709 Visited.insert(&GA); 710 visitAliaseeSubExpr(Visited, GA, C); 711 } 712 713 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 714 const GlobalAlias &GA, const Constant &C) { 715 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 716 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 717 &GA); 718 719 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 720 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 721 722 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 723 &GA); 724 } else { 725 // Only continue verifying subexpressions of GlobalAliases. 726 // Do not recurse into global initializers. 727 return; 728 } 729 } 730 731 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 732 visitConstantExprsRecursively(CE); 733 734 for (const Use &U : C.operands()) { 735 Value *V = &*U; 736 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 737 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 738 else if (const auto *C2 = dyn_cast<Constant>(V)) 739 visitAliaseeSubExpr(Visited, GA, *C2); 740 } 741 } 742 743 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 744 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 745 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 746 "weak_odr, or external linkage!", 747 &GA); 748 const Constant *Aliasee = GA.getAliasee(); 749 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 750 Assert(GA.getType() == Aliasee->getType(), 751 "Alias and aliasee types should match!", &GA); 752 753 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 754 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 755 756 visitAliaseeSubExpr(GA, *Aliasee); 757 758 visitGlobalValue(GA); 759 } 760 761 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 762 // There used to be various other llvm.dbg.* nodes, but we don't support 763 // upgrading them and we want to reserve the namespace for future uses. 764 if (NMD.getName().startswith("llvm.dbg.")) 765 AssertDI(NMD.getName() == "llvm.dbg.cu", 766 "unrecognized named metadata node in the llvm.dbg namespace", 767 &NMD); 768 for (const MDNode *MD : NMD.operands()) { 769 if (NMD.getName() == "llvm.dbg.cu") 770 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 771 772 if (!MD) 773 continue; 774 775 visitMDNode(*MD); 776 } 777 } 778 779 void Verifier::visitMDNode(const MDNode &MD) { 780 // Only visit each node once. Metadata can be mutually recursive, so this 781 // avoids infinite recursion here, as well as being an optimization. 782 if (!MDNodes.insert(&MD).second) 783 return; 784 785 switch (MD.getMetadataID()) { 786 default: 787 llvm_unreachable("Invalid MDNode subclass"); 788 case Metadata::MDTupleKind: 789 break; 790 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 791 case Metadata::CLASS##Kind: \ 792 visit##CLASS(cast<CLASS>(MD)); \ 793 break; 794 #include "llvm/IR/Metadata.def" 795 } 796 797 for (const Metadata *Op : MD.operands()) { 798 if (!Op) 799 continue; 800 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 801 &MD, Op); 802 if (auto *N = dyn_cast<MDNode>(Op)) { 803 visitMDNode(*N); 804 continue; 805 } 806 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 807 visitValueAsMetadata(*V, nullptr); 808 continue; 809 } 810 } 811 812 // Check these last, so we diagnose problems in operands first. 813 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 814 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 815 } 816 817 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 818 Assert(MD.getValue(), "Expected valid value", &MD); 819 Assert(!MD.getValue()->getType()->isMetadataTy(), 820 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 821 822 auto *L = dyn_cast<LocalAsMetadata>(&MD); 823 if (!L) 824 return; 825 826 Assert(F, "function-local metadata used outside a function", L); 827 828 // If this was an instruction, bb, or argument, verify that it is in the 829 // function that we expect. 830 Function *ActualF = nullptr; 831 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 832 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 833 ActualF = I->getParent()->getParent(); 834 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 835 ActualF = BB->getParent(); 836 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 837 ActualF = A->getParent(); 838 assert(ActualF && "Unimplemented function local metadata case!"); 839 840 Assert(ActualF == F, "function-local metadata used in wrong function", L); 841 } 842 843 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 844 Metadata *MD = MDV.getMetadata(); 845 if (auto *N = dyn_cast<MDNode>(MD)) { 846 visitMDNode(*N); 847 return; 848 } 849 850 // Only visit each node once. Metadata can be mutually recursive, so this 851 // avoids infinite recursion here, as well as being an optimization. 852 if (!MDNodes.insert(MD).second) 853 return; 854 855 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 856 visitValueAsMetadata(*V, F); 857 } 858 859 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 860 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 861 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 862 863 void Verifier::visitDILocation(const DILocation &N) { 864 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 865 "location requires a valid scope", &N, N.getRawScope()); 866 if (auto *IA = N.getRawInlinedAt()) 867 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 868 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 869 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 870 } 871 872 void Verifier::visitGenericDINode(const GenericDINode &N) { 873 AssertDI(N.getTag(), "invalid tag", &N); 874 } 875 876 void Verifier::visitDIScope(const DIScope &N) { 877 if (auto *F = N.getRawFile()) 878 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 879 } 880 881 void Verifier::visitDISubrange(const DISubrange &N) { 882 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 883 auto Count = N.getCount(); 884 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 885 &N); 886 AssertDI(!Count.is<ConstantInt*>() || 887 Count.get<ConstantInt*>()->getSExtValue() >= -1, 888 "invalid subrange count", &N); 889 } 890 891 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 892 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 893 } 894 895 void Verifier::visitDIBasicType(const DIBasicType &N) { 896 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 897 N.getTag() == dwarf::DW_TAG_unspecified_type, 898 "invalid tag", &N); 899 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 900 "has conflicting flags", &N); 901 } 902 903 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 904 // Common scope checks. 905 visitDIScope(N); 906 907 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 908 N.getTag() == dwarf::DW_TAG_pointer_type || 909 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 910 N.getTag() == dwarf::DW_TAG_reference_type || 911 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 912 N.getTag() == dwarf::DW_TAG_const_type || 913 N.getTag() == dwarf::DW_TAG_volatile_type || 914 N.getTag() == dwarf::DW_TAG_restrict_type || 915 N.getTag() == dwarf::DW_TAG_atomic_type || 916 N.getTag() == dwarf::DW_TAG_member || 917 N.getTag() == dwarf::DW_TAG_inheritance || 918 N.getTag() == dwarf::DW_TAG_friend, 919 "invalid tag", &N); 920 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 921 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 922 N.getRawExtraData()); 923 } 924 925 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 926 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 927 N.getRawBaseType()); 928 929 if (N.getDWARFAddressSpace()) { 930 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 931 N.getTag() == dwarf::DW_TAG_reference_type, 932 "DWARF address space only applies to pointer or reference types", 933 &N); 934 } 935 } 936 937 /// Detect mutually exclusive flags. 938 static bool hasConflictingReferenceFlags(unsigned Flags) { 939 return ((Flags & DINode::FlagLValueReference) && 940 (Flags & DINode::FlagRValueReference)) || 941 ((Flags & DINode::FlagTypePassByValue) && 942 (Flags & DINode::FlagTypePassByReference)); 943 } 944 945 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 946 auto *Params = dyn_cast<MDTuple>(&RawParams); 947 AssertDI(Params, "invalid template params", &N, &RawParams); 948 for (Metadata *Op : Params->operands()) { 949 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 950 &N, Params, Op); 951 } 952 } 953 954 void Verifier::visitDICompositeType(const DICompositeType &N) { 955 // Common scope checks. 956 visitDIScope(N); 957 958 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 959 N.getTag() == dwarf::DW_TAG_structure_type || 960 N.getTag() == dwarf::DW_TAG_union_type || 961 N.getTag() == dwarf::DW_TAG_enumeration_type || 962 N.getTag() == dwarf::DW_TAG_class_type || 963 N.getTag() == dwarf::DW_TAG_variant_part, 964 "invalid tag", &N); 965 966 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 967 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 968 N.getRawBaseType()); 969 970 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 971 "invalid composite elements", &N, N.getRawElements()); 972 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 973 N.getRawVTableHolder()); 974 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 975 "invalid reference flags", &N); 976 977 if (N.isVector()) { 978 const DINodeArray Elements = N.getElements(); 979 AssertDI(Elements.size() == 1 && 980 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 981 "invalid vector, expected one element of type subrange", &N); 982 } 983 984 if (auto *Params = N.getRawTemplateParams()) 985 visitTemplateParams(N, *Params); 986 987 if (N.getTag() == dwarf::DW_TAG_class_type || 988 N.getTag() == dwarf::DW_TAG_union_type) { 989 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 990 "class/union requires a filename", &N, N.getFile()); 991 } 992 993 if (auto *D = N.getRawDiscriminator()) { 994 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 995 "discriminator can only appear on variant part"); 996 } 997 } 998 999 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1000 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1001 if (auto *Types = N.getRawTypeArray()) { 1002 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1003 for (Metadata *Ty : N.getTypeArray()->operands()) { 1004 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1005 } 1006 } 1007 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1008 "invalid reference flags", &N); 1009 } 1010 1011 void Verifier::visitDIFile(const DIFile &N) { 1012 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1013 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1014 if (Checksum) { 1015 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1016 "invalid checksum kind", &N); 1017 size_t Size; 1018 switch (Checksum->Kind) { 1019 case DIFile::CSK_MD5: 1020 Size = 32; 1021 break; 1022 case DIFile::CSK_SHA1: 1023 Size = 40; 1024 break; 1025 } 1026 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1027 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1028 "invalid checksum", &N); 1029 } 1030 } 1031 1032 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1033 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1034 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1035 1036 // Don't bother verifying the compilation directory or producer string 1037 // as those could be empty. 1038 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1039 N.getRawFile()); 1040 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1041 N.getFile()); 1042 1043 verifySourceDebugInfo(N, *N.getFile()); 1044 1045 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1046 "invalid emission kind", &N); 1047 1048 if (auto *Array = N.getRawEnumTypes()) { 1049 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1050 for (Metadata *Op : N.getEnumTypes()->operands()) { 1051 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1052 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1053 "invalid enum type", &N, N.getEnumTypes(), Op); 1054 } 1055 } 1056 if (auto *Array = N.getRawRetainedTypes()) { 1057 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1058 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1059 AssertDI(Op && (isa<DIType>(Op) || 1060 (isa<DISubprogram>(Op) && 1061 !cast<DISubprogram>(Op)->isDefinition())), 1062 "invalid retained type", &N, Op); 1063 } 1064 } 1065 if (auto *Array = N.getRawGlobalVariables()) { 1066 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1067 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1068 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1069 "invalid global variable ref", &N, Op); 1070 } 1071 } 1072 if (auto *Array = N.getRawImportedEntities()) { 1073 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1074 for (Metadata *Op : N.getImportedEntities()->operands()) { 1075 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1076 &N, Op); 1077 } 1078 } 1079 if (auto *Array = N.getRawMacros()) { 1080 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1081 for (Metadata *Op : N.getMacros()->operands()) { 1082 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1083 } 1084 } 1085 CUVisited.insert(&N); 1086 } 1087 1088 void Verifier::visitDISubprogram(const DISubprogram &N) { 1089 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1090 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1091 if (auto *F = N.getRawFile()) 1092 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1093 else 1094 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1095 if (auto *T = N.getRawType()) 1096 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1097 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1098 N.getRawContainingType()); 1099 if (auto *Params = N.getRawTemplateParams()) 1100 visitTemplateParams(N, *Params); 1101 if (auto *S = N.getRawDeclaration()) 1102 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1103 "invalid subprogram declaration", &N, S); 1104 if (auto *RawNode = N.getRawRetainedNodes()) { 1105 auto *Node = dyn_cast<MDTuple>(RawNode); 1106 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1107 for (Metadata *Op : Node->operands()) { 1108 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1109 "invalid retained nodes, expected DILocalVariable or DILabel", 1110 &N, Node, Op); 1111 } 1112 } 1113 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1114 "invalid reference flags", &N); 1115 1116 auto *Unit = N.getRawUnit(); 1117 if (N.isDefinition()) { 1118 // Subprogram definitions (not part of the type hierarchy). 1119 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1120 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1121 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1122 if (N.getFile()) 1123 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1124 } else { 1125 // Subprogram declarations (part of the type hierarchy). 1126 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1127 } 1128 1129 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1130 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1131 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1132 for (Metadata *Op : ThrownTypes->operands()) 1133 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1134 Op); 1135 } 1136 1137 if (N.areAllCallsDescribed()) 1138 AssertDI(N.isDefinition(), 1139 "DIFlagAllCallsDescribed must be attached to a definition"); 1140 } 1141 1142 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1143 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1144 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1145 "invalid local scope", &N, N.getRawScope()); 1146 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1147 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1148 } 1149 1150 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1151 visitDILexicalBlockBase(N); 1152 1153 AssertDI(N.getLine() || !N.getColumn(), 1154 "cannot have column info without line info", &N); 1155 } 1156 1157 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1158 visitDILexicalBlockBase(N); 1159 } 1160 1161 void Verifier::visitDINamespace(const DINamespace &N) { 1162 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1163 if (auto *S = N.getRawScope()) 1164 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1165 } 1166 1167 void Verifier::visitDIMacro(const DIMacro &N) { 1168 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1169 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1170 "invalid macinfo type", &N); 1171 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1172 if (!N.getValue().empty()) { 1173 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1174 } 1175 } 1176 1177 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1178 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1179 "invalid macinfo type", &N); 1180 if (auto *F = N.getRawFile()) 1181 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1182 1183 if (auto *Array = N.getRawElements()) { 1184 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1185 for (Metadata *Op : N.getElements()->operands()) { 1186 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1187 } 1188 } 1189 } 1190 1191 void Verifier::visitDIModule(const DIModule &N) { 1192 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1193 AssertDI(!N.getName().empty(), "anonymous module", &N); 1194 } 1195 1196 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1197 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1198 } 1199 1200 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1201 visitDITemplateParameter(N); 1202 1203 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1204 &N); 1205 } 1206 1207 void Verifier::visitDITemplateValueParameter( 1208 const DITemplateValueParameter &N) { 1209 visitDITemplateParameter(N); 1210 1211 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1212 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1213 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1214 "invalid tag", &N); 1215 } 1216 1217 void Verifier::visitDIVariable(const DIVariable &N) { 1218 if (auto *S = N.getRawScope()) 1219 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1220 if (auto *F = N.getRawFile()) 1221 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1222 } 1223 1224 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1225 // Checks common to all variables. 1226 visitDIVariable(N); 1227 1228 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1229 AssertDI(!N.getName().empty(), "missing global variable name", &N); 1230 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1231 AssertDI(N.getType(), "missing global variable type", &N); 1232 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1233 AssertDI(isa<DIDerivedType>(Member), 1234 "invalid static data member declaration", &N, Member); 1235 } 1236 } 1237 1238 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1239 // Checks common to all variables. 1240 visitDIVariable(N); 1241 1242 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1243 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1244 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1245 "local variable requires a valid scope", &N, N.getRawScope()); 1246 } 1247 1248 void Verifier::visitDILabel(const DILabel &N) { 1249 if (auto *S = N.getRawScope()) 1250 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1251 if (auto *F = N.getRawFile()) 1252 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1253 1254 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1255 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1256 "label requires a valid scope", &N, N.getRawScope()); 1257 } 1258 1259 void Verifier::visitDIExpression(const DIExpression &N) { 1260 AssertDI(N.isValid(), "invalid expression", &N); 1261 } 1262 1263 void Verifier::visitDIGlobalVariableExpression( 1264 const DIGlobalVariableExpression &GVE) { 1265 AssertDI(GVE.getVariable(), "missing variable"); 1266 if (auto *Var = GVE.getVariable()) 1267 visitDIGlobalVariable(*Var); 1268 if (auto *Expr = GVE.getExpression()) { 1269 visitDIExpression(*Expr); 1270 if (auto Fragment = Expr->getFragmentInfo()) 1271 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1272 } 1273 } 1274 1275 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1276 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1277 if (auto *T = N.getRawType()) 1278 AssertDI(isType(T), "invalid type ref", &N, T); 1279 if (auto *F = N.getRawFile()) 1280 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1281 } 1282 1283 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1284 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1285 N.getTag() == dwarf::DW_TAG_imported_declaration, 1286 "invalid tag", &N); 1287 if (auto *S = N.getRawScope()) 1288 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1289 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1290 N.getRawEntity()); 1291 } 1292 1293 void Verifier::visitComdat(const Comdat &C) { 1294 // The Module is invalid if the GlobalValue has private linkage. Entities 1295 // with private linkage don't have entries in the symbol table. 