1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 static cl::opt<bool> VerifyNoAliasScopeDomination( 119 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 120 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 121 "scopes are not dominating")); 122 123 namespace llvm { 124 125 struct VerifierSupport { 126 raw_ostream *OS; 127 const Module &M; 128 ModuleSlotTracker MST; 129 Triple TT; 130 const DataLayout &DL; 131 LLVMContext &Context; 132 133 /// Track the brokenness of the module while recursively visiting. 134 bool Broken = false; 135 /// Broken debug info can be "recovered" from by stripping the debug info. 136 bool BrokenDebugInfo = false; 137 /// Whether to treat broken debug info as an error. 138 bool TreatBrokenDebugInfoAsError = true; 139 140 explicit VerifierSupport(raw_ostream *OS, const Module &M) 141 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 142 Context(M.getContext()) {} 143 144 private: 145 void Write(const Module *M) { 146 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 147 } 148 149 void Write(const Value *V) { 150 if (V) 151 Write(*V); 152 } 153 154 void Write(const Value &V) { 155 if (isa<Instruction>(V)) { 156 V.print(*OS, MST); 157 *OS << '\n'; 158 } else { 159 V.printAsOperand(*OS, true, MST); 160 *OS << '\n'; 161 } 162 } 163 164 void Write(const Metadata *MD) { 165 if (!MD) 166 return; 167 MD->print(*OS, MST, &M); 168 *OS << '\n'; 169 } 170 171 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 172 Write(MD.get()); 173 } 174 175 void Write(const NamedMDNode *NMD) { 176 if (!NMD) 177 return; 178 NMD->print(*OS, MST); 179 *OS << '\n'; 180 } 181 182 void Write(Type *T) { 183 if (!T) 184 return; 185 *OS << ' ' << *T; 186 } 187 188 void Write(const Comdat *C) { 189 if (!C) 190 return; 191 *OS << *C; 192 } 193 194 void Write(const APInt *AI) { 195 if (!AI) 196 return; 197 *OS << *AI << '\n'; 198 } 199 200 void Write(const unsigned i) { *OS << i << '\n'; } 201 202 // NOLINTNEXTLINE(readability-identifier-naming) 203 void Write(const Attribute *A) { 204 if (!A) 205 return; 206 *OS << A->getAsString() << '\n'; 207 } 208 209 // NOLINTNEXTLINE(readability-identifier-naming) 210 void Write(const AttributeSet *AS) { 211 if (!AS) 212 return; 213 *OS << AS->getAsString() << '\n'; 214 } 215 216 // NOLINTNEXTLINE(readability-identifier-naming) 217 void Write(const AttributeList *AL) { 218 if (!AL) 219 return; 220 AL->print(*OS); 221 } 222 223 template <typename T> void Write(ArrayRef<T> Vs) { 224 for (const T &V : Vs) 225 Write(V); 226 } 227 228 template <typename T1, typename... Ts> 229 void WriteTs(const T1 &V1, const Ts &... Vs) { 230 Write(V1); 231 WriteTs(Vs...); 232 } 233 234 template <typename... Ts> void WriteTs() {} 235 236 public: 237 /// A check failed, so printout out the condition and the message. 238 /// 239 /// This provides a nice place to put a breakpoint if you want to see why 240 /// something is not correct. 241 void CheckFailed(const Twine &Message) { 242 if (OS) 243 *OS << Message << '\n'; 244 Broken = true; 245 } 246 247 /// A check failed (with values to print). 248 /// 249 /// This calls the Message-only version so that the above is easier to set a 250 /// breakpoint on. 251 template <typename T1, typename... Ts> 252 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 253 CheckFailed(Message); 254 if (OS) 255 WriteTs(V1, Vs...); 256 } 257 258 /// A debug info check failed. 259 void DebugInfoCheckFailed(const Twine &Message) { 260 if (OS) 261 *OS << Message << '\n'; 262 Broken |= TreatBrokenDebugInfoAsError; 263 BrokenDebugInfo = true; 264 } 265 266 /// A debug info check failed (with values to print). 267 template <typename T1, typename... Ts> 268 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 269 const Ts &... Vs) { 270 DebugInfoCheckFailed(Message); 271 if (OS) 272 WriteTs(V1, Vs...); 273 } 274 }; 275 276 } // namespace llvm 277 278 namespace { 279 280 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 281 friend class InstVisitor<Verifier>; 282 283 DominatorTree DT; 284 285 /// When verifying a basic block, keep track of all of the 286 /// instructions we have seen so far. 287 /// 288 /// This allows us to do efficient dominance checks for the case when an 289 /// instruction has an operand that is an instruction in the same block. 290 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 291 292 /// Keep track of the metadata nodes that have been checked already. 293 SmallPtrSet<const Metadata *, 32> MDNodes; 294 295 /// Keep track which DISubprogram is attached to which function. 296 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 297 298 /// Track all DICompileUnits visited. 299 SmallPtrSet<const Metadata *, 2> CUVisited; 300 301 /// The result type for a landingpad. 302 Type *LandingPadResultTy; 303 304 /// Whether we've seen a call to @llvm.localescape in this function 305 /// already. 306 bool SawFrameEscape; 307 308 /// Whether the current function has a DISubprogram attached to it. 309 bool HasDebugInfo = false; 310 311 /// The current source language. 312 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; 313 314 /// Whether source was present on the first DIFile encountered in each CU. 315 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 316 317 /// Stores the count of how many objects were passed to llvm.localescape for a 318 /// given function and the largest index passed to llvm.localrecover. 319 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 320 321 // Maps catchswitches and cleanuppads that unwind to siblings to the 322 // terminators that indicate the unwind, used to detect cycles therein. 323 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 324 325 /// Cache of constants visited in search of ConstantExprs. 326 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 327 328 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 329 SmallVector<const Function *, 4> DeoptimizeDeclarations; 330 331 /// Cache of attribute lists verified. 332 SmallPtrSet<const void *, 32> AttributeListsVisited; 333 334 // Verify that this GlobalValue is only used in this module. 335 // This map is used to avoid visiting uses twice. We can arrive at a user 336 // twice, if they have multiple operands. In particular for very large 337 // constant expressions, we can arrive at a particular user many times. 338 SmallPtrSet<const Value *, 32> GlobalValueVisited; 339 340 // Keeps track of duplicate function argument debug info. 341 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 342 343 TBAAVerifier TBAAVerifyHelper; 344 345 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 346 347 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 348 349 public: 350 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 351 const Module &M) 352 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 353 SawFrameEscape(false), TBAAVerifyHelper(this) { 354 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 355 } 356 357 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 358 359 bool verify(const Function &F) { 360 assert(F.getParent() == &M && 361 "An instance of this class only works with a specific module!"); 362 363 // First ensure the function is well-enough formed to compute dominance 364 // information, and directly compute a dominance tree. We don't rely on the 365 // pass manager to provide this as it isolates us from a potentially 366 // out-of-date dominator tree and makes it significantly more complex to run 367 // this code outside of a pass manager. 368 // FIXME: It's really gross that we have to cast away constness here. 369 if (!F.empty()) 370 DT.recalculate(const_cast<Function &>(F)); 371 372 for (const BasicBlock &BB : F) { 373 if (!BB.empty() && BB.back().isTerminator()) 374 continue; 375 376 if (OS) { 377 *OS << "Basic Block in function '" << F.getName() 378 << "' does not have terminator!\n"; 379 BB.printAsOperand(*OS, true, MST); 380 *OS << "\n"; 381 } 382 return false; 383 } 384 385 Broken = false; 386 // FIXME: We strip const here because the inst visitor strips const. 387 visit(const_cast<Function &>(F)); 388 verifySiblingFuncletUnwinds(); 389 InstsInThisBlock.clear(); 390 DebugFnArgs.clear(); 391 LandingPadResultTy = nullptr; 392 SawFrameEscape = false; 393 SiblingFuncletInfo.clear(); 394 verifyNoAliasScopeDecl(); 395 NoAliasScopeDecls.clear(); 396 397 return !Broken; 398 } 399 400 /// Verify the module that this instance of \c Verifier was initialized with. 401 bool verify() { 402 Broken = false; 403 404 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 405 for (const Function &F : M) 406 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 407 DeoptimizeDeclarations.push_back(&F); 408 409 // Now that we've visited every function, verify that we never asked to 410 // recover a frame index that wasn't escaped. 411 verifyFrameRecoverIndices(); 412 for (const GlobalVariable &GV : M.globals()) 413 visitGlobalVariable(GV); 414 415 for (const GlobalAlias &GA : M.aliases()) 416 visitGlobalAlias(GA); 417 418 for (const GlobalIFunc &GI : M.ifuncs()) 419 visitGlobalIFunc(GI); 420 421 for (const NamedMDNode &NMD : M.named_metadata()) 422 visitNamedMDNode(NMD); 423 424 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 425 visitComdat(SMEC.getValue()); 426 427 visitModuleFlags(M); 428 visitModuleIdents(M); 429 visitModuleCommandLines(M); 430 431 verifyCompileUnits(); 432 433 verifyDeoptimizeCallingConvs(); 434 DISubprogramAttachments.clear(); 435 return !Broken; 436 } 437 438 private: 439 /// Whether a metadata node is allowed to be, or contain, a DILocation. 440 enum class AreDebugLocsAllowed { No, Yes }; 441 442 // Verification methods... 443 void visitGlobalValue(const GlobalValue &GV); 444 void visitGlobalVariable(const GlobalVariable &GV); 445 void visitGlobalAlias(const GlobalAlias &GA); 446 void visitGlobalIFunc(const GlobalIFunc &GI); 447 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 448 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 449 const GlobalAlias &A, const Constant &C); 450 void visitNamedMDNode(const NamedMDNode &NMD); 451 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 452 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 453 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 454 void visitComdat(const Comdat &C); 455 void visitModuleIdents(const Module &M); 456 void visitModuleCommandLines(const Module &M); 457 void visitModuleFlags(const Module &M); 458 void visitModuleFlag(const MDNode *Op, 459 DenseMap<const MDString *, const MDNode *> &SeenIDs, 460 SmallVectorImpl<const MDNode *> &Requirements); 461 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 462 void visitFunction(const Function &F); 463 void visitBasicBlock(BasicBlock &BB); 464 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 465 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 466 void visitProfMetadata(Instruction &I, MDNode *MD); 467 void visitAnnotationMetadata(MDNode *Annotation); 468 void visitAliasScopeMetadata(const MDNode *MD); 469 void visitAliasScopeListMetadata(const MDNode *MD); 470 471 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 472 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 473 #include "llvm/IR/Metadata.def" 474 void visitDIScope(const DIScope &N); 475 void visitDIVariable(const DIVariable &N); 476 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 477 void visitDITemplateParameter(const DITemplateParameter &N); 478 479 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 480 481 // InstVisitor overrides... 482 using InstVisitor<Verifier>::visit; 483 void visit(Instruction &I); 484 485 void visitTruncInst(TruncInst &I); 486 void visitZExtInst(ZExtInst &I); 487 void visitSExtInst(SExtInst &I); 488 void visitFPTruncInst(FPTruncInst &I); 489 void visitFPExtInst(FPExtInst &I); 490 void visitFPToUIInst(FPToUIInst &I); 491 void visitFPToSIInst(FPToSIInst &I); 492 void visitUIToFPInst(UIToFPInst &I); 493 void visitSIToFPInst(SIToFPInst &I); 494 void visitIntToPtrInst(IntToPtrInst &I); 495 void visitPtrToIntInst(PtrToIntInst &I); 496 void visitBitCastInst(BitCastInst &I); 497 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 498 void visitPHINode(PHINode &PN); 499 void visitCallBase(CallBase &Call); 500 void visitUnaryOperator(UnaryOperator &U); 501 void visitBinaryOperator(BinaryOperator &B); 502 void visitICmpInst(ICmpInst &IC); 503 void visitFCmpInst(FCmpInst &FC); 504 void visitExtractElementInst(ExtractElementInst &EI); 505 void visitInsertElementInst(InsertElementInst &EI); 506 void visitShuffleVectorInst(ShuffleVectorInst &EI); 507 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 508 void visitCallInst(CallInst &CI); 509 void visitInvokeInst(InvokeInst &II); 510 void visitGetElementPtrInst(GetElementPtrInst &GEP); 511 void visitLoadInst(LoadInst &LI); 512 void visitStoreInst(StoreInst &SI); 513 void verifyDominatesUse(Instruction &I, unsigned i); 514 void visitInstruction(Instruction &I); 515 void visitTerminator(Instruction &I); 516 void visitBranchInst(BranchInst &BI); 517 void visitReturnInst(ReturnInst &RI); 518 void visitSwitchInst(SwitchInst &SI); 519 void visitIndirectBrInst(IndirectBrInst &BI); 520 void visitCallBrInst(CallBrInst &CBI); 521 void visitSelectInst(SelectInst &SI); 522 void visitUserOp1(Instruction &I); 523 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 524 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 525 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 526 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 527 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 528 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 529 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 530 void visitFenceInst(FenceInst &FI); 531 void visitAllocaInst(AllocaInst &AI); 532 void visitExtractValueInst(ExtractValueInst &EVI); 533 void visitInsertValueInst(InsertValueInst &IVI); 534 void visitEHPadPredecessors(Instruction &I); 535 void visitLandingPadInst(LandingPadInst &LPI); 536 void visitResumeInst(ResumeInst &RI); 537 void visitCatchPadInst(CatchPadInst &CPI); 538 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 539 void visitCleanupPadInst(CleanupPadInst &CPI); 540 void visitFuncletPadInst(FuncletPadInst &FPI); 541 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 542 void visitCleanupReturnInst(CleanupReturnInst &CRI); 543 544 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 545 void verifySwiftErrorValue(const Value *SwiftErrorVal); 546 void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); 547 void verifyMustTailCall(CallInst &CI); 548 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 549 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 550 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 551 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 552 const Value *V); 553 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 554 const Value *V, bool IsIntrinsic); 555 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 556 template <typename T> 557 void verifyODRTypeAsScopeOperand(const MDNode &MD, T * = nullptr); 558 559 void visitConstantExprsRecursively(const Constant *EntryC); 560 void visitConstantExpr(const ConstantExpr *CE); 561 void verifyStatepoint(const CallBase &Call); 562 void verifyFrameRecoverIndices(); 563 void verifySiblingFuncletUnwinds(); 564 565 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 566 template <typename ValueOrMetadata> 567 void verifyFragmentExpression(const DIVariable &V, 568 DIExpression::FragmentInfo Fragment, 569 ValueOrMetadata *Desc); 570 void verifyFnArgs(const DbgVariableIntrinsic &I); 571 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 572 573 /// Module-level debug info verification... 574 void verifyCompileUnits(); 575 576 /// Module-level verification that all @llvm.experimental.deoptimize 577 /// declarations share the same calling convention. 578 void verifyDeoptimizeCallingConvs(); 579 580 void verifyAttachedCallBundle(const CallBase &Call, 581 const OperandBundleUse &BU); 582 583 /// Verify all-or-nothing property of DIFile source attribute within a CU. 584 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 585 586 /// Verify the llvm.experimental.noalias.scope.decl declarations 587 void verifyNoAliasScopeDecl(); 588 }; 589 590 } // end anonymous namespace 591 592 /// We know that cond should be true, if not print an error message. 593 #define Assert(C, ...) \ 594 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 595 596 /// We know that a debug info condition should be true, if not print 597 /// an error message. 598 #define AssertDI(C, ...) \ 599 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 600 601 void Verifier::visit(Instruction &I) { 602 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 603 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 604 InstVisitor<Verifier>::visit(I); 605 } 606 607 // Helper to recursively iterate over indirect users. By 608 // returning false, the callback can ask to stop recursing 609 // further. 610 static void forEachUser(const Value *User, 611 SmallPtrSet<const Value *, 32> &Visited, 612 llvm::function_ref<bool(const Value *)> Callback) { 613 if (!Visited.insert(User).second) 614 return; 615 for (const Value *TheNextUser : User->materialized_users()) 616 if (Callback(TheNextUser)) 617 forEachUser(TheNextUser, Visited, Callback); 618 } 619 620 void Verifier::visitGlobalValue(const GlobalValue &GV) { 621 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 622 "Global is external, but doesn't have external or weak linkage!", &GV); 623 624 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) 625 Assert(GO->getAlignment() <= Value::MaximumAlignment, 626 "huge alignment values are unsupported", GO); 627 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 628 "Only global variables can have appending linkage!", &GV); 629 630 if (GV.hasAppendingLinkage()) { 631 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 632 Assert(GVar && GVar->getValueType()->isArrayTy(), 633 "Only global arrays can have appending linkage!", GVar); 634 } 635 636 if (GV.isDeclarationForLinker()) 637 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 638 639 if (GV.hasDLLImportStorageClass()) { 640 Assert(!GV.isDSOLocal(), 641 "GlobalValue with DLLImport Storage is dso_local!", &GV); 642 643 Assert((GV.isDeclaration() && 644 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 645 GV.hasAvailableExternallyLinkage(), 646 "Global is marked as dllimport, but not external", &GV); 647 } 648 649 if (GV.isImplicitDSOLocal()) 650 Assert(GV.isDSOLocal(), 651 "GlobalValue with local linkage or non-default " 652 "visibility must be dso_local!", 653 &GV); 654 655 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 656 if (const Instruction *I = dyn_cast<Instruction>(V)) { 657 if (!I->getParent() || !I->getParent()->getParent()) 658 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 659 I); 660 else if (I->getParent()->getParent()->getParent() != &M) 661 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 662 I->getParent()->getParent(), 663 I->getParent()->getParent()->getParent()); 664 return false; 665 } else if (const Function *F = dyn_cast<Function>(V)) { 666 if (F->getParent() != &M) 667 CheckFailed("Global is used by function in a different module", &GV, &M, 668 F, F->getParent()); 669 return false; 670 } 671 return true; 672 }); 673 } 674 675 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 676 if (GV.hasInitializer()) { 677 Assert(GV.getInitializer()->getType() == GV.getValueType(), 678 "Global variable initializer type does not match global " 679 "variable type!", 680 &GV); 681 // If the global has common linkage, it must have a zero initializer and 682 // cannot be constant. 683 if (GV.hasCommonLinkage()) { 684 Assert(GV.getInitializer()->isNullValue(), 685 "'common' global must have a zero initializer!", &GV); 686 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 687 &GV); 688 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 689 } 690 } 691 692 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 693 GV.getName() == "llvm.global_dtors")) { 694 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 695 "invalid linkage for intrinsic global variable", &GV); 696 // Don't worry about emitting an error for it not being an array, 697 // visitGlobalValue will complain on appending non-array. 698 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 699 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 700 PointerType *FuncPtrTy = 701 FunctionType::get(Type::getVoidTy(Context), false)-> 702 getPointerTo(DL.getProgramAddressSpace()); 703 Assert(STy && 704 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 705 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 706 STy->getTypeAtIndex(1) == FuncPtrTy, 707 "wrong type for intrinsic global variable", &GV); 708 Assert(STy->getNumElements() == 3, 709 "the third field of the element type is mandatory, " 710 "specify i8* null to migrate from the obsoleted 2-field form"); 711 Type *ETy = STy->getTypeAtIndex(2); 712 Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); 713 Assert(ETy->isPointerTy() && 714 cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), 715 "wrong type for intrinsic global variable", &GV); 716 } 717 } 718 719 if (GV.hasName() && (GV.getName() == "llvm.used" || 720 GV.getName() == "llvm.compiler.used")) { 721 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 722 "invalid linkage for intrinsic global variable", &GV); 723 Type *GVType = GV.getValueType(); 724 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 725 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 726 Assert(PTy, "wrong type for intrinsic global variable", &GV); 727 if (GV.hasInitializer()) { 728 const Constant *Init = GV.getInitializer(); 729 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 730 Assert(InitArray, "wrong initalizer for intrinsic global variable", 731 Init); 732 for (Value *Op : InitArray->operands()) { 733 Value *V = Op->stripPointerCasts(); 734 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 735 isa<GlobalAlias>(V), 736 "invalid llvm.used member", V); 737 Assert(V->hasName(), "members of llvm.used must be named", V); 738 } 739 } 740 } 741 } 742 743 // Visit any debug info attachments. 744 SmallVector<MDNode *, 1> MDs; 745 GV.getMetadata(LLVMContext::MD_dbg, MDs); 746 for (auto *MD : MDs) { 747 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 748 visitDIGlobalVariableExpression(*GVE); 749 else 750 AssertDI(false, "!dbg attachment of global variable must be a " 751 "DIGlobalVariableExpression"); 752 } 753 754 // Scalable vectors cannot be global variables, since we don't know 755 // the runtime size. If the global is an array containing scalable vectors, 756 // that will be caught by the isValidElementType methods in StructType or 757 // ArrayType instead. 758 Assert(!isa<ScalableVectorType>(GV.getValueType()), 759 "Globals cannot contain scalable vectors", &GV); 760 761 if (auto *STy = dyn_cast<StructType>(GV.getValueType())) 762 Assert(!STy->containsScalableVectorType(), 763 "Globals cannot contain scalable vectors", &GV); 764 765 if (!GV.hasInitializer()) { 766 visitGlobalValue(GV); 767 return; 768 } 769 770 // Walk any aggregate initializers looking for bitcasts between address spaces 771 visitConstantExprsRecursively(GV.getInitializer()); 772 773 visitGlobalValue(GV); 774 } 775 776 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 777 SmallPtrSet<const GlobalAlias*, 4> Visited; 778 Visited.insert(&GA); 779 visitAliaseeSubExpr(Visited, GA, C); 780 } 781 782 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 783 const GlobalAlias &GA, const Constant &C) { 784 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 785 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 786 &GA); 787 788 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 789 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 790 791 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 792 &GA); 793 } else { 794 // Only continue verifying subexpressions of GlobalAliases. 795 // Do not recurse into global initializers. 796 return; 797 } 798 } 799 800 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 801 visitConstantExprsRecursively(CE); 802 803 for (const Use &U : C.operands()) { 804 Value *V = &*U; 805 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 806 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 807 else if (const auto *C2 = dyn_cast<Constant>(V)) 808 visitAliaseeSubExpr(Visited, GA, *C2); 809 } 810 } 811 812 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 813 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 814 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 815 "weak_odr, or external linkage!", 816 &GA); 817 const Constant *Aliasee = GA.getAliasee(); 818 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 819 Assert(GA.getType() == Aliasee->getType(), 820 "Alias and aliasee types should match!", &GA); 821 822 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 823 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 824 825 visitAliaseeSubExpr(GA, *Aliasee); 826 827 visitGlobalValue(GA); 828 } 829 830 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 831 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 832 // is a Function definition 833 const Function *Resolver = GI.getResolverFunction(); 834 Assert(Resolver, "IFunc must have a Function resolver", &GI); 835 Assert(!Resolver->isDeclarationForLinker(), 836 "IFunc resolver must be a definition", &GI); 837 838 // Check that the immediate resolver operand (prior to any bitcasts) has the 839 // correct type 840 const Type *ResolverTy = GI.getResolver()->getType(); 841 const Type *ResolverFuncTy = 842 GlobalIFunc::getResolverFunctionType(GI.getValueType()); 843 Assert(ResolverTy == ResolverFuncTy->getPointerTo(), 844 "IFunc resolver has incorrect type", &GI); 845 } 846 847 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 848 // There used to be various other llvm.dbg.* nodes, but we don't support 849 // upgrading them and we want to reserve the namespace for future uses. 850 if (NMD.getName().startswith("llvm.dbg.")) 851 AssertDI(NMD.getName() == "llvm.dbg.cu", 852 "unrecognized named metadata node in the llvm.dbg namespace", 853 &NMD); 854 for (const MDNode *MD : NMD.operands()) { 855 if (NMD.getName() == "llvm.dbg.cu") 856 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 857 858 if (!MD) 859 continue; 860 861 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 862 } 863 } 864 865 template <typename T> 866 void Verifier::verifyODRTypeAsScopeOperand(const MDNode &MD, T *) { 867 if (isa<T>(MD)) { 868 if (auto *N = dyn_cast_or_null<DICompositeType>(cast<T>(MD).getScope())) 869 // Of all the supported tags for DICompositeType(see visitDICompositeType) 870 // we know that enum type cannot be a scope. 871 AssertDI(N->getTag() != dwarf::DW_TAG_enumeration_type, 872 "enum type is not a scope; check enum type ODR " 873 "violation", 874 N, &MD); 875 } 876 } 877 878 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 879 // Only visit each node once. Metadata can be mutually recursive, so this 880 // avoids infinite recursion here, as well as being an optimization. 881 if (!MDNodes.insert(&MD).second) 882 return; 883 884 Assert(&MD.getContext() == &Context, 885 "MDNode context does not match Module context!", &MD); 886 887 // Makes sure when a scope operand is a ODR type, the ODR type uniquing does 888 // not create invalid debug metadata. 889 // TODO: check that the non-ODR-type scope operand is valid. 890 verifyODRTypeAsScopeOperand<DIType>(MD); 891 verifyODRTypeAsScopeOperand<DILocalScope>(MD); 892 893 switch (MD.getMetadataID()) { 894 default: 895 llvm_unreachable("Invalid MDNode subclass"); 896 case Metadata::MDTupleKind: 897 break; 898 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 899 case Metadata::CLASS##Kind: \ 900 visit##CLASS(cast<CLASS>(MD)); \ 901 break; 902 #include "llvm/IR/Metadata.def" 903 } 904 905 for (const Metadata *Op : MD.operands()) { 906 if (!Op) 907 continue; 908 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 909 &MD, Op); 910 AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 911 "DILocation not allowed within this metadata node", &MD, Op); 912 if (auto *N = dyn_cast<MDNode>(Op)) { 913 visitMDNode(*N, AllowLocs); 914 continue; 915 } 916 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 917 visitValueAsMetadata(*V, nullptr); 918 continue; 919 } 920 } 921 922 // Check these last, so we diagnose problems in operands first. 923 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 924 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 925 } 926 927 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 928 Assert(MD.getValue(), "Expected valid value", &MD); 929 Assert(!MD.getValue()->getType()->isMetadataTy(), 930 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 931 932 auto *L = dyn_cast<LocalAsMetadata>(&MD); 933 if (!L) 934 return; 935 936 Assert(F, "function-local metadata used outside a function", L); 937 938 // If this was an instruction, bb, or argument, verify that it is in the 939 // function that we expect. 