1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 // Verification methods... 401 void visitGlobalValue(const GlobalValue &GV); 402 void visitGlobalVariable(const GlobalVariable &GV); 403 void visitGlobalAlias(const GlobalAlias &GA); 404 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 405 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 406 const GlobalAlias &A, const Constant &C); 407 void visitNamedMDNode(const NamedMDNode &NMD); 408 void visitMDNode(const MDNode &MD); 409 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 410 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 411 void visitComdat(const Comdat &C); 412 void visitModuleIdents(const Module &M); 413 void visitModuleCommandLines(const Module &M); 414 void visitModuleFlags(const Module &M); 415 void visitModuleFlag(const MDNode *Op, 416 DenseMap<const MDString *, const MDNode *> &SeenIDs, 417 SmallVectorImpl<const MDNode *> &Requirements); 418 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 419 void visitFunction(const Function &F); 420 void visitBasicBlock(BasicBlock &BB); 421 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 422 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 423 void visitProfMetadata(Instruction &I, MDNode *MD); 424 425 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 426 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 427 #include "llvm/IR/Metadata.def" 428 void visitDIScope(const DIScope &N); 429 void visitDIVariable(const DIVariable &N); 430 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 431 void visitDITemplateParameter(const DITemplateParameter &N); 432 433 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 434 435 // InstVisitor overrides... 436 using InstVisitor<Verifier>::visit; 437 void visit(Instruction &I); 438 439 void visitTruncInst(TruncInst &I); 440 void visitZExtInst(ZExtInst &I); 441 void visitSExtInst(SExtInst &I); 442 void visitFPTruncInst(FPTruncInst &I); 443 void visitFPExtInst(FPExtInst &I); 444 void visitFPToUIInst(FPToUIInst &I); 445 void visitFPToSIInst(FPToSIInst &I); 446 void visitUIToFPInst(UIToFPInst &I); 447 void visitSIToFPInst(SIToFPInst &I); 448 void visitIntToPtrInst(IntToPtrInst &I); 449 void visitPtrToIntInst(PtrToIntInst &I); 450 void visitBitCastInst(BitCastInst &I); 451 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 452 void visitPHINode(PHINode &PN); 453 void visitCallBase(CallBase &Call); 454 void visitUnaryOperator(UnaryOperator &U); 455 void visitBinaryOperator(BinaryOperator &B); 456 void visitICmpInst(ICmpInst &IC); 457 void visitFCmpInst(FCmpInst &FC); 458 void visitExtractElementInst(ExtractElementInst &EI); 459 void visitInsertElementInst(InsertElementInst &EI); 460 void visitShuffleVectorInst(ShuffleVectorInst &EI); 461 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 462 void visitCallInst(CallInst &CI); 463 void visitInvokeInst(InvokeInst &II); 464 void visitGetElementPtrInst(GetElementPtrInst &GEP); 465 void visitLoadInst(LoadInst &LI); 466 void visitStoreInst(StoreInst &SI); 467 void verifyDominatesUse(Instruction &I, unsigned i); 468 void visitInstruction(Instruction &I); 469 void visitTerminator(Instruction &I); 470 void visitBranchInst(BranchInst &BI); 471 void visitReturnInst(ReturnInst &RI); 472 void visitSwitchInst(SwitchInst &SI); 473 void visitIndirectBrInst(IndirectBrInst &BI); 474 void visitCallBrInst(CallBrInst &CBI); 475 void visitSelectInst(SelectInst &SI); 476 void visitUserOp1(Instruction &I); 477 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 478 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 479 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 480 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 481 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 482 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 483 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 484 void visitFenceInst(FenceInst &FI); 485 void visitAllocaInst(AllocaInst &AI); 486 void visitExtractValueInst(ExtractValueInst &EVI); 487 void visitInsertValueInst(InsertValueInst &IVI); 488 void visitEHPadPredecessors(Instruction &I); 489 void visitLandingPadInst(LandingPadInst &LPI); 490 void visitResumeInst(ResumeInst &RI); 491 void visitCatchPadInst(CatchPadInst &CPI); 492 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 493 void visitCleanupPadInst(CleanupPadInst &CPI); 494 void visitFuncletPadInst(FuncletPadInst &FPI); 495 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 496 void visitCleanupReturnInst(CleanupReturnInst &CRI); 497 498 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 499 void verifySwiftErrorValue(const Value *SwiftErrorVal); 500 void verifyMustTailCall(CallInst &CI); 501 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 502 unsigned ArgNo, std::string &Suffix); 503 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 504 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 505 const Value *V); 506 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 507 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 508 const Value *V, bool IsIntrinsic); 509 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 510 511 void visitConstantExprsRecursively(const Constant *EntryC); 512 void visitConstantExpr(const ConstantExpr *CE); 513 void verifyStatepoint(const CallBase &Call); 514 void verifyFrameRecoverIndices(); 515 void verifySiblingFuncletUnwinds(); 516 517 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 518 template <typename ValueOrMetadata> 519 void verifyFragmentExpression(const DIVariable &V, 520 DIExpression::FragmentInfo Fragment, 521 ValueOrMetadata *Desc); 522 void verifyFnArgs(const DbgVariableIntrinsic &I); 523 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 524 525 /// Module-level debug info verification... 526 void verifyCompileUnits(); 527 528 /// Module-level verification that all @llvm.experimental.deoptimize 529 /// declarations share the same calling convention. 530 void verifyDeoptimizeCallingConvs(); 531 532 /// Verify all-or-nothing property of DIFile source attribute within a CU. 533 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 534 }; 535 536 } // end anonymous namespace 537 538 /// We know that cond should be true, if not print an error message. 539 #define Assert(C, ...) \ 540 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 541 542 /// We know that a debug info condition should be true, if not print 543 /// an error message. 544 #define AssertDI(C, ...) \ 545 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 546 547 void Verifier::visit(Instruction &I) { 548 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 549 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 550 InstVisitor<Verifier>::visit(I); 551 } 552 553 // Helper to recursively iterate over indirect users. By 554 // returning false, the callback can ask to stop recursing 555 // further. 556 static void forEachUser(const Value *User, 557 SmallPtrSet<const Value *, 32> &Visited, 558 llvm::function_ref<bool(const Value *)> Callback) { 559 if (!Visited.insert(User).second) 560 return; 561 for (const Value *TheNextUser : User->materialized_users()) 562 if (Callback(TheNextUser)) 563 forEachUser(TheNextUser, Visited, Callback); 564 } 565 566 void Verifier::visitGlobalValue(const GlobalValue &GV) { 567 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 568 "Global is external, but doesn't have external or weak linkage!", &GV); 569 570 Assert(GV.getAlignment() <= Value::MaximumAlignment, 571 "huge alignment values are unsupported", &GV); 572 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 573 "Only global variables can have appending linkage!", &GV); 574 575 if (GV.hasAppendingLinkage()) { 576 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 577 Assert(GVar && GVar->getValueType()->isArrayTy(), 578 "Only global arrays can have appending linkage!", GVar); 579 } 580 581 if (GV.isDeclarationForLinker()) 582 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 583 584 if (GV.hasDLLImportStorageClass()) { 585 Assert(!GV.isDSOLocal(), 586 "GlobalValue with DLLImport Storage is dso_local!", &GV); 587 588 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 589 GV.hasAvailableExternallyLinkage(), 590 "Global is marked as dllimport, but not external", &GV); 591 } 592 593 if (GV.isImplicitDSOLocal()) 594 Assert(GV.isDSOLocal(), 595 "GlobalValue with local linkage or non-default " 596 "visibility must be dso_local!", 597 &GV); 598 599 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 600 if (const Instruction *I = dyn_cast<Instruction>(V)) { 601 if (!I->getParent() || !I->getParent()->getParent()) 602 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 603 I); 604 else if (I->getParent()->getParent()->getParent() != &M) 605 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 606 I->getParent()->getParent(), 607 I->getParent()->getParent()->getParent()); 608 return false; 609 } else if (const Function *F = dyn_cast<Function>(V)) { 610 if (F->getParent() != &M) 611 CheckFailed("Global is used by function in a different module", &GV, &M, 612 F, F->getParent()); 613 return false; 614 } 615 return true; 616 }); 617 } 618 619 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 620 if (GV.hasInitializer()) { 621 Assert(GV.getInitializer()->getType() == GV.getValueType(), 622 "Global variable initializer type does not match global " 623 "variable type!", 624 &GV); 625 // If the global has common linkage, it must have a zero initializer and 626 // cannot be constant. 627 if (GV.hasCommonLinkage()) { 628 Assert(GV.getInitializer()->isNullValue(), 629 "'common' global must have a zero initializer!", &GV); 630 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 631 &GV); 632 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 633 } 634 } 635 636 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 637 GV.getName() == "llvm.global_dtors")) { 638 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 639 "invalid linkage for intrinsic global variable", &GV); 640 // Don't worry about emitting an error for it not being an array, 641 // visitGlobalValue will complain on appending non-array. 642 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 643 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 644 PointerType *FuncPtrTy = 645 FunctionType::get(Type::getVoidTy(Context), false)-> 646 getPointerTo(DL.getProgramAddressSpace()); 647 Assert(STy && 648 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 649 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 650 STy->getTypeAtIndex(1) == FuncPtrTy, 651 "wrong type for intrinsic global variable", &GV); 652 Assert(STy->getNumElements() == 3, 653 "the third field of the element type is mandatory, " 654 "specify i8* null to migrate from the obsoleted 2-field form"); 655 Type *ETy = STy->getTypeAtIndex(2); 656 Assert(ETy->isPointerTy() && 657 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 658 "wrong type for intrinsic global variable", &GV); 659 } 660 } 661 662 if (GV.hasName() && (GV.getName() == "llvm.used" || 663 GV.getName() == "llvm.compiler.used")) { 664 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 665 "invalid linkage for intrinsic global variable", &GV); 666 Type *GVType = GV.getValueType(); 667 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 668 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 669 Assert(PTy, "wrong type for intrinsic global variable", &GV); 670 if (GV.hasInitializer()) { 671 const Constant *Init = GV.getInitializer(); 672 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 673 Assert(InitArray, "wrong initalizer for intrinsic global variable", 674 Init); 675 for (Value *Op : InitArray->operands()) { 676 Value *V = Op->stripPointerCasts(); 677 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 678 isa<GlobalAlias>(V), 679 "invalid llvm.used member", V); 680 Assert(V->hasName(), "members of llvm.used must be named", V); 681 } 682 } 683 } 684 } 685 686 // Visit any debug info attachments. 687 SmallVector<MDNode *, 1> MDs; 688 GV.getMetadata(LLVMContext::MD_dbg, MDs); 689 for (auto *MD : MDs) { 690 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 691 visitDIGlobalVariableExpression(*GVE); 692 else 693 AssertDI(false, "!dbg attachment of global variable must be a " 694 "DIGlobalVariableExpression"); 695 } 696 697 // Scalable vectors cannot be global variables, since we don't know 698 // the runtime size. If the global is a struct or an array containing 699 // scalable vectors, that will be caught by the isValidElementType methods 700 // in StructType or ArrayType instead. 701 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) 702 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); 703 704 if (!GV.hasInitializer()) { 705 visitGlobalValue(GV); 706 return; 707 } 708 709 // Walk any aggregate initializers looking for bitcasts between address spaces 710 visitConstantExprsRecursively(GV.getInitializer()); 711 712 visitGlobalValue(GV); 713 } 714 715 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 716 SmallPtrSet<const GlobalAlias*, 4> Visited; 717 Visited.insert(&GA); 718 visitAliaseeSubExpr(Visited, GA, C); 719 } 720 721 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 722 const GlobalAlias &GA, const Constant &C) { 723 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 724 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 725 &GA); 726 727 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 728 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 729 730 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 731 &GA); 732 } else { 733 // Only continue verifying subexpressions of GlobalAliases. 734 // Do not recurse into global initializers. 735 return; 736 } 737 } 738 739 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 740 visitConstantExprsRecursively(CE); 741 742 for (const Use &U : C.operands()) { 743 Value *V = &*U; 744 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 745 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 746 else if (const auto *C2 = dyn_cast<Constant>(V)) 747 visitAliaseeSubExpr(Visited, GA, *C2); 748 } 749 } 750 751 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 752 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 753 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 754 "weak_odr, or external linkage!", 755 &GA); 756 const Constant *Aliasee = GA.getAliasee(); 757 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 758 Assert(GA.getType() == Aliasee->getType(), 759 "Alias and aliasee types should match!", &GA); 760 761 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 762 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 763 764 visitAliaseeSubExpr(GA, *Aliasee); 765 766 visitGlobalValue(GA); 767 } 768 769 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 770 // There used to be various other llvm.dbg.* nodes, but we don't support 771 // upgrading them and we want to reserve the namespace for future uses. 772 if (NMD.getName().startswith("llvm.dbg.")) 773 AssertDI(NMD.getName() == "llvm.dbg.cu", 774 "unrecognized named metadata node in the llvm.dbg namespace", 775 &NMD); 776 for (const MDNode *MD : NMD.operands()) { 777 if (NMD.getName() == "llvm.dbg.cu") 778 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 779 780 if (!MD) 781 continue; 782 783 visitMDNode(*MD); 784 } 785 } 786 787 void Verifier::visitMDNode(const MDNode &MD) { 788 // Only visit each node once. Metadata can be mutually recursive, so this 789 // avoids infinite recursion here, as well as being an optimization. 790 if (!MDNodes.insert(&MD).second) 791 return; 792 793 switch (MD.getMetadataID()) { 794 default: 795 llvm_unreachable("Invalid MDNode subclass"); 796 case Metadata::MDTupleKind: 797 break; 798 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 799 case Metadata::CLASS##Kind: \ 800 visit##CLASS(cast<CLASS>(MD)); \ 801 break; 802 #include "llvm/IR/Metadata.def" 803 } 804 805 for (const Metadata *Op : MD.operands()) { 806 if (!Op) 807 continue; 808 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 809 &MD, Op); 810 if (auto *N = dyn_cast<MDNode>(Op)) { 811 visitMDNode(*N); 812 continue; 813 } 814 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 815 visitValueAsMetadata(*V, nullptr); 816 continue; 817 } 818 } 819 820 // Check these last, so we diagnose problems in operands first. 821 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 822 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 823 } 824 825 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 826 Assert(MD.getValue(), "Expected valid value", &MD); 827 Assert(!MD.getValue()->getType()->isMetadataTy(), 828 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 829 830 auto *L = dyn_cast<LocalAsMetadata>(&MD); 831 if (!L) 832 return; 833 834 Assert(F, "function-local metadata used outside a function", L); 835 836 // If this was an instruction, bb, or argument, verify that it is in the 837 // function that we expect. 838 Function *ActualF = nullptr; 839 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 840 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 841 ActualF = I->getParent()->getParent(); 842 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 843 ActualF = BB->getParent(); 844 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 845 ActualF = A->getParent(); 846 assert(ActualF && "Unimplemented function local metadata case!"); 847 848 Assert(ActualF == F, "function-local metadata used in wrong function", L); 849 } 850 851 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 852 Metadata *MD = MDV.getMetadata(); 853 if (auto *N = dyn_cast<MDNode>(MD)) { 854 visitMDNode(*N); 855 return; 856 } 857 858 // Only visit each node once. Metadata can be mutually recursive, so this 859 // avoids infinite recursion here, as well as being an optimization. 860 if (!MDNodes.insert(MD).second) 861 return; 862 863 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 864 visitValueAsMetadata(*V, F); 865 } 866 867 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 868 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 869 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 870 871 void Verifier::visitDILocation(const DILocation &N) { 872 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 873 "location requires a valid scope", &N, N.getRawScope()); 874 if (auto *IA = N.getRawInlinedAt()) 875 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 876 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 877 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 878 } 879 880 void Verifier::visitGenericDINode(const GenericDINode &N) { 881 AssertDI(N.getTag(), "invalid tag", &N); 882 } 883 884 void Verifier::visitDIScope(const DIScope &N) { 885 if (auto *F = N.getRawFile()) 886 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 887 } 888 889 void Verifier::visitDISubrange(const DISubrange &N) { 890 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 891 auto Count = N.getCount(); 892 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 893 &N); 894 AssertDI(!Count.is<ConstantInt*>() || 895 Count.get<ConstantInt*>()->getSExtValue() >= -1, 896 "invalid subrange count", &N); 897 } 898 899 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 900 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 901 } 902 903 void Verifier::visitDIBasicType(const DIBasicType &N) { 904 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 905 N.getTag() == dwarf::DW_TAG_unspecified_type, 906 "invalid tag", &N); 907 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 908 "has conflicting flags", &N); 909 } 910 911 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 912 // Common scope checks. 913 visitDIScope(N); 914 915 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 916 N.getTag() == dwarf::DW_TAG_pointer_type || 917 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 918 N.getTag() == dwarf::DW_TAG_reference_type || 919 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 920 N.getTag() == dwarf::DW_TAG_const_type || 921 N.getTag() == dwarf::DW_TAG_volatile_type || 922 N.getTag() == dwarf::DW_TAG_restrict_type || 923 N.getTag() == dwarf::DW_TAG_atomic_type || 924 N.getTag() == dwarf::DW_TAG_member || 925 N.getTag() == dwarf::DW_TAG_inheritance || 926 N.getTag() == dwarf::DW_TAG_friend, 927 "invalid tag", &N); 928 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 929 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 930 N.getRawExtraData()); 931 } 932 933 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 934 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 935 N.getRawBaseType()); 936 937 if (N.getDWARFAddressSpace()) { 938 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 939 N.getTag() == dwarf::DW_TAG_reference_type || 940 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 941 "DWARF address space only applies to pointer or reference types", 942 &N); 943 } 944 } 945 946 /// Detect mutually exclusive flags. 947 static bool hasConflictingReferenceFlags(unsigned Flags) { 948 return ((Flags & DINode::FlagLValueReference) && 949 (Flags & DINode::FlagRValueReference)) || 950 ((Flags & DINode::FlagTypePassByValue) && 951 (Flags & DINode::FlagTypePassByReference)); 952 } 953 954 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 955 auto *Params = dyn_cast<MDTuple>(&RawParams); 956 AssertDI(Params, "invalid template params", &N, &RawParams); 957 for (Metadata *Op : Params->operands()) { 958 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 959 &N, Params, Op); 960 } 961 } 962 963 void Verifier::visitDICompositeType(const DICompositeType &N) { 964 // Common scope checks. 965 visitDIScope(N); 966 967 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 968 N.getTag() == dwarf::DW_TAG_structure_type || 969 N.getTag() == dwarf::DW_TAG_union_type || 970 N.getTag() == dwarf::DW_TAG_enumeration_type || 971 N.getTag() == dwarf::DW_TAG_class_type || 972 N.getTag() == dwarf::DW_TAG_variant_part, 973 "invalid tag", &N); 974 975 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 976 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 977 N.getRawBaseType()); 978 979 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 980 "invalid composite elements", &N, N.getRawElements()); 981 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 982 N.getRawVTableHolder()); 983 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 984 "invalid reference flags", &N); 985 unsigned DIBlockByRefStruct = 1 << 4; 986 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 987 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 988 989 if (N.isVector()) { 990 const DINodeArray Elements = N.getElements(); 991 AssertDI(Elements.size() == 1 && 992 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 993 "invalid vector, expected one element of type subrange", &N); 994 } 995 996 if (auto *Params = N.getRawTemplateParams()) 997 visitTemplateParams(N, *Params); 998 999 if (N.getTag() == dwarf::DW_TAG_class_type || 1000 N.getTag() == dwarf::DW_TAG_union_type) { 1001 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1002 "class/union requires a filename", &N, N.getFile()); 1003 } 1004 1005 if (auto *D = N.getRawDiscriminator()) { 1006 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1007 "discriminator can only appear on variant part"); 1008 } 1009 } 1010 1011 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1012 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1013 if (auto *Types = N.getRawTypeArray()) { 1014 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1015 for (Metadata *Ty : N.getTypeArray()->operands()) { 1016 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1017 } 1018 } 1019 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1020 "invalid reference flags", &N); 1021 } 1022 1023 void Verifier::visitDIFile(const DIFile &N) { 1024 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1025 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1026 if (Checksum) { 1027 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1028 "invalid checksum kind", &N); 1029 size_t Size; 1030 switch (Checksum->Kind) { 1031 case DIFile::CSK_MD5: 1032 Size = 32; 1033 break; 1034 case DIFile::CSK_SHA1: 1035 Size = 40; 1036 break; 1037 case DIFile::CSK_SHA256: 1038 Size = 64; 1039 break; 1040 } 1041 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1042 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1043 "invalid checksum", &N); 1044 } 1045 } 1046 1047 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1048 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1049 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1050 1051 // Don't bother verifying the compilation directory or producer string 1052 // as those could be empty. 