1296 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1297 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1298 GV); 1299 } 1300 1301 void Verifier::visitModuleIdents(const Module &M) { 1302 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1303 if (!Idents) 1304 return; 1305 1306 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1307 // Scan each llvm.ident entry and make sure that this requirement is met. 1308 for (const MDNode *N : Idents->operands()) { 1309 Assert(N->getNumOperands() == 1, 1310 "incorrect number of operands in llvm.ident metadata", N); 1311 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1312 ("invalid value for llvm.ident metadata entry operand" 1313 "(the operand should be a string)"), 1314 N->getOperand(0)); 1315 } 1316 } 1317 1318 void Verifier::visitModuleCommandLines(const Module &M) { 1319 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1320 if (!CommandLines) 1321 return; 1322 1323 // llvm.commandline takes a list of metadata entry. Each entry has only one 1324 // string. Scan each llvm.commandline entry and make sure that this 1325 // requirement is met. 1326 for (const MDNode *N : CommandLines->operands()) { 1327 Assert(N->getNumOperands() == 1, 1328 "incorrect number of operands in llvm.commandline metadata", N); 1329 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1330 ("invalid value for llvm.commandline metadata entry operand" 1331 "(the operand should be a string)"), 1332 N->getOperand(0)); 1333 } 1334 } 1335 1336 void Verifier::visitModuleFlags(const Module &M) { 1337 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1338 if (!Flags) return; 1339 1340 // Scan each flag, and track the flags and requirements. 1341 DenseMap<const MDString*, const MDNode*> SeenIDs; 1342 SmallVector<const MDNode*, 16> Requirements; 1343 for (const MDNode *MDN : Flags->operands()) 1344 visitModuleFlag(MDN, SeenIDs, Requirements); 1345 1346 // Validate that the requirements in the module are valid. 1347 for (const MDNode *Requirement : Requirements) { 1348 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1349 const Metadata *ReqValue = Requirement->getOperand(1); 1350 1351 const MDNode *Op = SeenIDs.lookup(Flag); 1352 if (!Op) { 1353 CheckFailed("invalid requirement on flag, flag is not present in module", 1354 Flag); 1355 continue; 1356 } 1357 1358 if (Op->getOperand(2) != ReqValue) { 1359 CheckFailed(("invalid requirement on flag, " 1360 "flag does not have the required value"), 1361 Flag); 1362 continue; 1363 } 1364 } 1365 } 1366 1367 void 1368 Verifier::visitModuleFlag(const MDNode *Op, 1369 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1370 SmallVectorImpl<const MDNode *> &Requirements) { 1371 // Each module flag should have three arguments, the merge behavior (a 1372 // constant int), the flag ID (an MDString), and the value. 1373 Assert(Op->getNumOperands() == 3, 1374 "incorrect number of operands in module flag", Op); 1375 Module::ModFlagBehavior MFB; 1376 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1377 Assert( 1378 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1379 "invalid behavior operand in module flag (expected constant integer)", 1380 Op->getOperand(0)); 1381 Assert(false, 1382 "invalid behavior operand in module flag (unexpected constant)", 1383 Op->getOperand(0)); 1384 } 1385 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1386 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1387 Op->getOperand(1)); 1388 1389 // Sanity check the values for behaviors with additional requirements. 1390 switch (MFB) { 1391 case Module::Error: 1392 case Module::Warning: 1393 case Module::Override: 1394 // These behavior types accept any value. 1395 break; 1396 1397 case Module::Max: { 1398 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1399 "invalid value for 'max' module flag (expected constant integer)", 1400 Op->getOperand(2)); 1401 break; 1402 } 1403 1404 case Module::Require: { 1405 // The value should itself be an MDNode with two operands, a flag ID (an 1406 // MDString), and a value. 1407 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1408 Assert(Value && Value->getNumOperands() == 2, 1409 "invalid value for 'require' module flag (expected metadata pair)", 1410 Op->getOperand(2)); 1411 Assert(isa<MDString>(Value->getOperand(0)), 1412 ("invalid value for 'require' module flag " 1413 "(first value operand should be a string)"), 1414 Value->getOperand(0)); 1415 1416 // Append it to the list of requirements, to check once all module flags are 1417 // scanned. 1418 Requirements.push_back(Value); 1419 break; 1420 } 1421 1422 case Module::Append: 1423 case Module::AppendUnique: { 1424 // These behavior types require the operand be an MDNode. 1425 Assert(isa<MDNode>(Op->getOperand(2)), 1426 "invalid value for 'append'-type module flag " 1427 "(expected a metadata node)", 1428 Op->getOperand(2)); 1429 break; 1430 } 1431 } 1432 1433 // Unless this is a "requires" flag, check the ID is unique. 1434 if (MFB != Module::Require) { 1435 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1436 Assert(Inserted, 1437 "module flag identifiers must be unique (or of 'require' type)", ID); 1438 } 1439 1440 if (ID->getString() == "wchar_size") { 1441 ConstantInt *Value 1442 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1443 Assert(Value, "wchar_size metadata requires constant integer argument"); 1444 } 1445 1446 if (ID->getString() == "Linker Options") { 1447 // If the llvm.linker.options named metadata exists, we assume that the 1448 // bitcode reader has upgraded the module flag. Otherwise the flag might 1449 // have been created by a client directly. 1450 Assert(M.getNamedMetadata("llvm.linker.options"), 1451 "'Linker Options' named metadata no longer supported"); 1452 } 1453 1454 if (ID->getString() == "CG Profile") { 1455 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1456 visitModuleFlagCGProfileEntry(MDO); 1457 } 1458 } 1459 1460 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1461 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1462 if (!FuncMDO) 1463 return; 1464 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1465 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1466 FuncMDO); 1467 }; 1468 auto Node = dyn_cast_or_null<MDNode>(MDO); 1469 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1470 CheckFunction(Node->getOperand(0)); 1471 CheckFunction(Node->getOperand(1)); 1472 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1473 Assert(Count && Count->getType()->isIntegerTy(), 1474 "expected an integer constant", Node->getOperand(2)); 1475 } 1476 1477 /// Return true if this attribute kind only applies to functions. 1478 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1479 switch (Kind) { 1480 case Attribute::NoReturn: 1481 case Attribute::NoCfCheck: 1482 case Attribute::NoUnwind: 1483 case Attribute::NoInline: 1484 case Attribute::AlwaysInline: 1485 case Attribute::OptimizeForSize: 1486 case Attribute::StackProtect: 1487 case Attribute::StackProtectReq: 1488 case Attribute::StackProtectStrong: 1489 case Attribute::SafeStack: 1490 case Attribute::ShadowCallStack: 1491 case Attribute::NoRedZone: 1492 case Attribute::NoImplicitFloat: 1493 case Attribute::Naked: 1494 case Attribute::InlineHint: 1495 case Attribute::StackAlignment: 1496 case Attribute::UWTable: 1497 case Attribute::NonLazyBind: 1498 case Attribute::ReturnsTwice: 1499 case Attribute::SanitizeAddress: 1500 case Attribute::SanitizeHWAddress: 1501 case Attribute::SanitizeThread: 1502 case Attribute::SanitizeMemory: 1503 case Attribute::MinSize: 1504 case Attribute::NoDuplicate: 1505 case Attribute::Builtin: 1506 case Attribute::NoBuiltin: 1507 case Attribute::Cold: 1508 case Attribute::OptForFuzzing: 1509 case Attribute::OptimizeNone: 1510 case Attribute::JumpTable: 1511 case Attribute::Convergent: 1512 case Attribute::ArgMemOnly: 1513 case Attribute::NoRecurse: 1514 case Attribute::InaccessibleMemOnly: 1515 case Attribute::InaccessibleMemOrArgMemOnly: 1516 case Attribute::AllocSize: 1517 case Attribute::SpeculativeLoadHardening: 1518 case Attribute::Speculatable: 1519 case Attribute::StrictFP: 1520 return true; 1521 default: 1522 break; 1523 } 1524 return false; 1525 } 1526 1527 /// Return true if this is a function attribute that can also appear on 1528 /// arguments. 1529 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1530 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1531 Kind == Attribute::ReadNone; 1532 } 1533 1534 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1535 const Value *V) { 1536 for (Attribute A : Attrs) { 1537 if (A.isStringAttribute()) 1538 continue; 1539 1540 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1541 if (!IsFunction) { 1542 CheckFailed("Attribute '" + A.getAsString() + 1543 "' only applies to functions!", 1544 V); 1545 return; 1546 } 1547 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1548 CheckFailed("Attribute '" + A.getAsString() + 1549 "' does not apply to functions!", 1550 V); 1551 return; 1552 } 1553 } 1554 } 1555 1556 // VerifyParameterAttrs - Check the given attributes for an argument or return 1557 // value of the specified type. The value V is printed in error messages. 1558 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1559 const Value *V) { 1560 if (!Attrs.hasAttributes()) 1561 return; 1562 1563 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1564 1565 // Check for mutually incompatible attributes. Only inreg is compatible with 1566 // sret. 1567 unsigned AttrCount = 0; 1568 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1569 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1570 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1571 Attrs.hasAttribute(Attribute::InReg); 1572 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1573 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1574 "and 'sret' are incompatible!", 1575 V); 1576 1577 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1578 Attrs.hasAttribute(Attribute::ReadOnly)), 1579 "Attributes " 1580 "'inalloca and readonly' are incompatible!", 1581 V); 1582 1583 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1584 Attrs.hasAttribute(Attribute::Returned)), 1585 "Attributes " 1586 "'sret and returned' are incompatible!", 1587 V); 1588 1589 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1590 Attrs.hasAttribute(Attribute::SExt)), 1591 "Attributes " 1592 "'zeroext and signext' are incompatible!", 1593 V); 1594 1595 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1596 Attrs.hasAttribute(Attribute::ReadOnly)), 1597 "Attributes " 1598 "'readnone and readonly' are incompatible!", 1599 V); 1600 1601 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1602 Attrs.hasAttribute(Attribute::WriteOnly)), 1603 "Attributes " 1604 "'readnone and writeonly' are incompatible!", 1605 V); 1606 1607 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1608 Attrs.hasAttribute(Attribute::WriteOnly)), 1609 "Attributes " 1610 "'readonly and writeonly' are incompatible!", 1611 V); 1612 1613 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1614 Attrs.hasAttribute(Attribute::AlwaysInline)), 1615 "Attributes " 1616 "'noinline and alwaysinline' are incompatible!", 1617 V); 1618 1619 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1620 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1621 "Wrong types for attribute: " + 1622 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1623 V); 1624 1625 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1626 SmallPtrSet<Type*, 4> Visited; 1627 if (!PTy->getElementType()->isSized(&Visited)) { 1628 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1629 !Attrs.hasAttribute(Attribute::InAlloca), 1630 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1631 V); 1632 } 1633 if (!isa<PointerType>(PTy->getElementType())) 1634 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1635 "Attribute 'swifterror' only applies to parameters " 1636 "with pointer to pointer type!", 1637 V); 1638 } else { 1639 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1640 "Attribute 'byval' only applies to parameters with pointer type!", 1641 V); 1642 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1643 "Attribute 'swifterror' only applies to parameters " 1644 "with pointer type!", 1645 V); 1646 } 1647 } 1648 1649 // Check parameter attributes against a function type. 1650 // The value V is printed in error messages. 1651 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1652 const Value *V) { 1653 if (Attrs.isEmpty()) 1654 return; 1655 1656 bool SawNest = false; 1657 bool SawReturned = false; 1658 bool SawSRet = false; 1659 bool SawSwiftSelf = false; 1660 bool SawSwiftError = false; 1661 1662 // Verify return value attributes. 1663 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1664 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1665 !RetAttrs.hasAttribute(Attribute::Nest) && 1666 !RetAttrs.hasAttribute(Attribute::StructRet) && 1667 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1668 !RetAttrs.hasAttribute(Attribute::Returned) && 1669 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1670 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1671 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1672 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1673 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1674 "values!", 1675 V); 1676 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1677 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1678 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1679 "Attribute '" + RetAttrs.getAsString() + 1680 "' does not apply to function returns", 1681 V); 1682 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1683 1684 // Verify parameter attributes. 1685 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1686 Type *Ty = FT->getParamType(i); 1687 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1688 1689 verifyParameterAttrs(ArgAttrs, Ty, V); 1690 1691 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1692 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1693 SawNest = true; 1694 } 1695 1696 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1697 Assert(!SawReturned, "More than one parameter has attribute returned!", 1698 V); 1699 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1700 "Incompatible argument and return types for 'returned' attribute", 1701 V); 1702 SawReturned = true; 1703 } 1704 1705 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1706 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1707 Assert(i == 0 || i == 1, 1708 "Attribute 'sret' is not on first or second parameter!", V); 1709 SawSRet = true; 1710 } 1711 1712 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1713 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1714 SawSwiftSelf = true; 1715 } 1716 1717 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1718 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1719 V); 1720 SawSwiftError = true; 1721 } 1722 1723 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1724 Assert(i == FT->getNumParams() - 1, 1725 "inalloca isn't on the last parameter!", V); 1726 } 1727 } 1728 1729 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1730 return; 1731 1732 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1733 1734 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1735 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1736 "Attributes 'readnone and readonly' are incompatible!", V); 1737 1738 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1739 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1740 "Attributes 'readnone and writeonly' are incompatible!", V); 1741 1742 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1743 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1744 "Attributes 'readonly and writeonly' are incompatible!", V); 1745 1746 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1747 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1748 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1749 "incompatible!", 1750 V); 1751 1752 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1753 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1754 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1755 1756 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1757 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1758 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1759 1760 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1761 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1762 "Attribute 'optnone' requires 'noinline'!", V); 1763 1764 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1765 "Attributes 'optsize and optnone' are incompatible!", V); 1766 1767 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1768 "Attributes 'minsize and optnone' are incompatible!", V); 1769 } 1770 1771 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1772 const GlobalValue *GV = cast<GlobalValue>(V); 1773 Assert(GV->hasGlobalUnnamedAddr(), 1774 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1775 } 1776 1777 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1778 std::pair<unsigned, Optional<unsigned>> Args = 1779 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1780 1781 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1782 if (ParamNo >= FT->getNumParams()) { 1783 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1784 return false; 1785 } 1786 1787 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1788 CheckFailed("'allocsize' " + Name + 1789 " argument must refer to an integer parameter", 1790 V); 1791 return false; 1792 } 1793 1794 return true; 1795 }; 1796 1797 if (!CheckParam("element size", Args.first)) 1798 return; 1799 1800 if (Args.second && !CheckParam("number of elements", *Args.second)) 1801 return; 1802 } 1803 } 1804 1805 void Verifier::verifyFunctionMetadata( 1806 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1807 for (const auto &Pair : MDs) { 1808 if (Pair.first == LLVMContext::MD_prof) { 1809 MDNode *MD = Pair.second; 1810 Assert(MD->getNumOperands() >= 2, 1811 "!prof annotations should have no less than 2 operands", MD); 1812 1813 // Check first operand. 1814 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1815 MD); 1816 Assert(isa<MDString>(MD->getOperand(0)), 1817 "expected string with name of the !prof annotation", MD); 1818 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1819 StringRef ProfName = MDS->getString(); 1820 Assert(ProfName.equals("function_entry_count") || 1821 ProfName.equals("synthetic_function_entry_count"), 1822 "first operand should be 'function_entry_count'" 1823 " or 'synthetic_function_entry_count'", 1824 MD); 1825 1826 // Check second operand. 1827 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1828 MD); 1829 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1830 "expected integer argument to function_entry_count", MD); 1831 } 1832 } 1833 } 1834 1835 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1836 if (!ConstantExprVisited.insert(EntryC).second) 1837 return; 1838 1839 SmallVector<const Constant *, 16> Stack; 1840 Stack.push_back(EntryC); 1841 1842 while (!Stack.empty()) { 1843 const Constant *C = Stack.pop_back_val(); 1844 1845 // Check this constant expression. 1846 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1847 visitConstantExpr(CE); 1848 1849 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1850 // Global Values get visited separately, but we do need to make sure 1851 // that the global value is in the correct module 1852 Assert(GV->getParent() == &M, "Referencing global in another module!", 1853 EntryC, &M, GV, GV->getParent()); 1854 continue; 1855 } 1856 1857 // Visit all sub-expressions. 1858 for (const Use &U : C->operands()) { 1859 const auto *OpC = dyn_cast<Constant>(U); 1860 if (!OpC) 1861 continue; 1862 if (!ConstantExprVisited.insert(OpC).second) 1863 continue; 1864 Stack.push_back(OpC); 1865 } 1866 } 1867 } 1868 1869 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1870 if (CE->getOpcode() == Instruction::BitCast) 1871 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1872 CE->getType()), 1873 "Invalid bitcast", CE); 1874 1875 if (CE->getOpcode() == Instruction::IntToPtr || 1876 CE->getOpcode() == Instruction::PtrToInt) { 1877 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1878 ? CE->getType() 1879 : CE->getOperand(0)->getType(); 1880 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1881 ? "inttoptr not supported for non-integral pointers" 1882 : "ptrtoint not supported for non-integral pointers"; 1883 Assert( 1884 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1885 Msg); 1886 } 1887 } 1888 1889 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1890 // There shouldn't be more attribute sets than there are parameters plus the 1891 // function and return value. 1892 return Attrs.getNumAttrSets() <= Params + 2; 1893 } 1894 1895 /// Verify that statepoint intrinsic is well formed. 