940 Function *ActualF = nullptr; 941 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 942 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 943 ActualF = I->getParent()->getParent(); 944 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 945 ActualF = BB->getParent(); 946 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 947 ActualF = A->getParent(); 948 assert(ActualF && "Unimplemented function local metadata case!"); 949 950 Assert(ActualF == F, "function-local metadata used in wrong function", L); 951 } 952 953 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 954 Metadata *MD = MDV.getMetadata(); 955 if (auto *N = dyn_cast<MDNode>(MD)) { 956 visitMDNode(*N, AreDebugLocsAllowed::No); 957 return; 958 } 959 960 // Only visit each node once. Metadata can be mutually recursive, so this 961 // avoids infinite recursion here, as well as being an optimization. 962 if (!MDNodes.insert(MD).second) 963 return; 964 965 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 966 visitValueAsMetadata(*V, F); 967 } 968 969 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 970 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 971 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 972 973 void Verifier::visitDILocation(const DILocation &N) { 974 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 975 "location requires a valid scope", &N, N.getRawScope()); 976 if (auto *IA = N.getRawInlinedAt()) 977 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 978 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 979 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 980 } 981 982 void Verifier::visitGenericDINode(const GenericDINode &N) { 983 AssertDI(N.getTag(), "invalid tag", &N); 984 } 985 986 void Verifier::visitDIScope(const DIScope &N) { 987 if (auto *F = N.getRawFile()) 988 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 989 } 990 991 void Verifier::visitDISubrange(const DISubrange &N) { 992 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 993 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); 994 AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() || 995 N.getRawUpperBound(), 996 "Subrange must contain count or upperBound", &N); 997 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 998 "Subrange can have any one of count or upperBound", &N); 999 auto *CBound = N.getRawCountNode(); 1000 AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) || 1001 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1002 "Count must be signed constant or DIVariable or DIExpression", &N); 1003 auto Count = N.getCount(); 1004 AssertDI(!Count || !Count.is<ConstantInt *>() || 1005 Count.get<ConstantInt *>()->getSExtValue() >= -1, 1006 "invalid subrange count", &N); 1007 auto *LBound = N.getRawLowerBound(); 1008 AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) || 1009 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1010 "LowerBound must be signed constant or DIVariable or DIExpression", 1011 &N); 1012 auto *UBound = N.getRawUpperBound(); 1013 AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1014 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1015 "UpperBound must be signed constant or DIVariable or DIExpression", 1016 &N); 1017 auto *Stride = N.getRawStride(); 1018 AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1019 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1020 "Stride must be signed constant or DIVariable or DIExpression", &N); 1021 } 1022 1023 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1024 AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1025 AssertDI(N.getRawCountNode() || N.getRawUpperBound(), 1026 "GenericSubrange must contain count or upperBound", &N); 1027 AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1028 "GenericSubrange can have any one of count or upperBound", &N); 1029 auto *CBound = N.getRawCountNode(); 1030 AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1031 "Count must be signed constant or DIVariable or DIExpression", &N); 1032 auto *LBound = N.getRawLowerBound(); 1033 AssertDI(LBound, "GenericSubrange must contain lowerBound", &N); 1034 AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1035 "LowerBound must be signed constant or DIVariable or DIExpression", 1036 &N); 1037 auto *UBound = N.getRawUpperBound(); 1038 AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1039 "UpperBound must be signed constant or DIVariable or DIExpression", 1040 &N); 1041 auto *Stride = N.getRawStride(); 1042 AssertDI(Stride, "GenericSubrange must contain stride", &N); 1043 AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1044 "Stride must be signed constant or DIVariable or DIExpression", &N); 1045 } 1046 1047 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1048 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1049 } 1050 1051 void Verifier::visitDIBasicType(const DIBasicType &N) { 1052 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 1053 N.getTag() == dwarf::DW_TAG_unspecified_type || 1054 N.getTag() == dwarf::DW_TAG_string_type, 1055 "invalid tag", &N); 1056 } 1057 1058 void Verifier::visitDIStringType(const DIStringType &N) { 1059 AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1060 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 1061 "has conflicting flags", &N); 1062 } 1063 1064 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1065 // Common scope checks. 1066 visitDIScope(N); 1067 1068 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 1069 N.getTag() == dwarf::DW_TAG_pointer_type || 1070 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1071 N.getTag() == dwarf::DW_TAG_reference_type || 1072 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1073 N.getTag() == dwarf::DW_TAG_const_type || 1074 N.getTag() == dwarf::DW_TAG_volatile_type || 1075 N.getTag() == dwarf::DW_TAG_restrict_type || 1076 N.getTag() == dwarf::DW_TAG_atomic_type || 1077 N.getTag() == dwarf::DW_TAG_member || 1078 N.getTag() == dwarf::DW_TAG_inheritance || 1079 N.getTag() == dwarf::DW_TAG_friend || 1080 N.getTag() == dwarf::DW_TAG_set_type, 1081 "invalid tag", &N); 1082 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1083 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1084 N.getRawExtraData()); 1085 } 1086 1087 if (N.getTag() == dwarf::DW_TAG_set_type) { 1088 if (auto *T = N.getRawBaseType()) { 1089 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1090 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1091 AssertDI( 1092 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1093 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1094 Basic->getEncoding() == dwarf::DW_ATE_signed || 1095 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1096 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1097 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1098 "invalid set base type", &N, T); 1099 } 1100 } 1101 1102 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1103 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1104 N.getRawBaseType()); 1105 1106 if (N.getDWARFAddressSpace()) { 1107 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1108 N.getTag() == dwarf::DW_TAG_reference_type || 1109 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1110 "DWARF address space only applies to pointer or reference types", 1111 &N); 1112 } 1113 } 1114 1115 /// Detect mutually exclusive flags. 1116 static bool hasConflictingReferenceFlags(unsigned Flags) { 1117 return ((Flags & DINode::FlagLValueReference) && 1118 (Flags & DINode::FlagRValueReference)) || 1119 ((Flags & DINode::FlagTypePassByValue) && 1120 (Flags & DINode::FlagTypePassByReference)); 1121 } 1122 1123 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1124 auto *Params = dyn_cast<MDTuple>(&RawParams); 1125 AssertDI(Params, "invalid template params", &N, &RawParams); 1126 for (Metadata *Op : Params->operands()) { 1127 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1128 &N, Params, Op); 1129 } 1130 } 1131 1132 void Verifier::visitDICompositeType(const DICompositeType &N) { 1133 // Common scope checks. 1134 visitDIScope(N); 1135 1136 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 1137 N.getTag() == dwarf::DW_TAG_structure_type || 1138 N.getTag() == dwarf::DW_TAG_union_type || 1139 N.getTag() == dwarf::DW_TAG_enumeration_type || 1140 N.getTag() == dwarf::DW_TAG_class_type || 1141 N.getTag() == dwarf::DW_TAG_variant_part || 1142 N.getTag() == dwarf::DW_TAG_namelist, 1143 "invalid tag", &N); 1144 1145 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1146 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 1147 N.getRawBaseType()); 1148 1149 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1150 "invalid composite elements", &N, N.getRawElements()); 1151 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1152 N.getRawVTableHolder()); 1153 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1154 "invalid reference flags", &N); 1155 unsigned DIBlockByRefStruct = 1 << 4; 1156 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 1157 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1158 1159 if (N.isVector()) { 1160 const DINodeArray Elements = N.getElements(); 1161 AssertDI(Elements.size() == 1 && 1162 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1163 "invalid vector, expected one element of type subrange", &N); 1164 } 1165 1166 if (auto *Params = N.getRawTemplateParams()) 1167 visitTemplateParams(N, *Params); 1168 1169 if (auto *D = N.getRawDiscriminator()) { 1170 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1171 "discriminator can only appear on variant part"); 1172 } 1173 1174 if (N.getRawDataLocation()) { 1175 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1176 "dataLocation can only appear in array type"); 1177 } 1178 1179 if (N.getRawAssociated()) { 1180 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1181 "associated can only appear in array type"); 1182 } 1183 1184 if (N.getRawAllocated()) { 1185 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1186 "allocated can only appear in array type"); 1187 } 1188 1189 if (N.getRawRank()) { 1190 AssertDI(N.getTag() == dwarf::DW_TAG_array_type, 1191 "rank can only appear in array type"); 1192 } 1193 } 1194 1195 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1196 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1197 if (auto *Types = N.getRawTypeArray()) { 1198 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1199 for (Metadata *Ty : N.getTypeArray()->operands()) { 1200 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1201 } 1202 } 1203 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1204 "invalid reference flags", &N); 1205 } 1206 1207 void Verifier::visitDIFile(const DIFile &N) { 1208 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1209 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1210 if (Checksum) { 1211 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1212 "invalid checksum kind", &N); 1213 size_t Size; 1214 switch (Checksum->Kind) { 1215 case DIFile::CSK_MD5: 1216 Size = 32; 1217 break; 1218 case DIFile::CSK_SHA1: 1219 Size = 40; 1220 break; 1221 case DIFile::CSK_SHA256: 1222 Size = 64; 1223 break; 1224 } 1225 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1226 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1227 "invalid checksum", &N); 1228 } 1229 } 1230 1231 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1232 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1233 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1234 1235 // Don't bother verifying the compilation directory or producer string 1236 // as those could be empty. 1237 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1238 N.getRawFile()); 1239 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1240 N.getFile()); 1241 1242 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); 1243 1244 verifySourceDebugInfo(N, *N.getFile()); 1245 1246 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1247 "invalid emission kind", &N); 1248 1249 if (auto *Array = N.getRawEnumTypes()) { 1250 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1251 for (Metadata *Op : N.getEnumTypes()->operands()) { 1252 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1253 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1254 "invalid enum type", &N, N.getEnumTypes(), Op); 1255 } 1256 } 1257 if (auto *Array = N.getRawRetainedTypes()) { 1258 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1259 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1260 AssertDI(Op && (isa<DIType>(Op) || 1261 (isa<DISubprogram>(Op) && 1262 !cast<DISubprogram>(Op)->isDefinition())), 1263 "invalid retained type", &N, Op); 1264 } 1265 } 1266 if (auto *Array = N.getRawGlobalVariables()) { 1267 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1268 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1269 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1270 "invalid global variable ref", &N, Op); 1271 } 1272 } 1273 if (auto *Array = N.getRawImportedEntities()) { 1274 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1275 for (Metadata *Op : N.getImportedEntities()->operands()) { 1276 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1277 &N, Op); 1278 } 1279 } 1280 if (auto *Array = N.getRawMacros()) { 1281 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1282 for (Metadata *Op : N.getMacros()->operands()) { 1283 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1284 } 1285 } 1286 CUVisited.insert(&N); 1287 } 1288 1289 void Verifier::visitDISubprogram(const DISubprogram &N) { 1290 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1291 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1292 if (auto *F = N.getRawFile()) 1293 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1294 else 1295 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1296 if (auto *T = N.getRawType()) 1297 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1298 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1299 N.getRawContainingType()); 1300 if (auto *Params = N.getRawTemplateParams()) 1301 visitTemplateParams(N, *Params); 1302 if (auto *S = N.getRawDeclaration()) 1303 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1304 "invalid subprogram declaration", &N, S); 1305 if (auto *RawNode = N.getRawRetainedNodes()) { 1306 auto *Node = dyn_cast<MDTuple>(RawNode); 1307 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1308 for (Metadata *Op : Node->operands()) { 1309 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1310 "invalid retained nodes, expected DILocalVariable or DILabel", 1311 &N, Node, Op); 1312 } 1313 } 1314 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1315 "invalid reference flags", &N); 1316 1317 auto *Unit = N.getRawUnit(); 1318 if (N.isDefinition()) { 1319 // Subprogram definitions (not part of the type hierarchy). 1320 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1321 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1322 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1323 if (N.getFile()) 1324 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1325 } else { 1326 // Subprogram declarations (part of the type hierarchy). 1327 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1328 } 1329 1330 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1331 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1332 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1333 for (Metadata *Op : ThrownTypes->operands()) 1334 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1335 Op); 1336 } 1337 1338 if (N.areAllCallsDescribed()) 1339 AssertDI(N.isDefinition(), 1340 "DIFlagAllCallsDescribed must be attached to a definition"); 1341 } 1342 1343 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1344 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1345 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1346 "invalid local scope", &N, N.getRawScope()); 1347 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1348 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1349 } 1350 1351 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1352 visitDILexicalBlockBase(N); 1353 1354 AssertDI(N.getLine() || !N.getColumn(), 1355 "cannot have column info without line info", &N); 1356 } 1357 1358 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1359 visitDILexicalBlockBase(N); 1360 } 1361 1362 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1363 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1364 if (auto *S = N.getRawScope()) 1365 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1366 if (auto *S = N.getRawDecl()) 1367 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1368 } 1369 1370 void Verifier::visitDINamespace(const DINamespace &N) { 1371 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1372 if (auto *S = N.getRawScope()) 1373 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1374 } 1375 1376 void Verifier::visitDIMacro(const DIMacro &N) { 1377 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1378 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1379 "invalid macinfo type", &N); 1380 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1381 if (!N.getValue().empty()) { 1382 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1383 } 1384 } 1385 1386 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1387 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1388 "invalid macinfo type", &N); 1389 if (auto *F = N.getRawFile()) 1390 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1391 1392 if (auto *Array = N.getRawElements()) { 1393 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1394 for (Metadata *Op : N.getElements()->operands()) { 1395 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1396 } 1397 } 1398 } 1399 1400 void Verifier::visitDIArgList(const DIArgList &N) { 1401 AssertDI(!N.getNumOperands(), 1402 "DIArgList should have no operands other than a list of " 1403 "ValueAsMetadata", 1404 &N); 1405 } 1406 1407 void Verifier::visitDIModule(const DIModule &N) { 1408 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1409 AssertDI(!N.getName().empty(), "anonymous module", &N); 1410 } 1411 1412 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1413 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1414 } 1415 1416 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1417 visitDITemplateParameter(N); 1418 1419 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1420 &N); 1421 } 1422 1423 void Verifier::visitDITemplateValueParameter( 1424 const DITemplateValueParameter &N) { 1425 visitDITemplateParameter(N); 1426 1427 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1428 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1429 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1430 "invalid tag", &N); 1431 } 1432 1433 void Verifier::visitDIVariable(const DIVariable &N) { 1434 if (auto *S = N.getRawScope()) 1435 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1436 if (auto *F = N.getRawFile()) 1437 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1438 } 1439 1440 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1441 // Checks common to all variables. 1442 visitDIVariable(N); 1443 1444 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1445 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1446 // Assert only if the global variable is not an extern 1447 if (N.isDefinition()) 1448 AssertDI(N.getType(), "missing global variable type", &N); 1449 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1450 AssertDI(isa<DIDerivedType>(Member), 1451 "invalid static data member declaration", &N, Member); 1452 } 1453 } 1454 1455 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1456 // Checks common to all variables. 1457 visitDIVariable(N); 1458 1459 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1460 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1461 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1462 "local variable requires a valid scope", &N, N.getRawScope()); 1463 if (auto Ty = N.getType()) 1464 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1465 } 1466 1467 void Verifier::visitDILabel(const DILabel &N) { 1468 if (auto *S = N.getRawScope()) 1469 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1470 if (auto *F = N.getRawFile()) 1471 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1472 1473 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1474 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1475 "label requires a valid scope", &N, N.getRawScope()); 1476 } 1477 1478 void Verifier::visitDIExpression(const DIExpression &N) { 1479 AssertDI(N.isValid(), "invalid expression", &N); 1480 } 1481 1482 void Verifier::visitDIGlobalVariableExpression( 1483 const DIGlobalVariableExpression &GVE) { 1484 AssertDI(GVE.getVariable(), "missing variable"); 1485 if (auto *Var = GVE.getVariable()) 1486 visitDIGlobalVariable(*Var); 1487 if (auto *Expr = GVE.getExpression()) { 1488 visitDIExpression(*Expr); 1489 if (auto Fragment = Expr->getFragmentInfo()) 1490 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1491 } 1492 } 1493 1494 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1495 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1496 if (auto *T = N.getRawType()) 1497 AssertDI(isType(T), "invalid type ref", &N, T); 1498 if (auto *F = N.getRawFile()) 1499 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1500 } 1501 1502 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1503 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1504 N.getTag() == dwarf::DW_TAG_imported_declaration, 1505 "invalid tag", &N); 1506 if (auto *S = N.getRawScope()) 1507 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1508 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1509 N.getRawEntity()); 1510 } 1511 1512 void Verifier::visitComdat(const Comdat &C) { 1513 // In COFF the Module is invalid if the GlobalValue has private linkage. 1514 // Entities with private linkage don't have entries in the symbol table. 1515 if (TT.isOSBinFormatCOFF()) 1516 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1517 Assert(!GV->hasPrivateLinkage(), 1518 "comdat global value has private linkage", GV); 1519 } 1520 1521 void Verifier::visitModuleIdents(const Module &M) { 1522 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1523 if (!Idents) 1524 return; 1525 1526 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1527 // Scan each llvm.ident entry and make sure that this requirement is met. 1528 for (const MDNode *N : Idents->operands()) { 1529 Assert(N->getNumOperands() == 1, 1530 "incorrect number of operands in llvm.ident metadata", N); 1531 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1532 ("invalid value for llvm.ident metadata entry operand" 1533 "(the operand should be a string)"), 1534 N->getOperand(0)); 1535 } 1536 } 1537 1538 void Verifier::visitModuleCommandLines(const Module &M) { 1539 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1540 if (!CommandLines) 1541 return; 1542 1543 // llvm.commandline takes a list of metadata entry. Each entry has only one 1544 // string. Scan each llvm.commandline entry and make sure that this 1545 // requirement is met. 1546 for (const MDNode *N : CommandLines->operands()) { 1547 Assert(N->getNumOperands() == 1, 1548 "incorrect number of operands in llvm.commandline metadata", N); 1549 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1550 ("invalid value for llvm.commandline metadata entry operand" 1551 "(the operand should be a string)"), 1552 N->getOperand(0)); 1553 } 1554 } 1555 1556 void Verifier::visitModuleFlags(const Module &M) { 1557 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1558 if (!Flags) return; 1559 1560 // Scan each flag, and track the flags and requirements. 1561 DenseMap<const MDString*, const MDNode*> SeenIDs; 1562 SmallVector<const MDNode*, 16> Requirements; 1563 for (const MDNode *MDN : Flags->operands()) 1564 visitModuleFlag(MDN, SeenIDs, Requirements); 1565 1566 // Validate that the requirements in the module are valid. 1567 for (const MDNode *Requirement : Requirements) { 1568 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1569 const Metadata *ReqValue = Requirement->getOperand(1); 1570 1571 const MDNode *Op = SeenIDs.lookup(Flag); 1572 if (!Op) { 1573 CheckFailed("invalid requirement on flag, flag is not present in module", 1574 Flag); 1575 continue; 1576 } 1577 1578 if (Op->getOperand(2) != ReqValue) { 1579 CheckFailed(("invalid requirement on flag, " 1580 "flag does not have the required value"), 1581 Flag); 1582 continue; 1583 } 1584 } 1585 } 1586 1587 void 1588 Verifier::visitModuleFlag(const MDNode *Op, 1589 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1590 SmallVectorImpl<const MDNode *> &Requirements) { 1591 // Each module flag should have three arguments, the merge behavior (a 1592 // constant int), the flag ID (an MDString), and the value. 1593 Assert(Op->getNumOperands() == 3, 1594 "incorrect number of operands in module flag", Op); 1595 Module::ModFlagBehavior MFB; 1596 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1597 Assert( 1598 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1599 "invalid behavior operand in module flag (expected constant integer)", 1600 Op->getOperand(0)); 1601 Assert(false, 1602 "invalid behavior operand in module flag (unexpected constant)", 1603 Op->getOperand(0)); 1604 } 1605 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1606 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1607 Op->getOperand(1)); 1608 1609 // Sanity check the values for behaviors with additional requirements. 1610 switch (MFB) { 1611 case Module::Error: 1612 case Module::Warning: 1613 case Module::Override: 1614 // These behavior types accept any value. 1615 break; 1616 1617 case Module::Max: { 1618 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1619 "invalid value for 'max' module flag (expected constant integer)", 1620 Op->getOperand(2)); 1621 break; 1622 } 1623 1624 case Module::Require: { 1625 // The value should itself be an MDNode with two operands, a flag ID (an 1626 // MDString), and a value. 1627 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1628 Assert(Value && Value->getNumOperands() == 2, 1629 "invalid value for 'require' module flag (expected metadata pair)", 1630 Op->getOperand(2)); 1631 Assert(isa<MDString>(Value->getOperand(0)), 1632 ("invalid value for 'require' module flag " 1633 "(first value operand should be a string)"), 1634 Value->getOperand(0)); 1635 1636 // Append it to the list of requirements, to check once all module flags are 1637 // scanned. 1638 Requirements.push_back(Value); 1639 break; 1640 } 1641 1642 case Module::Append: 1643 case Module::AppendUnique: { 1644 // These behavior types require the operand be an MDNode. 1645 Assert(isa<MDNode>(Op->getOperand(2)), 1646 "invalid value for 'append'-type module flag " 1647 "(expected a metadata node)", 1648 Op->getOperand(2)); 1649 break; 1650 } 1651 } 1652 1653 // Unless this is a "requires" flag, check the ID is unique. 1654 if (MFB != Module::Require) { 1655 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1656 Assert(Inserted, 1657 "module flag identifiers must be unique (or of 'require' type)", ID); 1658 } 1659 1660 if (ID->getString() == "wchar_size") { 1661 ConstantInt *Value 1662 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1663 Assert(Value, "wchar_size metadata requires constant integer argument"); 1664 } 1665 1666 if (ID->getString() == "Linker Options") { 1667 // If the llvm.linker.options named metadata exists, we assume that the 1668 // bitcode reader has upgraded the module flag. Otherwise the flag might 1669 // have been created by a client directly. 1670 Assert(M.getNamedMetadata("llvm.linker.options"), 1671 "'Linker Options' named metadata no longer supported"); 1672 } 1673 1674 if (ID->getString() == "SemanticInterposition") { 1675 ConstantInt *Value = 1676 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1677 Assert(Value, 1678 "SemanticInterposition metadata requires constant integer argument"); 1679 } 1680 1681 if (ID->getString() == "CG Profile") { 1682 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1683 visitModuleFlagCGProfileEntry(MDO); 1684 } 1685 } 1686 1687 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1688 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1689 if (!FuncMDO) 1690 return; 1691 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1692 Assert(F && isa<Function>(F->getValue()->stripPointerCasts()), 1693 "expected a Function or null", FuncMDO); 1694 }; 1695 auto Node = dyn_cast_or_null<MDNode>(MDO); 1696 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1697 CheckFunction(Node->getOperand(0)); 1698 CheckFunction(Node->getOperand(1)); 1699 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1700 Assert(Count && Count->getType()->isIntegerTy(), 1701 "expected an integer constant", Node->getOperand(2)); 1702 } 1703 1704 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1705 for (Attribute A : Attrs) { 1706 1707 if (A.isStringAttribute()) { 1708 #define GET_ATTR_NAMES 1709 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1710 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1711 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1712 auto V = A.getValueAsString(); \ 1713 if (!