1053 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1054 N.getRawFile()); 1055 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1056 N.getFile()); 1057 1058 verifySourceDebugInfo(N, *N.getFile()); 1059 1060 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1061 "invalid emission kind", &N); 1062 1063 if (auto *Array = N.getRawEnumTypes()) { 1064 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1065 for (Metadata *Op : N.getEnumTypes()->operands()) { 1066 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1067 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1068 "invalid enum type", &N, N.getEnumTypes(), Op); 1069 } 1070 } 1071 if (auto *Array = N.getRawRetainedTypes()) { 1072 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1073 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1074 AssertDI(Op && (isa<DIType>(Op) || 1075 (isa<DISubprogram>(Op) && 1076 !cast<DISubprogram>(Op)->isDefinition())), 1077 "invalid retained type", &N, Op); 1078 } 1079 } 1080 if (auto *Array = N.getRawGlobalVariables()) { 1081 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1082 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1083 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1084 "invalid global variable ref", &N, Op); 1085 } 1086 } 1087 if (auto *Array = N.getRawImportedEntities()) { 1088 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1089 for (Metadata *Op : N.getImportedEntities()->operands()) { 1090 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1091 &N, Op); 1092 } 1093 } 1094 if (auto *Array = N.getRawMacros()) { 1095 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1096 for (Metadata *Op : N.getMacros()->operands()) { 1097 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1098 } 1099 } 1100 CUVisited.insert(&N); 1101 } 1102 1103 void Verifier::visitDISubprogram(const DISubprogram &N) { 1104 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1105 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1106 if (auto *F = N.getRawFile()) 1107 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1108 else 1109 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1110 if (auto *T = N.getRawType()) 1111 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1112 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1113 N.getRawContainingType()); 1114 if (auto *Params = N.getRawTemplateParams()) 1115 visitTemplateParams(N, *Params); 1116 if (auto *S = N.getRawDeclaration()) 1117 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1118 "invalid subprogram declaration", &N, S); 1119 if (auto *RawNode = N.getRawRetainedNodes()) { 1120 auto *Node = dyn_cast<MDTuple>(RawNode); 1121 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1122 for (Metadata *Op : Node->operands()) { 1123 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1124 "invalid retained nodes, expected DILocalVariable or DILabel", 1125 &N, Node, Op); 1126 } 1127 } 1128 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1129 "invalid reference flags", &N); 1130 1131 auto *Unit = N.getRawUnit(); 1132 if (N.isDefinition()) { 1133 // Subprogram definitions (not part of the type hierarchy). 1134 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1135 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1136 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1137 if (N.getFile()) 1138 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1139 } else { 1140 // Subprogram declarations (part of the type hierarchy). 1141 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1142 } 1143 1144 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1145 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1146 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1147 for (Metadata *Op : ThrownTypes->operands()) 1148 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1149 Op); 1150 } 1151 1152 if (N.areAllCallsDescribed()) 1153 AssertDI(N.isDefinition(), 1154 "DIFlagAllCallsDescribed must be attached to a definition"); 1155 } 1156 1157 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1158 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1159 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1160 "invalid local scope", &N, N.getRawScope()); 1161 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1162 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1163 } 1164 1165 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1166 visitDILexicalBlockBase(N); 1167 1168 AssertDI(N.getLine() || !N.getColumn(), 1169 "cannot have column info without line info", &N); 1170 } 1171 1172 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1173 visitDILexicalBlockBase(N); 1174 } 1175 1176 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1177 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1178 if (auto *S = N.getRawScope()) 1179 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1180 if (auto *S = N.getRawDecl()) 1181 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1182 } 1183 1184 void Verifier::visitDINamespace(const DINamespace &N) { 1185 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1186 if (auto *S = N.getRawScope()) 1187 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1188 } 1189 1190 void Verifier::visitDIMacro(const DIMacro &N) { 1191 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1192 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1193 "invalid macinfo type", &N); 1194 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1195 if (!N.getValue().empty()) { 1196 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1197 } 1198 } 1199 1200 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1201 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1202 "invalid macinfo type", &N); 1203 if (auto *F = N.getRawFile()) 1204 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1205 1206 if (auto *Array = N.getRawElements()) { 1207 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1208 for (Metadata *Op : N.getElements()->operands()) { 1209 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1210 } 1211 } 1212 } 1213 1214 void Verifier::visitDIModule(const DIModule &N) { 1215 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1216 AssertDI(!N.getName().empty(), "anonymous module", &N); 1217 } 1218 1219 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1220 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1221 } 1222 1223 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1224 visitDITemplateParameter(N); 1225 1226 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1227 &N); 1228 } 1229 1230 void Verifier::visitDITemplateValueParameter( 1231 const DITemplateValueParameter &N) { 1232 visitDITemplateParameter(N); 1233 1234 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1235 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1236 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1237 "invalid tag", &N); 1238 } 1239 1240 void Verifier::visitDIVariable(const DIVariable &N) { 1241 if (auto *S = N.getRawScope()) 1242 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1243 if (auto *F = N.getRawFile()) 1244 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1245 } 1246 1247 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1248 // Checks common to all variables. 1249 visitDIVariable(N); 1250 1251 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1252 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1253 AssertDI(N.getType(), "missing global variable type", &N); 1254 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1255 AssertDI(isa<DIDerivedType>(Member), 1256 "invalid static data member declaration", &N, Member); 1257 } 1258 } 1259 1260 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1261 // Checks common to all variables. 1262 visitDIVariable(N); 1263 1264 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1265 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1266 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1267 "local variable requires a valid scope", &N, N.getRawScope()); 1268 if (auto Ty = N.getType()) 1269 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1270 } 1271 1272 void Verifier::visitDILabel(const DILabel &N) { 1273 if (auto *S = N.getRawScope()) 1274 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1275 if (auto *F = N.getRawFile()) 1276 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1277 1278 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1279 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1280 "label requires a valid scope", &N, N.getRawScope()); 1281 } 1282 1283 void Verifier::visitDIExpression(const DIExpression &N) { 1284 AssertDI(N.isValid(), "invalid expression", &N); 1285 } 1286 1287 void Verifier::visitDIGlobalVariableExpression( 1288 const DIGlobalVariableExpression &GVE) { 1289 AssertDI(GVE.getVariable(), "missing variable"); 1290 if (auto *Var = GVE.getVariable()) 1291 visitDIGlobalVariable(*Var); 1292 if (auto *Expr = GVE.getExpression()) { 1293 visitDIExpression(*Expr); 1294 if (auto Fragment = Expr->getFragmentInfo()) 1295 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1296 } 1297 } 1298 1299 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1300 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1301 if (auto *T = N.getRawType()) 1302 AssertDI(isType(T), "invalid type ref", &N, T); 1303 if (auto *F = N.getRawFile()) 1304 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1305 } 1306 1307 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1308 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1309 N.getTag() == dwarf::DW_TAG_imported_declaration, 1310 "invalid tag", &N); 1311 if (auto *S = N.getRawScope()) 1312 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1313 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1314 N.getRawEntity()); 1315 } 1316 1317 void Verifier::visitComdat(const Comdat &C) { 1318 // In COFF the Module is invalid if the GlobalValue has private linkage. 1319 // Entities with private linkage don't have entries in the symbol table. 1320 if (TT.isOSBinFormatCOFF()) 1321 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1322 Assert(!GV->hasPrivateLinkage(), 1323 "comdat global value has private linkage", GV); 1324 } 1325 1326 void Verifier::visitModuleIdents(const Module &M) { 1327 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1328 if (!Idents) 1329 return; 1330 1331 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1332 // Scan each llvm.ident entry and make sure that this requirement is met. 1333 for (const MDNode *N : Idents->operands()) { 1334 Assert(N->getNumOperands() == 1, 1335 "incorrect number of operands in llvm.ident metadata", N); 1336 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1337 ("invalid value for llvm.ident metadata entry operand" 1338 "(the operand should be a string)"), 1339 N->getOperand(0)); 1340 } 1341 } 1342 1343 void Verifier::visitModuleCommandLines(const Module &M) { 1344 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1345 if (!CommandLines) 1346 return; 1347 1348 // llvm.commandline takes a list of metadata entry. Each entry has only one 1349 // string. Scan each llvm.commandline entry and make sure that this 1350 // requirement is met. 1351 for (const MDNode *N : CommandLines->operands()) { 1352 Assert(N->getNumOperands() == 1, 1353 "incorrect number of operands in llvm.commandline metadata", N); 1354 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1355 ("invalid value for llvm.commandline metadata entry operand" 1356 "(the operand should be a string)"), 1357 N->getOperand(0)); 1358 } 1359 } 1360 1361 void Verifier::visitModuleFlags(const Module &M) { 1362 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1363 if (!Flags) return; 1364 1365 // Scan each flag, and track the flags and requirements. 1366 DenseMap<const MDString*, const MDNode*> SeenIDs; 1367 SmallVector<const MDNode*, 16> Requirements; 1368 for (const MDNode *MDN : Flags->operands()) 1369 visitModuleFlag(MDN, SeenIDs, Requirements); 1370 1371 // Validate that the requirements in the module are valid. 1372 for (const MDNode *Requirement : Requirements) { 1373 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1374 const Metadata *ReqValue = Requirement->getOperand(1); 1375 1376 const MDNode *Op = SeenIDs.lookup(Flag); 1377 if (!Op) { 1378 CheckFailed("invalid requirement on flag, flag is not present in module", 1379 Flag); 1380 continue; 1381 } 1382 1383 if (Op->getOperand(2) != ReqValue) { 1384 CheckFailed(("invalid requirement on flag, " 1385 "flag does not have the required value"), 1386 Flag); 1387 continue; 1388 } 1389 } 1390 } 1391 1392 void 1393 Verifier::visitModuleFlag(const MDNode *Op, 1394 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1395 SmallVectorImpl<const MDNode *> &Requirements) { 1396 // Each module flag should have three arguments, the merge behavior (a 1397 // constant int), the flag ID (an MDString), and the value. 1398 Assert(Op->getNumOperands() == 3, 1399 "incorrect number of operands in module flag", Op); 1400 Module::ModFlagBehavior MFB; 1401 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1402 Assert( 1403 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1404 "invalid behavior operand in module flag (expected constant integer)", 1405 Op->getOperand(0)); 1406 Assert(false, 1407 "invalid behavior operand in module flag (unexpected constant)", 1408 Op->getOperand(0)); 1409 } 1410 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1411 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1412 Op->getOperand(1)); 1413 1414 // Sanity check the values for behaviors with additional requirements. 1415 switch (MFB) { 1416 case Module::Error: 1417 case Module::Warning: 1418 case Module::Override: 1419 // These behavior types accept any value. 1420 break; 1421 1422 case Module::Max: { 1423 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1424 "invalid value for 'max' module flag (expected constant integer)", 1425 Op->getOperand(2)); 1426 break; 1427 } 1428 1429 case Module::Require: { 1430 // The value should itself be an MDNode with two operands, a flag ID (an 1431 // MDString), and a value. 1432 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1433 Assert(Value && Value->getNumOperands() == 2, 1434 "invalid value for 'require' module flag (expected metadata pair)", 1435 Op->getOperand(2)); 1436 Assert(isa<MDString>(Value->getOperand(0)), 1437 ("invalid value for 'require' module flag " 1438 "(first value operand should be a string)"), 1439 Value->getOperand(0)); 1440 1441 // Append it to the list of requirements, to check once all module flags are 1442 // scanned. 1443 Requirements.push_back(Value); 1444 break; 1445 } 1446 1447 case Module::Append: 1448 case Module::AppendUnique: { 1449 // These behavior types require the operand be an MDNode. 1450 Assert(isa<MDNode>(Op->getOperand(2)), 1451 "invalid value for 'append'-type module flag " 1452 "(expected a metadata node)", 1453 Op->getOperand(2)); 1454 break; 1455 } 1456 } 1457 1458 // Unless this is a "requires" flag, check the ID is unique. 1459 if (MFB != Module::Require) { 1460 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1461 Assert(Inserted, 1462 "module flag identifiers must be unique (or of 'require' type)", ID); 1463 } 1464 1465 if (ID->getString() == "wchar_size") { 1466 ConstantInt *Value 1467 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1468 Assert(Value, "wchar_size metadata requires constant integer argument"); 1469 } 1470 1471 if (ID->getString() == "Linker Options") { 1472 // If the llvm.linker.options named metadata exists, we assume that the 1473 // bitcode reader has upgraded the module flag. Otherwise the flag might 1474 // have been created by a client directly. 1475 Assert(M.getNamedMetadata("llvm.linker.options"), 1476 "'Linker Options' named metadata no longer supported"); 1477 } 1478 1479 if (ID->getString() == "SemanticInterposition") { 1480 ConstantInt *Value = 1481 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1482 Assert(Value, 1483 "SemanticInterposition metadata requires constant integer argument"); 1484 } 1485 1486 if (ID->getString() == "CG Profile") { 1487 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1488 visitModuleFlagCGProfileEntry(MDO); 1489 } 1490 } 1491 1492 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1493 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1494 if (!FuncMDO) 1495 return; 1496 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1497 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1498 FuncMDO); 1499 }; 1500 auto Node = dyn_cast_or_null<MDNode>(MDO); 1501 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1502 CheckFunction(Node->getOperand(0)); 1503 CheckFunction(Node->getOperand(1)); 1504 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1505 Assert(Count && Count->getType()->isIntegerTy(), 1506 "expected an integer constant", Node->getOperand(2)); 1507 } 1508 1509 /// Return true if this attribute kind only applies to functions. 1510 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1511 switch (Kind) { 1512 case Attribute::NoReturn: 1513 case Attribute::NoSync: 1514 case Attribute::WillReturn: 1515 case Attribute::NoCfCheck: 1516 case Attribute::NoUnwind: 1517 case Attribute::NoInline: 1518 case Attribute::AlwaysInline: 1519 case Attribute::OptimizeForSize: 1520 case Attribute::StackProtect: 1521 case Attribute::StackProtectReq: 1522 case Attribute::StackProtectStrong: 1523 case Attribute::SafeStack: 1524 case Attribute::ShadowCallStack: 1525 case Attribute::NoRedZone: 1526 case Attribute::NoImplicitFloat: 1527 case Attribute::Naked: 1528 case Attribute::InlineHint: 1529 case Attribute::StackAlignment: 1530 case Attribute::UWTable: 1531 case Attribute::NonLazyBind: 1532 case Attribute::ReturnsTwice: 1533 case Attribute::SanitizeAddress: 1534 case Attribute::SanitizeHWAddress: 1535 case Attribute::SanitizeMemTag: 1536 case Attribute::SanitizeThread: 1537 case Attribute::SanitizeMemory: 1538 case Attribute::MinSize: 1539 case Attribute::NoDuplicate: 1540 case Attribute::Builtin: 1541 case Attribute::NoBuiltin: 1542 case Attribute::Cold: 1543 case Attribute::OptForFuzzing: 1544 case Attribute::OptimizeNone: 1545 case Attribute::JumpTable: 1546 case Attribute::Convergent: 1547 case Attribute::ArgMemOnly: 1548 case Attribute::NoRecurse: 1549 case Attribute::InaccessibleMemOnly: 1550 case Attribute::InaccessibleMemOrArgMemOnly: 1551 case Attribute::AllocSize: 1552 case Attribute::SpeculativeLoadHardening: 1553 case Attribute::Speculatable: 1554 case Attribute::StrictFP: 1555 return true; 1556 default: 1557 break; 1558 } 1559 return false; 1560 } 1561 1562 /// Return true if this is a function attribute that can also appear on 1563 /// arguments. 1564 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1565 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1566 Kind == Attribute::ReadNone || Kind == Attribute::NoFree; 1567 } 1568 1569 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1570 const Value *V) { 1571 for (Attribute A : Attrs) { 1572 if (A.isStringAttribute()) 1573 continue; 1574 1575 if (A.isIntAttribute() != 1576 Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) { 1577 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1578 V); 1579 return; 1580 } 1581 1582 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1583 if (!IsFunction) { 1584 CheckFailed("Attribute '" + A.getAsString() + 1585 "' only applies to functions!", 1586 V); 1587 return; 1588 } 1589 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1590 CheckFailed("Attribute '" + A.getAsString() + 1591 "' does not apply to functions!", 1592 V); 1593 return; 1594 } 1595 } 1596 } 1597 1598 // VerifyParameterAttrs - Check the given attributes for an argument or return 1599 // value of the specified type. The value V is printed in error messages. 1600 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1601 const Value *V) { 1602 if (!Attrs.hasAttributes()) 1603 return; 1604 1605 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1606 1607 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1608 Assert(Attrs.getNumAttributes() == 1, 1609 "Attribute 'immarg' is incompatible with other attributes", V); 1610 } 1611 1612 // Check for mutually incompatible attributes. Only inreg is compatible with 1613 // sret. 1614 unsigned AttrCount = 0; 1615 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1616 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1617 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1618 Attrs.hasAttribute(Attribute::InReg); 1619 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1620 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1621 "and 'sret' are incompatible!", 1622 V); 1623 1624 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1625 Attrs.hasAttribute(Attribute::ReadOnly)), 1626 "Attributes " 1627 "'inalloca and readonly' are incompatible!", 1628 V); 1629 1630 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1631 Attrs.hasAttribute(Attribute::Returned)), 1632 "Attributes " 1633 "'sret and returned' are incompatible!", 1634 V); 1635 1636 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1637 Attrs.hasAttribute(Attribute::SExt)), 1638 "Attributes " 1639 "'zeroext and signext' are incompatible!", 1640 V); 1641 1642 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1643 Attrs.hasAttribute(Attribute::ReadOnly)), 1644 "Attributes " 1645 "'readnone and readonly' are incompatible!", 1646 V); 1647 1648 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1649 Attrs.hasAttribute(Attribute::WriteOnly)), 1650 "Attributes " 1651 "'readnone and writeonly' are incompatible!", 1652 V); 1653 1654 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1655 Attrs.hasAttribute(Attribute::WriteOnly)), 1656 "Attributes " 1657 "'readonly and writeonly' are incompatible!", 1658 V); 1659 1660 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1661 Attrs.hasAttribute(Attribute::AlwaysInline)), 1662 "Attributes " 1663 "'noinline and alwaysinline' are incompatible!", 1664 V); 1665 1666 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1667 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1668 "Attribute 'byval' type does not match parameter!", V); 1669 } 1670 1671 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1672 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1673 "Wrong types for attribute: " + 1674 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1675 V); 1676 1677 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1678 SmallPtrSet<Type*, 4> Visited; 1679 if (!PTy->getElementType()->isSized(&Visited)) { 1680 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1681 !Attrs.hasAttribute(Attribute::InAlloca), 1682 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1683 V); 1684 } 1685 if (!isa<PointerType>(PTy->getElementType())) 1686 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1687 "Attribute 'swifterror' only applies to parameters " 1688 "with pointer to pointer type!", 1689 V); 1690 } else { 1691 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1692 "Attribute 'byval' only applies to parameters with pointer type!", 1693 V); 1694 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1695 "Attribute 'swifterror' only applies to parameters " 1696 "with pointer type!", 1697 V); 1698 } 1699 } 1700 1701 // Check parameter attributes against a function type. 1702 // The value V is printed in error messages. 1703 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1704 const Value *V, bool IsIntrinsic) { 1705 if (Attrs.isEmpty()) 1706 return; 1707 1708 bool SawNest = false; 1709 bool SawReturned = false; 1710 bool SawSRet = false; 1711 bool SawSwiftSelf = false; 1712 bool SawSwiftError = false; 1713 1714 // Verify return value attributes. 