1896 void Verifier::verifyStatepoint(ImmutableCallSite CS) { 1897 assert(CS.getCalledFunction() && 1898 CS.getCalledFunction()->getIntrinsicID() == 1899 Intrinsic::experimental_gc_statepoint); 1900 1901 const Instruction &CI = *CS.getInstruction(); 1902 1903 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && 1904 !CS.onlyAccessesArgMemory(), 1905 "gc.statepoint must read and write all memory to preserve " 1906 "reordering restrictions required by safepoint semantics", 1907 &CI); 1908 1909 const Value *IDV = CS.getArgument(0); 1910 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", 1911 &CI); 1912 1913 const Value *NumPatchBytesV = CS.getArgument(1); 1914 Assert(isa<ConstantInt>(NumPatchBytesV), 1915 "gc.statepoint number of patchable bytes must be a constant integer", 1916 &CI); 1917 const int64_t NumPatchBytes = 1918 cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); 1919 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1920 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " 1921 "positive", 1922 &CI); 1923 1924 const Value *Target = CS.getArgument(2); 1925 auto *PT = dyn_cast<PointerType>(Target->getType()); 1926 Assert(PT && PT->getElementType()->isFunctionTy(), 1927 "gc.statepoint callee must be of function pointer type", &CI, Target); 1928 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1929 1930 const Value *NumCallArgsV = CS.getArgument(3); 1931 Assert(isa<ConstantInt>(NumCallArgsV), 1932 "gc.statepoint number of arguments to underlying call " 1933 "must be constant integer", 1934 &CI); 1935 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); 1936 Assert(NumCallArgs >= 0, 1937 "gc.statepoint number of arguments to underlying call " 1938 "must be positive", 1939 &CI); 1940 const int NumParams = (int)TargetFuncType->getNumParams(); 1941 if (TargetFuncType->isVarArg()) { 1942 Assert(NumCallArgs >= NumParams, 1943 "gc.statepoint mismatch in number of vararg call args", &CI); 1944 1945 // TODO: Remove this limitation 1946 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1947 "gc.statepoint doesn't support wrapping non-void " 1948 "vararg functions yet", 1949 &CI); 1950 } else 1951 Assert(NumCallArgs == NumParams, 1952 "gc.statepoint mismatch in number of call args", &CI); 1953 1954 const Value *FlagsV = CS.getArgument(4); 1955 Assert(isa<ConstantInt>(FlagsV), 1956 "gc.statepoint flags must be constant integer", &CI); 1957 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); 1958 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1959 "unknown flag used in gc.statepoint flags argument", &CI); 1960 1961 // Verify that the types of the call parameter arguments match 1962 // the type of the wrapped callee. 1963 AttributeList Attrs = CS.getAttributes(); 1964 for (int i = 0; i < NumParams; i++) { 1965 Type *ParamType = TargetFuncType->getParamType(i); 1966 Type *ArgType = CS.getArgument(5 + i)->getType(); 1967 Assert(ArgType == ParamType, 1968 "gc.statepoint call argument does not match wrapped " 1969 "function type", 1970 &CI); 1971 1972 if (TargetFuncType->isVarArg()) { 1973 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 1974 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 1975 "Attribute 'sret' cannot be used for vararg call arguments!", &CI); 1976 } 1977 } 1978 1979 const int EndCallArgsInx = 4 + NumCallArgs; 1980 1981 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); 1982 Assert(isa<ConstantInt>(NumTransitionArgsV), 1983 "gc.statepoint number of transition arguments " 1984 "must be constant integer", 1985 &CI); 1986 const int NumTransitionArgs = 1987 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1988 Assert(NumTransitionArgs >= 0, 1989 "gc.statepoint number of transition arguments must be positive", &CI); 1990 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1991 1992 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); 1993 Assert(isa<ConstantInt>(NumDeoptArgsV), 1994 "gc.statepoint number of deoptimization arguments " 1995 "must be constant integer", 1996 &CI); 1997 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 1998 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " 1999 "must be positive", 2000 &CI); 2001 2002 const int ExpectedNumArgs = 2003 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2004 Assert(ExpectedNumArgs <= (int)CS.arg_size(), 2005 "gc.statepoint too few arguments according to length fields", &CI); 2006 2007 // Check that the only uses of this gc.statepoint are gc.result or 2008 // gc.relocate calls which are tied to this statepoint and thus part 2009 // of the same statepoint sequence 2010 for (const User *U : CI.users()) { 2011 const CallInst *Call = dyn_cast<const CallInst>(U); 2012 Assert(Call, "illegal use of statepoint token", &CI, U); 2013 if (!Call) continue; 2014 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call), 2015 "gc.result or gc.relocate are the only value uses " 2016 "of a gc.statepoint", 2017 &CI, U); 2018 if (isa<GCResultInst>(Call)) { 2019 Assert(Call->getArgOperand(0) == &CI, 2020 "gc.result connected to wrong gc.statepoint", &CI, Call); 2021 } else if (isa<GCRelocateInst>(Call)) { 2022 Assert(Call->getArgOperand(0) == &CI, 2023 "gc.relocate connected to wrong gc.statepoint", &CI, Call); 2024 } 2025 } 2026 2027 // Note: It is legal for a single derived pointer to be listed multiple 2028 // times. It's non-optimal, but it is legal. It can also happen after 2029 // insertion if we strip a bitcast away. 2030 // Note: It is really tempting to check that each base is relocated and 2031 // that a derived pointer is never reused as a base pointer. This turns 2032 // out to be problematic since optimizations run after safepoint insertion 2033 // can recognize equality properties that the insertion logic doesn't know 2034 // about. See example statepoint.ll in the verifier subdirectory 2035 } 2036 2037 void Verifier::verifyFrameRecoverIndices() { 2038 for (auto &Counts : FrameEscapeInfo) { 2039 Function *F = Counts.first; 2040 unsigned EscapedObjectCount = Counts.second.first; 2041 unsigned MaxRecoveredIndex = Counts.second.second; 2042 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2043 "all indices passed to llvm.localrecover must be less than the " 2044 "number of arguments passed ot llvm.localescape in the parent " 2045 "function", 2046 F); 2047 } 2048 } 2049 2050 static Instruction *getSuccPad(Instruction *Terminator) { 2051 BasicBlock *UnwindDest; 2052 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2053 UnwindDest = II->getUnwindDest(); 2054 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2055 UnwindDest = CSI->getUnwindDest(); 2056 else 2057 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2058 return UnwindDest->getFirstNonPHI(); 2059 } 2060 2061 void Verifier::verifySiblingFuncletUnwinds() { 2062 SmallPtrSet<Instruction *, 8> Visited; 2063 SmallPtrSet<Instruction *, 8> Active; 2064 for (const auto &Pair : SiblingFuncletInfo) { 2065 Instruction *PredPad = Pair.first; 2066 if (Visited.count(PredPad)) 2067 continue; 2068 Active.insert(PredPad); 2069 Instruction *Terminator = Pair.second; 2070 do { 2071 Instruction *SuccPad = getSuccPad(Terminator); 2072 if (Active.count(SuccPad)) { 2073 // Found a cycle; report error 2074 Instruction *CyclePad = SuccPad; 2075 SmallVector<Instruction *, 8> CycleNodes; 2076 do { 2077 CycleNodes.push_back(CyclePad); 2078 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2079 if (CycleTerminator != CyclePad) 2080 CycleNodes.push_back(CycleTerminator); 2081 CyclePad = getSuccPad(CycleTerminator); 2082 } while (CyclePad != SuccPad); 2083 Assert(false, "EH pads can't handle each other's exceptions", 2084 ArrayRef<Instruction *>(CycleNodes)); 2085 } 2086 // Don't re-walk a node we've already checked 2087 if (!Visited.insert(SuccPad).second) 2088 break; 2089 // Walk to this successor if it has a map entry. 2090 PredPad = SuccPad; 2091 auto TermI = SiblingFuncletInfo.find(PredPad); 2092 if (TermI == SiblingFuncletInfo.end()) 2093 break; 2094 Terminator = TermI->second; 2095 Active.insert(PredPad); 2096 } while (true); 2097 // Each node only has one successor, so we've walked all the active 2098 // nodes' successors. 2099 Active.clear(); 2100 } 2101 } 2102 2103 // visitFunction - Verify that a function is ok. 2104 // 2105 void Verifier::visitFunction(const Function &F) { 2106 visitGlobalValue(F); 2107 2108 // Check function arguments. 2109 FunctionType *FT = F.getFunctionType(); 2110 unsigned NumArgs = F.arg_size(); 2111 2112 Assert(&Context == &F.getContext(), 2113 "Function context does not match Module context!", &F); 2114 2115 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2116 Assert(FT->getNumParams() == NumArgs, 2117 "# formal arguments must match # of arguments for function type!", &F, 2118 FT); 2119 Assert(F.getReturnType()->isFirstClassType() || 2120 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2121 "Functions cannot return aggregate values!", &F); 2122 2123 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2124 "Invalid struct return type!", &F); 2125 2126 AttributeList Attrs = F.getAttributes(); 2127 2128 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2129 "Attribute after last parameter!", &F); 2130 2131 // Check function attributes. 2132 verifyFunctionAttrs(FT, Attrs, &F); 2133 2134 // On function declarations/definitions, we do not support the builtin 2135 // attribute. We do not check this in VerifyFunctionAttrs since that is 2136 // checking for Attributes that can/can not ever be on functions. 2137 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2138 "Attribute 'builtin' can only be applied to a callsite.", &F); 2139 2140 // Check that this function meets the restrictions on this calling convention. 2141 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2142 // restrictions can be lifted. 2143 switch (F.getCallingConv()) { 2144 default: 2145 case CallingConv::C: 2146 break; 2147 case CallingConv::AMDGPU_KERNEL: 2148 case CallingConv::SPIR_KERNEL: 2149 Assert(F.getReturnType()->isVoidTy(), 2150 "Calling convention requires void return type", &F); 2151 LLVM_FALLTHROUGH; 2152 case CallingConv::AMDGPU_VS: 2153 case CallingConv::AMDGPU_HS: 2154 case CallingConv::AMDGPU_GS: 2155 case CallingConv::AMDGPU_PS: 2156 case CallingConv::AMDGPU_CS: 2157 Assert(!F.hasStructRetAttr(), 2158 "Calling convention does not allow sret", &F); 2159 LLVM_FALLTHROUGH; 2160 case CallingConv::Fast: 2161 case CallingConv::Cold: 2162 case CallingConv::Intel_OCL_BI: 2163 case CallingConv::PTX_Kernel: 2164 case CallingConv::PTX_Device: 2165 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2166 "perfect forwarding!", 2167 &F); 2168 break; 2169 } 2170 2171 bool isLLVMdotName = F.getName().size() >= 5 && 2172 F.getName().substr(0, 5) == "llvm."; 2173 2174 // Check that the argument values match the function type for this function... 2175 unsigned i = 0; 2176 for (const Argument &Arg : F.args()) { 2177 Assert(Arg.getType() == FT->getParamType(i), 2178 "Argument value does not match function argument type!", &Arg, 2179 FT->getParamType(i)); 2180 Assert(Arg.getType()->isFirstClassType(), 2181 "Function arguments must have first-class types!", &Arg); 2182 if (!isLLVMdotName) { 2183 Assert(!Arg.getType()->isMetadataTy(), 2184 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2185 Assert(!Arg.getType()->isTokenTy(), 2186 "Function takes token but isn't an intrinsic", &Arg, &F); 2187 } 2188 2189 // Check that swifterror argument is only used by loads and stores. 2190 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2191 verifySwiftErrorValue(&Arg); 2192 } 2193 ++i; 2194 } 2195 2196 if (!isLLVMdotName) 2197 Assert(!F.getReturnType()->isTokenTy(), 2198 "Functions returns a token but isn't an intrinsic", &F); 2199 2200 // Get the function metadata attachments. 2201 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2202 F.getAllMetadata(MDs); 2203 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2204 verifyFunctionMetadata(MDs); 2205 2206 // Check validity of the personality function 2207 if (F.hasPersonalityFn()) { 2208 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2209 if (Per) 2210 Assert(Per->getParent() == F.getParent(), 2211 "Referencing personality function in another module!", 2212 &F, F.getParent(), Per, Per->getParent()); 2213 } 2214 2215 if (F.isMaterializable()) { 2216 // Function has a body somewhere we can't see. 2217 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2218 MDs.empty() ? nullptr : MDs.front().second); 2219 } else if (F.isDeclaration()) { 2220 for (const auto &I : MDs) { 2221 AssertDI(I.first != LLVMContext::MD_dbg, 2222 "function declaration may not have a !dbg attachment", &F); 2223 Assert(I.first != LLVMContext::MD_prof, 2224 "function declaration may not have a !prof attachment", &F); 2225 2226 // Verify the metadata itself. 2227 visitMDNode(*I.second); 2228 } 2229 Assert(!F.hasPersonalityFn(), 2230 "Function declaration shouldn't have a personality routine", &F); 2231 } else { 2232 // Verify that this function (which has a body) is not named "llvm.*". It 2233 // is not legal to define intrinsics. 2234 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2235 2236 // Check the entry node 2237 const BasicBlock *Entry = &F.getEntryBlock(); 2238 Assert(pred_empty(Entry), 2239 "Entry block to function must not have predecessors!", Entry); 2240 2241 // The address of the entry block cannot be taken, unless it is dead. 2242 if (Entry->hasAddressTaken()) { 2243 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2244 "blockaddress may not be used with the entry block!", Entry); 2245 } 2246 2247 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2248 // Visit metadata attachments. 2249 for (const auto &I : MDs) { 2250 // Verify that the attachment is legal. 2251 switch (I.first) { 2252 default: 2253 break; 2254 case LLVMContext::MD_dbg: { 2255 ++NumDebugAttachments; 2256 AssertDI(NumDebugAttachments == 1, 2257 "function must have a single !dbg attachment", &F, I.second); 2258 AssertDI(isa<DISubprogram>(I.second), 2259 "function !dbg attachment must be a subprogram", &F, I.second); 2260 auto *SP = cast<DISubprogram>(I.second); 2261 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2262 AssertDI(!AttachedTo || AttachedTo == &F, 2263 "DISubprogram attached to more than one function", SP, &F); 2264 AttachedTo = &F; 2265 break; 2266 } 2267 case LLVMContext::MD_prof: 2268 ++NumProfAttachments; 2269 Assert(NumProfAttachments == 1, 2270 "function must have a single !prof attachment", &F, I.second); 2271 break; 2272 } 2273 2274 // Verify the metadata itself. 2275 visitMDNode(*I.second); 2276 } 2277 } 2278 2279 // If this function is actually an intrinsic, verify that it is only used in 2280 // direct call/invokes, never having its "address taken". 2281 // Only do this if the module is materialized, otherwise we don't have all the 2282 // uses. 2283 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2284 const User *U; 2285 if (F.hasAddressTaken(&U)) 2286 Assert(false, "Invalid user of intrinsic instruction!", U); 2287 } 2288 2289 auto *N = F.getSubprogram(); 2290 HasDebugInfo = (N != nullptr); 2291 if (!HasDebugInfo) 2292 return; 2293 2294 // Check that all !dbg attachments lead to back to N (or, at least, another 2295 // subprogram that describes the same function). 2296 // 2297 // FIXME: Check this incrementally while visiting !dbg attachments. 2298 // FIXME: Only check when N is the canonical subprogram for F. 2299 SmallPtrSet<const MDNode *, 32> Seen; 2300 for (auto &BB : F) 2301 for (auto &I : BB) { 2302 // Be careful about using DILocation here since we might be dealing with 2303 // broken code (this is the Verifier after all). 2304 DILocation *DL = 2305 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2306 if (!DL) 2307 continue; 2308 if (!Seen.insert(DL).second) 2309 continue; 2310 2311 Metadata *Parent = DL->getRawScope(); 2312 AssertDI(Parent && isa<DILocalScope>(Parent), 2313 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2314 Parent); 2315 DILocalScope *Scope = DL->getInlinedAtScope(); 2316 if (Scope && !Seen.insert(Scope).second) 2317 continue; 2318 2319 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2320 2321 // Scope and SP could be the same MDNode and we don't want to skip 2322 // validation in that case 2323 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2324 continue; 2325 2326 // FIXME: Once N is canonical, check "SP == &N". 2327 AssertDI(SP->describes(&F), 2328 "!dbg attachment points at wrong subprogram for function", N, &F, 2329 &I, DL, Scope, SP); 2330 } 2331 } 2332 2333 // verifyBasicBlock - Verify that a basic block is well formed... 2334 // 2335 void Verifier::visitBasicBlock(BasicBlock &BB) { 2336 InstsInThisBlock.clear(); 2337 2338 // Ensure that basic blocks have terminators! 2339 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2340 2341 // Check constraints that this basic block imposes on all of the PHI nodes in 2342 // it. 2343 if (isa<PHINode>(BB.front())) { 2344 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2345 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2346 llvm::sort(Preds); 2347 for (const PHINode &PN : BB.phis()) { 2348 // Ensure that PHI nodes have at least one entry! 2349 Assert(PN.getNumIncomingValues() != 0, 2350 "PHI nodes must have at least one entry. If the block is dead, " 2351 "the PHI should be removed!", 2352 &PN); 2353 Assert(PN.getNumIncomingValues() == Preds.size(), 2354 "PHINode should have one entry for each predecessor of its " 2355 "parent basic block!", 2356 &PN); 2357 2358 // Get and sort all incoming values in the PHI node... 2359 Values.clear(); 2360 Values.reserve(PN.getNumIncomingValues()); 2361 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2362 Values.push_back( 2363 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2364 llvm::sort(Values); 2365 2366 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2367 // Check to make sure that if there is more than one entry for a 2368 // particular basic block in this PHI node, that the incoming values are 2369 // all identical. 2370 // 2371 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2372 Values[i].second == Values[i - 1].second, 2373 "PHI node has multiple entries for the same basic block with " 2374 "different incoming values!", 2375 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2376 2377 // Check to make sure that the predecessors and PHI node entries are 2378 // matched up. 2379 Assert(Values[i].first == Preds[i], 2380 "PHI node entries do not match predecessors!", &PN, 2381 Values[i].first, Preds[i]); 2382 } 2383 } 2384 } 2385 2386 // Check that all instructions have their parent pointers set up correctly. 2387 for (auto &I : BB) 2388 { 2389 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2390 } 2391 } 2392 2393 void Verifier::visitTerminator(Instruction &I) { 2394 // Ensure that terminators only exist at the end of the basic block. 2395 Assert(&I == I.getParent()->getTerminator(), 2396 "Terminator found in the middle of a basic block!", I.getParent()); 2397 visitInstruction(I); 2398 } 2399 2400 void Verifier::visitBranchInst(BranchInst &BI) { 2401 if (BI.isConditional()) { 2402 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2403 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2404 } 2405 visitTerminator(BI); 2406 } 2407 2408 void Verifier::visitReturnInst(ReturnInst &RI) { 2409 Function *F = RI.getParent()->getParent(); 2410 unsigned N = RI.getNumOperands(); 2411 if (F->getReturnType()->isVoidTy()) 2412 Assert(N == 0, 2413 "Found return instr that returns non-void in Function of void " 2414 "return type!", 2415 &RI, F->getReturnType()); 2416 else 2417 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2418 "Function return type does not match operand " 2419 "type of return inst!", 2420 &RI, F->getReturnType()); 2421 2422 // Check to make sure that the return value has necessary properties for 2423 // terminators... 2424 visitTerminator(RI); 2425 } 2426 2427 void Verifier::visitSwitchInst(SwitchInst &SI) { 2428 // Check to make sure that all of the constants in the switch instruction 2429 // have the same type as the switched-on value. 2430 Type *SwitchTy = SI.getCondition()->getType(); 2431 SmallPtrSet<ConstantInt*, 32> Constants; 2432 for (auto &Case : SI.cases()) { 2433 Assert(Case.getCaseValue()->getType() == SwitchTy, 2434 "Switch constants must all be same type as switch value!", &SI); 2435 Assert(Constants.insert(Case.getCaseValue()).second, 2436 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2437 } 2438 2439 visitTerminator(SI); 2440 } 2441 2442 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2443 Assert(BI.getAddress()->getType()->isPointerTy(), 2444 "Indirectbr operand must have pointer type!", &BI); 2445 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2446 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2447 "Indirectbr destinations must all have pointer type!", &BI); 2448 2449 visitTerminator(BI); 2450 } 2451 2452 void Verifier::visitSelectInst(SelectInst &SI) { 2453 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2454 SI.getOperand(2)), 2455 "Invalid operands for select instruction!", &SI); 2456 2457 Assert(SI.getTrueValue()->getType() == SI.getType(), 2458 "Select values must have same type as select instruction!", &SI); 2459 visitInstruction(SI); 2460 } 2461 2462 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2463 /// a pass, if any exist, it's an error. 