(V.empty() || V == "true" || V == "false")) \ 1714 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1715 ""); \ 1716 } 1717 1718 #include "llvm/IR/Attributes.inc" 1719 continue; 1720 } 1721 1722 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1723 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1724 V); 1725 return; 1726 } 1727 } 1728 } 1729 1730 // VerifyParameterAttrs - Check the given attributes for an argument or return 1731 // value of the specified type. The value V is printed in error messages. 1732 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1733 const Value *V) { 1734 if (!Attrs.hasAttributes()) 1735 return; 1736 1737 verifyAttributeTypes(Attrs, V); 1738 1739 for (Attribute Attr : Attrs) 1740 Assert(Attr.isStringAttribute() || 1741 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1742 "Attribute '" + Attr.getAsString() + 1743 "' does not apply to parameters", 1744 V); 1745 1746 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1747 Assert(Attrs.getNumAttributes() == 1, 1748 "Attribute 'immarg' is incompatible with other attributes", V); 1749 } 1750 1751 // Check for mutually incompatible attributes. Only inreg is compatible with 1752 // sret. 1753 unsigned AttrCount = 0; 1754 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1755 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1756 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1757 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1758 Attrs.hasAttribute(Attribute::InReg); 1759 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1760 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1761 Assert(AttrCount <= 1, 1762 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1763 "'byref', and 'sret' are incompatible!", 1764 V); 1765 1766 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1767 Attrs.hasAttribute(Attribute::ReadOnly)), 1768 "Attributes " 1769 "'inalloca and readonly' are incompatible!", 1770 V); 1771 1772 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1773 Attrs.hasAttribute(Attribute::Returned)), 1774 "Attributes " 1775 "'sret and returned' are incompatible!", 1776 V); 1777 1778 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1779 Attrs.hasAttribute(Attribute::SExt)), 1780 "Attributes " 1781 "'zeroext and signext' are incompatible!", 1782 V); 1783 1784 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1785 Attrs.hasAttribute(Attribute::ReadOnly)), 1786 "Attributes " 1787 "'readnone and readonly' are incompatible!", 1788 V); 1789 1790 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1791 Attrs.hasAttribute(Attribute::WriteOnly)), 1792 "Attributes " 1793 "'readnone and writeonly' are incompatible!", 1794 V); 1795 1796 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1797 Attrs.hasAttribute(Attribute::WriteOnly)), 1798 "Attributes " 1799 "'readonly and writeonly' are incompatible!", 1800 V); 1801 1802 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1803 Attrs.hasAttribute(Attribute::AlwaysInline)), 1804 "Attributes " 1805 "'noinline and alwaysinline' are incompatible!", 1806 V); 1807 1808 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1809 for (Attribute Attr : Attrs) { 1810 if (!Attr.isStringAttribute() && 1811 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 1812 CheckFailed("Attribute '" + Attr.getAsString() + 1813 "' applied to incompatible type!", V); 1814 return; 1815 } 1816 } 1817 1818 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1819 if (Attrs.hasAttribute(Attribute::ByVal)) { 1820 SmallPtrSet<Type *, 4> Visited; 1821 Assert(Attrs.getByValType()->isSized(&Visited), 1822 "Attribute 'byval' does not support unsized types!", V); 1823 } 1824 if (Attrs.hasAttribute(Attribute::ByRef)) { 1825 SmallPtrSet<Type *, 4> Visited; 1826 Assert(Attrs.getByRefType()->isSized(&Visited), 1827 "Attribute 'byref' does not support unsized types!", V); 1828 } 1829 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1830 SmallPtrSet<Type *, 4> Visited; 1831 Assert(Attrs.getInAllocaType()->isSized(&Visited), 1832 "Attribute 'inalloca' does not support unsized types!", V); 1833 } 1834 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1835 SmallPtrSet<Type *, 4> Visited; 1836 Assert(Attrs.getPreallocatedType()->isSized(&Visited), 1837 "Attribute 'preallocated' does not support unsized types!", V); 1838 } 1839 if (!PTy->isOpaque()) { 1840 if (!isa<PointerType>(PTy->getElementType())) 1841 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1842 "Attribute 'swifterror' only applies to parameters " 1843 "with pointer to pointer type!", 1844 V); 1845 if (Attrs.hasAttribute(Attribute::ByRef)) { 1846 Assert(Attrs.getByRefType() == PTy->getElementType(), 1847 "Attribute 'byref' type does not match parameter!", V); 1848 } 1849 1850 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1851 Assert(Attrs.getByValType() == PTy->getElementType(), 1852 "Attribute 'byval' type does not match parameter!", V); 1853 } 1854 1855 if (Attrs.hasAttribute(Attribute::Preallocated)) { 1856 Assert(Attrs.getPreallocatedType() == PTy->getElementType(), 1857 "Attribute 'preallocated' type does not match parameter!", V); 1858 } 1859 1860 if (Attrs.hasAttribute(Attribute::InAlloca)) { 1861 Assert(Attrs.getInAllocaType() == PTy->getElementType(), 1862 "Attribute 'inalloca' type does not match parameter!", V); 1863 } 1864 1865 if (Attrs.hasAttribute(Attribute::ElementType)) { 1866 Assert(Attrs.getElementType() == PTy->getElementType(), 1867 "Attribute 'elementtype' type does not match parameter!", V); 1868 } 1869 } 1870 } 1871 } 1872 1873 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 1874 const Value *V) { 1875 if (Attrs.hasFnAttr(Attr)) { 1876 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 1877 unsigned N; 1878 if (S.getAsInteger(10, N)) 1879 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 1880 } 1881 } 1882 1883 // Check parameter attributes against a function type. 1884 // The value V is printed in error messages. 1885 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1886 const Value *V, bool IsIntrinsic) { 1887 if (Attrs.isEmpty()) 1888 return; 1889 1890 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 1891 Assert(Attrs.hasParentContext(Context), 1892 "Attribute list does not match Module context!", &Attrs, V); 1893 for (const auto &AttrSet : Attrs) { 1894 Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 1895 "Attribute set does not match Module context!", &AttrSet, V); 1896 for (const auto &A : AttrSet) { 1897 Assert(A.hasParentContext(Context), 1898 "Attribute does not match Module context!", &A, V); 1899 } 1900 } 1901 } 1902 1903 bool SawNest = false; 1904 bool SawReturned = false; 1905 bool SawSRet = false; 1906 bool SawSwiftSelf = false; 1907 bool SawSwiftAsync = false; 1908 bool SawSwiftError = false; 1909 1910 // Verify return value attributes. 1911 AttributeSet RetAttrs = Attrs.getRetAttrs(); 1912 for (Attribute RetAttr : RetAttrs) 1913 Assert(RetAttr.isStringAttribute() || 1914 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 1915 "Attribute '" + RetAttr.getAsString() + 1916 "' does not apply to function return values", 1917 V); 1918 1919 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1920 1921 // Verify parameter attributes. 1922 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1923 Type *Ty = FT->getParamType(i); 1924 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 1925 1926 if (!IsIntrinsic) { 1927 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1928 "immarg attribute only applies to intrinsics",V); 1929 Assert(!ArgAttrs.hasAttribute(Attribute::ElementType), 1930 "Attribute 'elementtype' can only be applied to intrinsics.", V); 1931 } 1932 1933 verifyParameterAttrs(ArgAttrs, Ty, V); 1934 1935 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1936 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1937 SawNest = true; 1938 } 1939 1940 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1941 Assert(!SawReturned, "More than one parameter has attribute returned!", 1942 V); 1943 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1944 "Incompatible argument and return types for 'returned' attribute", 1945 V); 1946 SawReturned = true; 1947 } 1948 1949 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1950 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1951 Assert(i == 0 || i == 1, 1952 "Attribute 'sret' is not on first or second parameter!", V); 1953 SawSRet = true; 1954 } 1955 1956 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1957 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1958 SawSwiftSelf = true; 1959 } 1960 1961 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 1962 Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 1963 SawSwiftAsync = true; 1964 } 1965 1966 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1967 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1968 V); 1969 SawSwiftError = true; 1970 } 1971 1972 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1973 Assert(i == FT->getNumParams() - 1, 1974 "inalloca isn't on the last parameter!", V); 1975 } 1976 } 1977 1978 if (!Attrs.hasFnAttrs()) 1979 return; 1980 1981 verifyAttributeTypes(Attrs.getFnAttrs(), V); 1982 for (Attribute FnAttr : Attrs.getFnAttrs()) 1983 Assert(FnAttr.isStringAttribute() || 1984 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 1985 "Attribute '" + FnAttr.getAsString() + 1986 "' does not apply to functions!", 1987 V); 1988 1989 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1990 Attrs.hasFnAttr(Attribute::ReadOnly)), 1991 "Attributes 'readnone and readonly' are incompatible!", V); 1992 1993 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 1994 Attrs.hasFnAttr(Attribute::WriteOnly)), 1995 "Attributes 'readnone and writeonly' are incompatible!", V); 1996 1997 Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) && 1998 Attrs.hasFnAttr(Attribute::WriteOnly)), 1999 "Attributes 'readonly and writeonly' are incompatible!", V); 2000 2001 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2002 Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)), 2003 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 2004 "incompatible!", 2005 V); 2006 2007 Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) && 2008 Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)), 2009 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 2010 2011 Assert(!(Attrs.hasFnAttr(Attribute::NoInline) && 2012 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2013 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2014 2015 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2016 Assert(Attrs.hasFnAttr(Attribute::NoInline), 2017 "Attribute 'optnone' requires 'noinline'!", V); 2018 2019 Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2020 "Attributes 'optsize and optnone' are incompatible!", V); 2021 2022 Assert(!Attrs.hasFnAttr(Attribute::MinSize), 2023 "Attributes 'minsize and optnone' are incompatible!", V); 2024 } 2025 2026 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2027 const GlobalValue *GV = cast<GlobalValue>(V); 2028 Assert(GV->hasGlobalUnnamedAddr(), 2029 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2030 } 2031 2032 if (Attrs.hasFnAttr(Attribute::AllocSize)) { 2033 std::pair<unsigned, Optional<unsigned>> Args = 2034 Attrs.getFnAttrs().getAllocSizeArgs(); 2035 2036 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2037 if (ParamNo >= FT->getNumParams()) { 2038 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2039 return false; 2040 } 2041 2042 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2043 CheckFailed("'allocsize' " + Name + 2044 " argument must refer to an integer parameter", 2045 V); 2046 return false; 2047 } 2048 2049 return true; 2050 }; 2051 2052 if (!CheckParam("element size", Args.first)) 2053 return; 2054 2055 if (Args.second && !CheckParam("number of elements", *Args.second)) 2056 return; 2057 } 2058 2059 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2060 std::pair<unsigned, unsigned> Args = 2061 Attrs.getFnAttrs().getVScaleRangeArgs(); 2062 2063 if (Args.first > Args.second && Args.second != 0) 2064 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2065 } 2066 2067 if (Attrs.hasFnAttr("frame-pointer")) { 2068 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2069 if (FP != "all" && FP != "non-leaf" && FP != "none") 2070 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2071 } 2072 2073 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2074 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2075 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2076 } 2077 2078 void Verifier::verifyFunctionMetadata( 2079 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2080 for (const auto &Pair : MDs) { 2081 if (Pair.first == LLVMContext::MD_prof) { 2082 MDNode *MD = Pair.second; 2083 Assert(MD->getNumOperands() >= 2, 2084 "!prof annotations should have no less than 2 operands", MD); 2085 2086 // Check first operand. 2087 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 2088 MD); 2089 Assert(isa<MDString>(MD->getOperand(0)), 2090 "expected string with name of the !prof annotation", MD); 2091 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2092 StringRef ProfName = MDS->getString(); 2093 Assert(ProfName.equals("function_entry_count") || 2094 ProfName.equals("synthetic_function_entry_count"), 2095 "first operand should be 'function_entry_count'" 2096 " or 'synthetic_function_entry_count'", 2097 MD); 2098 2099 // Check second operand. 2100 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 2101 MD); 2102 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 2103 "expected integer argument to function_entry_count", MD); 2104 } 2105 } 2106 } 2107 2108 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2109 if (!ConstantExprVisited.insert(EntryC).second) 2110 return; 2111 2112 SmallVector<const Constant *, 16> Stack; 2113 Stack.push_back(EntryC); 2114 2115 while (!Stack.empty()) { 2116 const Constant *C = Stack.pop_back_val(); 2117 2118 // Check this constant expression. 2119 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2120 visitConstantExpr(CE); 2121 2122 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2123 // Global Values get visited separately, but we do need to make sure 2124 // that the global value is in the correct module 2125 Assert(GV->getParent() == &M, "Referencing global in another module!", 2126 EntryC, &M, GV, GV->getParent()); 2127 continue; 2128 } 2129 2130 // Visit all sub-expressions. 2131 for (const Use &U : C->operands()) { 2132 const auto *OpC = dyn_cast<Constant>(U); 2133 if (!OpC) 2134 continue; 2135 if (!ConstantExprVisited.insert(OpC).second) 2136 continue; 2137 Stack.push_back(OpC); 2138 } 2139 } 2140 } 2141 2142 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2143 if (CE->getOpcode() == Instruction::BitCast) 2144 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2145 CE->getType()), 2146 "Invalid bitcast", CE); 2147 } 2148 2149 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2150 // There shouldn't be more attribute sets than there are parameters plus the 2151 // function and return value. 2152 return Attrs.getNumAttrSets() <= Params + 2; 2153 } 2154 2155 /// Verify that statepoint intrinsic is well formed. 2156 void Verifier::verifyStatepoint(const CallBase &Call) { 2157 assert(Call.getCalledFunction() && 2158 Call.getCalledFunction()->getIntrinsicID() == 2159 Intrinsic::experimental_gc_statepoint); 2160 2161 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2162 !Call.onlyAccessesArgMemory(), 2163 "gc.statepoint must read and write all memory to preserve " 2164 "reordering restrictions required by safepoint semantics", 2165 Call); 2166 2167 const int64_t NumPatchBytes = 2168 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2169 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2170 Assert(NumPatchBytes >= 0, 2171 "gc.statepoint number of patchable bytes must be " 2172 "positive", 2173 Call); 2174 2175 const Value *Target = Call.getArgOperand(2); 2176 auto *PT = dyn_cast<PointerType>(Target->getType()); 2177 Assert(PT && PT->getElementType()->isFunctionTy(), 2178 "gc.statepoint callee must be of function pointer type", Call, Target); 2179 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2180 2181 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2182 Assert(NumCallArgs >= 0, 2183 "gc.statepoint number of arguments to underlying call " 2184 "must be positive", 2185 Call); 2186 const int NumParams = (int)TargetFuncType->getNumParams(); 2187 if (TargetFuncType->isVarArg()) { 2188 Assert(NumCallArgs >= NumParams, 2189 "gc.statepoint mismatch in number of vararg call args", Call); 2190 2191 // TODO: Remove this limitation 2192 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2193 "gc.statepoint doesn't support wrapping non-void " 2194 "vararg functions yet", 2195 Call); 2196 } else 2197 Assert(NumCallArgs == NumParams, 2198 "gc.statepoint mismatch in number of call args", Call); 2199 2200 const uint64_t Flags 2201 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2202 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2203 "unknown flag used in gc.statepoint flags argument", Call); 2204 2205 // Verify that the types of the call parameter arguments match 2206 // the type of the wrapped callee. 2207 AttributeList Attrs = Call.getAttributes(); 2208 for (int i = 0; i < NumParams; i++) { 2209 Type *ParamType = TargetFuncType->getParamType(i); 2210 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2211 Assert(ArgType == ParamType, 2212 "gc.statepoint call argument does not match wrapped " 2213 "function type", 2214 Call); 2215 2216 if (TargetFuncType->isVarArg()) { 2217 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2218 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2219 "Attribute 'sret' cannot be used for vararg call arguments!", 2220 Call); 2221 } 2222 } 2223 2224 const int EndCallArgsInx = 4 + NumCallArgs; 2225 2226 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2227 Assert(isa<ConstantInt>(NumTransitionArgsV), 2228 "gc.statepoint number of transition arguments " 2229 "must be constant integer", 2230 Call); 2231 const int NumTransitionArgs = 2232 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2233 Assert(NumTransitionArgs == 0, 2234 "gc.statepoint w/inline transition bundle is deprecated", Call); 2235 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2236 2237 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2238 Assert(isa<ConstantInt>(NumDeoptArgsV), 2239 "gc.statepoint number of deoptimization arguments " 2240 "must be constant integer", 2241 Call); 2242 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2243 Assert(NumDeoptArgs == 0, 2244 "gc.statepoint w/inline deopt operands is deprecated", Call); 2245 2246 const int ExpectedNumArgs = 7 + NumCallArgs; 2247 Assert(ExpectedNumArgs == (int)Call.arg_size(), 2248 "gc.statepoint too many arguments", Call); 2249 2250 // Check that the only uses of this gc.statepoint are gc.result or 2251 // gc.relocate calls which are tied to this statepoint and thus part 2252 // of the same statepoint sequence 2253 for (const User *U : Call.users()) { 2254 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2255 Assert(UserCall, "illegal use of statepoint token", Call, U); 2256 if (!UserCall) 2257 continue; 2258 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2259 "gc.result or gc.relocate are the only value uses " 2260 "of a gc.statepoint", 2261 Call, U); 2262 if (isa<GCResultInst>(UserCall)) { 2263 Assert(UserCall->getArgOperand(0) == &Call, 2264 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2265 } else if (isa<GCRelocateInst>(Call)) { 2266 Assert(UserCall->getArgOperand(0) == &Call, 2267 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2268 } 2269 } 2270 2271 // Note: It is legal for a single derived pointer to be listed multiple 2272 // times. It's non-optimal, but it is legal. It can also happen after 2273 // insertion if we strip a bitcast away. 2274 // Note: It is really tempting to check that each base is relocated and 2275 // that a derived pointer is never reused as a base pointer. This turns 2276 // out to be problematic since optimizations run after safepoint insertion 2277 // can recognize equality properties that the insertion logic doesn't know 2278 // about. See example statepoint.ll in the verifier subdirectory 2279 } 2280 2281 void Verifier::verifyFrameRecoverIndices() { 2282 for (auto &Counts : FrameEscapeInfo) { 2283 Function *F = Counts.first; 2284 unsigned EscapedObjectCount = Counts.second.first; 2285 unsigned MaxRecoveredIndex = Counts.second.second; 2286 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2287 "all indices passed to llvm.localrecover must be less than the " 2288 "number of arguments passed to llvm.localescape in the parent " 2289 "function", 2290 F); 2291 } 2292 } 2293 2294 static Instruction *getSuccPad(Instruction *Terminator) { 2295 BasicBlock *UnwindDest; 2296 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2297 UnwindDest = II->getUnwindDest(); 2298 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2299 UnwindDest = CSI->getUnwindDest(); 2300 else 2301 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2302 return UnwindDest->getFirstNonPHI(); 2303 } 2304 2305 void Verifier::verifySiblingFuncletUnwinds() { 2306 SmallPtrSet<Instruction *, 8> Visited; 2307 SmallPtrSet<Instruction *, 8> Active; 2308 for (const auto &Pair : SiblingFuncletInfo) { 2309 Instruction *PredPad = Pair.first; 2310 if (Visited.count(PredPad)) 2311 continue; 2312 Active.insert(PredPad); 2313 Instruction *Terminator = Pair.second; 2314 do { 2315 Instruction *SuccPad = getSuccPad(Terminator); 2316 if (Active.count(SuccPad)) { 2317 // Found a cycle; report error 2318 Instruction *CyclePad = SuccPad; 2319 SmallVector<Instruction *, 8> CycleNodes; 2320 do { 2321 CycleNodes.push_back(CyclePad); 2322 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2323 if (CycleTerminator != CyclePad) 2324 CycleNodes.push_back(CycleTerminator); 2325 CyclePad = getSuccPad(CycleTerminator); 2326 } while (CyclePad != SuccPad); 2327 Assert(false, "EH pads can't handle each other's exceptions", 2328 ArrayRef<Instruction *>(CycleNodes)); 2329 } 2330 // Don't re-walk a node we've already checked 2331 if (!Visited.insert(SuccPad).second) 2332 break; 2333 // Walk to this successor if it has a map entry. 2334 PredPad = SuccPad; 2335 auto TermI = SiblingFuncletInfo.find(PredPad); 2336 if (TermI == SiblingFuncletInfo.end()) 2337 break; 2338 Terminator = TermI->second; 2339 Active.insert(PredPad); 2340 } while (true); 2341 // Each node only has one successor, so we've walked all the active 2342 // nodes' successors. 2343 Active.clear(); 2344 } 2345 } 2346 2347 // visitFunction - Verify that a function is ok. 2348 // 2349 void Verifier::visitFunction(const Function &F) { 2350 visitGlobalValue(F); 2351 2352 // Check function arguments. 2353 FunctionType *FT = F.getFunctionType(); 2354 unsigned NumArgs = F.arg_size(); 2355 2356 Assert(&Context == &F.getContext(), 2357 "Function context does not match Module context!", &F); 2358 2359 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2360 Assert(FT->getNumParams() == NumArgs, 2361 "# formal arguments must match # of arguments for function type!", &F, 2362 FT); 2363 Assert(F.getReturnType()->isFirstClassType() || 2364 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2365 "Functions cannot return aggregate values!", &F); 2366 2367 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2368 "Invalid struct return type!", &F); 2369 2370 AttributeList Attrs = F.getAttributes(); 2371 2372 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2373 "Attribute after last parameter!", &F); 2374 2375 bool IsIntrinsic = F.isIntrinsic(); 2376 2377 // Check function attributes. 2378 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic); 2379 2380 // On function declarations/definitions, we do not support the builtin 2381 // attribute. We do not check this in VerifyFunctionAttrs since that is 2382 // checking for Attributes that can/can not ever be on functions. 2383 Assert(!Attrs.hasFnAttr(Attribute::Builtin), 2384 "Attribute 'builtin' can only be applied to a callsite.", &F); 2385 2386 Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2387 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2388 2389 // Check that this function meets the restrictions on this calling convention. 2390 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2391 // restrictions can be lifted. 2392 switch (F.getCallingConv()) { 2393 default: 2394 case CallingConv::C: 2395 break; 2396 case CallingConv::X86_INTR: { 2397 Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2398 "Calling convention parameter requires byval", &F); 2399 break; 2400 } 2401 case CallingConv::AMDGPU_KERNEL: 2402 case CallingConv::SPIR_KERNEL: 2403 Assert(F.getReturnType()->isVoidTy(), 2404 "Calling convention requires void return type", &F); 2405 LLVM_FALLTHROUGH; 2406 case CallingConv::AMDGPU_VS: 2407 case CallingConv::AMDGPU_HS: 2408 case CallingConv::AMDGPU_GS: 2409 case CallingConv::AMDGPU_PS: 2410 case CallingConv::AMDGPU_CS: 2411 Assert(!F.hasStructRetAttr(), 2412 "Calling convention does not allow sret", &F); 2413 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2414 const unsigned StackAS = DL.getAllocaAddrSpace(); 2415 unsigned i = 0; 2416 for (const Argument &Arg : F.args()) { 2417 Assert(!Attrs.hasParamAttr(i, Attribute::ByVal), 2418 "Calling convention disallows byval", &F); 2419 Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2420 "Calling convention disallows preallocated", &F); 2421 Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2422 "Calling convention disallows inalloca", &F); 2423 2424 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2425 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2426 // value here. 2427 Assert(Arg.getType()->getPointerAddressSpace() != StackAS, 2428 "Calling convention disallows stack byref", &F); 2429 } 2430 2431 ++i; 2432 } 2433 } 2434 2435 LLVM_FALLTHROUGH; 2436 case CallingConv::Fast: 2437 case CallingConv::Cold: 2438 case CallingConv::Intel_OCL_BI: 2439 case CallingConv::PTX_Kernel: 2440 case CallingConv::PTX_Device: 2441 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2442 "perfect forwarding!", 2443 &F); 2444 break; 2445 } 2446 2447 // Check that the argument values match the function type for this function... 2448 unsigned i = 0; 2449 for (const Argument &Arg : F.args()) { 2450 Assert(Arg.getType() == FT->getParamType(i), 2451 "Argument value does not match function argument type!", &Arg, 2452 FT->getParamType(i)); 2453 Assert(Arg.getType()->isFirstClassType(), 2454 "Function arguments must have first-class types!", &Arg); 2455 if (!IsIntrinsic) { 2456 Assert(!Arg.getType()->isMetadataTy(), 2457 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2458 Assert(!Arg.getType()->isTokenTy(), 2459 "Function takes token but isn't an intrinsic", &Arg, &F); 2460 Assert(!Arg.getType()->isX86_AMXTy(), 2461 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2462 } 2463 2464 // Check that swifterror argument is only used by loads and stores. 2465 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2466 verifySwiftErrorValue(&Arg); 2467 } 2468 ++i; 2469 } 2470 2471 if (!IsIntrinsic) { 2472 Assert(!F.getReturnType()->isTokenTy(), 2473 "Function returns a token but isn't an intrinsic", &F); 2474 Assert(!F.getReturnType()->isX86_AMXTy(), 2475 "Function returns a x86_amx but isn't an intrinsic", &F); 2476 } 2477 2478 // Get the function metadata attachments. 2479 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2480 F.getAllMetadata(MDs); 2481 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2482 verifyFunctionMetadata(MDs); 2483 2484 // Check validity of the personality function 2485 if (F.hasPersonalityFn()) { 2486 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2487 if (Per) 2488 Assert(Per->getParent() == F.getParent(), 2489 "Referencing personality function in another module!", 2490 &F, F.getParent(), Per, Per->getParent()); 2491 } 2492 2493 if (F.isMaterializable()) { 2494 // Function has a body somewhere we can't see. 2495 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2496 MDs.empty() ? nullptr : MDs.front().second); 2497 } else if (F.isDeclaration()) { 2498 for (const auto &I : MDs) { 2499 // This is used for call site debug information. 