1715 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1716 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1717 !RetAttrs.hasAttribute(Attribute::Nest) && 1718 !RetAttrs.hasAttribute(Attribute::StructRet) && 1719 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1720 !RetAttrs.hasAttribute(Attribute::NoFree) && 1721 !RetAttrs.hasAttribute(Attribute::Returned) && 1722 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1723 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1724 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1725 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'" 1726 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1727 "values!", 1728 V); 1729 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1730 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1731 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1732 "Attribute '" + RetAttrs.getAsString() + 1733 "' does not apply to function returns", 1734 V); 1735 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1736 1737 // Verify parameter attributes. 1738 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1739 Type *Ty = FT->getParamType(i); 1740 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1741 1742 if (!IsIntrinsic) { 1743 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1744 "immarg attribute only applies to intrinsics",V); 1745 } 1746 1747 verifyParameterAttrs(ArgAttrs, Ty, V); 1748 1749 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1750 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1751 SawNest = true; 1752 } 1753 1754 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1755 Assert(!SawReturned, "More than one parameter has attribute returned!", 1756 V); 1757 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1758 "Incompatible argument and return types for 'returned' attribute", 1759 V); 1760 SawReturned = true; 1761 } 1762 1763 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1764 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1765 Assert(i == 0 || i == 1, 1766 "Attribute 'sret' is not on first or second parameter!", V); 1767 SawSRet = true; 1768 } 1769 1770 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1771 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1772 SawSwiftSelf = true; 1773 } 1774 1775 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1776 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1777 V); 1778 SawSwiftError = true; 1779 } 1780 1781 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1782 Assert(i == FT->getNumParams() - 1, 1783 "inalloca isn't on the last parameter!", V); 1784 } 1785 } 1786 1787 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1788 return; 1789 1790 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1791 1792 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1793 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1794 "Attributes 'readnone and readonly' are incompatible!", V); 1795 1796 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1797 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1798 "Attributes 'readnone and writeonly' are incompatible!", V); 1799 1800 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1801 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1802 "Attributes 'readonly and writeonly' are incompatible!", V); 1803 1804 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1805 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1806 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1807 "incompatible!", 1808 V); 1809 1810 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1811 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1812 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1813 1814 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1815 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1816 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1817 1818 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1819 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1820 "Attribute 'optnone' requires 'noinline'!", V); 1821 1822 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1823 "Attributes 'optsize and optnone' are incompatible!", V); 1824 1825 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1826 "Attributes 'minsize and optnone' are incompatible!", V); 1827 } 1828 1829 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1830 const GlobalValue *GV = cast<GlobalValue>(V); 1831 Assert(GV->hasGlobalUnnamedAddr(), 1832 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1833 } 1834 1835 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1836 std::pair<unsigned, Optional<unsigned>> Args = 1837 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1838 1839 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1840 if (ParamNo >= FT->getNumParams()) { 1841 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1842 return false; 1843 } 1844 1845 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1846 CheckFailed("'allocsize' " + Name + 1847 " argument must refer to an integer parameter", 1848 V); 1849 return false; 1850 } 1851 1852 return true; 1853 }; 1854 1855 if (!CheckParam("element size", Args.first)) 1856 return; 1857 1858 if (Args.second && !CheckParam("number of elements", *Args.second)) 1859 return; 1860 } 1861 1862 if (Attrs.hasFnAttribute("frame-pointer")) { 1863 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1864 "frame-pointer").getValueAsString(); 1865 if (FP != "all" && FP != "non-leaf" && FP != "none") 1866 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1867 } 1868 1869 if (Attrs.hasFnAttribute("patchable-function-prefix")) { 1870 StringRef S = Attrs 1871 .getAttribute(AttributeList::FunctionIndex, 1872 "patchable-function-prefix") 1873 .getValueAsString(); 1874 unsigned N; 1875 if (S.getAsInteger(10, N)) 1876 CheckFailed( 1877 "\"patchable-function-prefix\" takes an unsigned integer: " + S, V); 1878 } 1879 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1880 StringRef S = Attrs 1881 .getAttribute(AttributeList::FunctionIndex, 1882 "patchable-function-entry") 1883 .getValueAsString(); 1884 unsigned N; 1885 if (S.getAsInteger(10, N)) 1886 CheckFailed( 1887 "\"patchable-function-entry\" takes an unsigned integer: " + S, V); 1888 } 1889 } 1890 1891 void Verifier::verifyFunctionMetadata( 1892 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1893 for (const auto &Pair : MDs) { 1894 if (Pair.first == LLVMContext::MD_prof) { 1895 MDNode *MD = Pair.second; 1896 Assert(MD->getNumOperands() >= 2, 1897 "!prof annotations should have no less than 2 operands", MD); 1898 1899 // Check first operand. 1900 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1901 MD); 1902 Assert(isa<MDString>(MD->getOperand(0)), 1903 "expected string with name of the !prof annotation", MD); 1904 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1905 StringRef ProfName = MDS->getString(); 1906 Assert(ProfName.equals("function_entry_count") || 1907 ProfName.equals("synthetic_function_entry_count"), 1908 "first operand should be 'function_entry_count'" 1909 " or 'synthetic_function_entry_count'", 1910 MD); 1911 1912 // Check second operand. 1913 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1914 MD); 1915 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1916 "expected integer argument to function_entry_count", MD); 1917 } 1918 } 1919 } 1920 1921 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1922 if (!ConstantExprVisited.insert(EntryC).second) 1923 return; 1924 1925 SmallVector<const Constant *, 16> Stack; 1926 Stack.push_back(EntryC); 1927 1928 while (!Stack.empty()) { 1929 const Constant *C = Stack.pop_back_val(); 1930 1931 // Check this constant expression. 1932 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1933 visitConstantExpr(CE); 1934 1935 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1936 // Global Values get visited separately, but we do need to make sure 1937 // that the global value is in the correct module 1938 Assert(GV->getParent() == &M, "Referencing global in another module!", 1939 EntryC, &M, GV, GV->getParent()); 1940 continue; 1941 } 1942 1943 // Visit all sub-expressions. 1944 for (const Use &U : C->operands()) { 1945 const auto *OpC = dyn_cast<Constant>(U); 1946 if (!OpC) 1947 continue; 1948 if (!ConstantExprVisited.insert(OpC).second) 1949 continue; 1950 Stack.push_back(OpC); 1951 } 1952 } 1953 } 1954 1955 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1956 if (CE->getOpcode() == Instruction::BitCast) 1957 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1958 CE->getType()), 1959 "Invalid bitcast", CE); 1960 1961 if (CE->getOpcode() == Instruction::IntToPtr || 1962 CE->getOpcode() == Instruction::PtrToInt) { 1963 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1964 ? CE->getType() 1965 : CE->getOperand(0)->getType(); 1966 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1967 ? "inttoptr not supported for non-integral pointers" 1968 : "ptrtoint not supported for non-integral pointers"; 1969 Assert( 1970 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1971 Msg); 1972 } 1973 } 1974 1975 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1976 // There shouldn't be more attribute sets than there are parameters plus the 1977 // function and return value. 1978 return Attrs.getNumAttrSets() <= Params + 2; 1979 } 1980 1981 /// Verify that statepoint intrinsic is well formed. 1982 void Verifier::verifyStatepoint(const CallBase &Call) { 1983 assert(Call.getCalledFunction() && 1984 Call.getCalledFunction()->getIntrinsicID() == 1985 Intrinsic::experimental_gc_statepoint); 1986 1987 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1988 !Call.onlyAccessesArgMemory(), 1989 "gc.statepoint must read and write all memory to preserve " 1990 "reordering restrictions required by safepoint semantics", 1991 Call); 1992 1993 const int64_t NumPatchBytes = 1994 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1995 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1996 Assert(NumPatchBytes >= 0, 1997 "gc.statepoint number of patchable bytes must be " 1998 "positive", 1999 Call); 2000 2001 const Value *Target = Call.getArgOperand(2); 2002 auto *PT = dyn_cast<PointerType>(Target->getType()); 2003 Assert(PT && PT->getElementType()->isFunctionTy(), 2004 "gc.statepoint callee must be of function pointer type", Call, Target); 2005 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 2006 2007 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2008 Assert(NumCallArgs >= 0, 2009 "gc.statepoint number of arguments to underlying call " 2010 "must be positive", 2011 Call); 2012 const int NumParams = (int)TargetFuncType->getNumParams(); 2013 if (TargetFuncType->isVarArg()) { 2014 Assert(NumCallArgs >= NumParams, 2015 "gc.statepoint mismatch in number of vararg call args", Call); 2016 2017 // TODO: Remove this limitation 2018 Assert(TargetFuncType->getReturnType()->isVoidTy(), 2019 "gc.statepoint doesn't support wrapping non-void " 2020 "vararg functions yet", 2021 Call); 2022 } else 2023 Assert(NumCallArgs == NumParams, 2024 "gc.statepoint mismatch in number of call args", Call); 2025 2026 const uint64_t Flags 2027 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2028 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2029 "unknown flag used in gc.statepoint flags argument", Call); 2030 2031 // Verify that the types of the call parameter arguments match 2032 // the type of the wrapped callee. 2033 AttributeList Attrs = Call.getAttributes(); 2034 for (int i = 0; i < NumParams; i++) { 2035 Type *ParamType = TargetFuncType->getParamType(i); 2036 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2037 Assert(ArgType == ParamType, 2038 "gc.statepoint call argument does not match wrapped " 2039 "function type", 2040 Call); 2041 2042 if (TargetFuncType->isVarArg()) { 2043 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2044 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2045 "Attribute 'sret' cannot be used for vararg call arguments!", 2046 Call); 2047 } 2048 } 2049 2050 const int EndCallArgsInx = 4 + NumCallArgs; 2051 2052 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2053 Assert(isa<ConstantInt>(NumTransitionArgsV), 2054 "gc.statepoint number of transition arguments " 2055 "must be constant integer", 2056 Call); 2057 const int NumTransitionArgs = 2058 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2059 Assert(NumTransitionArgs >= 0, 2060 "gc.statepoint number of transition arguments must be positive", Call); 2061 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2062 2063 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2064 Assert(isa<ConstantInt>(NumDeoptArgsV), 2065 "gc.statepoint number of deoptimization arguments " 2066 "must be constant integer", 2067 Call); 2068 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2069 Assert(NumDeoptArgs >= 0, 2070 "gc.statepoint number of deoptimization arguments " 2071 "must be positive", 2072 Call); 2073 2074 const int ExpectedNumArgs = 2075 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2076 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2077 "gc.statepoint too few arguments according to length fields", Call); 2078 2079 // Check that the only uses of this gc.statepoint are gc.result or 2080 // gc.relocate calls which are tied to this statepoint and thus part 2081 // of the same statepoint sequence 2082 for (const User *U : Call.users()) { 2083 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2084 Assert(UserCall, "illegal use of statepoint token", Call, U); 2085 if (!UserCall) 2086 continue; 2087 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2088 "gc.result or gc.relocate are the only value uses " 2089 "of a gc.statepoint", 2090 Call, U); 2091 if (isa<GCResultInst>(UserCall)) { 2092 Assert(UserCall->getArgOperand(0) == &Call, 2093 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2094 } else if (isa<GCRelocateInst>(Call)) { 2095 Assert(UserCall->getArgOperand(0) == &Call, 2096 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2097 } 2098 } 2099 2100 // Note: It is legal for a single derived pointer to be listed multiple 2101 // times. It's non-optimal, but it is legal. It can also happen after 2102 // insertion if we strip a bitcast away. 2103 // Note: It is really tempting to check that each base is relocated and 2104 // that a derived pointer is never reused as a base pointer. This turns 2105 // out to be problematic since optimizations run after safepoint insertion 2106 // can recognize equality properties that the insertion logic doesn't know 2107 // about. See example statepoint.ll in the verifier subdirectory 2108 } 2109 2110 void Verifier::verifyFrameRecoverIndices() { 2111 for (auto &Counts : FrameEscapeInfo) { 2112 Function *F = Counts.first; 2113 unsigned EscapedObjectCount = Counts.second.first; 2114 unsigned MaxRecoveredIndex = Counts.second.second; 2115 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2116 "all indices passed to llvm.localrecover must be less than the " 2117 "number of arguments passed to llvm.localescape in the parent " 2118 "function", 2119 F); 2120 } 2121 } 2122 2123 static Instruction *getSuccPad(Instruction *Terminator) { 2124 BasicBlock *UnwindDest; 2125 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2126 UnwindDest = II->getUnwindDest(); 2127 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2128 UnwindDest = CSI->getUnwindDest(); 2129 else 2130 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2131 return UnwindDest->getFirstNonPHI(); 2132 } 2133 2134 void Verifier::verifySiblingFuncletUnwinds() { 2135 SmallPtrSet<Instruction *, 8> Visited; 2136 SmallPtrSet<Instruction *, 8> Active; 2137 for (const auto &Pair : SiblingFuncletInfo) { 2138 Instruction *PredPad = Pair.first; 2139 if (Visited.count(PredPad)) 2140 continue; 2141 Active.insert(PredPad); 2142 Instruction *Terminator = Pair.second; 2143 do { 2144 Instruction *SuccPad = getSuccPad(Terminator); 2145 if (Active.count(SuccPad)) { 2146 // Found a cycle; report error 2147 Instruction *CyclePad = SuccPad; 2148 SmallVector<Instruction *, 8> CycleNodes; 2149 do { 2150 CycleNodes.push_back(CyclePad); 2151 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2152 if (CycleTerminator != CyclePad) 2153 CycleNodes.push_back(CycleTerminator); 2154 CyclePad = getSuccPad(CycleTerminator); 2155 } while (CyclePad != SuccPad); 2156 Assert(false, "EH pads can't handle each other's exceptions", 2157 ArrayRef<Instruction *>(CycleNodes)); 2158 } 2159 // Don't re-walk a node we've already checked 2160 if (!Visited.insert(SuccPad).second) 2161 break; 2162 // Walk to this successor if it has a map entry. 2163 PredPad = SuccPad; 2164 auto TermI = SiblingFuncletInfo.find(PredPad); 2165 if (TermI == SiblingFuncletInfo.end()) 2166 break; 2167 Terminator = TermI->second; 2168 Active.insert(PredPad); 2169 } while (true); 2170 // Each node only has one successor, so we've walked all the active 2171 // nodes' successors. 2172 Active.clear(); 2173 } 2174 } 2175 2176 // visitFunction - Verify that a function is ok. 2177 // 2178 void Verifier::visitFunction(const Function &F) { 2179 visitGlobalValue(F); 2180 2181 // Check function arguments. 2182 FunctionType *FT = F.getFunctionType(); 2183 unsigned NumArgs = F.arg_size(); 2184 2185 Assert(&Context == &F.getContext(), 2186 "Function context does not match Module context!", &F); 2187 2188 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2189 Assert(FT->getNumParams() == NumArgs, 2190 "# formal arguments must match # of arguments for function type!", &F, 2191 FT); 2192 Assert(F.getReturnType()->isFirstClassType() || 2193 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2194 "Functions cannot return aggregate values!", &F); 2195 2196 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2197 "Invalid struct return type!", &F); 2198 2199 AttributeList Attrs = F.getAttributes(); 2200 2201 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2202 "Attribute after last parameter!", &F); 2203 2204 bool isLLVMdotName = F.getName().size() >= 5 && 2205 F.getName().substr(0, 5) == "llvm."; 2206 2207 // Check function attributes. 2208 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2209 2210 // On function declarations/definitions, we do not support the builtin 2211 // attribute. We do not check this in VerifyFunctionAttrs since that is 2212 // checking for Attributes that can/can not ever be on functions. 2213 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2214 "Attribute 'builtin' can only be applied to a callsite.", &F); 2215 2216 // Check that this function meets the restrictions on this calling convention. 2217 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2218 // restrictions can be lifted. 2219 switch (F.getCallingConv()) { 2220 default: 2221 case CallingConv::C: 2222 break; 2223 case CallingConv::AMDGPU_KERNEL: 2224 case CallingConv::SPIR_KERNEL: 2225 Assert(F.getReturnType()->isVoidTy(), 2226 "Calling convention requires void return type", &F); 2227 LLVM_FALLTHROUGH; 2228 case CallingConv::AMDGPU_VS: 2229 case CallingConv::AMDGPU_HS: 2230 case CallingConv::AMDGPU_GS: 2231 case CallingConv::AMDGPU_PS: 2232 case CallingConv::AMDGPU_CS: 2233 Assert(!F.hasStructRetAttr(), 2234 "Calling convention does not allow sret", &F); 2235 LLVM_FALLTHROUGH; 2236 case CallingConv::Fast: 2237 case CallingConv::Cold: 2238 case CallingConv::Intel_OCL_BI: 2239 case CallingConv::PTX_Kernel: 2240 case CallingConv::PTX_Device: 2241 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2242 "perfect forwarding!", 2243 &F); 2244 break; 2245 } 2246 2247 // Check that the argument values match the function type for this function... 2248 unsigned i = 0; 2249 for (const Argument &Arg : F.args()) { 2250 Assert(Arg.getType() == FT->getParamType(i), 2251 "Argument value does not match function argument type!", &Arg, 2252 FT->getParamType(i)); 2253 Assert(Arg.getType()->isFirstClassType(), 2254 "Function arguments must have first-class types!", &Arg); 2255 if (!isLLVMdotName) { 2256 Assert(!Arg.getType()->isMetadataTy(), 2257 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2258 Assert(!Arg.getType()->isTokenTy(), 2259 "Function takes token but isn't an intrinsic", &Arg, &F); 2260 } 2261 2262 // Check that swifterror argument is only used by loads and stores. 2263 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2264 verifySwiftErrorValue(&Arg); 2265 } 2266 ++i; 2267 } 2268 2269 if (!isLLVMdotName) 2270 Assert(!F.getReturnType()->isTokenTy(), 2271 "Functions returns a token but isn't an intrinsic", &F); 2272 2273 // Get the function metadata attachments. 2274 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2275 F.getAllMetadata(MDs); 2276 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2277 verifyFunctionMetadata(MDs); 2278 2279 // Check validity of the personality function 2280 if (F.hasPersonalityFn()) { 2281 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2282 if (Per) 2283 Assert(Per->getParent() == F.getParent(), 2284 "Referencing personality function in another module!", 2285 &F, F.getParent(), Per, Per->getParent()); 2286 } 2287 2288 if (F.isMaterializable()) { 2289 // Function has a body somewhere we can't see. 2290 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2291 MDs.empty() ? nullptr : MDs.front().second); 2292 } else if (F.isDeclaration()) { 2293 for (const auto &I : MDs) { 2294 // This is used for call site debug information. 2295 AssertDI(I.first != LLVMContext::MD_dbg || 2296 !cast<DISubprogram>(I.second)->isDistinct(), 2297 "function declaration may only have a unique !dbg attachment", 2298 &F); 2299 Assert(I.first != LLVMContext::MD_prof, 2300 "function declaration may not have a !prof attachment", &F); 2301 2302 // Verify the metadata itself. 2303 visitMDNode(*I.second); 2304 } 2305 Assert(!F.hasPersonalityFn(), 2306 "Function declaration shouldn't have a personality routine", &F); 2307 } else { 2308 // Verify that this function (which has a body) is not named "llvm.*". It 2309 // is not legal to define intrinsics. 2310 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2311 2312 // Check the entry node 2313 const BasicBlock *Entry = &F.getEntryBlock(); 2314 Assert(pred_empty(Entry), 2315 "Entry block to function must not have predecessors!", Entry); 2316 2317 // The address of the entry block cannot be taken, unless it is dead. 2318 if (Entry->hasAddressTaken()) { 2319 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2320 "blockaddress may not be used with the entry block!", Entry); 2321 } 2322 2323 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2324 // Visit metadata attachments. 2325 for (const auto &I : MDs) { 2326 // Verify that the attachment is legal. 2327 switch (I.first) { 2328 default: 2329 break; 2330 case LLVMContext::MD_dbg: { 2331 ++NumDebugAttachments; 2332 AssertDI(NumDebugAttachments == 1, 2333 "function must have a single !dbg attachment", &F, I.second); 2334 AssertDI(isa<DISubprogram>(I.second), 2335 "function !dbg attachment must be a subprogram", &F, I.second); 2336 auto *SP = cast<DISubprogram>(I.second); 2337 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2338 AssertDI(!AttachedTo || AttachedTo == &F, 2339 "DISubprogram attached to more than one function", SP, &F); 2340 AttachedTo = &F; 2341 break; 2342 } 2343 case LLVMContext::MD_prof: 2344 ++NumProfAttachments; 2345 Assert(NumProfAttachments == 1, 2346 "function must have a single !prof attachment", &F, I.second); 2347 break; 2348 } 2349 2350 // Verify the metadata itself. 2351 visitMDNode(*I.second); 2352 } 2353 } 2354 2355 // If this function is actually an intrinsic, verify that it is only used in 2356 // direct call/invokes, never having its "address taken". 2357 // Only do this if the module is materialized, otherwise we don't have all the 2358 // uses. 2359 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2360 const User *U; 2361 if (F.hasAddressTaken(&U)) 2362 Assert(false, "Invalid user of intrinsic instruction!", U); 2363 } 2364 2365 auto *N = F.getSubprogram(); 2366 HasDebugInfo = (N != nullptr); 2367 if (!HasDebugInfo) 2368 return; 2369 2370 // Check that all !dbg attachments lead to back to N. 2371 // 2372 // FIXME: Check this incrementally while visiting !dbg attachments. 