2464 /// 2465 void Verifier::visitUserOp1(Instruction &I) { 2466 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2467 } 2468 2469 void Verifier::visitTruncInst(TruncInst &I) { 2470 // Get the source and destination types 2471 Type *SrcTy = I.getOperand(0)->getType(); 2472 Type *DestTy = I.getType(); 2473 2474 // Get the size of the types in bits, we'll need this later 2475 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2476 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2477 2478 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2479 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2480 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2481 "trunc source and destination must both be a vector or neither", &I); 2482 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2483 2484 visitInstruction(I); 2485 } 2486 2487 void Verifier::visitZExtInst(ZExtInst &I) { 2488 // Get the source and destination types 2489 Type *SrcTy = I.getOperand(0)->getType(); 2490 Type *DestTy = I.getType(); 2491 2492 // Get the size of the types in bits, we'll need this later 2493 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2494 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2495 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2496 "zext source and destination must both be a vector or neither", &I); 2497 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2498 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2499 2500 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2501 2502 visitInstruction(I); 2503 } 2504 2505 void Verifier::visitSExtInst(SExtInst &I) { 2506 // Get the source and destination types 2507 Type *SrcTy = I.getOperand(0)->getType(); 2508 Type *DestTy = I.getType(); 2509 2510 // Get the size of the types in bits, we'll need this later 2511 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2512 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2513 2514 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2515 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2516 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2517 "sext source and destination must both be a vector or neither", &I); 2518 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2519 2520 visitInstruction(I); 2521 } 2522 2523 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2524 // Get the source and destination types 2525 Type *SrcTy = I.getOperand(0)->getType(); 2526 Type *DestTy = I.getType(); 2527 // Get the size of the types in bits, we'll need this later 2528 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2529 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2530 2531 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2532 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2533 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2534 "fptrunc source and destination must both be a vector or neither", &I); 2535 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2536 2537 visitInstruction(I); 2538 } 2539 2540 void Verifier::visitFPExtInst(FPExtInst &I) { 2541 // Get the source and destination types 2542 Type *SrcTy = I.getOperand(0)->getType(); 2543 Type *DestTy = I.getType(); 2544 2545 // Get the size of the types in bits, we'll need this later 2546 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2547 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2548 2549 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2550 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2551 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2552 "fpext source and destination must both be a vector or neither", &I); 2553 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2554 2555 visitInstruction(I); 2556 } 2557 2558 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2559 // Get the source and destination types 2560 Type *SrcTy = I.getOperand(0)->getType(); 2561 Type *DestTy = I.getType(); 2562 2563 bool SrcVec = SrcTy->isVectorTy(); 2564 bool DstVec = DestTy->isVectorTy(); 2565 2566 Assert(SrcVec == DstVec, 2567 "UIToFP source and dest must both be vector or scalar", &I); 2568 Assert(SrcTy->isIntOrIntVectorTy(), 2569 "UIToFP source must be integer or integer vector", &I); 2570 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2571 &I); 2572 2573 if (SrcVec && DstVec) 2574 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2575 cast<VectorType>(DestTy)->getNumElements(), 2576 "UIToFP source and dest vector length mismatch", &I); 2577 2578 visitInstruction(I); 2579 } 2580 2581 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2582 // Get the source and destination types 2583 Type *SrcTy = I.getOperand(0)->getType(); 2584 Type *DestTy = I.getType(); 2585 2586 bool SrcVec = SrcTy->isVectorTy(); 2587 bool DstVec = DestTy->isVectorTy(); 2588 2589 Assert(SrcVec == DstVec, 2590 "SIToFP source and dest must both be vector or scalar", &I); 2591 Assert(SrcTy->isIntOrIntVectorTy(), 2592 "SIToFP source must be integer or integer vector", &I); 2593 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2594 &I); 2595 2596 if (SrcVec && DstVec) 2597 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2598 cast<VectorType>(DestTy)->getNumElements(), 2599 "SIToFP source and dest vector length mismatch", &I); 2600 2601 visitInstruction(I); 2602 } 2603 2604 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2605 // Get the source and destination types 2606 Type *SrcTy = I.getOperand(0)->getType(); 2607 Type *DestTy = I.getType(); 2608 2609 bool SrcVec = SrcTy->isVectorTy(); 2610 bool DstVec = DestTy->isVectorTy(); 2611 2612 Assert(SrcVec == DstVec, 2613 "FPToUI source and dest must both be vector or scalar", &I); 2614 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2615 &I); 2616 Assert(DestTy->isIntOrIntVectorTy(), 2617 "FPToUI result must be integer or integer vector", &I); 2618 2619 if (SrcVec && DstVec) 2620 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2621 cast<VectorType>(DestTy)->getNumElements(), 2622 "FPToUI source and dest vector length mismatch", &I); 2623 2624 visitInstruction(I); 2625 } 2626 2627 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2628 // Get the source and destination types 2629 Type *SrcTy = I.getOperand(0)->getType(); 2630 Type *DestTy = I.getType(); 2631 2632 bool SrcVec = SrcTy->isVectorTy(); 2633 bool DstVec = DestTy->isVectorTy(); 2634 2635 Assert(SrcVec == DstVec, 2636 "FPToSI source and dest must both be vector or scalar", &I); 2637 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2638 &I); 2639 Assert(DestTy->isIntOrIntVectorTy(), 2640 "FPToSI result must be integer or integer vector", &I); 2641 2642 if (SrcVec && DstVec) 2643 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2644 cast<VectorType>(DestTy)->getNumElements(), 2645 "FPToSI source and dest vector length mismatch", &I); 2646 2647 visitInstruction(I); 2648 } 2649 2650 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2651 // Get the source and destination types 2652 Type *SrcTy = I.getOperand(0)->getType(); 2653 Type *DestTy = I.getType(); 2654 2655 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2656 2657 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2658 Assert(!DL.isNonIntegralPointerType(PTy), 2659 "ptrtoint not supported for non-integral pointers"); 2660 2661 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2662 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2663 &I); 2664 2665 if (SrcTy->isVectorTy()) { 2666 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2667 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2668 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2669 "PtrToInt Vector width mismatch", &I); 2670 } 2671 2672 visitInstruction(I); 2673 } 2674 2675 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2676 // Get the source and destination types 2677 Type *SrcTy = I.getOperand(0)->getType(); 2678 Type *DestTy = I.getType(); 2679 2680 Assert(SrcTy->isIntOrIntVectorTy(), 2681 "IntToPtr source must be an integral", &I); 2682 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2683 2684 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2685 Assert(!DL.isNonIntegralPointerType(PTy), 2686 "inttoptr not supported for non-integral pointers"); 2687 2688 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2689 &I); 2690 if (SrcTy->isVectorTy()) { 2691 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2692 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2693 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2694 "IntToPtr Vector width mismatch", &I); 2695 } 2696 visitInstruction(I); 2697 } 2698 2699 void Verifier::visitBitCastInst(BitCastInst &I) { 2700 Assert( 2701 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2702 "Invalid bitcast", &I); 2703 visitInstruction(I); 2704 } 2705 2706 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2707 Type *SrcTy = I.getOperand(0)->getType(); 2708 Type *DestTy = I.getType(); 2709 2710 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2711 &I); 2712 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2713 &I); 2714 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2715 "AddrSpaceCast must be between different address spaces", &I); 2716 if (SrcTy->isVectorTy()) 2717 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2718 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2719 visitInstruction(I); 2720 } 2721 2722 /// visitPHINode - Ensure that a PHI node is well formed. 2723 /// 2724 void Verifier::visitPHINode(PHINode &PN) { 2725 // Ensure that the PHI nodes are all grouped together at the top of the block. 2726 // This can be tested by checking whether the instruction before this is 2727 // either nonexistent (because this is begin()) or is a PHI node. If not, 2728 // then there is some other instruction before a PHI. 2729 Assert(&PN == &PN.getParent()->front() || 2730 isa<PHINode>(--BasicBlock::iterator(&PN)), 2731 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2732 2733 // Check that a PHI doesn't yield a Token. 2734 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2735 2736 // Check that all of the values of the PHI node have the same type as the 2737 // result, and that the incoming blocks are really basic blocks. 2738 for (Value *IncValue : PN.incoming_values()) { 2739 Assert(PN.getType() == IncValue->getType(), 2740 "PHI node operands are not the same type as the result!", &PN); 2741 } 2742 2743 // All other PHI node constraints are checked in the visitBasicBlock method. 2744 2745 visitInstruction(PN); 2746 } 2747 2748 void Verifier::verifyCallSite(CallSite CS) { 2749 Instruction *I = CS.getInstruction(); 2750 2751 Assert(CS.getCalledValue()->getType()->isPointerTy(), 2752 "Called function must be a pointer!", I); 2753 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 2754 2755 Assert(FPTy->getElementType()->isFunctionTy(), 2756 "Called function is not pointer to function type!", I); 2757 2758 Assert(FPTy->getElementType() == CS.getFunctionType(), 2759 "Called function is not the same type as the call!", I); 2760 2761 FunctionType *FTy = CS.getFunctionType(); 2762 2763 // Verify that the correct number of arguments are being passed 2764 if (FTy->isVarArg()) 2765 Assert(CS.arg_size() >= FTy->getNumParams(), 2766 "Called function requires more parameters than were provided!", I); 2767 else 2768 Assert(CS.arg_size() == FTy->getNumParams(), 2769 "Incorrect number of arguments passed to called function!", I); 2770 2771 // Verify that all arguments to the call match the function type. 2772 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2773 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), 2774 "Call parameter type does not match function signature!", 2775 CS.getArgument(i), FTy->getParamType(i), I); 2776 2777 AttributeList Attrs = CS.getAttributes(); 2778 2779 Assert(verifyAttributeCount(Attrs, CS.arg_size()), 2780 "Attribute after last parameter!", I); 2781 2782 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2783 // Don't allow speculatable on call sites, unless the underlying function 2784 // declaration is also speculatable. 2785 Function *Callee 2786 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 2787 Assert(Callee && Callee->isSpeculatable(), 2788 "speculatable attribute may not apply to call sites", I); 2789 } 2790 2791 // Verify call attributes. 2792 verifyFunctionAttrs(FTy, Attrs, I); 2793 2794 // Conservatively check the inalloca argument. 2795 // We have a bug if we can find that there is an underlying alloca without 2796 // inalloca. 2797 if (CS.hasInAllocaArgument()) { 2798 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 2799 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2800 Assert(AI->isUsedWithInAlloca(), 2801 "inalloca argument for call has mismatched alloca", AI, I); 2802 } 2803 2804 // For each argument of the callsite, if it has the swifterror argument, 2805 // make sure the underlying alloca/parameter it comes from has a swifterror as 2806 // well. 2807 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2808 if (CS.paramHasAttr(i, Attribute::SwiftError)) { 2809 Value *SwiftErrorArg = CS.getArgument(i); 2810 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2811 Assert(AI->isSwiftError(), 2812 "swifterror argument for call has mismatched alloca", AI, I); 2813 continue; 2814 } 2815 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2816 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I); 2817 Assert(ArgI->hasSwiftErrorAttr(), 2818 "swifterror argument for call has mismatched parameter", ArgI, I); 2819 } 2820 2821 if (FTy->isVarArg()) { 2822 // FIXME? is 'nest' even legal here? 2823 bool SawNest = false; 2824 bool SawReturned = false; 2825 2826 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2827 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2828 SawNest = true; 2829 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2830 SawReturned = true; 2831 } 2832 2833 // Check attributes on the varargs part. 2834 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) { 2835 Type *Ty = CS.getArgument(Idx)->getType(); 2836 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2837 verifyParameterAttrs(ArgAttrs, Ty, I); 2838 2839 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2840 Assert(!SawNest, "More than one parameter has attribute nest!", I); 2841 SawNest = true; 2842 } 2843 2844 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2845 Assert(!SawReturned, "More than one parameter has attribute returned!", 2846 I); 2847 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2848 "Incompatible argument and return types for 'returned' " 2849 "attribute", 2850 I); 2851 SawReturned = true; 2852 } 2853 2854 // Statepoint intrinsic is vararg but the wrapped function may be not. 2855 // Allow sret here and check the wrapped function in verifyStatepoint. 2856 if (CS.getCalledFunction() == nullptr || 2857 CS.getCalledFunction()->getIntrinsicID() != 2858 Intrinsic::experimental_gc_statepoint) 2859 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2860 "Attribute 'sret' cannot be used for vararg call arguments!", I); 2861 2862 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2863 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!", 2864 I); 2865 } 2866 } 2867 2868 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2869 if (CS.getCalledFunction() == nullptr || 2870 !CS.getCalledFunction()->getName().startswith("llvm.")) { 2871 for (Type *ParamTy : FTy->params()) { 2872 Assert(!ParamTy->isMetadataTy(), 2873 "Function has metadata parameter but isn't an intrinsic", I); 2874 Assert(!ParamTy->isTokenTy(), 2875 "Function has token parameter but isn't an intrinsic", I); 2876 } 2877 } 2878 2879 // Verify that indirect calls don't return tokens. 2880 if (CS.getCalledFunction() == nullptr) 2881 Assert(!FTy->getReturnType()->isTokenTy(), 2882 "Return type cannot be token for indirect call!"); 2883 2884 if (Function *F = CS.getCalledFunction()) 2885 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2886 visitIntrinsicCallSite(ID, CS); 2887 2888 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2889 // at most one "gc-transition" operand bundle. 2890 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2891 FoundGCTransitionBundle = false; 2892 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { 2893 OperandBundleUse BU = CS.getOperandBundleAt(i); 2894 uint32_t Tag = BU.getTagID(); 2895 if (Tag == LLVMContext::OB_deopt) { 2896 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); 2897 FoundDeoptBundle = true; 2898 } else if (Tag == LLVMContext::OB_gc_transition) { 2899 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2900 I); 2901 FoundGCTransitionBundle = true; 2902 } else if (Tag == LLVMContext::OB_funclet) { 2903 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); 2904 FoundFuncletBundle = true; 2905 Assert(BU.Inputs.size() == 1, 2906 "Expected exactly one funclet bundle operand", I); 2907 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2908 "Funclet bundle operands should correspond to a FuncletPadInst", 2909 I); 2910 } 2911 } 2912 2913 // Verify that each inlinable callsite of a debug-info-bearing function in a 2914 // debug-info-bearing function has a debug location attached to it. Failure to 2915 // do so causes assertion failures when the inliner sets up inline scope info. 2916 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() && 2917 CS.getCalledFunction()->getSubprogram()) 2918 AssertDI(I->getDebugLoc(), "inlinable function call in a function with " 2919 "debug info must have a !dbg location", 2920 I); 2921 2922 visitInstruction(*I); 2923 } 2924 2925 /// Two types are "congruent" if they are identical, or if they are both pointer 2926 /// types with different pointee types and the same address space. 2927 static bool isTypeCongruent(Type *L, Type *R) { 2928 if (L == R) 2929 return true; 2930 PointerType *PL = dyn_cast<PointerType>(L); 2931 PointerType *PR = dyn_cast<PointerType>(R); 2932 if (!PL || !PR) 2933 return false; 2934 return PL->getAddressSpace() == PR->getAddressSpace(); 2935 } 2936 2937 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 2938 static const Attribute::AttrKind ABIAttrs[] = { 2939 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2940 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2941 Attribute::SwiftError}; 2942 AttrBuilder Copy; 2943 for (auto AK : ABIAttrs) { 2944 if (Attrs.hasParamAttribute(I, AK)) 2945 Copy.addAttribute(AK); 2946 } 2947 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 2948 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 2949 return Copy; 2950 } 2951 2952 void Verifier::verifyMustTailCall(CallInst &CI) { 2953 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 2954 2955 // - The caller and callee prototypes must match. Pointer types of 2956 // parameters or return types may differ in pointee type, but not 2957 // address space. 2958 Function *F = CI.getParent()->getParent(); 2959 FunctionType *CallerTy = F->getFunctionType(); 2960 FunctionType *CalleeTy = CI.getFunctionType(); 2961 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 2962 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 2963 "cannot guarantee tail call due to mismatched parameter counts", 2964 &CI); 2965 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2966 Assert( 2967 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 2968 "cannot guarantee tail call due to mismatched parameter types", &CI); 2969 } 2970 } 2971 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 2972 "cannot guarantee tail call due to mismatched varargs", &CI); 2973 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 2974 "cannot guarantee tail call due to mismatched return types", &CI); 2975 2976 // - The calling conventions of the caller and callee must match. 2977 Assert(F->getCallingConv() == CI.getCallingConv(), 2978 "cannot guarantee tail call due to mismatched calling conv", &CI); 2979 2980 // - All ABI-impacting function attributes, such as sret, byval, inreg, 2981 // returned, and inalloca, must match. 2982 AttributeList CallerAttrs = F->getAttributes(); 2983 AttributeList CalleeAttrs = CI.getAttributes(); 2984 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2985 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 2986 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 2987 Assert(CallerABIAttrs == CalleeABIAttrs, 2988 "cannot guarantee tail call due to mismatched ABI impacting " 2989 "function attributes", 2990 &CI, CI.getOperand(I)); 2991 } 2992 2993 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 2994 // or a pointer bitcast followed by a ret instruction. 2995 // - The ret instruction must return the (possibly bitcasted) value 2996 // produced by the call or void. 2997 Value *RetVal = &CI; 2998 Instruction *Next = CI.getNextNode(); 2999 3000 // Handle the optional bitcast. 3001 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3002 Assert(BI->getOperand(0) == RetVal, 3003 "bitcast following musttail call must use the call", BI); 3004 RetVal = BI; 3005 Next = BI->getNextNode(); 3006 } 3007 3008 // Check the return. 