2500 AssertDI(I.first != LLVMContext::MD_dbg || 2501 !cast<DISubprogram>(I.second)->isDistinct(), 2502 "function declaration may only have a unique !dbg attachment", 2503 &F); 2504 Assert(I.first != LLVMContext::MD_prof, 2505 "function declaration may not have a !prof attachment", &F); 2506 2507 // Verify the metadata itself. 2508 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2509 } 2510 Assert(!F.hasPersonalityFn(), 2511 "Function declaration shouldn't have a personality routine", &F); 2512 } else { 2513 // Verify that this function (which has a body) is not named "llvm.*". It 2514 // is not legal to define intrinsics. 2515 Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2516 2517 // Check the entry node 2518 const BasicBlock *Entry = &F.getEntryBlock(); 2519 Assert(pred_empty(Entry), 2520 "Entry block to function must not have predecessors!", Entry); 2521 2522 // The address of the entry block cannot be taken, unless it is dead. 2523 if (Entry->hasAddressTaken()) { 2524 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2525 "blockaddress may not be used with the entry block!", Entry); 2526 } 2527 2528 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2529 // Visit metadata attachments. 2530 for (const auto &I : MDs) { 2531 // Verify that the attachment is legal. 2532 auto AllowLocs = AreDebugLocsAllowed::No; 2533 switch (I.first) { 2534 default: 2535 break; 2536 case LLVMContext::MD_dbg: { 2537 ++NumDebugAttachments; 2538 AssertDI(NumDebugAttachments == 1, 2539 "function must have a single !dbg attachment", &F, I.second); 2540 AssertDI(isa<DISubprogram>(I.second), 2541 "function !dbg attachment must be a subprogram", &F, I.second); 2542 AssertDI(cast<DISubprogram>(I.second)->isDistinct(), 2543 "function definition may only have a distinct !dbg attachment", 2544 &F); 2545 2546 auto *SP = cast<DISubprogram>(I.second); 2547 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2548 AssertDI(!AttachedTo || AttachedTo == &F, 2549 "DISubprogram attached to more than one function", SP, &F); 2550 AttachedTo = &F; 2551 AllowLocs = AreDebugLocsAllowed::Yes; 2552 break; 2553 } 2554 case LLVMContext::MD_prof: 2555 ++NumProfAttachments; 2556 Assert(NumProfAttachments == 1, 2557 "function must have a single !prof attachment", &F, I.second); 2558 break; 2559 } 2560 2561 // Verify the metadata itself. 2562 visitMDNode(*I.second, AllowLocs); 2563 } 2564 } 2565 2566 // If this function is actually an intrinsic, verify that it is only used in 2567 // direct call/invokes, never having its "address taken". 2568 // Only do this if the module is materialized, otherwise we don't have all the 2569 // uses. 2570 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 2571 const User *U; 2572 if (F.hasAddressTaken(&U, false, true, false, 2573 /*IgnoreARCAttachedCall=*/true)) 2574 Assert(false, "Invalid user of intrinsic instruction!", U); 2575 } 2576 2577 // Check intrinsics' signatures. 2578 switch (F.getIntrinsicID()) { 2579 case Intrinsic::experimental_gc_get_pointer_base: { 2580 FunctionType *FT = F.getFunctionType(); 2581 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2582 Assert(isa<PointerType>(F.getReturnType()), 2583 "gc.get.pointer.base must return a pointer", F); 2584 Assert(FT->getParamType(0) == F.getReturnType(), 2585 "gc.get.pointer.base operand and result must be of the same type", 2586 F); 2587 break; 2588 } 2589 case Intrinsic::experimental_gc_get_pointer_offset: { 2590 FunctionType *FT = F.getFunctionType(); 2591 Assert(FT->getNumParams() == 1, "wrong number of parameters", F); 2592 Assert(isa<PointerType>(FT->getParamType(0)), 2593 "gc.get.pointer.offset operand must be a pointer", F); 2594 Assert(F.getReturnType()->isIntegerTy(), 2595 "gc.get.pointer.offset must return integer", F); 2596 break; 2597 } 2598 } 2599 2600 auto *N = F.getSubprogram(); 2601 HasDebugInfo = (N != nullptr); 2602 if (!HasDebugInfo) 2603 return; 2604 2605 // Check that all !dbg attachments lead to back to N. 2606 // 2607 // FIXME: Check this incrementally while visiting !dbg attachments. 2608 // FIXME: Only check when N is the canonical subprogram for F. 2609 SmallPtrSet<const MDNode *, 32> Seen; 2610 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2611 // Be careful about using DILocation here since we might be dealing with 2612 // broken code (this is the Verifier after all). 2613 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2614 if (!DL) 2615 return; 2616 if (!Seen.insert(DL).second) 2617 return; 2618 2619 Metadata *Parent = DL->getRawScope(); 2620 AssertDI(Parent && isa<DILocalScope>(Parent), 2621 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2622 Parent); 2623 2624 DILocalScope *Scope = DL->getInlinedAtScope(); 2625 Assert(Scope, "Failed to find DILocalScope", DL); 2626 2627 if (!Seen.insert(Scope).second) 2628 return; 2629 2630 DISubprogram *SP = Scope->getSubprogram(); 2631 2632 // Scope and SP could be the same MDNode and we don't want to skip 2633 // validation in that case 2634 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2635 return; 2636 2637 AssertDI(SP->describes(&F), 2638 "!dbg attachment points at wrong subprogram for function", N, &F, 2639 &I, DL, Scope, SP); 2640 }; 2641 for (auto &BB : F) 2642 for (auto &I : BB) { 2643 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2644 // The llvm.loop annotations also contain two DILocations. 2645 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2646 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2647 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2648 if (BrokenDebugInfo) 2649 return; 2650 } 2651 } 2652 2653 // verifyBasicBlock - Verify that a basic block is well formed... 2654 // 2655 void Verifier::visitBasicBlock(BasicBlock &BB) { 2656 InstsInThisBlock.clear(); 2657 2658 // Ensure that basic blocks have terminators! 2659 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2660 2661 // Check constraints that this basic block imposes on all of the PHI nodes in 2662 // it. 2663 if (isa<PHINode>(BB.front())) { 2664 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 2665 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2666 llvm::sort(Preds); 2667 for (const PHINode &PN : BB.phis()) { 2668 Assert(PN.getNumIncomingValues() == Preds.size(), 2669 "PHINode should have one entry for each predecessor of its " 2670 "parent basic block!", 2671 &PN); 2672 2673 // Get and sort all incoming values in the PHI node... 2674 Values.clear(); 2675 Values.reserve(PN.getNumIncomingValues()); 2676 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2677 Values.push_back( 2678 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2679 llvm::sort(Values); 2680 2681 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2682 // Check to make sure that if there is more than one entry for a 2683 // particular basic block in this PHI node, that the incoming values are 2684 // all identical. 2685 // 2686 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2687 Values[i].second == Values[i - 1].second, 2688 "PHI node has multiple entries for the same basic block with " 2689 "different incoming values!", 2690 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2691 2692 // Check to make sure that the predecessors and PHI node entries are 2693 // matched up. 2694 Assert(Values[i].first == Preds[i], 2695 "PHI node entries do not match predecessors!", &PN, 2696 Values[i].first, Preds[i]); 2697 } 2698 } 2699 } 2700 2701 // Check that all instructions have their parent pointers set up correctly. 2702 for (auto &I : BB) 2703 { 2704 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2705 } 2706 } 2707 2708 void Verifier::visitTerminator(Instruction &I) { 2709 // Ensure that terminators only exist at the end of the basic block. 2710 Assert(&I == I.getParent()->getTerminator(), 2711 "Terminator found in the middle of a basic block!", I.getParent()); 2712 visitInstruction(I); 2713 } 2714 2715 void Verifier::visitBranchInst(BranchInst &BI) { 2716 if (BI.isConditional()) { 2717 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2718 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2719 } 2720 visitTerminator(BI); 2721 } 2722 2723 void Verifier::visitReturnInst(ReturnInst &RI) { 2724 Function *F = RI.getParent()->getParent(); 2725 unsigned N = RI.getNumOperands(); 2726 if (F->getReturnType()->isVoidTy()) 2727 Assert(N == 0, 2728 "Found return instr that returns non-void in Function of void " 2729 "return type!", 2730 &RI, F->getReturnType()); 2731 else 2732 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2733 "Function return type does not match operand " 2734 "type of return inst!", 2735 &RI, F->getReturnType()); 2736 2737 // Check to make sure that the return value has necessary properties for 2738 // terminators... 2739 visitTerminator(RI); 2740 } 2741 2742 void Verifier::visitSwitchInst(SwitchInst &SI) { 2743 Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 2744 // Check to make sure that all of the constants in the switch instruction 2745 // have the same type as the switched-on value. 2746 Type *SwitchTy = SI.getCondition()->getType(); 2747 SmallPtrSet<ConstantInt*, 32> Constants; 2748 for (auto &Case : SI.cases()) { 2749 Assert(Case.getCaseValue()->getType() == SwitchTy, 2750 "Switch constants must all be same type as switch value!", &SI); 2751 Assert(Constants.insert(Case.getCaseValue()).second, 2752 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2753 } 2754 2755 visitTerminator(SI); 2756 } 2757 2758 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2759 Assert(BI.getAddress()->getType()->isPointerTy(), 2760 "Indirectbr operand must have pointer type!", &BI); 2761 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2762 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2763 "Indirectbr destinations must all have pointer type!", &BI); 2764 2765 visitTerminator(BI); 2766 } 2767 2768 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2769 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2770 &CBI); 2771 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 2772 Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 2773 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2774 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2775 "Callbr successors must all have pointer type!", &CBI); 2776 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2777 Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)), 2778 "Using an unescaped label as a callbr argument!", &CBI); 2779 if (isa<BasicBlock>(CBI.getOperand(i))) 2780 for (unsigned j = i + 1; j != e; ++j) 2781 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2782 "Duplicate callbr destination!", &CBI); 2783 } 2784 { 2785 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2786 for (Value *V : CBI.args()) 2787 if (auto *BA = dyn_cast<BlockAddress>(V)) 2788 ArgBBs.insert(BA->getBasicBlock()); 2789 for (BasicBlock *BB : CBI.getIndirectDests()) 2790 Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI); 2791 } 2792 2793 visitTerminator(CBI); 2794 } 2795 2796 void Verifier::visitSelectInst(SelectInst &SI) { 2797 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2798 SI.getOperand(2)), 2799 "Invalid operands for select instruction!", &SI); 2800 2801 Assert(SI.getTrueValue()->getType() == SI.getType(), 2802 "Select values must have same type as select instruction!", &SI); 2803 visitInstruction(SI); 2804 } 2805 2806 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2807 /// a pass, if any exist, it's an error. 2808 /// 2809 void Verifier::visitUserOp1(Instruction &I) { 2810 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2811 } 2812 2813 void Verifier::visitTruncInst(TruncInst &I) { 2814 // Get the source and destination types 2815 Type *SrcTy = I.getOperand(0)->getType(); 2816 Type *DestTy = I.getType(); 2817 2818 // Get the size of the types in bits, we'll need this later 2819 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2820 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2821 2822 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2823 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2824 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2825 "trunc source and destination must both be a vector or neither", &I); 2826 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2827 2828 visitInstruction(I); 2829 } 2830 2831 void Verifier::visitZExtInst(ZExtInst &I) { 2832 // Get the source and destination types 2833 Type *SrcTy = I.getOperand(0)->getType(); 2834 Type *DestTy = I.getType(); 2835 2836 // Get the size of the types in bits, we'll need this later 2837 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2838 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2839 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2840 "zext source and destination must both be a vector or neither", &I); 2841 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2842 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2843 2844 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2845 2846 visitInstruction(I); 2847 } 2848 2849 void Verifier::visitSExtInst(SExtInst &I) { 2850 // Get the source and destination types 2851 Type *SrcTy = I.getOperand(0)->getType(); 2852 Type *DestTy = I.getType(); 2853 2854 // Get the size of the types in bits, we'll need this later 2855 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2856 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2857 2858 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2859 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2860 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2861 "sext source and destination must both be a vector or neither", &I); 2862 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2863 2864 visitInstruction(I); 2865 } 2866 2867 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2868 // Get the source and destination types 2869 Type *SrcTy = I.getOperand(0)->getType(); 2870 Type *DestTy = I.getType(); 2871 // Get the size of the types in bits, we'll need this later 2872 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2873 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2874 2875 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2876 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2877 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2878 "fptrunc source and destination must both be a vector or neither", &I); 2879 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2880 2881 visitInstruction(I); 2882 } 2883 2884 void Verifier::visitFPExtInst(FPExtInst &I) { 2885 // Get the source and destination types 2886 Type *SrcTy = I.getOperand(0)->getType(); 2887 Type *DestTy = I.getType(); 2888 2889 // Get the size of the types in bits, we'll need this later 2890 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2891 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2892 2893 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2894 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2895 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2896 "fpext source and destination must both be a vector or neither", &I); 2897 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2898 2899 visitInstruction(I); 2900 } 2901 2902 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2903 // Get the source and destination types 2904 Type *SrcTy = I.getOperand(0)->getType(); 2905 Type *DestTy = I.getType(); 2906 2907 bool SrcVec = SrcTy->isVectorTy(); 2908 bool DstVec = DestTy->isVectorTy(); 2909 2910 Assert(SrcVec == DstVec, 2911 "UIToFP source and dest must both be vector or scalar", &I); 2912 Assert(SrcTy->isIntOrIntVectorTy(), 2913 "UIToFP source must be integer or integer vector", &I); 2914 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2915 &I); 2916 2917 if (SrcVec && DstVec) 2918 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2919 cast<VectorType>(DestTy)->getElementCount(), 2920 "UIToFP source and dest vector length mismatch", &I); 2921 2922 visitInstruction(I); 2923 } 2924 2925 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2926 // Get the source and destination types 2927 Type *SrcTy = I.getOperand(0)->getType(); 2928 Type *DestTy = I.getType(); 2929 2930 bool SrcVec = SrcTy->isVectorTy(); 2931 bool DstVec = DestTy->isVectorTy(); 2932 2933 Assert(SrcVec == DstVec, 2934 "SIToFP source and dest must both be vector or scalar", &I); 2935 Assert(SrcTy->isIntOrIntVectorTy(), 2936 "SIToFP source must be integer or integer vector", &I); 2937 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2938 &I); 2939 2940 if (SrcVec && DstVec) 2941 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2942 cast<VectorType>(DestTy)->getElementCount(), 2943 "SIToFP source and dest vector length mismatch", &I); 2944 2945 visitInstruction(I); 2946 } 2947 2948 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2949 // Get the source and destination types 2950 Type *SrcTy = I.getOperand(0)->getType(); 2951 Type *DestTy = I.getType(); 2952 2953 bool SrcVec = SrcTy->isVectorTy(); 2954 bool DstVec = DestTy->isVectorTy(); 2955 2956 Assert(SrcVec == DstVec, 2957 "FPToUI source and dest must both be vector or scalar", &I); 2958 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2959 &I); 2960 Assert(DestTy->isIntOrIntVectorTy(), 2961 "FPToUI result must be integer or integer vector", &I); 2962 2963 if (SrcVec && DstVec) 2964 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2965 cast<VectorType>(DestTy)->getElementCount(), 2966 "FPToUI source and dest vector length mismatch", &I); 2967 2968 visitInstruction(I); 2969 } 2970 2971 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2972 // Get the source and destination types 2973 Type *SrcTy = I.getOperand(0)->getType(); 2974 Type *DestTy = I.getType(); 2975 2976 bool SrcVec = SrcTy->isVectorTy(); 2977 bool DstVec = DestTy->isVectorTy(); 2978 2979 Assert(SrcVec == DstVec, 2980 "FPToSI source and dest must both be vector or scalar", &I); 2981 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2982 &I); 2983 Assert(DestTy->isIntOrIntVectorTy(), 2984 "FPToSI result must be integer or integer vector", &I); 2985 2986 if (SrcVec && DstVec) 2987 Assert(cast<VectorType>(SrcTy)->getElementCount() == 2988 cast<VectorType>(DestTy)->getElementCount(), 2989 "FPToSI source and dest vector length mismatch", &I); 2990 2991 visitInstruction(I); 2992 } 2993 2994 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2995 // Get the source and destination types 2996 Type *SrcTy = I.getOperand(0)->getType(); 2997 Type *DestTy = I.getType(); 2998 2999 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3000 3001 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3002 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3003 &I); 3004 3005 if (SrcTy->isVectorTy()) { 3006 auto *VSrc = cast<VectorType>(SrcTy); 3007 auto *VDest = cast<VectorType>(DestTy); 3008 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3009 "PtrToInt Vector width mismatch", &I); 3010 } 3011 3012 visitInstruction(I); 3013 } 3014 3015 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3016 // Get the source and destination types 3017 Type *SrcTy = I.getOperand(0)->getType(); 3018 Type *DestTy = I.getType(); 3019 3020 Assert(SrcTy->isIntOrIntVectorTy(), 3021 "IntToPtr source must be an integral", &I); 3022 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3023 3024 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3025 &I); 3026 if (SrcTy->isVectorTy()) { 3027 auto *VSrc = cast<VectorType>(SrcTy); 3028 auto *VDest = cast<VectorType>(DestTy); 3029 Assert(VSrc->getElementCount() == VDest->getElementCount(), 3030 "IntToPtr Vector width mismatch", &I); 3031 } 3032 visitInstruction(I); 3033 } 3034 3035 void Verifier::visitBitCastInst(BitCastInst &I) { 3036 Assert( 3037 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3038 "Invalid bitcast", &I); 3039 visitInstruction(I); 3040 } 3041 3042 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3043 Type *SrcTy = I.getOperand(0)->getType(); 3044 Type *DestTy = I.getType(); 3045 3046 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3047 &I); 3048 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3049 &I); 3050 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3051 "AddrSpaceCast must be between different address spaces", &I); 3052 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3053 Assert(SrcVTy->getElementCount() == 3054 cast<VectorType>(DestTy)->getElementCount(), 3055 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3056 visitInstruction(I); 3057 } 3058 3059 /// visitPHINode - Ensure that a PHI node is well formed. 3060 /// 3061 void Verifier::visitPHINode(PHINode &PN) { 3062 // Ensure that the PHI nodes are all grouped together at the top of the block. 3063 // This can be tested by checking whether the instruction before this is 3064 // either nonexistent (because this is begin()) or is a PHI node. If not, 3065 // then there is some other instruction before a PHI. 3066 Assert(&PN == &PN.getParent()->front() || 3067 isa<PHINode>(--BasicBlock::iterator(&PN)), 3068 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3069 3070 // Check that a PHI doesn't yield a Token. 3071 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3072 3073 // Check that all of the values of the PHI node have the same type as the 3074 // result, and that the incoming blocks are really basic blocks. 3075 for (Value *IncValue : PN.incoming_values()) { 3076 Assert(PN.getType() == IncValue->getType(), 3077 "PHI node operands are not the same type as the result!", &PN); 3078 } 3079 3080 // All other PHI node constraints are checked in the visitBasicBlock method. 3081 3082 visitInstruction(PN); 3083 } 3084 3085 void Verifier::visitCallBase(CallBase &Call) { 3086 Assert(Call.getCalledOperand()->getType()->isPointerTy(), 3087 "Called function must be a pointer!", Call); 3088 PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); 3089 3090 Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), 3091 "Called function is not the same type as the call!", Call); 3092 3093 FunctionType *FTy = Call.getFunctionType(); 3094 3095 // Verify that the correct number of arguments are being passed 3096 if (FTy->isVarArg()) 3097 Assert(Call.arg_size() >= FTy->getNumParams(), 3098 "Called function requires more parameters than were provided!", 3099 Call); 3100 else 3101 Assert(Call.arg_size() == FTy->getNumParams(), 3102 "Incorrect number of arguments passed to called function!", Call); 3103 3104 // Verify that all arguments to the call match the function type. 3105 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3106 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3107 "Call parameter type does not match function signature!", 3108 Call.getArgOperand(i), FTy->getParamType(i), Call); 3109 3110 AttributeList Attrs = Call.getAttributes(); 3111 3112 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 3113 "Attribute after last parameter!", Call); 3114 3115 Function *Callee = 3116 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3117 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3118 if (IsIntrinsic) 3119 Assert(Callee->getValueType() == FTy, 3120 "Intrinsic called with incompatible signature", Call); 3121 3122 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3123 // Don't allow speculatable on call sites, unless the underlying function 3124 // declaration is also speculatable. 3125 Assert(Callee && Callee->isSpeculatable(), 3126 "speculatable attribute may not apply to call sites", Call); 3127 } 3128 3129 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3130 Assert(Call.getCalledFunction()->getIntrinsicID() == 3131 Intrinsic::call_preallocated_arg, 3132 "preallocated as a call site attribute can only be on " 3133 "llvm.call.preallocated.arg"); 3134 } 3135 3136 // Verify call attributes. 3137 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 3138 3139 // Conservatively check the inalloca argument. 3140 // We have a bug if we can find that there is an underlying alloca without 3141 // inalloca. 3142 if (Call.hasInAllocaArgument()) { 3143 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3144 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3145 Assert(AI->isUsedWithInAlloca(), 3146 "inalloca argument for call has mismatched alloca", AI, Call); 3147 } 3148 3149 // For each argument of the callsite, if it has the swifterror argument, 3150 // make sure the underlying alloca/parameter it comes from has a swifterror as 3151 // well. 3152 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3153 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3154 Value *SwiftErrorArg = Call.getArgOperand(i); 3155 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3156 Assert(AI->isSwiftError(), 3157 "swifterror argument for call has mismatched alloca", AI, Call); 3158 continue; 3159 } 3160 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3161 Assert(ArgI, 3162 "swifterror argument should come from an alloca or parameter", 3163 SwiftErrorArg, Call); 3164 Assert(ArgI->hasSwiftErrorAttr(), 3165 "swifterror argument for call has mismatched parameter", ArgI, 3166 Call); 3167 } 3168 3169 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3170 // Don't allow immarg on call sites, unless the underlying declaration 3171 // also has the matching immarg. 3172 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3173 "immarg may not apply only to call sites", 3174 Call.getArgOperand(i), Call); 3175 } 3176 3177 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3178 Value *ArgVal = Call.getArgOperand(i); 3179 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3180 "immarg operand has non-immediate parameter", ArgVal, Call); 3181 } 3182 3183 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3184 Value *ArgVal = Call.getArgOperand(i); 3185 bool hasOB = 3186 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3187 bool isMustTail = Call.isMustTailCall(); 3188 Assert(hasOB != isMustTail, 3189 "preallocated operand either requires a preallocated bundle or " 3190 "the call to be musttail (but not both)", 3191 ArgVal, Call); 3192 } 3193 } 3194 3195 if (FTy->isVarArg()) { 3196 // FIXME? is 'nest' even legal here? 3197 bool SawNest = false; 3198 bool SawReturned = false; 3199 3200 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3201 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3202 SawNest = true; 3203 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3204 SawReturned = true; 3205 } 3206 3207 // Check attributes on the varargs part. 3208 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3209 Type *Ty = Call.getArgOperand(Idx)->getType(); 3210 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3211 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3212 3213 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3214 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 3215 SawNest = true; 3216 } 3217 3218 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3219 Assert(!SawReturned, "More than one parameter has attribute returned!", 3220 Call); 3221 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3222 "Incompatible argument and return types for 'returned' " 3223 "attribute", 3224 Call); 3225 SawReturned = true; 3226 } 3227 3228 // Statepoint intrinsic is vararg but the wrapped function may be not. 3229 // Allow sret here and check the wrapped function in verifyStatepoint. 3230 if (!Call.getCalledFunction() || 3231 Call.getCalledFunction()->getIntrinsicID() != 3232 Intrinsic::experimental_gc_statepoint) 3233 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 3234 "Attribute 'sret' cannot be used for vararg call arguments!", 3235 Call); 3236 3237 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3238 Assert(Idx == Call.arg_size() - 1, 3239 "inalloca isn't on the last argument!", Call); 3240 } 3241 } 3242 3243 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3244 if (!IsIntrinsic) { 3245 for (Type *ParamTy : FTy->params()) { 3246 Assert(!ParamTy->isMetadataTy(), 3247 "Function has metadata parameter but isn't an intrinsic", Call); 3248 Assert(!ParamTy->isTokenTy(), 3249 "Function has token parameter but isn't an intrinsic", Call); 3250 } 3251 } 3252 3253 // Verify that indirect calls don't return tokens. 3254 if (!Call.getCalledFunction()) { 3255 Assert(!FTy->getReturnType()->isTokenTy(), 3256 "Return type cannot be token for indirect call!"); 3257 Assert(!FTy->getReturnType()->isX86_AMXTy(), 3258 "Return type cannot be x86_amx for indirect call!"); 3259 } 3260 3261 if (Function *F = Call.getCalledFunction()) 3262 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3263 visitIntrinsicCall(ID, Call); 3264 3265 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3266 // most one "gc-transition", at most one "cfguardtarget", 3267 // and at most one "preallocated" operand bundle. 