2373 // FIXME: Only check when N is the canonical subprogram for F. 2374 SmallPtrSet<const MDNode *, 32> Seen; 2375 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2376 // Be careful about using DILocation here since we might be dealing with 2377 // broken code (this is the Verifier after all). 2378 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2379 if (!DL) 2380 return; 2381 if (!Seen.insert(DL).second) 2382 return; 2383 2384 Metadata *Parent = DL->getRawScope(); 2385 AssertDI(Parent && isa<DILocalScope>(Parent), 2386 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2387 Parent); 2388 2389 DILocalScope *Scope = DL->getInlinedAtScope(); 2390 Assert(Scope, "Failed to find DILocalScope", DL); 2391 2392 if (!Seen.insert(Scope).second) 2393 return; 2394 2395 DISubprogram *SP = Scope->getSubprogram(); 2396 2397 // Scope and SP could be the same MDNode and we don't want to skip 2398 // validation in that case 2399 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2400 return; 2401 2402 AssertDI(SP->describes(&F), 2403 "!dbg attachment points at wrong subprogram for function", N, &F, 2404 &I, DL, Scope, SP); 2405 }; 2406 for (auto &BB : F) 2407 for (auto &I : BB) { 2408 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2409 // The llvm.loop annotations also contain two DILocations. 2410 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2411 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2412 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2413 if (BrokenDebugInfo) 2414 return; 2415 } 2416 } 2417 2418 // verifyBasicBlock - Verify that a basic block is well formed... 2419 // 2420 void Verifier::visitBasicBlock(BasicBlock &BB) { 2421 InstsInThisBlock.clear(); 2422 2423 // Ensure that basic blocks have terminators! 2424 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2425 2426 // Check constraints that this basic block imposes on all of the PHI nodes in 2427 // it. 2428 if (isa<PHINode>(BB.front())) { 2429 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2430 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2431 llvm::sort(Preds); 2432 for (const PHINode &PN : BB.phis()) { 2433 // Ensure that PHI nodes have at least one entry! 2434 Assert(PN.getNumIncomingValues() != 0, 2435 "PHI nodes must have at least one entry. If the block is dead, " 2436 "the PHI should be removed!", 2437 &PN); 2438 Assert(PN.getNumIncomingValues() == Preds.size(), 2439 "PHINode should have one entry for each predecessor of its " 2440 "parent basic block!", 2441 &PN); 2442 2443 // Get and sort all incoming values in the PHI node... 2444 Values.clear(); 2445 Values.reserve(PN.getNumIncomingValues()); 2446 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2447 Values.push_back( 2448 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2449 llvm::sort(Values); 2450 2451 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2452 // Check to make sure that if there is more than one entry for a 2453 // particular basic block in this PHI node, that the incoming values are 2454 // all identical. 2455 // 2456 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2457 Values[i].second == Values[i - 1].second, 2458 "PHI node has multiple entries for the same basic block with " 2459 "different incoming values!", 2460 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2461 2462 // Check to make sure that the predecessors and PHI node entries are 2463 // matched up. 2464 Assert(Values[i].first == Preds[i], 2465 "PHI node entries do not match predecessors!", &PN, 2466 Values[i].first, Preds[i]); 2467 } 2468 } 2469 } 2470 2471 // Check that all instructions have their parent pointers set up correctly. 2472 for (auto &I : BB) 2473 { 2474 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2475 } 2476 } 2477 2478 void Verifier::visitTerminator(Instruction &I) { 2479 // Ensure that terminators only exist at the end of the basic block. 2480 Assert(&I == I.getParent()->getTerminator(), 2481 "Terminator found in the middle of a basic block!", I.getParent()); 2482 visitInstruction(I); 2483 } 2484 2485 void Verifier::visitBranchInst(BranchInst &BI) { 2486 if (BI.isConditional()) { 2487 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2488 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2489 } 2490 visitTerminator(BI); 2491 } 2492 2493 void Verifier::visitReturnInst(ReturnInst &RI) { 2494 Function *F = RI.getParent()->getParent(); 2495 unsigned N = RI.getNumOperands(); 2496 if (F->getReturnType()->isVoidTy()) 2497 Assert(N == 0, 2498 "Found return instr that returns non-void in Function of void " 2499 "return type!", 2500 &RI, F->getReturnType()); 2501 else 2502 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2503 "Function return type does not match operand " 2504 "type of return inst!", 2505 &RI, F->getReturnType()); 2506 2507 // Check to make sure that the return value has necessary properties for 2508 // terminators... 2509 visitTerminator(RI); 2510 } 2511 2512 void Verifier::visitSwitchInst(SwitchInst &SI) { 2513 // Check to make sure that all of the constants in the switch instruction 2514 // have the same type as the switched-on value. 2515 Type *SwitchTy = SI.getCondition()->getType(); 2516 SmallPtrSet<ConstantInt*, 32> Constants; 2517 for (auto &Case : SI.cases()) { 2518 Assert(Case.getCaseValue()->getType() == SwitchTy, 2519 "Switch constants must all be same type as switch value!", &SI); 2520 Assert(Constants.insert(Case.getCaseValue()).second, 2521 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2522 } 2523 2524 visitTerminator(SI); 2525 } 2526 2527 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2528 Assert(BI.getAddress()->getType()->isPointerTy(), 2529 "Indirectbr operand must have pointer type!", &BI); 2530 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2531 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2532 "Indirectbr destinations must all have pointer type!", &BI); 2533 2534 visitTerminator(BI); 2535 } 2536 2537 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2538 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2539 &CBI); 2540 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2541 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2542 "Callbr successors must all have pointer type!", &CBI); 2543 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2544 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2545 "Using an unescaped label as a callbr argument!", &CBI); 2546 if (isa<BasicBlock>(CBI.getOperand(i))) 2547 for (unsigned j = i + 1; j != e; ++j) 2548 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2549 "Duplicate callbr destination!", &CBI); 2550 } 2551 { 2552 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2553 for (Value *V : CBI.args()) 2554 if (auto *BA = dyn_cast<BlockAddress>(V)) 2555 ArgBBs.insert(BA->getBasicBlock()); 2556 for (BasicBlock *BB : CBI.getIndirectDests()) 2557 Assert(ArgBBs.find(BB) != ArgBBs.end(), 2558 "Indirect label missing from arglist.", &CBI); 2559 } 2560 2561 visitTerminator(CBI); 2562 } 2563 2564 void Verifier::visitSelectInst(SelectInst &SI) { 2565 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2566 SI.getOperand(2)), 2567 "Invalid operands for select instruction!", &SI); 2568 2569 Assert(SI.getTrueValue()->getType() == SI.getType(), 2570 "Select values must have same type as select instruction!", &SI); 2571 visitInstruction(SI); 2572 } 2573 2574 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2575 /// a pass, if any exist, it's an error. 2576 /// 2577 void Verifier::visitUserOp1(Instruction &I) { 2578 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2579 } 2580 2581 void Verifier::visitTruncInst(TruncInst &I) { 2582 // Get the source and destination types 2583 Type *SrcTy = I.getOperand(0)->getType(); 2584 Type *DestTy = I.getType(); 2585 2586 // Get the size of the types in bits, we'll need this later 2587 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2588 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2589 2590 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2591 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2592 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2593 "trunc source and destination must both be a vector or neither", &I); 2594 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2595 2596 visitInstruction(I); 2597 } 2598 2599 void Verifier::visitZExtInst(ZExtInst &I) { 2600 // Get the source and destination types 2601 Type *SrcTy = I.getOperand(0)->getType(); 2602 Type *DestTy = I.getType(); 2603 2604 // Get the size of the types in bits, we'll need this later 2605 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2606 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2607 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2608 "zext source and destination must both be a vector or neither", &I); 2609 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2610 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2611 2612 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2613 2614 visitInstruction(I); 2615 } 2616 2617 void Verifier::visitSExtInst(SExtInst &I) { 2618 // Get the source and destination types 2619 Type *SrcTy = I.getOperand(0)->getType(); 2620 Type *DestTy = I.getType(); 2621 2622 // Get the size of the types in bits, we'll need this later 2623 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2624 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2625 2626 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2627 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2628 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2629 "sext source and destination must both be a vector or neither", &I); 2630 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2631 2632 visitInstruction(I); 2633 } 2634 2635 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2636 // Get the source and destination types 2637 Type *SrcTy = I.getOperand(0)->getType(); 2638 Type *DestTy = I.getType(); 2639 // Get the size of the types in bits, we'll need this later 2640 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2641 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2642 2643 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2644 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2645 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2646 "fptrunc source and destination must both be a vector or neither", &I); 2647 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2648 2649 visitInstruction(I); 2650 } 2651 2652 void Verifier::visitFPExtInst(FPExtInst &I) { 2653 // Get the source and destination types 2654 Type *SrcTy = I.getOperand(0)->getType(); 2655 Type *DestTy = I.getType(); 2656 2657 // Get the size of the types in bits, we'll need this later 2658 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2659 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2660 2661 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2662 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2663 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2664 "fpext source and destination must both be a vector or neither", &I); 2665 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2666 2667 visitInstruction(I); 2668 } 2669 2670 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2671 // Get the source and destination types 2672 Type *SrcTy = I.getOperand(0)->getType(); 2673 Type *DestTy = I.getType(); 2674 2675 bool SrcVec = SrcTy->isVectorTy(); 2676 bool DstVec = DestTy->isVectorTy(); 2677 2678 Assert(SrcVec == DstVec, 2679 "UIToFP source and dest must both be vector or scalar", &I); 2680 Assert(SrcTy->isIntOrIntVectorTy(), 2681 "UIToFP source must be integer or integer vector", &I); 2682 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2683 &I); 2684 2685 if (SrcVec && DstVec) 2686 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2687 cast<VectorType>(DestTy)->getNumElements(), 2688 "UIToFP source and dest vector length mismatch", &I); 2689 2690 visitInstruction(I); 2691 } 2692 2693 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2694 // Get the source and destination types 2695 Type *SrcTy = I.getOperand(0)->getType(); 2696 Type *DestTy = I.getType(); 2697 2698 bool SrcVec = SrcTy->isVectorTy(); 2699 bool DstVec = DestTy->isVectorTy(); 2700 2701 Assert(SrcVec == DstVec, 2702 "SIToFP source and dest must both be vector or scalar", &I); 2703 Assert(SrcTy->isIntOrIntVectorTy(), 2704 "SIToFP source must be integer or integer vector", &I); 2705 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2706 &I); 2707 2708 if (SrcVec && DstVec) 2709 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2710 cast<VectorType>(DestTy)->getNumElements(), 2711 "SIToFP source and dest vector length mismatch", &I); 2712 2713 visitInstruction(I); 2714 } 2715 2716 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2717 // Get the source and destination types 2718 Type *SrcTy = I.getOperand(0)->getType(); 2719 Type *DestTy = I.getType(); 2720 2721 bool SrcVec = SrcTy->isVectorTy(); 2722 bool DstVec = DestTy->isVectorTy(); 2723 2724 Assert(SrcVec == DstVec, 2725 "FPToUI source and dest must both be vector or scalar", &I); 2726 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2727 &I); 2728 Assert(DestTy->isIntOrIntVectorTy(), 2729 "FPToUI result must be integer or integer vector", &I); 2730 2731 if (SrcVec && DstVec) 2732 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2733 cast<VectorType>(DestTy)->getNumElements(), 2734 "FPToUI source and dest vector length mismatch", &I); 2735 2736 visitInstruction(I); 2737 } 2738 2739 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2740 // Get the source and destination types 2741 Type *SrcTy = I.getOperand(0)->getType(); 2742 Type *DestTy = I.getType(); 2743 2744 bool SrcVec = SrcTy->isVectorTy(); 2745 bool DstVec = DestTy->isVectorTy(); 2746 2747 Assert(SrcVec == DstVec, 2748 "FPToSI source and dest must both be vector or scalar", &I); 2749 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2750 &I); 2751 Assert(DestTy->isIntOrIntVectorTy(), 2752 "FPToSI result must be integer or integer vector", &I); 2753 2754 if (SrcVec && DstVec) 2755 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2756 cast<VectorType>(DestTy)->getNumElements(), 2757 "FPToSI source and dest vector length mismatch", &I); 2758 2759 visitInstruction(I); 2760 } 2761 2762 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2763 // Get the source and destination types 2764 Type *SrcTy = I.getOperand(0)->getType(); 2765 Type *DestTy = I.getType(); 2766 2767 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2768 2769 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2770 Assert(!DL.isNonIntegralPointerType(PTy), 2771 "ptrtoint not supported for non-integral pointers"); 2772 2773 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2774 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2775 &I); 2776 2777 if (SrcTy->isVectorTy()) { 2778 VectorType *VSrc = cast<VectorType>(SrcTy); 2779 VectorType *VDest = cast<VectorType>(DestTy); 2780 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2781 "PtrToInt Vector width mismatch", &I); 2782 } 2783 2784 visitInstruction(I); 2785 } 2786 2787 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2788 // Get the source and destination types 2789 Type *SrcTy = I.getOperand(0)->getType(); 2790 Type *DestTy = I.getType(); 2791 2792 Assert(SrcTy->isIntOrIntVectorTy(), 2793 "IntToPtr source must be an integral", &I); 2794 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2795 2796 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2797 Assert(!DL.isNonIntegralPointerType(PTy), 2798 "inttoptr not supported for non-integral pointers"); 2799 2800 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2801 &I); 2802 if (SrcTy->isVectorTy()) { 2803 VectorType *VSrc = cast<VectorType>(SrcTy); 2804 VectorType *VDest = cast<VectorType>(DestTy); 2805 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2806 "IntToPtr Vector width mismatch", &I); 2807 } 2808 visitInstruction(I); 2809 } 2810 2811 void Verifier::visitBitCastInst(BitCastInst &I) { 2812 Assert( 2813 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2814 "Invalid bitcast", &I); 2815 visitInstruction(I); 2816 } 2817 2818 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2819 Type *SrcTy = I.getOperand(0)->getType(); 2820 Type *DestTy = I.getType(); 2821 2822 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2823 &I); 2824 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2825 &I); 2826 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2827 "AddrSpaceCast must be between different address spaces", &I); 2828 if (SrcTy->isVectorTy()) 2829 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2830 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2831 visitInstruction(I); 2832 } 2833 2834 /// visitPHINode - Ensure that a PHI node is well formed. 2835 /// 2836 void Verifier::visitPHINode(PHINode &PN) { 2837 // Ensure that the PHI nodes are all grouped together at the top of the block. 2838 // This can be tested by checking whether the instruction before this is 2839 // either nonexistent (because this is begin()) or is a PHI node. If not, 2840 // then there is some other instruction before a PHI. 2841 Assert(&PN == &PN.getParent()->front() || 2842 isa<PHINode>(--BasicBlock::iterator(&PN)), 2843 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2844 2845 // Check that a PHI doesn't yield a Token. 2846 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2847 2848 // Check that all of the values of the PHI node have the same type as the 2849 // result, and that the incoming blocks are really basic blocks. 2850 for (Value *IncValue : PN.incoming_values()) { 2851 Assert(PN.getType() == IncValue->getType(), 2852 "PHI node operands are not the same type as the result!", &PN); 2853 } 2854 2855 // All other PHI node constraints are checked in the visitBasicBlock method. 2856 2857 visitInstruction(PN); 2858 } 2859 2860 void Verifier::visitCallBase(CallBase &Call) { 2861 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2862 "Called function must be a pointer!", Call); 2863 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2864 2865 Assert(FPTy->getElementType()->isFunctionTy(), 2866 "Called function is not pointer to function type!", Call); 2867 2868 Assert(FPTy->getElementType() == Call.getFunctionType(), 2869 "Called function is not the same type as the call!", Call); 2870 2871 FunctionType *FTy = Call.getFunctionType(); 2872 2873 // Verify that the correct number of arguments are being passed 2874 if (FTy->isVarArg()) 2875 Assert(Call.arg_size() >= FTy->getNumParams(), 2876 "Called function requires more parameters than were provided!", 2877 Call); 2878 else 2879 Assert(Call.arg_size() == FTy->getNumParams(), 2880 "Incorrect number of arguments passed to called function!", Call); 2881 2882 // Verify that all arguments to the call match the function type. 2883 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2884 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2885 "Call parameter type does not match function signature!", 2886 Call.getArgOperand(i), FTy->getParamType(i), Call); 2887 2888 AttributeList Attrs = Call.getAttributes(); 2889 2890 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2891 "Attribute after last parameter!", Call); 2892 2893 bool IsIntrinsic = Call.getCalledFunction() && 2894 Call.getCalledFunction()->getName().startswith("llvm."); 2895 2896 Function *Callee 2897 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2898 2899 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2900 // Don't allow speculatable on call sites, unless the underlying function 2901 // declaration is also speculatable. 2902 Assert(Callee && Callee->isSpeculatable(), 2903 "speculatable attribute may not apply to call sites", Call); 2904 } 2905 2906 // Verify call attributes. 2907 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2908 2909 // Conservatively check the inalloca argument. 2910 // We have a bug if we can find that there is an underlying alloca without 2911 // inalloca. 2912 if (Call.hasInAllocaArgument()) { 2913 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2914 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2915 Assert(AI->isUsedWithInAlloca(), 2916 "inalloca argument for call has mismatched alloca", AI, Call); 2917 } 2918 2919 // For each argument of the callsite, if it has the swifterror argument, 2920 // make sure the underlying alloca/parameter it comes from has a swifterror as 2921 // well. 2922 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2923 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2924 Value *SwiftErrorArg = Call.getArgOperand(i); 2925 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2926 Assert(AI->isSwiftError(), 2927 "swifterror argument for call has mismatched alloca", AI, Call); 2928 continue; 2929 } 2930 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2931 Assert(ArgI, 2932 "swifterror argument should come from an alloca or parameter", 2933 SwiftErrorArg, Call); 2934 Assert(ArgI->hasSwiftErrorAttr(), 2935 "swifterror argument for call has mismatched parameter", ArgI, 2936 Call); 2937 } 2938 2939 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2940 // Don't allow immarg on call sites, unless the underlying declaration 2941 // also has the matching immarg. 2942 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2943 "immarg may not apply only to call sites", 2944 Call.getArgOperand(i), Call); 2945 } 2946 2947 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2948 Value *ArgVal = Call.getArgOperand(i); 2949 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2950 "immarg operand has non-immediate parameter", ArgVal, Call); 2951 } 2952 } 2953 2954 if (FTy->isVarArg()) { 2955 // FIXME? is 'nest' even legal here? 2956 bool SawNest = false; 2957 bool SawReturned = false; 2958 2959 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2960 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2961 SawNest = true; 2962 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2963 SawReturned = true; 2964 } 2965 2966 // Check attributes on the varargs part. 2967 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2968 Type *Ty = Call.getArgOperand(Idx)->getType(); 2969 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2970 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2971 2972 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2973 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2974 SawNest = true; 2975 } 2976 2977 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2978 Assert(!SawReturned, "More than one parameter has attribute returned!", 2979 Call); 2980 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2981 "Incompatible argument and return types for 'returned' " 2982 "attribute", 2983 Call); 2984 SawReturned = true; 2985 } 2986 2987 // Statepoint intrinsic is vararg but the wrapped function may be not. 2988 // Allow sret here and check the wrapped function in verifyStatepoint. 2989 if (!Call.getCalledFunction() || 2990 Call.getCalledFunction()->getIntrinsicID() != 2991 Intrinsic::experimental_gc_statepoint) 2992 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2993 "Attribute 'sret' cannot be used for vararg call arguments!", 2994 Call); 2995 2996 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2997 Assert(Idx == Call.arg_size() - 1, 2998 "inalloca isn't on the last argument!", Call); 2999 } 3000 } 3001 3002 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3003 if (!IsIntrinsic) { 3004 for (Type *ParamTy : FTy->params()) { 3005 Assert(!ParamTy->isMetadataTy(), 3006 "Function has metadata parameter but isn't an intrinsic", Call); 3007 Assert(!ParamTy->isTokenTy(), 3008 "Function has token parameter but isn't an intrinsic", Call); 3009 } 3010 } 3011 3012 // Verify that indirect calls don't return tokens. 3013 if (!Call.getCalledFunction()) 3014 Assert(!FTy->getReturnType()->isTokenTy(), 3015 "Return type cannot be token for indirect call!"); 3016 3017 if (Function *F = Call.getCalledFunction()) 3018 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3019 visitIntrinsicCall(ID, Call); 3020 3021 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3022 // most one "gc-transition", and at most one "cfguardtarget" operand bundle. 