3009 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3010 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3011 &CI); 3012 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3013 "musttail call result must be returned", Ret); 3014 } 3015 3016 void Verifier::visitCallInst(CallInst &CI) { 3017 verifyCallSite(&CI); 3018 3019 if (CI.isMustTailCall()) 3020 verifyMustTailCall(CI); 3021 } 3022 3023 void Verifier::visitInvokeInst(InvokeInst &II) { 3024 verifyCallSite(&II); 3025 3026 // Verify that the first non-PHI instruction of the unwind destination is an 3027 // exception handling instruction. 3028 Assert( 3029 II.getUnwindDest()->isEHPad(), 3030 "The unwind destination does not have an exception handling instruction!", 3031 &II); 3032 3033 visitTerminator(II); 3034 } 3035 3036 /// visitUnaryOperator - Check the argument to the unary operator. 3037 /// 3038 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3039 Assert(U.getType() == U.getOperand(0)->getType(), 3040 "Unary operators must have same type for" 3041 "operands and result!", 3042 &U); 3043 3044 switch (U.getOpcode()) { 3045 // Check that floating-point arithmetic operators are only used with 3046 // floating-point operands. 3047 case Instruction::FNeg: 3048 Assert(U.getType()->isFPOrFPVectorTy(), 3049 "FNeg operator only works with float types!", &U); 3050 break; 3051 default: 3052 llvm_unreachable("Unknown UnaryOperator opcode!"); 3053 } 3054 3055 visitInstruction(U); 3056 } 3057 3058 /// visitBinaryOperator - Check that both arguments to the binary operator are 3059 /// of the same type! 3060 /// 3061 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3062 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3063 "Both operands to a binary operator are not of the same type!", &B); 3064 3065 switch (B.getOpcode()) { 3066 // Check that integer arithmetic operators are only used with 3067 // integral operands. 3068 case Instruction::Add: 3069 case Instruction::Sub: 3070 case Instruction::Mul: 3071 case Instruction::SDiv: 3072 case Instruction::UDiv: 3073 case Instruction::SRem: 3074 case Instruction::URem: 3075 Assert(B.getType()->isIntOrIntVectorTy(), 3076 "Integer arithmetic operators only work with integral types!", &B); 3077 Assert(B.getType() == B.getOperand(0)->getType(), 3078 "Integer arithmetic operators must have same type " 3079 "for operands and result!", 3080 &B); 3081 break; 3082 // Check that floating-point arithmetic operators are only used with 3083 // floating-point operands. 3084 case Instruction::FAdd: 3085 case Instruction::FSub: 3086 case Instruction::FMul: 3087 case Instruction::FDiv: 3088 case Instruction::FRem: 3089 Assert(B.getType()->isFPOrFPVectorTy(), 3090 "Floating-point arithmetic operators only work with " 3091 "floating-point types!", 3092 &B); 3093 Assert(B.getType() == B.getOperand(0)->getType(), 3094 "Floating-point arithmetic operators must have same type " 3095 "for operands and result!", 3096 &B); 3097 break; 3098 // Check that logical operators are only used with integral operands. 3099 case Instruction::And: 3100 case Instruction::Or: 3101 case Instruction::Xor: 3102 Assert(B.getType()->isIntOrIntVectorTy(), 3103 "Logical operators only work with integral types!", &B); 3104 Assert(B.getType() == B.getOperand(0)->getType(), 3105 "Logical operators must have same type for operands and result!", 3106 &B); 3107 break; 3108 case Instruction::Shl: 3109 case Instruction::LShr: 3110 case Instruction::AShr: 3111 Assert(B.getType()->isIntOrIntVectorTy(), 3112 "Shifts only work with integral types!", &B); 3113 Assert(B.getType() == B.getOperand(0)->getType(), 3114 "Shift return type must be same as operands!", &B); 3115 break; 3116 default: 3117 llvm_unreachable("Unknown BinaryOperator opcode!"); 3118 } 3119 3120 visitInstruction(B); 3121 } 3122 3123 void Verifier::visitICmpInst(ICmpInst &IC) { 3124 // Check that the operands are the same type 3125 Type *Op0Ty = IC.getOperand(0)->getType(); 3126 Type *Op1Ty = IC.getOperand(1)->getType(); 3127 Assert(Op0Ty == Op1Ty, 3128 "Both operands to ICmp instruction are not of the same type!", &IC); 3129 // Check that the operands are the right type 3130 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3131 "Invalid operand types for ICmp instruction", &IC); 3132 // Check that the predicate is valid. 3133 Assert(IC.isIntPredicate(), 3134 "Invalid predicate in ICmp instruction!", &IC); 3135 3136 visitInstruction(IC); 3137 } 3138 3139 void Verifier::visitFCmpInst(FCmpInst &FC) { 3140 // Check that the operands are the same type 3141 Type *Op0Ty = FC.getOperand(0)->getType(); 3142 Type *Op1Ty = FC.getOperand(1)->getType(); 3143 Assert(Op0Ty == Op1Ty, 3144 "Both operands to FCmp instruction are not of the same type!", &FC); 3145 // Check that the operands are the right type 3146 Assert(Op0Ty->isFPOrFPVectorTy(), 3147 "Invalid operand types for FCmp instruction", &FC); 3148 // Check that the predicate is valid. 3149 Assert(FC.isFPPredicate(), 3150 "Invalid predicate in FCmp instruction!", &FC); 3151 3152 visitInstruction(FC); 3153 } 3154 3155 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3156 Assert( 3157 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3158 "Invalid extractelement operands!", &EI); 3159 visitInstruction(EI); 3160 } 3161 3162 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3163 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3164 IE.getOperand(2)), 3165 "Invalid insertelement operands!", &IE); 3166 visitInstruction(IE); 3167 } 3168 3169 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3170 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3171 SV.getOperand(2)), 3172 "Invalid shufflevector operands!", &SV); 3173 visitInstruction(SV); 3174 } 3175 3176 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3177 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3178 3179 Assert(isa<PointerType>(TargetTy), 3180 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3181 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3182 3183 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3184 Assert(all_of( 3185 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3186 "GEP indexes must be integers", &GEP); 3187 Type *ElTy = 3188 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3189 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3190 3191 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3192 GEP.getResultElementType() == ElTy, 3193 "GEP is not of right type for indices!", &GEP, ElTy); 3194 3195 if (GEP.getType()->isVectorTy()) { 3196 // Additional checks for vector GEPs. 3197 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3198 if (GEP.getPointerOperandType()->isVectorTy()) 3199 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3200 "Vector GEP result width doesn't match operand's", &GEP); 3201 for (Value *Idx : Idxs) { 3202 Type *IndexTy = Idx->getType(); 3203 if (IndexTy->isVectorTy()) { 3204 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3205 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3206 } 3207 Assert(IndexTy->isIntOrIntVectorTy(), 3208 "All GEP indices should be of integer type"); 3209 } 3210 } 3211 3212 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3213 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3214 "GEP address space doesn't match type", &GEP); 3215 } 3216 3217 visitInstruction(GEP); 3218 } 3219 3220 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3221 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3222 } 3223 3224 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3225 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3226 "precondition violation"); 3227 3228 unsigned NumOperands = Range->getNumOperands(); 3229 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3230 unsigned NumRanges = NumOperands / 2; 3231 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3232 3233 ConstantRange LastRange(1); // Dummy initial value 3234 for (unsigned i = 0; i < NumRanges; ++i) { 3235 ConstantInt *Low = 3236 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3237 Assert(Low, "The lower limit must be an integer!", Low); 3238 ConstantInt *High = 3239 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3240 Assert(High, "The upper limit must be an integer!", High); 3241 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3242 "Range types must match instruction type!", &I); 3243 3244 APInt HighV = High->getValue(); 3245 APInt LowV = Low->getValue(); 3246 ConstantRange CurRange(LowV, HighV); 3247 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3248 "Range must not be empty!", Range); 3249 if (i != 0) { 3250 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3251 "Intervals are overlapping", Range); 3252 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3253 Range); 3254 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3255 Range); 3256 } 3257 LastRange = ConstantRange(LowV, HighV); 3258 } 3259 if (NumRanges > 2) { 3260 APInt FirstLow = 3261 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3262 APInt FirstHigh = 3263 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3264 ConstantRange FirstRange(FirstLow, FirstHigh); 3265 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3266 "Intervals are overlapping", Range); 3267 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3268 Range); 3269 } 3270 } 3271 3272 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3273 unsigned Size = DL.getTypeSizeInBits(Ty); 3274 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3275 Assert(!(Size & (Size - 1)), 3276 "atomic memory access' operand must have a power-of-two size", Ty, I); 3277 } 3278 3279 void Verifier::visitLoadInst(LoadInst &LI) { 3280 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3281 Assert(PTy, "Load operand must be a pointer.", &LI); 3282 Type *ElTy = LI.getType(); 3283 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3284 "huge alignment values are unsupported", &LI); 3285 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3286 if (LI.isAtomic()) { 3287 Assert(LI.getOrdering() != AtomicOrdering::Release && 3288 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3289 "Load cannot have Release ordering", &LI); 3290 Assert(LI.getAlignment() != 0, 3291 "Atomic load must specify explicit alignment", &LI); 3292 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3293 "atomic load operand must have integer, pointer, or floating point " 3294 "type!", 3295 ElTy, &LI); 3296 checkAtomicMemAccessSize(ElTy, &LI); 3297 } else { 3298 Assert(LI.getSyncScopeID() == SyncScope::System, 3299 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3300 } 3301 3302 visitInstruction(LI); 3303 } 3304 3305 void Verifier::visitStoreInst(StoreInst &SI) { 3306 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3307 Assert(PTy, "Store operand must be a pointer.", &SI); 3308 Type *ElTy = PTy->getElementType(); 3309 Assert(ElTy == SI.getOperand(0)->getType(), 3310 "Stored value type does not match pointer operand type!", &SI, ElTy); 3311 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3312 "huge alignment values are unsupported", &SI); 3313 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3314 if (SI.isAtomic()) { 3315 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3316 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3317 "Store cannot have Acquire ordering", &SI); 3318 Assert(SI.getAlignment() != 0, 3319 "Atomic store must specify explicit alignment", &SI); 3320 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3321 "atomic store operand must have integer, pointer, or floating point " 3322 "type!", 3323 ElTy, &SI); 3324 checkAtomicMemAccessSize(ElTy, &SI); 3325 } else { 3326 Assert(SI.getSyncScopeID() == SyncScope::System, 3327 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3328 } 3329 visitInstruction(SI); 3330 } 3331 3332 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3333 void Verifier::verifySwiftErrorCallSite(CallSite CS, 3334 const Value *SwiftErrorVal) { 3335 unsigned Idx = 0; 3336 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 3337 I != E; ++I, ++Idx) { 3338 if (*I == SwiftErrorVal) { 3339 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError), 3340 "swifterror value when used in a callsite should be marked " 3341 "with swifterror attribute", 3342 SwiftErrorVal, CS); 3343 } 3344 } 3345 } 3346 3347 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3348 // Check that swifterror value is only used by loads, stores, or as 3349 // a swifterror argument. 3350 for (const User *U : SwiftErrorVal->users()) { 3351 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3352 isa<InvokeInst>(U), 3353 "swifterror value can only be loaded and stored from, or " 3354 "as a swifterror argument!", 3355 SwiftErrorVal, U); 3356 // If it is used by a store, check it is the second operand. 3357 if (auto StoreI = dyn_cast<StoreInst>(U)) 3358 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3359 "swifterror value should be the second operand when used " 3360 "by stores", SwiftErrorVal, U); 3361 if (auto CallI = dyn_cast<CallInst>(U)) 3362 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal); 3363 if (auto II = dyn_cast<InvokeInst>(U)) 3364 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal); 3365 } 3366 } 3367 3368 void Verifier::visitAllocaInst(AllocaInst &AI) { 3369 SmallPtrSet<Type*, 4> Visited; 3370 PointerType *PTy = AI.getType(); 3371 // TODO: Relax this restriction? 3372 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3373 "Allocation instruction pointer not in the stack address space!", 3374 &AI); 3375 Assert(AI.getAllocatedType()->isSized(&Visited), 3376 "Cannot allocate unsized type", &AI); 3377 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3378 "Alloca array size must have integer type", &AI); 3379 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3380 "huge alignment values are unsupported", &AI); 3381 3382 if (AI.isSwiftError()) { 3383 verifySwiftErrorValue(&AI); 3384 } 3385 3386 visitInstruction(AI); 3387 } 3388 3389 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3390 3391 // FIXME: more conditions??? 3392 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3393 "cmpxchg instructions must be atomic.", &CXI); 3394 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3395 "cmpxchg instructions must be atomic.", &CXI); 3396 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3397 "cmpxchg instructions cannot be unordered.", &CXI); 3398 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3399 "cmpxchg instructions cannot be unordered.", &CXI); 3400 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3401 "cmpxchg instructions failure argument shall be no stronger than the " 3402 "success argument", 3403 &CXI); 3404 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3405 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3406 "cmpxchg failure ordering cannot include release semantics", &CXI); 3407 3408 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3409 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3410 Type *ElTy = PTy->getElementType(); 3411 Assert(ElTy->isIntOrPtrTy(), 3412 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3413 checkAtomicMemAccessSize(ElTy, &CXI); 3414 Assert(ElTy == CXI.getOperand(1)->getType(), 3415 "Expected value type does not match pointer operand type!", &CXI, 3416 ElTy); 3417 Assert(ElTy == CXI.getOperand(2)->getType(), 3418 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3419 visitInstruction(CXI); 3420 } 3421 3422 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3423 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3424 "atomicrmw instructions must be atomic.", &RMWI); 3425 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3426 "atomicrmw instructions cannot be unordered.", &RMWI); 3427 auto Op = RMWI.getOperation(); 3428 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3429 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3430 Type *ElTy = PTy->getElementType(); 3431 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3432 AtomicRMWInst::getOperationName(Op) + 3433 " operand must have integer type!", 3434 &RMWI, ElTy); 3435 checkAtomicMemAccessSize(ElTy, &RMWI); 3436 Assert(ElTy == RMWI.getOperand(1)->getType(), 3437 "Argument value type does not match pointer operand type!", &RMWI, 3438 ElTy); 3439 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3440 "Invalid binary operation!", &RMWI); 3441 visitInstruction(RMWI); 3442 } 3443 3444 void Verifier::visitFenceInst(FenceInst &FI) { 3445 const AtomicOrdering Ordering = FI.getOrdering(); 3446 Assert(Ordering == AtomicOrdering::Acquire || 3447 Ordering == AtomicOrdering::Release || 3448 Ordering == AtomicOrdering::AcquireRelease || 3449 Ordering == AtomicOrdering::SequentiallyConsistent, 3450 "fence instructions may only have acquire, release, acq_rel, or " 3451 "seq_cst ordering.", 3452 &FI); 3453 visitInstruction(FI); 3454 } 3455 3456 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3457 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3458 EVI.getIndices()) == EVI.getType(), 3459 "Invalid ExtractValueInst operands!", &EVI); 3460 3461 visitInstruction(EVI); 3462 } 3463 3464 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3465 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3466 IVI.getIndices()) == 3467 IVI.getOperand(1)->getType(), 3468 "Invalid InsertValueInst operands!", &IVI); 3469 3470 visitInstruction(IVI); 3471 } 3472 3473 static Value *getParentPad(Value *EHPad) { 3474 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3475 return FPI->getParentPad(); 3476 3477 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3478 } 3479 3480 void Verifier::visitEHPadPredecessors(Instruction &I) { 3481 assert(I.isEHPad()); 3482 3483 BasicBlock *BB = I.getParent(); 3484 Function *F = BB->getParent(); 3485 3486 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3487 3488 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3489 // The landingpad instruction defines its parent as a landing pad block. The 3490 // landing pad block may be branched to only by the unwind edge of an 3491 // invoke. 3492 for (BasicBlock *PredBB : predecessors(BB)) { 3493 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3494 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3495 "Block containing LandingPadInst must be jumped to " 3496 "only by the unwind edge of an invoke.", 3497 LPI); 3498 } 3499 return; 3500 } 3501 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3502 if (!pred_empty(BB)) 3503 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3504 "Block containg CatchPadInst must be jumped to " 3505 "only by its catchswitch.", 3506 CPI); 3507 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3508 "Catchswitch cannot unwind to one of its catchpads", 3509 CPI->getCatchSwitch(), CPI); 3510 return; 3511 } 3512 3513 // Verify that each pred has a legal terminator with a legal to/from EH 3514 // pad relationship. 3515 Instruction *ToPad = &I; 3516 Value *ToPadParent = getParentPad(ToPad); 3517 for (BasicBlock *PredBB : predecessors(BB)) { 3518 Instruction *TI = PredBB->getTerminator(); 3519 Value *FromPad; 3520 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3521 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3522 "EH pad must be jumped to via an unwind edge", ToPad, II); 3523 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3524 FromPad = Bundle->Inputs[0]; 3525 else 3526 FromPad = ConstantTokenNone::get(II->getContext()); 3527 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3528 FromPad = CRI->getOperand(0); 3529 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3530 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3531 FromPad = CSI; 3532 } else { 3533 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3534 } 3535 3536 // The edge may exit from zero or more nested pads. 3537 SmallSet<Value *, 8> Seen; 3538 for (;; FromPad = getParentPad(FromPad)) { 3539 Assert(FromPad != ToPad, 3540 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3541 if (FromPad == ToPadParent) { 3542 // This is a legal unwind edge. 3543 break; 3544 } 3545 Assert(!isa<ConstantTokenNone>(FromPad), 3546 "A single unwind edge may only enter one EH pad", TI); 3547 Assert(Seen.insert(FromPad).second, 3548 "EH pad jumps through a cycle of pads", FromPad); 3549 } 3550 } 3551 } 3552 3553 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3554 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3555 // isn't a cleanup. 3556 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3557 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3558 3559 visitEHPadPredecessors(LPI); 3560 3561 if (!LandingPadResultTy) 3562 LandingPadResultTy = LPI.getType(); 3563 else 3564 Assert(LandingPadResultTy == LPI.getType(), 3565 "The landingpad instruction should have a consistent result type " 3566 "inside a function.", 3567 &LPI); 3568 3569 Function *F = LPI.getParent()->getParent(); 3570 Assert(F->hasPersonalityFn(), 3571 "LandingPadInst needs to be in a function with a personality.", &LPI); 3572 3573 // The landingpad instruction must be the first non-PHI instruction in the 3574 // block. 