3268 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3269 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3270 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3271 FoundAttachedCallBundle = false; 3272 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3273 OperandBundleUse BU = Call.getOperandBundleAt(i); 3274 uint32_t Tag = BU.getTagID(); 3275 if (Tag == LLVMContext::OB_deopt) { 3276 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3277 FoundDeoptBundle = true; 3278 } else if (Tag == LLVMContext::OB_gc_transition) { 3279 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3280 Call); 3281 FoundGCTransitionBundle = true; 3282 } else if (Tag == LLVMContext::OB_funclet) { 3283 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3284 FoundFuncletBundle = true; 3285 Assert(BU.Inputs.size() == 1, 3286 "Expected exactly one funclet bundle operand", Call); 3287 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3288 "Funclet bundle operands should correspond to a FuncletPadInst", 3289 Call); 3290 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3291 Assert(!FoundCFGuardTargetBundle, 3292 "Multiple CFGuardTarget operand bundles", Call); 3293 FoundCFGuardTargetBundle = true; 3294 Assert(BU.Inputs.size() == 1, 3295 "Expected exactly one cfguardtarget bundle operand", Call); 3296 } else if (Tag == LLVMContext::OB_preallocated) { 3297 Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3298 Call); 3299 FoundPreallocatedBundle = true; 3300 Assert(BU.Inputs.size() == 1, 3301 "Expected exactly one preallocated bundle operand", Call); 3302 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3303 Assert(Input && 3304 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3305 "\"preallocated\" argument must be a token from " 3306 "llvm.call.preallocated.setup", 3307 Call); 3308 } else if (Tag == LLVMContext::OB_gc_live) { 3309 Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles", 3310 Call); 3311 FoundGCLiveBundle = true; 3312 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3313 Assert(!FoundAttachedCallBundle, 3314 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3315 FoundAttachedCallBundle = true; 3316 verifyAttachedCallBundle(Call, BU); 3317 } 3318 } 3319 3320 // Verify that each inlinable callsite of a debug-info-bearing function in a 3321 // debug-info-bearing function has a debug location attached to it. Failure to 3322 // do so causes assertion failures when the inliner sets up inline scope info. 3323 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3324 Call.getCalledFunction()->getSubprogram()) 3325 AssertDI(Call.getDebugLoc(), 3326 "inlinable function call in a function with " 3327 "debug info must have a !dbg location", 3328 Call); 3329 3330 visitInstruction(Call); 3331 } 3332 3333 void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, 3334 StringRef Context) { 3335 Assert(!Attrs.contains(Attribute::InAlloca), 3336 Twine("inalloca attribute not allowed in ") + Context); 3337 Assert(!Attrs.contains(Attribute::InReg), 3338 Twine("inreg attribute not allowed in ") + Context); 3339 Assert(!Attrs.contains(Attribute::SwiftError), 3340 Twine("swifterror attribute not allowed in ") + Context); 3341 Assert(!Attrs.contains(Attribute::Preallocated), 3342 Twine("preallocated attribute not allowed in ") + Context); 3343 Assert(!Attrs.contains(Attribute::ByRef), 3344 Twine("byref attribute not allowed in ") + Context); 3345 } 3346 3347 /// Two types are "congruent" if they are identical, or if they are both pointer 3348 /// types with different pointee types and the same address space. 3349 static bool isTypeCongruent(Type *L, Type *R) { 3350 if (L == R) 3351 return true; 3352 PointerType *PL = dyn_cast<PointerType>(L); 3353 PointerType *PR = dyn_cast<PointerType>(R); 3354 if (!PL || !PR) 3355 return false; 3356 return PL->getAddressSpace() == PR->getAddressSpace(); 3357 } 3358 3359 static AttrBuilder getParameterABIAttributes(unsigned I, AttributeList Attrs) { 3360 static const Attribute::AttrKind ABIAttrs[] = { 3361 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3362 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3363 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3364 Attribute::ByRef}; 3365 AttrBuilder Copy; 3366 for (auto AK : ABIAttrs) { 3367 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3368 if (Attr.isValid()) 3369 Copy.addAttribute(Attr); 3370 } 3371 3372 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3373 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3374 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3375 Attrs.hasParamAttr(I, Attribute::ByRef))) 3376 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3377 return Copy; 3378 } 3379 3380 void Verifier::verifyMustTailCall(CallInst &CI) { 3381 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3382 3383 Function *F = CI.getParent()->getParent(); 3384 FunctionType *CallerTy = F->getFunctionType(); 3385 FunctionType *CalleeTy = CI.getFunctionType(); 3386 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3387 "cannot guarantee tail call due to mismatched varargs", &CI); 3388 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3389 "cannot guarantee tail call due to mismatched return types", &CI); 3390 3391 // - The calling conventions of the caller and callee must match. 3392 Assert(F->getCallingConv() == CI.getCallingConv(), 3393 "cannot guarantee tail call due to mismatched calling conv", &CI); 3394 3395 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3396 // or a pointer bitcast followed by a ret instruction. 3397 // - The ret instruction must return the (possibly bitcasted) value 3398 // produced by the call or void. 3399 Value *RetVal = &CI; 3400 Instruction *Next = CI.getNextNode(); 3401 3402 // Handle the optional bitcast. 3403 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3404 Assert(BI->getOperand(0) == RetVal, 3405 "bitcast following musttail call must use the call", BI); 3406 RetVal = BI; 3407 Next = BI->getNextNode(); 3408 } 3409 3410 // Check the return. 3411 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3412 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3413 &CI); 3414 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3415 isa<UndefValue>(Ret->getReturnValue()), 3416 "musttail call result must be returned", Ret); 3417 3418 AttributeList CallerAttrs = F->getAttributes(); 3419 AttributeList CalleeAttrs = CI.getAttributes(); 3420 if (CI.getCallingConv() == CallingConv::SwiftTail || 3421 CI.getCallingConv() == CallingConv::Tail) { 3422 StringRef CCName = 3423 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3424 3425 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3426 // are allowed in swifttailcc call 3427 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3428 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3429 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3430 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3431 } 3432 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3433 AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3434 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3435 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3436 } 3437 // - Varargs functions are not allowed 3438 Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3439 " tail call for varargs function"); 3440 return; 3441 } 3442 3443 // - The caller and callee prototypes must match. Pointer types of 3444 // parameters or return types may differ in pointee type, but not 3445 // address space. 3446 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3447 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3448 "cannot guarantee tail call due to mismatched parameter counts", 3449 &CI); 3450 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3451 Assert( 3452 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3453 "cannot guarantee tail call due to mismatched parameter types", &CI); 3454 } 3455 } 3456 3457 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3458 // returned, preallocated, and inalloca, must match. 3459 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3460 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3461 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3462 Assert(CallerABIAttrs == CalleeABIAttrs, 3463 "cannot guarantee tail call due to mismatched ABI impacting " 3464 "function attributes", 3465 &CI, CI.getOperand(I)); 3466 } 3467 } 3468 3469 void Verifier::visitCallInst(CallInst &CI) { 3470 visitCallBase(CI); 3471 3472 if (CI.isMustTailCall()) 3473 verifyMustTailCall(CI); 3474 } 3475 3476 void Verifier::visitInvokeInst(InvokeInst &II) { 3477 visitCallBase(II); 3478 3479 // Verify that the first non-PHI instruction of the unwind destination is an 3480 // exception handling instruction. 3481 Assert( 3482 II.getUnwindDest()->isEHPad(), 3483 "The unwind destination does not have an exception handling instruction!", 3484 &II); 3485 3486 visitTerminator(II); 3487 } 3488 3489 /// visitUnaryOperator - Check the argument to the unary operator. 3490 /// 3491 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3492 Assert(U.getType() == U.getOperand(0)->getType(), 3493 "Unary operators must have same type for" 3494 "operands and result!", 3495 &U); 3496 3497 switch (U.getOpcode()) { 3498 // Check that floating-point arithmetic operators are only used with 3499 // floating-point operands. 3500 case Instruction::FNeg: 3501 Assert(U.getType()->isFPOrFPVectorTy(), 3502 "FNeg operator only works with float types!", &U); 3503 break; 3504 default: 3505 llvm_unreachable("Unknown UnaryOperator opcode!"); 3506 } 3507 3508 visitInstruction(U); 3509 } 3510 3511 /// visitBinaryOperator - Check that both arguments to the binary operator are 3512 /// of the same type! 3513 /// 3514 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3515 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3516 "Both operands to a binary operator are not of the same type!", &B); 3517 3518 switch (B.getOpcode()) { 3519 // Check that integer arithmetic operators are only used with 3520 // integral operands. 3521 case Instruction::Add: 3522 case Instruction::Sub: 3523 case Instruction::Mul: 3524 case Instruction::SDiv: 3525 case Instruction::UDiv: 3526 case Instruction::SRem: 3527 case Instruction::URem: 3528 Assert(B.getType()->isIntOrIntVectorTy(), 3529 "Integer arithmetic operators only work with integral types!", &B); 3530 Assert(B.getType() == B.getOperand(0)->getType(), 3531 "Integer arithmetic operators must have same type " 3532 "for operands and result!", 3533 &B); 3534 break; 3535 // Check that floating-point arithmetic operators are only used with 3536 // floating-point operands. 3537 case Instruction::FAdd: 3538 case Instruction::FSub: 3539 case Instruction::FMul: 3540 case Instruction::FDiv: 3541 case Instruction::FRem: 3542 Assert(B.getType()->isFPOrFPVectorTy(), 3543 "Floating-point arithmetic operators only work with " 3544 "floating-point types!", 3545 &B); 3546 Assert(B.getType() == B.getOperand(0)->getType(), 3547 "Floating-point arithmetic operators must have same type " 3548 "for operands and result!", 3549 &B); 3550 break; 3551 // Check that logical operators are only used with integral operands. 3552 case Instruction::And: 3553 case Instruction::Or: 3554 case Instruction::Xor: 3555 Assert(B.getType()->isIntOrIntVectorTy(), 3556 "Logical operators only work with integral types!", &B); 3557 Assert(B.getType() == B.getOperand(0)->getType(), 3558 "Logical operators must have same type for operands and result!", 3559 &B); 3560 break; 3561 case Instruction::Shl: 3562 case Instruction::LShr: 3563 case Instruction::AShr: 3564 Assert(B.getType()->isIntOrIntVectorTy(), 3565 "Shifts only work with integral types!", &B); 3566 Assert(B.getType() == B.getOperand(0)->getType(), 3567 "Shift return type must be same as operands!", &B); 3568 break; 3569 default: 3570 llvm_unreachable("Unknown BinaryOperator opcode!"); 3571 } 3572 3573 visitInstruction(B); 3574 } 3575 3576 void Verifier::visitICmpInst(ICmpInst &IC) { 3577 // Check that the operands are the same type 3578 Type *Op0Ty = IC.getOperand(0)->getType(); 3579 Type *Op1Ty = IC.getOperand(1)->getType(); 3580 Assert(Op0Ty == Op1Ty, 3581 "Both operands to ICmp instruction are not of the same type!", &IC); 3582 // Check that the operands are the right type 3583 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3584 "Invalid operand types for ICmp instruction", &IC); 3585 // Check that the predicate is valid. 3586 Assert(IC.isIntPredicate(), 3587 "Invalid predicate in ICmp instruction!", &IC); 3588 3589 visitInstruction(IC); 3590 } 3591 3592 void Verifier::visitFCmpInst(FCmpInst &FC) { 3593 // Check that the operands are the same type 3594 Type *Op0Ty = FC.getOperand(0)->getType(); 3595 Type *Op1Ty = FC.getOperand(1)->getType(); 3596 Assert(Op0Ty == Op1Ty, 3597 "Both operands to FCmp instruction are not of the same type!", &FC); 3598 // Check that the operands are the right type 3599 Assert(Op0Ty->isFPOrFPVectorTy(), 3600 "Invalid operand types for FCmp instruction", &FC); 3601 // Check that the predicate is valid. 3602 Assert(FC.isFPPredicate(), 3603 "Invalid predicate in FCmp instruction!", &FC); 3604 3605 visitInstruction(FC); 3606 } 3607 3608 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3609 Assert( 3610 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3611 "Invalid extractelement operands!", &EI); 3612 visitInstruction(EI); 3613 } 3614 3615 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3616 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3617 IE.getOperand(2)), 3618 "Invalid insertelement operands!", &IE); 3619 visitInstruction(IE); 3620 } 3621 3622 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3623 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3624 SV.getShuffleMask()), 3625 "Invalid shufflevector operands!", &SV); 3626 visitInstruction(SV); 3627 } 3628 3629 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3630 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3631 3632 Assert(isa<PointerType>(TargetTy), 3633 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3634 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3635 3636 SmallVector<Value *, 16> Idxs(GEP.indices()); 3637 Assert(all_of( 3638 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3639 "GEP indexes must be integers", &GEP); 3640 Type *ElTy = 3641 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3642 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3643 3644 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3645 GEP.getResultElementType() == ElTy, 3646 "GEP is not of right type for indices!", &GEP, ElTy); 3647 3648 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 3649 // Additional checks for vector GEPs. 3650 ElementCount GEPWidth = GEPVTy->getElementCount(); 3651 if (GEP.getPointerOperandType()->isVectorTy()) 3652 Assert( 3653 GEPWidth == 3654 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 3655 "Vector GEP result width doesn't match operand's", &GEP); 3656 for (Value *Idx : Idxs) { 3657 Type *IndexTy = Idx->getType(); 3658 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 3659 ElementCount IndexWidth = IndexVTy->getElementCount(); 3660 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3661 } 3662 Assert(IndexTy->isIntOrIntVectorTy(), 3663 "All GEP indices should be of integer type"); 3664 } 3665 } 3666 3667 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3668 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3669 "GEP address space doesn't match type", &GEP); 3670 } 3671 3672 visitInstruction(GEP); 3673 } 3674 3675 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3676 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3677 } 3678 3679 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3680 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3681 "precondition violation"); 3682 3683 unsigned NumOperands = Range->getNumOperands(); 3684 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3685 unsigned NumRanges = NumOperands / 2; 3686 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3687 3688 ConstantRange LastRange(1, true); // Dummy initial value 3689 for (unsigned i = 0; i < NumRanges; ++i) { 3690 ConstantInt *Low = 3691 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3692 Assert(Low, "The lower limit must be an integer!", Low); 3693 ConstantInt *High = 3694 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3695 Assert(High, "The upper limit must be an integer!", High); 3696 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3697 "Range types must match instruction type!", &I); 3698 3699 APInt HighV = High->getValue(); 3700 APInt LowV = Low->getValue(); 3701 ConstantRange CurRange(LowV, HighV); 3702 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3703 "Range must not be empty!", Range); 3704 if (i != 0) { 3705 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3706 "Intervals are overlapping", Range); 3707 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3708 Range); 3709 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3710 Range); 3711 } 3712 LastRange = ConstantRange(LowV, HighV); 3713 } 3714 if (NumRanges > 2) { 3715 APInt FirstLow = 3716 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3717 APInt FirstHigh = 3718 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3719 ConstantRange FirstRange(FirstLow, FirstHigh); 3720 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3721 "Intervals are overlapping", Range); 3722 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3723 Range); 3724 } 3725 } 3726 3727 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3728 unsigned Size = DL.getTypeSizeInBits(Ty); 3729 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3730 Assert(!(Size & (Size - 1)), 3731 "atomic memory access' operand must have a power-of-two size", Ty, I); 3732 } 3733 3734 void Verifier::visitLoadInst(LoadInst &LI) { 3735 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3736 Assert(PTy, "Load operand must be a pointer.", &LI); 3737 Type *ElTy = LI.getType(); 3738 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3739 "huge alignment values are unsupported", &LI); 3740 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3741 if (LI.isAtomic()) { 3742 Assert(LI.getOrdering() != AtomicOrdering::Release && 3743 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3744 "Load cannot have Release ordering", &LI); 3745 Assert(LI.getAlignment() != 0, 3746 "Atomic load must specify explicit alignment", &LI); 3747 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3748 "atomic load operand must have integer, pointer, or floating point " 3749 "type!", 3750 ElTy, &LI); 3751 checkAtomicMemAccessSize(ElTy, &LI); 3752 } else { 3753 Assert(LI.getSyncScopeID() == SyncScope::System, 3754 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3755 } 3756 3757 visitInstruction(LI); 3758 } 3759 3760 void Verifier::visitStoreInst(StoreInst &SI) { 3761 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3762 Assert(PTy, "Store operand must be a pointer.", &SI); 3763 Type *ElTy = SI.getOperand(0)->getType(); 3764 Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy), 3765 "Stored value type does not match pointer operand type!", &SI, ElTy); 3766 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3767 "huge alignment values are unsupported", &SI); 3768 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3769 if (SI.isAtomic()) { 3770 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3771 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3772 "Store cannot have Acquire ordering", &SI); 3773 Assert(SI.getAlignment() != 0, 3774 "Atomic store must specify explicit alignment", &SI); 3775 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3776 "atomic store operand must have integer, pointer, or floating point " 3777 "type!", 3778 ElTy, &SI); 3779 checkAtomicMemAccessSize(ElTy, &SI); 3780 } else { 3781 Assert(SI.getSyncScopeID() == SyncScope::System, 3782 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3783 } 3784 visitInstruction(SI); 3785 } 3786 3787 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3788 void Verifier::verifySwiftErrorCall(CallBase &Call, 3789 const Value *SwiftErrorVal) { 3790 for (const auto &I : llvm::enumerate(Call.args())) { 3791 if (I.value() == SwiftErrorVal) { 3792 Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError), 3793 "swifterror value when used in a callsite should be marked " 3794 "with swifterror attribute", 3795 SwiftErrorVal, Call); 3796 } 3797 } 3798 } 3799 3800 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3801 // Check that swifterror value is only used by loads, stores, or as 3802 // a swifterror argument. 3803 for (const User *U : SwiftErrorVal->users()) { 3804 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3805 isa<InvokeInst>(U), 3806 "swifterror value can only be loaded and stored from, or " 3807 "as a swifterror argument!", 3808 SwiftErrorVal, U); 3809 // If it is used by a store, check it is the second operand. 3810 if (auto StoreI = dyn_cast<StoreInst>(U)) 3811 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3812 "swifterror value should be the second operand when used " 3813 "by stores", SwiftErrorVal, U); 3814 if (auto *Call = dyn_cast<CallBase>(U)) 3815 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3816 } 3817 } 3818 3819 void Verifier::visitAllocaInst(AllocaInst &AI) { 3820 SmallPtrSet<Type*, 4> Visited; 3821 Assert(AI.getAllocatedType()->isSized(&Visited), 3822 "Cannot allocate unsized type", &AI); 3823 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3824 "Alloca array size must have integer type", &AI); 3825 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3826 "huge alignment values are unsupported", &AI); 3827 3828 if (AI.isSwiftError()) { 3829 verifySwiftErrorValue(&AI); 3830 } 3831 3832 visitInstruction(AI); 3833 } 3834 3835 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3836 Type *ElTy = CXI.getOperand(1)->getType(); 3837 Assert(ElTy->isIntOrPtrTy(), 3838 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3839 checkAtomicMemAccessSize(ElTy, &CXI); 3840 visitInstruction(CXI); 3841 } 3842 3843 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3844 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3845 "atomicrmw instructions cannot be unordered.", &RMWI); 3846 auto Op = RMWI.getOperation(); 3847 Type *ElTy = RMWI.getOperand(1)->getType(); 3848 if (Op == AtomicRMWInst::Xchg) { 3849 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3850 AtomicRMWInst::getOperationName(Op) + 3851 " operand must have integer or floating point type!", 3852 &RMWI, ElTy); 3853 } else if (AtomicRMWInst::isFPOperation(Op)) { 3854 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3855 AtomicRMWInst::getOperationName(Op) + 3856 " operand must have floating point type!", 3857 &RMWI, ElTy); 3858 } else { 3859 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3860 AtomicRMWInst::getOperationName(Op) + 3861 " operand must have integer type!", 3862 &RMWI, ElTy); 3863 } 3864 checkAtomicMemAccessSize(ElTy, &RMWI); 3865 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3866 "Invalid binary operation!", &RMWI); 3867 visitInstruction(RMWI); 3868 } 3869 3870 void Verifier::visitFenceInst(FenceInst &FI) { 3871 const AtomicOrdering Ordering = FI.getOrdering(); 3872 Assert(Ordering == AtomicOrdering::Acquire || 3873 Ordering == AtomicOrdering::Release || 3874 Ordering == AtomicOrdering::AcquireRelease || 3875 Ordering == AtomicOrdering::SequentiallyConsistent, 3876 "fence instructions may only have acquire, release, acq_rel, or " 3877 "seq_cst ordering.", 3878 &FI); 3879 visitInstruction(FI); 3880 } 3881 3882 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3883 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3884 EVI.getIndices()) == EVI.getType(), 3885 "Invalid ExtractValueInst operands!", &EVI); 3886 3887 visitInstruction(EVI); 3888 } 3889 3890 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3891 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3892 IVI.getIndices()) == 3893 IVI.getOperand(1)->getType(), 3894 "Invalid InsertValueInst operands!", &IVI); 3895 3896 visitInstruction(IVI); 3897 } 3898 3899 static Value *getParentPad(Value *EHPad) { 3900 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3901 return FPI->getParentPad(); 3902 3903 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3904 } 3905 3906 void Verifier::visitEHPadPredecessors(Instruction &I) { 3907 assert(I.isEHPad()); 3908 3909 BasicBlock *BB = I.getParent(); 3910 Function *F = BB->getParent(); 3911 3912 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3913 3914 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3915 // The landingpad instruction defines its parent as a landing pad block. The 3916 // landing pad block may be branched to only by the unwind edge of an 3917 // invoke. 3918 for (BasicBlock *PredBB : predecessors(BB)) { 3919 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3920 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3921 "Block containing LandingPadInst must be jumped to " 3922 "only by the unwind edge of an invoke.", 3923 LPI); 3924 } 3925 return; 3926 } 3927 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3928 if (!pred_empty(BB)) 3929 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3930 "Block containg CatchPadInst must be jumped to " 3931 "only by its catchswitch.", 3932 CPI); 3933 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3934 "Catchswitch cannot unwind to one of its catchpads", 3935 CPI->getCatchSwitch(), CPI); 3936 return; 3937 } 3938 3939 // Verify that each pred has a legal terminator with a legal to/from EH 3940 // pad relationship. 3941 Instruction *ToPad = &I; 3942 Value *ToPadParent = getParentPad(ToPad); 3943 for (BasicBlock *PredBB : predecessors(BB)) { 3944 Instruction *TI = PredBB->getTerminator(); 3945 Value *FromPad; 3946 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3947 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3948 "EH pad must be jumped to via an unwind edge", ToPad, II); 3949 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3950 FromPad = Bundle->Inputs[0]; 3951 else 3952 FromPad = ConstantTokenNone::get(II->getContext()); 3953 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3954 FromPad = CRI->getOperand(0); 3955 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3956 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3957 FromPad = CSI; 3958 } else { 3959 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3960 } 3961 3962 // The edge may exit from zero or more nested pads. 3963 SmallSet<Value *, 8> Seen; 3964 for (;; FromPad = getParentPad(FromPad)) { 3965 Assert(FromPad != ToPad, 3966 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3967 if (FromPad == ToPadParent) { 3968 // This is a legal unwind edge. 3969 break; 3970 } 3971 Assert(!isa<ConstantTokenNone>(FromPad), 3972 "A single unwind edge may only enter one EH pad", TI); 3973 Assert(Seen.insert(FromPad).second, 3974 "EH pad jumps through a cycle of pads", FromPad); 3975 } 3976 } 3977 } 3978 3979 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3980 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3981 // isn't a cleanup. 3982 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3983 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3984 3985 visitEHPadPredecessors(LPI); 3986 3987 if (!LandingPadResultTy) 3988 LandingPadResultTy = LPI.getType(); 3989 else 3990 Assert(LandingPadResultTy == LPI.getType(), 3991 "The landingpad instruction should have a consistent result type " 3992 "inside a function.", 3993 &LPI); 3994 3995 Function *F = LPI.getParent()->getParent(); 3996 Assert(F->hasPersonalityFn(), 3997 "LandingPadInst needs to be in a function with a personality.", &LPI); 3998 3999 // The landingpad instruction must be the first non-PHI instruction in the 4000 // block. 