3023 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3024 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false; 3025 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3026 OperandBundleUse BU = Call.getOperandBundleAt(i); 3027 uint32_t Tag = BU.getTagID(); 3028 if (Tag == LLVMContext::OB_deopt) { 3029 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3030 FoundDeoptBundle = true; 3031 } else if (Tag == LLVMContext::OB_gc_transition) { 3032 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3033 Call); 3034 FoundGCTransitionBundle = true; 3035 } else if (Tag == LLVMContext::OB_funclet) { 3036 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3037 FoundFuncletBundle = true; 3038 Assert(BU.Inputs.size() == 1, 3039 "Expected exactly one funclet bundle operand", Call); 3040 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3041 "Funclet bundle operands should correspond to a FuncletPadInst", 3042 Call); 3043 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3044 Assert(!FoundCFGuardTargetBundle, 3045 "Multiple CFGuardTarget operand bundles", Call); 3046 FoundCFGuardTargetBundle = true; 3047 Assert(BU.Inputs.size() == 1, 3048 "Expected exactly one cfguardtarget bundle operand", Call); 3049 } 3050 } 3051 3052 // Verify that each inlinable callsite of a debug-info-bearing function in a 3053 // debug-info-bearing function has a debug location attached to it. Failure to 3054 // do so causes assertion failures when the inliner sets up inline scope info. 3055 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3056 Call.getCalledFunction()->getSubprogram()) 3057 AssertDI(Call.getDebugLoc(), 3058 "inlinable function call in a function with " 3059 "debug info must have a !dbg location", 3060 Call); 3061 3062 visitInstruction(Call); 3063 } 3064 3065 /// Two types are "congruent" if they are identical, or if they are both pointer 3066 /// types with different pointee types and the same address space. 3067 static bool isTypeCongruent(Type *L, Type *R) { 3068 if (L == R) 3069 return true; 3070 PointerType *PL = dyn_cast<PointerType>(L); 3071 PointerType *PR = dyn_cast<PointerType>(R); 3072 if (!PL || !PR) 3073 return false; 3074 return PL->getAddressSpace() == PR->getAddressSpace(); 3075 } 3076 3077 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3078 static const Attribute::AttrKind ABIAttrs[] = { 3079 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3080 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 3081 Attribute::SwiftError}; 3082 AttrBuilder Copy; 3083 for (auto AK : ABIAttrs) { 3084 if (Attrs.hasParamAttribute(I, AK)) 3085 Copy.addAttribute(AK); 3086 } 3087 // `align` is ABI-affecting only in combination with `byval`. 3088 if (Attrs.hasParamAttribute(I, Attribute::Alignment) && 3089 Attrs.hasParamAttribute(I, Attribute::ByVal)) 3090 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3091 return Copy; 3092 } 3093 3094 void Verifier::verifyMustTailCall(CallInst &CI) { 3095 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3096 3097 // - The caller and callee prototypes must match. Pointer types of 3098 // parameters or return types may differ in pointee type, but not 3099 // address space. 3100 Function *F = CI.getParent()->getParent(); 3101 FunctionType *CallerTy = F->getFunctionType(); 3102 FunctionType *CalleeTy = CI.getFunctionType(); 3103 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3104 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3105 "cannot guarantee tail call due to mismatched parameter counts", 3106 &CI); 3107 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3108 Assert( 3109 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3110 "cannot guarantee tail call due to mismatched parameter types", &CI); 3111 } 3112 } 3113 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3114 "cannot guarantee tail call due to mismatched varargs", &CI); 3115 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3116 "cannot guarantee tail call due to mismatched return types", &CI); 3117 3118 // - The calling conventions of the caller and callee must match. 3119 Assert(F->getCallingConv() == CI.getCallingConv(), 3120 "cannot guarantee tail call due to mismatched calling conv", &CI); 3121 3122 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3123 // returned, and inalloca, must match. 3124 AttributeList CallerAttrs = F->getAttributes(); 3125 AttributeList CalleeAttrs = CI.getAttributes(); 3126 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3127 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3128 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3129 Assert(CallerABIAttrs == CalleeABIAttrs, 3130 "cannot guarantee tail call due to mismatched ABI impacting " 3131 "function attributes", 3132 &CI, CI.getOperand(I)); 3133 } 3134 3135 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3136 // or a pointer bitcast followed by a ret instruction. 3137 // - The ret instruction must return the (possibly bitcasted) value 3138 // produced by the call or void. 3139 Value *RetVal = &CI; 3140 Instruction *Next = CI.getNextNode(); 3141 3142 // Handle the optional bitcast. 3143 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3144 Assert(BI->getOperand(0) == RetVal, 3145 "bitcast following musttail call must use the call", BI); 3146 RetVal = BI; 3147 Next = BI->getNextNode(); 3148 } 3149 3150 // Check the return. 3151 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3152 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3153 &CI); 3154 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3155 "musttail call result must be returned", Ret); 3156 } 3157 3158 void Verifier::visitCallInst(CallInst &CI) { 3159 visitCallBase(CI); 3160 3161 if (CI.isMustTailCall()) 3162 verifyMustTailCall(CI); 3163 } 3164 3165 void Verifier::visitInvokeInst(InvokeInst &II) { 3166 visitCallBase(II); 3167 3168 // Verify that the first non-PHI instruction of the unwind destination is an 3169 // exception handling instruction. 3170 Assert( 3171 II.getUnwindDest()->isEHPad(), 3172 "The unwind destination does not have an exception handling instruction!", 3173 &II); 3174 3175 visitTerminator(II); 3176 } 3177 3178 /// visitUnaryOperator - Check the argument to the unary operator. 3179 /// 3180 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3181 Assert(U.getType() == U.getOperand(0)->getType(), 3182 "Unary operators must have same type for" 3183 "operands and result!", 3184 &U); 3185 3186 switch (U.getOpcode()) { 3187 // Check that floating-point arithmetic operators are only used with 3188 // floating-point operands. 3189 case Instruction::FNeg: 3190 Assert(U.getType()->isFPOrFPVectorTy(), 3191 "FNeg operator only works with float types!", &U); 3192 break; 3193 default: 3194 llvm_unreachable("Unknown UnaryOperator opcode!"); 3195 } 3196 3197 visitInstruction(U); 3198 } 3199 3200 /// visitBinaryOperator - Check that both arguments to the binary operator are 3201 /// of the same type! 3202 /// 3203 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3204 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3205 "Both operands to a binary operator are not of the same type!", &B); 3206 3207 switch (B.getOpcode()) { 3208 // Check that integer arithmetic operators are only used with 3209 // integral operands. 3210 case Instruction::Add: 3211 case Instruction::Sub: 3212 case Instruction::Mul: 3213 case Instruction::SDiv: 3214 case Instruction::UDiv: 3215 case Instruction::SRem: 3216 case Instruction::URem: 3217 Assert(B.getType()->isIntOrIntVectorTy(), 3218 "Integer arithmetic operators only work with integral types!", &B); 3219 Assert(B.getType() == B.getOperand(0)->getType(), 3220 "Integer arithmetic operators must have same type " 3221 "for operands and result!", 3222 &B); 3223 break; 3224 // Check that floating-point arithmetic operators are only used with 3225 // floating-point operands. 3226 case Instruction::FAdd: 3227 case Instruction::FSub: 3228 case Instruction::FMul: 3229 case Instruction::FDiv: 3230 case Instruction::FRem: 3231 Assert(B.getType()->isFPOrFPVectorTy(), 3232 "Floating-point arithmetic operators only work with " 3233 "floating-point types!", 3234 &B); 3235 Assert(B.getType() == B.getOperand(0)->getType(), 3236 "Floating-point arithmetic operators must have same type " 3237 "for operands and result!", 3238 &B); 3239 break; 3240 // Check that logical operators are only used with integral operands. 3241 case Instruction::And: 3242 case Instruction::Or: 3243 case Instruction::Xor: 3244 Assert(B.getType()->isIntOrIntVectorTy(), 3245 "Logical operators only work with integral types!", &B); 3246 Assert(B.getType() == B.getOperand(0)->getType(), 3247 "Logical operators must have same type for operands and result!", 3248 &B); 3249 break; 3250 case Instruction::Shl: 3251 case Instruction::LShr: 3252 case Instruction::AShr: 3253 Assert(B.getType()->isIntOrIntVectorTy(), 3254 "Shifts only work with integral types!", &B); 3255 Assert(B.getType() == B.getOperand(0)->getType(), 3256 "Shift return type must be same as operands!", &B); 3257 break; 3258 default: 3259 llvm_unreachable("Unknown BinaryOperator opcode!"); 3260 } 3261 3262 visitInstruction(B); 3263 } 3264 3265 void Verifier::visitICmpInst(ICmpInst &IC) { 3266 // Check that the operands are the same type 3267 Type *Op0Ty = IC.getOperand(0)->getType(); 3268 Type *Op1Ty = IC.getOperand(1)->getType(); 3269 Assert(Op0Ty == Op1Ty, 3270 "Both operands to ICmp instruction are not of the same type!", &IC); 3271 // Check that the operands are the right type 3272 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3273 "Invalid operand types for ICmp instruction", &IC); 3274 // Check that the predicate is valid. 3275 Assert(IC.isIntPredicate(), 3276 "Invalid predicate in ICmp instruction!", &IC); 3277 3278 visitInstruction(IC); 3279 } 3280 3281 void Verifier::visitFCmpInst(FCmpInst &FC) { 3282 // Check that the operands are the same type 3283 Type *Op0Ty = FC.getOperand(0)->getType(); 3284 Type *Op1Ty = FC.getOperand(1)->getType(); 3285 Assert(Op0Ty == Op1Ty, 3286 "Both operands to FCmp instruction are not of the same type!", &FC); 3287 // Check that the operands are the right type 3288 Assert(Op0Ty->isFPOrFPVectorTy(), 3289 "Invalid operand types for FCmp instruction", &FC); 3290 // Check that the predicate is valid. 3291 Assert(FC.isFPPredicate(), 3292 "Invalid predicate in FCmp instruction!", &FC); 3293 3294 visitInstruction(FC); 3295 } 3296 3297 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3298 Assert( 3299 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3300 "Invalid extractelement operands!", &EI); 3301 visitInstruction(EI); 3302 } 3303 3304 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3305 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3306 IE.getOperand(2)), 3307 "Invalid insertelement operands!", &IE); 3308 visitInstruction(IE); 3309 } 3310 3311 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3312 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3313 SV.getOperand(2)), 3314 "Invalid shufflevector operands!", &SV); 3315 visitInstruction(SV); 3316 } 3317 3318 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3319 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3320 3321 Assert(isa<PointerType>(TargetTy), 3322 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3323 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3324 3325 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3326 Assert(all_of( 3327 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3328 "GEP indexes must be integers", &GEP); 3329 Type *ElTy = 3330 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3331 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3332 3333 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3334 GEP.getResultElementType() == ElTy, 3335 "GEP is not of right type for indices!", &GEP, ElTy); 3336 3337 if (GEP.getType()->isVectorTy()) { 3338 // Additional checks for vector GEPs. 3339 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3340 if (GEP.getPointerOperandType()->isVectorTy()) 3341 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3342 "Vector GEP result width doesn't match operand's", &GEP); 3343 for (Value *Idx : Idxs) { 3344 Type *IndexTy = Idx->getType(); 3345 if (IndexTy->isVectorTy()) { 3346 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3347 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3348 } 3349 Assert(IndexTy->isIntOrIntVectorTy(), 3350 "All GEP indices should be of integer type"); 3351 } 3352 } 3353 3354 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3355 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3356 "GEP address space doesn't match type", &GEP); 3357 } 3358 3359 visitInstruction(GEP); 3360 } 3361 3362 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3363 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3364 } 3365 3366 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3367 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3368 "precondition violation"); 3369 3370 unsigned NumOperands = Range->getNumOperands(); 3371 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3372 unsigned NumRanges = NumOperands / 2; 3373 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3374 3375 ConstantRange LastRange(1, true); // Dummy initial value 3376 for (unsigned i = 0; i < NumRanges; ++i) { 3377 ConstantInt *Low = 3378 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3379 Assert(Low, "The lower limit must be an integer!", Low); 3380 ConstantInt *High = 3381 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3382 Assert(High, "The upper limit must be an integer!", High); 3383 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3384 "Range types must match instruction type!", &I); 3385 3386 APInt HighV = High->getValue(); 3387 APInt LowV = Low->getValue(); 3388 ConstantRange CurRange(LowV, HighV); 3389 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3390 "Range must not be empty!", Range); 3391 if (i != 0) { 3392 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3393 "Intervals are overlapping", Range); 3394 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3395 Range); 3396 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3397 Range); 3398 } 3399 LastRange = ConstantRange(LowV, HighV); 3400 } 3401 if (NumRanges > 2) { 3402 APInt FirstLow = 3403 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3404 APInt FirstHigh = 3405 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3406 ConstantRange FirstRange(FirstLow, FirstHigh); 3407 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3408 "Intervals are overlapping", Range); 3409 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3410 Range); 3411 } 3412 } 3413 3414 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3415 unsigned Size = DL.getTypeSizeInBits(Ty); 3416 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3417 Assert(!(Size & (Size - 1)), 3418 "atomic memory access' operand must have a power-of-two size", Ty, I); 3419 } 3420 3421 void Verifier::visitLoadInst(LoadInst &LI) { 3422 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3423 Assert(PTy, "Load operand must be a pointer.", &LI); 3424 Type *ElTy = LI.getType(); 3425 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3426 "huge alignment values are unsupported", &LI); 3427 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3428 if (LI.isAtomic()) { 3429 Assert(LI.getOrdering() != AtomicOrdering::Release && 3430 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3431 "Load cannot have Release ordering", &LI); 3432 Assert(LI.getAlignment() != 0, 3433 "Atomic load must specify explicit alignment", &LI); 3434 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3435 "atomic load operand must have integer, pointer, or floating point " 3436 "type!", 3437 ElTy, &LI); 3438 checkAtomicMemAccessSize(ElTy, &LI); 3439 } else { 3440 Assert(LI.getSyncScopeID() == SyncScope::System, 3441 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3442 } 3443 3444 visitInstruction(LI); 3445 } 3446 3447 void Verifier::visitStoreInst(StoreInst &SI) { 3448 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3449 Assert(PTy, "Store operand must be a pointer.", &SI); 3450 Type *ElTy = PTy->getElementType(); 3451 Assert(ElTy == SI.getOperand(0)->getType(), 3452 "Stored value type does not match pointer operand type!", &SI, ElTy); 3453 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3454 "huge alignment values are unsupported", &SI); 3455 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3456 if (SI.isAtomic()) { 3457 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3458 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3459 "Store cannot have Acquire ordering", &SI); 3460 Assert(SI.getAlignment() != 0, 3461 "Atomic store must specify explicit alignment", &SI); 3462 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3463 "atomic store operand must have integer, pointer, or floating point " 3464 "type!", 3465 ElTy, &SI); 3466 checkAtomicMemAccessSize(ElTy, &SI); 3467 } else { 3468 Assert(SI.getSyncScopeID() == SyncScope::System, 3469 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3470 } 3471 visitInstruction(SI); 3472 } 3473 3474 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3475 void Verifier::verifySwiftErrorCall(CallBase &Call, 3476 const Value *SwiftErrorVal) { 3477 unsigned Idx = 0; 3478 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3479 if (*I == SwiftErrorVal) { 3480 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3481 "swifterror value when used in a callsite should be marked " 3482 "with swifterror attribute", 3483 SwiftErrorVal, Call); 3484 } 3485 } 3486 } 3487 3488 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3489 // Check that swifterror value is only used by loads, stores, or as 3490 // a swifterror argument. 3491 for (const User *U : SwiftErrorVal->users()) { 3492 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3493 isa<InvokeInst>(U), 3494 "swifterror value can only be loaded and stored from, or " 3495 "as a swifterror argument!", 3496 SwiftErrorVal, U); 3497 // If it is used by a store, check it is the second operand. 3498 if (auto StoreI = dyn_cast<StoreInst>(U)) 3499 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3500 "swifterror value should be the second operand when used " 3501 "by stores", SwiftErrorVal, U); 3502 if (auto *Call = dyn_cast<CallBase>(U)) 3503 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3504 } 3505 } 3506 3507 void Verifier::visitAllocaInst(AllocaInst &AI) { 3508 SmallPtrSet<Type*, 4> Visited; 3509 PointerType *PTy = AI.getType(); 3510 // TODO: Relax this restriction? 3511 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3512 "Allocation instruction pointer not in the stack address space!", 3513 &AI); 3514 Assert(AI.getAllocatedType()->isSized(&Visited), 3515 "Cannot allocate unsized type", &AI); 3516 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3517 "Alloca array size must have integer type", &AI); 3518 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3519 "huge alignment values are unsupported", &AI); 3520 3521 if (AI.isSwiftError()) { 3522 verifySwiftErrorValue(&AI); 3523 } 3524 3525 visitInstruction(AI); 3526 } 3527 3528 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3529 3530 // FIXME: more conditions??? 3531 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3532 "cmpxchg instructions must be atomic.", &CXI); 3533 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3534 "cmpxchg instructions must be atomic.", &CXI); 3535 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3536 "cmpxchg instructions cannot be unordered.", &CXI); 3537 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3538 "cmpxchg instructions cannot be unordered.", &CXI); 3539 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3540 "cmpxchg instructions failure argument shall be no stronger than the " 3541 "success argument", 3542 &CXI); 3543 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3544 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3545 "cmpxchg failure ordering cannot include release semantics", &CXI); 3546 3547 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3548 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3549 Type *ElTy = PTy->getElementType(); 3550 Assert(ElTy->isIntOrPtrTy(), 3551 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3552 checkAtomicMemAccessSize(ElTy, &CXI); 3553 Assert(ElTy == CXI.getOperand(1)->getType(), 3554 "Expected value type does not match pointer operand type!", &CXI, 3555 ElTy); 3556 Assert(ElTy == CXI.getOperand(2)->getType(), 3557 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3558 visitInstruction(CXI); 3559 } 3560 3561 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3562 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3563 "atomicrmw instructions must be atomic.", &RMWI); 3564 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3565 "atomicrmw instructions cannot be unordered.", &RMWI); 3566 auto Op = RMWI.getOperation(); 3567 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3568 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3569 Type *ElTy = PTy->getElementType(); 3570 if (Op == AtomicRMWInst::Xchg) { 3571 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3572 AtomicRMWInst::getOperationName(Op) + 3573 " operand must have integer or floating point type!", 3574 &RMWI, ElTy); 3575 } else if (AtomicRMWInst::isFPOperation(Op)) { 3576 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3577 AtomicRMWInst::getOperationName(Op) + 3578 " operand must have floating point type!", 3579 &RMWI, ElTy); 3580 } else { 3581 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3582 AtomicRMWInst::getOperationName(Op) + 3583 " operand must have integer type!", 3584 &RMWI, ElTy); 3585 } 3586 checkAtomicMemAccessSize(ElTy, &RMWI); 3587 Assert(ElTy == RMWI.getOperand(1)->getType(), 3588 "Argument value type does not match pointer operand type!", &RMWI, 3589 ElTy); 3590 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3591 "Invalid binary operation!", &RMWI); 3592 visitInstruction(RMWI); 3593 } 3594 3595 void Verifier::visitFenceInst(FenceInst &FI) { 3596 const AtomicOrdering Ordering = FI.getOrdering(); 3597 Assert(Ordering == AtomicOrdering::Acquire || 3598 Ordering == AtomicOrdering::Release || 3599 Ordering == AtomicOrdering::AcquireRelease || 3600 Ordering == AtomicOrdering::SequentiallyConsistent, 3601 "fence instructions may only have acquire, release, acq_rel, or " 3602 "seq_cst ordering.", 3603 &FI); 3604 visitInstruction(FI); 3605 } 3606 3607 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3608 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3609 EVI.getIndices()) == EVI.getType(), 3610 "Invalid ExtractValueInst operands!", &EVI); 3611 3612 visitInstruction(EVI); 3613 } 3614 3615 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3616 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3617 IVI.getIndices()) == 3618 IVI.getOperand(1)->getType(), 3619 "Invalid InsertValueInst operands!", &IVI); 3620 3621 visitInstruction(IVI); 3622 } 3623 3624 static Value *getParentPad(Value *EHPad) { 3625 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3626 return FPI->getParentPad(); 3627 3628 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3629 } 3630 3631 void Verifier::visitEHPadPredecessors(Instruction &I) { 3632 assert(I.isEHPad()); 3633 3634 BasicBlock *BB = I.getParent(); 3635 Function *F = BB->getParent(); 3636 3637 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3638 3639 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3640 // The landingpad instruction defines its parent as a landing pad block. The 3641 // landing pad block may be branched to only by the unwind edge of an 3642 // invoke. 3643 for (BasicBlock *PredBB : predecessors(BB)) { 3644 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3645 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3646 "Block containing LandingPadInst must be jumped to " 3647 "only by the unwind edge of an invoke.", 3648 LPI); 3649 } 3650 return; 3651 } 3652 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3653 if (!pred_empty(BB)) 3654 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3655 "Block containg CatchPadInst must be jumped to " 3656 "only by its catchswitch.", 3657 CPI); 3658 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3659 "Catchswitch cannot unwind to one of its catchpads", 3660 CPI->getCatchSwitch(), CPI); 3661 return; 3662 } 3663 3664 // Verify that each pred has a legal terminator with a legal to/from EH 3665 // pad relationship. 