3575 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3576 "LandingPadInst not the first non-PHI instruction in the block.", 3577 &LPI); 3578 3579 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3580 Constant *Clause = LPI.getClause(i); 3581 if (LPI.isCatch(i)) { 3582 Assert(isa<PointerType>(Clause->getType()), 3583 "Catch operand does not have pointer type!", &LPI); 3584 } else { 3585 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3586 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3587 "Filter operand is not an array of constants!", &LPI); 3588 } 3589 } 3590 3591 visitInstruction(LPI); 3592 } 3593 3594 void Verifier::visitResumeInst(ResumeInst &RI) { 3595 Assert(RI.getFunction()->hasPersonalityFn(), 3596 "ResumeInst needs to be in a function with a personality.", &RI); 3597 3598 if (!LandingPadResultTy) 3599 LandingPadResultTy = RI.getValue()->getType(); 3600 else 3601 Assert(LandingPadResultTy == RI.getValue()->getType(), 3602 "The resume instruction should have a consistent result type " 3603 "inside a function.", 3604 &RI); 3605 3606 visitTerminator(RI); 3607 } 3608 3609 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3610 BasicBlock *BB = CPI.getParent(); 3611 3612 Function *F = BB->getParent(); 3613 Assert(F->hasPersonalityFn(), 3614 "CatchPadInst needs to be in a function with a personality.", &CPI); 3615 3616 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3617 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3618 CPI.getParentPad()); 3619 3620 // The catchpad instruction must be the first non-PHI instruction in the 3621 // block. 3622 Assert(BB->getFirstNonPHI() == &CPI, 3623 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3624 3625 visitEHPadPredecessors(CPI); 3626 visitFuncletPadInst(CPI); 3627 } 3628 3629 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3630 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3631 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3632 CatchReturn.getOperand(0)); 3633 3634 visitTerminator(CatchReturn); 3635 } 3636 3637 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3638 BasicBlock *BB = CPI.getParent(); 3639 3640 Function *F = BB->getParent(); 3641 Assert(F->hasPersonalityFn(), 3642 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3643 3644 // The cleanuppad instruction must be the first non-PHI instruction in the 3645 // block. 3646 Assert(BB->getFirstNonPHI() == &CPI, 3647 "CleanupPadInst not the first non-PHI instruction in the block.", 3648 &CPI); 3649 3650 auto *ParentPad = CPI.getParentPad(); 3651 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3652 "CleanupPadInst has an invalid parent.", &CPI); 3653 3654 visitEHPadPredecessors(CPI); 3655 visitFuncletPadInst(CPI); 3656 } 3657 3658 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3659 User *FirstUser = nullptr; 3660 Value *FirstUnwindPad = nullptr; 3661 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3662 SmallSet<FuncletPadInst *, 8> Seen; 3663 3664 while (!Worklist.empty()) { 3665 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3666 Assert(Seen.insert(CurrentPad).second, 3667 "FuncletPadInst must not be nested within itself", CurrentPad); 3668 Value *UnresolvedAncestorPad = nullptr; 3669 for (User *U : CurrentPad->users()) { 3670 BasicBlock *UnwindDest; 3671 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3672 UnwindDest = CRI->getUnwindDest(); 3673 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3674 // We allow catchswitch unwind to caller to nest 3675 // within an outer pad that unwinds somewhere else, 3676 // because catchswitch doesn't have a nounwind variant. 3677 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3678 if (CSI->unwindsToCaller()) 3679 continue; 3680 UnwindDest = CSI->getUnwindDest(); 3681 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3682 UnwindDest = II->getUnwindDest(); 3683 } else if (isa<CallInst>(U)) { 3684 // Calls which don't unwind may be found inside funclet 3685 // pads that unwind somewhere else. We don't *require* 3686 // such calls to be annotated nounwind. 3687 continue; 3688 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3689 // The unwind dest for a cleanup can only be found by 3690 // recursive search. Add it to the worklist, and we'll 3691 // search for its first use that determines where it unwinds. 3692 Worklist.push_back(CPI); 3693 continue; 3694 } else { 3695 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3696 continue; 3697 } 3698 3699 Value *UnwindPad; 3700 bool ExitsFPI; 3701 if (UnwindDest) { 3702 UnwindPad = UnwindDest->getFirstNonPHI(); 3703 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3704 continue; 3705 Value *UnwindParent = getParentPad(UnwindPad); 3706 // Ignore unwind edges that don't exit CurrentPad. 3707 if (UnwindParent == CurrentPad) 3708 continue; 3709 // Determine whether the original funclet pad is exited, 3710 // and if we are scanning nested pads determine how many 3711 // of them are exited so we can stop searching their 3712 // children. 3713 Value *ExitedPad = CurrentPad; 3714 ExitsFPI = false; 3715 do { 3716 if (ExitedPad == &FPI) { 3717 ExitsFPI = true; 3718 // Now we can resolve any ancestors of CurrentPad up to 3719 // FPI, but not including FPI since we need to make sure 3720 // to check all direct users of FPI for consistency. 3721 UnresolvedAncestorPad = &FPI; 3722 break; 3723 } 3724 Value *ExitedParent = getParentPad(ExitedPad); 3725 if (ExitedParent == UnwindParent) { 3726 // ExitedPad is the ancestor-most pad which this unwind 3727 // edge exits, so we can resolve up to it, meaning that 3728 // ExitedParent is the first ancestor still unresolved. 3729 UnresolvedAncestorPad = ExitedParent; 3730 break; 3731 } 3732 ExitedPad = ExitedParent; 3733 } while (!isa<ConstantTokenNone>(ExitedPad)); 3734 } else { 3735 // Unwinding to caller exits all pads. 3736 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3737 ExitsFPI = true; 3738 UnresolvedAncestorPad = &FPI; 3739 } 3740 3741 if (ExitsFPI) { 3742 // This unwind edge exits FPI. Make sure it agrees with other 3743 // such edges. 3744 if (FirstUser) { 3745 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3746 "pad must have the same unwind " 3747 "dest", 3748 &FPI, U, FirstUser); 3749 } else { 3750 FirstUser = U; 3751 FirstUnwindPad = UnwindPad; 3752 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3753 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3754 getParentPad(UnwindPad) == getParentPad(&FPI)) 3755 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3756 } 3757 } 3758 // Make sure we visit all uses of FPI, but for nested pads stop as 3759 // soon as we know where they unwind to. 3760 if (CurrentPad != &FPI) 3761 break; 3762 } 3763 if (UnresolvedAncestorPad) { 3764 if (CurrentPad == UnresolvedAncestorPad) { 3765 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3766 // we've found an unwind edge that exits it, because we need to verify 3767 // all direct uses of FPI. 3768 assert(CurrentPad == &FPI); 3769 continue; 3770 } 3771 // Pop off the worklist any nested pads that we've found an unwind 3772 // destination for. The pads on the worklist are the uncles, 3773 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3774 // for all ancestors of CurrentPad up to but not including 3775 // UnresolvedAncestorPad. 3776 Value *ResolvedPad = CurrentPad; 3777 while (!Worklist.empty()) { 3778 Value *UnclePad = Worklist.back(); 3779 Value *AncestorPad = getParentPad(UnclePad); 3780 // Walk ResolvedPad up the ancestor list until we either find the 3781 // uncle's parent or the last resolved ancestor. 3782 while (ResolvedPad != AncestorPad) { 3783 Value *ResolvedParent = getParentPad(ResolvedPad); 3784 if (ResolvedParent == UnresolvedAncestorPad) { 3785 break; 3786 } 3787 ResolvedPad = ResolvedParent; 3788 } 3789 // If the resolved ancestor search didn't find the uncle's parent, 3790 // then the uncle is not yet resolved. 3791 if (ResolvedPad != AncestorPad) 3792 break; 3793 // This uncle is resolved, so pop it from the worklist. 3794 Worklist.pop_back(); 3795 } 3796 } 3797 } 3798 3799 if (FirstUnwindPad) { 3800 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3801 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3802 Value *SwitchUnwindPad; 3803 if (SwitchUnwindDest) 3804 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3805 else 3806 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3807 Assert(SwitchUnwindPad == FirstUnwindPad, 3808 "Unwind edges out of a catch must have the same unwind dest as " 3809 "the parent catchswitch", 3810 &FPI, FirstUser, CatchSwitch); 3811 } 3812 } 3813 3814 visitInstruction(FPI); 3815 } 3816 3817 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3818 BasicBlock *BB = CatchSwitch.getParent(); 3819 3820 Function *F = BB->getParent(); 3821 Assert(F->hasPersonalityFn(), 3822 "CatchSwitchInst needs to be in a function with a personality.", 3823 &CatchSwitch); 3824 3825 // The catchswitch instruction must be the first non-PHI instruction in the 3826 // block. 3827 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3828 "CatchSwitchInst not the first non-PHI instruction in the block.", 3829 &CatchSwitch); 3830 3831 auto *ParentPad = CatchSwitch.getParentPad(); 3832 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3833 "CatchSwitchInst has an invalid parent.", ParentPad); 3834 3835 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3836 Instruction *I = UnwindDest->getFirstNonPHI(); 3837 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3838 "CatchSwitchInst must unwind to an EH block which is not a " 3839 "landingpad.", 3840 &CatchSwitch); 3841 3842 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3843 if (getParentPad(I) == ParentPad) 3844 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3845 } 3846 3847 Assert(CatchSwitch.getNumHandlers() != 0, 3848 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3849 3850 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3851 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3852 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3853 } 3854 3855 visitEHPadPredecessors(CatchSwitch); 3856 visitTerminator(CatchSwitch); 3857 } 3858 3859 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3860 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3861 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3862 CRI.getOperand(0)); 3863 3864 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3865 Instruction *I = UnwindDest->getFirstNonPHI(); 3866 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3867 "CleanupReturnInst must unwind to an EH block which is not a " 3868 "landingpad.", 3869 &CRI); 3870 } 3871 3872 visitTerminator(CRI); 3873 } 3874 3875 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3876 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3877 // If the we have an invalid invoke, don't try to compute the dominance. 3878 // We already reject it in the invoke specific checks and the dominance 3879 // computation doesn't handle multiple edges. 3880 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3881 if (II->getNormalDest() == II->getUnwindDest()) 3882 return; 3883 } 3884 3885 // Quick check whether the def has already been encountered in the same block. 3886 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI 3887 // uses are defined to happen on the incoming edge, not at the instruction. 3888 // 3889 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3890 // wrapping an SSA value, assert that we've already encountered it. See 3891 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3892 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3893 return; 3894 3895 const Use &U = I.getOperandUse(i); 3896 Assert(DT.dominates(Op, U), 3897 "Instruction does not dominate all uses!", Op, &I); 3898 } 3899 3900 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3901 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3902 "apply only to pointer types", &I); 3903 Assert(isa<LoadInst>(I), 3904 "dereferenceable, dereferenceable_or_null apply only to load" 3905 " instructions, use attributes for calls or invokes", &I); 3906 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3907 "take one operand!", &I); 3908 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3909 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3910 "dereferenceable_or_null metadata value must be an i64!", &I); 3911 } 3912 3913 /// verifyInstruction - Verify that an instruction is well formed. 3914 /// 3915 void Verifier::visitInstruction(Instruction &I) { 3916 BasicBlock *BB = I.getParent(); 3917 Assert(BB, "Instruction not embedded in basic block!", &I); 3918 3919 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3920 for (User *U : I.users()) { 3921 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3922 "Only PHI nodes may reference their own value!", &I); 3923 } 3924 } 3925 3926 // Check that void typed values don't have names 3927 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3928 "Instruction has a name, but provides a void value!", &I); 3929 3930 // Check that the return value of the instruction is either void or a legal 3931 // value type. 3932 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3933 "Instruction returns a non-scalar type!", &I); 3934 3935 // Check that the instruction doesn't produce metadata. Calls are already 3936 // checked against the callee type. 3937 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3938 "Invalid use of metadata!", &I); 3939 3940 // Check that all uses of the instruction, if they are instructions 3941 // themselves, actually have parent basic blocks. If the use is not an 3942 // instruction, it is an error! 3943 for (Use &U : I.uses()) { 3944 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 3945 Assert(Used->getParent() != nullptr, 3946 "Instruction referencing" 3947 " instruction not embedded in a basic block!", 3948 &I, Used); 3949 else { 3950 CheckFailed("Use of instruction is not an instruction!", U); 3951 return; 3952 } 3953 } 3954 3955 // Get a pointer to the call base of the instruction if it is some form of 3956 // call. 3957 const CallBase *CBI = dyn_cast<CallBase>(&I); 3958 3959 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 3960 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 3961 3962 // Check to make sure that only first-class-values are operands to 3963 // instructions. 3964 if (!I.getOperand(i)->getType()->isFirstClassType()) { 3965 Assert(false, "Instruction operands must be first-class values!", &I); 3966 } 3967 3968 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 3969 // Check to make sure that the "address of" an intrinsic function is never 3970 // taken. 3971 Assert(!F->isIntrinsic() || 3972 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 3973 "Cannot take the address of an intrinsic!", &I); 3974 Assert( 3975 !F->isIntrinsic() || isa<CallInst>(I) || 3976 F->getIntrinsicID() == Intrinsic::donothing || 3977 F->getIntrinsicID() == Intrinsic::coro_resume || 3978 F->getIntrinsicID() == Intrinsic::coro_destroy || 3979 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 3980 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 3981 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, 3982 "Cannot invoke an intrinsic other than donothing, patchpoint, " 3983 "statepoint, coro_resume or coro_destroy", 3984 &I); 3985 Assert(F->getParent() == &M, "Referencing function in another module!", 3986 &I, &M, F, F->getParent()); 3987 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 3988 Assert(OpBB->getParent() == BB->getParent(), 3989 "Referring to a basic block in another function!", &I); 3990 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 3991 Assert(OpArg->getParent() == BB->getParent(), 3992 "Referring to an argument in another function!", &I); 3993 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 3994 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 3995 &M, GV, GV->getParent()); 3996 } else if (isa<Instruction>(I.getOperand(i))) { 3997 verifyDominatesUse(I, i); 3998 } else if (isa<InlineAsm>(I.getOperand(i))) { 3999 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4000 "Cannot take the address of an inline asm!", &I); 4001 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4002 if (CE->getType()->isPtrOrPtrVectorTy() || 4003 !DL.getNonIntegralAddressSpaces().empty()) { 4004 // If we have a ConstantExpr pointer, we need to see if it came from an 4005 // illegal bitcast. If the datalayout string specifies non-integral 4006 // address spaces then we also need to check for illegal ptrtoint and 4007 // inttoptr expressions. 4008 visitConstantExprsRecursively(CE); 4009 } 4010 } 4011 } 4012 4013 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4014 Assert(I.getType()->isFPOrFPVectorTy(), 4015 "fpmath requires a floating point result!", &I); 4016 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4017 if (ConstantFP *CFP0 = 4018 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4019 const APFloat &Accuracy = CFP0->getValueAPF(); 4020 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4021 "fpmath accuracy must have float type", &I); 4022 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4023 "fpmath accuracy not a positive number!", &I); 4024 } else { 4025 Assert(false, "invalid fpmath accuracy!", &I); 4026 } 4027 } 4028 4029 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4030 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4031 "Ranges are only for loads, calls and invokes!", &I); 4032 visitRangeMetadata(I, Range, I.getType()); 4033 } 4034 4035 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4036 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4037 &I); 4038 Assert(isa<LoadInst>(I), 4039 "nonnull applies only to load instructions, use attributes" 4040 " for calls or invokes", 4041 &I); 4042 } 4043 4044 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4045 visitDereferenceableMetadata(I, MD); 4046 4047 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4048 visitDereferenceableMetadata(I, MD); 4049 4050 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4051 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4052 4053 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4054 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4055 &I); 4056 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4057 "use attributes for calls or invokes", &I); 4058 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4059 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4060 Assert(CI && CI->getType()->isIntegerTy(64), 4061 "align metadata value must be an i64!", &I); 4062 uint64_t Align = CI->getZExtValue(); 4063 Assert(isPowerOf2_64(Align), 4064 "align metadata value must be a power of 2!", &I); 4065 Assert(Align <= Value::MaximumAlignment, 4066 "alignment is larger that implementation defined limit", &I); 4067 } 4068 4069 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4070 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4071 visitMDNode(*N); 4072 } 4073 4074 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) 4075 verifyFragmentExpression(*DII); 4076 4077 InstsInThisBlock.insert(&I); 4078 } 4079 4080 /// Allow intrinsics to be verified in different ways. 4081 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { 4082 Function *IF = CS.getCalledFunction(); 4083 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4084 IF); 4085 4086 // Verify that the intrinsic prototype lines up with what the .td files 4087 // describe. 4088 FunctionType *IFTy = IF->getFunctionType(); 4089 bool IsVarArg = IFTy->isVarArg(); 4090 4091 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4092 getIntrinsicInfoTableEntries(ID, Table); 4093 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4094 4095 SmallVector<Type *, 4> ArgTys; 4096 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(), 4097 TableRef, ArgTys), 4098 "Intrinsic has incorrect return type!", IF); 4099 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 4100 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i), 4101 TableRef, ArgTys), 4102 "Intrinsic has incorrect argument type!", IF); 4103 4104 // Verify if the intrinsic call matches the vararg property. 4105 if (IsVarArg) 4106 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4107 "Intrinsic was not defined with variable arguments!", IF); 4108 else 4109 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4110 "Callsite was not defined with variable arguments!", IF); 4111 4112 // All descriptors should be absorbed by now. 4113 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4114 4115 // Now that we have the intrinsic ID and the actual argument types (and we 4116 // know they are legal for the intrinsic!) get the intrinsic name through the 4117 // usual means. This allows us to verify the mangling of argument types into 4118 // the name. 4119 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4120 Assert(ExpectedName == IF->getName(), 4121 "Intrinsic name not mangled correctly for type arguments! " 4122 "Should be: " + 4123 ExpectedName, 4124 IF); 4125 4126 // If the intrinsic takes MDNode arguments, verify that they are either global 4127 // or are local to *this* function. 