1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the function verifier interface, that can be used for some 11 // sanity checking of input to the system. 12 // 13 // Note that this does not provide full `Java style' security and verifications, 14 // instead it just tries to ensure that code is well-formed. 15 // 16 // * Both of a binary operator's parameters are of the same type 17 // * Verify that the indices of mem access instructions match other operands 18 // * Verify that arithmetic and other things are only performed on first-class 19 // types. Verify that shifts & logicals only happen on integrals f.e. 20 // * All of the constants in a switch statement are of the correct type 21 // * The code is in valid SSA form 22 // * It should be illegal to put a label into any other type (like a structure) 23 // or to return one. [except constant arrays!] 24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 25 // * PHI nodes must have an entry for each predecessor, with no extras. 26 // * PHI nodes must be the first thing in a basic block, all grouped together 27 // * PHI nodes must have at least one entry 28 // * All basic blocks should only end with terminator insts, not contain them 29 // * The entry node to a function must not have predecessors 30 // * All Instructions must be embedded into a basic block 31 // * Functions cannot take a void-typed parameter 32 // * Verify that a function's argument list agrees with it's declared type. 33 // * It is illegal to specify a name for a void value. 34 // * It is illegal to have a internal global value with no initializer 35 // * It is illegal to have a ret instruction that returns a value that does not 36 // agree with the function return value type. 37 // * Function call argument types match the function prototype 38 // * A landing pad is defined by a landingpad instruction, and can be jumped to 39 // only by the unwind edge of an invoke instruction. 40 // * A landingpad instruction must be the first non-PHI instruction in the 41 // block. 42 // * Landingpad instructions must be in a function with a personality function. 43 // * All other things that are tested by asserts spread about the code... 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/IR/Verifier.h" 48 #include "llvm/ADT/MapVector.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallVector.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/CallSite.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/ConstantRange.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugInfo.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/InlineAsm.h" 64 #include "llvm/IR/InstIterator.h" 65 #include "llvm/IR/InstVisitor.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/LLVMContext.h" 68 #include "llvm/IR/Metadata.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/PassManager.h" 71 #include "llvm/IR/Statepoint.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <algorithm> 78 #include <cstdarg> 79 using namespace llvm; 80 81 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true)); 82 83 namespace { 84 struct VerifierSupport { 85 raw_ostream &OS; 86 const Module *M; 87 88 /// \brief Track the brokenness of the module while recursively visiting. 89 bool Broken; 90 91 explicit VerifierSupport(raw_ostream &OS) 92 : OS(OS), M(nullptr), Broken(false) {} 93 94 private: 95 template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) { 96 Write(&*I); 97 } 98 99 void Write(const Module *M) { 100 if (!M) 101 return; 102 OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 103 } 104 105 void Write(const Value *V) { 106 if (!V) 107 return; 108 if (isa<Instruction>(V)) { 109 OS << *V << '\n'; 110 } else { 111 V->printAsOperand(OS, true, M); 112 OS << '\n'; 113 } 114 } 115 void Write(ImmutableCallSite CS) { 116 Write(CS.getInstruction()); 117 } 118 119 void Write(const Metadata *MD) { 120 if (!MD) 121 return; 122 MD->print(OS, M); 123 OS << '\n'; 124 } 125 126 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 127 Write(MD.get()); 128 } 129 130 void Write(const NamedMDNode *NMD) { 131 if (!NMD) 132 return; 133 NMD->print(OS); 134 OS << '\n'; 135 } 136 137 void Write(Type *T) { 138 if (!T) 139 return; 140 OS << ' ' << *T; 141 } 142 143 void Write(const Comdat *C) { 144 if (!C) 145 return; 146 OS << *C; 147 } 148 149 template <typename T> void Write(ArrayRef<T> Vs) { 150 for (const T &V : Vs) 151 Write(V); 152 } 153 154 template <typename T1, typename... Ts> 155 void WriteTs(const T1 &V1, const Ts &... Vs) { 156 Write(V1); 157 WriteTs(Vs...); 158 } 159 160 template <typename... Ts> void WriteTs() {} 161 162 public: 163 /// \brief A check failed, so printout out the condition and the message. 164 /// 165 /// This provides a nice place to put a breakpoint if you want to see why 166 /// something is not correct. 167 void CheckFailed(const Twine &Message) { 168 OS << Message << '\n'; 169 Broken = true; 170 } 171 172 /// \brief A check failed (with values to print). 173 /// 174 /// This calls the Message-only version so that the above is easier to set a 175 /// breakpoint on. 176 template <typename T1, typename... Ts> 177 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 178 CheckFailed(Message); 179 WriteTs(V1, Vs...); 180 } 181 }; 182 183 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 184 friend class InstVisitor<Verifier>; 185 186 LLVMContext *Context; 187 DominatorTree DT; 188 189 /// \brief When verifying a basic block, keep track of all of the 190 /// instructions we have seen so far. 191 /// 192 /// This allows us to do efficient dominance checks for the case when an 193 /// instruction has an operand that is an instruction in the same block. 194 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 195 196 /// \brief Keep track of the metadata nodes that have been checked already. 197 SmallPtrSet<const Metadata *, 32> MDNodes; 198 199 /// Track all DICompileUnits visited. 200 SmallPtrSet<const Metadata *, 2> CUVisited; 201 202 /// \brief Track unresolved string-based type references. 203 SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs; 204 205 /// \brief The result type for a landingpad. 206 Type *LandingPadResultTy; 207 208 /// \brief Whether we've seen a call to @llvm.localescape in this function 209 /// already. 210 bool SawFrameEscape; 211 212 /// Stores the count of how many objects were passed to llvm.localescape for a 213 /// given function and the largest index passed to llvm.localrecover. 214 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 215 216 // Maps catchswitches and cleanuppads that unwind to siblings to the 217 // terminators that indicate the unwind, used to detect cycles therein. 218 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo; 219 220 /// Cache of constants visited in search of ConstantExprs. 221 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 222 223 // Verify that this GlobalValue is only used in this module. 224 // This map is used to avoid visiting uses twice. We can arrive at a user 225 // twice, if they have multiple operands. In particular for very large 226 // constant expressions, we can arrive at a particular user many times. 227 SmallPtrSet<const Value *, 32> GlobalValueVisited; 228 229 void checkAtomicMemAccessSize(const Module *M, Type *Ty, 230 const Instruction *I); 231 public: 232 explicit Verifier(raw_ostream &OS) 233 : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr), 234 SawFrameEscape(false) {} 235 236 bool verify(const Function &F) { 237 M = F.getParent(); 238 Context = &M->getContext(); 239 240 // First ensure the function is well-enough formed to compute dominance 241 // information. 242 if (F.empty()) { 243 OS << "Function '" << F.getName() 244 << "' does not contain an entry block!\n"; 245 return false; 246 } 247 for (const BasicBlock &BB : F) { 248 if (BB.empty() || !BB.back().isTerminator()) { 249 OS << "Basic Block in function '" << F.getName() 250 << "' does not have terminator!\n"; 251 BB.printAsOperand(OS, true); 252 OS << "\n"; 253 return false; 254 } 255 } 256 257 // Now directly compute a dominance tree. We don't rely on the pass 258 // manager to provide this as it isolates us from a potentially 259 // out-of-date dominator tree and makes it significantly more complex to 260 // run this code outside of a pass manager. 261 // FIXME: It's really gross that we have to cast away constness here. 262 DT.recalculate(const_cast<Function &>(F)); 263 264 Broken = false; 265 // FIXME: We strip const here because the inst visitor strips const. 266 visit(const_cast<Function &>(F)); 267 verifySiblingFuncletUnwinds(); 268 InstsInThisBlock.clear(); 269 LandingPadResultTy = nullptr; 270 SawFrameEscape = false; 271 SiblingFuncletInfo.clear(); 272 273 return !Broken; 274 } 275 276 bool verify(const Module &M) { 277 this->M = &M; 278 Context = &M.getContext(); 279 Broken = false; 280 281 // Scan through, checking all of the external function's linkage now... 282 for (const Function &F : M) { 283 visitGlobalValue(F); 284 285 // Check to make sure function prototypes are okay. 286 if (F.isDeclaration()) 287 visitFunction(F); 288 } 289 290 // Now that we've visited every function, verify that we never asked to 291 // recover a frame index that wasn't escaped. 292 verifyFrameRecoverIndices(); 293 for (const GlobalVariable &GV : M.globals()) 294 visitGlobalVariable(GV); 295 296 for (const GlobalAlias &GA : M.aliases()) 297 visitGlobalAlias(GA); 298 299 for (const NamedMDNode &NMD : M.named_metadata()) 300 visitNamedMDNode(NMD); 301 302 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 303 visitComdat(SMEC.getValue()); 304 305 visitModuleFlags(M); 306 visitModuleIdents(M); 307 308 verifyCompileUnits(); 309 310 // Verify type references last. 311 verifyTypeRefs(); 312 313 return !Broken; 314 } 315 316 private: 317 // Verification methods... 318 void visitGlobalValue(const GlobalValue &GV); 319 void visitGlobalVariable(const GlobalVariable &GV); 320 void visitGlobalAlias(const GlobalAlias &GA); 321 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 322 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 323 const GlobalAlias &A, const Constant &C); 324 void visitNamedMDNode(const NamedMDNode &NMD); 325 void visitMDNode(const MDNode &MD); 326 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 327 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 328 void visitComdat(const Comdat &C); 329 void visitModuleIdents(const Module &M); 330 void visitModuleFlags(const Module &M); 331 void visitModuleFlag(const MDNode *Op, 332 DenseMap<const MDString *, const MDNode *> &SeenIDs, 333 SmallVectorImpl<const MDNode *> &Requirements); 334 void visitFunction(const Function &F); 335 void visitBasicBlock(BasicBlock &BB); 336 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty); 337 void visitDereferenceableMetadata(Instruction& I, MDNode* MD); 338 339 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 340 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 341 #include "llvm/IR/Metadata.def" 342 void visitDIScope(const DIScope &N); 343 void visitDIVariable(const DIVariable &N); 344 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 345 void visitDITemplateParameter(const DITemplateParameter &N); 346 347 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 348 349 /// \brief Check for a valid string-based type reference. 350 /// 351 /// Checks if \c MD is a string-based type reference. If it is, keeps track 352 /// of it (and its user, \c N) for error messages later. 353 bool isValidUUID(const MDNode &N, const Metadata *MD); 354 355 /// \brief Check for a valid type reference. 356 /// 357 /// Checks for subclasses of \a DIType, or \a isValidUUID(). 358 bool isTypeRef(const MDNode &N, const Metadata *MD); 359 360 /// \brief Check for a valid scope reference. 361 /// 362 /// Checks for subclasses of \a DIScope, or \a isValidUUID(). 363 bool isScopeRef(const MDNode &N, const Metadata *MD); 364 365 /// \brief Check for a valid debug info reference. 366 /// 367 /// Checks for subclasses of \a DINode, or \a isValidUUID(). 368 bool isDIRef(const MDNode &N, const Metadata *MD); 369 370 // InstVisitor overrides... 371 using InstVisitor<Verifier>::visit; 372 void visit(Instruction &I); 373 374 void visitTruncInst(TruncInst &I); 375 void visitZExtInst(ZExtInst &I); 376 void visitSExtInst(SExtInst &I); 377 void visitFPTruncInst(FPTruncInst &I); 378 void visitFPExtInst(FPExtInst &I); 379 void visitFPToUIInst(FPToUIInst &I); 380 void visitFPToSIInst(FPToSIInst &I); 381 void visitUIToFPInst(UIToFPInst &I); 382 void visitSIToFPInst(SIToFPInst &I); 383 void visitIntToPtrInst(IntToPtrInst &I); 384 void visitPtrToIntInst(PtrToIntInst &I); 385 void visitBitCastInst(BitCastInst &I); 386 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 387 void visitPHINode(PHINode &PN); 388 void visitBinaryOperator(BinaryOperator &B); 389 void visitICmpInst(ICmpInst &IC); 390 void visitFCmpInst(FCmpInst &FC); 391 void visitExtractElementInst(ExtractElementInst &EI); 392 void visitInsertElementInst(InsertElementInst &EI); 393 void visitShuffleVectorInst(ShuffleVectorInst &EI); 394 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 395 void visitCallInst(CallInst &CI); 396 void visitInvokeInst(InvokeInst &II); 397 void visitGetElementPtrInst(GetElementPtrInst &GEP); 398 void visitLoadInst(LoadInst &LI); 399 void visitStoreInst(StoreInst &SI); 400 void verifyDominatesUse(Instruction &I, unsigned i); 401 void visitInstruction(Instruction &I); 402 void visitTerminatorInst(TerminatorInst &I); 403 void visitBranchInst(BranchInst &BI); 404 void visitReturnInst(ReturnInst &RI); 405 void visitSwitchInst(SwitchInst &SI); 406 void visitIndirectBrInst(IndirectBrInst &BI); 407 void visitSelectInst(SelectInst &SI); 408 void visitUserOp1(Instruction &I); 409 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 410 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); 411 template <class DbgIntrinsicTy> 412 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII); 413 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 414 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 415 void visitFenceInst(FenceInst &FI); 416 void visitAllocaInst(AllocaInst &AI); 417 void visitExtractValueInst(ExtractValueInst &EVI); 418 void visitInsertValueInst(InsertValueInst &IVI); 419 void visitEHPadPredecessors(Instruction &I); 420 void visitLandingPadInst(LandingPadInst &LPI); 421 void visitCatchPadInst(CatchPadInst &CPI); 422 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 423 void visitCleanupPadInst(CleanupPadInst &CPI); 424 void visitFuncletPadInst(FuncletPadInst &FPI); 425 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 426 void visitCleanupReturnInst(CleanupReturnInst &CRI); 427 428 void verifyCallSite(CallSite CS); 429 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal); 430 void verifySwiftErrorValue(const Value *SwiftErrorVal); 431 void verifyMustTailCall(CallInst &CI); 432 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 433 unsigned ArgNo, std::string &Suffix); 434 bool verifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 435 SmallVectorImpl<Type *> &ArgTys); 436 bool verifyIntrinsicIsVarArg(bool isVarArg, 437 ArrayRef<Intrinsic::IITDescriptor> &Infos); 438 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params); 439 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, 440 const Value *V); 441 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 442 bool isReturnValue, const Value *V); 443 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 444 const Value *V); 445 void verifyFunctionMetadata( 446 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs); 447 448 void visitConstantExprsRecursively(const Constant *EntryC); 449 void visitConstantExpr(const ConstantExpr *CE); 450 void verifyStatepoint(ImmutableCallSite CS); 451 void verifyFrameRecoverIndices(); 452 void verifySiblingFuncletUnwinds(); 453 454 /// @{ 455 /// Module-level debug info verification... 456 void verifyTypeRefs(); 457 void verifyCompileUnits(); 458 template <class MapTy> 459 void verifyBitPieceExpression(const DbgInfoIntrinsic &I, 460 const MapTy &TypeRefs); 461 void visitUnresolvedTypeRef(const MDString *S, const MDNode *N); 462 /// @} 463 }; 464 } // End anonymous namespace 465 466 // Assert - We know that cond should be true, if not print an error message. 467 #define Assert(C, ...) \ 468 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0) 469 470 void Verifier::visit(Instruction &I) { 471 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 472 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 473 InstVisitor<Verifier>::visit(I); 474 } 475 476 // Helper to recursively iterate over indirect users. By 477 // returning false, the callback can ask to stop recursing 478 // further. 479 static void forEachUser(const Value *User, 480 SmallPtrSet<const Value *, 32> &Visited, 481 llvm::function_ref<bool(const Value *)> Callback) { 482 if (!Visited.insert(User).second) 483 return; 484 for (const Value *TheNextUser : User->materialized_users()) 485 if (Callback(TheNextUser)) 486 forEachUser(TheNextUser, Visited, Callback); 487 } 488 489 void Verifier::visitGlobalValue(const GlobalValue &GV) { 490 Assert(!GV.isDeclaration() || GV.hasExternalLinkage() || 491 GV.hasExternalWeakLinkage(), 492 "Global is external, but doesn't have external or weak linkage!", &GV); 493 494 Assert(GV.getAlignment() <= Value::MaximumAlignment, 495 "huge alignment values are unsupported", &GV); 496 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 497 "Only global variables can have appending linkage!", &GV); 498 499 if (GV.hasAppendingLinkage()) { 500 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 501 Assert(GVar && GVar->getValueType()->isArrayTy(), 502 "Only global arrays can have appending linkage!", GVar); 503 } 504 505 if (GV.isDeclarationForLinker()) 506 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 507 508 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 509 if (const Instruction *I = dyn_cast<Instruction>(V)) { 510 if (!I->getParent() || !I->getParent()->getParent()) 511 CheckFailed("Global is referenced by parentless instruction!", &GV, 512 M, I); 513 else if (I->getParent()->getParent()->getParent() != M) 514 CheckFailed("Global is referenced in a different module!", &GV, 515 M, I, I->getParent()->getParent(), 516 I->getParent()->getParent()->getParent()); 517 return false; 518 } else if (const Function *F = dyn_cast<Function>(V)) { 519 if (F->getParent() != M) 520 CheckFailed("Global is used by function in a different module", &GV, 521 M, F, F->getParent()); 522 return false; 523 } 524 return true; 525 }); 526 } 527 528 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 529 if (GV.hasInitializer()) { 530 Assert(GV.getInitializer()->getType() == GV.getValueType(), 531 "Global variable initializer type does not match global " 532 "variable type!", 533 &GV); 534 535 // If the global has common linkage, it must have a zero initializer and 536 // cannot be constant. 537 if (GV.hasCommonLinkage()) { 538 Assert(GV.getInitializer()->isNullValue(), 539 "'common' global must have a zero initializer!", &GV); 540 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 541 &GV); 542 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 543 } 544 } else { 545 Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), 546 "invalid linkage type for global declaration", &GV); 547 } 548 549 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 550 GV.getName() == "llvm.global_dtors")) { 551 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 552 "invalid linkage for intrinsic global variable", &GV); 553 // Don't worry about emitting an error for it not being an array, 554 // visitGlobalValue will complain on appending non-array. 555 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 556 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 557 PointerType *FuncPtrTy = 558 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); 559 // FIXME: Reject the 2-field form in LLVM 4.0. 