4001 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 4002 "LandingPadInst not the first non-PHI instruction in the block.", 4003 &LPI); 4004 4005 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4006 Constant *Clause = LPI.getClause(i); 4007 if (LPI.isCatch(i)) { 4008 Assert(isa<PointerType>(Clause->getType()), 4009 "Catch operand does not have pointer type!", &LPI); 4010 } else { 4011 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4012 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4013 "Filter operand is not an array of constants!", &LPI); 4014 } 4015 } 4016 4017 visitInstruction(LPI); 4018 } 4019 4020 void Verifier::visitResumeInst(ResumeInst &RI) { 4021 Assert(RI.getFunction()->hasPersonalityFn(), 4022 "ResumeInst needs to be in a function with a personality.", &RI); 4023 4024 if (!LandingPadResultTy) 4025 LandingPadResultTy = RI.getValue()->getType(); 4026 else 4027 Assert(LandingPadResultTy == RI.getValue()->getType(), 4028 "The resume instruction should have a consistent result type " 4029 "inside a function.", 4030 &RI); 4031 4032 visitTerminator(RI); 4033 } 4034 4035 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4036 BasicBlock *BB = CPI.getParent(); 4037 4038 Function *F = BB->getParent(); 4039 Assert(F->hasPersonalityFn(), 4040 "CatchPadInst needs to be in a function with a personality.", &CPI); 4041 4042 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 4043 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4044 CPI.getParentPad()); 4045 4046 // The catchpad instruction must be the first non-PHI instruction in the 4047 // block. 4048 Assert(BB->getFirstNonPHI() == &CPI, 4049 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4050 4051 visitEHPadPredecessors(CPI); 4052 visitFuncletPadInst(CPI); 4053 } 4054 4055 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4056 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4057 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4058 CatchReturn.getOperand(0)); 4059 4060 visitTerminator(CatchReturn); 4061 } 4062 4063 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4064 BasicBlock *BB = CPI.getParent(); 4065 4066 Function *F = BB->getParent(); 4067 Assert(F->hasPersonalityFn(), 4068 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4069 4070 // The cleanuppad instruction must be the first non-PHI instruction in the 4071 // block. 4072 Assert(BB->getFirstNonPHI() == &CPI, 4073 "CleanupPadInst not the first non-PHI instruction in the block.", 4074 &CPI); 4075 4076 auto *ParentPad = CPI.getParentPad(); 4077 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4078 "CleanupPadInst has an invalid parent.", &CPI); 4079 4080 visitEHPadPredecessors(CPI); 4081 visitFuncletPadInst(CPI); 4082 } 4083 4084 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4085 User *FirstUser = nullptr; 4086 Value *FirstUnwindPad = nullptr; 4087 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4088 SmallSet<FuncletPadInst *, 8> Seen; 4089 4090 while (!Worklist.empty()) { 4091 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4092 Assert(Seen.insert(CurrentPad).second, 4093 "FuncletPadInst must not be nested within itself", CurrentPad); 4094 Value *UnresolvedAncestorPad = nullptr; 4095 for (User *U : CurrentPad->users()) { 4096 BasicBlock *UnwindDest; 4097 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4098 UnwindDest = CRI->getUnwindDest(); 4099 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4100 // We allow catchswitch unwind to caller to nest 4101 // within an outer pad that unwinds somewhere else, 4102 // because catchswitch doesn't have a nounwind variant. 4103 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4104 if (CSI->unwindsToCaller()) 4105 continue; 4106 UnwindDest = CSI->getUnwindDest(); 4107 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4108 UnwindDest = II->getUnwindDest(); 4109 } else if (isa<CallInst>(U)) { 4110 // Calls which don't unwind may be found inside funclet 4111 // pads that unwind somewhere else. We don't *require* 4112 // such calls to be annotated nounwind. 4113 continue; 4114 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4115 // The unwind dest for a cleanup can only be found by 4116 // recursive search. Add it to the worklist, and we'll 4117 // search for its first use that determines where it unwinds. 4118 Worklist.push_back(CPI); 4119 continue; 4120 } else { 4121 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4122 continue; 4123 } 4124 4125 Value *UnwindPad; 4126 bool ExitsFPI; 4127 if (UnwindDest) { 4128 UnwindPad = UnwindDest->getFirstNonPHI(); 4129 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4130 continue; 4131 Value *UnwindParent = getParentPad(UnwindPad); 4132 // Ignore unwind edges that don't exit CurrentPad. 4133 if (UnwindParent == CurrentPad) 4134 continue; 4135 // Determine whether the original funclet pad is exited, 4136 // and if we are scanning nested pads determine how many 4137 // of them are exited so we can stop searching their 4138 // children. 4139 Value *ExitedPad = CurrentPad; 4140 ExitsFPI = false; 4141 do { 4142 if (ExitedPad == &FPI) { 4143 ExitsFPI = true; 4144 // Now we can resolve any ancestors of CurrentPad up to 4145 // FPI, but not including FPI since we need to make sure 4146 // to check all direct users of FPI for consistency. 4147 UnresolvedAncestorPad = &FPI; 4148 break; 4149 } 4150 Value *ExitedParent = getParentPad(ExitedPad); 4151 if (ExitedParent == UnwindParent) { 4152 // ExitedPad is the ancestor-most pad which this unwind 4153 // edge exits, so we can resolve up to it, meaning that 4154 // ExitedParent is the first ancestor still unresolved. 4155 UnresolvedAncestorPad = ExitedParent; 4156 break; 4157 } 4158 ExitedPad = ExitedParent; 4159 } while (!isa<ConstantTokenNone>(ExitedPad)); 4160 } else { 4161 // Unwinding to caller exits all pads. 4162 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4163 ExitsFPI = true; 4164 UnresolvedAncestorPad = &FPI; 4165 } 4166 4167 if (ExitsFPI) { 4168 // This unwind edge exits FPI. Make sure it agrees with other 4169 // such edges. 4170 if (FirstUser) { 4171 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 4172 "pad must have the same unwind " 4173 "dest", 4174 &FPI, U, FirstUser); 4175 } else { 4176 FirstUser = U; 4177 FirstUnwindPad = UnwindPad; 4178 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4179 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4180 getParentPad(UnwindPad) == getParentPad(&FPI)) 4181 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4182 } 4183 } 4184 // Make sure we visit all uses of FPI, but for nested pads stop as 4185 // soon as we know where they unwind to. 4186 if (CurrentPad != &FPI) 4187 break; 4188 } 4189 if (UnresolvedAncestorPad) { 4190 if (CurrentPad == UnresolvedAncestorPad) { 4191 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4192 // we've found an unwind edge that exits it, because we need to verify 4193 // all direct uses of FPI. 4194 assert(CurrentPad == &FPI); 4195 continue; 4196 } 4197 // Pop off the worklist any nested pads that we've found an unwind 4198 // destination for. The pads on the worklist are the uncles, 4199 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4200 // for all ancestors of CurrentPad up to but not including 4201 // UnresolvedAncestorPad. 4202 Value *ResolvedPad = CurrentPad; 4203 while (!Worklist.empty()) { 4204 Value *UnclePad = Worklist.back(); 4205 Value *AncestorPad = getParentPad(UnclePad); 4206 // Walk ResolvedPad up the ancestor list until we either find the 4207 // uncle's parent or the last resolved ancestor. 4208 while (ResolvedPad != AncestorPad) { 4209 Value *ResolvedParent = getParentPad(ResolvedPad); 4210 if (ResolvedParent == UnresolvedAncestorPad) { 4211 break; 4212 } 4213 ResolvedPad = ResolvedParent; 4214 } 4215 // If the resolved ancestor search didn't find the uncle's parent, 4216 // then the uncle is not yet resolved. 4217 if (ResolvedPad != AncestorPad) 4218 break; 4219 // This uncle is resolved, so pop it from the worklist. 4220 Worklist.pop_back(); 4221 } 4222 } 4223 } 4224 4225 if (FirstUnwindPad) { 4226 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4227 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4228 Value *SwitchUnwindPad; 4229 if (SwitchUnwindDest) 4230 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 4231 else 4232 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4233 Assert(SwitchUnwindPad == FirstUnwindPad, 4234 "Unwind edges out of a catch must have the same unwind dest as " 4235 "the parent catchswitch", 4236 &FPI, FirstUser, CatchSwitch); 4237 } 4238 } 4239 4240 visitInstruction(FPI); 4241 } 4242 4243 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4244 BasicBlock *BB = CatchSwitch.getParent(); 4245 4246 Function *F = BB->getParent(); 4247 Assert(F->hasPersonalityFn(), 4248 "CatchSwitchInst needs to be in a function with a personality.", 4249 &CatchSwitch); 4250 4251 // The catchswitch instruction must be the first non-PHI instruction in the 4252 // block. 4253 Assert(BB->getFirstNonPHI() == &CatchSwitch, 4254 "CatchSwitchInst not the first non-PHI instruction in the block.", 4255 &CatchSwitch); 4256 4257 auto *ParentPad = CatchSwitch.getParentPad(); 4258 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4259 "CatchSwitchInst has an invalid parent.", ParentPad); 4260 4261 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4262 Instruction *I = UnwindDest->getFirstNonPHI(); 4263 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4264 "CatchSwitchInst must unwind to an EH block which is not a " 4265 "landingpad.", 4266 &CatchSwitch); 4267 4268 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4269 if (getParentPad(I) == ParentPad) 4270 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4271 } 4272 4273 Assert(CatchSwitch.getNumHandlers() != 0, 4274 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4275 4276 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4277 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4278 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4279 } 4280 4281 visitEHPadPredecessors(CatchSwitch); 4282 visitTerminator(CatchSwitch); 4283 } 4284 4285 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4286 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4287 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4288 CRI.getOperand(0)); 4289 4290 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4291 Instruction *I = UnwindDest->getFirstNonPHI(); 4292 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4293 "CleanupReturnInst must unwind to an EH block which is not a " 4294 "landingpad.", 4295 &CRI); 4296 } 4297 4298 visitTerminator(CRI); 4299 } 4300 4301 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4302 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4303 // If the we have an invalid invoke, don't try to compute the dominance. 4304 // We already reject it in the invoke specific checks and the dominance 4305 // computation doesn't handle multiple edges. 4306 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4307 if (II->getNormalDest() == II->getUnwindDest()) 4308 return; 4309 } 4310 4311 // Quick check whether the def has already been encountered in the same block. 4312 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4313 // uses are defined to happen on the incoming edge, not at the instruction. 4314 // 4315 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4316 // wrapping an SSA value, assert that we've already encountered it. See 4317 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4318 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4319 return; 4320 4321 const Use &U = I.getOperandUse(i); 4322 Assert(DT.dominates(Op, U), 4323 "Instruction does not dominate all uses!", Op, &I); 4324 } 4325 4326 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4327 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4328 "apply only to pointer types", &I); 4329 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4330 "dereferenceable, dereferenceable_or_null apply only to load" 4331 " and inttoptr instructions, use attributes for calls or invokes", &I); 4332 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4333 "take one operand!", &I); 4334 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4335 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4336 "dereferenceable_or_null metadata value must be an i64!", &I); 4337 } 4338 4339 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4340 Assert(MD->getNumOperands() >= 2, 4341 "!prof annotations should have no less than 2 operands", MD); 4342 4343 // Check first operand. 4344 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4345 Assert(isa<MDString>(MD->getOperand(0)), 4346 "expected string with name of the !prof annotation", MD); 4347 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4348 StringRef ProfName = MDS->getString(); 4349 4350 // Check consistency of !prof branch_weights metadata. 4351 if (ProfName.equals("branch_weights")) { 4352 if (isa<InvokeInst>(&I)) { 4353 Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, 4354 "Wrong number of InvokeInst branch_weights operands", MD); 4355 } else { 4356 unsigned ExpectedNumOperands = 0; 4357 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4358 ExpectedNumOperands = BI->getNumSuccessors(); 4359 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4360 ExpectedNumOperands = SI->getNumSuccessors(); 4361 else if (isa<CallInst>(&I)) 4362 ExpectedNumOperands = 1; 4363 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4364 ExpectedNumOperands = IBI->getNumDestinations(); 4365 else if (isa<SelectInst>(&I)) 4366 ExpectedNumOperands = 2; 4367 else 4368 CheckFailed("!prof branch_weights are not allowed for this instruction", 4369 MD); 4370 4371 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4372 "Wrong number of operands", MD); 4373 } 4374 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4375 auto &MDO = MD->getOperand(i); 4376 Assert(MDO, "second operand should not be null", MD); 4377 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4378 "!prof brunch_weights operand is not a const int"); 4379 } 4380 } 4381 } 4382 4383 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 4384 Assert(isa<MDTuple>(Annotation), "annotation must be a tuple"); 4385 Assert(Annotation->getNumOperands() >= 1, 4386 "annotation must have at least one operand"); 4387 for (const MDOperand &Op : Annotation->operands()) 4388 Assert(isa<MDString>(Op.get()), "operands must be strings"); 4389 } 4390 4391 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 4392 unsigned NumOps = MD->getNumOperands(); 4393 Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 4394 MD); 4395 Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 4396 "first scope operand must be self-referential or string", MD); 4397 if (NumOps == 3) 4398 Assert(isa<MDString>(MD->getOperand(2)), 4399 "third scope operand must be string (if used)", MD); 4400 4401 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 4402 Assert(Domain != nullptr, "second scope operand must be MDNode", MD); 4403 4404 unsigned NumDomainOps = Domain->getNumOperands(); 4405 Assert(NumDomainOps >= 1 && NumDomainOps <= 2, 4406 "domain must have one or two operands", Domain); 4407 Assert(Domain->getOperand(0).get() == Domain || 4408 isa<MDString>(Domain->getOperand(0)), 4409 "first domain operand must be self-referential or string", Domain); 4410 if (NumDomainOps == 2) 4411 Assert(isa<MDString>(Domain->getOperand(1)), 4412 "second domain operand must be string (if used)", Domain); 4413 } 4414 4415 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 4416 for (const MDOperand &Op : MD->operands()) { 4417 const MDNode *OpMD = dyn_cast<MDNode>(Op); 4418 Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD); 4419 visitAliasScopeMetadata(OpMD); 4420 } 4421 } 4422 4423 /// verifyInstruction - Verify that an instruction is well formed. 4424 /// 4425 void Verifier::visitInstruction(Instruction &I) { 4426 BasicBlock *BB = I.getParent(); 4427 Assert(BB, "Instruction not embedded in basic block!", &I); 4428 4429 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4430 for (User *U : I.users()) { 4431 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4432 "Only PHI nodes may reference their own value!", &I); 4433 } 4434 } 4435 4436 // Check that void typed values don't have names 4437 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4438 "Instruction has a name, but provides a void value!", &I); 4439 4440 // Check that the return value of the instruction is either void or a legal 4441 // value type. 4442 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4443 "Instruction returns a non-scalar type!", &I); 4444 4445 // Check that the instruction doesn't produce metadata. Calls are already 4446 // checked against the callee type. 4447 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4448 "Invalid use of metadata!", &I); 4449 4450 // Check that all uses of the instruction, if they are instructions 4451 // themselves, actually have parent basic blocks. If the use is not an 4452 // instruction, it is an error! 4453 for (Use &U : I.uses()) { 4454 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4455 Assert(Used->getParent() != nullptr, 4456 "Instruction referencing" 4457 " instruction not embedded in a basic block!", 4458 &I, Used); 4459 else { 4460 CheckFailed("Use of instruction is not an instruction!", U); 4461 return; 4462 } 4463 } 4464 4465 // Get a pointer to the call base of the instruction if it is some form of 4466 // call. 4467 const CallBase *CBI = dyn_cast<CallBase>(&I); 4468 4469 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4470 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4471 4472 // Check to make sure that only first-class-values are operands to 4473 // instructions. 4474 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4475 Assert(false, "Instruction operands must be first-class values!", &I); 4476 } 4477 4478 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4479 // This code checks whether the function is used as the operand of a 4480 // clang_arc_attachedcall operand bundle. 4481 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 4482 int Idx) { 4483 return CBI && CBI->isOperandBundleOfType( 4484 LLVMContext::OB_clang_arc_attachedcall, Idx); 4485 }; 4486 4487 // Check to make sure that the "address of" an intrinsic function is never 4488 // taken. Ignore cases where the address of the intrinsic function is used 4489 // as the argument of operand bundle "clang.arc.attachedcall" as those 4490 // cases are handled in verifyAttachedCallBundle. 4491 Assert((!F->isIntrinsic() || 4492 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 4493 IsAttachedCallOperand(F, CBI, i)), 4494 "Cannot take the address of an intrinsic!", &I); 4495 Assert( 4496 !F->isIntrinsic() || isa<CallInst>(I) || 4497 F->getIntrinsicID() == Intrinsic::donothing || 4498 F->getIntrinsicID() == Intrinsic::seh_try_begin || 4499 F->getIntrinsicID() == Intrinsic::seh_try_end || 4500 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 4501 F->getIntrinsicID() == Intrinsic::seh_scope_end || 4502 F->getIntrinsicID() == Intrinsic::coro_resume || 4503 F->getIntrinsicID() == Intrinsic::coro_destroy || 4504 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4505 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4506 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4507 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 4508 IsAttachedCallOperand(F, CBI, i), 4509 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4510 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 4511 &I); 4512 Assert(F->getParent() == &M, "Referencing function in another module!", 4513 &I, &M, F, F->getParent()); 4514 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4515 Assert(OpBB->getParent() == BB->getParent(), 4516 "Referring to a basic block in another function!", &I); 4517 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4518 Assert(OpArg->getParent() == BB->getParent(), 4519 "Referring to an argument in another function!", &I); 4520 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4521 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4522 &M, GV, GV->getParent()); 4523 } else if (isa<Instruction>(I.getOperand(i))) { 4524 verifyDominatesUse(I, i); 4525 } else if (isa<InlineAsm>(I.getOperand(i))) { 4526 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4527 "Cannot take the address of an inline asm!", &I); 4528 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4529 if (CE->getType()->isPtrOrPtrVectorTy()) { 4530 // If we have a ConstantExpr pointer, we need to see if it came from an 4531 // illegal bitcast. 4532 visitConstantExprsRecursively(CE); 4533 } 4534 } 4535 } 4536 4537 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4538 Assert(I.getType()->isFPOrFPVectorTy(), 4539 "fpmath requires a floating point result!", &I); 4540 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4541 if (ConstantFP *CFP0 = 4542 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4543 const APFloat &Accuracy = CFP0->getValueAPF(); 4544 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4545 "fpmath accuracy must have float type", &I); 4546 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4547 "fpmath accuracy not a positive number!", &I); 4548 } else { 4549 Assert(false, "invalid fpmath accuracy!", &I); 4550 } 4551 } 4552 4553 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4554 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4555 "Ranges are only for loads, calls and invokes!", &I); 4556 visitRangeMetadata(I, Range, I.getType()); 4557 } 4558 4559 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 4560 Assert(isa<LoadInst>(I) || isa<StoreInst>(I), 4561 "invariant.group metadata is only for loads and stores", &I); 4562 } 4563 4564 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4565 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4566 &I); 4567 Assert(isa<LoadInst>(I), 4568 "nonnull applies only to load instructions, use attributes" 4569 " for calls or invokes", 4570 &I); 4571 } 4572 4573 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4574 visitDereferenceableMetadata(I, MD); 4575 4576 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4577 visitDereferenceableMetadata(I, MD); 4578 4579 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4580 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4581 4582 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 4583 visitAliasScopeListMetadata(MD); 4584 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 4585 visitAliasScopeListMetadata(MD); 4586 4587 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4588 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4589 &I); 4590 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4591 "use attributes for calls or invokes", &I); 4592 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4593 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4594 Assert(CI && CI->getType()->isIntegerTy(64), 4595 "align metadata value must be an i64!", &I); 4596 uint64_t Align = CI->getZExtValue(); 4597 Assert(isPowerOf2_64(Align), 4598 "align metadata value must be a power of 2!", &I); 4599 Assert(Align <= Value::MaximumAlignment, 4600 "alignment is larger that implementation defined limit", &I); 4601 } 4602 4603 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4604 visitProfMetadata(I, MD); 4605 4606 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 4607 visitAnnotationMetadata(Annotation); 4608 4609 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4610 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4611 visitMDNode(*N, AreDebugLocsAllowed::Yes); 4612 } 4613 4614 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4615 verifyFragmentExpression(*DII); 4616 verifyNotEntryValue(*DII); 4617 } 4618 4619 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 4620 I.getAllMetadata(MDs); 4621 for (auto Attachment : MDs) { 4622 unsigned Kind = Attachment.first; 4623 auto AllowLocs = 4624 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 4625 ? AreDebugLocsAllowed::Yes 4626 : AreDebugLocsAllowed::No; 4627 visitMDNode(*Attachment.second, AllowLocs); 4628 } 4629 4630 InstsInThisBlock.insert(&I); 4631 } 4632 4633 /// Allow intrinsics to be verified in different ways. 4634 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4635 Function *IF = Call.getCalledFunction(); 4636 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4637 IF); 4638 4639 // Verify that the intrinsic prototype lines up with what the .td files 4640 // describe. 4641 FunctionType *IFTy = IF->getFunctionType(); 4642 bool IsVarArg = IFTy->isVarArg(); 4643 4644 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4645 getIntrinsicInfoTableEntries(ID, Table); 4646 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4647 4648 // Walk the descriptors to extract overloaded types. 4649 SmallVector<Type *, 4> ArgTys; 4650 Intrinsic::MatchIntrinsicTypesResult Res = 4651 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4652 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4653 "Intrinsic has incorrect return type!", IF); 4654 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4655 "Intrinsic has incorrect argument type!", IF); 4656 4657 // Verify if the intrinsic call matches the vararg property. 4658 if (IsVarArg) 4659 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4660 "Intrinsic was not defined with variable arguments!", IF); 4661 else 4662 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4663 "Callsite was not defined with variable arguments!", IF); 4664 4665 // All descriptors should be absorbed by now. 4666 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4667 4668 // Now that we have the intrinsic ID and the actual argument types (and we 4669 // know they are legal for the intrinsic!) get the intrinsic name through the 4670 // usual means. This allows us to verify the mangling of argument types into 4671 // the name. 4672 const std::string ExpectedName = 4673 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 4674 Assert(ExpectedName == IF->getName(), 4675 "Intrinsic name not mangled correctly for type arguments! " 4676 "Should be: " + 4677 ExpectedName, 4678 IF); 4679 4680 // If the intrinsic takes MDNode arguments, verify that they are either global 4681 // or are local to *this* function. 