3666 Instruction *ToPad = &I; 3667 Value *ToPadParent = getParentPad(ToPad); 3668 for (BasicBlock *PredBB : predecessors(BB)) { 3669 Instruction *TI = PredBB->getTerminator(); 3670 Value *FromPad; 3671 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3672 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3673 "EH pad must be jumped to via an unwind edge", ToPad, II); 3674 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3675 FromPad = Bundle->Inputs[0]; 3676 else 3677 FromPad = ConstantTokenNone::get(II->getContext()); 3678 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3679 FromPad = CRI->getOperand(0); 3680 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3681 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3682 FromPad = CSI; 3683 } else { 3684 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3685 } 3686 3687 // The edge may exit from zero or more nested pads. 3688 SmallSet<Value *, 8> Seen; 3689 for (;; FromPad = getParentPad(FromPad)) { 3690 Assert(FromPad != ToPad, 3691 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3692 if (FromPad == ToPadParent) { 3693 // This is a legal unwind edge. 3694 break; 3695 } 3696 Assert(!isa<ConstantTokenNone>(FromPad), 3697 "A single unwind edge may only enter one EH pad", TI); 3698 Assert(Seen.insert(FromPad).second, 3699 "EH pad jumps through a cycle of pads", FromPad); 3700 } 3701 } 3702 } 3703 3704 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3705 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3706 // isn't a cleanup. 3707 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3708 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3709 3710 visitEHPadPredecessors(LPI); 3711 3712 if (!LandingPadResultTy) 3713 LandingPadResultTy = LPI.getType(); 3714 else 3715 Assert(LandingPadResultTy == LPI.getType(), 3716 "The landingpad instruction should have a consistent result type " 3717 "inside a function.", 3718 &LPI); 3719 3720 Function *F = LPI.getParent()->getParent(); 3721 Assert(F->hasPersonalityFn(), 3722 "LandingPadInst needs to be in a function with a personality.", &LPI); 3723 3724 // The landingpad instruction must be the first non-PHI instruction in the 3725 // block. 3726 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3727 "LandingPadInst not the first non-PHI instruction in the block.", 3728 &LPI); 3729 3730 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3731 Constant *Clause = LPI.getClause(i); 3732 if (LPI.isCatch(i)) { 3733 Assert(isa<PointerType>(Clause->getType()), 3734 "Catch operand does not have pointer type!", &LPI); 3735 } else { 3736 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3737 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3738 "Filter operand is not an array of constants!", &LPI); 3739 } 3740 } 3741 3742 visitInstruction(LPI); 3743 } 3744 3745 void Verifier::visitResumeInst(ResumeInst &RI) { 3746 Assert(RI.getFunction()->hasPersonalityFn(), 3747 "ResumeInst needs to be in a function with a personality.", &RI); 3748 3749 if (!LandingPadResultTy) 3750 LandingPadResultTy = RI.getValue()->getType(); 3751 else 3752 Assert(LandingPadResultTy == RI.getValue()->getType(), 3753 "The resume instruction should have a consistent result type " 3754 "inside a function.", 3755 &RI); 3756 3757 visitTerminator(RI); 3758 } 3759 3760 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3761 BasicBlock *BB = CPI.getParent(); 3762 3763 Function *F = BB->getParent(); 3764 Assert(F->hasPersonalityFn(), 3765 "CatchPadInst needs to be in a function with a personality.", &CPI); 3766 3767 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3768 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3769 CPI.getParentPad()); 3770 3771 // The catchpad instruction must be the first non-PHI instruction in the 3772 // block. 3773 Assert(BB->getFirstNonPHI() == &CPI, 3774 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3775 3776 visitEHPadPredecessors(CPI); 3777 visitFuncletPadInst(CPI); 3778 } 3779 3780 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3781 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3782 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3783 CatchReturn.getOperand(0)); 3784 3785 visitTerminator(CatchReturn); 3786 } 3787 3788 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3789 BasicBlock *BB = CPI.getParent(); 3790 3791 Function *F = BB->getParent(); 3792 Assert(F->hasPersonalityFn(), 3793 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3794 3795 // The cleanuppad instruction must be the first non-PHI instruction in the 3796 // block. 3797 Assert(BB->getFirstNonPHI() == &CPI, 3798 "CleanupPadInst not the first non-PHI instruction in the block.", 3799 &CPI); 3800 3801 auto *ParentPad = CPI.getParentPad(); 3802 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3803 "CleanupPadInst has an invalid parent.", &CPI); 3804 3805 visitEHPadPredecessors(CPI); 3806 visitFuncletPadInst(CPI); 3807 } 3808 3809 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3810 User *FirstUser = nullptr; 3811 Value *FirstUnwindPad = nullptr; 3812 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3813 SmallSet<FuncletPadInst *, 8> Seen; 3814 3815 while (!Worklist.empty()) { 3816 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3817 Assert(Seen.insert(CurrentPad).second, 3818 "FuncletPadInst must not be nested within itself", CurrentPad); 3819 Value *UnresolvedAncestorPad = nullptr; 3820 for (User *U : CurrentPad->users()) { 3821 BasicBlock *UnwindDest; 3822 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3823 UnwindDest = CRI->getUnwindDest(); 3824 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3825 // We allow catchswitch unwind to caller to nest 3826 // within an outer pad that unwinds somewhere else, 3827 // because catchswitch doesn't have a nounwind variant. 3828 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3829 if (CSI->unwindsToCaller()) 3830 continue; 3831 UnwindDest = CSI->getUnwindDest(); 3832 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3833 UnwindDest = II->getUnwindDest(); 3834 } else if (isa<CallInst>(U)) { 3835 // Calls which don't unwind may be found inside funclet 3836 // pads that unwind somewhere else. We don't *require* 3837 // such calls to be annotated nounwind. 3838 continue; 3839 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3840 // The unwind dest for a cleanup can only be found by 3841 // recursive search. Add it to the worklist, and we'll 3842 // search for its first use that determines where it unwinds. 3843 Worklist.push_back(CPI); 3844 continue; 3845 } else { 3846 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3847 continue; 3848 } 3849 3850 Value *UnwindPad; 3851 bool ExitsFPI; 3852 if (UnwindDest) { 3853 UnwindPad = UnwindDest->getFirstNonPHI(); 3854 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3855 continue; 3856 Value *UnwindParent = getParentPad(UnwindPad); 3857 // Ignore unwind edges that don't exit CurrentPad. 3858 if (UnwindParent == CurrentPad) 3859 continue; 3860 // Determine whether the original funclet pad is exited, 3861 // and if we are scanning nested pads determine how many 3862 // of them are exited so we can stop searching their 3863 // children. 3864 Value *ExitedPad = CurrentPad; 3865 ExitsFPI = false; 3866 do { 3867 if (ExitedPad == &FPI) { 3868 ExitsFPI = true; 3869 // Now we can resolve any ancestors of CurrentPad up to 3870 // FPI, but not including FPI since we need to make sure 3871 // to check all direct users of FPI for consistency. 3872 UnresolvedAncestorPad = &FPI; 3873 break; 3874 } 3875 Value *ExitedParent = getParentPad(ExitedPad); 3876 if (ExitedParent == UnwindParent) { 3877 // ExitedPad is the ancestor-most pad which this unwind 3878 // edge exits, so we can resolve up to it, meaning that 3879 // ExitedParent is the first ancestor still unresolved. 3880 UnresolvedAncestorPad = ExitedParent; 3881 break; 3882 } 3883 ExitedPad = ExitedParent; 3884 } while (!isa<ConstantTokenNone>(ExitedPad)); 3885 } else { 3886 // Unwinding to caller exits all pads. 3887 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3888 ExitsFPI = true; 3889 UnresolvedAncestorPad = &FPI; 3890 } 3891 3892 if (ExitsFPI) { 3893 // This unwind edge exits FPI. Make sure it agrees with other 3894 // such edges. 3895 if (FirstUser) { 3896 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3897 "pad must have the same unwind " 3898 "dest", 3899 &FPI, U, FirstUser); 3900 } else { 3901 FirstUser = U; 3902 FirstUnwindPad = UnwindPad; 3903 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3904 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3905 getParentPad(UnwindPad) == getParentPad(&FPI)) 3906 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3907 } 3908 } 3909 // Make sure we visit all uses of FPI, but for nested pads stop as 3910 // soon as we know where they unwind to. 3911 if (CurrentPad != &FPI) 3912 break; 3913 } 3914 if (UnresolvedAncestorPad) { 3915 if (CurrentPad == UnresolvedAncestorPad) { 3916 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3917 // we've found an unwind edge that exits it, because we need to verify 3918 // all direct uses of FPI. 3919 assert(CurrentPad == &FPI); 3920 continue; 3921 } 3922 // Pop off the worklist any nested pads that we've found an unwind 3923 // destination for. The pads on the worklist are the uncles, 3924 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3925 // for all ancestors of CurrentPad up to but not including 3926 // UnresolvedAncestorPad. 3927 Value *ResolvedPad = CurrentPad; 3928 while (!Worklist.empty()) { 3929 Value *UnclePad = Worklist.back(); 3930 Value *AncestorPad = getParentPad(UnclePad); 3931 // Walk ResolvedPad up the ancestor list until we either find the 3932 // uncle's parent or the last resolved ancestor. 3933 while (ResolvedPad != AncestorPad) { 3934 Value *ResolvedParent = getParentPad(ResolvedPad); 3935 if (ResolvedParent == UnresolvedAncestorPad) { 3936 break; 3937 } 3938 ResolvedPad = ResolvedParent; 3939 } 3940 // If the resolved ancestor search didn't find the uncle's parent, 3941 // then the uncle is not yet resolved. 3942 if (ResolvedPad != AncestorPad) 3943 break; 3944 // This uncle is resolved, so pop it from the worklist. 3945 Worklist.pop_back(); 3946 } 3947 } 3948 } 3949 3950 if (FirstUnwindPad) { 3951 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3952 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3953 Value *SwitchUnwindPad; 3954 if (SwitchUnwindDest) 3955 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3956 else 3957 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3958 Assert(SwitchUnwindPad == FirstUnwindPad, 3959 "Unwind edges out of a catch must have the same unwind dest as " 3960 "the parent catchswitch", 3961 &FPI, FirstUser, CatchSwitch); 3962 } 3963 } 3964 3965 visitInstruction(FPI); 3966 } 3967 3968 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3969 BasicBlock *BB = CatchSwitch.getParent(); 3970 3971 Function *F = BB->getParent(); 3972 Assert(F->hasPersonalityFn(), 3973 "CatchSwitchInst needs to be in a function with a personality.", 3974 &CatchSwitch); 3975 3976 // The catchswitch instruction must be the first non-PHI instruction in the 3977 // block. 3978 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3979 "CatchSwitchInst not the first non-PHI instruction in the block.", 3980 &CatchSwitch); 3981 3982 auto *ParentPad = CatchSwitch.getParentPad(); 3983 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3984 "CatchSwitchInst has an invalid parent.", ParentPad); 3985 3986 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3987 Instruction *I = UnwindDest->getFirstNonPHI(); 3988 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3989 "CatchSwitchInst must unwind to an EH block which is not a " 3990 "landingpad.", 3991 &CatchSwitch); 3992 3993 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3994 if (getParentPad(I) == ParentPad) 3995 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3996 } 3997 3998 Assert(CatchSwitch.getNumHandlers() != 0, 3999 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4000 4001 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4002 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 4003 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4004 } 4005 4006 visitEHPadPredecessors(CatchSwitch); 4007 visitTerminator(CatchSwitch); 4008 } 4009 4010 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4011 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 4012 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4013 CRI.getOperand(0)); 4014 4015 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4016 Instruction *I = UnwindDest->getFirstNonPHI(); 4017 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 4018 "CleanupReturnInst must unwind to an EH block which is not a " 4019 "landingpad.", 4020 &CRI); 4021 } 4022 4023 visitTerminator(CRI); 4024 } 4025 4026 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4027 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4028 // If the we have an invalid invoke, don't try to compute the dominance. 4029 // We already reject it in the invoke specific checks and the dominance 4030 // computation doesn't handle multiple edges. 4031 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4032 if (II->getNormalDest() == II->getUnwindDest()) 4033 return; 4034 } 4035 4036 // Quick check whether the def has already been encountered in the same block. 4037 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4038 // uses are defined to happen on the incoming edge, not at the instruction. 4039 // 4040 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4041 // wrapping an SSA value, assert that we've already encountered it. See 4042 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4043 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4044 return; 4045 4046 const Use &U = I.getOperandUse(i); 4047 Assert(DT.dominates(Op, U), 4048 "Instruction does not dominate all uses!", Op, &I); 4049 } 4050 4051 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4052 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4053 "apply only to pointer types", &I); 4054 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4055 "dereferenceable, dereferenceable_or_null apply only to load" 4056 " and inttoptr instructions, use attributes for calls or invokes", &I); 4057 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4058 "take one operand!", &I); 4059 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4060 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4061 "dereferenceable_or_null metadata value must be an i64!", &I); 4062 } 4063 4064 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4065 Assert(MD->getNumOperands() >= 2, 4066 "!prof annotations should have no less than 2 operands", MD); 4067 4068 // Check first operand. 4069 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4070 Assert(isa<MDString>(MD->getOperand(0)), 4071 "expected string with name of the !prof annotation", MD); 4072 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4073 StringRef ProfName = MDS->getString(); 4074 4075 // Check consistency of !prof branch_weights metadata. 4076 if (ProfName.equals("branch_weights")) { 4077 unsigned ExpectedNumOperands = 0; 4078 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4079 ExpectedNumOperands = BI->getNumSuccessors(); 4080 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4081 ExpectedNumOperands = SI->getNumSuccessors(); 4082 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) 4083 ExpectedNumOperands = 1; 4084 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4085 ExpectedNumOperands = IBI->getNumDestinations(); 4086 else if (isa<SelectInst>(&I)) 4087 ExpectedNumOperands = 2; 4088 else 4089 CheckFailed("!prof branch_weights are not allowed for this instruction", 4090 MD); 4091 4092 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4093 "Wrong number of operands", MD); 4094 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4095 auto &MDO = MD->getOperand(i); 4096 Assert(MDO, "second operand should not be null", MD); 4097 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4098 "!prof brunch_weights operand is not a const int"); 4099 } 4100 } 4101 } 4102 4103 /// verifyInstruction - Verify that an instruction is well formed. 4104 /// 4105 void Verifier::visitInstruction(Instruction &I) { 4106 BasicBlock *BB = I.getParent(); 4107 Assert(BB, "Instruction not embedded in basic block!", &I); 4108 4109 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4110 for (User *U : I.users()) { 4111 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4112 "Only PHI nodes may reference their own value!", &I); 4113 } 4114 } 4115 4116 // Check that void typed values don't have names 4117 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4118 "Instruction has a name, but provides a void value!", &I); 4119 4120 // Check that the return value of the instruction is either void or a legal 4121 // value type. 4122 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4123 "Instruction returns a non-scalar type!", &I); 4124 4125 // Check that the instruction doesn't produce metadata. Calls are already 4126 // checked against the callee type. 4127 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4128 "Invalid use of metadata!", &I); 4129 4130 // Check that all uses of the instruction, if they are instructions 4131 // themselves, actually have parent basic blocks. If the use is not an 4132 // instruction, it is an error! 4133 for (Use &U : I.uses()) { 4134 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4135 Assert(Used->getParent() != nullptr, 4136 "Instruction referencing" 4137 " instruction not embedded in a basic block!", 4138 &I, Used); 4139 else { 4140 CheckFailed("Use of instruction is not an instruction!", U); 4141 return; 4142 } 4143 } 4144 4145 // Get a pointer to the call base of the instruction if it is some form of 4146 // call. 4147 const CallBase *CBI = dyn_cast<CallBase>(&I); 4148 4149 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4150 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4151 4152 // Check to make sure that only first-class-values are operands to 4153 // instructions. 4154 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4155 Assert(false, "Instruction operands must be first-class values!", &I); 4156 } 4157 4158 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4159 // Check to make sure that the "address of" an intrinsic function is never 4160 // taken. 4161 Assert(!F->isIntrinsic() || 4162 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4163 "Cannot take the address of an intrinsic!", &I); 4164 Assert( 4165 !F->isIntrinsic() || isa<CallInst>(I) || 4166 F->getIntrinsicID() == Intrinsic::donothing || 4167 F->getIntrinsicID() == Intrinsic::coro_resume || 4168 F->getIntrinsicID() == Intrinsic::coro_destroy || 4169 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4170 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4171 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4172 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4173 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4174 "statepoint, coro_resume or coro_destroy", 4175 &I); 4176 Assert(F->getParent() == &M, "Referencing function in another module!", 4177 &I, &M, F, F->getParent()); 4178 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4179 Assert(OpBB->getParent() == BB->getParent(), 4180 "Referring to a basic block in another function!", &I); 4181 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4182 Assert(OpArg->getParent() == BB->getParent(), 4183 "Referring to an argument in another function!", &I); 4184 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4185 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4186 &M, GV, GV->getParent()); 4187 } else if (isa<Instruction>(I.getOperand(i))) { 4188 verifyDominatesUse(I, i); 4189 } else if (isa<InlineAsm>(I.getOperand(i))) { 4190 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4191 "Cannot take the address of an inline asm!", &I); 4192 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4193 if (CE->getType()->isPtrOrPtrVectorTy() || 4194 !DL.getNonIntegralAddressSpaces().empty()) { 4195 // If we have a ConstantExpr pointer, we need to see if it came from an 4196 // illegal bitcast. If the datalayout string specifies non-integral 4197 // address spaces then we also need to check for illegal ptrtoint and 4198 // inttoptr expressions. 4199 visitConstantExprsRecursively(CE); 4200 } 4201 } 4202 } 4203 4204 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4205 Assert(I.getType()->isFPOrFPVectorTy(), 4206 "fpmath requires a floating point result!", &I); 4207 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4208 if (ConstantFP *CFP0 = 4209 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4210 const APFloat &Accuracy = CFP0->getValueAPF(); 4211 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4212 "fpmath accuracy must have float type", &I); 4213 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4214 "fpmath accuracy not a positive number!", &I); 4215 } else { 4216 Assert(false, "invalid fpmath accuracy!", &I); 4217 } 4218 } 4219 4220 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4221 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4222 "Ranges are only for loads, calls and invokes!", &I); 4223 visitRangeMetadata(I, Range, I.getType()); 4224 } 4225 4226 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4227 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4228 &I); 4229 Assert(isa<LoadInst>(I), 4230 "nonnull applies only to load instructions, use attributes" 4231 " for calls or invokes", 4232 &I); 4233 } 4234 4235 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4236 visitDereferenceableMetadata(I, MD); 4237 4238 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4239 visitDereferenceableMetadata(I, MD); 4240 4241 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4242 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4243 4244 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4245 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4246 &I); 4247 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4248 "use attributes for calls or invokes", &I); 4249 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4250 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4251 Assert(CI && CI->getType()->isIntegerTy(64), 4252 "align metadata value must be an i64!", &I); 4253 uint64_t Align = CI->getZExtValue(); 4254 Assert(isPowerOf2_64(Align), 4255 "align metadata value must be a power of 2!", &I); 4256 Assert(Align <= Value::MaximumAlignment, 4257 "alignment is larger that implementation defined limit", &I); 4258 } 4259 4260 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4261 visitProfMetadata(I, MD); 4262 4263 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4264 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4265 visitMDNode(*N); 4266 } 4267 4268 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4269 verifyFragmentExpression(*DII); 4270 verifyNotEntryValue(*DII); 4271 } 4272 4273 InstsInThisBlock.insert(&I); 4274 } 4275 4276 /// Allow intrinsics to be verified in different ways. 4277 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4278 Function *IF = Call.getCalledFunction(); 4279 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4280 IF); 4281 4282 // Verify that the intrinsic prototype lines up with what the .td files 4283 // describe. 4284 FunctionType *IFTy = IF->getFunctionType(); 4285 bool IsVarArg = IFTy->isVarArg(); 4286 4287 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4288 getIntrinsicInfoTableEntries(ID, Table); 4289 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4290 4291 // Walk the descriptors to extract overloaded types. 