4128 for (Value *V : CS.args()) 4129 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4130 visitMetadataAsValue(*MD, CS.getCaller()); 4131 4132 switch (ID) { 4133 default: 4134 break; 4135 case Intrinsic::coro_id: { 4136 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts(); 4137 if (isa<ConstantPointerNull>(InfoArg)) 4138 break; 4139 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4140 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4141 "info argument of llvm.coro.begin must refer to an initialized " 4142 "constant"); 4143 Constant *Init = GV->getInitializer(); 4144 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4145 "info argument of llvm.coro.begin must refer to either a struct or " 4146 "an array"); 4147 break; 4148 } 4149 case Intrinsic::ctlz: // llvm.ctlz 4150 case Intrinsic::cttz: // llvm.cttz 4151 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4152 "is_zero_undef argument of bit counting intrinsics must be a " 4153 "constant int", 4154 CS); 4155 break; 4156 case Intrinsic::experimental_constrained_fadd: 4157 case Intrinsic::experimental_constrained_fsub: 4158 case Intrinsic::experimental_constrained_fmul: 4159 case Intrinsic::experimental_constrained_fdiv: 4160 case Intrinsic::experimental_constrained_frem: 4161 case Intrinsic::experimental_constrained_fma: 4162 case Intrinsic::experimental_constrained_sqrt: 4163 case Intrinsic::experimental_constrained_pow: 4164 case Intrinsic::experimental_constrained_powi: 4165 case Intrinsic::experimental_constrained_sin: 4166 case Intrinsic::experimental_constrained_cos: 4167 case Intrinsic::experimental_constrained_exp: 4168 case Intrinsic::experimental_constrained_exp2: 4169 case Intrinsic::experimental_constrained_log: 4170 case Intrinsic::experimental_constrained_log10: 4171 case Intrinsic::experimental_constrained_log2: 4172 case Intrinsic::experimental_constrained_rint: 4173 case Intrinsic::experimental_constrained_nearbyint: 4174 case Intrinsic::experimental_constrained_maxnum: 4175 case Intrinsic::experimental_constrained_minnum: 4176 case Intrinsic::experimental_constrained_ceil: 4177 case Intrinsic::experimental_constrained_floor: 4178 case Intrinsic::experimental_constrained_round: 4179 case Intrinsic::experimental_constrained_trunc: 4180 visitConstrainedFPIntrinsic( 4181 cast<ConstrainedFPIntrinsic>(*CS.getInstruction())); 4182 break; 4183 case Intrinsic::dbg_declare: // llvm.dbg.declare 4184 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), 4185 "invalid llvm.dbg.declare intrinsic call 1", CS); 4186 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(*CS.getInstruction())); 4187 break; 4188 case Intrinsic::dbg_addr: // llvm.dbg.addr 4189 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(*CS.getInstruction())); 4190 break; 4191 case Intrinsic::dbg_value: // llvm.dbg.value 4192 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(*CS.getInstruction())); 4193 break; 4194 case Intrinsic::dbg_label: // llvm.dbg.label 4195 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction())); 4196 break; 4197 case Intrinsic::memcpy: 4198 case Intrinsic::memmove: 4199 case Intrinsic::memset: { 4200 const auto *MI = cast<MemIntrinsic>(CS.getInstruction()); 4201 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4202 return Alignment == 0 || isPowerOf2_32(Alignment); 4203 }; 4204 Assert(IsValidAlignment(MI->getDestAlignment()), 4205 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4206 CS); 4207 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4208 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4209 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4210 CS); 4211 } 4212 Assert(isa<ConstantInt>(CS.getArgOperand(3)), 4213 "isvolatile argument of memory intrinsics must be a constant int", 4214 CS); 4215 break; 4216 } 4217 case Intrinsic::memcpy_element_unordered_atomic: 4218 case Intrinsic::memmove_element_unordered_atomic: 4219 case Intrinsic::memset_element_unordered_atomic: { 4220 const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction()); 4221 4222 ConstantInt *ElementSizeCI = 4223 dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4224 Assert(ElementSizeCI, 4225 "element size of the element-wise unordered atomic memory " 4226 "intrinsic must be a constant int", 4227 CS); 4228 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4229 Assert(ElementSizeVal.isPowerOf2(), 4230 "element size of the element-wise atomic memory intrinsic " 4231 "must be a power of 2", 4232 CS); 4233 4234 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4235 uint64_t Length = LengthCI->getZExtValue(); 4236 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4237 Assert((Length % ElementSize) == 0, 4238 "constant length must be a multiple of the element size in the " 4239 "element-wise atomic memory intrinsic", 4240 CS); 4241 } 4242 4243 auto IsValidAlignment = [&](uint64_t Alignment) { 4244 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4245 }; 4246 uint64_t DstAlignment = AMI->getDestAlignment(); 4247 Assert(IsValidAlignment(DstAlignment), 4248 "incorrect alignment of the destination argument", CS); 4249 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4250 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4251 Assert(IsValidAlignment(SrcAlignment), 4252 "incorrect alignment of the source argument", CS); 4253 } 4254 break; 4255 } 4256 case Intrinsic::gcroot: 4257 case Intrinsic::gcwrite: 4258 case Intrinsic::gcread: 4259 if (ID == Intrinsic::gcroot) { 4260 AllocaInst *AI = 4261 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); 4262 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); 4263 Assert(isa<Constant>(CS.getArgOperand(1)), 4264 "llvm.gcroot parameter #2 must be a constant.", CS); 4265 if (!AI->getAllocatedType()->isPointerTy()) { 4266 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), 4267 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4268 "or argument #2 must be a non-null constant.", 4269 CS); 4270 } 4271 } 4272 4273 Assert(CS.getParent()->getParent()->hasGC(), 4274 "Enclosing function does not use GC.", CS); 4275 break; 4276 case Intrinsic::init_trampoline: 4277 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), 4278 "llvm.init_trampoline parameter #2 must resolve to a function.", 4279 CS); 4280 break; 4281 case Intrinsic::prefetch: 4282 Assert(isa<ConstantInt>(CS.getArgOperand(1)) && 4283 isa<ConstantInt>(CS.getArgOperand(2)) && 4284 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && 4285 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, 4286 "invalid arguments to llvm.prefetch", CS); 4287 break; 4288 case Intrinsic::stackprotector: 4289 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), 4290 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); 4291 break; 4292 case Intrinsic::lifetime_start: 4293 case Intrinsic::lifetime_end: 4294 case Intrinsic::invariant_start: 4295 Assert(isa<ConstantInt>(CS.getArgOperand(0)), 4296 "size argument of memory use markers must be a constant integer", 4297 CS); 4298 break; 4299 case Intrinsic::invariant_end: 4300 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4301 "llvm.invariant.end parameter #2 must be a constant integer", CS); 4302 break; 4303 4304 case Intrinsic::localescape: { 4305 BasicBlock *BB = CS.getParent(); 4306 Assert(BB == &BB->getParent()->front(), 4307 "llvm.localescape used outside of entry block", CS); 4308 Assert(!SawFrameEscape, 4309 "multiple calls to llvm.localescape in one function", CS); 4310 for (Value *Arg : CS.args()) { 4311 if (isa<ConstantPointerNull>(Arg)) 4312 continue; // Null values are allowed as placeholders. 4313 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4314 Assert(AI && AI->isStaticAlloca(), 4315 "llvm.localescape only accepts static allocas", CS); 4316 } 4317 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); 4318 SawFrameEscape = true; 4319 break; 4320 } 4321 case Intrinsic::localrecover: { 4322 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); 4323 Function *Fn = dyn_cast<Function>(FnArg); 4324 Assert(Fn && !Fn->isDeclaration(), 4325 "llvm.localrecover first " 4326 "argument must be function defined in this module", 4327 CS); 4328 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); 4329 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", 4330 CS); 4331 auto &Entry = FrameEscapeInfo[Fn]; 4332 Entry.second = unsigned( 4333 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4334 break; 4335 } 4336 4337 case Intrinsic::experimental_gc_statepoint: 4338 Assert(!CS.isInlineAsm(), 4339 "gc.statepoint support for inline assembly unimplemented", CS); 4340 Assert(CS.getParent()->getParent()->hasGC(), 4341 "Enclosing function does not use GC.", CS); 4342 4343 verifyStatepoint(CS); 4344 break; 4345 case Intrinsic::experimental_gc_result: { 4346 Assert(CS.getParent()->getParent()->hasGC(), 4347 "Enclosing function does not use GC.", CS); 4348 // Are we tied to a statepoint properly? 4349 CallSite StatepointCS(CS.getArgOperand(0)); 4350 const Function *StatepointFn = 4351 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; 4352 Assert(StatepointFn && StatepointFn->isDeclaration() && 4353 StatepointFn->getIntrinsicID() == 4354 Intrinsic::experimental_gc_statepoint, 4355 "gc.result operand #1 must be from a statepoint", CS, 4356 CS.getArgOperand(0)); 4357 4358 // Assert that result type matches wrapped callee. 4359 const Value *Target = StatepointCS.getArgument(2); 4360 auto *PT = cast<PointerType>(Target->getType()); 4361 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4362 Assert(CS.getType() == TargetFuncType->getReturnType(), 4363 "gc.result result type does not match wrapped callee", CS); 4364 break; 4365 } 4366 case Intrinsic::experimental_gc_relocate: { 4367 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); 4368 4369 Assert(isa<PointerType>(CS.getType()->getScalarType()), 4370 "gc.relocate must return a pointer or a vector of pointers", CS); 4371 4372 // Check that this relocate is correctly tied to the statepoint 4373 4374 // This is case for relocate on the unwinding path of an invoke statepoint 4375 if (LandingPadInst *LandingPad = 4376 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) { 4377 4378 const BasicBlock *InvokeBB = 4379 LandingPad->getParent()->getUniquePredecessor(); 4380 4381 // Landingpad relocates should have only one predecessor with invoke 4382 // statepoint terminator 4383 Assert(InvokeBB, "safepoints should have unique landingpads", 4384 LandingPad->getParent()); 4385 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4386 InvokeBB); 4387 Assert(isStatepoint(InvokeBB->getTerminator()), 4388 "gc relocate should be linked to a statepoint", InvokeBB); 4389 } 4390 else { 4391 // In all other cases relocate should be tied to the statepoint directly. 4392 // This covers relocates on a normal return path of invoke statepoint and 4393 // relocates of a call statepoint. 4394 auto Token = CS.getArgOperand(0); 4395 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4396 "gc relocate is incorrectly tied to the statepoint", CS, Token); 4397 } 4398 4399 // Verify rest of the relocate arguments. 4400 4401 ImmutableCallSite StatepointCS( 4402 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint()); 4403 4404 // Both the base and derived must be piped through the safepoint. 4405 Value* Base = CS.getArgOperand(1); 4406 Assert(isa<ConstantInt>(Base), 4407 "gc.relocate operand #2 must be integer offset", CS); 4408 4409 Value* Derived = CS.getArgOperand(2); 4410 Assert(isa<ConstantInt>(Derived), 4411 "gc.relocate operand #3 must be integer offset", CS); 4412 4413 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4414 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4415 // Check the bounds 4416 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), 4417 "gc.relocate: statepoint base index out of bounds", CS); 4418 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), 4419 "gc.relocate: statepoint derived index out of bounds", CS); 4420 4421 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4422 // section of the statepoint's argument. 4423 Assert(StatepointCS.arg_size() > 0, 4424 "gc.statepoint: insufficient arguments"); 4425 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), 4426 "gc.statement: number of call arguments must be constant integer"); 4427 const unsigned NumCallArgs = 4428 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); 4429 Assert(StatepointCS.arg_size() > NumCallArgs + 5, 4430 "gc.statepoint: mismatch in number of call arguments"); 4431 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), 4432 "gc.statepoint: number of transition arguments must be " 4433 "a constant integer"); 4434 const int NumTransitionArgs = 4435 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) 4436 ->getZExtValue(); 4437 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4438 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), 4439 "gc.statepoint: number of deoptimization arguments must be " 4440 "a constant integer"); 4441 const int NumDeoptArgs = 4442 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)) 4443 ->getZExtValue(); 4444 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4445 const int GCParamArgsEnd = StatepointCS.arg_size(); 4446 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4447 "gc.relocate: statepoint base index doesn't fall within the " 4448 "'gc parameters' section of the statepoint call", 4449 CS); 4450 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4451 "gc.relocate: statepoint derived index doesn't fall within the " 4452 "'gc parameters' section of the statepoint call", 4453 CS); 4454 4455 // Relocated value must be either a pointer type or vector-of-pointer type, 4456 // but gc_relocate does not need to return the same pointer type as the 4457 // relocated pointer. It can be casted to the correct type later if it's 4458 // desired. However, they must have the same address space and 'vectorness' 4459 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); 4460 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4461 "gc.relocate: relocated value must be a gc pointer", CS); 4462 4463 auto ResultType = CS.getType(); 4464 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4465 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4466 "gc.relocate: vector relocates to vector and pointer to pointer", 4467 CS); 4468 Assert( 4469 ResultType->getPointerAddressSpace() == 4470 DerivedType->getPointerAddressSpace(), 4471 "gc.relocate: relocating a pointer shouldn't change its address space", 4472 CS); 4473 break; 4474 } 4475 case Intrinsic::eh_exceptioncode: 4476 case Intrinsic::eh_exceptionpointer: { 4477 Assert(isa<CatchPadInst>(CS.getArgOperand(0)), 4478 "eh.exceptionpointer argument must be a catchpad", CS); 4479 break; 4480 } 4481 case Intrinsic::masked_load: { 4482 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS); 4483 4484 Value *Ptr = CS.getArgOperand(0); 4485 //Value *Alignment = CS.getArgOperand(1); 4486 Value *Mask = CS.getArgOperand(2); 4487 Value *PassThru = CS.getArgOperand(3); 4488 Assert(Mask->getType()->isVectorTy(), 4489 "masked_load: mask must be vector", CS); 4490 4491 // DataTy is the overloaded type 4492 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4493 Assert(DataTy == CS.getType(), 4494 "masked_load: return must match pointer type", CS); 4495 Assert(PassThru->getType() == DataTy, 4496 "masked_load: pass through and data type must match", CS); 4497 Assert(Mask->getType()->getVectorNumElements() == 4498 DataTy->getVectorNumElements(), 4499 "masked_load: vector mask must be same length as data", CS); 4500 break; 4501 } 4502 case Intrinsic::masked_store: { 4503 Value *Val = CS.getArgOperand(0); 4504 Value *Ptr = CS.getArgOperand(1); 4505 //Value *Alignment = CS.getArgOperand(2); 4506 Value *Mask = CS.getArgOperand(3); 4507 Assert(Mask->getType()->isVectorTy(), 4508 "masked_store: mask must be vector", CS); 4509 4510 // DataTy is the overloaded type 4511 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4512 Assert(DataTy == Val->getType(), 4513 "masked_store: storee must match pointer type", CS); 4514 Assert(Mask->getType()->getVectorNumElements() == 4515 DataTy->getVectorNumElements(), 4516 "masked_store: vector mask must be same length as data", CS); 4517 break; 4518 } 4519 4520 case Intrinsic::experimental_guard: { 4521 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS); 4522 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4523 "experimental_guard must have exactly one " 4524 "\"deopt\" operand bundle"); 4525 break; 4526 } 4527 4528 case Intrinsic::experimental_deoptimize: { 4529 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS); 4530 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4531 "experimental_deoptimize must have exactly one " 4532 "\"deopt\" operand bundle"); 4533 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(), 4534 "experimental_deoptimize return type must match caller return type"); 4535 4536 if (CS.isCall()) { 4537 auto *DeoptCI = CS.getInstruction(); 4538 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode()); 4539 Assert(RI, 4540 "calls to experimental_deoptimize must be followed by a return"); 4541 4542 if (!CS.getType()->isVoidTy() && RI) 4543 Assert(RI->getReturnValue() == DeoptCI, 4544 "calls to experimental_deoptimize must be followed by a return " 4545 "of the value computed by experimental_deoptimize"); 4546 } 4547 4548 break; 4549 } 4550 case Intrinsic::sadd_sat: 4551 case Intrinsic::uadd_sat: 4552 case Intrinsic::ssub_sat: 4553 case Intrinsic::usub_sat: { 4554 Value *Op1 = CS.getArgOperand(0); 4555 Value *Op2 = CS.getArgOperand(1); 4556 Assert(Op1->getType()->isIntOrIntVectorTy(), 4557 "first operand of [us][add|sub]_sat must be an int type or vector " 4558 "of ints"); 4559 Assert(Op2->getType()->isIntOrIntVectorTy(), 4560 "second operand of [us][add|sub]_sat must be an int type or vector " 4561 "of ints"); 4562 break; 4563 } 4564 case Intrinsic::smul_fix: { 4565 Value *Op1 = CS.getArgOperand(0); 4566 Value *Op2 = CS.getArgOperand(1); 4567 Assert(Op1->getType()->isIntOrIntVectorTy(), 4568 "first operand of smul_fix must be an int type or vector " 4569 "of ints"); 4570 Assert(Op2->getType()->isIntOrIntVectorTy(), 4571 "second operand of smul_fix must be an int type or vector " 4572 "of ints"); 4573 4574 auto *Op3 = dyn_cast<ConstantInt>(CS.getArgOperand(2)); 4575 Assert(Op3, "third argument of smul_fix must be a constant integer"); 4576 Assert(Op3->getType()->getBitWidth() <= 32, 4577 "third argument of smul_fix must fit within 32 bits"); 4578 Assert(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4579 "the scale of smul_fix must be less than the width of the operands"); 4580 break; 4581 } 4582 }; 4583 } 4584 4585 /// Carefully grab the subprogram from a local scope. 4586 /// 4587 /// This carefully grabs the subprogram from a local scope, avoiding the 4588 /// built-in assertions that would typically fire. 4589 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4590 if (!LocalScope) 4591 return nullptr; 4592 4593 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4594 return SP; 4595 4596 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4597 return getSubprogram(LB->getRawScope()); 4598 4599 // Just return null; broken scope chains are checked elsewhere. 4600 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4601 return nullptr; 4602 } 4603 4604 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4605 unsigned NumOperands = FPI.getNumArgOperands(); 4606 Assert(((NumOperands == 5 && FPI.isTernaryOp()) || 4607 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)), 4608 "invalid arguments for constrained FP intrinsic", &FPI); 4609 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)), 4610 "invalid exception behavior argument", &FPI); 4611 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)), 4612 "invalid rounding mode argument", &FPI); 4613 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid, 4614 "invalid rounding mode argument", &FPI); 4615 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid, 4616 "invalid exception behavior argument", &FPI); 4617 } 4618 4619 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4620 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4621 AssertDI(isa<ValueAsMetadata>(MD) || 4622 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4623 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4624 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4625 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4626 DII.getRawVariable()); 4627 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4628 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4629 DII.getRawExpression()); 4630 4631 // Ignore broken !dbg attachments; they're checked elsewhere. 4632 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4633 if (!isa<DILocation>(N)) 4634 return; 4635 4636 BasicBlock *BB = DII.getParent(); 4637 Function *F = BB ? BB->getParent() : nullptr; 4638 4639 // The scopes for variables and !dbg attachments must agree. 