560 Assert(STy && 561 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 562 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 563 STy->getTypeAtIndex(1) == FuncPtrTy, 564 "wrong type for intrinsic global variable", &GV); 565 if (STy->getNumElements() == 3) { 566 Type *ETy = STy->getTypeAtIndex(2); 567 Assert(ETy->isPointerTy() && 568 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 569 "wrong type for intrinsic global variable", &GV); 570 } 571 } 572 } 573 574 if (GV.hasName() && (GV.getName() == "llvm.used" || 575 GV.getName() == "llvm.compiler.used")) { 576 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 577 "invalid linkage for intrinsic global variable", &GV); 578 Type *GVType = GV.getValueType(); 579 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 580 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 581 Assert(PTy, "wrong type for intrinsic global variable", &GV); 582 if (GV.hasInitializer()) { 583 const Constant *Init = GV.getInitializer(); 584 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 585 Assert(InitArray, "wrong initalizer for intrinsic global variable", 586 Init); 587 for (Value *Op : InitArray->operands()) { 588 Value *V = Op->stripPointerCastsNoFollowAliases(); 589 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 590 isa<GlobalAlias>(V), 591 "invalid llvm.used member", V); 592 Assert(V->hasName(), "members of llvm.used must be named", V); 593 } 594 } 595 } 596 } 597 598 Assert(!GV.hasDLLImportStorageClass() || 599 (GV.isDeclaration() && GV.hasExternalLinkage()) || 600 GV.hasAvailableExternallyLinkage(), 601 "Global is marked as dllimport, but not external", &GV); 602 603 if (!GV.hasInitializer()) { 604 visitGlobalValue(GV); 605 return; 606 } 607 608 // Walk any aggregate initializers looking for bitcasts between address spaces 609 visitConstantExprsRecursively(GV.getInitializer()); 610 611 visitGlobalValue(GV); 612 } 613 614 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 615 SmallPtrSet<const GlobalAlias*, 4> Visited; 616 Visited.insert(&GA); 617 visitAliaseeSubExpr(Visited, GA, C); 618 } 619 620 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 621 const GlobalAlias &GA, const Constant &C) { 622 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 623 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 624 &GA); 625 626 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 627 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 628 629 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 630 &GA); 631 } else { 632 // Only continue verifying subexpressions of GlobalAliases. 633 // Do not recurse into global initializers. 634 return; 635 } 636 } 637 638 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 639 visitConstantExprsRecursively(CE); 640 641 for (const Use &U : C.operands()) { 642 Value *V = &*U; 643 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 644 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 645 else if (const auto *C2 = dyn_cast<Constant>(V)) 646 visitAliaseeSubExpr(Visited, GA, *C2); 647 } 648 } 649 650 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 651 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 652 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 653 "weak_odr, or external linkage!", 654 &GA); 655 const Constant *Aliasee = GA.getAliasee(); 656 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 657 Assert(GA.getType() == Aliasee->getType(), 658 "Alias and aliasee types should match!", &GA); 659 660 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 661 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 662 663 visitAliaseeSubExpr(GA, *Aliasee); 664 665 visitGlobalValue(GA); 666 } 667 668 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 669 for (const MDNode *MD : NMD.operands()) { 670 if (NMD.getName() == "llvm.dbg.cu") { 671 Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 672 } 673 674 if (!MD) 675 continue; 676 677 visitMDNode(*MD); 678 } 679 } 680 681 void Verifier::visitMDNode(const MDNode &MD) { 682 // Only visit each node once. Metadata can be mutually recursive, so this 683 // avoids infinite recursion here, as well as being an optimization. 684 if (!MDNodes.insert(&MD).second) 685 return; 686 687 switch (MD.getMetadataID()) { 688 default: 689 llvm_unreachable("Invalid MDNode subclass"); 690 case Metadata::MDTupleKind: 691 break; 692 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 693 case Metadata::CLASS##Kind: \ 694 visit##CLASS(cast<CLASS>(MD)); \ 695 break; 696 #include "llvm/IR/Metadata.def" 697 } 698 699 for (const Metadata *Op : MD.operands()) { 700 if (!Op) 701 continue; 702 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 703 &MD, Op); 704 if (auto *N = dyn_cast<MDNode>(Op)) { 705 visitMDNode(*N); 706 continue; 707 } 708 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 709 visitValueAsMetadata(*V, nullptr); 710 continue; 711 } 712 } 713 714 // Check these last, so we diagnose problems in operands first. 715 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 716 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 717 } 718 719 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 720 Assert(MD.getValue(), "Expected valid value", &MD); 721 Assert(!MD.getValue()->getType()->isMetadataTy(), 722 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 723 724 auto *L = dyn_cast<LocalAsMetadata>(&MD); 725 if (!L) 726 return; 727 728 Assert(F, "function-local metadata used outside a function", L); 729 730 // If this was an instruction, bb, or argument, verify that it is in the 731 // function that we expect. 732 Function *ActualF = nullptr; 733 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 734 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 735 ActualF = I->getParent()->getParent(); 736 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 737 ActualF = BB->getParent(); 738 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 739 ActualF = A->getParent(); 740 assert(ActualF && "Unimplemented function local metadata case!"); 741 742 Assert(ActualF == F, "function-local metadata used in wrong function", L); 743 } 744 745 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 746 Metadata *MD = MDV.getMetadata(); 747 if (auto *N = dyn_cast<MDNode>(MD)) { 748 visitMDNode(*N); 749 return; 750 } 751 752 // Only visit each node once. Metadata can be mutually recursive, so this 753 // avoids infinite recursion here, as well as being an optimization. 754 if (!MDNodes.insert(MD).second) 755 return; 756 757 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 758 visitValueAsMetadata(*V, F); 759 } 760 761 bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) { 762 auto *S = dyn_cast<MDString>(MD); 763 if (!S || S->getString().empty()) 764 return false; 765 766 // Keep track of names of types referenced via UUID so we can check that they 767 // actually exist. 768 UnresolvedTypeRefs.insert(std::make_pair(S, &N)); 769 return true; 770 } 771 772 /// \brief Check if a value can be a reference to a type. 773 bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) { 774 return !MD || isValidUUID(N, MD) || isa<DIType>(MD); 775 } 776 777 /// \brief Check if a value can be a ScopeRef. 778 bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) { 779 return !MD || isValidUUID(N, MD) || isa<DIScope>(MD); 780 } 781 782 /// \brief Check if a value can be a debug info ref. 783 bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) { 784 return !MD || isValidUUID(N, MD) || isa<DINode>(MD); 785 } 786 787 template <class Ty> 788 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) { 789 for (Metadata *MD : N.operands()) { 790 if (MD) { 791 if (!isa<Ty>(MD)) 792 return false; 793 } else { 794 if (!AllowNull) 795 return false; 796 } 797 } 798 return true; 799 } 800 801 template <class Ty> 802 bool isValidMetadataArray(const MDTuple &N) { 803 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false); 804 } 805 806 template <class Ty> 807 bool isValidMetadataNullArray(const MDTuple &N) { 808 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true); 809 } 810 811 void Verifier::visitDILocation(const DILocation &N) { 812 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 813 "location requires a valid scope", &N, N.getRawScope()); 814 if (auto *IA = N.getRawInlinedAt()) 815 Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 816 } 817 818 void Verifier::visitGenericDINode(const GenericDINode &N) { 819 Assert(N.getTag(), "invalid tag", &N); 820 } 821 822 void Verifier::visitDIScope(const DIScope &N) { 823 if (auto *F = N.getRawFile()) 824 Assert(isa<DIFile>(F), "invalid file", &N, F); 825 } 826 827 void Verifier::visitDISubrange(const DISubrange &N) { 828 Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 829 Assert(N.getCount() >= -1, "invalid subrange count", &N); 830 } 831 832 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 833 Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 834 } 835 836 void Verifier::visitDIBasicType(const DIBasicType &N) { 837 Assert(N.getTag() == dwarf::DW_TAG_base_type || 838 N.getTag() == dwarf::DW_TAG_unspecified_type, 839 "invalid tag", &N); 840 } 841 842 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 843 // Common scope checks. 844 visitDIScope(N); 845 846 Assert(N.getTag() == dwarf::DW_TAG_typedef || 847 N.getTag() == dwarf::DW_TAG_pointer_type || 848 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 849 N.getTag() == dwarf::DW_TAG_reference_type || 850 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 851 N.getTag() == dwarf::DW_TAG_const_type || 852 N.getTag() == dwarf::DW_TAG_volatile_type || 853 N.getTag() == dwarf::DW_TAG_restrict_type || 854 N.getTag() == dwarf::DW_TAG_member || 855 N.getTag() == dwarf::DW_TAG_inheritance || 856 N.getTag() == dwarf::DW_TAG_friend, 857 "invalid tag", &N); 858 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 859 Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N, 860 N.getExtraData()); 861 } 862 863 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getRawScope()); 864 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, 865 N.getBaseType()); 866 } 867 868 static bool hasConflictingReferenceFlags(unsigned Flags) { 869 return (Flags & DINode::FlagLValueReference) && 870 (Flags & DINode::FlagRValueReference); 871 } 872 873 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 874 auto *Params = dyn_cast<MDTuple>(&RawParams); 875 Assert(Params, "invalid template params", &N, &RawParams); 876 for (Metadata *Op : Params->operands()) { 877 Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N, 878 Params, Op); 879 } 880 } 881 882 void Verifier::visitDICompositeType(const DICompositeType &N) { 883 // Common scope checks. 884 visitDIScope(N); 885 886 Assert(N.getTag() == dwarf::DW_TAG_array_type || 887 N.getTag() == dwarf::DW_TAG_structure_type || 888 N.getTag() == dwarf::DW_TAG_union_type || 889 N.getTag() == dwarf::DW_TAG_enumeration_type || 890 N.getTag() == dwarf::DW_TAG_class_type, 891 "invalid tag", &N); 892 893 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getRawScope()); 894 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, 895 N.getBaseType()); 896 897 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 898 "invalid composite elements", &N, N.getRawElements()); 899 Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N, 900 N.getRawVTableHolder()); 901 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", 902 &N); 903 if (auto *Params = N.getRawTemplateParams()) 904 visitTemplateParams(N, *Params); 905 906 if (N.getTag() == dwarf::DW_TAG_class_type || 907 N.getTag() == dwarf::DW_TAG_union_type) { 908 Assert(N.getFile() && !N.getFile()->getFilename().empty(), 909 "class/union requires a filename", &N, N.getFile()); 910 } 911 } 912 913 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 914 Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 915 if (auto *Types = N.getRawTypeArray()) { 916 Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 917 for (Metadata *Ty : N.getTypeArray()->operands()) { 918 Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty); 919 } 920 } 921 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", 922 &N); 923 } 924 925 void Verifier::visitDIFile(const DIFile &N) { 926 Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 927 } 928 929 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 930 Assert(N.isDistinct(), "compile units must be distinct", &N); 931 Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 932 933 // Don't bother verifying the compilation directory or producer string 934 // as those could be empty. 935 Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 936 N.getRawFile()); 937 Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N, 938 N.getFile()); 939 940 Assert((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 941 "invalid emission kind", &N); 942 943 if (auto *Array = N.getRawEnumTypes()) { 944 Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array); 945 for (Metadata *Op : N.getEnumTypes()->operands()) { 946 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 947 Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 948 "invalid enum type", &N, N.getEnumTypes(), Op); 949 } 950 } 951 if (auto *Array = N.getRawRetainedTypes()) { 952 Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 953 for (Metadata *Op : N.getRetainedTypes()->operands()) { 954 Assert(Op && (isa<DIType>(Op) || 955 (isa<DISubprogram>(Op) && 956 cast<DISubprogram>(Op)->isDefinition() == false)), 957 "invalid retained type", &N, Op); 958 } 959 } 960 if (auto *Array = N.getRawGlobalVariables()) { 961 Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 962 for (Metadata *Op : N.getGlobalVariables()->operands()) { 963 Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N, 964 Op); 965 } 966 } 967 if (auto *Array = N.getRawImportedEntities()) { 968 Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 969 for (Metadata *Op : N.getImportedEntities()->operands()) { 970 Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N, 971 Op); 972 } 973 } 974 if (auto *Array = N.getRawMacros()) { 975 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array); 976 for (Metadata *Op : N.getMacros()->operands()) { 977 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 978 } 979 } 980 CUVisited.insert(&N); 981 } 982 983 void Verifier::visitDISubprogram(const DISubprogram &N) { 984 Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 985 Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope()); 986 if (auto *F = N.getRawFile()) 987 Assert(isa<DIFile>(F), "invalid file", &N, F); 988 if (auto *T = N.getRawType()) 989 Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 990 Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N, 991 N.getRawContainingType()); 992 if (auto *Params = N.getRawTemplateParams()) 993 visitTemplateParams(N, *Params); 994 if (auto *S = N.getRawDeclaration()) 995 Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 996 "invalid subprogram declaration", &N, S); 997 if (auto *RawVars = N.getRawVariables()) { 998 auto *Vars = dyn_cast<MDTuple>(RawVars); 999 Assert(Vars, "invalid variable list", &N, RawVars); 1000 for (Metadata *Op : Vars->operands()) { 1001 Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars, 1002 Op); 1003 } 1004 } 1005 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", 1006 &N); 1007 1008 auto *Unit = N.getRawUnit(); 1009 if (N.isDefinition()) { 1010 // Subprogram definitions (not part of the type hierarchy). 1011 Assert(N.isDistinct(), "subprogram definitions must be distinct", &N); 1012 Assert(Unit, "subprogram definitions must have a compile unit", &N); 1013 Assert(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1014 } else { 1015 // Subprogram declarations (part of the type hierarchy). 1016 Assert(!Unit, "subprogram declarations must not have a compile unit", &N); 1017 } 1018 } 1019 1020 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1021 Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1022 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1023 "invalid local scope", &N, N.getRawScope()); 1024 } 1025 1026 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1027 visitDILexicalBlockBase(N); 1028 1029 Assert(N.getLine() || !N.getColumn(), 1030 "cannot have column info without line info", &N); 1031 } 1032 1033 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1034 visitDILexicalBlockBase(N); 1035 } 1036 1037 void Verifier::visitDINamespace(const DINamespace &N) { 1038 Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1039 if (auto *S = N.getRawScope()) 1040 Assert(isa<DIScope>(S), "invalid scope ref", &N, S); 1041 } 1042 1043 void Verifier::visitDIMacro(const DIMacro &N) { 1044 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1045 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1046 "invalid macinfo type", &N); 1047 Assert(!N.getName().empty(), "anonymous macro", &N); 1048 if (!N.getValue().empty()) { 1049 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1050 } 1051 } 1052 1053 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1054 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1055 "invalid macinfo type", &N); 1056 if (auto *F = N.getRawFile()) 1057 Assert(isa<DIFile>(F), "invalid file", &N, F); 1058 1059 if (auto *Array = N.getRawElements()) { 1060 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1061 for (Metadata *Op : N.getElements()->operands()) { 1062 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1063 } 1064 } 1065 } 1066 1067 void Verifier::visitDIModule(const DIModule &N) { 1068 Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1069 Assert(!N.getName().empty(), "anonymous module", &N); 1070 } 1071 1072 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1073 Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType()); 1074 } 1075 1076 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1077 visitDITemplateParameter(N); 1078 1079 Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1080 &N); 1081 } 1082 1083 void Verifier::visitDITemplateValueParameter( 1084 const DITemplateValueParameter &N) { 1085 visitDITemplateParameter(N); 1086 1087 Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1088 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1089 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1090 "invalid tag", &N); 1091 } 1092 1093 void Verifier::visitDIVariable(const DIVariable &N) { 1094 if (auto *S = N.getRawScope()) 1095 Assert(isa<DIScope>(S), "invalid scope", &N, S); 1096 Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType()); 1097 if (auto *F = N.getRawFile()) 1098 Assert(isa<DIFile>(F), "invalid file", &N, F); 1099 } 1100 1101 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1102 // Checks common to all variables. 1103 visitDIVariable(N); 1104 1105 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1106 Assert(!N.getName().empty(), "missing global variable name", &N); 1107 if (auto *V = N.getRawVariable()) { 1108 Assert(isa<ConstantAsMetadata>(V) && 1109 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()), 1110 "invalid global varaible ref", &N, V); 1111 visitConstantExprsRecursively(cast<ConstantAsMetadata>(V)->getValue()); 1112 } 1113 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1114 Assert(isa<DIDerivedType>(Member), "invalid static data member declaration", 1115 &N, Member); 1116 } 1117 } 1118 1119 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1120 // Checks common to all variables. 1121 visitDIVariable(N); 1122 1123 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1124 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1125 "local variable requires a valid scope", &N, N.getRawScope()); 1126 } 1127 1128 void Verifier::visitDIExpression(const DIExpression &N) { 1129 Assert(N.isValid(), "invalid expression", &N); 1130 } 1131 1132 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1133 Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1134 if (auto *T = N.getRawType()) 1135 Assert(isTypeRef(N, T), "invalid type ref", &N, T); 1136 if (auto *F = N.getRawFile()) 1137 Assert(isa<DIFile>(F), "invalid file", &N, F); 1138 } 1139 1140 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1141 Assert(N.getTag() == dwarf::DW_TAG_imported_module || 1142 N.getTag() == dwarf::DW_TAG_imported_declaration, 1143 "invalid tag", &N); 1144 if (auto *S = N.getRawScope()) 1145 Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1146 Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N, 1147 N.getEntity()); 1148 } 1149 1150 void Verifier::visitComdat(const Comdat &C) { 1151 // The Module is invalid if the GlobalValue has private linkage. Entities 1152 // with private linkage don't have entries in the symbol table. 1153 if (const GlobalValue *GV = M->getNamedValue(C.getName())) 1154 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1155 GV); 1156 } 1157 1158 void Verifier::visitModuleIdents(const Module &M) { 1159 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1160 if (!Idents) 1161 return; 1162 1163 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1164 // Scan each llvm.ident entry and make sure that this requirement is met. 1165 for (const MDNode *N : Idents->operands()) { 1166 Assert(N->getNumOperands() == 1, 1167 "incorrect number of operands in llvm.ident metadata", N); 1168 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1169 ("invalid value for llvm.ident metadata entry operand" 1170 "(the operand should be a string)"), 1171 N->getOperand(0)); 1172 } 1173 } 1174 1175 void Verifier::visitModuleFlags(const Module &M) { 1176 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1177 if (!Flags) return; 1178 1179 // Scan each flag, and track the flags and requirements. 1180 DenseMap<const MDString*, const MDNode*> SeenIDs; 1181 SmallVector<const MDNode*, 16> Requirements; 1182 for (const MDNode *MDN : Flags->operands()) 1183 visitModuleFlag(MDN, SeenIDs, Requirements); 1184 1185 // Validate that the requirements in the module are valid. 