4292 SmallVector<Type *, 4> ArgTys; 4293 Intrinsic::MatchIntrinsicTypesResult Res = 4294 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4295 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4296 "Intrinsic has incorrect return type!", IF); 4297 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4298 "Intrinsic has incorrect argument type!", IF); 4299 4300 // Verify if the intrinsic call matches the vararg property. 4301 if (IsVarArg) 4302 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4303 "Intrinsic was not defined with variable arguments!", IF); 4304 else 4305 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4306 "Callsite was not defined with variable arguments!", IF); 4307 4308 // All descriptors should be absorbed by now. 4309 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4310 4311 // Now that we have the intrinsic ID and the actual argument types (and we 4312 // know they are legal for the intrinsic!) get the intrinsic name through the 4313 // usual means. This allows us to verify the mangling of argument types into 4314 // the name. 4315 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4316 Assert(ExpectedName == IF->getName(), 4317 "Intrinsic name not mangled correctly for type arguments! " 4318 "Should be: " + 4319 ExpectedName, 4320 IF); 4321 4322 // If the intrinsic takes MDNode arguments, verify that they are either global 4323 // or are local to *this* function. 4324 for (Value *V : Call.args()) 4325 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4326 visitMetadataAsValue(*MD, Call.getCaller()); 4327 4328 switch (ID) { 4329 default: 4330 break; 4331 case Intrinsic::assume: { 4332 for (auto &Elem : Call.bundle_op_infos()) { 4333 Assert(Elem.Tag->getKey() == "ignore" || 4334 Attribute::isExistingAttribute(Elem.Tag->getKey()), 4335 "tags must be valid attribute names"); 4336 Assert(Elem.End - Elem.Begin <= 2, "to many arguments"); 4337 Attribute::AttrKind Kind = 4338 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 4339 if (Kind == Attribute::None) 4340 break; 4341 if (Attribute::doesAttrKindHaveArgument(Kind)) { 4342 Assert(Elem.End - Elem.Begin == 2, 4343 "this attribute should have 2 arguments"); 4344 Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 4345 "the second argument should be a constant integral value"); 4346 } else if (isFuncOnlyAttr(Kind)) { 4347 Assert((Elem.End - Elem.Begin) == 0, "this attribute has no argument"); 4348 } else if (!isFuncOrArgAttr(Kind)) { 4349 Assert((Elem.End - Elem.Begin) == 1, 4350 "this attribute should have one argument"); 4351 } 4352 } 4353 break; 4354 } 4355 case Intrinsic::coro_id: { 4356 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4357 if (isa<ConstantPointerNull>(InfoArg)) 4358 break; 4359 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4360 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4361 "info argument of llvm.coro.begin must refer to an initialized " 4362 "constant"); 4363 Constant *Init = GV->getInitializer(); 4364 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4365 "info argument of llvm.coro.begin must refer to either a struct or " 4366 "an array"); 4367 break; 4368 } 4369 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 4370 case Intrinsic::INTRINSIC: 4371 #include "llvm/IR/ConstrainedOps.def" 4372 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4373 break; 4374 case Intrinsic::dbg_declare: // llvm.dbg.declare 4375 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4376 "invalid llvm.dbg.declare intrinsic call 1", Call); 4377 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4378 break; 4379 case Intrinsic::dbg_addr: // llvm.dbg.addr 4380 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4381 break; 4382 case Intrinsic::dbg_value: // llvm.dbg.value 4383 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4384 break; 4385 case Intrinsic::dbg_label: // llvm.dbg.label 4386 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4387 break; 4388 case Intrinsic::memcpy: 4389 case Intrinsic::memcpy_inline: 4390 case Intrinsic::memmove: 4391 case Intrinsic::memset: { 4392 const auto *MI = cast<MemIntrinsic>(&Call); 4393 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4394 return Alignment == 0 || isPowerOf2_32(Alignment); 4395 }; 4396 Assert(IsValidAlignment(MI->getDestAlignment()), 4397 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4398 Call); 4399 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4400 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4401 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4402 Call); 4403 } 4404 4405 break; 4406 } 4407 case Intrinsic::memcpy_element_unordered_atomic: 4408 case Intrinsic::memmove_element_unordered_atomic: 4409 case Intrinsic::memset_element_unordered_atomic: { 4410 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4411 4412 ConstantInt *ElementSizeCI = 4413 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4414 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4415 Assert(ElementSizeVal.isPowerOf2(), 4416 "element size of the element-wise atomic memory intrinsic " 4417 "must be a power of 2", 4418 Call); 4419 4420 auto IsValidAlignment = [&](uint64_t Alignment) { 4421 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4422 }; 4423 uint64_t DstAlignment = AMI->getDestAlignment(); 4424 Assert(IsValidAlignment(DstAlignment), 4425 "incorrect alignment of the destination argument", Call); 4426 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4427 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4428 Assert(IsValidAlignment(SrcAlignment), 4429 "incorrect alignment of the source argument", Call); 4430 } 4431 break; 4432 } 4433 case Intrinsic::gcroot: 4434 case Intrinsic::gcwrite: 4435 case Intrinsic::gcread: 4436 if (ID == Intrinsic::gcroot) { 4437 AllocaInst *AI = 4438 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4439 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4440 Assert(isa<Constant>(Call.getArgOperand(1)), 4441 "llvm.gcroot parameter #2 must be a constant.", Call); 4442 if (!AI->getAllocatedType()->isPointerTy()) { 4443 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4444 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4445 "or argument #2 must be a non-null constant.", 4446 Call); 4447 } 4448 } 4449 4450 Assert(Call.getParent()->getParent()->hasGC(), 4451 "Enclosing function does not use GC.", Call); 4452 break; 4453 case Intrinsic::init_trampoline: 4454 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4455 "llvm.init_trampoline parameter #2 must resolve to a function.", 4456 Call); 4457 break; 4458 case Intrinsic::prefetch: 4459 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4460 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4461 "invalid arguments to llvm.prefetch", Call); 4462 break; 4463 case Intrinsic::stackprotector: 4464 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4465 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4466 break; 4467 case Intrinsic::localescape: { 4468 BasicBlock *BB = Call.getParent(); 4469 Assert(BB == &BB->getParent()->front(), 4470 "llvm.localescape used outside of entry block", Call); 4471 Assert(!SawFrameEscape, 4472 "multiple calls to llvm.localescape in one function", Call); 4473 for (Value *Arg : Call.args()) { 4474 if (isa<ConstantPointerNull>(Arg)) 4475 continue; // Null values are allowed as placeholders. 4476 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4477 Assert(AI && AI->isStaticAlloca(), 4478 "llvm.localescape only accepts static allocas", Call); 4479 } 4480 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4481 SawFrameEscape = true; 4482 break; 4483 } 4484 case Intrinsic::localrecover: { 4485 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4486 Function *Fn = dyn_cast<Function>(FnArg); 4487 Assert(Fn && !Fn->isDeclaration(), 4488 "llvm.localrecover first " 4489 "argument must be function defined in this module", 4490 Call); 4491 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4492 auto &Entry = FrameEscapeInfo[Fn]; 4493 Entry.second = unsigned( 4494 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4495 break; 4496 } 4497 4498 case Intrinsic::experimental_gc_statepoint: 4499 if (auto *CI = dyn_cast<CallInst>(&Call)) 4500 Assert(!CI->isInlineAsm(), 4501 "gc.statepoint support for inline assembly unimplemented", CI); 4502 Assert(Call.getParent()->getParent()->hasGC(), 4503 "Enclosing function does not use GC.", Call); 4504 4505 verifyStatepoint(Call); 4506 break; 4507 case Intrinsic::experimental_gc_result: { 4508 Assert(Call.getParent()->getParent()->hasGC(), 4509 "Enclosing function does not use GC.", Call); 4510 // Are we tied to a statepoint properly? 4511 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4512 const Function *StatepointFn = 4513 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4514 Assert(StatepointFn && StatepointFn->isDeclaration() && 4515 StatepointFn->getIntrinsicID() == 4516 Intrinsic::experimental_gc_statepoint, 4517 "gc.result operand #1 must be from a statepoint", Call, 4518 Call.getArgOperand(0)); 4519 4520 // Assert that result type matches wrapped callee. 4521 const Value *Target = StatepointCall->getArgOperand(2); 4522 auto *PT = cast<PointerType>(Target->getType()); 4523 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4524 Assert(Call.getType() == TargetFuncType->getReturnType(), 4525 "gc.result result type does not match wrapped callee", Call); 4526 break; 4527 } 4528 case Intrinsic::experimental_gc_relocate: { 4529 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4530 4531 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4532 "gc.relocate must return a pointer or a vector of pointers", Call); 4533 4534 // Check that this relocate is correctly tied to the statepoint 4535 4536 // This is case for relocate on the unwinding path of an invoke statepoint 4537 if (LandingPadInst *LandingPad = 4538 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4539 4540 const BasicBlock *InvokeBB = 4541 LandingPad->getParent()->getUniquePredecessor(); 4542 4543 // Landingpad relocates should have only one predecessor with invoke 4544 // statepoint terminator 4545 Assert(InvokeBB, "safepoints should have unique landingpads", 4546 LandingPad->getParent()); 4547 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4548 InvokeBB); 4549 Assert(isStatepoint(InvokeBB->getTerminator()), 4550 "gc relocate should be linked to a statepoint", InvokeBB); 4551 } else { 4552 // In all other cases relocate should be tied to the statepoint directly. 4553 // This covers relocates on a normal return path of invoke statepoint and 4554 // relocates of a call statepoint. 4555 auto Token = Call.getArgOperand(0); 4556 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4557 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4558 } 4559 4560 // Verify rest of the relocate arguments. 4561 const CallBase &StatepointCall = 4562 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4563 4564 // Both the base and derived must be piped through the safepoint. 4565 Value *Base = Call.getArgOperand(1); 4566 Assert(isa<ConstantInt>(Base), 4567 "gc.relocate operand #2 must be integer offset", Call); 4568 4569 Value *Derived = Call.getArgOperand(2); 4570 Assert(isa<ConstantInt>(Derived), 4571 "gc.relocate operand #3 must be integer offset", Call); 4572 4573 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4574 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4575 // Check the bounds 4576 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4577 "gc.relocate: statepoint base index out of bounds", Call); 4578 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4579 "gc.relocate: statepoint derived index out of bounds", Call); 4580 4581 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4582 // section of the statepoint's argument. 4583 Assert(StatepointCall.arg_size() > 0, 4584 "gc.statepoint: insufficient arguments"); 4585 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4586 "gc.statement: number of call arguments must be constant integer"); 4587 const unsigned NumCallArgs = 4588 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4589 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4590 "gc.statepoint: mismatch in number of call arguments"); 4591 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4592 "gc.statepoint: number of transition arguments must be " 4593 "a constant integer"); 4594 const int NumTransitionArgs = 4595 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4596 ->getZExtValue(); 4597 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4598 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4599 "gc.statepoint: number of deoptimization arguments must be " 4600 "a constant integer"); 4601 const int NumDeoptArgs = 4602 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4603 ->getZExtValue(); 4604 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4605 const int GCParamArgsEnd = StatepointCall.arg_size(); 4606 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4607 "gc.relocate: statepoint base index doesn't fall within the " 4608 "'gc parameters' section of the statepoint call", 4609 Call); 4610 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4611 "gc.relocate: statepoint derived index doesn't fall within the " 4612 "'gc parameters' section of the statepoint call", 4613 Call); 4614 4615 // Relocated value must be either a pointer type or vector-of-pointer type, 4616 // but gc_relocate does not need to return the same pointer type as the 4617 // relocated pointer. It can be casted to the correct type later if it's 4618 // desired. However, they must have the same address space and 'vectorness' 4619 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4620 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4621 "gc.relocate: relocated value must be a gc pointer", Call); 4622 4623 auto ResultType = Call.getType(); 4624 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4625 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4626 "gc.relocate: vector relocates to vector and pointer to pointer", 4627 Call); 4628 Assert( 4629 ResultType->getPointerAddressSpace() == 4630 DerivedType->getPointerAddressSpace(), 4631 "gc.relocate: relocating a pointer shouldn't change its address space", 4632 Call); 4633 break; 4634 } 4635 case Intrinsic::eh_exceptioncode: 4636 case Intrinsic::eh_exceptionpointer: { 4637 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4638 "eh.exceptionpointer argument must be a catchpad", Call); 4639 break; 4640 } 4641 case Intrinsic::masked_load: { 4642 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4643 Call); 4644 4645 Value *Ptr = Call.getArgOperand(0); 4646 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4647 Value *Mask = Call.getArgOperand(2); 4648 Value *PassThru = Call.getArgOperand(3); 4649 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4650 Call); 4651 Assert(Alignment->getValue().isPowerOf2(), 4652 "masked_load: alignment must be a power of 2", Call); 4653 4654 // DataTy is the overloaded type 4655 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4656 Assert(DataTy == Call.getType(), 4657 "masked_load: return must match pointer type", Call); 4658 Assert(PassThru->getType() == DataTy, 4659 "masked_load: pass through and data type must match", Call); 4660 Assert(Mask->getType()->getVectorNumElements() == 4661 DataTy->getVectorNumElements(), 4662 "masked_load: vector mask must be same length as data", Call); 4663 break; 4664 } 4665 case Intrinsic::masked_store: { 4666 Value *Val = Call.getArgOperand(0); 4667 Value *Ptr = Call.getArgOperand(1); 4668 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4669 Value *Mask = Call.getArgOperand(3); 4670 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4671 Call); 4672 Assert(Alignment->getValue().isPowerOf2(), 4673 "masked_store: alignment must be a power of 2", Call); 4674 4675 // DataTy is the overloaded type 4676 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4677 Assert(DataTy == Val->getType(), 4678 "masked_store: storee must match pointer type", Call); 4679 Assert(Mask->getType()->getVectorNumElements() == 4680 DataTy->getVectorNumElements(), 4681 "masked_store: vector mask must be same length as data", Call); 4682 break; 4683 } 4684 4685 case Intrinsic::masked_gather: { 4686 const APInt &Alignment = 4687 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 4688 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4689 "masked_gather: alignment must be 0 or a power of 2", Call); 4690 break; 4691 } 4692 case Intrinsic::masked_scatter: { 4693 const APInt &Alignment = 4694 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 4695 Assert(Alignment.isNullValue() || Alignment.isPowerOf2(), 4696 "masked_scatter: alignment must be 0 or a power of 2", Call); 4697 break; 4698 } 4699 4700 case Intrinsic::experimental_guard: { 4701 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4702 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4703 "experimental_guard must have exactly one " 4704 "\"deopt\" operand bundle"); 4705 break; 4706 } 4707 4708 case Intrinsic::experimental_deoptimize: { 4709 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4710 Call); 4711 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4712 "experimental_deoptimize must have exactly one " 4713 "\"deopt\" operand bundle"); 4714 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4715 "experimental_deoptimize return type must match caller return type"); 4716 4717 if (isa<CallInst>(Call)) { 4718 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4719 Assert(RI, 4720 "calls to experimental_deoptimize must be followed by a return"); 4721 4722 if (!Call.getType()->isVoidTy() && RI) 4723 Assert(RI->getReturnValue() == &Call, 4724 "calls to experimental_deoptimize must be followed by a return " 4725 "of the value computed by experimental_deoptimize"); 4726 } 4727 4728 break; 4729 } 4730 case Intrinsic::sadd_sat: 4731 case Intrinsic::uadd_sat: 4732 case Intrinsic::ssub_sat: 4733 case Intrinsic::usub_sat: { 4734 Value *Op1 = Call.getArgOperand(0); 4735 Value *Op2 = Call.getArgOperand(1); 4736 Assert(Op1->getType()->isIntOrIntVectorTy(), 4737 "first operand of [us][add|sub]_sat must be an int type or vector " 4738 "of ints"); 4739 Assert(Op2->getType()->isIntOrIntVectorTy(), 4740 "second operand of [us][add|sub]_sat must be an int type or vector " 4741 "of ints"); 4742 break; 4743 } 4744 case Intrinsic::smul_fix: 4745 case Intrinsic::smul_fix_sat: 4746 case Intrinsic::umul_fix: 4747 case Intrinsic::umul_fix_sat: 4748 case Intrinsic::sdiv_fix: 4749 case Intrinsic::sdiv_fix_sat: 4750 case Intrinsic::udiv_fix: 4751 case Intrinsic::udiv_fix_sat: { 4752 Value *Op1 = Call.getArgOperand(0); 4753 Value *Op2 = Call.getArgOperand(1); 4754 Assert(Op1->getType()->isIntOrIntVectorTy(), 4755 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4756 "vector of ints"); 4757 Assert(Op2->getType()->isIntOrIntVectorTy(), 4758 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4759 "vector of ints"); 4760 4761 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4762 Assert(Op3->getType()->getBitWidth() <= 32, 4763 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 4764 4765 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4766 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 4767 Assert( 4768 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4769 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4770 "the operands"); 4771 } else { 4772 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4773 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4774 "to the width of the operands"); 4775 } 4776 break; 4777 } 4778 case Intrinsic::lround: 4779 case Intrinsic::llround: 4780 case Intrinsic::lrint: 4781 case Intrinsic::llrint: { 4782 Type *ValTy = Call.getArgOperand(0)->getType(); 4783 Type *ResultTy = Call.getType(); 4784 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4785 "Intrinsic does not support vectors", &Call); 4786 break; 4787 } 4788 case Intrinsic::bswap: { 4789 Type *Ty = Call.getType(); 4790 unsigned Size = Ty->getScalarSizeInBits(); 4791 Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 4792 break; 4793 } 4794 }; 4795 } 4796 4797 /// Carefully grab the subprogram from a local scope. 4798 /// 4799 /// This carefully grabs the subprogram from a local scope, avoiding the 4800 /// built-in assertions that would typically fire. 4801 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4802 if (!LocalScope) 4803 return nullptr; 4804 4805 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4806 return SP; 4807 4808 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4809 return getSubprogram(LB->getRawScope()); 4810 4811 // Just return null; broken scope chains are checked elsewhere. 4812 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4813 return nullptr; 4814 } 4815 4816 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4817 unsigned NumOperands; 4818 bool HasRoundingMD; 4819 switch (FPI.getIntrinsicID()) { 4820 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 4821 case Intrinsic::INTRINSIC: \ 4822 NumOperands = NARG; \ 4823 HasRoundingMD = ROUND_MODE; \ 4824 break; 4825 #include "llvm/IR/ConstrainedOps.def" 4826 default: 4827 llvm_unreachable("Invalid constrained FP intrinsic!"); 4828 } 4829 NumOperands += (1 + HasRoundingMD); 4830 // Compare intrinsics carry an extra predicate metadata operand. 4831 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 4832 NumOperands += 1; 4833 Assert((FPI.getNumArgOperands() == NumOperands), 4834 "invalid arguments for constrained FP intrinsic", &FPI); 4835 4836 switch (FPI.getIntrinsicID()) { 4837 case Intrinsic::experimental_constrained_lrint: 4838 case Intrinsic::experimental_constrained_llrint: { 4839 Type *ValTy = FPI.getArgOperand(0)->getType(); 4840 Type *ResultTy = FPI.getType(); 4841 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4842 "Intrinsic does not support vectors", &FPI); 4843 } 4844 break; 4845 4846 case Intrinsic::experimental_constrained_lround: 4847 case Intrinsic::experimental_constrained_llround: { 4848 Type *ValTy = FPI.getArgOperand(0)->getType(); 4849 Type *ResultTy = FPI.getType(); 4850 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4851 "Intrinsic does not support vectors", &FPI); 4852 break; 4853 } 4854 4855 case Intrinsic::experimental_constrained_fcmp: 4856 case Intrinsic::experimental_constrained_fcmps: { 4857 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 4858 Assert(CmpInst::isFPPredicate(Pred), 4859 "invalid predicate for constrained FP comparison intrinsic", &FPI); 4860 break; 4861 } 4862 4863 case Intrinsic::experimental_constrained_fptosi: 4864 case Intrinsic::experimental_constrained_fptoui: { 4865 Value *Operand = FPI.getArgOperand(0); 4866 uint64_t NumSrcElem = 0; 4867 Assert(Operand->getType()->isFPOrFPVectorTy(), 4868 "Intrinsic first argument must be floating point", &FPI); 4869 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4870 NumSrcElem = OperandT->getNumElements(); 4871 } 4872 4873 Operand = &FPI; 4874 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4875 "Intrinsic first argument and result disagree on vector use", &FPI); 4876 Assert(Operand->getType()->isIntOrIntVectorTy(), 4877 "Intrinsic result must be an integer", &FPI); 4878 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4879 Assert(NumSrcElem == OperandT->getNumElements(), 4880 "Intrinsic first argument and result vector lengths must be equal", 4881 &FPI); 4882 } 4883 } 4884 break; 4885 4886 case Intrinsic::experimental_constrained_sitofp: 4887 case Intrinsic::experimental_constrained_uitofp: { 4888 Value *Operand = FPI.getArgOperand(0); 4889 uint64_t NumSrcElem = 0; 4890 Assert(Operand->getType()->isIntOrIntVectorTy(), 4891 "Intrinsic first argument must be integer", &FPI); 4892 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4893 NumSrcElem = OperandT->getNumElements(); 4894 } 4895 4896 Operand = &FPI; 4897 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4898 "Intrinsic first argument and result disagree on vector use", &FPI); 4899 Assert(Operand->getType()->isFPOrFPVectorTy(), 4900 "Intrinsic result must be a floating point", &FPI); 4901 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4902 Assert(NumSrcElem == OperandT->getNumElements(), 4903 "Intrinsic first argument and result vector lengths must be equal", 4904 &FPI); 4905 } 4906 } break; 4907 4908 case Intrinsic::experimental_constrained_fptrunc: 4909 case Intrinsic::experimental_constrained_fpext: { 4910 Value *Operand = FPI.getArgOperand(0); 4911 Type *OperandTy = Operand->getType(); 4912 Value *Result = &FPI; 4913 Type *ResultTy = Result->getType(); 4914 Assert(OperandTy->isFPOrFPVectorTy(), 4915 "Intrinsic first argument must be FP or FP vector", &FPI); 4916 Assert(ResultTy->isFPOrFPVectorTy(), 4917 "Intrinsic result must be FP or FP vector", &FPI); 4918 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4919 "Intrinsic first argument and result disagree on vector use", &FPI); 4920 if (OperandTy->isVectorTy()) { 4921 auto *OperandVecTy = cast<VectorType>(OperandTy); 4922 auto *ResultVecTy = cast<VectorType>(ResultTy); 4923 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4924 "Intrinsic first argument and result vector lengths must be equal", 4925 &FPI); 4926 } 4927 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4928 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4929 "Intrinsic first argument's type must be larger than result type", 4930 &FPI); 4931 } else { 4932 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4933 "Intrinsic first argument's type must be smaller than result type", 4934 &FPI); 4935 } 4936 } 4937 break; 4938 4939 default: 4940 break; 4941 } 4942 4943 // If a non-metadata argument is passed in a metadata slot then the 4944 // error will be caught earlier when the incorrect argument doesn't 4945 // match the specification in the intrinsic call table. Thus, no 4946 // argument type check is needed here. 4947 4948 Assert(FPI.getExceptionBehavior().hasValue(), 4949 "invalid exception behavior argument", &FPI); 4950 if (HasRoundingMD) { 4951 Assert(FPI.getRoundingMode().hasValue(), 4952 "invalid rounding mode argument", &FPI); 4953 } 4954 } 4955 4956 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4957 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4958 AssertDI(isa<ValueAsMetadata>(MD) || 4959 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4960 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4961 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4962 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4963 DII.getRawVariable()); 4964 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4965 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4966 DII.getRawExpression()); 4967 4968 // Ignore broken !dbg attachments; they're checked elsewhere. 