4682 for (Value *V : Call.args()) { 4683 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4684 visitMetadataAsValue(*MD, Call.getCaller()); 4685 if (auto *Const = dyn_cast<Constant>(V)) 4686 Assert(!Const->getType()->isX86_AMXTy(), 4687 "const x86_amx is not allowed in argument!"); 4688 } 4689 4690 switch (ID) { 4691 default: 4692 break; 4693 case Intrinsic::assume: { 4694 for (auto &Elem : Call.bundle_op_infos()) { 4695 Assert(Elem.Tag->getKey() == "ignore" || 4696 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4697 "tags must be valid attribute names", Call); 4698 Attribute::AttrKind Kind = 4699 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4700 unsigned ArgCount = Elem.End - Elem.Begin; 4701 if (Kind == Attribute::Alignment) { 4702 Assert(ArgCount <= 3 && ArgCount >= 2, 4703 "alignment assumptions should have 2 or 3 arguments", Call); 4704 Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 4705 "first argument should be a pointer", Call); 4706 Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 4707 "second argument should be an integer", Call); 4708 if (ArgCount == 3) 4709 Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 4710 "third argument should be an integer if present", Call); 4711 return; 4712 } 4713 Assert(ArgCount <= 2, "too many arguments", Call); 4714 if (Kind == Attribute::None) 4715 break; 4716 if (Attribute::isIntAttrKind(Kind)) { 4717 Assert(ArgCount == 2, "this attribute should have 2 arguments", Call); 4718 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4719 "the second argument should be a constant integral value", Call); 4720 } else if (Attribute::canUseAsParamAttr(Kind)) { 4721 Assert((ArgCount) == 1, "this attribute should have one argument", 4722 Call); 4723 } else if (Attribute::canUseAsFnAttr(Kind)) { 4724 Assert((ArgCount) == 0, "this attribute has no argument", Call); 4725 } 4726 } 4727 break; 4728 } 4729 case Intrinsic::coro_id: { 4730 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4731 if (isa<ConstantPointerNull>(InfoArg)) 4732 break; 4733 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4734 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4735 "info argument of llvm.coro.id must refer to an initialized " 4736 "constant"); 4737 Constant *Init = GV->getInitializer(); 4738 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4739 "info argument of llvm.coro.id must refer to either a struct or " 4740 "an array"); 4741 break; 4742 } 4743 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4744 case Intrinsic::INTRINSIC: 4745 #include "llvm/IR/ConstrainedOps.def" 4746 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4747 break; 4748 case Intrinsic::dbg_declare: // llvm.dbg.declare 4749 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4750 "invalid llvm.dbg.declare intrinsic call 1", Call); 4751 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4752 break; 4753 case Intrinsic::dbg_addr: // llvm.dbg.addr 4754 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4755 break; 4756 case Intrinsic::dbg_value: // llvm.dbg.value 4757 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4758 break; 4759 case Intrinsic::dbg_label: // llvm.dbg.label 4760 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4761 break; 4762 case Intrinsic::memcpy: 4763 case Intrinsic::memcpy_inline: 4764 case Intrinsic::memmove: 4765 case Intrinsic::memset: { 4766 const auto *MI = cast<MemIntrinsic>(&Call); 4767 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4768 return Alignment == 0 || isPowerOf2_32(Alignment); 4769 }; 4770 Assert(IsValidAlignment(MI->getDestAlignment()), 4771 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4772 Call); 4773 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4774 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4775 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4776 Call); 4777 } 4778 4779 break; 4780 } 4781 case Intrinsic::memcpy_element_unordered_atomic: 4782 case Intrinsic::memmove_element_unordered_atomic: 4783 case Intrinsic::memset_element_unordered_atomic: { 4784 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4785 4786 ConstantInt *ElementSizeCI = 4787 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4788 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4789 Assert(ElementSizeVal.isPowerOf2(), 4790 "element size of the element-wise atomic memory intrinsic " 4791 "must be a power of 2", 4792 Call); 4793 4794 auto IsValidAlignment = [&](uint64_t Alignment) { 4795 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4796 }; 4797 uint64_t DstAlignment = AMI->getDestAlignment(); 4798 Assert(IsValidAlignment(DstAlignment), 4799 "incorrect alignment of the destination argument", Call); 4800 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4801 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4802 Assert(IsValidAlignment(SrcAlignment), 4803 "incorrect alignment of the source argument", Call); 4804 } 4805 break; 4806 } 4807 case Intrinsic::call_preallocated_setup: { 4808 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 4809 Assert(NumArgs != nullptr, 4810 "llvm.call.preallocated.setup argument must be a constant"); 4811 bool FoundCall = false; 4812 for (User *U : Call.users()) { 4813 auto *UseCall = dyn_cast<CallBase>(U); 4814 Assert(UseCall != nullptr, 4815 "Uses of llvm.call.preallocated.setup must be calls"); 4816 const Function *Fn = UseCall->getCalledFunction(); 4817 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 4818 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 4819 Assert(AllocArgIndex != nullptr, 4820 "llvm.call.preallocated.alloc arg index must be a constant"); 4821 auto AllocArgIndexInt = AllocArgIndex->getValue(); 4822 Assert(AllocArgIndexInt.sge(0) && 4823 AllocArgIndexInt.slt(NumArgs->getValue()), 4824 "llvm.call.preallocated.alloc arg index must be between 0 and " 4825 "corresponding " 4826 "llvm.call.preallocated.setup's argument count"); 4827 } else if (Fn && Fn->getIntrinsicID() == 4828 Intrinsic::call_preallocated_teardown) { 4829 // nothing to do 4830 } else { 4831 Assert(!FoundCall, "Can have at most one call corresponding to a " 4832 "llvm.call.preallocated.setup"); 4833 FoundCall = true; 4834 size_t NumPreallocatedArgs = 0; 4835 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 4836 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 4837 ++NumPreallocatedArgs; 4838 } 4839 } 4840 Assert(NumPreallocatedArgs != 0, 4841 "cannot use preallocated intrinsics on a call without " 4842 "preallocated arguments"); 4843 Assert(NumArgs->equalsInt(NumPreallocatedArgs), 4844 "llvm.call.preallocated.setup arg size must be equal to number " 4845 "of preallocated arguments " 4846 "at call site", 4847 Call, *UseCall); 4848 // getOperandBundle() cannot be called if more than one of the operand 4849 // bundle exists. There is already a check elsewhere for this, so skip 4850 // here if we see more than one. 4851 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 4852 1) { 4853 return; 4854 } 4855 auto PreallocatedBundle = 4856 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 4857 Assert(PreallocatedBundle, 4858 "Use of llvm.call.preallocated.setup outside intrinsics " 4859 "must be in \"preallocated\" operand bundle"); 4860 Assert(PreallocatedBundle->Inputs.front().get() == &Call, 4861 "preallocated bundle must have token from corresponding " 4862 "llvm.call.preallocated.setup"); 4863 } 4864 } 4865 break; 4866 } 4867 case Intrinsic::call_preallocated_arg: { 4868 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4869 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4870 Intrinsic::call_preallocated_setup, 4871 "llvm.call.preallocated.arg token argument must be a " 4872 "llvm.call.preallocated.setup"); 4873 Assert(Call.hasFnAttr(Attribute::Preallocated), 4874 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 4875 "call site attribute"); 4876 break; 4877 } 4878 case Intrinsic::call_preallocated_teardown: { 4879 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 4880 Assert(Token && Token->getCalledFunction()->getIntrinsicID() == 4881 Intrinsic::call_preallocated_setup, 4882 "llvm.call.preallocated.teardown token argument must be a " 4883 "llvm.call.preallocated.setup"); 4884 break; 4885 } 4886 case Intrinsic::gcroot: 4887 case Intrinsic::gcwrite: 4888 case Intrinsic::gcread: 4889 if (ID == Intrinsic::gcroot) { 4890 AllocaInst *AI = 4891 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4892 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4893 Assert(isa<Constant>(Call.getArgOperand(1)), 4894 "llvm.gcroot parameter #2 must be a constant.", Call); 4895 if (!AI->getAllocatedType()->isPointerTy()) { 4896 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4897 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4898 "or argument #2 must be a non-null constant.", 4899 Call); 4900 } 4901 } 4902 4903 Assert(Call.getParent()->getParent()->hasGC(), 4904 "Enclosing function does not use GC.", Call); 4905 break; 4906 case Intrinsic::init_trampoline: 4907 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4908 "llvm.init_trampoline parameter #2 must resolve to a function.", 4909 Call); 4910 break; 4911 case Intrinsic::prefetch: 4912 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4913 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4914 "invalid arguments to llvm.prefetch", Call); 4915 break; 4916 case Intrinsic::stackprotector: 4917 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4918 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4919 break; 4920 case Intrinsic::localescape: { 4921 BasicBlock *BB = Call.getParent(); 4922 Assert(BB == &BB->getParent()->front(), 4923 "llvm.localescape used outside of entry block", Call); 4924 Assert(!SawFrameEscape, 4925 "multiple calls to llvm.localescape in one function", Call); 4926 for (Value *Arg : Call.args()) { 4927 if (isa<ConstantPointerNull>(Arg)) 4928 continue; // Null values are allowed as placeholders. 4929 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4930 Assert(AI && AI->isStaticAlloca(), 4931 "llvm.localescape only accepts static allocas", Call); 4932 } 4933 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 4934 SawFrameEscape = true; 4935 break; 4936 } 4937 case Intrinsic::localrecover: { 4938 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4939 Function *Fn = dyn_cast<Function>(FnArg); 4940 Assert(Fn && !Fn->isDeclaration(), 4941 "llvm.localrecover first " 4942 "argument must be function defined in this module", 4943 Call); 4944 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4945 auto &Entry = FrameEscapeInfo[Fn]; 4946 Entry.second = unsigned( 4947 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4948 break; 4949 } 4950 4951 case Intrinsic::experimental_gc_statepoint: 4952 if (auto *CI = dyn_cast<CallInst>(&Call)) 4953 Assert(!CI->isInlineAsm(), 4954 "gc.statepoint support for inline assembly unimplemented", CI); 4955 Assert(Call.getParent()->getParent()->hasGC(), 4956 "Enclosing function does not use GC.", Call); 4957 4958 verifyStatepoint(Call); 4959 break; 4960 case Intrinsic::experimental_gc_result: { 4961 Assert(Call.getParent()->getParent()->hasGC(), 4962 "Enclosing function does not use GC.", Call); 4963 // Are we tied to a statepoint properly? 4964 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4965 const Function *StatepointFn = 4966 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4967 Assert(StatepointFn && StatepointFn->isDeclaration() && 4968 StatepointFn->getIntrinsicID() == 4969 Intrinsic::experimental_gc_statepoint, 4970 "gc.result operand #1 must be from a statepoint", Call, 4971 Call.getArgOperand(0)); 4972 4973 // Assert that result type matches wrapped callee. 4974 const Value *Target = StatepointCall->getArgOperand(2); 4975 auto *PT = cast<PointerType>(Target->getType()); 4976 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4977 Assert(Call.getType() == TargetFuncType->getReturnType(), 4978 "gc.result result type does not match wrapped callee", Call); 4979 break; 4980 } 4981 case Intrinsic::experimental_gc_relocate: { 4982 Assert(Call.arg_size() == 3, "wrong number of arguments", Call); 4983 4984 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4985 "gc.relocate must return a pointer or a vector of pointers", Call); 4986 4987 // Check that this relocate is correctly tied to the statepoint 4988 4989 // This is case for relocate on the unwinding path of an invoke statepoint 4990 if (LandingPadInst *LandingPad = 4991 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4992 4993 const BasicBlock *InvokeBB = 4994 LandingPad->getParent()->getUniquePredecessor(); 4995 4996 // Landingpad relocates should have only one predecessor with invoke 4997 // statepoint terminator 4998 Assert(InvokeBB, "safepoints should have unique landingpads", 4999 LandingPad->getParent()); 5000 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 5001 InvokeBB); 5002 Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5003 "gc relocate should be linked to a statepoint", InvokeBB); 5004 } else { 5005 // In all other cases relocate should be tied to the statepoint directly. 5006 // This covers relocates on a normal return path of invoke statepoint and 5007 // relocates of a call statepoint. 5008 auto Token = Call.getArgOperand(0); 5009 Assert(isa<GCStatepointInst>(Token), 5010 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5011 } 5012 5013 // Verify rest of the relocate arguments. 5014 const CallBase &StatepointCall = 5015 *cast<GCRelocateInst>(Call).getStatepoint(); 5016 5017 // Both the base and derived must be piped through the safepoint. 5018 Value *Base = Call.getArgOperand(1); 5019 Assert(isa<ConstantInt>(Base), 5020 "gc.relocate operand #2 must be integer offset", Call); 5021 5022 Value *Derived = Call.getArgOperand(2); 5023 Assert(isa<ConstantInt>(Derived), 5024 "gc.relocate operand #3 must be integer offset", Call); 5025 5026 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5027 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5028 5029 // Check the bounds 5030 if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { 5031 Assert(BaseIndex < Opt->Inputs.size(), 5032 "gc.relocate: statepoint base index out of bounds", Call); 5033 Assert(DerivedIndex < Opt->Inputs.size(), 5034 "gc.relocate: statepoint derived index out of bounds", Call); 5035 } 5036 5037 // Relocated value must be either a pointer type or vector-of-pointer type, 5038 // but gc_relocate does not need to return the same pointer type as the 5039 // relocated pointer. It can be casted to the correct type later if it's 5040 // desired. However, they must have the same address space and 'vectorness' 5041 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5042 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 5043 "gc.relocate: relocated value must be a gc pointer", Call); 5044 5045 auto ResultType = Call.getType(); 5046 auto DerivedType = Relocate.getDerivedPtr()->getType(); 5047 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5048 "gc.relocate: vector relocates to vector and pointer to pointer", 5049 Call); 5050 Assert( 5051 ResultType->getPointerAddressSpace() == 5052 DerivedType->getPointerAddressSpace(), 5053 "gc.relocate: relocating a pointer shouldn't change its address space", 5054 Call); 5055 break; 5056 } 5057 case Intrinsic::eh_exceptioncode: 5058 case Intrinsic::eh_exceptionpointer: { 5059 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 5060 "eh.exceptionpointer argument must be a catchpad", Call); 5061 break; 5062 } 5063 case Intrinsic::get_active_lane_mask: { 5064 Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a " 5065 "vector", Call); 5066 auto *ElemTy = Call.getType()->getScalarType(); 5067 Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not " 5068 "i1", Call); 5069 break; 5070 } 5071 case Intrinsic::masked_load: { 5072 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5073 Call); 5074 5075 Value *Ptr = Call.getArgOperand(0); 5076 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5077 Value *Mask = Call.getArgOperand(2); 5078 Value *PassThru = Call.getArgOperand(3); 5079 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5080 Call); 5081 Assert(Alignment->getValue().isPowerOf2(), 5082 "masked_load: alignment must be a power of 2", Call); 5083 5084 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5085 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), 5086 "masked_load: return must match pointer type", Call); 5087 Assert(PassThru->getType() == Call.getType(), 5088 "masked_load: pass through and return type must match", Call); 5089 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5090 cast<VectorType>(Call.getType())->getElementCount(), 5091 "masked_load: vector mask must be same length as return", Call); 5092 break; 5093 } 5094 case Intrinsic::masked_store: { 5095 Value *Val = Call.getArgOperand(0); 5096 Value *Ptr = Call.getArgOperand(1); 5097 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5098 Value *Mask = Call.getArgOperand(3); 5099 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5100 Call); 5101 Assert(Alignment->getValue().isPowerOf2(), 5102 "masked_store: alignment must be a power of 2", Call); 5103 5104 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 5105 Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), 5106 "masked_store: storee must match pointer type", Call); 5107 Assert(cast<VectorType>(Mask->getType())->getElementCount() == 5108 cast<VectorType>(Val->getType())->getElementCount(), 5109 "masked_store: vector mask must be same length as value", Call); 5110 break; 5111 } 5112 5113 case Intrinsic::masked_gather: { 5114 const APInt &Alignment = 5115 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5116 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5117 "masked_gather: alignment must be 0 or a power of 2", Call); 5118 break; 5119 } 5120 case Intrinsic::masked_scatter: { 5121 const APInt &Alignment = 5122 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5123 Assert(Alignment.isZero() || Alignment.isPowerOf2(), 5124 "masked_scatter: alignment must be 0 or a power of 2", Call); 5125 break; 5126 } 5127 5128 case Intrinsic::experimental_guard: { 5129 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5130 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5131 "experimental_guard must have exactly one " 5132 "\"deopt\" operand bundle"); 5133 break; 5134 } 5135 5136 case Intrinsic::experimental_deoptimize: { 5137 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5138 Call); 5139 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5140 "experimental_deoptimize must have exactly one " 5141 "\"deopt\" operand bundle"); 5142 Assert(Call.getType() == Call.getFunction()->getReturnType(), 5143 "experimental_deoptimize return type must match caller return type"); 5144 5145 if (isa<CallInst>(Call)) { 5146 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5147 Assert(RI, 5148 "calls to experimental_deoptimize must be followed by a return"); 5149 5150 if (!Call.getType()->isVoidTy() && RI) 5151 Assert(RI->getReturnValue() == &Call, 5152 "calls to experimental_deoptimize must be followed by a return " 5153 "of the value computed by experimental_deoptimize"); 5154 } 5155 5156 break; 5157 } 5158 case Intrinsic::vector_reduce_and: 5159 case Intrinsic::vector_reduce_or: 5160 case Intrinsic::vector_reduce_xor: 5161 case Intrinsic::vector_reduce_add: 5162 case Intrinsic::vector_reduce_mul: 5163 case Intrinsic::vector_reduce_smax: 5164 case Intrinsic::vector_reduce_smin: 5165 case Intrinsic::vector_reduce_umax: 5166 case Intrinsic::vector_reduce_umin: { 5167 Type *ArgTy = Call.getArgOperand(0)->getType(); 5168 Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5169 "Intrinsic has incorrect argument type!"); 5170 break; 5171 } 5172 case Intrinsic::vector_reduce_fmax: 5173 case Intrinsic::vector_reduce_fmin: { 5174 Type *ArgTy = Call.getArgOperand(0)->getType(); 5175 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5176 "Intrinsic has incorrect argument type!"); 5177 break; 5178 } 5179 case Intrinsic::vector_reduce_fadd: 5180 case Intrinsic::vector_reduce_fmul: { 5181 // Unlike the other reductions, the first argument is a start value. The 5182 // second argument is the vector to be reduced. 5183 Type *ArgTy = Call.getArgOperand(1)->getType(); 5184 Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5185 "Intrinsic has incorrect argument type!"); 5186 break; 5187 } 5188 case Intrinsic::smul_fix: 5189 case Intrinsic::smul_fix_sat: 5190 case Intrinsic::umul_fix: 5191 case Intrinsic::umul_fix_sat: 5192 case Intrinsic::sdiv_fix: 5193 case Intrinsic::sdiv_fix_sat: 5194 case Intrinsic::udiv_fix: 5195 case Intrinsic::udiv_fix_sat: { 5196 Value *Op1 = Call.getArgOperand(0); 5197 Value *Op2 = Call.getArgOperand(1); 5198 Assert(Op1->getType()->isIntOrIntVectorTy(), 5199 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 5200 "vector of ints"); 5201 Assert(Op2->getType()->isIntOrIntVectorTy(), 5202 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 5203 "vector of ints"); 5204 5205 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 5206 Assert(Op3->getType()->getBitWidth() <= 32, 5207 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 5208 5209 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 5210 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 5211 Assert( 5212 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 5213 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 5214 "the operands"); 5215 } else { 5216 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 5217 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 5218 "to the width of the operands"); 5219 } 5220 break; 5221 } 5222 case Intrinsic::lround: 5223 case Intrinsic::llround: 5224 case Intrinsic::lrint: 5225 case Intrinsic::llrint: { 5226 Type *ValTy = Call.getArgOperand(0)->getType(); 5227 Type *ResultTy = Call.getType(); 5228 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5229 "Intrinsic does not support vectors", &Call); 5230 break; 5231 } 5232 case Intrinsic::bswap: { 5233 Type *Ty = Call.getType(); 5234 unsigned Size = Ty->getScalarSizeInBits(); 5235 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 5236 break; 5237 } 5238 case Intrinsic::invariant_start: { 5239 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5240 Assert(InvariantSize && 5241 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 5242 "invariant_start parameter must be -1, 0 or a positive number", 5243 &Call); 5244 break; 5245 } 5246 case Intrinsic::matrix_multiply: 5247 case Intrinsic::matrix_transpose: 5248 case Intrinsic::matrix_column_major_load: 5249 case Intrinsic::matrix_column_major_store: { 5250 Function *IF = Call.getCalledFunction(); 5251 ConstantInt *Stride = nullptr; 5252 ConstantInt *NumRows; 5253 ConstantInt *NumColumns; 5254 VectorType *ResultTy; 5255 Type *Op0ElemTy = nullptr; 5256 Type *Op1ElemTy = nullptr; 5257 switch (ID) { 5258 case Intrinsic::matrix_multiply: 5259 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 5260 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5261 ResultTy = cast<VectorType>(Call.getType()); 5262 Op0ElemTy = 5263 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5264 Op1ElemTy = 5265 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 5266 break; 5267 case Intrinsic::matrix_transpose: 5268 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 5269 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 5270 ResultTy = cast<VectorType>(Call.getType()); 5271 Op0ElemTy = 5272 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5273 break; 5274 case Intrinsic::matrix_column_major_load: 5275 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 5276 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 5277 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 5278 ResultTy = cast<VectorType>(Call.getType()); 5279 Op0ElemTy = 5280 cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); 5281 break; 5282 case Intrinsic::matrix_column_major_store: 5283 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 5284 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 5285 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 5286 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 5287 Op0ElemTy = 5288 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 5289 Op1ElemTy = 5290 cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); 5291 break; 5292 default: 5293 llvm_unreachable("unexpected intrinsic"); 5294 } 5295 5296 Assert(ResultTy->getElementType()->isIntegerTy() || 5297 ResultTy->getElementType()->isFloatingPointTy(), 5298 "Result type must be an integer or floating-point type!", IF); 5299 5300 Assert(ResultTy->getElementType() == Op0ElemTy, 5301 "Vector element type mismatch of the result and first operand " 5302 "vector!", IF); 5303 5304 if (Op1ElemTy) 5305 Assert(ResultTy->getElementType() == Op1ElemTy, 5306 "Vector element type mismatch of the result and second operand " 5307 "vector!", IF); 5308 5309 Assert(cast<FixedVectorType>(ResultTy)->getNumElements() == 5310 NumRows->getZExtValue() * NumColumns->getZExtValue(), 5311 "Result of a matrix operation does not fit in the returned vector!"); 5312 5313 if (Stride) 5314 Assert(Stride->getZExtValue() >= NumRows->getZExtValue(), 5315 "Stride must be greater or equal than the number of rows!", IF); 5316 5317 break; 5318 } 5319 case Intrinsic::experimental_stepvector: { 5320 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 5321 Assert(VecTy && VecTy->getScalarType()->isIntegerTy() && 5322 VecTy->getScalarSizeInBits() >= 8, 5323 "experimental_stepvector only supported for vectors of integers " 5324 "with a bitwidth of at least 8.", 5325 &Call); 5326 break; 5327 } 5328 case Intrinsic::experimental_vector_insert: { 5329 Value *Vec = Call.getArgOperand(0); 5330 Value *SubVec = Call.getArgOperand(1); 5331 Value *Idx = Call.getArgOperand(2); 5332 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5333 5334 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5335 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 5336 5337 ElementCount VecEC = VecTy->getElementCount(); 5338 ElementCount SubVecEC = SubVecTy->getElementCount(); 5339 Assert(VecTy->getElementType() == SubVecTy->getElementType(), 5340 "experimental_vector_insert parameters must have the same element " 5341 "type.", 5342 &Call); 5343 Assert(IdxN % SubVecEC.getKnownMinValue() == 0, 5344 "experimental_vector_insert index must be a constant multiple of " 5345 "the subvector's known minimum vector length."); 5346 5347 // If this insertion is not the 'mixed' case where a fixed vector is 5348 // inserted into a scalable vector, ensure that the insertion of the 5349 // subvector does not overrun the parent vector. 5350 if (VecEC.isScalable() == SubVecEC.isScalable()) { 5351 Assert( 5352 IdxN < VecEC.getKnownMinValue() && 5353 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5354 "subvector operand of experimental_vector_insert would overrun the " 5355 "vector being inserted into."); 5356 } 5357 break; 5358 } 5359 case Intrinsic::experimental_vector_extract: { 5360 Value *Vec = Call.getArgOperand(0); 5361 Value *Idx = Call.getArgOperand(1); 5362 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 5363 5364 VectorType *ResultTy = cast<VectorType>(Call.getType()); 5365 VectorType *VecTy = cast<VectorType>(Vec->getType()); 5366 5367 ElementCount VecEC = VecTy->getElementCount(); 5368 ElementCount ResultEC = ResultTy->getElementCount(); 5369 5370 Assert(ResultTy->getElementType() == VecTy->getElementType(), 5371 "experimental_vector_extract result must have the same element " 5372 "type as the input vector.", 5373 &Call); 5374 Assert(IdxN % ResultEC.getKnownMinValue() == 0, 5375 "experimental_vector_extract index must be a constant multiple of " 5376 "the result type's known minimum vector length."); 5377 5378 // If this extraction is not the 'mixed' case where a fixed vector is is 5379 // extracted from a scalable vector, ensure that the extraction does not 5380 // overrun the parent vector. 5381 if (VecEC.isScalable() == ResultEC.isScalable()) { 5382 Assert(IdxN < VecEC.getKnownMinValue() && 5383 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 5384 "experimental_vector_extract would overrun."); 5385 } 5386 break; 5387 } 5388 case Intrinsic::experimental_noalias_scope_decl: { 5389 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 5390 break; 5391 } 5392 case Intrinsic::preserve_array_access_index: 5393 case Intrinsic::preserve_struct_access_index: { 5394 Type *ElemTy = Call.getAttributes().getParamElementType(0); 5395 Assert(ElemTy, 5396 "Intrinsic requires elementtype attribute on first argument.", 5397 &Call); 5398 break; 5399 } 5400 }; 5401 } 5402 5403 /// Carefully grab the subprogram from a local scope. 5404 /// 5405 /// This carefully grabs the subprogram from a local scope, avoiding the 5406 /// built-in assertions that would typically fire. 5407 static DISubprogram *getSubprogram(Metadata *LocalScope) { 5408 if (!LocalScope) 5409 return nullptr; 5410 5411 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 5412 return SP; 5413 5414 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 5415 return getSubprogram(LB->getRawScope()); 5416 5417 // Just return null; broken scope chains are checked elsewhere. 5418 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 5419 return nullptr; 5420 } 5421 5422 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 5423 unsigned NumOperands; 5424 bool HasRoundingMD; 5425 switch (FPI.getIntrinsicID()) { 5426 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 5427 case Intrinsic::INTRINSIC: \ 5428 NumOperands = NARG; \ 5429 HasRoundingMD = ROUND_MODE; \ 5430 break; 5431 #include "llvm/IR/ConstrainedOps.def" 5432 default: 5433 llvm_unreachable("Invalid constrained FP intrinsic!"); 5434 } 5435 NumOperands += (1 + HasRoundingMD); 5436 // Compare intrinsics carry an extra predicate metadata operand. 