1186 for (const MDNode *Requirement : Requirements) { 1187 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1188 const Metadata *ReqValue = Requirement->getOperand(1); 1189 1190 const MDNode *Op = SeenIDs.lookup(Flag); 1191 if (!Op) { 1192 CheckFailed("invalid requirement on flag, flag is not present in module", 1193 Flag); 1194 continue; 1195 } 1196 1197 if (Op->getOperand(2) != ReqValue) { 1198 CheckFailed(("invalid requirement on flag, " 1199 "flag does not have the required value"), 1200 Flag); 1201 continue; 1202 } 1203 } 1204 } 1205 1206 void 1207 Verifier::visitModuleFlag(const MDNode *Op, 1208 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1209 SmallVectorImpl<const MDNode *> &Requirements) { 1210 // Each module flag should have three arguments, the merge behavior (a 1211 // constant int), the flag ID (an MDString), and the value. 1212 Assert(Op->getNumOperands() == 3, 1213 "incorrect number of operands in module flag", Op); 1214 Module::ModFlagBehavior MFB; 1215 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1216 Assert( 1217 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1218 "invalid behavior operand in module flag (expected constant integer)", 1219 Op->getOperand(0)); 1220 Assert(false, 1221 "invalid behavior operand in module flag (unexpected constant)", 1222 Op->getOperand(0)); 1223 } 1224 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1225 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1226 Op->getOperand(1)); 1227 1228 // Sanity check the values for behaviors with additional requirements. 1229 switch (MFB) { 1230 case Module::Error: 1231 case Module::Warning: 1232 case Module::Override: 1233 // These behavior types accept any value. 1234 break; 1235 1236 case Module::Require: { 1237 // The value should itself be an MDNode with two operands, a flag ID (an 1238 // MDString), and a value. 1239 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1240 Assert(Value && Value->getNumOperands() == 2, 1241 "invalid value for 'require' module flag (expected metadata pair)", 1242 Op->getOperand(2)); 1243 Assert(isa<MDString>(Value->getOperand(0)), 1244 ("invalid value for 'require' module flag " 1245 "(first value operand should be a string)"), 1246 Value->getOperand(0)); 1247 1248 // Append it to the list of requirements, to check once all module flags are 1249 // scanned. 1250 Requirements.push_back(Value); 1251 break; 1252 } 1253 1254 case Module::Append: 1255 case Module::AppendUnique: { 1256 // These behavior types require the operand be an MDNode. 1257 Assert(isa<MDNode>(Op->getOperand(2)), 1258 "invalid value for 'append'-type module flag " 1259 "(expected a metadata node)", 1260 Op->getOperand(2)); 1261 break; 1262 } 1263 } 1264 1265 // Unless this is a "requires" flag, check the ID is unique. 1266 if (MFB != Module::Require) { 1267 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1268 Assert(Inserted, 1269 "module flag identifiers must be unique (or of 'require' type)", ID); 1270 } 1271 } 1272 1273 void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, 1274 bool isFunction, const Value *V) { 1275 unsigned Slot = ~0U; 1276 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) 1277 if (Attrs.getSlotIndex(I) == Idx) { 1278 Slot = I; 1279 break; 1280 } 1281 1282 assert(Slot != ~0U && "Attribute set inconsistency!"); 1283 1284 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); 1285 I != E; ++I) { 1286 if (I->isStringAttribute()) 1287 continue; 1288 1289 if (I->getKindAsEnum() == Attribute::NoReturn || 1290 I->getKindAsEnum() == Attribute::NoUnwind || 1291 I->getKindAsEnum() == Attribute::NoInline || 1292 I->getKindAsEnum() == Attribute::AlwaysInline || 1293 I->getKindAsEnum() == Attribute::OptimizeForSize || 1294 I->getKindAsEnum() == Attribute::StackProtect || 1295 I->getKindAsEnum() == Attribute::StackProtectReq || 1296 I->getKindAsEnum() == Attribute::StackProtectStrong || 1297 I->getKindAsEnum() == Attribute::SafeStack || 1298 I->getKindAsEnum() == Attribute::NoRedZone || 1299 I->getKindAsEnum() == Attribute::NoImplicitFloat || 1300 I->getKindAsEnum() == Attribute::Naked || 1301 I->getKindAsEnum() == Attribute::InlineHint || 1302 I->getKindAsEnum() == Attribute::StackAlignment || 1303 I->getKindAsEnum() == Attribute::UWTable || 1304 I->getKindAsEnum() == Attribute::NonLazyBind || 1305 I->getKindAsEnum() == Attribute::ReturnsTwice || 1306 I->getKindAsEnum() == Attribute::SanitizeAddress || 1307 I->getKindAsEnum() == Attribute::SanitizeThread || 1308 I->getKindAsEnum() == Attribute::SanitizeMemory || 1309 I->getKindAsEnum() == Attribute::MinSize || 1310 I->getKindAsEnum() == Attribute::NoDuplicate || 1311 I->getKindAsEnum() == Attribute::Builtin || 1312 I->getKindAsEnum() == Attribute::NoBuiltin || 1313 I->getKindAsEnum() == Attribute::Cold || 1314 I->getKindAsEnum() == Attribute::OptimizeNone || 1315 I->getKindAsEnum() == Attribute::JumpTable || 1316 I->getKindAsEnum() == Attribute::Convergent || 1317 I->getKindAsEnum() == Attribute::ArgMemOnly || 1318 I->getKindAsEnum() == Attribute::NoRecurse || 1319 I->getKindAsEnum() == Attribute::InaccessibleMemOnly || 1320 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly || 1321 I->getKindAsEnum() == Attribute::AllocSize) { 1322 if (!isFunction) { 1323 CheckFailed("Attribute '" + I->getAsString() + 1324 "' only applies to functions!", V); 1325 return; 1326 } 1327 } else if (I->getKindAsEnum() == Attribute::ReadOnly || 1328 I->getKindAsEnum() == Attribute::ReadNone) { 1329 if (Idx == 0) { 1330 CheckFailed("Attribute '" + I->getAsString() + 1331 "' does not apply to function returns"); 1332 return; 1333 } 1334 } else if (isFunction) { 1335 CheckFailed("Attribute '" + I->getAsString() + 1336 "' does not apply to functions!", V); 1337 return; 1338 } 1339 } 1340 } 1341 1342 // VerifyParameterAttrs - Check the given attributes for an argument or return 1343 // value of the specified type. The value V is printed in error messages. 1344 void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, 1345 bool isReturnValue, const Value *V) { 1346 if (!Attrs.hasAttributes(Idx)) 1347 return; 1348 1349 verifyAttributeTypes(Attrs, Idx, false, V); 1350 1351 if (isReturnValue) 1352 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 1353 !Attrs.hasAttribute(Idx, Attribute::Nest) && 1354 !Attrs.hasAttribute(Idx, Attribute::StructRet) && 1355 !Attrs.hasAttribute(Idx, Attribute::NoCapture) && 1356 !Attrs.hasAttribute(Idx, Attribute::Returned) && 1357 !Attrs.hasAttribute(Idx, Attribute::InAlloca) && 1358 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) && 1359 !Attrs.hasAttribute(Idx, Attribute::SwiftError), 1360 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " 1361 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1362 "values!", 1363 V); 1364 1365 // Check for mutually incompatible attributes. Only inreg is compatible with 1366 // sret. 1367 unsigned AttrCount = 0; 1368 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); 1369 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); 1370 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || 1371 Attrs.hasAttribute(Idx, Attribute::InReg); 1372 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); 1373 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1374 "and 'sret' are incompatible!", 1375 V); 1376 1377 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && 1378 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), 1379 "Attributes " 1380 "'inalloca and readonly' are incompatible!", 1381 V); 1382 1383 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && 1384 Attrs.hasAttribute(Idx, Attribute::Returned)), 1385 "Attributes " 1386 "'sret and returned' are incompatible!", 1387 V); 1388 1389 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && 1390 Attrs.hasAttribute(Idx, Attribute::SExt)), 1391 "Attributes " 1392 "'zeroext and signext' are incompatible!", 1393 V); 1394 1395 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && 1396 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), 1397 "Attributes " 1398 "'readnone and readonly' are incompatible!", 1399 V); 1400 1401 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && 1402 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), 1403 "Attributes " 1404 "'noinline and alwaysinline' are incompatible!", 1405 V); 1406 1407 Assert(!AttrBuilder(Attrs, Idx) 1408 .overlaps(AttributeFuncs::typeIncompatible(Ty)), 1409 "Wrong types for attribute: " + 1410 AttributeSet::get(*Context, Idx, 1411 AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx), 1412 V); 1413 1414 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1415 SmallPtrSet<Type*, 4> Visited; 1416 if (!PTy->getElementType()->isSized(&Visited)) { 1417 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && 1418 !Attrs.hasAttribute(Idx, Attribute::InAlloca), 1419 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1420 V); 1421 } 1422 if (!isa<PointerType>(PTy->getElementType())) 1423 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError), 1424 "Attribute 'swifterror' only applies to parameters " 1425 "with pointer to pointer type!", 1426 V); 1427 } else { 1428 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal), 1429 "Attribute 'byval' only applies to parameters with pointer type!", 1430 V); 1431 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError), 1432 "Attribute 'swifterror' only applies to parameters " 1433 "with pointer type!", 1434 V); 1435 } 1436 } 1437 1438 // Check parameter attributes against a function type. 1439 // The value V is printed in error messages. 1440 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, 1441 const Value *V) { 1442 if (Attrs.isEmpty()) 1443 return; 1444 1445 bool SawNest = false; 1446 bool SawReturned = false; 1447 bool SawSRet = false; 1448 bool SawSwiftSelf = false; 1449 bool SawSwiftError = false; 1450 1451 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1452 unsigned Idx = Attrs.getSlotIndex(i); 1453 1454 Type *Ty; 1455 if (Idx == 0) 1456 Ty = FT->getReturnType(); 1457 else if (Idx-1 < FT->getNumParams()) 1458 Ty = FT->getParamType(Idx-1); 1459 else 1460 break; // VarArgs attributes, verified elsewhere. 1461 1462 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); 1463 1464 if (Idx == 0) 1465 continue; 1466 1467 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 1468 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1469 SawNest = true; 1470 } 1471 1472 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 1473 Assert(!SawReturned, "More than one parameter has attribute returned!", 1474 V); 1475 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1476 "Incompatible " 1477 "argument and return types for 'returned' attribute", 1478 V); 1479 SawReturned = true; 1480 } 1481 1482 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { 1483 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1484 Assert(Idx == 1 || Idx == 2, 1485 "Attribute 'sret' is not on first or second parameter!", V); 1486 SawSRet = true; 1487 } 1488 1489 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) { 1490 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1491 SawSwiftSelf = true; 1492 } 1493 1494 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) { 1495 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1496 V); 1497 SawSwiftError = true; 1498 } 1499 1500 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { 1501 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", 1502 V); 1503 } 1504 } 1505 1506 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) 1507 return; 1508 1509 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); 1510 1511 Assert( 1512 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1513 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), 1514 "Attributes 'readnone and readonly' are incompatible!", V); 1515 1516 Assert( 1517 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1518 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1519 Attribute::InaccessibleMemOrArgMemOnly)), 1520 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V); 1521 1522 Assert( 1523 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && 1524 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1525 Attribute::InaccessibleMemOnly)), 1526 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1527 1528 Assert( 1529 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && 1530 Attrs.hasAttribute(AttributeSet::FunctionIndex, 1531 Attribute::AlwaysInline)), 1532 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1533 1534 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 1535 Attribute::OptimizeNone)) { 1536 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), 1537 "Attribute 'optnone' requires 'noinline'!", V); 1538 1539 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, 1540 Attribute::OptimizeForSize), 1541 "Attributes 'optsize and optnone' are incompatible!", V); 1542 1543 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), 1544 "Attributes 'minsize and optnone' are incompatible!", V); 1545 } 1546 1547 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, 1548 Attribute::JumpTable)) { 1549 const GlobalValue *GV = cast<GlobalValue>(V); 1550 Assert(GV->hasUnnamedAddr(), 1551 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1552 } 1553 1554 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) { 1555 std::pair<unsigned, Optional<unsigned>> Args = 1556 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex); 1557 1558 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1559 if (ParamNo >= FT->getNumParams()) { 1560 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1561 return false; 1562 } 1563 1564 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1565 CheckFailed("'allocsize' " + Name + 1566 " argument must refer to an integer parameter", 1567 V); 1568 return false; 1569 } 1570 1571 return true; 1572 }; 1573 1574 if (!CheckParam("element size", Args.first)) 1575 return; 1576 1577 if (Args.second && !CheckParam("number of elements", *Args.second)) 1578 return; 1579 } 1580 } 1581 1582 void Verifier::verifyFunctionMetadata( 1583 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) { 1584 if (MDs.empty()) 1585 return; 1586 1587 for (const auto &Pair : MDs) { 1588 if (Pair.first == LLVMContext::MD_prof) { 1589 MDNode *MD = Pair.second; 1590 Assert(MD->getNumOperands() == 2, 1591 "!prof annotations should have exactly 2 operands", MD); 1592 1593 // Check first operand. 1594 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1595 MD); 1596 Assert(isa<MDString>(MD->getOperand(0)), 1597 "expected string with name of the !prof annotation", MD); 1598 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1599 StringRef ProfName = MDS->getString(); 1600 Assert(ProfName.equals("function_entry_count"), 1601 "first operand should be 'function_entry_count'", MD); 1602 1603 // Check second operand. 1604 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1605 MD); 1606 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1607 "expected integer argument to function_entry_count", MD); 1608 } 1609 } 1610 } 1611 1612 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1613 if (!ConstantExprVisited.insert(EntryC).second) 1614 return; 1615 1616 SmallVector<const Constant *, 16> Stack; 1617 Stack.push_back(EntryC); 1618 1619 while (!Stack.empty()) { 1620 const Constant *C = Stack.pop_back_val(); 1621 1622 // Check this constant expression. 1623 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1624 visitConstantExpr(CE); 1625 1626 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1627 // Global Values get visited separately, but we do need to make sure 1628 // that the global value is in the correct module 1629 Assert(GV->getParent() == M, "Referencing global in another module!", 1630 EntryC, M, GV, GV->getParent()); 1631 continue; 1632 } 1633 1634 // Visit all sub-expressions. 1635 for (const Use &U : C->operands()) { 1636 const auto *OpC = dyn_cast<Constant>(U); 1637 if (!OpC) 1638 continue; 1639 if (!ConstantExprVisited.insert(OpC).second) 1640 continue; 1641 Stack.push_back(OpC); 1642 } 1643 } 1644 } 1645 1646 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1647 if (CE->getOpcode() != Instruction::BitCast) 1648 return; 1649 1650 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1651 CE->getType()), 1652 "Invalid bitcast", CE); 1653 } 1654 1655 bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) { 1656 if (Attrs.getNumSlots() == 0) 1657 return true; 1658 1659 unsigned LastSlot = Attrs.getNumSlots() - 1; 1660 unsigned LastIndex = Attrs.getSlotIndex(LastSlot); 1661 if (LastIndex <= Params 1662 || (LastIndex == AttributeSet::FunctionIndex 1663 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) 1664 return true; 1665 1666 return false; 1667 } 1668 1669 /// Verify that statepoint intrinsic is well formed. 1670 void Verifier::verifyStatepoint(ImmutableCallSite CS) { 1671 assert(CS.getCalledFunction() && 1672 CS.getCalledFunction()->getIntrinsicID() == 1673 Intrinsic::experimental_gc_statepoint); 1674 1675 const Instruction &CI = *CS.getInstruction(); 1676 1677 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && 1678 !CS.onlyAccessesArgMemory(), 1679 "gc.statepoint must read and write all memory to preserve " 1680 "reordering restrictions required by safepoint semantics", 1681 &CI); 1682 1683 const Value *IDV = CS.getArgument(0); 1684 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", 1685 &CI); 1686 1687 const Value *NumPatchBytesV = CS.getArgument(1); 1688 Assert(isa<ConstantInt>(NumPatchBytesV), 1689 "gc.statepoint number of patchable bytes must be a constant integer", 1690 &CI); 1691 const int64_t NumPatchBytes = 1692 cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); 1693 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1694 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " 1695 "positive", 1696 &CI); 1697 1698 const Value *Target = CS.getArgument(2); 1699 auto *PT = dyn_cast<PointerType>(Target->getType()); 1700 Assert(PT && PT->getElementType()->isFunctionTy(), 1701 "gc.statepoint callee must be of function pointer type", &CI, Target); 1702 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1703 1704 const Value *NumCallArgsV = CS.getArgument(3); 1705 Assert(isa<ConstantInt>(NumCallArgsV), 1706 "gc.statepoint number of arguments to underlying call " 1707 "must be constant integer", 1708 &CI); 1709 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); 1710 Assert(NumCallArgs >= 0, 1711 "gc.statepoint number of arguments to underlying call " 1712 "must be positive", 1713 &CI); 1714 const int NumParams = (int)TargetFuncType->getNumParams(); 1715 if (TargetFuncType->isVarArg()) { 1716 Assert(NumCallArgs >= NumParams, 1717 "gc.statepoint mismatch in number of vararg call args", &CI); 1718 1719 // TODO: Remove this limitation 1720 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1721 "gc.statepoint doesn't support wrapping non-void " 1722 "vararg functions yet", 1723 &CI); 1724 } else 1725 Assert(NumCallArgs == NumParams, 1726 "gc.statepoint mismatch in number of call args", &CI); 1727 1728 const Value *FlagsV = CS.getArgument(4); 1729 Assert(isa<ConstantInt>(FlagsV), 1730 "gc.statepoint flags must be constant integer", &CI); 1731 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); 1732 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 1733 "unknown flag used in gc.statepoint flags argument", &CI); 1734 1735 // Verify that the types of the call parameter arguments match 1736 // the type of the wrapped callee. 