4640 DILocalVariable *Var = DII.getVariable(); 4641 DILocation *Loc = DII.getDebugLoc(); 4642 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4643 &DII, BB, F); 4644 4645 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4646 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4647 if (!VarSP || !LocSP) 4648 return; // Broken scope chains are checked elsewhere. 4649 4650 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4651 " variable and !dbg attachment", 4652 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4653 Loc->getScope()->getSubprogram()); 4654 4655 // This check is redundant with one in visitLocalVariable(). 4656 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4657 Var->getRawType()); 4658 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType())) 4659 if (Type->isBlockByrefStruct()) 4660 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(), 4661 "BlockByRef variable without complex expression", Var, &DII); 4662 4663 verifyFnArgs(DII); 4664 } 4665 4666 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4667 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4668 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4669 DLI.getRawLabel()); 4670 4671 // Ignore broken !dbg attachments; they're checked elsewhere. 4672 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4673 if (!isa<DILocation>(N)) 4674 return; 4675 4676 BasicBlock *BB = DLI.getParent(); 4677 Function *F = BB ? BB->getParent() : nullptr; 4678 4679 // The scopes for variables and !dbg attachments must agree. 4680 DILabel *Label = DLI.getLabel(); 4681 DILocation *Loc = DLI.getDebugLoc(); 4682 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4683 &DLI, BB, F); 4684 4685 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4686 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4687 if (!LabelSP || !LocSP) 4688 return; 4689 4690 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4691 " label and !dbg attachment", 4692 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4693 Loc->getScope()->getSubprogram()); 4694 } 4695 4696 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4697 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4698 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4699 4700 // We don't know whether this intrinsic verified correctly. 4701 if (!V || !E || !E->isValid()) 4702 return; 4703 4704 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4705 auto Fragment = E->getFragmentInfo(); 4706 if (!Fragment) 4707 return; 4708 4709 // The frontend helps out GDB by emitting the members of local anonymous 4710 // unions as artificial local variables with shared storage. When SROA splits 4711 // the storage for artificial local variables that are smaller than the entire 4712 // union, the overhang piece will be outside of the allotted space for the 4713 // variable and this check fails. 4714 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4715 if (V->isArtificial()) 4716 return; 4717 4718 verifyFragmentExpression(*V, *Fragment, &I); 4719 } 4720 4721 template <typename ValueOrMetadata> 4722 void Verifier::verifyFragmentExpression(const DIVariable &V, 4723 DIExpression::FragmentInfo Fragment, 4724 ValueOrMetadata *Desc) { 4725 // If there's no size, the type is broken, but that should be checked 4726 // elsewhere. 4727 auto VarSize = V.getSizeInBits(); 4728 if (!VarSize) 4729 return; 4730 4731 unsigned FragSize = Fragment.SizeInBits; 4732 unsigned FragOffset = Fragment.OffsetInBits; 4733 AssertDI(FragSize + FragOffset <= *VarSize, 4734 "fragment is larger than or outside of variable", Desc, &V); 4735 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 4736 } 4737 4738 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 4739 // This function does not take the scope of noninlined function arguments into 4740 // account. Don't run it if current function is nodebug, because it may 4741 // contain inlined debug intrinsics. 4742 if (!HasDebugInfo) 4743 return; 4744 4745 // For performance reasons only check non-inlined ones. 4746 if (I.getDebugLoc()->getInlinedAt()) 4747 return; 4748 4749 DILocalVariable *Var = I.getVariable(); 4750 AssertDI(Var, "dbg intrinsic without variable"); 4751 4752 unsigned ArgNo = Var->getArg(); 4753 if (!ArgNo) 4754 return; 4755 4756 // Verify there are no duplicate function argument debug info entries. 4757 // These will cause hard-to-debug assertions in the DWARF backend. 4758 if (DebugFnArgs.size() < ArgNo) 4759 DebugFnArgs.resize(ArgNo, nullptr); 4760 4761 auto *Prev = DebugFnArgs[ArgNo - 1]; 4762 DebugFnArgs[ArgNo - 1] = Var; 4763 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 4764 Prev, Var); 4765 } 4766 4767 void Verifier::verifyCompileUnits() { 4768 // When more than one Module is imported into the same context, such as during 4769 // an LTO build before linking the modules, ODR type uniquing may cause types 4770 // to point to a different CU. This check does not make sense in this case. 4771 if (M.getContext().isODRUniquingDebugTypes()) 4772 return; 4773 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 4774 SmallPtrSet<const Metadata *, 2> Listed; 4775 if (CUs) 4776 Listed.insert(CUs->op_begin(), CUs->op_end()); 4777 for (auto *CU : CUVisited) 4778 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 4779 CUVisited.clear(); 4780 } 4781 4782 void Verifier::verifyDeoptimizeCallingConvs() { 4783 if (DeoptimizeDeclarations.empty()) 4784 return; 4785 4786 const Function *First = DeoptimizeDeclarations[0]; 4787 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 4788 Assert(First->getCallingConv() == F->getCallingConv(), 4789 "All llvm.experimental.deoptimize declarations must have the same " 4790 "calling convention", 4791 First, F); 4792 } 4793 } 4794 4795 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 4796 bool HasSource = F.getSource().hasValue(); 4797 if (!HasSourceDebugInfo.count(&U)) 4798 HasSourceDebugInfo[&U] = HasSource; 4799 AssertDI(HasSource == HasSourceDebugInfo[&U], 4800 "inconsistent use of embedded source"); 4801 } 4802 4803 //===----------------------------------------------------------------------===// 4804 // Implement the public interfaces to this file... 4805 //===----------------------------------------------------------------------===// 4806 4807 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4808 Function &F = const_cast<Function &>(f); 4809 4810 // Don't use a raw_null_ostream. Printing IR is expensive. 4811 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 4812 4813 // Note that this function's return value is inverted from what you would 4814 // expect of a function called "verify". 4815 return !V.verify(F); 4816 } 4817 4818 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 4819 bool *BrokenDebugInfo) { 4820 // Don't use a raw_null_ostream. Printing IR is expensive. 4821 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 4822 4823 bool Broken = false; 4824 for (const Function &F : M) 4825 Broken |= !V.verify(F); 4826 4827 Broken |= !V.verify(); 4828 if (BrokenDebugInfo) 4829 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 4830 // Note that this function's return value is inverted from what you would 4831 // expect of a function called "verify". 4832 return Broken; 4833 } 4834 4835 namespace { 4836 4837 struct VerifierLegacyPass : public FunctionPass { 4838 static char ID; 4839 4840 std::unique_ptr<Verifier> V; 4841 bool FatalErrors = true; 4842 4843 VerifierLegacyPass() : FunctionPass(ID) { 4844 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4845 } 4846 explicit VerifierLegacyPass(bool FatalErrors) 4847 : FunctionPass(ID), 4848 FatalErrors(FatalErrors) { 4849 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4850 } 4851 4852 bool doInitialization(Module &M) override { 4853 V = llvm::make_unique<Verifier>( 4854 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 4855 return false; 4856 } 4857 4858 bool runOnFunction(Function &F) override { 4859 if (!V->verify(F) && FatalErrors) { 4860 errs() << "in function " << F.getName() << '\n'; 4861 report_fatal_error("Broken function found, compilation aborted!"); 4862 } 4863 return false; 4864 } 4865 4866 bool doFinalization(Module &M) override { 4867 bool HasErrors = false; 4868 for (Function &F : M) 4869 if (F.isDeclaration()) 4870 HasErrors |= !V->verify(F); 4871 4872 HasErrors |= !V->verify(); 4873 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 4874 report_fatal_error("Broken module found, compilation aborted!"); 4875 return false; 4876 } 4877 4878 void getAnalysisUsage(AnalysisUsage &AU) const override { 4879 AU.setPreservesAll(); 4880 } 4881 }; 4882 4883 } // end anonymous namespace 4884 4885 /// Helper to issue failure from the TBAA verification 4886 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 4887 if (Diagnostic) 4888 return Diagnostic->CheckFailed(Args...); 4889 } 4890 4891 #define AssertTBAA(C, ...) \ 4892 do { \ 4893 if (!(C)) { \ 4894 CheckFailed(__VA_ARGS__); \ 4895 return false; \ 4896 } \ 4897 } while (false) 4898 4899 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 4900 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 4901 /// struct-type node describing an aggregate data structure (like a struct). 4902 TBAAVerifier::TBAABaseNodeSummary 4903 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 4904 bool IsNewFormat) { 4905 if (BaseNode->getNumOperands() < 2) { 4906 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 4907 return {true, ~0u}; 4908 } 4909 4910 auto Itr = TBAABaseNodes.find(BaseNode); 4911 if (Itr != TBAABaseNodes.end()) 4912 return Itr->second; 4913 4914 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 4915 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 4916 (void)InsertResult; 4917 assert(InsertResult.second && "We just checked!"); 4918 return Result; 4919 } 4920 4921 TBAAVerifier::TBAABaseNodeSummary 4922 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 4923 bool IsNewFormat) { 4924 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 4925 4926 if (BaseNode->getNumOperands() == 2) { 4927 // Scalar nodes can only be accessed at offset 0. 4928 return isValidScalarTBAANode(BaseNode) 4929 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 4930 : InvalidNode; 4931 } 4932 4933 if (IsNewFormat) { 4934 if (BaseNode->getNumOperands() % 3 != 0) { 4935 CheckFailed("Access tag nodes must have the number of operands that is a " 4936 "multiple of 3!", BaseNode); 4937 return InvalidNode; 4938 } 4939 } else { 4940 if (BaseNode->getNumOperands() % 2 != 1) { 4941 CheckFailed("Struct tag nodes must have an odd number of operands!", 4942 BaseNode); 4943 return InvalidNode; 4944 } 4945 } 4946 4947 // Check the type size field. 4948 if (IsNewFormat) { 4949 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 4950 BaseNode->getOperand(1)); 4951 if (!TypeSizeNode) { 4952 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 4953 return InvalidNode; 4954 } 4955 } 4956 4957 // Check the type name field. In the new format it can be anything. 4958 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 4959 CheckFailed("Struct tag nodes have a string as their first operand", 4960 BaseNode); 4961 return InvalidNode; 4962 } 4963 4964 bool Failed = false; 4965 4966 Optional<APInt> PrevOffset; 4967 unsigned BitWidth = ~0u; 4968 4969 // We've already checked that BaseNode is not a degenerate root node with one 4970 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 4971 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 4972 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 4973 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 4974 Idx += NumOpsPerField) { 4975 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 4976 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 4977 if (!isa<MDNode>(FieldTy)) { 4978 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 4979 Failed = true; 4980 continue; 4981 } 4982 4983 auto *OffsetEntryCI = 4984 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 4985 if (!OffsetEntryCI) { 4986 CheckFailed("Offset entries must be constants!", &I, BaseNode); 4987 Failed = true; 4988 continue; 4989 } 4990 4991 if (BitWidth == ~0u) 4992 BitWidth = OffsetEntryCI->getBitWidth(); 4993 4994 if (OffsetEntryCI->getBitWidth() != BitWidth) { 4995 CheckFailed( 4996 "Bitwidth between the offsets and struct type entries must match", &I, 4997 BaseNode); 4998 Failed = true; 4999 continue; 5000 } 5001 5002 // NB! As far as I can tell, we generate a non-strictly increasing offset 5003 // sequence only from structs that have zero size bit fields. When 5004 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5005 // pick the field lexically the latest in struct type metadata node. This 5006 // mirrors the actual behavior of the alias analysis implementation. 5007 bool IsAscending = 5008 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5009 5010 if (!IsAscending) { 5011 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5012 Failed = true; 5013 } 5014 5015 PrevOffset = OffsetEntryCI->getValue(); 5016 5017 if (IsNewFormat) { 5018 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5019 BaseNode->getOperand(Idx + 2)); 5020 if (!MemberSizeNode) { 5021 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5022 Failed = true; 5023 continue; 5024 } 5025 } 5026 } 5027 5028 return Failed ? InvalidNode 5029 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5030 } 5031 5032 static bool IsRootTBAANode(const MDNode *MD) { 5033 return MD->getNumOperands() < 2; 5034 } 5035 5036 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5037 SmallPtrSetImpl<const MDNode *> &Visited) { 5038 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5039 return false; 5040 5041 if (!isa<MDString>(MD->getOperand(0))) 5042 return false; 5043 5044 if (MD->getNumOperands() == 3) { 5045 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5046 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5047 return false; 5048 } 5049 5050 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5051 return Parent && Visited.insert(Parent).second && 5052 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5053 } 5054 5055 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5056 auto ResultIt = TBAAScalarNodes.find(MD); 5057 if (ResultIt != TBAAScalarNodes.end()) 5058 return ResultIt->second; 5059 5060 SmallPtrSet<const MDNode *, 4> Visited; 5061 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5062 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5063 (void)InsertResult; 5064 assert(InsertResult.second && "Just checked!"); 5065 5066 return Result; 5067 } 5068 5069 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5070 /// Offset in place to be the offset within the field node returned. 5071 /// 5072 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5073 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5074 const MDNode *BaseNode, 5075 APInt &Offset, 5076 bool IsNewFormat) { 5077 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5078 5079 // Scalar nodes have only one possible "field" -- their parent in the access 5080 // hierarchy. Offset must be zero at this point, but our caller is supposed 5081 // to Assert that. 5082 if (BaseNode->getNumOperands() == 2) 5083 return cast<MDNode>(BaseNode->getOperand(1)); 5084 5085 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5086 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5087 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5088 Idx += NumOpsPerField) { 5089 auto *OffsetEntryCI = 5090 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5091 if (OffsetEntryCI->getValue().ugt(Offset)) { 5092 if (Idx == FirstFieldOpNo) { 5093 CheckFailed("Could not find TBAA parent in struct type node", &I, 5094 BaseNode, &Offset); 5095 return nullptr; 5096 } 5097 5098 unsigned PrevIdx = Idx - NumOpsPerField; 5099 auto *PrevOffsetEntryCI = 5100 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5101 Offset -= PrevOffsetEntryCI->getValue(); 5102 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5103 } 5104 } 5105 5106 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5107 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5108 BaseNode->getOperand(LastIdx + 1)); 5109 Offset -= LastOffsetEntryCI->getValue(); 5110 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5111 } 5112 5113 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5114 if (!Type || Type->getNumOperands() < 3) 5115 return false; 5116 5117 // In the new format type nodes shall have a reference to the parent type as 5118 // its first operand. 5119 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5120 if (!Parent) 5121 return false; 5122 5123 return true; 5124 } 5125 5126 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5127 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5128 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5129 isa<AtomicCmpXchgInst>(I), 5130 "This instruction shall not have a TBAA access tag!", &I); 5131 5132 bool IsStructPathTBAA = 5133 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5134 5135 AssertTBAA( 5136 IsStructPathTBAA, 5137 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5138 5139 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5140 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5141 5142 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5143 5144 if (IsNewFormat) { 5145 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5146 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5147 } else { 5148 AssertTBAA(MD->getNumOperands() < 5, 5149 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5150 } 5151 5152 // Check the access size field. 5153 if (IsNewFormat) { 5154 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5155 MD->getOperand(3)); 5156 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5157 } 5158 5159 // Check the immutability flag. 5160 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5161 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5162 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5163 MD->getOperand(ImmutabilityFlagOpNo)); 5164 AssertTBAA(IsImmutableCI, 5165 "Immutability tag on struct tag metadata must be a constant", 5166 &I, MD); 5167 AssertTBAA( 5168 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5169 "Immutability part of the struct tag metadata must be either 0 or 1", 5170 &I, MD); 5171 } 5172 5173 AssertTBAA(BaseNode && AccessType, 5174 "Malformed struct tag metadata: base and access-type " 5175 "should be non-null and point to Metadata nodes", 5176 &I, MD, BaseNode, AccessType); 5177 5178 if (!IsNewFormat) { 5179 AssertTBAA(isValidScalarTBAANode(AccessType), 5180 "Access type node must be a valid scalar type", &I, MD, 5181 AccessType); 5182 } 5183 5184 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5185 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5186 5187 APInt Offset = OffsetCI->getValue(); 5188 bool SeenAccessTypeInPath = false; 5189 5190 SmallPtrSet<MDNode *, 4> StructPath; 5191 5192 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5193 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5194 IsNewFormat)) { 5195 if (!StructPath.insert(BaseNode).second) { 5196 CheckFailed("Cycle detected in struct path", &I, MD); 5197 return false; 5198 } 5199 5200 bool Invalid; 5201 unsigned BaseNodeBitWidth; 5202 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5203 IsNewFormat); 5204 5205 // If the base node is invalid in itself, then we've already printed all the 5206 // errors we wanted to print. 5207 if (Invalid) 5208 return false; 5209 5210 SeenAccessTypeInPath |= BaseNode == AccessType; 5211 5212 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5213 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5214 &I, MD, &Offset); 5215 5216 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5217 (BaseNodeBitWidth == 0 && Offset == 0) || 5218 (IsNewFormat && BaseNodeBitWidth == ~0u), 5219 "Access bit-width not the same as description bit-width", &I, MD, 5220 BaseNodeBitWidth, Offset.getBitWidth()); 5221 5222 if (IsNewFormat && SeenAccessTypeInPath) 5223 break; 5224 } 5225 5226 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5227 &I, MD); 5228 return true; 5229 } 5230 5231 char VerifierLegacyPass::ID = 0; 5232 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5233 5234 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5235 return new VerifierLegacyPass(FatalErrors); 5236 } 5237 5238 AnalysisKey VerifierAnalysis::Key; 5239 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5240 ModuleAnalysisManager &) { 5241 Result Res; 5242 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5243 return Res; 5244 } 5245 5246 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5247 FunctionAnalysisManager &) { 5248 return { llvm::verifyFunction(F, &dbgs()), false }; 5249 } 5250 5251 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5252 auto Res = AM.getResult<VerifierAnalysis>(M); 5253 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5254 report_fatal_error("Broken module found, compilation aborted!"); 5255 5256 return PreservedAnalyses::all(); 5257 } 5258 5259 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5260 auto res = AM.getResult<VerifierAnalysis>(F); 5261 if (res.IRBroken && FatalErrors) 5262 report_fatal_error("Broken function found, compilation aborted!"); 5263 5264 return PreservedAnalyses::all(); 5265 } 5266