5437 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 5438 NumOperands += 1; 5439 Assert((FPI.arg_size() == NumOperands), 5440 "invalid arguments for constrained FP intrinsic", &FPI); 5441 5442 switch (FPI.getIntrinsicID()) { 5443 case Intrinsic::experimental_constrained_lrint: 5444 case Intrinsic::experimental_constrained_llrint: { 5445 Type *ValTy = FPI.getArgOperand(0)->getType(); 5446 Type *ResultTy = FPI.getType(); 5447 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5448 "Intrinsic does not support vectors", &FPI); 5449 } 5450 break; 5451 5452 case Intrinsic::experimental_constrained_lround: 5453 case Intrinsic::experimental_constrained_llround: { 5454 Type *ValTy = FPI.getArgOperand(0)->getType(); 5455 Type *ResultTy = FPI.getType(); 5456 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 5457 "Intrinsic does not support vectors", &FPI); 5458 break; 5459 } 5460 5461 case Intrinsic::experimental_constrained_fcmp: 5462 case Intrinsic::experimental_constrained_fcmps: { 5463 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 5464 Assert(CmpInst::isFPPredicate(Pred), 5465 "invalid predicate for constrained FP comparison intrinsic", &FPI); 5466 break; 5467 } 5468 5469 case Intrinsic::experimental_constrained_fptosi: 5470 case Intrinsic::experimental_constrained_fptoui: { 5471 Value *Operand = FPI.getArgOperand(0); 5472 uint64_t NumSrcElem = 0; 5473 Assert(Operand->getType()->isFPOrFPVectorTy(), 5474 "Intrinsic first argument must be floating point", &FPI); 5475 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5476 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5477 } 5478 5479 Operand = &FPI; 5480 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5481 "Intrinsic first argument and result disagree on vector use", &FPI); 5482 Assert(Operand->getType()->isIntOrIntVectorTy(), 5483 "Intrinsic result must be an integer", &FPI); 5484 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5485 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5486 "Intrinsic first argument and result vector lengths must be equal", 5487 &FPI); 5488 } 5489 } 5490 break; 5491 5492 case Intrinsic::experimental_constrained_sitofp: 5493 case Intrinsic::experimental_constrained_uitofp: { 5494 Value *Operand = FPI.getArgOperand(0); 5495 uint64_t NumSrcElem = 0; 5496 Assert(Operand->getType()->isIntOrIntVectorTy(), 5497 "Intrinsic first argument must be integer", &FPI); 5498 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5499 NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); 5500 } 5501 5502 Operand = &FPI; 5503 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 5504 "Intrinsic first argument and result disagree on vector use", &FPI); 5505 Assert(Operand->getType()->isFPOrFPVectorTy(), 5506 "Intrinsic result must be a floating point", &FPI); 5507 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 5508 Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), 5509 "Intrinsic first argument and result vector lengths must be equal", 5510 &FPI); 5511 } 5512 } break; 5513 5514 case Intrinsic::experimental_constrained_fptrunc: 5515 case Intrinsic::experimental_constrained_fpext: { 5516 Value *Operand = FPI.getArgOperand(0); 5517 Type *OperandTy = Operand->getType(); 5518 Value *Result = &FPI; 5519 Type *ResultTy = Result->getType(); 5520 Assert(OperandTy->isFPOrFPVectorTy(), 5521 "Intrinsic first argument must be FP or FP vector", &FPI); 5522 Assert(ResultTy->isFPOrFPVectorTy(), 5523 "Intrinsic result must be FP or FP vector", &FPI); 5524 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 5525 "Intrinsic first argument and result disagree on vector use", &FPI); 5526 if (OperandTy->isVectorTy()) { 5527 Assert(cast<FixedVectorType>(OperandTy)->getNumElements() == 5528 cast<FixedVectorType>(ResultTy)->getNumElements(), 5529 "Intrinsic first argument and result vector lengths must be equal", 5530 &FPI); 5531 } 5532 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 5533 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 5534 "Intrinsic first argument's type must be larger than result type", 5535 &FPI); 5536 } else { 5537 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 5538 "Intrinsic first argument's type must be smaller than result type", 5539 &FPI); 5540 } 5541 } 5542 break; 5543 5544 default: 5545 break; 5546 } 5547 5548 // If a non-metadata argument is passed in a metadata slot then the 5549 // error will be caught earlier when the incorrect argument doesn't 5550 // match the specification in the intrinsic call table. Thus, no 5551 // argument type check is needed here. 5552 5553 Assert(FPI.getExceptionBehavior().hasValue(), 5554 "invalid exception behavior argument", &FPI); 5555 if (HasRoundingMD) { 5556 Assert(FPI.getRoundingMode().hasValue(), 5557 "invalid rounding mode argument", &FPI); 5558 } 5559 } 5560 5561 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 5562 auto *MD = DII.getRawLocation(); 5563 AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 5564 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 5565 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 5566 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 5567 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 5568 DII.getRawVariable()); 5569 AssertDI(isa<DIExpression>(DII.getRawExpression()), 5570 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 5571 DII.getRawExpression()); 5572 5573 // Ignore broken !dbg attachments; they're checked elsewhere. 5574 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 5575 if (!isa<DILocation>(N)) 5576 return; 5577 5578 BasicBlock *BB = DII.getParent(); 5579 Function *F = BB ? BB->getParent() : nullptr; 5580 5581 // The scopes for variables and !dbg attachments must agree. 5582 DILocalVariable *Var = DII.getVariable(); 5583 DILocation *Loc = DII.getDebugLoc(); 5584 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5585 &DII, BB, F); 5586 5587 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 5588 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5589 if (!VarSP || !LocSP) 5590 return; // Broken scope chains are checked elsewhere. 5591 5592 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5593 " variable and !dbg attachment", 5594 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 5595 Loc->getScope()->getSubprogram()); 5596 5597 // This check is redundant with one in visitLocalVariable(). 5598 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 5599 Var->getRawType()); 5600 verifyFnArgs(DII); 5601 } 5602 5603 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 5604 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5605 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5606 DLI.getRawLabel()); 5607 5608 // Ignore broken !dbg attachments; they're checked elsewhere. 5609 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5610 if (!isa<DILocation>(N)) 5611 return; 5612 5613 BasicBlock *BB = DLI.getParent(); 5614 Function *F = BB ? BB->getParent() : nullptr; 5615 5616 // The scopes for variables and !dbg attachments must agree. 5617 DILabel *Label = DLI.getLabel(); 5618 DILocation *Loc = DLI.getDebugLoc(); 5619 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5620 &DLI, BB, F); 5621 5622 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5623 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5624 if (!LabelSP || !LocSP) 5625 return; 5626 5627 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5628 " label and !dbg attachment", 5629 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5630 Loc->getScope()->getSubprogram()); 5631 } 5632 5633 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5634 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5635 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5636 5637 // We don't know whether this intrinsic verified correctly. 5638 if (!V || !E || !E->isValid()) 5639 return; 5640 5641 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5642 auto Fragment = E->getFragmentInfo(); 5643 if (!Fragment) 5644 return; 5645 5646 // The frontend helps out GDB by emitting the members of local anonymous 5647 // unions as artificial local variables with shared storage. When SROA splits 5648 // the storage for artificial local variables that are smaller than the entire 5649 // union, the overhang piece will be outside of the allotted space for the 5650 // variable and this check fails. 5651 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5652 if (V->isArtificial()) 5653 return; 5654 5655 verifyFragmentExpression(*V, *Fragment, &I); 5656 } 5657 5658 template <typename ValueOrMetadata> 5659 void Verifier::verifyFragmentExpression(const DIVariable &V, 5660 DIExpression::FragmentInfo Fragment, 5661 ValueOrMetadata *Desc) { 5662 // If there's no size, the type is broken, but that should be checked 5663 // elsewhere. 5664 auto VarSize = V.getSizeInBits(); 5665 if (!VarSize) 5666 return; 5667 5668 unsigned FragSize = Fragment.SizeInBits; 5669 unsigned FragOffset = Fragment.OffsetInBits; 5670 AssertDI(FragSize + FragOffset <= *VarSize, 5671 "fragment is larger than or outside of variable", Desc, &V); 5672 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5673 } 5674 5675 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5676 // This function does not take the scope of noninlined function arguments into 5677 // account. Don't run it if current function is nodebug, because it may 5678 // contain inlined debug intrinsics. 5679 if (!HasDebugInfo) 5680 return; 5681 5682 // For performance reasons only check non-inlined ones. 5683 if (I.getDebugLoc()->getInlinedAt()) 5684 return; 5685 5686 DILocalVariable *Var = I.getVariable(); 5687 AssertDI(Var, "dbg intrinsic without variable"); 5688 5689 unsigned ArgNo = Var->getArg(); 5690 if (!ArgNo) 5691 return; 5692 5693 // Verify there are no duplicate function argument debug info entries. 5694 // These will cause hard-to-debug assertions in the DWARF backend. 5695 if (DebugFnArgs.size() < ArgNo) 5696 DebugFnArgs.resize(ArgNo, nullptr); 5697 5698 auto *Prev = DebugFnArgs[ArgNo - 1]; 5699 DebugFnArgs[ArgNo - 1] = Var; 5700 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5701 Prev, Var); 5702 } 5703 5704 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5705 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5706 5707 // We don't know whether this intrinsic verified correctly. 5708 if (!E || !E->isValid()) 5709 return; 5710 5711 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5712 } 5713 5714 void Verifier::verifyCompileUnits() { 5715 // When more than one Module is imported into the same context, such as during 5716 // an LTO build before linking the modules, ODR type uniquing may cause types 5717 // to point to a different CU. This check does not make sense in this case. 5718 if (M.getContext().isODRUniquingDebugTypes()) 5719 return; 5720 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5721 SmallPtrSet<const Metadata *, 2> Listed; 5722 if (CUs) 5723 Listed.insert(CUs->op_begin(), CUs->op_end()); 5724 for (auto *CU : CUVisited) 5725 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5726 CUVisited.clear(); 5727 } 5728 5729 void Verifier::verifyDeoptimizeCallingConvs() { 5730 if (DeoptimizeDeclarations.empty()) 5731 return; 5732 5733 const Function *First = DeoptimizeDeclarations[0]; 5734 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5735 Assert(First->getCallingConv() == F->getCallingConv(), 5736 "All llvm.experimental.deoptimize declarations must have the same " 5737 "calling convention", 5738 First, F); 5739 } 5740 } 5741 5742 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 5743 const OperandBundleUse &BU) { 5744 FunctionType *FTy = Call.getFunctionType(); 5745 5746 Assert((FTy->getReturnType()->isPointerTy() || 5747 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 5748 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 5749 "function returning a pointer or a non-returning function that has a " 5750 "void return type", 5751 Call); 5752 5753 Assert((BU.Inputs.empty() || 5754 (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))), 5755 "operand bundle \"clang.arc.attachedcall\" can take either no " 5756 "arguments or one function as an argument", 5757 Call); 5758 5759 if (BU.Inputs.empty()) 5760 return; 5761 5762 auto *Fn = cast<Function>(BU.Inputs.front()); 5763 Intrinsic::ID IID = Fn->getIntrinsicID(); 5764 5765 if (IID) { 5766 Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 5767 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 5768 "invalid function argument", Call); 5769 } else { 5770 StringRef FnName = Fn->getName(); 5771 Assert((FnName == "objc_retainAutoreleasedReturnValue" || 5772 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 5773 "invalid function argument", Call); 5774 } 5775 } 5776 5777 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5778 bool HasSource = F.getSource().hasValue(); 5779 if (!HasSourceDebugInfo.count(&U)) 5780 HasSourceDebugInfo[&U] = HasSource; 5781 AssertDI(HasSource == HasSourceDebugInfo[&U], 5782 "inconsistent use of embedded source"); 5783 } 5784 5785 void Verifier::verifyNoAliasScopeDecl() { 5786 if (NoAliasScopeDecls.empty()) 5787 return; 5788 5789 // only a single scope must be declared at a time. 5790 for (auto *II : NoAliasScopeDecls) { 5791 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 5792 "Not a llvm.experimental.noalias.scope.decl ?"); 5793 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 5794 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5795 Assert(ScopeListMV != nullptr, 5796 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 5797 "argument", 5798 II); 5799 5800 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 5801 Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", 5802 II); 5803 Assert(ScopeListMD->getNumOperands() == 1, 5804 "!id.scope.list must point to a list with a single scope", II); 5805 visitAliasScopeListMetadata(ScopeListMD); 5806 } 5807 5808 // Only check the domination rule when requested. Once all passes have been 5809 // adapted this option can go away. 5810 if (!VerifyNoAliasScopeDomination) 5811 return; 5812 5813 // Now sort the intrinsics based on the scope MDNode so that declarations of 5814 // the same scopes are next to each other. 5815 auto GetScope = [](IntrinsicInst *II) { 5816 const auto *ScopeListMV = cast<MetadataAsValue>( 5817 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 5818 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 5819 }; 5820 5821 // We are sorting on MDNode pointers here. For valid input IR this is ok. 5822 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 5823 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 5824 return GetScope(Lhs) < GetScope(Rhs); 5825 }; 5826 5827 llvm::sort(NoAliasScopeDecls, Compare); 5828 5829 // Go over the intrinsics and check that for the same scope, they are not 5830 // dominating each other. 5831 auto ItCurrent = NoAliasScopeDecls.begin(); 5832 while (ItCurrent != NoAliasScopeDecls.end()) { 5833 auto CurScope = GetScope(*ItCurrent); 5834 auto ItNext = ItCurrent; 5835 do { 5836 ++ItNext; 5837 } while (ItNext != NoAliasScopeDecls.end() && 5838 GetScope(*ItNext) == CurScope); 5839 5840 // [ItCurrent, ItNext) represents the declarations for the same scope. 5841 // Ensure they are not dominating each other.. but only if it is not too 5842 // expensive. 5843 if (ItNext - ItCurrent < 32) 5844 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 5845 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 5846 if (I != J) 5847 Assert(!DT.dominates(I, J), 5848 "llvm.experimental.noalias.scope.decl dominates another one " 5849 "with the same scope", 5850 I); 5851 ItCurrent = ItNext; 5852 } 5853 } 5854 5855 //===----------------------------------------------------------------------===// 5856 // Implement the public interfaces to this file... 5857 //===----------------------------------------------------------------------===// 5858 5859 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5860 Function &F = const_cast<Function &>(f); 5861 5862 // Don't use a raw_null_ostream. Printing IR is expensive. 5863 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5864 5865 // Note that this function's return value is inverted from what you would 5866 // expect of a function called "verify". 5867 return !V.verify(F); 5868 } 5869 5870 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5871 bool *BrokenDebugInfo) { 5872 // Don't use a raw_null_ostream. Printing IR is expensive. 5873 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5874 5875 bool Broken = false; 5876 for (const Function &F : M) 5877 Broken |= !V.verify(F); 5878 5879 Broken |= !V.verify(); 5880 if (BrokenDebugInfo) 5881 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5882 // Note that this function's return value is inverted from what you would 5883 // expect of a function called "verify". 5884 return Broken; 5885 } 5886 5887 namespace { 5888 5889 struct VerifierLegacyPass : public FunctionPass { 5890 static char ID; 5891 5892 std::unique_ptr<Verifier> V; 5893 bool FatalErrors = true; 5894 5895 VerifierLegacyPass() : FunctionPass(ID) { 5896 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5897 } 5898 explicit VerifierLegacyPass(bool FatalErrors) 5899 : FunctionPass(ID), 5900 FatalErrors(FatalErrors) { 5901 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5902 } 5903 5904 bool doInitialization(Module &M) override { 5905 V = std::make_unique<Verifier>( 5906 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5907 return false; 5908 } 5909 5910 bool runOnFunction(Function &F) override { 5911 if (!V->verify(F) && FatalErrors) { 5912 errs() << "in function " << F.getName() << '\n'; 5913 report_fatal_error("Broken function found, compilation aborted!"); 5914 } 5915 return false; 5916 } 5917 5918 bool doFinalization(Module &M) override { 5919 bool HasErrors = false; 5920 for (Function &F : M) 5921 if (F.isDeclaration()) 5922 HasErrors |= !V->verify(F); 5923 5924 HasErrors |= !V->verify(); 5925 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5926 report_fatal_error("Broken module found, compilation aborted!"); 5927 return false; 5928 } 5929 5930 void getAnalysisUsage(AnalysisUsage &AU) const override { 5931 AU.setPreservesAll(); 5932 } 5933 }; 5934 5935 } // end anonymous namespace 5936 5937 /// Helper to issue failure from the TBAA verification 5938 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5939 if (Diagnostic) 5940 return Diagnostic->CheckFailed(Args...); 5941 } 5942 5943 #define AssertTBAA(C, ...) \ 5944 do { \ 5945 if (!(C)) { \ 5946 CheckFailed(__VA_ARGS__); \ 5947 return false; \ 5948 } \ 5949 } while (false) 5950 5951 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5952 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5953 /// struct-type node describing an aggregate data structure (like a struct). 5954 TBAAVerifier::TBAABaseNodeSummary 5955 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5956 bool IsNewFormat) { 5957 if (BaseNode->getNumOperands() < 2) { 5958 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5959 return {true, ~0u}; 5960 } 5961 5962 auto Itr = TBAABaseNodes.find(BaseNode); 5963 if (Itr != TBAABaseNodes.end()) 5964 return Itr->second; 5965 5966 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5967 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5968 (void)InsertResult; 5969 assert(InsertResult.second && "We just checked!"); 5970 return Result; 5971 } 5972 5973 TBAAVerifier::TBAABaseNodeSummary 5974 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5975 bool IsNewFormat) { 5976 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5977 5978 if (BaseNode->getNumOperands() == 2) { 5979 // Scalar nodes can only be accessed at offset 0. 5980 return isValidScalarTBAANode(BaseNode) 5981 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5982 : InvalidNode; 5983 } 5984 5985 if (IsNewFormat) { 5986 if (BaseNode->getNumOperands() % 3 != 0) { 5987 CheckFailed("Access tag nodes must have the number of operands that is a " 5988 "multiple of 3!", BaseNode); 5989 return InvalidNode; 5990 } 5991 } else { 5992 if (BaseNode->getNumOperands() % 2 != 1) { 5993 CheckFailed("Struct tag nodes must have an odd number of operands!", 5994 BaseNode); 5995 return InvalidNode; 5996 } 5997 } 5998 5999 // Check the type size field. 6000 if (IsNewFormat) { 6001 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6002 BaseNode->getOperand(1)); 6003 if (!TypeSizeNode) { 6004 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 6005 return InvalidNode; 6006 } 6007 } 6008 6009 // Check the type name field. In the new format it can be anything. 6010 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 6011 CheckFailed("Struct tag nodes have a string as their first operand", 6012 BaseNode); 6013 return InvalidNode; 6014 } 6015 6016 bool Failed = false; 6017 6018 Optional<APInt> PrevOffset; 6019 unsigned BitWidth = ~0u; 6020 6021 // We've already checked that BaseNode is not a degenerate root node with one 6022 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 6023 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6024 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6025 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6026 Idx += NumOpsPerField) { 6027 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 6028 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 6029 if (!isa<MDNode>(FieldTy)) { 6030 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 6031 Failed = true; 6032 continue; 6033 } 6034 6035 auto *OffsetEntryCI = 6036 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 6037 if (!OffsetEntryCI) { 6038 CheckFailed("Offset entries must be constants!", &I, BaseNode); 6039 Failed = true; 6040 continue; 6041 } 6042 6043 if (BitWidth == ~0u) 6044 BitWidth = OffsetEntryCI->getBitWidth(); 6045 6046 if (OffsetEntryCI->getBitWidth() != BitWidth) { 6047 CheckFailed( 6048 "Bitwidth between the offsets and struct type entries must match", &I, 6049 BaseNode); 6050 Failed = true; 6051 continue; 6052 } 6053 6054 // NB! As far as I can tell, we generate a non-strictly increasing offset 6055 // sequence only from structs that have zero size bit fields. When 6056 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 6057 // pick the field lexically the latest in struct type metadata node. This 6058 // mirrors the actual behavior of the alias analysis implementation. 6059 bool IsAscending = 6060 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 6061 6062 if (!IsAscending) { 6063 CheckFailed("Offsets must be increasing!", &I, BaseNode); 6064 Failed = true; 6065 } 6066 6067 PrevOffset = OffsetEntryCI->getValue(); 6068 6069 if (IsNewFormat) { 6070 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6071 BaseNode->getOperand(Idx + 2)); 6072 if (!MemberSizeNode) { 6073 CheckFailed("Member size entries must be constants!", &I, BaseNode); 6074 Failed = true; 6075 continue; 6076 } 6077 } 6078 } 6079 6080 return Failed ? InvalidNode 6081 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 6082 } 6083 6084 static bool IsRootTBAANode(const MDNode *MD) { 6085 return MD->getNumOperands() < 2; 6086 } 6087 6088 static bool IsScalarTBAANodeImpl(const MDNode *MD, 6089 SmallPtrSetImpl<const MDNode *> &Visited) { 6090 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 6091 return false; 6092 6093 if (!isa<MDString>(MD->getOperand(0))) 6094 return false; 6095 6096 if (MD->getNumOperands() == 3) { 6097 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 6098 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 6099 return false; 6100 } 6101 6102 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6103 return Parent && Visited.insert(Parent).second && 6104 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 6105 } 6106 6107 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 6108 auto ResultIt = TBAAScalarNodes.find(MD); 6109 if (ResultIt != TBAAScalarNodes.end()) 6110 return ResultIt->second; 6111 6112 SmallPtrSet<const MDNode *, 4> Visited; 6113 bool Result = IsScalarTBAANodeImpl(MD, Visited); 6114 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 6115 (void)InsertResult; 6116 assert(InsertResult.second && "Just checked!"); 6117 6118 return Result; 6119 } 6120 6121 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 6122 /// Offset in place to be the offset within the field node returned. 6123 /// 6124 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 6125 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 6126 const MDNode *BaseNode, 6127 APInt &Offset, 6128 bool IsNewFormat) { 6129 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 6130 6131 // Scalar nodes have only one possible "field" -- their parent in the access 6132 // hierarchy. Offset must be zero at this point, but our caller is supposed 6133 // to Assert that. 6134 if (BaseNode->getNumOperands() == 2) 6135 return cast<MDNode>(BaseNode->getOperand(1)); 6136 6137 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 6138 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 6139 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 6140 Idx += NumOpsPerField) { 6141 auto *OffsetEntryCI = 6142 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 6143 if (OffsetEntryCI->getValue().ugt(Offset)) { 6144 if (Idx == FirstFieldOpNo) { 6145 CheckFailed("Could not find TBAA parent in struct type node", &I, 6146 BaseNode, &Offset); 6147 return nullptr; 6148 } 6149 6150 unsigned PrevIdx = Idx - NumOpsPerField; 6151 auto *PrevOffsetEntryCI = 6152 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 6153 Offset -= PrevOffsetEntryCI->getValue(); 6154 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 6155 } 6156 } 6157 6158 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 6159 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 6160 BaseNode->getOperand(LastIdx + 1)); 6161 Offset -= LastOffsetEntryCI->getValue(); 6162 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 6163 } 6164 6165 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 6166 if (!Type || Type->getNumOperands() < 3) 6167 return false; 6168 6169 // In the new format type nodes shall have a reference to the parent type as 6170 // its first operand. 6171 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 6172 if (!Parent) 6173 return false; 6174 6175 return true; 6176 } 6177 6178 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 6179 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 6180 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 6181 isa<AtomicCmpXchgInst>(I), 6182 "This instruction shall not have a TBAA access tag!", &I); 6183 6184 bool IsStructPathTBAA = 6185 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 6186 6187 AssertTBAA( 6188 IsStructPathTBAA, 6189 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 6190 6191 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 6192 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 6193 6194 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 6195 6196 if (IsNewFormat) { 6197 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 6198 "Access tag metadata must have either 4 or 5 operands", &I, MD); 6199 } else { 6200 AssertTBAA(MD->getNumOperands() < 5, 6201 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 6202 } 6203 6204 // Check the access size field. 6205 if (IsNewFormat) { 6206 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 6207 MD->getOperand(3)); 6208 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 6209 } 6210 6211 // Check the immutability flag. 6212 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 6213 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 6214 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 6215 MD->getOperand(ImmutabilityFlagOpNo)); 6216 AssertTBAA(IsImmutableCI, 6217 "Immutability tag on struct tag metadata must be a constant", 6218 &I, MD); 6219 AssertTBAA( 6220 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 6221 "Immutability part of the struct tag metadata must be either 0 or 1", 6222 &I, MD); 6223 } 6224 6225 AssertTBAA(BaseNode && AccessType, 6226 "Malformed struct tag metadata: base and access-type " 6227 "should be non-null and point to Metadata nodes", 6228 &I, MD, BaseNode, AccessType); 6229 6230 if (!IsNewFormat) { 6231 AssertTBAA(isValidScalarTBAANode(AccessType), 6232 "Access type node must be a valid scalar type", &I, MD, 6233 AccessType); 6234 } 6235 6236 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 6237 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 6238 6239 APInt Offset = OffsetCI->getValue(); 6240 bool SeenAccessTypeInPath = false; 6241 6242 SmallPtrSet<MDNode *, 4> StructPath; 6243 6244 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 6245 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 6246 IsNewFormat)) { 6247 if (!StructPath.insert(BaseNode).second) { 6248 CheckFailed("Cycle detected in struct path", &I, MD); 6249 return false; 6250 } 6251 6252 bool Invalid; 6253 unsigned BaseNodeBitWidth; 6254 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 6255 IsNewFormat); 6256 6257 // If the base node is invalid in itself, then we've already printed all the 6258 // errors we wanted to print. 6259 if (Invalid) 6260 return false; 6261 6262 SeenAccessTypeInPath |= BaseNode == AccessType; 6263 6264 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 6265 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 6266 &I, MD, &Offset); 6267 6268 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 6269 (BaseNodeBitWidth == 0 && Offset == 0) || 6270 (IsNewFormat && BaseNodeBitWidth == ~0u), 6271 "Access bit-width not the same as description bit-width", &I, MD, 6272 BaseNodeBitWidth, Offset.getBitWidth()); 6273 6274 if (IsNewFormat && SeenAccessTypeInPath) 6275 break; 6276 } 6277 6278 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 6279 &I, MD); 6280 return true; 6281 } 6282 6283 char VerifierLegacyPass::ID = 0; 6284 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 6285 6286 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 6287 return new VerifierLegacyPass(FatalErrors); 6288 } 6289 6290 AnalysisKey VerifierAnalysis::Key; 6291 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 6292 ModuleAnalysisManager &) { 6293 Result Res; 6294 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 6295 return Res; 6296 } 6297 6298 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 6299 FunctionAnalysisManager &) { 6300 return { llvm::verifyFunction(F, &dbgs()), false }; 6301 } 6302 6303 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 6304 auto Res = AM.getResult<VerifierAnalysis>(M); 6305 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 6306 report_fatal_error("Broken module found, compilation aborted!"); 6307 6308 return PreservedAnalyses::all(); 6309 } 6310 6311 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 6312 auto res = AM.getResult<VerifierAnalysis>(F); 6313 if (res.IRBroken && FatalErrors) 6314 report_fatal_error("Broken function found, compilation aborted!"); 6315 6316 return PreservedAnalyses::all(); 6317 } 6318