1737 for (int i = 0; i < NumParams; i++) { 1738 Type *ParamType = TargetFuncType->getParamType(i); 1739 Type *ArgType = CS.getArgument(5 + i)->getType(); 1740 Assert(ArgType == ParamType, 1741 "gc.statepoint call argument does not match wrapped " 1742 "function type", 1743 &CI); 1744 } 1745 1746 const int EndCallArgsInx = 4 + NumCallArgs; 1747 1748 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); 1749 Assert(isa<ConstantInt>(NumTransitionArgsV), 1750 "gc.statepoint number of transition arguments " 1751 "must be constant integer", 1752 &CI); 1753 const int NumTransitionArgs = 1754 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 1755 Assert(NumTransitionArgs >= 0, 1756 "gc.statepoint number of transition arguments must be positive", &CI); 1757 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 1758 1759 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); 1760 Assert(isa<ConstantInt>(NumDeoptArgsV), 1761 "gc.statepoint number of deoptimization arguments " 1762 "must be constant integer", 1763 &CI); 1764 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 1765 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " 1766 "must be positive", 1767 &CI); 1768 1769 const int ExpectedNumArgs = 1770 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 1771 Assert(ExpectedNumArgs <= (int)CS.arg_size(), 1772 "gc.statepoint too few arguments according to length fields", &CI); 1773 1774 // Check that the only uses of this gc.statepoint are gc.result or 1775 // gc.relocate calls which are tied to this statepoint and thus part 1776 // of the same statepoint sequence 1777 for (const User *U : CI.users()) { 1778 const CallInst *Call = dyn_cast<const CallInst>(U); 1779 Assert(Call, "illegal use of statepoint token", &CI, U); 1780 if (!Call) continue; 1781 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call), 1782 "gc.result or gc.relocate are the only value uses" 1783 "of a gc.statepoint", 1784 &CI, U); 1785 if (isa<GCResultInst>(Call)) { 1786 Assert(Call->getArgOperand(0) == &CI, 1787 "gc.result connected to wrong gc.statepoint", &CI, Call); 1788 } else if (isa<GCRelocateInst>(Call)) { 1789 Assert(Call->getArgOperand(0) == &CI, 1790 "gc.relocate connected to wrong gc.statepoint", &CI, Call); 1791 } 1792 } 1793 1794 // Note: It is legal for a single derived pointer to be listed multiple 1795 // times. It's non-optimal, but it is legal. It can also happen after 1796 // insertion if we strip a bitcast away. 1797 // Note: It is really tempting to check that each base is relocated and 1798 // that a derived pointer is never reused as a base pointer. This turns 1799 // out to be problematic since optimizations run after safepoint insertion 1800 // can recognize equality properties that the insertion logic doesn't know 1801 // about. See example statepoint.ll in the verifier subdirectory 1802 } 1803 1804 void Verifier::verifyFrameRecoverIndices() { 1805 for (auto &Counts : FrameEscapeInfo) { 1806 Function *F = Counts.first; 1807 unsigned EscapedObjectCount = Counts.second.first; 1808 unsigned MaxRecoveredIndex = Counts.second.second; 1809 Assert(MaxRecoveredIndex <= EscapedObjectCount, 1810 "all indices passed to llvm.localrecover must be less than the " 1811 "number of arguments passed ot llvm.localescape in the parent " 1812 "function", 1813 F); 1814 } 1815 } 1816 1817 static Instruction *getSuccPad(TerminatorInst *Terminator) { 1818 BasicBlock *UnwindDest; 1819 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 1820 UnwindDest = II->getUnwindDest(); 1821 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 1822 UnwindDest = CSI->getUnwindDest(); 1823 else 1824 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 1825 return UnwindDest->getFirstNonPHI(); 1826 } 1827 1828 void Verifier::verifySiblingFuncletUnwinds() { 1829 SmallPtrSet<Instruction *, 8> Visited; 1830 SmallPtrSet<Instruction *, 8> Active; 1831 for (const auto &Pair : SiblingFuncletInfo) { 1832 Instruction *PredPad = Pair.first; 1833 if (Visited.count(PredPad)) 1834 continue; 1835 Active.insert(PredPad); 1836 TerminatorInst *Terminator = Pair.second; 1837 do { 1838 Instruction *SuccPad = getSuccPad(Terminator); 1839 if (Active.count(SuccPad)) { 1840 // Found a cycle; report error 1841 Instruction *CyclePad = SuccPad; 1842 SmallVector<Instruction *, 8> CycleNodes; 1843 do { 1844 CycleNodes.push_back(CyclePad); 1845 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad]; 1846 if (CycleTerminator != CyclePad) 1847 CycleNodes.push_back(CycleTerminator); 1848 CyclePad = getSuccPad(CycleTerminator); 1849 } while (CyclePad != SuccPad); 1850 Assert(false, "EH pads can't handle each other's exceptions", 1851 ArrayRef<Instruction *>(CycleNodes)); 1852 } 1853 // Don't re-walk a node we've already checked 1854 if (!Visited.insert(SuccPad).second) 1855 break; 1856 // Walk to this successor if it has a map entry. 1857 PredPad = SuccPad; 1858 auto TermI = SiblingFuncletInfo.find(PredPad); 1859 if (TermI == SiblingFuncletInfo.end()) 1860 break; 1861 Terminator = TermI->second; 1862 Active.insert(PredPad); 1863 } while (true); 1864 // Each node only has one successor, so we've walked all the active 1865 // nodes' successors. 1866 Active.clear(); 1867 } 1868 } 1869 1870 // visitFunction - Verify that a function is ok. 1871 // 1872 void Verifier::visitFunction(const Function &F) { 1873 // Check function arguments. 1874 FunctionType *FT = F.getFunctionType(); 1875 unsigned NumArgs = F.arg_size(); 1876 1877 Assert(Context == &F.getContext(), 1878 "Function context does not match Module context!", &F); 1879 1880 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 1881 Assert(FT->getNumParams() == NumArgs, 1882 "# formal arguments must match # of arguments for function type!", &F, 1883 FT); 1884 Assert(F.getReturnType()->isFirstClassType() || 1885 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 1886 "Functions cannot return aggregate values!", &F); 1887 1888 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 1889 "Invalid struct return type!", &F); 1890 1891 AttributeSet Attrs = F.getAttributes(); 1892 1893 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 1894 "Attribute after last parameter!", &F); 1895 1896 // Check function attributes. 1897 verifyFunctionAttrs(FT, Attrs, &F); 1898 1899 // On function declarations/definitions, we do not support the builtin 1900 // attribute. We do not check this in VerifyFunctionAttrs since that is 1901 // checking for Attributes that can/can not ever be on functions. 1902 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), 1903 "Attribute 'builtin' can only be applied to a callsite.", &F); 1904 1905 // Check that this function meets the restrictions on this calling convention. 1906 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 1907 // restrictions can be lifted. 1908 switch (F.getCallingConv()) { 1909 default: 1910 case CallingConv::C: 1911 break; 1912 case CallingConv::Fast: 1913 case CallingConv::Cold: 1914 case CallingConv::Intel_OCL_BI: 1915 case CallingConv::PTX_Kernel: 1916 case CallingConv::PTX_Device: 1917 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 1918 "perfect forwarding!", 1919 &F); 1920 break; 1921 } 1922 1923 bool isLLVMdotName = F.getName().size() >= 5 && 1924 F.getName().substr(0, 5) == "llvm."; 1925 1926 // Check that the argument values match the function type for this function... 1927 unsigned i = 0; 1928 for (const Argument &Arg : F.args()) { 1929 Assert(Arg.getType() == FT->getParamType(i), 1930 "Argument value does not match function argument type!", &Arg, 1931 FT->getParamType(i)); 1932 Assert(Arg.getType()->isFirstClassType(), 1933 "Function arguments must have first-class types!", &Arg); 1934 if (!isLLVMdotName) { 1935 Assert(!Arg.getType()->isMetadataTy(), 1936 "Function takes metadata but isn't an intrinsic", &Arg, &F); 1937 Assert(!Arg.getType()->isTokenTy(), 1938 "Function takes token but isn't an intrinsic", &Arg, &F); 1939 } 1940 1941 // Check that swifterror argument is only used by loads and stores. 1942 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) { 1943 verifySwiftErrorValue(&Arg); 1944 } 1945 ++i; 1946 } 1947 1948 if (!isLLVMdotName) 1949 Assert(!F.getReturnType()->isTokenTy(), 1950 "Functions returns a token but isn't an intrinsic", &F); 1951 1952 // Get the function metadata attachments. 1953 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1954 F.getAllMetadata(MDs); 1955 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 1956 verifyFunctionMetadata(MDs); 1957 1958 // Check validity of the personality function 1959 if (F.hasPersonalityFn()) { 1960 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 1961 if (Per) 1962 Assert(Per->getParent() == F.getParent(), 1963 "Referencing personality function in another module!", 1964 &F, F.getParent(), Per, Per->getParent()); 1965 } 1966 1967 if (F.isMaterializable()) { 1968 // Function has a body somewhere we can't see. 1969 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 1970 MDs.empty() ? nullptr : MDs.front().second); 1971 } else if (F.isDeclaration()) { 1972 Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), 1973 "invalid linkage type for function declaration", &F); 1974 Assert(MDs.empty(), "function without a body cannot have metadata", &F, 1975 MDs.empty() ? nullptr : MDs.front().second); 1976 Assert(!F.hasPersonalityFn(), 1977 "Function declaration shouldn't have a personality routine", &F); 1978 } else { 1979 // Verify that this function (which has a body) is not named "llvm.*". It 1980 // is not legal to define intrinsics. 1981 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 1982 1983 // Check the entry node 1984 const BasicBlock *Entry = &F.getEntryBlock(); 1985 Assert(pred_empty(Entry), 1986 "Entry block to function must not have predecessors!", Entry); 1987 1988 // The address of the entry block cannot be taken, unless it is dead. 1989 if (Entry->hasAddressTaken()) { 1990 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 1991 "blockaddress may not be used with the entry block!", Entry); 1992 } 1993 1994 // Visit metadata attachments. 1995 for (const auto &I : MDs) { 1996 // Verify that the attachment is legal. 1997 switch (I.first) { 1998 default: 1999 break; 2000 case LLVMContext::MD_dbg: 2001 Assert(isa<DISubprogram>(I.second), 2002 "function !dbg attachment must be a subprogram", &F, I.second); 2003 break; 2004 } 2005 2006 // Verify the metadata itself. 2007 visitMDNode(*I.second); 2008 } 2009 } 2010 2011 // If this function is actually an intrinsic, verify that it is only used in 2012 // direct call/invokes, never having its "address taken". 2013 // Only do this if the module is materialized, otherwise we don't have all the 2014 // uses. 2015 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2016 const User *U; 2017 if (F.hasAddressTaken(&U)) 2018 Assert(0, "Invalid user of intrinsic instruction!", U); 2019 } 2020 2021 Assert(!F.hasDLLImportStorageClass() || 2022 (F.isDeclaration() && F.hasExternalLinkage()) || 2023 F.hasAvailableExternallyLinkage(), 2024 "Function is marked as dllimport, but not external.", &F); 2025 2026 auto *N = F.getSubprogram(); 2027 if (!N) 2028 return; 2029 2030 visitDISubprogram(*N); 2031 2032 // Check that all !dbg attachments lead to back to N (or, at least, another 2033 // subprogram that describes the same function). 2034 // 2035 // FIXME: Check this incrementally while visiting !dbg attachments. 2036 // FIXME: Only check when N is the canonical subprogram for F. 2037 SmallPtrSet<const MDNode *, 32> Seen; 2038 for (auto &BB : F) 2039 for (auto &I : BB) { 2040 // Be careful about using DILocation here since we might be dealing with 2041 // broken code (this is the Verifier after all). 2042 DILocation *DL = 2043 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); 2044 if (!DL) 2045 continue; 2046 if (!Seen.insert(DL).second) 2047 continue; 2048 2049 DILocalScope *Scope = DL->getInlinedAtScope(); 2050 if (Scope && !Seen.insert(Scope).second) 2051 continue; 2052 2053 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2054 2055 // Scope and SP could be the same MDNode and we don't want to skip 2056 // validation in that case 2057 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2058 continue; 2059 2060 // FIXME: Once N is canonical, check "SP == &N". 2061 Assert(SP->describes(&F), 2062 "!dbg attachment points at wrong subprogram for function", N, &F, 2063 &I, DL, Scope, SP); 2064 } 2065 } 2066 2067 // verifyBasicBlock - Verify that a basic block is well formed... 2068 // 2069 void Verifier::visitBasicBlock(BasicBlock &BB) { 2070 InstsInThisBlock.clear(); 2071 2072 // Ensure that basic blocks have terminators! 2073 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2074 2075 // Check constraints that this basic block imposes on all of the PHI nodes in 2076 // it. 2077 if (isa<PHINode>(BB.front())) { 2078 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2079 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2080 std::sort(Preds.begin(), Preds.end()); 2081 PHINode *PN; 2082 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { 2083 // Ensure that PHI nodes have at least one entry! 2084 Assert(PN->getNumIncomingValues() != 0, 2085 "PHI nodes must have at least one entry. If the block is dead, " 2086 "the PHI should be removed!", 2087 PN); 2088 Assert(PN->getNumIncomingValues() == Preds.size(), 2089 "PHINode should have one entry for each predecessor of its " 2090 "parent basic block!", 2091 PN); 2092 2093 // Get and sort all incoming values in the PHI node... 2094 Values.clear(); 2095 Values.reserve(PN->getNumIncomingValues()); 2096 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2097 Values.push_back(std::make_pair(PN->getIncomingBlock(i), 2098 PN->getIncomingValue(i))); 2099 std::sort(Values.begin(), Values.end()); 2100 2101 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2102 // Check to make sure that if there is more than one entry for a 2103 // particular basic block in this PHI node, that the incoming values are 2104 // all identical. 2105 // 2106 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2107 Values[i].second == Values[i - 1].second, 2108 "PHI node has multiple entries for the same basic block with " 2109 "different incoming values!", 2110 PN, Values[i].first, Values[i].second, Values[i - 1].second); 2111 2112 // Check to make sure that the predecessors and PHI node entries are 2113 // matched up. 2114 Assert(Values[i].first == Preds[i], 2115 "PHI node entries do not match predecessors!", PN, 2116 Values[i].first, Preds[i]); 2117 } 2118 } 2119 } 2120 2121 // Check that all instructions have their parent pointers set up correctly. 2122 for (auto &I : BB) 2123 { 2124 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2125 } 2126 } 2127 2128 void Verifier::visitTerminatorInst(TerminatorInst &I) { 2129 // Ensure that terminators only exist at the end of the basic block. 2130 Assert(&I == I.getParent()->getTerminator(), 2131 "Terminator found in the middle of a basic block!", I.getParent()); 2132 visitInstruction(I); 2133 } 2134 2135 void Verifier::visitBranchInst(BranchInst &BI) { 2136 if (BI.isConditional()) { 2137 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2138 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2139 } 2140 visitTerminatorInst(BI); 2141 } 2142 2143 void Verifier::visitReturnInst(ReturnInst &RI) { 2144 Function *F = RI.getParent()->getParent(); 2145 unsigned N = RI.getNumOperands(); 2146 if (F->getReturnType()->isVoidTy()) 2147 Assert(N == 0, 2148 "Found return instr that returns non-void in Function of void " 2149 "return type!", 2150 &RI, F->getReturnType()); 2151 else 2152 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2153 "Function return type does not match operand " 2154 "type of return inst!", 2155 &RI, F->getReturnType()); 2156 2157 // Check to make sure that the return value has necessary properties for 2158 // terminators... 2159 visitTerminatorInst(RI); 2160 } 2161 2162 void Verifier::visitSwitchInst(SwitchInst &SI) { 2163 // Check to make sure that all of the constants in the switch instruction 2164 // have the same type as the switched-on value. 2165 Type *SwitchTy = SI.getCondition()->getType(); 2166 SmallPtrSet<ConstantInt*, 32> Constants; 2167 for (auto &Case : SI.cases()) { 2168 Assert(Case.getCaseValue()->getType() == SwitchTy, 2169 "Switch constants must all be same type as switch value!", &SI); 2170 Assert(Constants.insert(Case.getCaseValue()).second, 2171 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2172 } 2173 2174 visitTerminatorInst(SI); 2175 } 2176 2177 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2178 Assert(BI.getAddress()->getType()->isPointerTy(), 2179 "Indirectbr operand must have pointer type!", &BI); 2180 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2181 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2182 "Indirectbr destinations must all have pointer type!", &BI); 2183 2184 visitTerminatorInst(BI); 2185 } 2186 2187 void Verifier::visitSelectInst(SelectInst &SI) { 2188 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2189 SI.getOperand(2)), 2190 "Invalid operands for select instruction!", &SI); 2191 2192 Assert(SI.getTrueValue()->getType() == SI.getType(), 2193 "Select values must have same type as select instruction!", &SI); 2194 visitInstruction(SI); 2195 } 2196 2197 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2198 /// a pass, if any exist, it's an error. 2199 /// 2200 void Verifier::visitUserOp1(Instruction &I) { 2201 Assert(0, "User-defined operators should not live outside of a pass!", &I); 2202 } 2203 2204 void Verifier::visitTruncInst(TruncInst &I) { 2205 // Get the source and destination types 2206 Type *SrcTy = I.getOperand(0)->getType(); 2207 Type *DestTy = I.getType(); 2208 2209 // Get the size of the types in bits, we'll need this later 2210 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2211 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2212 2213 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2214 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2215 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2216 "trunc source and destination must both be a vector or neither", &I); 2217 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2218 2219 visitInstruction(I); 2220 } 2221 2222 void Verifier::visitZExtInst(ZExtInst &I) { 2223 // Get the source and destination types 2224 Type *SrcTy = I.getOperand(0)->getType(); 2225 Type *DestTy = I.getType(); 2226 2227 // Get the size of the types in bits, we'll need this later 2228 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2229 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2230 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2231 "zext source and destination must both be a vector or neither", &I); 2232 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2233 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2234 2235 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2236 2237 visitInstruction(I); 2238 } 2239 2240 void Verifier::visitSExtInst(SExtInst &I) { 2241 // Get the source and destination types 2242 Type *SrcTy = I.getOperand(0)->getType(); 2243 Type *DestTy = I.getType(); 2244 2245 // Get the size of the types in bits, we'll need this later 2246 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2247 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2248 2249 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2250 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2251 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2252 "sext source and destination must both be a vector or neither", &I); 2253 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2254 2255 visitInstruction(I); 2256 } 2257 2258 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2259 // Get the source and destination types 2260 Type *SrcTy = I.getOperand(0)->getType(); 2261 Type *DestTy = I.getType(); 2262 // Get the size of the types in bits, we'll need this later 2263 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2264 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2265 2266 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2267 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2268 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2269 "fptrunc source and destination must both be a vector or neither", &I); 2270 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2271 2272 visitInstruction(I); 2273 } 2274 2275 void Verifier::visitFPExtInst(FPExtInst &I) { 2276 // Get the source and destination types 2277 Type *SrcTy = I.getOperand(0)->getType(); 2278 Type *DestTy = I.getType(); 2279 2280 // Get the size of the types in bits, we'll need this later 2281 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2282 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2283 2284 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2285 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2286 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2287 "fpext source and destination must both be a vector or neither", &I); 2288 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2289 2290 visitInstruction(I); 2291 } 2292 2293 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2294 // Get the source and destination types 2295 Type *SrcTy = I.getOperand(0)->getType(); 2296 Type *DestTy = I.getType(); 2297 2298 bool SrcVec = SrcTy->isVectorTy(); 2299 bool DstVec = DestTy->isVectorTy(); 2300 2301 Assert(SrcVec == DstVec, 2302 "UIToFP source and dest must both be vector or scalar", &I); 2303 Assert(SrcTy->isIntOrIntVectorTy(), 2304 "UIToFP source must be integer or integer vector", &I); 2305 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2306 &I); 2307 2308 if (SrcVec && DstVec) 2309 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2310 cast<VectorType>(DestTy)->getNumElements(), 2311 "UIToFP source and dest vector length mismatch", &I); 2312 2313 visitInstruction(I); 2314 } 2315 2316 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2317 // Get the source and destination types 2318 Type *SrcTy = I.getOperand(0)->getType(); 2319 Type *DestTy = I.getType(); 2320 2321 bool SrcVec = SrcTy->isVectorTy(); 2322 bool DstVec = DestTy->isVectorTy(); 2323 2324 Assert(SrcVec == DstVec, 2325 "SIToFP source and dest must both be vector or scalar", &I); 2326 Assert(SrcTy->isIntOrIntVectorTy(), 2327 "SIToFP source must be integer or integer vector", &I); 2328 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2329 &I); 2330 2331 if (SrcVec && DstVec) 2332 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2333 cast<VectorType>(DestTy)->getNumElements(), 2334 "SIToFP source and dest vector length mismatch", &I); 2335 2336 visitInstruction(I); 2337 } 2338 2339 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2340 // Get the source and destination types 2341 Type *SrcTy = I.getOperand(0)->getType(); 2342 Type *DestTy = I.getType(); 2343 2344 bool SrcVec = SrcTy->isVectorTy(); 2345 bool DstVec = DestTy->isVectorTy(); 2346 2347 Assert(SrcVec == DstVec, 2348 "FPToUI source and dest must both be vector or scalar", &I); 2349 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2350 &I); 2351 Assert(DestTy->isIntOrIntVectorTy(), 2352 "FPToUI result must be integer or integer vector", &I); 2353 2354 if (SrcVec && DstVec) 2355 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2356 cast<VectorType>(DestTy)->getNumElements(), 2357 "FPToUI source and dest vector length mismatch", &I); 2358 2359 visitInstruction(I); 2360 } 2361 2362 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2363 // Get the source and destination types 2364 Type *SrcTy = I.getOperand(0)->getType(); 2365 Type *DestTy = I.getType(); 2366 2367 bool SrcVec = SrcTy->isVectorTy(); 2368 bool DstVec = DestTy->isVectorTy(); 2369 2370 Assert(SrcVec == DstVec, 2371 "FPToSI source and dest must both be vector or scalar", &I); 2372 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2373 &I); 2374 Assert(DestTy->isIntOrIntVectorTy(), 2375 "FPToSI result must be integer or integer vector", &I); 2376 2377 if (SrcVec && DstVec) 2378 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2379 cast<VectorType>(DestTy)->getNumElements(), 2380 "FPToSI source and dest vector length mismatch", &I); 2381 2382 visitInstruction(I); 2383 } 2384 2385 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2386 // Get the source and destination types 2387 Type *SrcTy = I.getOperand(0)->getType(); 2388 Type *DestTy = I.getType(); 2389 2390 Assert(SrcTy->getScalarType()->isPointerTy(), 2391 "PtrToInt source must be pointer", &I); 2392 Assert(DestTy->getScalarType()->isIntegerTy(), 2393 "PtrToInt result must be integral", &I); 2394 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2395 &I); 2396 2397 if (SrcTy->isVectorTy()) { 2398 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2399 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2400 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2401 "PtrToInt Vector width mismatch", &I); 2402 } 2403 2404 visitInstruction(I); 2405 } 2406 2407 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2408 // Get the source and destination types 2409 Type *SrcTy = I.getOperand(0)->getType(); 2410 Type *DestTy = I.getType(); 2411 2412 Assert(SrcTy->getScalarType()->isIntegerTy(), 2413 "IntToPtr source must be an integral", &I); 2414 Assert(DestTy->getScalarType()->isPointerTy(), 2415 "IntToPtr result must be a pointer", &I); 2416 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2417 &I); 2418 if (SrcTy->isVectorTy()) { 2419 VectorType *VSrc = dyn_cast<VectorType>(SrcTy); 2420 VectorType *VDest = dyn_cast<VectorType>(DestTy); 2421 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2422 "IntToPtr Vector width mismatch", &I); 2423 } 2424 visitInstruction(I); 2425 } 2426 2427 void Verifier::visitBitCastInst(BitCastInst &I) { 2428 Assert( 2429 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2430 "Invalid bitcast", &I); 2431 visitInstruction(I); 2432 } 2433 2434 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2435 Type *SrcTy = I.getOperand(0)->getType(); 2436 Type *DestTy = I.getType(); 2437 2438 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2439 &I); 2440 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2441 &I); 2442 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2443 "AddrSpaceCast must be between different address spaces", &I); 2444 if (SrcTy->isVectorTy()) 2445 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2446 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2447 visitInstruction(I); 2448 } 2449 2450 /// visitPHINode - Ensure that a PHI node is well formed. 2451 /// 2452 void Verifier::visitPHINode(PHINode &PN) { 2453 // Ensure that the PHI nodes are all grouped together at the top of the block. 2454 // This can be tested by checking whether the instruction before this is 2455 // either nonexistent (because this is begin()) or is a PHI node. If not, 2456 // then there is some other instruction before a PHI. 2457 Assert(&PN == &PN.getParent()->front() || 2458 isa<PHINode>(--BasicBlock::iterator(&PN)), 2459 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2460 2461 // Check that a PHI doesn't yield a Token. 2462 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2463 2464 // Check that all of the values of the PHI node have the same type as the 2465 // result, and that the incoming blocks are really basic blocks. 2466 for (Value *IncValue : PN.incoming_values()) { 2467 Assert(PN.getType() == IncValue->getType(), 2468 "PHI node operands are not the same type as the result!", &PN); 2469 } 2470 2471 // All other PHI node constraints are checked in the visitBasicBlock method. 2472 2473 visitInstruction(PN); 2474 } 2475 2476 void Verifier::verifyCallSite(CallSite CS) { 2477 Instruction *I = CS.getInstruction(); 2478 2479 Assert(CS.getCalledValue()->getType()->isPointerTy(), 2480 "Called function must be a pointer!", I); 2481 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); 2482 2483 Assert(FPTy->getElementType()->isFunctionTy(), 2484 "Called function is not pointer to function type!", I); 2485 2486 Assert(FPTy->getElementType() == CS.getFunctionType(), 2487 "Called function is not the same type as the call!", I); 2488 2489 FunctionType *FTy = CS.getFunctionType(); 2490 2491 // Verify that the correct number of arguments are being passed 2492 if (FTy->isVarArg()) 2493 Assert(CS.arg_size() >= FTy->getNumParams(), 2494 "Called function requires more parameters than were provided!", I); 2495 else 2496 Assert(CS.arg_size() == FTy->getNumParams(), 2497 "Incorrect number of arguments passed to called function!", I); 2498 2499 // Verify that all arguments to the call match the function type. 2500 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2501 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), 2502 "Call parameter type does not match function signature!", 2503 CS.getArgument(i), FTy->getParamType(i), I); 2504 2505 AttributeSet Attrs = CS.getAttributes(); 2506 2507 Assert(verifyAttributeCount(Attrs, CS.arg_size()), 2508 "Attribute after last parameter!", I); 2509 2510 // Verify call attributes. 2511 verifyFunctionAttrs(FTy, Attrs, I); 2512 2513 // Conservatively check the inalloca argument. 2514 // We have a bug if we can find that there is an underlying alloca without 2515 // inalloca. 2516 if (CS.hasInAllocaArgument()) { 2517 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); 2518 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2519 Assert(AI->isUsedWithInAlloca(), 2520 "inalloca argument for call has mismatched alloca", AI, I); 2521 } 2522 2523 // For each argument of the callsite, if it has the swifterror argument, 2524 // make sure the underlying alloca has swifterror as well. 2525 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2526 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) { 2527 Value *SwiftErrorArg = CS.getArgument(i); 2528 auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets()); 2529 Assert(AI, "swifterror argument should come from alloca", AI, I); 2530 if (AI) 2531 Assert(AI->isSwiftError(), 2532 "swifterror argument for call has mismatched alloca", AI, I); 2533 } 2534 2535 if (FTy->isVarArg()) { 2536 // FIXME? is 'nest' even legal here? 2537 bool SawNest = false; 2538 bool SawReturned = false; 2539 2540 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { 2541 if (Attrs.hasAttribute(Idx, Attribute::Nest)) 2542 SawNest = true; 2543 if (Attrs.hasAttribute(Idx, Attribute::Returned)) 2544 SawReturned = true; 2545 } 2546 2547 // Check attributes on the varargs part. 2548 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { 2549 Type *Ty = CS.getArgument(Idx-1)->getType(); 2550 verifyParameterAttrs(Attrs, Idx, Ty, false, I); 2551 2552 if (Attrs.hasAttribute(Idx, Attribute::Nest)) { 2553 Assert(!SawNest, "More than one parameter has attribute nest!", I); 2554 SawNest = true; 2555 } 2556 2557 if (Attrs.hasAttribute(Idx, Attribute::Returned)) { 2558 Assert(!SawReturned, "More than one parameter has attribute returned!", 2559 I); 2560 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2561 "Incompatible argument and return types for 'returned' " 2562 "attribute", 2563 I); 2564 SawReturned = true; 2565 } 2566 2567 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet), 2568 "Attribute 'sret' cannot be used for vararg call arguments!", I); 2569 2570 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) 2571 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); 2572 } 2573 } 2574 2575 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2576 if (CS.getCalledFunction() == nullptr || 2577 !CS.getCalledFunction()->getName().startswith("llvm.")) { 2578 for (Type *ParamTy : FTy->params()) { 2579 Assert(!ParamTy->isMetadataTy(), 2580 "Function has metadata parameter but isn't an intrinsic", I); 2581 Assert(!ParamTy->isTokenTy(), 2582 "Function has token parameter but isn't an intrinsic", I); 2583 } 2584 } 2585 2586 // Verify that indirect calls don't return tokens. 2587 if (CS.getCalledFunction() == nullptr) 2588 Assert(!FTy->getReturnType()->isTokenTy(), 2589 "Return type cannot be token for indirect call!"); 2590 2591 if (Function *F = CS.getCalledFunction()) 2592 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2593 visitIntrinsicCallSite(ID, CS); 2594 2595 // Verify that a callsite has at most one "deopt", at most one "funclet" and 2596 // at most one "gc-transition" operand bundle. 2597 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 2598 FoundGCTransitionBundle = false; 2599 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) { 2600 OperandBundleUse BU = CS.getOperandBundleAt(i); 2601 uint32_t Tag = BU.getTagID(); 2602 if (Tag == LLVMContext::OB_deopt) { 2603 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I); 2604 FoundDeoptBundle = true; 2605 } else if (Tag == LLVMContext::OB_gc_transition) { 2606 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 2607 I); 2608 FoundGCTransitionBundle = true; 2609 } else if (Tag == LLVMContext::OB_funclet) { 2610 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I); 2611 FoundFuncletBundle = true; 2612 Assert(BU.Inputs.size() == 1, 2613 "Expected exactly one funclet bundle operand", I); 2614 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 2615 "Funclet bundle operands should correspond to a FuncletPadInst", 2616 I); 2617 } 2618 } 2619 2620 visitInstruction(*I); 2621 } 2622 2623 /// Two types are "congruent" if they are identical, or if they are both pointer 2624 /// types with different pointee types and the same address space. 2625 static bool isTypeCongruent(Type *L, Type *R) { 2626 if (L == R) 2627 return true; 2628 PointerType *PL = dyn_cast<PointerType>(L); 2629 PointerType *PR = dyn_cast<PointerType>(R); 2630 if (!PL || !PR) 2631 return false; 2632 return PL->getAddressSpace() == PR->getAddressSpace(); 2633 } 2634 2635 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { 2636 static const Attribute::AttrKind ABIAttrs[] = { 2637 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 2638 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 2639 Attribute::SwiftError}; 2640 AttrBuilder Copy; 2641 for (auto AK : ABIAttrs) { 2642 if (Attrs.hasAttribute(I + 1, AK)) 2643 Copy.addAttribute(AK); 2644 } 2645 if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) 2646 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); 2647 return Copy; 2648 } 2649 2650 void Verifier::verifyMustTailCall(CallInst &CI) { 2651 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 2652 2653 // - The caller and callee prototypes must match. Pointer types of 2654 // parameters or return types may differ in pointee type, but not 2655 // address space. 2656 Function *F = CI.getParent()->getParent(); 2657 FunctionType *CallerTy = F->getFunctionType(); 2658 FunctionType *CalleeTy = CI.getFunctionType(); 2659 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 2660 "cannot guarantee tail call due to mismatched parameter counts", &CI); 2661 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 2662 "cannot guarantee tail call due to mismatched varargs", &CI); 2663 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 2664 "cannot guarantee tail call due to mismatched return types", &CI); 2665 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2666 Assert( 2667 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 2668 "cannot guarantee tail call due to mismatched parameter types", &CI); 2669 } 2670 2671 // - The calling conventions of the caller and callee must match. 2672 Assert(F->getCallingConv() == CI.getCallingConv(), 2673 "cannot guarantee tail call due to mismatched calling conv", &CI); 2674 2675 // - All ABI-impacting function attributes, such as sret, byval, inreg, 2676 // returned, and inalloca, must match. 2677 AttributeSet CallerAttrs = F->getAttributes(); 2678 AttributeSet CalleeAttrs = CI.getAttributes(); 2679 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 2680 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 2681 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 2682 Assert(CallerABIAttrs == CalleeABIAttrs, 2683 "cannot guarantee tail call due to mismatched ABI impacting " 2684 "function attributes", 2685 &CI, CI.getOperand(I)); 2686 } 2687 2688 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 2689 // or a pointer bitcast followed by a ret instruction. 2690 // - The ret instruction must return the (possibly bitcasted) value 2691 // produced by the call or void. 2692 Value *RetVal = &CI; 2693 Instruction *Next = CI.getNextNode(); 2694 2695 // Handle the optional bitcast. 2696 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 2697 Assert(BI->getOperand(0) == RetVal, 2698 "bitcast following musttail call must use the call", BI); 2699 RetVal = BI; 2700 Next = BI->getNextNode(); 2701 } 2702 2703 // Check the return. 2704 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 2705 Assert(Ret, "musttail call must be precede a ret with an optional bitcast", 2706 &CI); 2707 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 2708 "musttail call result must be returned", Ret); 2709 } 2710 2711 void Verifier::visitCallInst(CallInst &CI) { 2712 verifyCallSite(&CI); 2713 2714 if (CI.isMustTailCall()) 2715 verifyMustTailCall(CI); 2716 } 2717 2718 void Verifier::visitInvokeInst(InvokeInst &II) { 2719 verifyCallSite(&II); 2720 2721 // Verify that the first non-PHI instruction of the unwind destination is an 2722 // exception handling instruction. 2723 Assert( 2724 II.getUnwindDest()->isEHPad(), 2725 "The unwind destination does not have an exception handling instruction!", 2726 &II); 2727 2728 visitTerminatorInst(II); 2729 } 2730 2731 /// visitBinaryOperator - Check that both arguments to the binary operator are 2732 /// of the same type! 2733 /// 2734 void Verifier::visitBinaryOperator(BinaryOperator &B) { 2735 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 2736 "Both operands to a binary operator are not of the same type!", &B); 2737 2738 switch (B.getOpcode()) { 2739 // Check that integer arithmetic operators are only used with 2740 // integral operands. 2741 case Instruction::Add: 2742 case Instruction::Sub: 2743 case Instruction::Mul: 2744 case Instruction::SDiv: 2745 case Instruction::UDiv: 2746 case Instruction::SRem: 2747 case Instruction::URem: 2748 Assert(B.getType()->isIntOrIntVectorTy(), 2749 "Integer arithmetic operators only work with integral types!", &B); 2750 Assert(B.getType() == B.getOperand(0)->getType(), 2751 "Integer arithmetic operators must have same type " 2752 "for operands and result!", 2753 &B); 2754 break; 2755 // Check that floating-point arithmetic operators are only used with 2756 // floating-point operands. 2757 case Instruction::FAdd: 2758 case Instruction::FSub: 2759 case Instruction::FMul: 2760 case Instruction::FDiv: 2761 case Instruction::FRem: 2762 Assert(B.getType()->isFPOrFPVectorTy(), 2763 "Floating-point arithmetic operators only work with " 2764 "floating-point types!", 2765 &B); 2766 Assert(B.getType() == B.getOperand(0)->getType(), 2767 "Floating-point arithmetic operators must have same type " 2768 "for operands and result!", 2769 &B); 2770 break; 2771 // Check that logical operators are only used with integral operands. 2772 case Instruction::And: 2773 case Instruction::Or: 2774 case Instruction::Xor: 2775 Assert(B.getType()->isIntOrIntVectorTy(), 2776 "Logical operators only work with integral types!", &B); 2777 Assert(B.getType() == B.getOperand(0)->getType(), 2778 "Logical operators must have same type for operands and result!", 2779 &B); 2780 break; 2781 case Instruction::Shl: 2782 case Instruction::LShr: 2783 case Instruction::AShr: 2784 Assert(B.getType()->isIntOrIntVectorTy(), 2785 "Shifts only work with integral types!", &B); 2786 Assert(B.getType() == B.getOperand(0)->getType(), 2787 "Shift return type must be same as operands!", &B); 2788 break; 2789 default: 2790 llvm_unreachable("Unknown BinaryOperator opcode!"); 2791 } 2792 2793 visitInstruction(B); 2794 } 2795 2796 void Verifier::visitICmpInst(ICmpInst &IC) { 2797 // Check that the operands are the same type 2798 Type *Op0Ty = IC.getOperand(0)->getType(); 2799 Type *Op1Ty = IC.getOperand(1)->getType(); 2800 Assert(Op0Ty == Op1Ty, 2801 "Both operands to ICmp instruction are not of the same type!", &IC); 2802 // Check that the operands are the right type 2803 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), 2804 "Invalid operand types for ICmp instruction", &IC); 2805 // Check that the predicate is valid. 2806 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && 2807 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, 2808 "Invalid predicate in ICmp instruction!", &IC); 2809 2810 visitInstruction(IC); 2811 } 2812 2813 void Verifier::visitFCmpInst(FCmpInst &FC) { 2814 // Check that the operands are the same type 2815 Type *Op0Ty = FC.getOperand(0)->getType(); 2816 Type *Op1Ty = FC.getOperand(1)->getType(); 2817 Assert(Op0Ty == Op1Ty, 2818 "Both operands to FCmp instruction are not of the same type!", &FC); 2819 // Check that the operands are the right type 2820 Assert(Op0Ty->isFPOrFPVectorTy(), 2821 "Invalid operand types for FCmp instruction", &FC); 2822 // Check that the predicate is valid. 2823 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && 2824 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, 2825 "Invalid predicate in FCmp instruction!", &FC); 2826 2827 visitInstruction(FC); 2828 } 2829 2830 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 2831 Assert( 2832 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 2833 "Invalid extractelement operands!", &EI); 2834 visitInstruction(EI); 2835 } 2836 2837 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 2838 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 2839 IE.getOperand(2)), 2840 "Invalid insertelement operands!", &IE); 2841 visitInstruction(IE); 2842 } 2843 2844 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 2845 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 2846 SV.getOperand(2)), 2847 "Invalid shufflevector operands!", &SV); 2848 visitInstruction(SV); 2849 } 2850 2851 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2852 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 2853 2854 Assert(isa<PointerType>(TargetTy), 2855 "GEP base pointer is not a vector or a vector of pointers", &GEP); 2856 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 2857 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 2858 Type *ElTy = 2859 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 2860 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 2861 2862 Assert(GEP.getType()->getScalarType()->isPointerTy() && 2863 GEP.getResultElementType() == ElTy, 2864 "GEP is not of right type for indices!", &GEP, ElTy); 2865 2866 if (GEP.getType()->isVectorTy()) { 2867 // Additional checks for vector GEPs. 2868 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 2869 if (GEP.getPointerOperandType()->isVectorTy()) 2870 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 2871 "Vector GEP result width doesn't match operand's", &GEP); 2872 for (Value *Idx : Idxs) { 2873 Type *IndexTy = Idx->getType(); 2874 if (IndexTy->isVectorTy()) { 2875 unsigned IndexWidth = IndexTy->getVectorNumElements(); 2876 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 2877 } 2878 Assert(IndexTy->getScalarType()->isIntegerTy(), 2879 "All GEP indices should be of integer type"); 2880 } 2881 } 2882 visitInstruction(GEP); 2883 } 2884 2885 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 2886 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 2887 } 2888 2889 void Verifier::visitRangeMetadata(Instruction& I, 2890 MDNode* Range, Type* Ty) { 2891 assert(Range && 2892 Range == I.getMetadata(LLVMContext::MD_range) && 2893 "precondition violation"); 2894 2895 unsigned NumOperands = Range->getNumOperands(); 2896 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 2897 unsigned NumRanges = NumOperands / 2; 2898 Assert(NumRanges >= 1, "It should have at least one range!", Range); 2899 2900 ConstantRange LastRange(1); // Dummy initial value 2901 for (unsigned i = 0; i < NumRanges; ++i) { 2902 ConstantInt *Low = 2903 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 2904 Assert(Low, "The lower limit must be an integer!", Low); 2905 ConstantInt *High = 2906 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 2907 Assert(High, "The upper limit must be an integer!", High); 2908 Assert(High->getType() == Low->getType() && High->getType() == Ty, 2909 "Range types must match instruction type!", &I); 2910 2911 APInt HighV = High->getValue(); 2912 APInt LowV = Low->getValue(); 2913 ConstantRange CurRange(LowV, HighV); 2914 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 2915 "Range must not be empty!", Range); 2916 if (i != 0) { 2917 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 2918 "Intervals are overlapping", Range); 2919 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 2920 Range); 2921 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 2922 Range); 2923 } 2924 LastRange = ConstantRange(LowV, HighV); 2925 } 2926 if (NumRanges > 2) { 2927 APInt FirstLow = 2928 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 2929 APInt FirstHigh = 2930 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 2931 ConstantRange FirstRange(FirstLow, FirstHigh); 2932 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 2933 "Intervals are overlapping", Range); 2934 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 2935 Range); 2936 } 2937 } 2938 2939 void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty, 2940 const Instruction *I) { 2941 unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty); 2942 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 2943 Assert(!