4969 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4970 if (!isa<DILocation>(N)) 4971 return; 4972 4973 BasicBlock *BB = DII.getParent(); 4974 Function *F = BB ? BB->getParent() : nullptr; 4975 4976 // The scopes for variables and !dbg attachments must agree. 4977 DILocalVariable *Var = DII.getVariable(); 4978 DILocation *Loc = DII.getDebugLoc(); 4979 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4980 &DII, BB, F); 4981 4982 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4983 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4984 if (!VarSP || !LocSP) 4985 return; // Broken scope chains are checked elsewhere. 4986 4987 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4988 " variable and !dbg attachment", 4989 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4990 Loc->getScope()->getSubprogram()); 4991 4992 // This check is redundant with one in visitLocalVariable(). 4993 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4994 Var->getRawType()); 4995 verifyFnArgs(DII); 4996 } 4997 4998 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4999 AssertDI(isa<DILabel>(DLI.getRawLabel()), 5000 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 5001 DLI.getRawLabel()); 5002 5003 // Ignore broken !dbg attachments; they're checked elsewhere. 5004 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 5005 if (!isa<DILocation>(N)) 5006 return; 5007 5008 BasicBlock *BB = DLI.getParent(); 5009 Function *F = BB ? BB->getParent() : nullptr; 5010 5011 // The scopes for variables and !dbg attachments must agree. 5012 DILabel *Label = DLI.getLabel(); 5013 DILocation *Loc = DLI.getDebugLoc(); 5014 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 5015 &DLI, BB, F); 5016 5017 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 5018 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 5019 if (!LabelSP || !LocSP) 5020 return; 5021 5022 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 5023 " label and !dbg attachment", 5024 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 5025 Loc->getScope()->getSubprogram()); 5026 } 5027 5028 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 5029 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 5030 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5031 5032 // We don't know whether this intrinsic verified correctly. 5033 if (!V || !E || !E->isValid()) 5034 return; 5035 5036 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 5037 auto Fragment = E->getFragmentInfo(); 5038 if (!Fragment) 5039 return; 5040 5041 // The frontend helps out GDB by emitting the members of local anonymous 5042 // unions as artificial local variables with shared storage. When SROA splits 5043 // the storage for artificial local variables that are smaller than the entire 5044 // union, the overhang piece will be outside of the allotted space for the 5045 // variable and this check fails. 5046 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 5047 if (V->isArtificial()) 5048 return; 5049 5050 verifyFragmentExpression(*V, *Fragment, &I); 5051 } 5052 5053 template <typename ValueOrMetadata> 5054 void Verifier::verifyFragmentExpression(const DIVariable &V, 5055 DIExpression::FragmentInfo Fragment, 5056 ValueOrMetadata *Desc) { 5057 // If there's no size, the type is broken, but that should be checked 5058 // elsewhere. 5059 auto VarSize = V.getSizeInBits(); 5060 if (!VarSize) 5061 return; 5062 5063 unsigned FragSize = Fragment.SizeInBits; 5064 unsigned FragOffset = Fragment.OffsetInBits; 5065 AssertDI(FragSize + FragOffset <= *VarSize, 5066 "fragment is larger than or outside of variable", Desc, &V); 5067 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5068 } 5069 5070 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5071 // This function does not take the scope of noninlined function arguments into 5072 // account. Don't run it if current function is nodebug, because it may 5073 // contain inlined debug intrinsics. 5074 if (!HasDebugInfo) 5075 return; 5076 5077 // For performance reasons only check non-inlined ones. 5078 if (I.getDebugLoc()->getInlinedAt()) 5079 return; 5080 5081 DILocalVariable *Var = I.getVariable(); 5082 AssertDI(Var, "dbg intrinsic without variable"); 5083 5084 unsigned ArgNo = Var->getArg(); 5085 if (!ArgNo) 5086 return; 5087 5088 // Verify there are no duplicate function argument debug info entries. 5089 // These will cause hard-to-debug assertions in the DWARF backend. 5090 if (DebugFnArgs.size() < ArgNo) 5091 DebugFnArgs.resize(ArgNo, nullptr); 5092 5093 auto *Prev = DebugFnArgs[ArgNo - 1]; 5094 DebugFnArgs[ArgNo - 1] = Var; 5095 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5096 Prev, Var); 5097 } 5098 5099 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5100 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5101 5102 // We don't know whether this intrinsic verified correctly. 5103 if (!E || !E->isValid()) 5104 return; 5105 5106 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5107 } 5108 5109 void Verifier::verifyCompileUnits() { 5110 // When more than one Module is imported into the same context, such as during 5111 // an LTO build before linking the modules, ODR type uniquing may cause types 5112 // to point to a different CU. This check does not make sense in this case. 5113 if (M.getContext().isODRUniquingDebugTypes()) 5114 return; 5115 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5116 SmallPtrSet<const Metadata *, 2> Listed; 5117 if (CUs) 5118 Listed.insert(CUs->op_begin(), CUs->op_end()); 5119 for (auto *CU : CUVisited) 5120 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5121 CUVisited.clear(); 5122 } 5123 5124 void Verifier::verifyDeoptimizeCallingConvs() { 5125 if (DeoptimizeDeclarations.empty()) 5126 return; 5127 5128 const Function *First = DeoptimizeDeclarations[0]; 5129 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5130 Assert(First->getCallingConv() == F->getCallingConv(), 5131 "All llvm.experimental.deoptimize declarations must have the same " 5132 "calling convention", 5133 First, F); 5134 } 5135 } 5136 5137 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5138 bool HasSource = F.getSource().hasValue(); 5139 if (!HasSourceDebugInfo.count(&U)) 5140 HasSourceDebugInfo[&U] = HasSource; 5141 AssertDI(HasSource == HasSourceDebugInfo[&U], 5142 "inconsistent use of embedded source"); 5143 } 5144 5145 //===----------------------------------------------------------------------===// 5146 // Implement the public interfaces to this file... 5147 //===----------------------------------------------------------------------===// 5148 5149 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5150 Function &F = const_cast<Function &>(f); 5151 5152 // Don't use a raw_null_ostream. Printing IR is expensive. 5153 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5154 5155 // Note that this function's return value is inverted from what you would 5156 // expect of a function called "verify". 5157 return !V.verify(F); 5158 } 5159 5160 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5161 bool *BrokenDebugInfo) { 5162 // Don't use a raw_null_ostream. Printing IR is expensive. 5163 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5164 5165 bool Broken = false; 5166 for (const Function &F : M) 5167 Broken |= !V.verify(F); 5168 5169 Broken |= !V.verify(); 5170 if (BrokenDebugInfo) 5171 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5172 // Note that this function's return value is inverted from what you would 5173 // expect of a function called "verify". 5174 return Broken; 5175 } 5176 5177 namespace { 5178 5179 struct VerifierLegacyPass : public FunctionPass { 5180 static char ID; 5181 5182 std::unique_ptr<Verifier> V; 5183 bool FatalErrors = true; 5184 5185 VerifierLegacyPass() : FunctionPass(ID) { 5186 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5187 } 5188 explicit VerifierLegacyPass(bool FatalErrors) 5189 : FunctionPass(ID), 5190 FatalErrors(FatalErrors) { 5191 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5192 } 5193 5194 bool doInitialization(Module &M) override { 5195 V = std::make_unique<Verifier>( 5196 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5197 return false; 5198 } 5199 5200 bool runOnFunction(Function &F) override { 5201 if (!V->verify(F) && FatalErrors) { 5202 errs() << "in function " << F.getName() << '\n'; 5203 report_fatal_error("Broken function found, compilation aborted!"); 5204 } 5205 return false; 5206 } 5207 5208 bool doFinalization(Module &M) override { 5209 bool HasErrors = false; 5210 for (Function &F : M) 5211 if (F.isDeclaration()) 5212 HasErrors |= !V->verify(F); 5213 5214 HasErrors |= !V->verify(); 5215 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5216 report_fatal_error("Broken module found, compilation aborted!"); 5217 return false; 5218 } 5219 5220 void getAnalysisUsage(AnalysisUsage &AU) const override { 5221 AU.setPreservesAll(); 5222 } 5223 }; 5224 5225 } // end anonymous namespace 5226 5227 /// Helper to issue failure from the TBAA verification 5228 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5229 if (Diagnostic) 5230 return Diagnostic->CheckFailed(Args...); 5231 } 5232 5233 #define AssertTBAA(C, ...) \ 5234 do { \ 5235 if (!(C)) { \ 5236 CheckFailed(__VA_ARGS__); \ 5237 return false; \ 5238 } \ 5239 } while (false) 5240 5241 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5242 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5243 /// struct-type node describing an aggregate data structure (like a struct). 5244 TBAAVerifier::TBAABaseNodeSummary 5245 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5246 bool IsNewFormat) { 5247 if (BaseNode->getNumOperands() < 2) { 5248 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5249 return {true, ~0u}; 5250 } 5251 5252 auto Itr = TBAABaseNodes.find(BaseNode); 5253 if (Itr != TBAABaseNodes.end()) 5254 return Itr->second; 5255 5256 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5257 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5258 (void)InsertResult; 5259 assert(InsertResult.second && "We just checked!"); 5260 return Result; 5261 } 5262 5263 TBAAVerifier::TBAABaseNodeSummary 5264 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5265 bool IsNewFormat) { 5266 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5267 5268 if (BaseNode->getNumOperands() == 2) { 5269 // Scalar nodes can only be accessed at offset 0. 5270 return isValidScalarTBAANode(BaseNode) 5271 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5272 : InvalidNode; 5273 } 5274 5275 if (IsNewFormat) { 5276 if (BaseNode->getNumOperands() % 3 != 0) { 5277 CheckFailed("Access tag nodes must have the number of operands that is a " 5278 "multiple of 3!", BaseNode); 5279 return InvalidNode; 5280 } 5281 } else { 5282 if (BaseNode->getNumOperands() % 2 != 1) { 5283 CheckFailed("Struct tag nodes must have an odd number of operands!", 5284 BaseNode); 5285 return InvalidNode; 5286 } 5287 } 5288 5289 // Check the type size field. 5290 if (IsNewFormat) { 5291 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5292 BaseNode->getOperand(1)); 5293 if (!TypeSizeNode) { 5294 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5295 return InvalidNode; 5296 } 5297 } 5298 5299 // Check the type name field. In the new format it can be anything. 5300 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5301 CheckFailed("Struct tag nodes have a string as their first operand", 5302 BaseNode); 5303 return InvalidNode; 5304 } 5305 5306 bool Failed = false; 5307 5308 Optional<APInt> PrevOffset; 5309 unsigned BitWidth = ~0u; 5310 5311 // We've already checked that BaseNode is not a degenerate root node with one 5312 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5313 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5314 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5315 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5316 Idx += NumOpsPerField) { 5317 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5318 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5319 if (!isa<MDNode>(FieldTy)) { 5320 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5321 Failed = true; 5322 continue; 5323 } 5324 5325 auto *OffsetEntryCI = 5326 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5327 if (!OffsetEntryCI) { 5328 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5329 Failed = true; 5330 continue; 5331 } 5332 5333 if (BitWidth == ~0u) 5334 BitWidth = OffsetEntryCI->getBitWidth(); 5335 5336 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5337 CheckFailed( 5338 "Bitwidth between the offsets and struct type entries must match", &I, 5339 BaseNode); 5340 Failed = true; 5341 continue; 5342 } 5343 5344 // NB! As far as I can tell, we generate a non-strictly increasing offset 5345 // sequence only from structs that have zero size bit fields. When 5346 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5347 // pick the field lexically the latest in struct type metadata node. This 5348 // mirrors the actual behavior of the alias analysis implementation. 5349 bool IsAscending = 5350 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5351 5352 if (!IsAscending) { 5353 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5354 Failed = true; 5355 } 5356 5357 PrevOffset = OffsetEntryCI->getValue(); 5358 5359 if (IsNewFormat) { 5360 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5361 BaseNode->getOperand(Idx + 2)); 5362 if (!MemberSizeNode) { 5363 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5364 Failed = true; 5365 continue; 5366 } 5367 } 5368 } 5369 5370 return Failed ? InvalidNode 5371 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5372 } 5373 5374 static bool IsRootTBAANode(const MDNode *MD) { 5375 return MD->getNumOperands() < 2; 5376 } 5377 5378 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5379 SmallPtrSetImpl<const MDNode *> &Visited) { 5380 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5381 return false; 5382 5383 if (!isa<MDString>(MD->getOperand(0))) 5384 return false; 5385 5386 if (MD->getNumOperands() == 3) { 5387 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5388 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5389 return false; 5390 } 5391 5392 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5393 return Parent && Visited.insert(Parent).second && 5394 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5395 } 5396 5397 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5398 auto ResultIt = TBAAScalarNodes.find(MD); 5399 if (ResultIt != TBAAScalarNodes.end()) 5400 return ResultIt->second; 5401 5402 SmallPtrSet<const MDNode *, 4> Visited; 5403 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5404 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5405 (void)InsertResult; 5406 assert(InsertResult.second && "Just checked!"); 5407 5408 return Result; 5409 } 5410 5411 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5412 /// Offset in place to be the offset within the field node returned. 5413 /// 5414 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5415 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5416 const MDNode *BaseNode, 5417 APInt &Offset, 5418 bool IsNewFormat) { 5419 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5420 5421 // Scalar nodes have only one possible "field" -- their parent in the access 5422 // hierarchy. Offset must be zero at this point, but our caller is supposed 5423 // to Assert that. 5424 if (BaseNode->getNumOperands() == 2) 5425 return cast<MDNode>(BaseNode->getOperand(1)); 5426 5427 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5428 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5429 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5430 Idx += NumOpsPerField) { 5431 auto *OffsetEntryCI = 5432 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5433 if (OffsetEntryCI->getValue().ugt(Offset)) { 5434 if (Idx == FirstFieldOpNo) { 5435 CheckFailed("Could not find TBAA parent in struct type node", &I, 5436 BaseNode, &Offset); 5437 return nullptr; 5438 } 5439 5440 unsigned PrevIdx = Idx - NumOpsPerField; 5441 auto *PrevOffsetEntryCI = 5442 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5443 Offset -= PrevOffsetEntryCI->getValue(); 5444 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5445 } 5446 } 5447 5448 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5449 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5450 BaseNode->getOperand(LastIdx + 1)); 5451 Offset -= LastOffsetEntryCI->getValue(); 5452 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5453 } 5454 5455 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5456 if (!Type || Type->getNumOperands() < 3) 5457 return false; 5458 5459 // In the new format type nodes shall have a reference to the parent type as 5460 // its first operand. 5461 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5462 if (!Parent) 5463 return false; 5464 5465 return true; 5466 } 5467 5468 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5469 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5470 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5471 isa<AtomicCmpXchgInst>(I), 5472 "This instruction shall not have a TBAA access tag!", &I); 5473 5474 bool IsStructPathTBAA = 5475 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5476 5477 AssertTBAA( 5478 IsStructPathTBAA, 5479 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5480 5481 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5482 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5483 5484 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5485 5486 if (IsNewFormat) { 5487 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5488 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5489 } else { 5490 AssertTBAA(MD->getNumOperands() < 5, 5491 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5492 } 5493 5494 // Check the access size field. 5495 if (IsNewFormat) { 5496 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5497 MD->getOperand(3)); 5498 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5499 } 5500 5501 // Check the immutability flag. 5502 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5503 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5504 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5505 MD->getOperand(ImmutabilityFlagOpNo)); 5506 AssertTBAA(IsImmutableCI, 5507 "Immutability tag on struct tag metadata must be a constant", 5508 &I, MD); 5509 AssertTBAA( 5510 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5511 "Immutability part of the struct tag metadata must be either 0 or 1", 5512 &I, MD); 5513 } 5514 5515 AssertTBAA(BaseNode && AccessType, 5516 "Malformed struct tag metadata: base and access-type " 5517 "should be non-null and point to Metadata nodes", 5518 &I, MD, BaseNode, AccessType); 5519 5520 if (!IsNewFormat) { 5521 AssertTBAA(isValidScalarTBAANode(AccessType), 5522 "Access type node must be a valid scalar type", &I, MD, 5523 AccessType); 5524 } 5525 5526 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5527 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5528 5529 APInt Offset = OffsetCI->getValue(); 5530 bool SeenAccessTypeInPath = false; 5531 5532 SmallPtrSet<MDNode *, 4> StructPath; 5533 5534 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5535 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5536 IsNewFormat)) { 5537 if (!StructPath.insert(BaseNode).second) { 5538 CheckFailed("Cycle detected in struct path", &I, MD); 5539 return false; 5540 } 5541 5542 bool Invalid; 5543 unsigned BaseNodeBitWidth; 5544 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5545 IsNewFormat); 5546 5547 // If the base node is invalid in itself, then we've already printed all the 5548 // errors we wanted to print. 5549 if (Invalid) 5550 return false; 5551 5552 SeenAccessTypeInPath |= BaseNode == AccessType; 5553 5554 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5555 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5556 &I, MD, &Offset); 5557 5558 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5559 (BaseNodeBitWidth == 0 && Offset == 0) || 5560 (IsNewFormat && BaseNodeBitWidth == ~0u), 5561 "Access bit-width not the same as description bit-width", &I, MD, 5562 BaseNodeBitWidth, Offset.getBitWidth()); 5563 5564 if (IsNewFormat && SeenAccessTypeInPath) 5565 break; 5566 } 5567 5568 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5569 &I, MD); 5570 return true; 5571 } 5572 5573 char VerifierLegacyPass::ID = 0; 5574 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5575 5576 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5577 return new VerifierLegacyPass(FatalErrors); 5578 } 5579 5580 AnalysisKey VerifierAnalysis::Key; 5581 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5582 ModuleAnalysisManager &) { 5583 Result Res; 5584 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5585 return Res; 5586 } 5587 5588 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5589 FunctionAnalysisManager &) { 5590 return { llvm::verifyFunction(F, &dbgs()), false }; 5591 } 5592 5593 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5594 auto Res = AM.getResult<VerifierAnalysis>(M); 5595 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5596 report_fatal_error("Broken module found, compilation aborted!"); 5597 5598 return PreservedAnalyses::all(); 5599 } 5600 5601 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5602 auto res = AM.getResult<VerifierAnalysis>(F); 5603 if (res.IRBroken && FatalErrors) 5604 report_fatal_error("Broken function found, compilation aborted!"); 5605 5606 return PreservedAnalyses::all(); 5607 } 5608