(Size & (Size - 1)), 2944 "atomic memory access' operand must have a power-of-two size", Ty, I); 2945 } 2946 2947 void Verifier::visitLoadInst(LoadInst &LI) { 2948 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 2949 Assert(PTy, "Load operand must be a pointer.", &LI); 2950 Type *ElTy = LI.getType(); 2951 Assert(LI.getAlignment() <= Value::MaximumAlignment, 2952 "huge alignment values are unsupported", &LI); 2953 if (LI.isAtomic()) { 2954 Assert(LI.getOrdering() != AtomicOrdering::Release && 2955 LI.getOrdering() != AtomicOrdering::AcquireRelease, 2956 "Load cannot have Release ordering", &LI); 2957 Assert(LI.getAlignment() != 0, 2958 "Atomic load must specify explicit alignment", &LI); 2959 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 2960 ElTy->isFloatingPointTy(), 2961 "atomic load operand must have integer, pointer, or floating point " 2962 "type!", 2963 ElTy, &LI); 2964 checkAtomicMemAccessSize(M, ElTy, &LI); 2965 } else { 2966 Assert(LI.getSynchScope() == CrossThread, 2967 "Non-atomic load cannot have SynchronizationScope specified", &LI); 2968 } 2969 2970 visitInstruction(LI); 2971 } 2972 2973 void Verifier::visitStoreInst(StoreInst &SI) { 2974 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 2975 Assert(PTy, "Store operand must be a pointer.", &SI); 2976 Type *ElTy = PTy->getElementType(); 2977 Assert(ElTy == SI.getOperand(0)->getType(), 2978 "Stored value type does not match pointer operand type!", &SI, ElTy); 2979 Assert(SI.getAlignment() <= Value::MaximumAlignment, 2980 "huge alignment values are unsupported", &SI); 2981 if (SI.isAtomic()) { 2982 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 2983 SI.getOrdering() != AtomicOrdering::AcquireRelease, 2984 "Store cannot have Acquire ordering", &SI); 2985 Assert(SI.getAlignment() != 0, 2986 "Atomic store must specify explicit alignment", &SI); 2987 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() || 2988 ElTy->isFloatingPointTy(), 2989 "atomic store operand must have integer, pointer, or floating point " 2990 "type!", 2991 ElTy, &SI); 2992 checkAtomicMemAccessSize(M, ElTy, &SI); 2993 } else { 2994 Assert(SI.getSynchScope() == CrossThread, 2995 "Non-atomic store cannot have SynchronizationScope specified", &SI); 2996 } 2997 visitInstruction(SI); 2998 } 2999 3000 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3001 void Verifier::verifySwiftErrorCallSite(CallSite CS, 3002 const Value *SwiftErrorVal) { 3003 unsigned Idx = 0; 3004 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 3005 I != E; ++I, ++Idx) { 3006 if (*I == SwiftErrorVal) { 3007 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError), 3008 "swifterror value when used in a callsite should be marked " 3009 "with swifterror attribute", 3010 SwiftErrorVal, CS); 3011 } 3012 } 3013 } 3014 3015 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3016 // Check that swifterror value is only used by loads, stores, or as 3017 // a swifterror argument. 3018 for (const User *U : SwiftErrorVal->users()) { 3019 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3020 isa<InvokeInst>(U), 3021 "swifterror value can only be loaded and stored from, or " 3022 "as a swifterror argument!", 3023 SwiftErrorVal, U); 3024 // If it is used by a store, check it is the second operand. 3025 if (auto StoreI = dyn_cast<StoreInst>(U)) 3026 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3027 "swifterror value should be the second operand when used " 3028 "by stores", SwiftErrorVal, U); 3029 if (auto CallI = dyn_cast<CallInst>(U)) 3030 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal); 3031 if (auto II = dyn_cast<InvokeInst>(U)) 3032 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal); 3033 } 3034 } 3035 3036 void Verifier::visitAllocaInst(AllocaInst &AI) { 3037 SmallPtrSet<Type*, 4> Visited; 3038 PointerType *PTy = AI.getType(); 3039 Assert(PTy->getAddressSpace() == 0, 3040 "Allocation instruction pointer not in the generic address space!", 3041 &AI); 3042 Assert(AI.getAllocatedType()->isSized(&Visited), 3043 "Cannot allocate unsized type", &AI); 3044 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3045 "Alloca array size must have integer type", &AI); 3046 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3047 "huge alignment values are unsupported", &AI); 3048 3049 if (AI.isSwiftError()) { 3050 verifySwiftErrorValue(&AI); 3051 } 3052 3053 visitInstruction(AI); 3054 } 3055 3056 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3057 3058 // FIXME: more conditions??? 3059 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3060 "cmpxchg instructions must be atomic.", &CXI); 3061 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3062 "cmpxchg instructions must be atomic.", &CXI); 3063 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3064 "cmpxchg instructions cannot be unordered.", &CXI); 3065 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3066 "cmpxchg instructions cannot be unordered.", &CXI); 3067 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3068 "cmpxchg instructions failure argument shall be no stronger than the " 3069 "success argument", 3070 &CXI); 3071 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3072 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3073 "cmpxchg failure ordering cannot include release semantics", &CXI); 3074 3075 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3076 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3077 Type *ElTy = PTy->getElementType(); 3078 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(), 3079 "cmpxchg operand must have integer or pointer type", 3080 ElTy, &CXI); 3081 checkAtomicMemAccessSize(M, ElTy, &CXI); 3082 Assert(ElTy == CXI.getOperand(1)->getType(), 3083 "Expected value type does not match pointer operand type!", &CXI, 3084 ElTy); 3085 Assert(ElTy == CXI.getOperand(2)->getType(), 3086 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3087 visitInstruction(CXI); 3088 } 3089 3090 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3091 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3092 "atomicrmw instructions must be atomic.", &RMWI); 3093 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3094 "atomicrmw instructions cannot be unordered.", &RMWI); 3095 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3096 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3097 Type *ElTy = PTy->getElementType(); 3098 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", 3099 &RMWI, ElTy); 3100 checkAtomicMemAccessSize(M, ElTy, &RMWI); 3101 Assert(ElTy == RMWI.getOperand(1)->getType(), 3102 "Argument value type does not match pointer operand type!", &RMWI, 3103 ElTy); 3104 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && 3105 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, 3106 "Invalid binary operation!", &RMWI); 3107 visitInstruction(RMWI); 3108 } 3109 3110 void Verifier::visitFenceInst(FenceInst &FI) { 3111 const AtomicOrdering Ordering = FI.getOrdering(); 3112 Assert(Ordering == AtomicOrdering::Acquire || 3113 Ordering == AtomicOrdering::Release || 3114 Ordering == AtomicOrdering::AcquireRelease || 3115 Ordering == AtomicOrdering::SequentiallyConsistent, 3116 "fence instructions may only have acquire, release, acq_rel, or " 3117 "seq_cst ordering.", 3118 &FI); 3119 visitInstruction(FI); 3120 } 3121 3122 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3123 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3124 EVI.getIndices()) == EVI.getType(), 3125 "Invalid ExtractValueInst operands!", &EVI); 3126 3127 visitInstruction(EVI); 3128 } 3129 3130 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3131 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3132 IVI.getIndices()) == 3133 IVI.getOperand(1)->getType(), 3134 "Invalid InsertValueInst operands!", &IVI); 3135 3136 visitInstruction(IVI); 3137 } 3138 3139 static Value *getParentPad(Value *EHPad) { 3140 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3141 return FPI->getParentPad(); 3142 3143 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3144 } 3145 3146 void Verifier::visitEHPadPredecessors(Instruction &I) { 3147 assert(I.isEHPad()); 3148 3149 BasicBlock *BB = I.getParent(); 3150 Function *F = BB->getParent(); 3151 3152 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3153 3154 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3155 // The landingpad instruction defines its parent as a landing pad block. The 3156 // landing pad block may be branched to only by the unwind edge of an 3157 // invoke. 3158 for (BasicBlock *PredBB : predecessors(BB)) { 3159 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3160 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3161 "Block containing LandingPadInst must be jumped to " 3162 "only by the unwind edge of an invoke.", 3163 LPI); 3164 } 3165 return; 3166 } 3167 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3168 if (!pred_empty(BB)) 3169 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3170 "Block containg CatchPadInst must be jumped to " 3171 "only by its catchswitch.", 3172 CPI); 3173 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3174 "Catchswitch cannot unwind to one of its catchpads", 3175 CPI->getCatchSwitch(), CPI); 3176 return; 3177 } 3178 3179 // Verify that each pred has a legal terminator with a legal to/from EH 3180 // pad relationship. 3181 Instruction *ToPad = &I; 3182 Value *ToPadParent = getParentPad(ToPad); 3183 for (BasicBlock *PredBB : predecessors(BB)) { 3184 TerminatorInst *TI = PredBB->getTerminator(); 3185 Value *FromPad; 3186 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3187 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3188 "EH pad must be jumped to via an unwind edge", ToPad, II); 3189 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3190 FromPad = Bundle->Inputs[0]; 3191 else 3192 FromPad = ConstantTokenNone::get(II->getContext()); 3193 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3194 FromPad = CRI->getOperand(0); 3195 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3196 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3197 FromPad = CSI; 3198 } else { 3199 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3200 } 3201 3202 // The edge may exit from zero or more nested pads. 3203 SmallSet<Value *, 8> Seen; 3204 for (;; FromPad = getParentPad(FromPad)) { 3205 Assert(FromPad != ToPad, 3206 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3207 if (FromPad == ToPadParent) { 3208 // This is a legal unwind edge. 3209 break; 3210 } 3211 Assert(!isa<ConstantTokenNone>(FromPad), 3212 "A single unwind edge may only enter one EH pad", TI); 3213 Assert(Seen.insert(FromPad).second, 3214 "EH pad jumps through a cycle of pads", FromPad); 3215 } 3216 } 3217 } 3218 3219 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3220 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3221 // isn't a cleanup. 3222 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3223 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3224 3225 visitEHPadPredecessors(LPI); 3226 3227 if (!LandingPadResultTy) 3228 LandingPadResultTy = LPI.getType(); 3229 else 3230 Assert(LandingPadResultTy == LPI.getType(), 3231 "The landingpad instruction should have a consistent result type " 3232 "inside a function.", 3233 &LPI); 3234 3235 Function *F = LPI.getParent()->getParent(); 3236 Assert(F->hasPersonalityFn(), 3237 "LandingPadInst needs to be in a function with a personality.", &LPI); 3238 3239 // The landingpad instruction must be the first non-PHI instruction in the 3240 // block. 3241 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3242 "LandingPadInst not the first non-PHI instruction in the block.", 3243 &LPI); 3244 3245 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3246 Constant *Clause = LPI.getClause(i); 3247 if (LPI.isCatch(i)) { 3248 Assert(isa<PointerType>(Clause->getType()), 3249 "Catch operand does not have pointer type!", &LPI); 3250 } else { 3251 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3252 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3253 "Filter operand is not an array of constants!", &LPI); 3254 } 3255 } 3256 3257 visitInstruction(LPI); 3258 } 3259 3260 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3261 BasicBlock *BB = CPI.getParent(); 3262 3263 Function *F = BB->getParent(); 3264 Assert(F->hasPersonalityFn(), 3265 "CatchPadInst needs to be in a function with a personality.", &CPI); 3266 3267 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3268 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3269 CPI.getParentPad()); 3270 3271 // The catchpad instruction must be the first non-PHI instruction in the 3272 // block. 3273 Assert(BB->getFirstNonPHI() == &CPI, 3274 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3275 3276 visitEHPadPredecessors(CPI); 3277 visitFuncletPadInst(CPI); 3278 } 3279 3280 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3281 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3282 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3283 CatchReturn.getOperand(0)); 3284 3285 visitTerminatorInst(CatchReturn); 3286 } 3287 3288 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3289 BasicBlock *BB = CPI.getParent(); 3290 3291 Function *F = BB->getParent(); 3292 Assert(F->hasPersonalityFn(), 3293 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3294 3295 // The cleanuppad instruction must be the first non-PHI instruction in the 3296 // block. 3297 Assert(BB->getFirstNonPHI() == &CPI, 3298 "CleanupPadInst not the first non-PHI instruction in the block.", 3299 &CPI); 3300 3301 auto *ParentPad = CPI.getParentPad(); 3302 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3303 "CleanupPadInst has an invalid parent.", &CPI); 3304 3305 visitEHPadPredecessors(CPI); 3306 visitFuncletPadInst(CPI); 3307 } 3308 3309 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3310 User *FirstUser = nullptr; 3311 Value *FirstUnwindPad = nullptr; 3312 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3313 SmallSet<FuncletPadInst *, 8> Seen; 3314 3315 while (!Worklist.empty()) { 3316 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3317 Assert(Seen.insert(CurrentPad).second, 3318 "FuncletPadInst must not be nested within itself", CurrentPad); 3319 Value *UnresolvedAncestorPad = nullptr; 3320 for (User *U : CurrentPad->users()) { 3321 BasicBlock *UnwindDest; 3322 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3323 UnwindDest = CRI->getUnwindDest(); 3324 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3325 // We allow catchswitch unwind to caller to nest 3326 // within an outer pad that unwinds somewhere else, 3327 // because catchswitch doesn't have a nounwind variant. 3328 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3329 if (CSI->unwindsToCaller()) 3330 continue; 3331 UnwindDest = CSI->getUnwindDest(); 3332 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3333 UnwindDest = II->getUnwindDest(); 3334 } else if (isa<CallInst>(U)) { 3335 // Calls which don't unwind may be found inside funclet 3336 // pads that unwind somewhere else. We don't *require* 3337 // such calls to be annotated nounwind. 3338 continue; 3339 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3340 // The unwind dest for a cleanup can only be found by 3341 // recursive search. Add it to the worklist, and we'll 3342 // search for its first use that determines where it unwinds. 3343 Worklist.push_back(CPI); 3344 continue; 3345 } else { 3346 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3347 continue; 3348 } 3349 3350 Value *UnwindPad; 3351 bool ExitsFPI; 3352 if (UnwindDest) { 3353 UnwindPad = UnwindDest->getFirstNonPHI(); 3354 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3355 continue; 3356 Value *UnwindParent = getParentPad(UnwindPad); 3357 // Ignore unwind edges that don't exit CurrentPad. 3358 if (UnwindParent == CurrentPad) 3359 continue; 3360 // Determine whether the original funclet pad is exited, 3361 // and if we are scanning nested pads determine how many 3362 // of them are exited so we can stop searching their 3363 // children. 3364 Value *ExitedPad = CurrentPad; 3365 ExitsFPI = false; 3366 do { 3367 if (ExitedPad == &FPI) { 3368 ExitsFPI = true; 3369 // Now we can resolve any ancestors of CurrentPad up to 3370 // FPI, but not including FPI since we need to make sure 3371 // to check all direct users of FPI for consistency. 3372 UnresolvedAncestorPad = &FPI; 3373 break; 3374 } 3375 Value *ExitedParent = getParentPad(ExitedPad); 3376 if (ExitedParent == UnwindParent) { 3377 // ExitedPad is the ancestor-most pad which this unwind 3378 // edge exits, so we can resolve up to it, meaning that 3379 // ExitedParent is the first ancestor still unresolved. 3380 UnresolvedAncestorPad = ExitedParent; 3381 break; 3382 } 3383 ExitedPad = ExitedParent; 3384 } while (!isa<ConstantTokenNone>(ExitedPad)); 3385 } else { 3386 // Unwinding to caller exits all pads. 3387 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3388 ExitsFPI = true; 3389 UnresolvedAncestorPad = &FPI; 3390 } 3391 3392 if (ExitsFPI) { 3393 // This unwind edge exits FPI. Make sure it agrees with other 3394 // such edges. 3395 if (FirstUser) { 3396 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3397 "pad must have the same unwind " 3398 "dest", 3399 &FPI, U, FirstUser); 3400 } else { 3401 FirstUser = U; 3402 FirstUnwindPad = UnwindPad; 3403 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3404 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3405 getParentPad(UnwindPad) == getParentPad(&FPI)) 3406 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U); 3407 } 3408 } 3409 // Make sure we visit all uses of FPI, but for nested pads stop as 3410 // soon as we know where they unwind to. 3411 if (CurrentPad != &FPI) 3412 break; 3413 } 3414 if (UnresolvedAncestorPad) { 3415 if (CurrentPad == UnresolvedAncestorPad) { 3416 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3417 // we've found an unwind edge that exits it, because we need to verify 3418 // all direct uses of FPI. 3419 assert(CurrentPad == &FPI); 3420 continue; 3421 } 3422 // Pop off the worklist any nested pads that we've found an unwind 3423 // destination for. The pads on the worklist are the uncles, 3424 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3425 // for all ancestors of CurrentPad up to but not including 3426 // UnresolvedAncestorPad. 3427 Value *ResolvedPad = CurrentPad; 3428 while (!Worklist.empty()) { 3429 Value *UnclePad = Worklist.back(); 3430 Value *AncestorPad = getParentPad(UnclePad); 3431 // Walk ResolvedPad up the ancestor list until we either find the 3432 // uncle's parent or the last resolved ancestor. 3433 while (ResolvedPad != AncestorPad) { 3434 Value *ResolvedParent = getParentPad(ResolvedPad); 3435 if (ResolvedParent == UnresolvedAncestorPad) { 3436 break; 3437 } 3438 ResolvedPad = ResolvedParent; 3439 } 3440 // If the resolved ancestor search didn't find the uncle's parent, 3441 // then the uncle is not yet resolved. 3442 if (ResolvedPad != AncestorPad) 3443 break; 3444 // This uncle is resolved, so pop it from the worklist. 3445 Worklist.pop_back(); 3446 } 3447 } 3448 } 3449 3450 if (FirstUnwindPad) { 3451 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3452 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3453 Value *SwitchUnwindPad; 3454 if (SwitchUnwindDest) 3455 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3456 else 3457 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3458 Assert(SwitchUnwindPad == FirstUnwindPad, 3459 "Unwind edges out of a catch must have the same unwind dest as " 3460 "the parent catchswitch", 3461 &FPI, FirstUser, CatchSwitch); 3462 } 3463 } 3464 3465 visitInstruction(FPI); 3466 } 3467 3468 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3469 BasicBlock *BB = CatchSwitch.getParent(); 3470 3471 Function *F = BB->getParent(); 3472 Assert(F->hasPersonalityFn(), 3473 "CatchSwitchInst needs to be in a function with a personality.", 3474 &CatchSwitch); 3475 3476 // The catchswitch instruction must be the first non-PHI instruction in the 3477 // block. 3478 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3479 "CatchSwitchInst not the first non-PHI instruction in the block.", 3480 &CatchSwitch); 3481 3482 auto *ParentPad = CatchSwitch.getParentPad(); 3483 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3484 "CatchSwitchInst has an invalid parent.", ParentPad); 3485 3486 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3487 Instruction *I = UnwindDest->getFirstNonPHI(); 3488 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3489 "CatchSwitchInst must unwind to an EH block which is not a " 3490 "landingpad.", 3491 &CatchSwitch); 3492 3493 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3494 if (getParentPad(I) == ParentPad) 3495 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3496 } 3497 3498 Assert(CatchSwitch.getNumHandlers() != 0, 3499 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3500 3501 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3502 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3503 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3504 } 3505 3506 visitEHPadPredecessors(CatchSwitch); 3507 visitTerminatorInst(CatchSwitch); 3508 } 3509 3510 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3511 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3512 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3513 CRI.getOperand(0)); 3514 3515 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3516 Instruction *I = UnwindDest->getFirstNonPHI(); 3517 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3518 "CleanupReturnInst must unwind to an EH block which is not a " 3519 "landingpad.", 3520 &CRI); 3521 } 3522 3523 visitTerminatorInst(CRI); 3524 } 3525 3526 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 3527 Instruction *Op = cast<Instruction>(I.getOperand(i)); 3528 // If the we have an invalid invoke, don't try to compute the dominance. 3529 // We already reject it in the invoke specific checks and the dominance 3530 // computation doesn't handle multiple edges. 3531 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 3532 if (II->getNormalDest() == II->getUnwindDest()) 3533 return; 3534 } 3535 3536 // Quick check whether the def has already been encountered in the same block. 3537 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI 3538 // uses are defined to happen on the incoming edge, not at the instruction. 3539 // 3540 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 3541 // wrapping an SSA value, assert that we've already encountered it. See 3542 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 3543 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 3544 return; 3545 3546 const Use &U = I.getOperandUse(i); 3547 Assert(DT.dominates(Op, U), 3548 "Instruction does not dominate all uses!", Op, &I); 3549 } 3550 3551 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 3552 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 3553 "apply only to pointer types", &I); 3554 Assert(isa<LoadInst>(I), 3555 "dereferenceable, dereferenceable_or_null apply only to load" 3556 " instructions, use attributes for calls or invokes", &I); 3557 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 3558 "take one operand!", &I); 3559 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 3560 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 3561 "dereferenceable_or_null metadata value must be an i64!", &I); 3562 } 3563 3564 /// verifyInstruction - Verify that an instruction is well formed. 3565 /// 3566 void Verifier::visitInstruction(Instruction &I) { 3567 BasicBlock *BB = I.getParent(); 3568 Assert(BB, "Instruction not embedded in basic block!", &I); 3569 3570 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 3571 for (User *U : I.users()) { 3572 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 3573 "Only PHI nodes may reference their own value!", &I); 3574 } 3575 } 3576 3577 // Check that void typed values don't have names 3578 Assert(!I.getType()->isVoidTy() || !I.hasName(), 3579 "Instruction has a name, but provides a void value!", &I); 3580 3581 // Check that the return value of the instruction is either void or a legal 3582 // value type. 3583 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 3584 "Instruction returns a non-scalar type!", &I); 3585 3586 // Check that the instruction doesn't produce metadata. Calls are already 3587 // checked against the callee type. 3588 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 3589 "Invalid use of metadata!", &I); 3590 3591 // Check that all uses of the instruction, if they are instructions 3592 // themselves, actually have parent basic blocks. If the use is not an 3593 // instruction, it is an error! 3594 for (Use &U : I.uses()) { 3595 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 3596 Assert(Used->getParent() != nullptr, 3597 "Instruction referencing" 3598 " instruction not embedded in a basic block!", 3599 &I, Used); 3600 else { 3601 CheckFailed("Use of instruction is not an instruction!", U); 3602 return; 3603 } 3604 } 3605 3606 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 3607 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 3608 3609 // Check to make sure that only first-class-values are operands to 3610 // instructions. 3611 if (!I.getOperand(i)->getType()->isFirstClassType()) { 3612 Assert(0, "Instruction operands must be first-class values!", &I); 3613 } 3614 3615 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 3616 // Check to make sure that the "address of" an intrinsic function is never 3617 // taken. 3618 Assert( 3619 !F->isIntrinsic() || 3620 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), 3621 "Cannot take the address of an intrinsic!", &I); 3622 Assert( 3623 !F->isIntrinsic() || isa<CallInst>(I) || 3624 F->getIntrinsicID() == Intrinsic::donothing || 3625 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 3626 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 3627 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, 3628 "Cannot invoke an intrinsic other than donothing, patchpoint or " 3629 "statepoint", 3630 &I); 3631 Assert(F->getParent() == M, "Referencing function in another module!", 3632 &I, M, F, F->getParent()); 3633 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 3634 Assert(OpBB->getParent() == BB->getParent(), 3635 "Referring to a basic block in another function!", &I); 3636 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 3637 Assert(OpArg->getParent() == BB->getParent(), 3638 "Referring to an argument in another function!", &I); 3639 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 3640 Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent()); 3641 } else if (isa<Instruction>(I.getOperand(i))) { 3642 verifyDominatesUse(I, i); 3643 } else if (isa<InlineAsm>(I.getOperand(i))) { 3644 Assert((i + 1 == e && isa<CallInst>(I)) || 3645 (i + 3 == e && isa<InvokeInst>(I)), 3646 "Cannot take the address of an inline asm!", &I); 3647 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 3648 if (CE->getType()->isPtrOrPtrVectorTy()) { 3649 // If we have a ConstantExpr pointer, we need to see if it came from an 3650 // illegal bitcast (inttoptr <constant int> ) 3651 visitConstantExprsRecursively(CE); 3652 } 3653 } 3654 } 3655 3656 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 3657 Assert(I.getType()->isFPOrFPVectorTy(), 3658 "fpmath requires a floating point result!", &I); 3659 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 3660 if (ConstantFP *CFP0 = 3661 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 3662 APFloat Accuracy = CFP0->getValueAPF(); 3663 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 3664 "fpmath accuracy not a positive number!", &I); 3665 } else { 3666 Assert(false, "invalid fpmath accuracy!", &I); 3667 } 3668 } 3669 3670 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 3671 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 3672 "Ranges are only for loads, calls and invokes!", &I); 3673 visitRangeMetadata(I, Range, I.getType()); 3674 } 3675 3676 if (I.getMetadata(LLVMContext::MD_nonnull)) { 3677 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 3678 &I); 3679 Assert(isa<LoadInst>(I), 3680 "nonnull applies only to load instructions, use attributes" 3681 " for calls or invokes", 3682 &I); 3683 } 3684 3685 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 3686 visitDereferenceableMetadata(I, MD); 3687 3688 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 3689 visitDereferenceableMetadata(I, MD); 3690 3691 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 3692 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 3693 &I); 3694 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 3695 "use attributes for calls or invokes", &I); 3696 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 3697 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 3698 Assert(CI && CI->getType()->isIntegerTy(64), 3699 "align metadata value must be an i64!", &I); 3700 uint64_t Align = CI->getZExtValue(); 3701 Assert(isPowerOf2_64(Align), 3702 "align metadata value must be a power of 2!", &I); 3703 Assert(Align <= Value::MaximumAlignment, 3704 "alignment is larger that implementation defined limit", &I); 3705 } 3706 3707 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 3708 Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 3709 visitMDNode(*N); 3710 } 3711 3712 InstsInThisBlock.insert(&I); 3713 } 3714 3715 /// Verify that the specified type (which comes from an intrinsic argument or 3716 /// return value) matches the type constraints specified by the .td file (e.g. 3717 /// an "any integer" argument really is an integer). 3718 /// 3719 /// This returns true on error but does not print a message. 3720 bool Verifier::verifyIntrinsicType(Type *Ty, 3721 ArrayRef<Intrinsic::IITDescriptor> &Infos, 3722 SmallVectorImpl<Type*> &ArgTys) { 3723 using namespace Intrinsic; 3724 3725 // If we ran out of descriptors, there are too many arguments. 3726 if (Infos.empty()) return true; 3727 IITDescriptor D = Infos.front(); 3728 Infos = Infos.slice(1); 3729 3730 switch (D.Kind) { 3731 case IITDescriptor::Void: return !Ty->isVoidTy(); 3732 case IITDescriptor::VarArg: return true; 3733 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 3734 case IITDescriptor::Token: return !Ty->isTokenTy(); 3735 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 3736 case IITDescriptor::Half: return !Ty->isHalfTy(); 3737 case IITDescriptor::Float: return !Ty->isFloatTy(); 3738 case IITDescriptor::Double: return !Ty->isDoubleTy(); 3739 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 3740 case IITDescriptor::Vector: { 3741 VectorType *VT = dyn_cast<VectorType>(Ty); 3742 return !VT || VT->getNumElements() != D.Vector_Width || 3743 verifyIntrinsicType(VT->getElementType(), Infos, ArgTys); 3744 } 3745 case IITDescriptor::Pointer: { 3746 PointerType *PT = dyn_cast<PointerType>(Ty); 3747 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 3748 verifyIntrinsicType(PT->getElementType(), Infos, ArgTys); 3749 } 3750 3751 case IITDescriptor::Struct: { 3752 StructType *ST = dyn_cast<StructType>(Ty); 3753 if (!ST || ST->getNumElements() != D.Struct_NumElements) 3754 return true; 3755 3756 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 3757 if (verifyIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 3758 return true; 3759 return false; 3760 } 3761 3762 case IITDescriptor::Argument: 3763 // Two cases here - If this is the second occurrence of an argument, verify 3764 // that the later instance matches the previous instance. 3765 if (D.getArgumentNumber() < ArgTys.size()) 3766 return Ty != ArgTys[D.getArgumentNumber()]; 3767 3768 // Otherwise, if this is the first instance of an argument, record it and 3769 // verify the "Any" kind. 3770 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 3771 ArgTys.push_back(Ty); 3772 3773 switch (D.getArgumentKind()) { 3774 case IITDescriptor::AK_Any: return false; // Success 3775 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 3776 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 3777 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 3778 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 3779 } 3780 llvm_unreachable("all argument kinds not covered"); 3781 3782 case IITDescriptor::ExtendArgument: { 3783 // This may only be used when referring to a previous vector argument. 3784 if (D.getArgumentNumber() >= ArgTys.size()) 3785 return true; 3786 3787 Type *NewTy = ArgTys[D.getArgumentNumber()]; 3788 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 3789 NewTy = VectorType::getExtendedElementVectorType(VTy); 3790 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 3791 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 3792 else 3793 return true; 3794 3795 return Ty != NewTy; 3796 } 3797 case IITDescriptor::TruncArgument: { 3798 // This may only be used when referring to a previous vector argument. 3799 if (D.getArgumentNumber() >= ArgTys.size()) 3800 return true; 3801 3802 Type *NewTy = ArgTys[D.getArgumentNumber()]; 3803 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 3804 NewTy = VectorType::getTruncatedElementVectorType(VTy); 3805 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 3806 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 3807 else 3808 return true; 3809 3810 return Ty != NewTy; 3811 } 3812 case IITDescriptor::HalfVecArgument: 3813 // This may only be used when referring to a previous vector argument. 3814 return D.getArgumentNumber() >= ArgTys.size() || 3815 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 3816 VectorType::getHalfElementsVectorType( 3817 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 3818 case IITDescriptor::SameVecWidthArgument: { 3819 if (D.getArgumentNumber() >= ArgTys.size()) 3820 return true; 3821 VectorType * ReferenceType = 3822 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 3823 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 3824 if (!ThisArgType || !ReferenceType || 3825 (ReferenceType->getVectorNumElements() != 3826 ThisArgType->getVectorNumElements())) 3827 return true; 3828 return verifyIntrinsicType(ThisArgType->getVectorElementType(), 3829 Infos, ArgTys); 3830 } 3831 case IITDescriptor::PtrToArgument: { 3832 if (D.getArgumentNumber() >= ArgTys.size()) 3833 return true; 3834 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 3835 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 3836 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 3837 } 3838 case IITDescriptor::VecOfPtrsToElt: { 3839 if (D.getArgumentNumber() >= ArgTys.size()) 3840 return true; 3841 VectorType * ReferenceType = 3842 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 3843 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 3844 if (!ThisArgVecTy || !ReferenceType || 3845 (ReferenceType->getVectorNumElements() != 3846 ThisArgVecTy->getVectorNumElements())) 3847 return true; 3848 PointerType *ThisArgEltTy = 3849 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 3850 if (!ThisArgEltTy) 3851 return true; 3852 return ThisArgEltTy->getElementType() != 3853 ReferenceType->getVectorElementType(); 3854 } 3855 } 3856 llvm_unreachable("unhandled"); 3857 } 3858 3859 /// Verify if the intrinsic has variable arguments. This method is intended to 3860 /// be called after all the fixed arguments have been verified first. 3861 /// 3862 /// This method returns true on error and does not print an error message. 3863 bool 3864 Verifier::verifyIntrinsicIsVarArg(bool isVarArg, 3865 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 3866 using namespace Intrinsic; 3867 3868 // If there are no descriptors left, then it can't be a vararg. 3869 if (Infos.empty()) 3870 return isVarArg; 3871 3872 // There should be only one descriptor remaining at this point. 3873 if (Infos.size() != 1) 3874 return true; 3875 3876 // Check and verify the descriptor. 3877 IITDescriptor D = Infos.front(); 3878 Infos = Infos.slice(1); 3879 if (D.Kind == IITDescriptor::VarArg) 3880 return !isVarArg; 3881 3882 return true; 3883 } 3884 3885 /// Allow intrinsics to be verified in different ways. 3886 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { 3887 Function *IF = CS.getCalledFunction(); 3888 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 3889 IF); 3890 3891 // Verify that the intrinsic prototype lines up with what the .td files 3892 // describe. 3893 FunctionType *IFTy = IF->getFunctionType(); 3894 bool IsVarArg = IFTy->isVarArg(); 3895 3896 SmallVector<Intrinsic::IITDescriptor, 8> Table; 3897 getIntrinsicInfoTableEntries(ID, Table); 3898 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 3899 3900 SmallVector<Type *, 4> ArgTys; 3901 Assert(!verifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), 3902 "Intrinsic has incorrect return type!", IF); 3903 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) 3904 Assert(!verifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), 3905 "Intrinsic has incorrect argument type!", IF); 3906 3907 // Verify if the intrinsic call matches the vararg property. 3908 if (IsVarArg) 3909 Assert(!verifyIntrinsicIsVarArg(IsVarArg, TableRef), 3910 "Intrinsic was not defined with variable arguments!", IF); 3911 else 3912 Assert(!verifyIntrinsicIsVarArg(IsVarArg, TableRef), 3913 "Callsite was not defined with variable arguments!", IF); 3914 3915 // All descriptors should be absorbed by now. 3916 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 3917 3918 // Now that we have the intrinsic ID and the actual argument types (and we 3919 // know they are legal for the intrinsic!) get the intrinsic name through the 3920 // usual means. This allows us to verify the mangling of argument types into 3921 // the name. 3922 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 3923 Assert(ExpectedName == IF->getName(), 3924 "Intrinsic name not mangled correctly for type arguments! " 3925 "Should be: " + 3926 ExpectedName, 3927 IF); 3928 3929 // If the intrinsic takes MDNode arguments, verify that they are either global 3930 // or are local to *this* function. 3931 for (Value *V : CS.args()) 3932 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 3933 visitMetadataAsValue(*MD, CS.getCaller()); 3934 3935 switch (ID) { 3936 default: 3937 break; 3938 case Intrinsic::ctlz: // llvm.ctlz 3939 case Intrinsic::cttz: // llvm.cttz 3940 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 3941 "is_zero_undef argument of bit counting intrinsics must be a " 3942 "constant int", 3943 CS); 3944 break; 3945 case Intrinsic::dbg_declare: // llvm.dbg.declare 3946 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), 3947 "invalid llvm.dbg.declare intrinsic call 1", CS); 3948 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction())); 3949 break; 3950 case Intrinsic::dbg_value: // llvm.dbg.value 3951 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction())); 3952 break; 3953 case Intrinsic::memcpy: 3954 case Intrinsic::memmove: 3955 case Intrinsic::memset: { 3956 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3)); 3957 Assert(AlignCI, 3958 "alignment argument of memory intrinsics must be a constant int", 3959 CS); 3960 const APInt &AlignVal = AlignCI->getValue(); 3961 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(), 3962 "alignment argument of memory intrinsics must be a power of 2", CS); 3963 Assert(isa<ConstantInt>(CS.getArgOperand(4)), 3964 "isvolatile argument of memory intrinsics must be a constant int", 3965 CS); 3966 break; 3967 } 3968 case Intrinsic::gcroot: 3969 case Intrinsic::gcwrite: 3970 case Intrinsic::gcread: 3971 if (ID == Intrinsic::gcroot) { 3972 AllocaInst *AI = 3973 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); 3974 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); 3975 Assert(isa<Constant>(CS.getArgOperand(1)), 3976 "llvm.gcroot parameter #2 must be a constant.", CS); 3977 if (!AI->getAllocatedType()->isPointerTy()) { 3978 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), 3979 "llvm.gcroot parameter #1 must either be a pointer alloca, " 3980 "or argument #2 must be a non-null constant.", 3981 CS); 3982 } 3983 } 3984 3985 Assert(CS.getParent()->getParent()->hasGC(), 3986 "Enclosing function does not use GC.", CS); 3987 break; 3988 case Intrinsic::init_trampoline: 3989 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), 3990 "llvm.init_trampoline parameter #2 must resolve to a function.", 3991 CS); 3992 break; 3993 case Intrinsic::prefetch: 3994 Assert(isa<ConstantInt>(CS.getArgOperand(1)) && 3995 isa<ConstantInt>(CS.getArgOperand(2)) && 3996 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && 3997 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, 3998 "invalid arguments to llvm.prefetch", CS); 3999 break; 4000 case Intrinsic::stackprotector: 4001 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), 4002 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); 4003 break; 4004 case Intrinsic::lifetime_start: 4005 case Intrinsic::lifetime_end: 4006 case Intrinsic::invariant_start: 4007 Assert(isa<ConstantInt>(CS.getArgOperand(0)), 4008 "size argument of memory use markers must be a constant integer", 4009 CS); 4010 break; 4011 case Intrinsic::invariant_end: 4012 Assert(isa<ConstantInt>(CS.getArgOperand(1)), 4013 "llvm.invariant.end parameter #2 must be a constant integer", CS); 4014 break; 4015 4016 case Intrinsic::localescape: { 4017 BasicBlock *BB = CS.getParent(); 4018 Assert(BB == &BB->getParent()->front(), 4019 "llvm.localescape used outside of entry block", CS); 4020 Assert(!SawFrameEscape, 4021 "multiple calls to llvm.localescape in one function", CS); 4022 for (Value *Arg : CS.args()) { 4023 if (isa<ConstantPointerNull>(Arg)) 4024 continue; // Null values are allowed as placeholders. 4025 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4026 Assert(AI && AI->isStaticAlloca(), 4027 "llvm.localescape only accepts static allocas", CS); 4028 } 4029 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); 4030 SawFrameEscape = true; 4031 break; 4032 } 4033 case Intrinsic::localrecover: { 4034 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); 4035 Function *Fn = dyn_cast<Function>(FnArg); 4036 Assert(Fn && !Fn->isDeclaration(), 4037 "llvm.localrecover first " 4038 "argument must be function defined in this module", 4039 CS); 4040 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); 4041 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", 4042 CS); 4043 auto &Entry = FrameEscapeInfo[Fn]; 4044 Entry.second = unsigned( 4045 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4046 break; 4047 } 4048 4049 case Intrinsic::experimental_gc_statepoint: 4050 Assert(!CS.isInlineAsm(), 4051 "gc.statepoint support for inline assembly unimplemented", CS); 4052 Assert(CS.getParent()->getParent()->hasGC(), 4053 "Enclosing function does not use GC.", CS); 4054 4055 verifyStatepoint(CS); 4056 break; 4057 case Intrinsic::experimental_gc_result: { 4058 Assert(CS.getParent()->getParent()->hasGC(), 4059 "Enclosing function does not use GC.", CS); 4060 // Are we tied to a statepoint properly? 4061 CallSite StatepointCS(CS.getArgOperand(0)); 4062 const Function *StatepointFn = 4063 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; 4064 Assert(StatepointFn && StatepointFn->isDeclaration() && 4065 StatepointFn->getIntrinsicID() == 4066 Intrinsic::experimental_gc_statepoint, 4067 "gc.result operand #1 must be from a statepoint", CS, 4068 CS.getArgOperand(0)); 4069 4070 // Assert that result type matches wrapped callee. 4071 const Value *Target = StatepointCS.getArgument(2); 4072 auto *PT = cast<PointerType>(Target->getType()); 4073 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4074 Assert(CS.getType() == TargetFuncType->getReturnType(), 4075 "gc.result result type does not match wrapped callee", CS); 4076 break; 4077 } 4078 case Intrinsic::experimental_gc_relocate: { 4079 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); 4080 4081 Assert(isa<PointerType>(CS.getType()->getScalarType()), 4082 "gc.relocate must return a pointer or a vector of pointers", CS); 4083 4084 // Check that this relocate is correctly tied to the statepoint 4085 4086 // This is case for relocate on the unwinding path of an invoke statepoint 4087 if (LandingPadInst *LandingPad = 4088 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) { 4089 4090 const BasicBlock *InvokeBB = 4091 LandingPad->getParent()->getUniquePredecessor(); 4092 4093 // Landingpad relocates should have only one predecessor with invoke 4094 // statepoint terminator 4095 Assert(InvokeBB, "safepoints should have unique landingpads", 4096 LandingPad->getParent()); 4097 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4098 InvokeBB); 4099 Assert(isStatepoint(InvokeBB->getTerminator()), 4100 "gc relocate should be linked to a statepoint", InvokeBB); 4101 } 4102 else { 4103 // In all other cases relocate should be tied to the statepoint directly. 4104 // This covers relocates on a normal return path of invoke statepoint and 4105 // relocates of a call statepoint. 4106 auto Token = CS.getArgOperand(0); 4107 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4108 "gc relocate is incorrectly tied to the statepoint", CS, Token); 4109 } 4110 4111 // Verify rest of the relocate arguments. 4112 4113 ImmutableCallSite StatepointCS( 4114 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint()); 4115 4116 // Both the base and derived must be piped through the safepoint. 4117 Value* Base = CS.getArgOperand(1); 4118 Assert(isa<ConstantInt>(Base), 4119 "gc.relocate operand #2 must be integer offset", CS); 4120 4121 Value* Derived = CS.getArgOperand(2); 4122 Assert(isa<ConstantInt>(Derived), 4123 "gc.relocate operand #3 must be integer offset", CS); 4124 4125 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4126 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4127 // Check the bounds 4128 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), 4129 "gc.relocate: statepoint base index out of bounds", CS); 4130 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), 4131 "gc.relocate: statepoint derived index out of bounds", CS); 4132 4133 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4134 // section of the statepoint's argument. 4135 Assert(StatepointCS.arg_size() > 0, 4136 "gc.statepoint: insufficient arguments"); 4137 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), 4138 "gc.statement: number of call arguments must be constant integer"); 4139 const unsigned NumCallArgs = 4140 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); 4141 Assert(StatepointCS.arg_size() > NumCallArgs + 5, 4142 "gc.statepoint: mismatch in number of call arguments"); 4143 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), 4144 "gc.statepoint: number of transition arguments must be " 4145 "a constant integer"); 4146 const int NumTransitionArgs = 4147 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) 4148 ->getZExtValue(); 4149 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4150 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), 4151 "gc.statepoint: number of deoptimization arguments must be " 4152 "a constant integer"); 4153 const int NumDeoptArgs = 4154 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)) 4155 ->getZExtValue(); 4156 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4157 const int GCParamArgsEnd = StatepointCS.arg_size(); 4158 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4159 "gc.relocate: statepoint base index doesn't fall within the " 4160 "'gc parameters' section of the statepoint call", 4161 CS); 4162 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4163 "gc.relocate: statepoint derived index doesn't fall within the " 4164 "'gc parameters' section of the statepoint call", 4165 CS); 4166 4167 // Relocated value must be either a pointer type or vector-of-pointer type, 4168 // but gc_relocate does not need to return the same pointer type as the 4169 // relocated pointer. It can be casted to the correct type later if it's 4170 // desired. However, they must have the same address space and 'vectorness' 4171 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); 4172 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(), 4173 "gc.relocate: relocated value must be a gc pointer", CS); 4174 4175 auto ResultType = CS.getType(); 4176 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4177 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4178 "gc.relocate: vector relocates to vector and pointer to pointer", 4179 CS); 4180 Assert( 4181 ResultType->getPointerAddressSpace() == 4182 DerivedType->getPointerAddressSpace(), 4183 "gc.relocate: relocating a pointer shouldn't change its address space", 4184 CS); 4185 break; 4186 } 4187 case Intrinsic::eh_exceptioncode: 4188 case Intrinsic::eh_exceptionpointer: { 4189 Assert(isa<CatchPadInst>(CS.getArgOperand(0)), 4190 "eh.exceptionpointer argument must be a catchpad", CS); 4191 break; 4192 } 4193 case Intrinsic::masked_load: { 4194 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS); 4195 4196 Value *Ptr = CS.getArgOperand(0); 4197 //Value *Alignment = CS.getArgOperand(1); 4198 Value *Mask = CS.getArgOperand(2); 4199 Value *PassThru = CS.getArgOperand(3); 4200 Assert(Mask->getType()->isVectorTy(), 4201 "masked_load: mask must be vector", CS); 4202 4203 // DataTy is the overloaded type 4204 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4205 Assert(DataTy == CS.getType(), 4206 "masked_load: return must match pointer type", CS); 4207 Assert(PassThru->getType() == DataTy, 4208 "masked_load: pass through and data type must match", CS); 4209 Assert(Mask->getType()->getVectorNumElements() == 4210 DataTy->getVectorNumElements(), 4211 "masked_load: vector mask must be same length as data", CS); 4212 break; 4213 } 4214 case Intrinsic::masked_store: { 4215 Value *Val = CS.getArgOperand(0); 4216 Value *Ptr = CS.getArgOperand(1); 4217 //Value *Alignment = CS.getArgOperand(2); 4218 Value *Mask = CS.getArgOperand(3); 4219 Assert(Mask->getType()->isVectorTy(), 4220 "masked_store: mask must be vector", CS); 4221 4222 // DataTy is the overloaded type 4223 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4224 Assert(DataTy == Val->getType(), 4225 "masked_store: storee must match pointer type", CS); 4226 Assert(Mask->getType()->getVectorNumElements() == 4227 DataTy->getVectorNumElements(), 4228 "masked_store: vector mask must be same length as data", CS); 4229 break; 4230 } 4231 4232 case Intrinsic::experimental_guard: { 4233 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS); 4234 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4235 "experimental_guard must have exactly one " 4236 "\"deopt\" operand bundle"); 4237 break; 4238 } 4239 4240 case Intrinsic::experimental_deoptimize: { 4241 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS); 4242 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4243 "experimental_deoptimize must have exactly one " 4244 "\"deopt\" operand bundle"); 4245 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(), 4246 "experimental_deoptimize return type must match caller return type"); 4247 4248 if (CS.isCall()) { 4249 auto *DeoptCI = CS.getInstruction(); 4250 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode()); 4251 Assert(RI, 4252 "calls to experimental_deoptimize must be followed by a return"); 4253 4254 if (!CS.getType()->isVoidTy() && RI) 4255 Assert(RI->getReturnValue() == DeoptCI, 4256 "calls to experimental_deoptimize must be followed by a return " 4257 "of the value computed by experimental_deoptimize"); 4258 } 4259 4260 break; 4261 } 4262 }; 4263 } 4264 4265 /// \brief Carefully grab the subprogram from a local scope. 4266 /// 4267 /// This carefully grabs the subprogram from a local scope, avoiding the 4268 /// built-in assertions that would typically fire. 4269 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4270 if (!LocalScope) 4271 return nullptr; 4272 4273 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4274 return SP; 4275 4276 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4277 return getSubprogram(LB->getRawScope()); 4278 4279 // Just return null; broken scope chains are checked elsewhere. 4280 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4281 return nullptr; 4282 } 4283 4284 template <class DbgIntrinsicTy> 4285 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) { 4286 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4287 Assert(isa<ValueAsMetadata>(MD) || 4288 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4289 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4290 Assert(isa<DILocalVariable>(DII.getRawVariable()), 4291 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4292 DII.getRawVariable()); 4293 Assert(isa<DIExpression>(DII.getRawExpression()), 4294 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4295 DII.getRawExpression()); 4296 4297 // Ignore broken !dbg attachments; they're checked elsewhere. 4298 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4299 if (!isa<DILocation>(N)) 4300 return; 4301 4302 BasicBlock *BB = DII.getParent(); 4303 Function *F = BB ? BB->getParent() : nullptr; 4304 4305 // The scopes for variables and !dbg attachments must agree. 4306 DILocalVariable *Var = DII.getVariable(); 4307 DILocation *Loc = DII.getDebugLoc(); 4308 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4309 &DII, BB, F); 4310 4311 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4312 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4313 if (!VarSP || !LocSP) 4314 return; // Broken scope chains are checked elsewhere. 4315 4316 Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4317 " variable and !dbg attachment", 4318 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4319 Loc->getScope()->getSubprogram()); 4320 } 4321 4322 template <class MapTy> 4323 static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) { 4324 // Be careful of broken types (checked elsewhere). 4325 const Metadata *RawType = V.getRawType(); 4326 while (RawType) { 4327 // Try to get the size directly. 4328 if (auto *T = dyn_cast<DIType>(RawType)) 4329 if (uint64_t Size = T->getSizeInBits()) 4330 return Size; 4331 4332 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { 4333 // Look at the base type. 4334 RawType = DT->getRawBaseType(); 4335 continue; 4336 } 4337 4338 if (auto *S = dyn_cast<MDString>(RawType)) { 4339 // Don't error on missing types (checked elsewhere). 4340 RawType = Map.lookup(S); 4341 continue; 4342 } 4343 4344 // Missing type or size. 4345 break; 4346 } 4347 4348 // Fail gracefully. 4349 return 0; 4350 } 4351 4352 template <class MapTy> 4353 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I, 4354 const MapTy &TypeRefs) { 4355 DILocalVariable *V; 4356 DIExpression *E; 4357 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) { 4358 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable()); 4359 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression()); 4360 } else { 4361 auto *DDI = cast<DbgDeclareInst>(&I); 4362 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable()); 4363 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression()); 4364 } 4365 4366 // We don't know whether this intrinsic verified correctly. 4367 if (!V || !E || !E->isValid()) 4368 return; 4369 4370 // Nothing to do if this isn't a bit piece expression. 4371 if (!E->isBitPiece()) 4372 return; 4373 4374 // The frontend helps out GDB by emitting the members of local anonymous 4375 // unions as artificial local variables with shared storage. When SROA splits 4376 // the storage for artificial local variables that are smaller than the entire 4377 // union, the overhang piece will be outside of the allotted space for the 4378 // variable and this check fails. 4379 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4380 if (V->isArtificial()) 4381 return; 4382 4383 // If there's no size, the type is broken, but that should be checked 4384 // elsewhere. 4385 uint64_t VarSize = getVariableSize(*V, TypeRefs); 4386 if (!VarSize) 4387 return; 4388 4389 unsigned PieceSize = E->getBitPieceSize(); 4390 unsigned PieceOffset = E->getBitPieceOffset(); 4391 Assert(PieceSize + PieceOffset <= VarSize, 4392 "piece is larger than or outside of variable", &I, V, E); 4393 Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E); 4394 } 4395 4396 void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) { 4397 // This is in its own function so we get an error for each bad type ref (not 4398 // just the first). 4399 Assert(false, "unresolved type ref", S, N); 4400 } 4401 4402 void Verifier::verifyCompileUnits() { 4403 auto *CUs = M->getNamedMetadata("llvm.dbg.cu"); 4404 SmallPtrSet<const Metadata *, 2> Listed; 4405 if (CUs) 4406 Listed.insert(CUs->op_begin(), CUs->op_end()); 4407 Assert( 4408 std::all_of(CUVisited.begin(), CUVisited.end(), 4409 [&Listed](const Metadata *CU) { return Listed.count(CU); }), 4410 "All DICompileUnits must be listed in llvm.dbg.cu"); 4411 CUVisited.clear(); 4412 } 4413 4414 void Verifier::verifyTypeRefs() { 4415 auto *CUs = M->getNamedMetadata("llvm.dbg.cu"); 4416 if (!CUs) 4417 return; 4418 4419 // Visit all the compile units again to map the type references. 4420 SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs; 4421 for (auto *MD : CUs->operands()) { 4422 auto *CU = dyn_cast<DICompileUnit>(MD); 4423 if (!CU) 4424 continue; 4425 auto *Array = CU->getRawRetainedTypes(); 4426 if (!Array || !isa<MDTuple>(Array)) 4427 continue; 4428 for (DIScope *Op : CU->getRetainedTypes()) 4429 if (auto *T = dyn_cast_or_null<DICompositeType>(Op)) 4430 if (auto *S = T->getRawIdentifier()) { 4431 UnresolvedTypeRefs.erase(S); 4432 TypeRefs.insert(std::make_pair(S, T)); 4433 } 4434 } 4435 4436 // Verify debug info intrinsic bit piece expressions. This needs a second 4437 // pass through the intructions, since we haven't built TypeRefs yet when 4438 // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate 4439 // later/now would queue up some that could be later deleted. 4440 for (const Function &F : *M) 4441 for (const BasicBlock &BB : F) 4442 for (const Instruction &I : BB) 4443 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) 4444 verifyBitPieceExpression(*DII, TypeRefs); 4445 4446 // Return early if all typerefs were resolved. 4447 if (UnresolvedTypeRefs.empty()) 4448 return; 4449 4450 // Sort the unresolved references by name so the output is deterministic. 4451 typedef std::pair<const MDString *, const MDNode *> TypeRef; 4452 SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(), 4453 UnresolvedTypeRefs.end()); 4454 std::sort(Unresolved.begin(), Unresolved.end(), 4455 [](const TypeRef &LHS, const TypeRef &RHS) { 4456 return LHS.first->getString() < RHS.first->getString(); 4457 }); 4458 4459 // Visit the unresolved refs (printing out the errors). 4460 for (const TypeRef &TR : Unresolved) 4461 visitUnresolvedTypeRef(TR.first, TR.second); 4462 } 4463 4464 //===----------------------------------------------------------------------===// 4465 // Implement the public interfaces to this file... 4466 //===----------------------------------------------------------------------===// 4467 4468 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 4469 Function &F = const_cast<Function &>(f); 4470 assert(!F.isDeclaration() && "Cannot verify external functions"); 4471 4472 raw_null_ostream NullStr; 4473 Verifier V(OS ? *OS : NullStr); 4474 4475 // Note that this function's return value is inverted from what you would 4476 // expect of a function called "verify". 4477 return !V.verify(F); 4478 } 4479 4480 bool llvm::verifyModule(const Module &M, raw_ostream *OS) { 4481 raw_null_ostream NullStr; 4482 Verifier V(OS ? *OS : NullStr); 4483 4484 bool Broken = false; 4485 for (const Function &F : M) 4486 if (!F.isDeclaration() && !F.isMaterializable()) 4487 Broken |= !V.verify(F); 4488 4489 // Note that this function's return value is inverted from what you would 4490 // expect of a function called "verify". 4491 return !V.verify(M) || Broken; 4492 } 4493 4494 namespace { 4495 struct VerifierLegacyPass : public FunctionPass { 4496 static char ID; 4497 4498 Verifier V; 4499 bool FatalErrors; 4500 4501 VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) { 4502 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4503 } 4504 explicit VerifierLegacyPass(bool FatalErrors) 4505 : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) { 4506 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 4507 } 4508 4509 bool runOnFunction(Function &F) override { 4510 if (!V.verify(F) && FatalErrors) 4511 report_fatal_error("Broken function found, compilation aborted!"); 4512 4513 return false; 4514 } 4515 4516 bool doFinalization(Module &M) override { 4517 if (!V.verify(M) && FatalErrors) 4518 report_fatal_error("Broken module found, compilation aborted!"); 4519 4520 return false; 4521 } 4522 4523 void getAnalysisUsage(AnalysisUsage &AU) const override { 4524 AU.setPreservesAll(); 4525 } 4526 }; 4527 } 4528 4529 char VerifierLegacyPass::ID = 0; 4530 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 4531 4532 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 4533 return new VerifierLegacyPass(FatalErrors); 4534 } 4535 4536 PreservedAnalyses VerifierPass::run(Module &M) { 4537 if (verifyModule(M, &dbgs()) && FatalErrors) 4538 report_fatal_error("Broken module found, compilation aborted!"); 4539 4540 return PreservedAnalyses::all(); 4541 } 4542 4543 PreservedAnalyses VerifierPass::run(Function &F) { 4544 if (verifyFunction(F, &dbgs()) && FatalErrors) 4545 report_fatal_error("Broken function found, compilation aborted!"); 4546 4547 return PreservedAnalyses::all(); 4548 } 4549